WO2024057482A1 - System and method for measuring blood vessel function - Google Patents

System and method for measuring blood vessel function Download PDF

Info

Publication number
WO2024057482A1
WO2024057482A1 PCT/JP2022/034563 JP2022034563W WO2024057482A1 WO 2024057482 A1 WO2024057482 A1 WO 2024057482A1 JP 2022034563 W JP2022034563 W JP 2022034563W WO 2024057482 A1 WO2024057482 A1 WO 2024057482A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
pressurizing
blood vessel
subject
cuff
Prior art date
Application number
PCT/JP2022/034563
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 柏野
允裕 中野
仁暢 友池
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/034563 priority Critical patent/WO2024057482A1/en
Publication of WO2024057482A1 publication Critical patent/WO2024057482A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present disclosure relates to a vascular function measurement system and method.
  • Patent Document 1 discloses a method of estimating blood vessel age from pulse waves.
  • a pulse wave is detected using an optical pulse wave sensor, filter processing is performed to remove noise, and the pulse wave is differentiated once or twice to detect the peaks and troughs in the waveform.
  • the area between the top and the trough is calculated, an index is calculated based on the calculated area, and the blood vessel age is estimated.
  • Non-Patent Document 1 discloses a method for testing vascular endothelial function.
  • Plethysmography which is one of the methods for testing vascular endothelial function, measures changes in forearm volume with venous perfusion in the upper arm stopped, while non-invasive methods measure volume pulse waves by wrapping a cuff around the upper arm and measuring reactive congestion after avascularization is released.
  • Non-Patent Document 2 discloses a method of measuring blood vessel elasticity through morphological observation using ultrasound. In this method, the spatial distribution of elastic modulus within the arterial wall is measured transcutaneously by using a general-purpose medical ultrasound diagnostic device and performing special processing on the measurement data.
  • Patent Document 1 captures the characteristics of the waveform and applies it to a template to statistically determine the vascular age, but it is not based on a physical model and cannot obtain detailed physical property parameters, so its accuracy is questionable. .
  • the technique disclosed in Non-Patent Document 1 stops blood flow in the upper arm for a long time, which may place a heavy burden on the subject.
  • the technology in Non-Patent Document 2 uses ultrasonic tomography to take ultrasound tomographic images in a direction perpendicular to the long axis of blood vessels, and examines how the cross-sectional shape of blood vessels changes due to blood flow and its changes.
  • the medical ultrasound diagnostic equipment used is large and expensive, making it unsuitable for home medical care.
  • the present disclosure has been made in view of the above-mentioned circumstances.
  • blood vessels By applying blood vessels to a physical model and analyzing them, detailed physical parameters can be obtained, making it possible to measure blood vessel function with high precision.
  • a small and inexpensive vascular function measurement system and method that can reduce the burden on the subject because the burden is only that of blood pressure measurement, and that can be used for home medical care because it is about the same size and price as a general brachial blood pressure measuring device.
  • the purpose is to provide
  • a vascular function measuring system includes a cuff part having a pressurizing part wrapped around an arm or leg of a subject; A first sensor disposed closer to the distal side of the arm or leg than the pressurizing section, and a blood vessel of the subject based on the output signal of the first sensor when the pressurizing force of the pressurizing section is changed. an arithmetic unit that estimates parameters of a physical model representing .
  • the vascular function measuring method is characterized in that when the pressurizing force of the pressurizing part wrapped around the arm or leg of the subject is changed, the arm or leg An output signal of a first sensor located on the distal side is acquired, and parameters of a physical model representing the blood vessel of the subject are estimated based on the acquired output signal of the first sensor.
  • vascular function measurement system and method that can measure vascular function with high precision, place less burden on the subject, and are small and inexpensive.
  • FIG. 1 is a schematic diagram showing a vascular function measurement system according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a blood vessel distribution constant circuit model.
  • FIG. 7 is a schematic diagram showing a circuit representing one blood vessel in a first modification of the blood vessel distribution constant circuit model.
  • FIG. 7 is a schematic diagram showing a first modification of a blood vessel distribution constant circuit model.
  • FIG. 7 is a schematic diagram showing a circuit representing a heart valve in a second modification of the blood vessel distribution constant circuit model.
  • FIG. 7 is a schematic diagram showing a second modification of the blood vessel distribution constant circuit model. It is a graph showing the measurement results of the sensor.
  • FIG. 3 is a diagram comparing the frequency spectrum of the sound of blood flow and the simulation results of the calculation unit.
  • FIG. 2 is a schematic diagram of a vascular function measurement system according to a second embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a vascular function measurement system according to a third embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing a vascular function measurement system according to a first embodiment of the present disclosure.
  • the vascular function measurement system A1 of this embodiment shown in FIG. 1 is a system that measures the function of a blood vessel of a subject. More specifically, the vascular function measurement system A1 is a system that estimates parameters of a physical model representing a blood vessel of a subject and measures specific vascular function from the estimated parameters.
  • the vascular function measurement system A1 includes a cuff part 10 that is attached to the arm of a subject and that acquires information necessary for estimating the parameters of the physical model, and a cuff part 10 that is not provided in the cuff part 10. , a third sensor 23 that is attached near the heart of the subject, and an operation control section 30 that can be operated by the user and controls the cuff section 10. Note that the subject may operate the operation control unit 30.
  • the size of the vascular function measurement system A1 of this embodiment is comparable to that of a typical home automatic blood pressure monitor worn on the arm of a subject.
  • the cuff portion 10 is a sheet-like member that can be wrapped around the subject's arm (upper arm or forearm) and has a rectangular shape when expanded.
  • the material of the cuff part 10 is not particularly limited as long as it is a flexible sheet material with low elasticity, and cloth, resin film, etc. can be used.
  • the cuff portion 10 may be attached to the leg (thigh or lower leg) of the subject.
  • arm when “arm” is written, it means “arm or leg”.
  • the cuff part 10 is equipped with a holding member for maintaining the state in which it is wrapped around the subject's arm.
  • a holding member for maintaining the state in which it is wrapped around the subject's arm.
  • a hook and loop fastener, a hook, a fixing band, etc. can be used as the holding member.
  • This holding member has enough strength to maintain fixation of the cuff part 10 to the subject's arm even when pressurized by the pressurizing part 11, which will be described later.
  • the direction along the arm of the subject may be referred to as the long axis direction.
  • a direction perpendicular to the long axis direction is sometimes referred to as a radial direction.
  • the direction around the arm is sometimes referred to as the circumferential direction.
  • the upstream side in the flow direction of the artery in the arm of the subject may be simply referred to as the upstream side.
  • the downstream side in the flow direction may be simply referred to as the downstream side.
  • the cuff part 10 includes a pressurizing part 11, a first sensor 21, and a second sensor 22.
  • the pressurizing part 11 is provided on the inner surface of the cuff part 10 when it is attached to the subject's arm.
  • the pressurizing part 11 is a belt-shaped bag extending in the circumferential direction, and expands when fluid is supplied thereinto.
  • the fluid supplied to the pressurizing section 11 is gas (air).
  • the radially outer side of the pressurizing part 11 is held by the cuff part 10. Therefore, when gas is supplied into the pressurizing section 11 while the cuff section 10 is attached to the subject's arm, a pressurizing force based on the expansion of the pressurizing section 11 is applied to the subject's arm. be able to.
  • the first sensor 21 and the second sensor 22 are arranged so that the pressurizing part 11 is sandwiched between them in the longitudinal direction.
  • the first sensor 21 is provided in the cuff part 10 and is placed closer to the distal end of the subject's arm than the pressurizing part 11 is. In other words, the first sensor 21 is arranged downstream of the pressurizing section 11 .
  • the first sensor 21 is an acoustic sensor that measures sound in the audible range (20 Hz to 20 kHz).
  • an acoustic sensor is used as the first sensor 21 to measure sound in a blood vessel (artery or vein) of the subject.
  • the first sensor 21 is not limited to an acoustic sensor, and for example, a pressure sensor can be used.
  • the first sensor 21 is a pressure sensor
  • the first sensor 21 measures blood vessel pressure fluctuations. Parameters of a physical model, which will be described later, can be estimated using blood vessel pressure fluctuations or blood flow sound fluctuations.
  • a plurality of first sensors 21 are provided side by side in the circumferential direction. Since the position of a subject's blood vessels may vary from subject to subject, there is a possibility that a single sensor may not be able to appropriately measure the sound of blood flow. Therefore, as in the present embodiment, by providing a plurality of first sensors 21 and performing measurements respectively, and using the most appropriately measured result, it is possible to stably and appropriately measure the sound of blood flow.
  • the second sensor 22 is provided in the cuff part 10 and is placed closer to the proximal end of the subject's arm than the pressurizing part 11 (closer to the subject's heart). In other words, the second sensor 22 is arranged upstream of the pressurizing section 11 .
  • the second sensor 22 is an acoustic sensor that measures sound in the audible range (20 Hz to 20 kHz). Similar to the first sensor 21, the second sensor 22 may be a pressure sensor capable of measuring blood vessel pressure fluctuations. Similar to the first sensor 21, in this embodiment, a plurality of second sensors 22 are provided side by side in the circumferential direction.
  • the third sensor 23 is attached near the subject's heart.
  • the third sensor 23 is attached to the chest of the subject.
  • a suction member is attached to the third sensor 23, and the third sensor 23 may be attached near the heart of the subject by adhering the suction member to the chest of the subject.
  • the third sensor 23 is an acoustic sensor that measures sounds in the audible range (20 Hz to 20 kHz), and measures heart sounds of the subject.
  • the third sensor 23 may be a pressure sensor that can measure pressure fluctuations in the subject's heart or blood vessels.
  • the third sensor 23 may have a built-in power supply and a communication function, and may wirelessly communicate with the operation control unit 30 to exchange signals. Whether the first sensor 21, second sensor 22, and third sensor 23 are acoustic sensors or pressure sensors may be appropriately selected depending on the system to be constructed.
  • the operation control section 30 is connected to the cuff section 10 via a cable 12.
  • the cable 12 of this embodiment includes a power line and a signal line for the first sensor 21 and the second sensor 22, and a pressurizing tube for supplying gas to the pressurizing section 11.
  • the operation control unit 30 includes a pressurizing unit control unit 31, a sensor control unit 32, a calculation unit 33, a storage unit 34, a communication unit 35, an operation unit 36, and a display unit 37. .
  • the functions of the pressurizing section control section 31, sensor control section 32, calculation section 33, storage section 34, and communication section 35 are performed by a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Realized. Some or all of these components are hardware (circuit parts) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit); (including circuitry), or may be realized by collaboration between software and hardware.
  • the program may be stored in advance in the storage unit 34 or the like, or may be stored in a portable storage medium (non-transitory storage medium) such as a DVD or CD-ROM, and the storage medium is the operation control unit.
  • the pressurizing section control section 31 , the sensor control section 32 , the storage section 34 , the communication section 35 , the operation section 36 , and the display section 37 are electrically connected to the calculation section 33 .
  • the pressurizing unit control unit 31 controls the pressurizing operation of the pressurizing unit 11 based on the command signal from the calculating unit 33.
  • the pressurizing section control section 31 includes a gas supply section (not shown).
  • the gas supply section is a pump or the like, and is connected to the pressurizing section 11 via the pressurizing tube of the cable 12 .
  • the gas supply section supplies gas to the pressurizing section 11 via the pressurizing tube.
  • the sensor control section 32 is electrically connected to the first sensor 21 , the second sensor 22 , the third sensor 23 , and the calculation section 33 .
  • the sensor control unit 32 includes a power source that supplies operating power to the first sensor 21 , the second sensor 22 , and the third sensor 23 , and the sensor control unit 32 , the first sensor 21 , the second sensor 22 , and the third sensor 23 . , and an input/output interface for exchanging power and signals with the arithmetic unit 33.
  • the sensor control unit 32 controls the operations of the first sensor 21 , the second sensor 22 , and the third sensor 23 based on the command signal from the calculation unit 33 , and also controls the operation of the first sensor 21 , the second sensor 22 , and The output signal of the third sensor 23 is acquired and the signal is output to the calculation section 33.
  • the calculation unit 33 comprehensively controls the operations of the pressurizing unit control unit 31, the sensor control unit 32, the storage unit 34, the communication unit 35, the operation unit 36, and the display unit 37. Furthermore, the calculation unit 33 estimates parameters of a physical model representing the blood vessels of the subject, and measures blood vessel function from the estimated parameters. The specific measuring method will be described later.
  • the storage unit 34 includes, for example, at least one of RAM (Random Access Memory), ROM (Read Only Memory), HHD (Hard Disk Drive), and SSD (Solid State Disk).
  • the storage unit 34 stores programs executed by the calculation unit 33, measurement results of the first sensor 21, second sensor 22, and third sensor 23, parameters of the physical model estimated by the calculation unit 33, blood vessel function, etc. do.
  • the communication unit 35 includes an input/output interface for exchanging information with devices external to the operation control unit 30. This input/output interface exchanges information with the device external to the operation control unit 30 via a network such as the Internet or a LAN (Local Area Network).
  • the connection method between the communication unit 35 and the network may be either a wired connection or a wireless connection.
  • the calculation unit 33 may acquire a program stored in a server or the like connected to the network via the communication unit 35 and store it in the storage unit 34, or the calculation unit 33 may acquire a program stored in a server or the like connected to the network and store it in the storage unit 34. Parameters, blood vessel functions, etc. may be transferred to a server or the like via the communication unit 35 and the network.
  • the operation unit 36 is a device that receives operation commands from the user, and includes, for example, a touch panel, an input switch, and the like.
  • the display unit 37 is a device that notifies the user of the measurement results of the vascular function measurement system A1, and includes, for example, a display, a touch panel, an LED lamp, and the like.
  • the operation section 36 and the display section 37 may be configured by the same touch panel.
  • the vascular function measurement system A1 of this embodiment is configured to estimate the physical model parameters of the blood vessel by measuring the sound or pressure of the artery at multiple locations in the longitudinal direction. First, while pressurizing and depressurizing with the pressurizing part 11, sounds downstream of the pressurizing part 11, sounds upstream of the pressurizing part 11, and sounds near the heart are acquired, and acoustic waveforms and sounds are obtained. Record changes in the acoustic spectrum. Sounds downstream from the pressurizing section 11 are measured by the first sensor 21, sounds upstream from the pressurizing section 11 are measured by the second sensor 22, and sounds near the heart are measured by the third sensor 23.
  • the calculation section 33 gives a command to the pressurizing section control section 31 based on the operation of the operation section 36 by the user.
  • the pressurizing section control section 31 controls the gas supply section connected to the pressurizing section 11 based on the command. As a result, gas is supplied to and discharged from the pressurizing section 11, and the subject's arm is pressurized and depressurized.
  • measurements are performed by the first sensor 21, second sensor 22, and third sensor 23.
  • the measurement target may be sound or pressure fluctuation.
  • Measurement results (output signals) from the first sensor 21 , second sensor 22 , and third sensor 23 are input to the calculation unit 33 via the sensor control unit 32 .
  • the calculation unit 33 estimates parameters of a physical model representing the blood vessel of the subject based on the output signals of the first sensor 21, the second sensor 22, and the third sensor 23.
  • An example of the calculation performed by the calculation unit 33 is a simulation in which a physical model representing the blood vessels of the subject is applied to a distributed constant circuit model.
  • a general electric circuit simulator can be used for this simulation. More specifically, one blood vessel extending from the left ventricle to the periphery is represented by a distributed constant circuit model with the following elements. If blood pressure corresponds to voltage and blood flow corresponds to current, a distributed constant circuit model can be expressed as shown in FIG. 2, for example.
  • L, R, C, G, R CUFF , Zo, M P , M Q , and MR are defined as follows.
  • Inductance L A resistance component against changes in blood flow that corresponds to inertial force in blood flow.
  • Resistance R A resistance component to blood flow corresponding to the friction between the blood vessel wall and blood.
  • Capacitance C A component that locally accumulates blood, corresponding to an increase in the inner diameter due to elastic deformation of the blood vessel.
  • Conductance G A component that eliminates local accumulation of blood, which corresponds to the reciprocal of the restoring force of elastic deformation of the blood vessel.
  • Pressure force R CUFF Pressure force generated by the pressure unit 11.
  • Impedance Zo represents a state where there is no reflection at the periphery of the blood vessel and the distributed constant circuit model is terminated with matched impedance.
  • M P , M Q , M R Measured values by the first sensor 21, the second sensor 22, and the third sensor 23.
  • pressurization and depressurization by the pressurizing unit 11 corresponds to measurement while changing the value of the pressurizing force R CUFF , and the measurement result near the heart by the third sensor 23 corresponds to the power supply voltage.
  • pulse wave propagation, reflected waves, standing waves, etc. can be simulated.
  • the first sensor 21, the second sensor 22, and the third sensor 23 generate sounds (blood flow sounds, heart sounds, Korotkoff sounds, etc.) while gradually changing the pressurizing force R CUFF from 0 to ⁇ . Measure pressure fluctuations in blood vessels. Based on this measurement result, each circuit element parameter (corresponding to the state of blood vessels) and the voltage and current at each node in the circuit (corresponding to blood pressure and blood flow) are estimated. This can be expected to be useful in health management or clinical medicine, such as estimation of blood vessel conditions.
  • Non-Patent Document 3 The physical correspondence with circuit elements in the physical model of this embodiment is close to the Windkessel model shown in Non-Patent Document 3, but in this disclosure, in order to analyze the propagation of pulse waves, reflected waves, and standing waves, The important difference is that it is a distributed constant circuit. That is, the model of Non-Patent Document 3 is represented by a lumped constant circuit.
  • FIG. 2 is a schematic diagram showing a circuit V representing one blood vessel in a first modification of the blood vessel distribution constant circuit model.
  • FIG. 4 is a schematic diagram showing a first modification of the blood vessel distribution constant circuit model.
  • the circuit diagram shown in FIG. 4 includes a plurality of circuits V. Since one circuit V represents one blood vessel, the circuit diagram in FIG. 4 represents the state in which the blood vessel branches into multiple branches within the body. More specifically, in FIG. 4, the upper plurality of circuits V represent arteries, and the lower plurality of circuits V represent veins. Simulation is possible even when the circuit diagram is branched like this. In other words, it is also possible to consider the branching of blood vessels within the body and model the whole body's blood flow dynamics in the same way.
  • a heart valve it is also possible to model a heart valve as a series and parallel connection of a diode and a resistor, and evaluate the health of the valve based on the magnitude of the resistance value. More specifically, in a circuit with diodes placed in the direction of normal blood flow, if the series resistance is small and the parallel resistance is large, the valve is healthy; if the parallel resistance is small, there is backflow, and the series resistance is large. In these cases, it can be evaluated that there is a blood flow disorder due to stenosis, etc. Furthermore, it is also possible to add a circuit with a diode arranged in the reverse flow direction to evaluate reverse flow. A second modification is shown as a circuit diagram modeling a heart valve. FIG.
  • FIG. 5 is a schematic diagram showing a circuit representing a heart valve in a second modification of the blood vessel distribution constant circuit model.
  • a heart valve can be represented by a combination of resistors and diodes.
  • FIG. 6 is a schematic diagram showing a second modification of the blood vessel distribution constant circuit model.
  • the heart can be represented by multiple valves (see FIG. 5), multiple variable capacitance capacitors, etc.
  • the atria and ventricles repeatedly expand and contract, so the amount of blood that can be held inside changes over time. This state can be represented by changing the capacitance of the variable capacitor over time.
  • the distributed constant circuit model of the present embodiment described above does not take into account the circulation effect due to smooth muscle contraction of the blood vessel itself, this smooth muscle contraction may be added as a distributed voltage source. Further, each distribution constant may be time-varying.
  • FIG. 7 shows an example of observation by the first sensor 21, the second sensor 22, and the third sensor 23.
  • the horizontal axis in FIG. 7 represents time. More specifically, it shows the sequence of time in which the upper arm is pressurized, blood flow is blocked, the pressure is gradually reduced, and the upper arm is released.
  • the measurement results on the upstream side of the pressurizing section 11 i.e., the measurement results of the second sensor 22
  • the measurement results on the downstream side of the pressurizing section 11 i.e., the measurement results of the first sensor 21
  • the measurement results near the heart ie, the measurement results of the third sensor 23
  • the upper part of each measurement result is a time axis waveform
  • the lower part is a spectrogram.
  • the spectrogram on the upstream side of the pressurizing section 11 shows a water hammer sound when blood flow is blocked. Further, in the spectrogram on the downstream side of the pressurizing section 11 at the stage of gradual pressure reduction, the resonance characteristics change as the pressure is reduced and Korotkoff sounds are observed.
  • FIG. 8 shows a frequency spectrum on the downstream side of the pressurizing section 11, which corresponds to resonance characteristics when Korotkoff sounds are observed.
  • FIG. 8(a) shows the frequency spectrum in the simulation results of the output signal of the first sensor 21, and
  • FIG. 8(b) shows the measurement results of the sensors 21, 22, and 23.
  • the frequency spectrum in FIG. 8(a) corresponds to the resonance characteristics within the rectangular frame shown in FIG. 8(b).
  • the parameters may be estimated by forward simulation, for example.
  • the calculation unit 33 starts a simulation of the distributed constant circuit model using the trial parameters, and the simulation results and the output signals of the first sensor 21, the second sensor 22, and the third sensor 23 indicate The time axis waveform and the frequency spectrum are compared, and the parameters are determined by repeating simulation and comparison while changing the trial parameters to other values until they match with a predetermined accuracy.
  • a numerical range that a parameter should take may be set in advance, or a condition that should be satisfied between each parameter may be defined in advance.
  • the condition is that the series resistance value and the position in the longitudinal direction of the blood vessel have a linear relationship.
  • Various methods can be considered to determine whether the sensor measurement results and simulation results match with a predetermined accuracy. For example, to determine whether the spectra are similar to each other, the squared Euclidean distance of the spectra, the Itakura-Saito distance, the KL divergence, the comparison of polar frequencies by linear predictive analysis, etc. can be used.
  • the sensor of this embodiment measures the sound of blood flow, but it may also measure the pressure of blood vessels.
  • FIG. 9 shows the temporal change in pressure obtained by circuit simulation.
  • a sensor may measure blood vessel pressure fluctuations, a corresponding simulation may be performed, and a forward simulation may be performed based on both results to estimate the parameters of the physical model.
  • a specific vascular function is derived based on the parameters.
  • Specific vascular functions include, for example, the hardness (stiffness) of the vascular wall and the strength of elasticity (elastic coefficient) of the vascular wall.
  • the calculation unit 33 also derives the vascular function, and the vascular function may be derived from the parameters using a regression equation or a neural network model.
  • the vascular function measurement system A1 of the present embodiment includes the cuff section 10 having the pressurizing section 11 that is wrapped around the arm or leg of the subject, and the cuff section 10 that is provided on the cuff section 10 and that A physical model representing the blood vessels of the subject is created based on the first sensor 21 disposed at the distal side of the arm or leg and the output signal of the first sensor 21 when the pressurizing force of the pressurizing section 11 is changed. and a calculation unit 33 for estimating the parameters of.
  • the vascular function measurement system A1 may include a second sensor 22 that is provided in the cuff section 10 and is disposed closer to the proximal end of the arm or leg than the pressurizing section 11 is.
  • the vascular function measurement system A1 may include a third sensor 23 attached near the heart of the subject. By using these second sensor 22 and third sensor 23, more accurate estimation can be performed.
  • the calculation unit 33 may estimate the parameters of the physical model representing the blood vessel of the subject based on the time-domain waveform and the time change of the frequency spectrum represented by the output signal of the first sensor 21.
  • the calculation unit 33 may perform simulation by applying the physical model to the distributed constant circuit model.
  • the distributed circuit constant model may include an inductance L, a resistance R, a capacitance C, a conductance G, a pressurizing force R CUFF generated by the pressurizing section 11, and an impedance Zo.
  • inductance L is a component of resistance to changes in blood flow, which corresponds to inertial force in blood flow
  • resistance R is a component of resistance to blood flow, which corresponds to friction between the blood vessel wall and the blood.
  • capacitance C is a component that locally accumulates blood, which corresponds to an increase in the inner diameter due to elastic deformation of the blood vessel
  • conductance G is a component that locally accumulates blood, which corresponds to the reciprocal of the restoring force of elastic deformation of the blood vessel.
  • the calculation unit 33 starts a simulation of the distributed constant circuit model using the trial parameters, and compares the simulation result with the time axis waveform and frequency spectrum indicated by the output signal of the first sensor 21, so that both of them are set to a predetermined value.
  • the parameters may be determined by repeatedly performing simulation and comparison while changing the trial parameters to other values until they match with an accuracy of .
  • the pressure applied by the pressurizing part 11 wrapped around the subject's arm or leg is changed, the pressure is applied to the distal side of the arm or leg rather than the pressurizing part 11.
  • the output signal of the located first sensor 21 is acquired, and based on the acquired output signal of the first sensor 21, parameters of a physical model representing the blood vessel of the subject are estimated.
  • the first sensor 21 in the vascular function measurement system A2 of the present embodiment includes an upstream first sensor 21a disposed downstream of the pressurizing section 11, and a downstream side of the upstream first sensor 21a. and a first downstream sensor 21b disposed on the side.
  • a plurality of the first upstream sensors 21a and the first downstream sensors 21b are provided, and are arranged side by side in the circumferential direction. In the longitudinal direction, the pressurizing part 11, the first upstream sensor 21a, and the first downstream sensor 21b are arranged in order from the upstream side to the downstream side.
  • the second sensor 22 of the present embodiment includes a second downstream sensor 22a disposed upstream of the pressurizing part 11, a second upstream sensor 22b disposed upstream of the second downstream sensor 22a, Equipped with A plurality of downstream second sensors 22a and a plurality of upstream second sensors 22b are provided, and are arranged in parallel in the circumferential direction.
  • the upstream second sensor 22b, the downstream second sensor 22a, and the pressurizing part 11 are arranged in order from the upstream side to the downstream side. With such a configuration, the sensors are arranged at more locations in the long axis direction, so that highly accurate estimation can be performed.
  • the operation control unit 30 includes a first calculation unit 38 instead of the calculation unit 33 of the first embodiment, and the vascular function measurement system A3 includes a second calculation unit 40. Equipped with The structural configurations of the first arithmetic unit 38 and the second arithmetic unit 40 are similar to the arithmetic unit 33 of the first embodiment.
  • the second calculation unit 40 is constructed in a server or the like connected to a network such as a LAN or the Internet, and is configured to be able to communicate with the communication unit 35 via the network.
  • the connection between the second arithmetic unit 40 and the communication unit 35 may be either a wired connection or a wireless connection.
  • the combined functions of the first calculation section 38 and the second calculation section 40 of this embodiment correspond to the functions of the calculation section 33 of the first embodiment. That is, the first calculation unit 38 estimates parameters of a physical model representing the blood vessels of the subject, transmits the estimated parameters to the second calculation unit 40 via the communication unit 35, and sends the estimated parameters to the second calculation unit 40 via the communication unit 35.
  • the vascular function may be derived using the acquired parameters.
  • the derived blood vessel function may be inputted from the second calculation unit 40 to the operation control unit 30 via the communication unit 35 under the control of the first calculation unit 38 and displayed on the display unit 37.
  • the second calculation unit 40 may be configured to perform both the parameter estimation operation and the blood vessel function derivation operation.
  • the first calculation section 38 acquires the control operations of the pressurizing section control section 31 and the sensor control section 32 and the measurement results of the sensors via the sensor control section 32, and performs the second calculation via the communication section 35.
  • a transfer operation for transferring data to the unit 40 is performed, but an operation for estimating parameters and an operation for deriving blood vessel function are not performed.
  • the parameters and blood vessel function obtained by the second calculation unit 40 are input from the second calculation unit 40 to the operation control unit 30 via the communication unit 35 under the control of the first calculation unit 38 and are displayed on the display unit 37. may be done.
  • the vascular function measurement system A3 can be further simplified and downsized.
  • the second calculation unit 40 that performs parameter estimation etc. is built on a server etc. connected to a network, even if it becomes necessary to update the algorithm etc. used for estimation, the second calculation unit 40 It is only necessary to update the following files, which reduces the effort involved in updating.
  • sensors are provided at multiple locations in the longitudinal direction of the cuff portion 10, and a third sensor 23 near the heart is also used.
  • a third sensor 23 near the heart is also used.
  • at least the first sensor 21 disposed downstream of the pressurizing section 11 is provided.
  • a configuration in which the second sensor 22 and the third sensor 23 are not provided in the vascular function measurement system A1 is also acceptable. Even with a configuration in which only the first sensor 21 is provided, parameters can be estimated with sufficient accuracy.
  • the present disclosure can be applied to a system and method for measuring vascular function of a subject.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This system (A1, A2, A3) for measuring blood vessel functions comprises: a cuff part (10) having a pressing section (11) wound around an arm or a leg of a subject; first sensors (21) which are provided to the cuff part (10) and disposed further toward an end side of the arm or the leg than the pressing section (11); and a calculation unit (33, 38, 40) which estimates parameters of a physical model representing a blood vessel of the subject, on the basis of an output signal from the first sensors (21) when the pressing force of the pressing section (11) has been changed.

Description

血管機能測定システム及び方法Vascular function measurement system and method
 本開示は、血管機能測定システム及び方法に関する。 The present disclosure relates to a vascular function measurement system and method.
 社会の高齢化が進み、成人の生活習慣病への対応が社会的に大きな課題になっている。特に高血圧に関連する疾患の場合、血管機能の測定値は動脈硬化及び高血圧を防ぐ上で参照すべき基本的で重要な指標である。よって、被験者が簡易且つ正確に血管機能を測定できる方法及び装置が求められている。このような測定方法及び装置については、被験者への感染対策等が不要で在宅医療にも適している非観血且つ非侵襲の手法が望ましい。 As society continues to age, dealing with lifestyle-related diseases among adults has become a major social issue. Particularly in the case of diseases related to hypertension, measurements of vascular function are basic and important indicators to be referred to in preventing arteriosclerosis and hypertension. Therefore, there is a need for a method and apparatus that allow subjects to easily and accurately measure vascular function. Regarding such measurement methods and devices, non-invasive and non-invasive methods that do not require infection control measures for subjects and are suitable for home medical care are desirable.
 従来の血管機能を非観血且つ非侵襲で測定する技術として、例えば特許文献1では、脈波から血管年齢を推定する方法が開示されている。この方法では、光学式の脈波センサを用いて脈波を検出し、ノイズを除去するためのフィルタ処理を行い、脈波を1回又は2回微分して波形における頂部と谷部を検出し、頂部と谷部の間の面積を計算し、求めた面積により指数を計算し、血管年齢を推定している。 As a conventional technique for non-invasively measuring blood vessel function, for example, Patent Document 1 discloses a method of estimating blood vessel age from pulse waves. In this method, a pulse wave is detected using an optical pulse wave sensor, filter processing is performed to remove noise, and the pulse wave is differentiated once or twice to detect the peaks and troughs in the waveform. , the area between the top and the trough is calculated, an index is calculated based on the calculated area, and the blood vessel age is estimated.
 非特許文献1では、血管内皮機能検査の方法が開示されている。血管内皮機能検査のうちの一つの検査方法であるプレチスモグラフィーは、上腕の静脈灌流を停止させた状態で前腕容積の変化を測定するが、非観血的方法では、マンシェットを上腕に巻いて駆血解除後の反応性充血により容積脈波を測定する。 Non-Patent Document 1 discloses a method for testing vascular endothelial function. Plethysmography, which is one of the methods for testing vascular endothelial function, measures changes in forearm volume with venous perfusion in the upper arm stopped, while non-invasive methods measure volume pulse waves by wrapping a cuff around the upper arm and measuring reactive congestion after avascularization is released.
 非特許文献2では、超音波を用いた形態観測による血管弾性測定の方法が開示されている。この方法では汎用の医用超音波診断装置を利用し測定データに特別な処理を行うことによって、動脈壁内の弾性率の空間分布を経皮的に計測している。 Non-Patent Document 2 discloses a method of measuring blood vessel elasticity through morphological observation using ultrasound. In this method, the spatial distribution of elastic modulus within the arterial wall is measured transcutaneously by using a general-purpose medical ultrasound diagnostic device and performing special processing on the measurement data.
日本国特開2008-079813Japanese Patent Publication 2008-079813
 しかしながら、特許文献1の技術は、波形の特徴を捉えて雛形に当てはめて、統計的に血管年齢を求めるが、物理モデルに基づくものではなく細かい物性パラメータを得ることができないため精度に疑問がある。非特許文献1の技術は、血流を上腕で長時間止めるため被験者に対する負担が大きくなる場合がある。非特許文献2の技術は超音波断層撮影法を使って、血管の長軸方向に直交する方向の超音波断層イメージを撮影し、血流やその変化によって血管断面形状がどのように変化していくかを観測することができるが、使用する医用超音波診断装置は大型で高価であるため、在宅医療には適さない。 However, the technique of Patent Document 1 captures the characteristics of the waveform and applies it to a template to statistically determine the vascular age, but it is not based on a physical model and cannot obtain detailed physical property parameters, so its accuracy is questionable. . The technique disclosed in Non-Patent Document 1 stops blood flow in the upper arm for a long time, which may place a heavy burden on the subject. The technology in Non-Patent Document 2 uses ultrasonic tomography to take ultrasound tomographic images in a direction perpendicular to the long axis of blood vessels, and examines how the cross-sectional shape of blood vessels changes due to blood flow and its changes. However, the medical ultrasound diagnostic equipment used is large and expensive, making it unsuitable for home medical care.
 本開示は、上述した事情に鑑みてなされたものであり、血管を物理モデルに当てはめて解析することで細かい物性パラメータが得られるので血管機能を高精度に測定でき、被験者にとっては一般的な上腕血圧測定程度の負担しかないので被検者に対する負担を軽減でき、一般的な上腕血圧測定器程度の大きさと価格であるので在宅医療にも利用可能な小型且つ低廉な、血管機能測定システム及び方法を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned circumstances. By applying blood vessels to a physical model and analyzing them, detailed physical parameters can be obtained, making it possible to measure blood vessel function with high precision. A small and inexpensive vascular function measurement system and method that can reduce the burden on the subject because the burden is only that of blood pressure measurement, and that can be used for home medical care because it is about the same size and price as a general brachial blood pressure measuring device. The purpose is to provide
 上記目的を達成するために、本開示の第1の態様に係る血管機能測定システムは、被検者の腕又は脚に巻かれる加圧部を有するカフ部と、前記カフ部に設けられ、前記加圧部よりも前記腕又は脚の末端側に配置される第1センサと、前記加圧部の加圧力を変化させた際の前記第1センサの出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する演算部と、を備える。 In order to achieve the above object, a vascular function measuring system according to a first aspect of the present disclosure includes a cuff part having a pressurizing part wrapped around an arm or leg of a subject; A first sensor disposed closer to the distal side of the arm or leg than the pressurizing section, and a blood vessel of the subject based on the output signal of the first sensor when the pressurizing force of the pressurizing section is changed. an arithmetic unit that estimates parameters of a physical model representing .
 本開示の第2の態様に係る血管機能測定方法は、被検者の腕又は脚に巻かれた加圧部の加圧力を変化させた際の、前記加圧部よりも前記腕又は脚の末端側に位置する第1センサの出力信号を取得し、取得された前記第1センサの出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する。 The vascular function measuring method according to the second aspect of the present disclosure is characterized in that when the pressurizing force of the pressurizing part wrapped around the arm or leg of the subject is changed, the arm or leg An output signal of a first sensor located on the distal side is acquired, and parameters of a physical model representing the blood vessel of the subject are estimated based on the acquired output signal of the first sensor.
 本開示によれば、血管機能を高精度に測定でき、被検者に対する負担が少なく、小型且つ低廉な血管機能測定システム及び方法を提供することが可能である。 According to the present disclosure, it is possible to provide a vascular function measurement system and method that can measure vascular function with high precision, place less burden on the subject, and are small and inexpensive.
本開示の第1実施形態に係る血管機能測定システムを示す概略図である。1 is a schematic diagram showing a vascular function measurement system according to a first embodiment of the present disclosure. 血管の分布定数回路モデルを示す概略図である。FIG. 2 is a schematic diagram showing a blood vessel distribution constant circuit model. 血管の分布定数回路モデルの第1変形例における、1本の血管を表す回路を示す概略図である。FIG. 7 is a schematic diagram showing a circuit representing one blood vessel in a first modification of the blood vessel distribution constant circuit model. 血管の分布定数回路モデルの第1変形例を示す概略図である。FIG. 7 is a schematic diagram showing a first modification of a blood vessel distribution constant circuit model. 血管の分布定数回路モデルの第2変形例における、心臓の弁を表す回路を示す概略図である。FIG. 7 is a schematic diagram showing a circuit representing a heart valve in a second modification of the blood vessel distribution constant circuit model. 血管の分布定数回路モデルの第2変形例を示す概略図である。FIG. 7 is a schematic diagram showing a second modification of the blood vessel distribution constant circuit model. センサの測定結果を示すグラフである。It is a graph showing the measurement results of the sensor. 血流の音の周波数スペクトルと演算部のシミュレーション結果を比較した図である。FIG. 3 is a diagram comparing the frequency spectrum of the sound of blood flow and the simulation results of the calculation unit. 演算部による、血管の圧力のシミュレーション結果を示すグラフである。It is a graph showing simulation results of blood vessel pressure by a calculation unit. 本開示の第2実施形態に係る血管機能測定システムの概略図である。FIG. 2 is a schematic diagram of a vascular function measurement system according to a second embodiment of the present disclosure. 本開示の第3実施形態に係る血管機能測定システムの概略図である。FIG. 3 is a schematic diagram of a vascular function measurement system according to a third embodiment of the present disclosure.
(第1実施形態)
 以下、図面を参照して、本開示の第1実施形態について説明する。図1は、本開示の第1実施形態に係る血管機能測定システムを示す概略図である。図1に示す本実施形態の血管機能測定システムA1は、被検者の血管の機能を測定するシステムである。より詳細には、血管機能測定システムA1は、被検者の血管を表す物理モデルのパラメータを推定し、当該推定したパラメータから、具体的な血管機能を測定するシステムである。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a vascular function measurement system according to a first embodiment of the present disclosure. The vascular function measurement system A1 of this embodiment shown in FIG. 1 is a system that measures the function of a blood vessel of a subject. More specifically, the vascular function measurement system A1 is a system that estimates parameters of a physical model representing a blood vessel of a subject and measures specific vascular function from the estimated parameters.
 血管機能測定システムA1は、図1に示すように、被検者の腕に装着され、前記物理モデルのパラメータの推定に必要な情報を取得するカフ部10と、カフ部10には設けられず、被検者の心臓近傍に装着される第3センサ23と、使用者が操作可能であり、カフ部10を制御する操作制御部30と、を備える。なお、被検者が操作制御部30を操作してもよい。本実施形態の血管機能測定システムA1の大きさは、被検者の腕に装着される一般的な家庭用自動血圧計と同程度である。 As shown in FIG. 1, the vascular function measurement system A1 includes a cuff part 10 that is attached to the arm of a subject and that acquires information necessary for estimating the parameters of the physical model, and a cuff part 10 that is not provided in the cuff part 10. , a third sensor 23 that is attached near the heart of the subject, and an operation control section 30 that can be operated by the user and controls the cuff section 10. Note that the subject may operate the operation control unit 30. The size of the vascular function measurement system A1 of this embodiment is comparable to that of a typical home automatic blood pressure monitor worn on the arm of a subject.
 カフ部10は、被検者の腕(上腕又は前腕)に巻回可能な部材であって、展開時には矩形状となるシート状部材である。カフ部10の材質は、可撓性を有し且つ伸縮性の低いシート部材であれば特に限定されず、布や樹脂フィルム等を使用できる。なお、カフ部10は、被検者の脚(大腿又は下腿)に装着されてもよい。以下、「腕」と記載した場合は、「腕又は脚」を意味するものとする。 The cuff portion 10 is a sheet-like member that can be wrapped around the subject's arm (upper arm or forearm) and has a rectangular shape when expanded. The material of the cuff part 10 is not particularly limited as long as it is a flexible sheet material with low elasticity, and cloth, resin film, etc. can be used. Note that the cuff portion 10 may be attached to the leg (thigh or lower leg) of the subject. Hereinafter, when "arm" is written, it means "arm or leg".
 カフ部10には、被検者の腕に巻回された状態を保持するための保持部材が備えられている。保持部材としては、面ファスナーやフック、固定バンド等を用いることができる。この保持部材は、後述する加圧部11による加圧時にも、カフ部10の被検者の腕への固定を維持できるだけの強度を備えている。なお、以下の説明では、被検者の腕に沿う方向を長軸方向と称する場合がある。長軸方向に直交する方向を径方向と称する場合がある。腕周りの方向を周方向と称する場合がある。被検者の腕の動脈の流れ方向における上流側を、単に上流側と称する場合がある。前記流れ方向における下流側を、単に下流側と称する場合がある。 The cuff part 10 is equipped with a holding member for maintaining the state in which it is wrapped around the subject's arm. As the holding member, a hook and loop fastener, a hook, a fixing band, etc. can be used. This holding member has enough strength to maintain fixation of the cuff part 10 to the subject's arm even when pressurized by the pressurizing part 11, which will be described later. Note that in the following description, the direction along the arm of the subject may be referred to as the long axis direction. A direction perpendicular to the long axis direction is sometimes referred to as a radial direction. The direction around the arm is sometimes referred to as the circumferential direction. The upstream side in the flow direction of the artery in the arm of the subject may be simply referred to as the upstream side. The downstream side in the flow direction may be simply referred to as the downstream side.
 カフ部10は、加圧部11と、第1センサ21と、第2センサ22と、を備える。加圧部11は、カフ部10が被検者の腕に装着された際の内側面に設けられている。加圧部11は、周方向に延びる帯状の袋体であり、内部に流体が供給されることで膨張する。本実施形態において、加圧部11に供給される流体は気体(空気)である。加圧部11の径方向外側はカフ部10によって保持されている。このため、カフ部10が被検者の腕に装着されている状態で、加圧部11内に気体を供給すると、加圧部11の膨張に基づく加圧力を、被検者の腕に与えることができる。すなわち、加圧部11内に気体を供給することで、被検者の腕を加圧し、当該腕における血流を停止させたり制限したりすることができる。第1センサ21及び第2センサ22は、長軸方向において加圧部11を間に挟むように配置される。 The cuff part 10 includes a pressurizing part 11, a first sensor 21, and a second sensor 22. The pressurizing part 11 is provided on the inner surface of the cuff part 10 when it is attached to the subject's arm. The pressurizing part 11 is a belt-shaped bag extending in the circumferential direction, and expands when fluid is supplied thereinto. In this embodiment, the fluid supplied to the pressurizing section 11 is gas (air). The radially outer side of the pressurizing part 11 is held by the cuff part 10. Therefore, when gas is supplied into the pressurizing section 11 while the cuff section 10 is attached to the subject's arm, a pressurizing force based on the expansion of the pressurizing section 11 is applied to the subject's arm. be able to. That is, by supplying gas into the pressurizing section 11, it is possible to pressurize the subject's arm and stop or restrict blood flow in the arm. The first sensor 21 and the second sensor 22 are arranged so that the pressurizing part 11 is sandwiched between them in the longitudinal direction.
 第1センサ21は、カフ部10に設けられると共に、加圧部11よりも被検者の腕の末端側に配置される。言い換えれば、第1センサ21は、加圧部11の下流側に配置される。本実施形態において、第1センサ21は可聴域(20Hz~20kHz)の音を測定する音響センサである。本実施形態では、被検者の血管(動脈又は静脈)における音を測定するために、第1センサ21として音響センサが用いられている。ただし、第1センサ21としては音響センサに限られず、例えば圧力センサを用いることができる。第1センサ21が圧力センサである場合、第1センサ21は血管の圧力変動を測定する。血管の圧力変動または血流音変動を用いて、後述する物理モデルのパラメータを推定することができる。 The first sensor 21 is provided in the cuff part 10 and is placed closer to the distal end of the subject's arm than the pressurizing part 11 is. In other words, the first sensor 21 is arranged downstream of the pressurizing section 11 . In this embodiment, the first sensor 21 is an acoustic sensor that measures sound in the audible range (20 Hz to 20 kHz). In this embodiment, an acoustic sensor is used as the first sensor 21 to measure sound in a blood vessel (artery or vein) of the subject. However, the first sensor 21 is not limited to an acoustic sensor, and for example, a pressure sensor can be used. When the first sensor 21 is a pressure sensor, the first sensor 21 measures blood vessel pressure fluctuations. Parameters of a physical model, which will be described later, can be estimated using blood vessel pressure fluctuations or blood flow sound fluctuations.
 本実施形態においては、複数の第1センサ21が周方向に並んで設けられている。被検者の血管の位置は、被検者毎に異なる場合があるため、単一のセンサでは血流の音を適切に測定できない可能性もある。そこで本実施形態のように、複数の第1センサ21を設けてそれぞれ測定を行い、最も適切に測定された結果を用いることで、血流の音を安定して適切に測定することができる。 In this embodiment, a plurality of first sensors 21 are provided side by side in the circumferential direction. Since the position of a subject's blood vessels may vary from subject to subject, there is a possibility that a single sensor may not be able to appropriately measure the sound of blood flow. Therefore, as in the present embodiment, by providing a plurality of first sensors 21 and performing measurements respectively, and using the most appropriately measured result, it is possible to stably and appropriately measure the sound of blood flow.
 第2センサ22は、カフ部10に設けられると共に、加圧部11よりも被検者の腕の基端側(被検者の心臓側)に配置される。言い換えれば、第2センサ22は、加圧部11の上流側に配置される。本実施形態において、第2センサ22は可聴域(20Hz~20kHz)の音を測定する音響センサである。第1センサ21と同様に、第2センサ22が血管の圧力変動を測定できる圧力センサであってもよい。第1センサ21と同様に、本実施形態においては、複数の第2センサ22が周方向に並んで設けられている。 The second sensor 22 is provided in the cuff part 10 and is placed closer to the proximal end of the subject's arm than the pressurizing part 11 (closer to the subject's heart). In other words, the second sensor 22 is arranged upstream of the pressurizing section 11 . In this embodiment, the second sensor 22 is an acoustic sensor that measures sound in the audible range (20 Hz to 20 kHz). Similar to the first sensor 21, the second sensor 22 may be a pressure sensor capable of measuring blood vessel pressure fluctuations. Similar to the first sensor 21, in this embodiment, a plurality of second sensors 22 are provided side by side in the circumferential direction.
 第3センサ23は、被検者の心臓近傍に装着される。言い換えれば、第3センサ23は、被検者の胸部に装着される。第3センサ23には、例えば吸着部材が取り付けられており、吸着部材が被検者の胸部に吸着することで、第3センサ23が被検者の心臓近傍に装着されてもよい。本実施形態において、第3センサ23は可聴域(20Hz~20kHz)の音を測定する音響センサであり、被検者の心音を測定する。第3センサ23が、被検者の心臓又は血管の圧力変動を測定できる圧力センサであってもよい。第3センサ23が電源と通信機能を内蔵し、無線で操作制御部30と通信して信号をやり取りしてもよい。第1センサ21、第2センサ22及び第3センサ23が、音響センサ又は圧力センサのいずれであるかは、構築するシステムに応じて適宜選択してよい。 The third sensor 23 is attached near the subject's heart. In other words, the third sensor 23 is attached to the chest of the subject. For example, a suction member is attached to the third sensor 23, and the third sensor 23 may be attached near the heart of the subject by adhering the suction member to the chest of the subject. In this embodiment, the third sensor 23 is an acoustic sensor that measures sounds in the audible range (20 Hz to 20 kHz), and measures heart sounds of the subject. The third sensor 23 may be a pressure sensor that can measure pressure fluctuations in the subject's heart or blood vessels. The third sensor 23 may have a built-in power supply and a communication function, and may wirelessly communicate with the operation control unit 30 to exchange signals. Whether the first sensor 21, second sensor 22, and third sensor 23 are acoustic sensors or pressure sensors may be appropriately selected depending on the system to be constructed.
 操作制御部30は、カフ部10にケーブル12を介して接続されている。本実施形態のケーブル12は、第1センサ21及び第2センサ22用の電源線及び信号線と、加圧部11に気体を供給するための加圧用チューブとを含む。操作制御部30は、加圧部制御部31と、センサ制御部32と、演算部33と、記憶部34と、通信部35と、操作部36と、表示部37と、を有している。 The operation control section 30 is connected to the cuff section 10 via a cable 12. The cable 12 of this embodiment includes a power line and a signal line for the first sensor 21 and the second sensor 22, and a pressurizing tube for supplying gas to the pressurizing section 11. The operation control unit 30 includes a pressurizing unit control unit 31, a sensor control unit 32, a calculation unit 33, a storage unit 34, a communication unit 35, an operation unit 36, and a display unit 37. .
 加圧部制御部31、センサ制御部32、演算部33、記憶部34、及び通信部35の各機能は、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。これらの構成要素のうち一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め記憶部34等に格納されていてもよいし、DVDやCD-ROMなどの可搬の記憶媒体(非一過性の記憶媒体)に格納されており、記憶媒体が操作制御部30に接続されたドライブ装置に装着されることで記憶部34にインストールされてもよい。また、加圧部制御部31、センサ制御部32、演算部33、記憶部34、及び通信部35の一部又は全部の機能が、同一のハードウェアによって実現されてもよい。加圧部制御部31、センサ制御部32、記憶部34、通信部35、操作部36、及び表示部37は、演算部33に電気的に接続されている。 The functions of the pressurizing section control section 31, sensor control section 32, calculation section 33, storage section 34, and communication section 35 are performed by a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Realized. Some or all of these components are hardware (circuit parts) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit); (including circuitry), or may be realized by collaboration between software and hardware. The program may be stored in advance in the storage unit 34 or the like, or may be stored in a portable storage medium (non-transitory storage medium) such as a DVD or CD-ROM, and the storage medium is the operation control unit. It may be installed in the storage unit 34 by being attached to a drive device connected to the drive unit 30 . Furthermore, some or all of the functions of the pressurizing section control section 31, the sensor control section 32, the calculation section 33, the storage section 34, and the communication section 35 may be realized by the same hardware. The pressurizing section control section 31 , the sensor control section 32 , the storage section 34 , the communication section 35 , the operation section 36 , and the display section 37 are electrically connected to the calculation section 33 .
 加圧部制御部31は、演算部33の指令信号に基づいて、加圧部11の加圧動作を制御する。加圧部制御部31は、不図示の気体供給部を含む。気体供給部は、ポンプ等であり、ケーブル12の前記加圧用チューブを介して加圧部11に接続されている。気体供給部は、前記加圧用チューブを介して気体を加圧部11に供給する。 The pressurizing unit control unit 31 controls the pressurizing operation of the pressurizing unit 11 based on the command signal from the calculating unit 33. The pressurizing section control section 31 includes a gas supply section (not shown). The gas supply section is a pump or the like, and is connected to the pressurizing section 11 via the pressurizing tube of the cable 12 . The gas supply section supplies gas to the pressurizing section 11 via the pressurizing tube.
 センサ制御部32は、第1センサ21、第2センサ22、第3センサ23、及び演算部33に電気的に接続されている。センサ制御部32は、第1センサ21、第2センサ22、及び第3センサ23に動作電力を供給する電源、並びにセンサ制御部32と、第1センサ21、第2センサ22、第3センサ23、及び演算部33との間で電力及び信号をやり取りするための入出力インターフェイスを備える。すなわち、センサ制御部32は、演算部33の指令信号に基づいて第1センサ21、第2センサ22、及び第3センサ23の動作を制御すると共に、第1センサ21、第2センサ22、及び第3センサ23の出力信号を取得し、当該信号を演算部33に出力する。 The sensor control section 32 is electrically connected to the first sensor 21 , the second sensor 22 , the third sensor 23 , and the calculation section 33 . The sensor control unit 32 includes a power source that supplies operating power to the first sensor 21 , the second sensor 22 , and the third sensor 23 , and the sensor control unit 32 , the first sensor 21 , the second sensor 22 , and the third sensor 23 . , and an input/output interface for exchanging power and signals with the arithmetic unit 33. That is, the sensor control unit 32 controls the operations of the first sensor 21 , the second sensor 22 , and the third sensor 23 based on the command signal from the calculation unit 33 , and also controls the operation of the first sensor 21 , the second sensor 22 , and The output signal of the third sensor 23 is acquired and the signal is output to the calculation section 33.
 演算部33は、加圧部制御部31、センサ制御部32、記憶部34、通信部35、操作部36、及び表示部37の動作を統括的に制御する。また、演算部33は、被検者の血管を表す物理モデルのパラメータを推定し、当該推定したパラメータから血管機能を測定する。具体的な測定方法は後述する。 The calculation unit 33 comprehensively controls the operations of the pressurizing unit control unit 31, the sensor control unit 32, the storage unit 34, the communication unit 35, the operation unit 36, and the display unit 37. Furthermore, the calculation unit 33 estimates parameters of a physical model representing the blood vessels of the subject, and measures blood vessel function from the estimated parameters. The specific measuring method will be described later.
 記憶部34は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、HHD(Hard Disk Drive)、及びSSD(Solid State Disk)の少なくともいずれかを含む。記憶部34は、演算部33によって実行されるプログラムや、第1センサ21、第2センサ22、及び第3センサ23の測定結果、演算部33が推定した物理モデルのパラメータ及び血管機能等を記憶する。 The storage unit 34 includes, for example, at least one of RAM (Random Access Memory), ROM (Read Only Memory), HHD (Hard Disk Drive), and SSD (Solid State Disk). The storage unit 34 stores programs executed by the calculation unit 33, measurement results of the first sensor 21, second sensor 22, and third sensor 23, parameters of the physical model estimated by the calculation unit 33, blood vessel function, etc. do.
 通信部35は、操作制御部30の外部の機器との間で情報をやり取りするための入出力インターフェイスを備える。この入出力インターフェイスは、インターネットやLAN(Local Area Network)等のネットワークを介して、操作制御部30の外部の前記機器との間で情報のやり取りを行う。通信部35と前記ネットワークとの接続方法は、有線接続と無線接続のいずれでもよい。演算部33は、前記ネットワークに接続されたサーバ等に記憶されたプログラムを、通信部35を介して取得して、記憶部34に記憶させてもよいし、演算部33が推定した物理モデルのパラメータや血管機能等を、通信部35及び前記ネットワークを介してサーバ等に転送してもよい。 The communication unit 35 includes an input/output interface for exchanging information with devices external to the operation control unit 30. This input/output interface exchanges information with the device external to the operation control unit 30 via a network such as the Internet or a LAN (Local Area Network). The connection method between the communication unit 35 and the network may be either a wired connection or a wireless connection. The calculation unit 33 may acquire a program stored in a server or the like connected to the network via the communication unit 35 and store it in the storage unit 34, or the calculation unit 33 may acquire a program stored in a server or the like connected to the network and store it in the storage unit 34. Parameters, blood vessel functions, etc. may be transferred to a server or the like via the communication unit 35 and the network.
 操作部36は、使用者の操作指令を受け取る機器であり、例えば、タッチパネルや入力スイッチ等を含む。表示部37は、血管機能測定システムA1の測定結果等を使用者に通知する機器であり、例えば、ディスプレイやタッチパネル、LEDランプ等を含む。操作部36と表示部37が同一のタッチパネルによって構成されてもよい。 The operation unit 36 is a device that receives operation commands from the user, and includes, for example, a touch panel, an input switch, and the like. The display unit 37 is a device that notifies the user of the measurement results of the vascular function measurement system A1, and includes, for example, a display, a touch panel, an LED lamp, and the like. The operation section 36 and the display section 37 may be configured by the same touch panel.
 以下、血管機能測定システムA1により実行される血管機能の測定方法について説明する。
 本実施形態の血管機能測定システムA1は、長軸方向における複数箇所で動脈の音又は圧力を測定することで、血管の物理モデルパラメータを推定するように構成されている。まず、加圧部11による加圧及び減圧を行いながら、加圧部11よりも下流側の音、加圧部11よりも上流側の音、及び心臓近傍の音、を取得し、音響波形と音響スペクトルの変化を記録する。加圧部11よりも下流側の音は、第1センサ21によって測定され、加圧部11よりも上流側の音は、第2センサ22によって測定され、心臓近傍の音は、第3センサ23によって測定される。より詳しくは、使用者による操作部36の操作等に基づいて、演算部33が加圧部制御部31に指令を与える。加圧部制御部31は、指令に基づいて、加圧部11に接続された気体供給部を制御する。これにより、加圧部11に対する気体の供給及び排出が行われ、被験者の腕の加圧及び減圧が行われる。
The method for measuring vascular function performed by the vascular function measurement system A1 will be described below.
The vascular function measurement system A1 of this embodiment is configured to estimate the physical model parameters of the blood vessel by measuring the sound or pressure of the artery at multiple locations in the longitudinal direction. First, while pressurizing and depressurizing with the pressurizing part 11, sounds downstream of the pressurizing part 11, sounds upstream of the pressurizing part 11, and sounds near the heart are acquired, and acoustic waveforms and sounds are obtained. Record changes in the acoustic spectrum. Sounds downstream from the pressurizing section 11 are measured by the first sensor 21, sounds upstream from the pressurizing section 11 are measured by the second sensor 22, and sounds near the heart are measured by the third sensor 23. Measured by More specifically, the calculation section 33 gives a command to the pressurizing section control section 31 based on the operation of the operation section 36 by the user. The pressurizing section control section 31 controls the gas supply section connected to the pressurizing section 11 based on the command. As a result, gas is supplied to and discharged from the pressurizing section 11, and the subject's arm is pressurized and depressurized.
 加圧部11による加圧及び減圧と同時に、第1センサ21、第2センサ22、及び第3センサ23による測定が行われる。先述の通り、測定対象は音であってもよいし、圧力変動であってもよい。第1センサ21、第2センサ22、及び第3センサ23による測定結果(出力信号)は、センサ制御部32を介して演算部33に入力される。 Simultaneously with pressurization and depressurization by the pressurizing unit 11, measurements are performed by the first sensor 21, second sensor 22, and third sensor 23. As mentioned above, the measurement target may be sound or pressure fluctuation. Measurement results (output signals) from the first sensor 21 , second sensor 22 , and third sensor 23 are input to the calculation unit 33 via the sensor control unit 32 .
 演算部33は、第1センサ21、第2センサ22、及び第3センサ23の出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する。演算部33による演算の例として、分布定数回路モデルに、被験者の血管を表す物理モデルを当てはめたシミュレーションが挙げられる。このシミュレーションには、一般的な電気回路シミュレータが使用できる。より具体的には、左心室から末梢に至る血管1本を、以下を要素とする分布定数回路モデルによって表す。血圧を電圧、血流を電流に対応させると、一例として、分布定数回路モデルを図2のように表現できる。 The calculation unit 33 estimates parameters of a physical model representing the blood vessel of the subject based on the output signals of the first sensor 21, the second sensor 22, and the third sensor 23. An example of the calculation performed by the calculation unit 33 is a simulation in which a physical model representing the blood vessels of the subject is applied to a distributed constant circuit model. A general electric circuit simulator can be used for this simulation. More specifically, one blood vessel extending from the left ventricle to the periphery is represented by a distributed constant circuit model with the following elements. If blood pressure corresponds to voltage and blood flow corresponds to current, a distributed constant circuit model can be expressed as shown in FIG. 2, for example.
 図2において、L、R、C、G、RCUFF、Zo、M、M、Mはそれぞれ、以下のように定義される。
 インダクタンスL:血流における慣性力に対応する、血流の変化に対する抵抗成分である。
 抵抗R:血管壁と血液との間における摩擦に対応する、血流に対する抵抗成分である。
 キャパシタンスC:血管の弾性変形による内径増加に対応する、血液を局所的に蓄積する成分である。
 コンダクタンスG:血管の弾性変形の復元力の逆数に対応する、血液の局所的蓄積を解消する成分である。
 加圧力RCUFF:加圧部11が生じる加圧力であり、RCUFF=0で加圧部11が腕又は脚を締め付けた状態、RCUFF=∞で加圧部を開放した状態を表す。
 インピーダンスZo:血管の末梢での反射が無く、整合されたインピーダンスで分布定数回路モデルが終端されている状態を表す。
 M、M、M:第1センサ21、第2センサ22、及び第3センサ23による測定値である。
In FIG. 2, L, R, C, G, R CUFF , Zo, M P , M Q , and MR are defined as follows.
Inductance L: A resistance component against changes in blood flow that corresponds to inertial force in blood flow.
Resistance R: A resistance component to blood flow corresponding to the friction between the blood vessel wall and blood.
Capacitance C: A component that locally accumulates blood, corresponding to an increase in the inner diameter due to elastic deformation of the blood vessel.
Conductance G: A component that eliminates local accumulation of blood, which corresponds to the reciprocal of the restoring force of elastic deformation of the blood vessel.
Pressure force R CUFF : Pressure force generated by the pressure unit 11. R CUFF = 0 indicates a state in which the pressure unit 11 tightens the arm or leg, and R CUFF = ∞ indicates a state in which the pressure unit is open.
Impedance Zo: represents a state where there is no reflection at the periphery of the blood vessel and the distributed constant circuit model is terminated with matched impedance.
M P , M Q , M R : Measured values by the first sensor 21, the second sensor 22, and the third sensor 23.
 分布定数回路モデルにおいて、加圧部11による加圧及び減圧は、加圧力RCUFFの値を変えながら測定することに相当し、第3センサ23による心臓近傍の測定結果は、電源電圧に相当する。本実施形態の分布定数回路モデルでは、脈波の伝搬、反射波、定在波等をシミュレーションの対象とすることができる。 In the distributed constant circuit model, pressurization and depressurization by the pressurizing unit 11 corresponds to measurement while changing the value of the pressurizing force R CUFF , and the measurement result near the heart by the third sensor 23 corresponds to the power supply voltage. . In the distributed constant circuit model of this embodiment, pulse wave propagation, reflected waves, standing waves, etc. can be simulated.
 本実施形態では、加圧力RCUFFを0から∞まで徐々に変化させながら、第1センサ21、第2センサ22、及び第3センサ23によって音(血流の音、心音、コロトコフ音等)又は血管の圧力変動を測定する。この測定結果に基づき、各回路素子パラメータ(血管の状態に相当)、及び回路内の各ノードにおける電圧及び電流(血圧及び血流に相当)、を推定する。これにより、血管状態の推定など、健康管理又は臨床医療上の有用性が期待できる。 In this embodiment, the first sensor 21, the second sensor 22, and the third sensor 23 generate sounds (blood flow sounds, heart sounds, Korotkoff sounds, etc.) while gradually changing the pressurizing force R CUFF from 0 to ∞. Measure pressure fluctuations in blood vessels. Based on this measurement result, each circuit element parameter (corresponding to the state of blood vessels) and the voltage and current at each node in the circuit (corresponding to blood pressure and blood flow) are estimated. This can be expected to be useful in health management or clinical medicine, such as estimation of blood vessel conditions.
 本実施形態の物理モデルにおける、回路素子との物理的対応は、非特許文献3に示されるWindkessel modelに近いが、本開示では、脈波の伝搬や反射波、定在波を解析するために、分布定数回路としていることが重要な相違点である。すなわち、非特許文献3のモデルは、集中定数回路によって表されている。 The physical correspondence with circuit elements in the physical model of this embodiment is close to the Windkessel model shown in Non-Patent Document 3, but in this disclosure, in order to analyze the propagation of pulse waves, reflected waves, and standing waves, The important difference is that it is a distributed constant circuit. That is, the model of Non-Patent Document 3 is represented by a lumped constant circuit.
 なお図2では、理解を容易にするために回路図は一系統で連なっている。ただし実際は、体内では血管が分岐するため、対応する回路図も分岐させる。分岐を有する回路図として第1変形例を示す。図3は、血管の分布定数回路モデルの第1変形例における、1本の血管を表す回路Vを示す概略図である。図4は、血管の分布定数回路モデルの第1変形例を示す概略図である。図4に示す回路図には、複数の回路Vが含まれている。1つの回路Vは、1本の血管を表しているので、図4の回路図は体内で血管が複数に分岐している様子を表現している。より具体的には、図4において、上側の複数の回路Vは動脈を表しており、下側の複数の回路Vは静脈を表している。このように回路図が分岐している場合も、シミュレーション可能である。つまり、体内における血管の分岐も考慮し、全身の血流動態を同様にモデル化することも想定できる。 Note that in FIG. 2, the circuit diagrams are shown in one system for ease of understanding. However, in reality, blood vessels branch in the body, so the corresponding circuit diagram also branches. A first modification is shown as a circuit diagram having branches. FIG. 3 is a schematic diagram showing a circuit V representing one blood vessel in a first modification of the blood vessel distribution constant circuit model. FIG. 4 is a schematic diagram showing a first modification of the blood vessel distribution constant circuit model. The circuit diagram shown in FIG. 4 includes a plurality of circuits V. Since one circuit V represents one blood vessel, the circuit diagram in FIG. 4 represents the state in which the blood vessel branches into multiple branches within the body. More specifically, in FIG. 4, the upper plurality of circuits V represent arteries, and the lower plurality of circuits V represent veins. Simulation is possible even when the circuit diagram is branched like this. In other words, it is also possible to consider the branching of blood vessels within the body and model the whole body's blood flow dynamics in the same way.
 また、例えば、心臓の弁をダイオードと抵抗の直列及び並列接続としてモデル化し、当該抵抗値の大小により弁の健全性を評価することも可能である。より具体的には、正常な血流の方向にダイオードを配置した回路において、直列抵抗が小さく並列抵抗が大きい場合は弁が健全であり、並列抵抗が小さい場合は逆流があり、直列抵抗が大きい場合は狭窄などによる血流の障害がある、とそれぞれ評価できる。さらに、逆流方向にダイオードを配置した回路を付加し、逆流を評価することも可能である。心臓の弁をモデル化した回路図として第2変形例を示す。図5は、血管の分布定数回路モデルの第2変形例における、心臓の弁を表す回路を示す概略図である。図5に示すように、心臓の弁は、複数の抵抗と複数のダイオードの組み合わせによって表すことができる。図6は、血管の分布定数回路モデルの第2変形例を示す概略図である。図6に示すように、心臓は、複数の弁(図5参照)、複数の可変容量コンデンサー、等によって表すことができる。例えば、心房及び心室は、膨張、収縮を繰り返すため、内部に保持可能な血液の量が時間的に変化する。この状態を、可変容量コンデンサーの容量を時間的に変化させることによって表すことができる。
 なお、先述した本実施形態の分布定数回路モデルでは、血管自体の平滑筋収縮による循環作用については考慮していないが、この平滑筋収縮を、分布した電圧源として付加してもよい。
 また各分布定数は時変であってもよい。
For example, it is also possible to model a heart valve as a series and parallel connection of a diode and a resistor, and evaluate the health of the valve based on the magnitude of the resistance value. More specifically, in a circuit with diodes placed in the direction of normal blood flow, if the series resistance is small and the parallel resistance is large, the valve is healthy; if the parallel resistance is small, there is backflow, and the series resistance is large. In these cases, it can be evaluated that there is a blood flow disorder due to stenosis, etc. Furthermore, it is also possible to add a circuit with a diode arranged in the reverse flow direction to evaluate reverse flow. A second modification is shown as a circuit diagram modeling a heart valve. FIG. 5 is a schematic diagram showing a circuit representing a heart valve in a second modification of the blood vessel distribution constant circuit model. As shown in FIG. 5, a heart valve can be represented by a combination of resistors and diodes. FIG. 6 is a schematic diagram showing a second modification of the blood vessel distribution constant circuit model. As shown in FIG. 6, the heart can be represented by multiple valves (see FIG. 5), multiple variable capacitance capacitors, etc. For example, the atria and ventricles repeatedly expand and contract, so the amount of blood that can be held inside changes over time. This state can be represented by changing the capacitance of the variable capacitor over time.
Note that although the distributed constant circuit model of the present embodiment described above does not take into account the circulation effect due to smooth muscle contraction of the blood vessel itself, this smooth muscle contraction may be added as a distributed voltage source.
Further, each distribution constant may be time-varying.
 図7に、第1センサ21、第2センサ22、及び第3センサ23による観測例を示す。図7の横軸は時間を表している。より具体的には、上腕を加圧し、血流が遮断され、徐々に減圧され、開放に至る一連の時間の流れを示している。図7では上から順に、加圧部11の上流側の測定結果(すなわち第2センサ22の測定結果)、加圧部11の下流側の測定結果(すなわち第1センサ21の測定結果)、及び心臓近傍の測定結果(すなわち第3センサ23の測定結果)が示されている。各測定結果の上部が時間軸波形で下部がスペクトログラムである。加圧部11の上流側のスペクトログラムでは、血流遮断時のウォーターハンマ音が示されている。また徐々に減圧する段階において加圧部11の下流側のスペクトログラムでは、減圧に従って共鳴特性が変化しコロトコフ音が観測されている。 FIG. 7 shows an example of observation by the first sensor 21, the second sensor 22, and the third sensor 23. The horizontal axis in FIG. 7 represents time. More specifically, it shows the sequence of time in which the upper arm is pressurized, blood flow is blocked, the pressure is gradually reduced, and the upper arm is released. In FIG. 7, from the top, the measurement results on the upstream side of the pressurizing section 11 (i.e., the measurement results of the second sensor 22), the measurement results on the downstream side of the pressurizing section 11 (i.e., the measurement results of the first sensor 21), and The measurement results near the heart (ie, the measurement results of the third sensor 23) are shown. The upper part of each measurement result is a time axis waveform, and the lower part is a spectrogram. The spectrogram on the upstream side of the pressurizing section 11 shows a water hammer sound when blood flow is blocked. Further, in the spectrogram on the downstream side of the pressurizing section 11 at the stage of gradual pressure reduction, the resonance characteristics change as the pressure is reduced and Korotkoff sounds are observed.
 加圧部11の加圧力の変化によって、物理パラメータが変わり、コロトコフ音が観測される。図8に、コロトコフ音が観測されている際の共鳴特性に相当する、加圧部11の下流側での周波数スペクトルを示す。図8(a)は、第1センサ21の出力信号のシミュレーション結果における周波数スペクトルを示し、図8(b)はセンサ21、22及び23の測定結果を示す。図8(a)の周波数スペクトルは、図8(b)に示された矩形枠内の共鳴特性に相当する。 Due to changes in the pressurizing force of the pressurizing section 11, physical parameters change, and Korotkoff sounds are observed. FIG. 8 shows a frequency spectrum on the downstream side of the pressurizing section 11, which corresponds to resonance characteristics when Korotkoff sounds are observed. FIG. 8(a) shows the frequency spectrum in the simulation results of the output signal of the first sensor 21, and FIG. 8(b) shows the measurement results of the sensors 21, 22, and 23. The frequency spectrum in FIG. 8(a) corresponds to the resonance characteristics within the rectangular frame shown in FIG. 8(b).
 センサの測定結果に相当する血管の物理モデルのパラメータを推定するための一方法として、例えば順方向シミュレーションによってパラメータを推定してもよい。具体的には、演算部33は、試行パラメータを用いて分布定数回路モデルのシミュレーションを開始し、シミュレーションの結果と、第1センサ21、第2センサ22、及び第3センサ23の出力信号が示す時間軸波形及び周波数スペクトルとを比較し、両者が所定の精度で一致するまで、試行パラメータを他の値に変化させながらシミュレーションと比較とを繰り返し行って、パラメータを決定する。
 なお、順方向シミュレーションの際に、パラメータが取り得るべき数値範囲を予め設定していてもよいし、各パラメータの間に、満たすべき条件を予め定義しておいてもよい。後者については、例えば、直列抵抗値と血管の長さ方向の位置とが線形の関係にある、といった条件である。
As one method for estimating the parameters of the physical model of the blood vessel corresponding to the measurement results of the sensor, the parameters may be estimated by forward simulation, for example. Specifically, the calculation unit 33 starts a simulation of the distributed constant circuit model using the trial parameters, and the simulation results and the output signals of the first sensor 21, the second sensor 22, and the third sensor 23 indicate The time axis waveform and the frequency spectrum are compared, and the parameters are determined by repeating simulation and comparison while changing the trial parameters to other values until they match with a predetermined accuracy.
Note that during forward simulation, a numerical range that a parameter should take may be set in advance, or a condition that should be satisfied between each parameter may be defined in advance. Regarding the latter, for example, the condition is that the series resistance value and the position in the longitudinal direction of the blood vessel have a linear relationship.
 センサの測定結果とシミュレーション結果が所定の精度で一致しているか否かを判断するためには、種々の方法が考えられる。例えば、スペクトル同士が近似しているか否かの判断には、スペクトルの二乗ユークリッド距離、板倉斎藤距離、KLダイバージェンス、線形予測分析による極周波数どうしの比較、等が挙げられる。 Various methods can be considered to determine whether the sensor measurement results and simulation results match with a predetermined accuracy. For example, to determine whether the spectra are similar to each other, the squared Euclidean distance of the spectra, the Itakura-Saito distance, the KL divergence, the comparison of polar frequencies by linear predictive analysis, etc. can be used.
 先述の通り、本実施形態のセンサは血流の音を測定しているが、血管の圧力を測定してもよい。図9に回路シミュレーションによって得られた圧力の時間変化を示す。センサが血管の圧力変動を測定し、それに対応するシミュレーションを行い、両結果に基づいて順方向シミュレーションを行って、物理モデルのパラメータを推定してもよい。 As mentioned above, the sensor of this embodiment measures the sound of blood flow, but it may also measure the pressure of blood vessels. FIG. 9 shows the temporal change in pressure obtained by circuit simulation. A sensor may measure blood vessel pressure fluctuations, a corresponding simulation may be performed, and a forward simulation may be performed based on both results to estimate the parameters of the physical model.
 物理モデルのパラメータを推定した後、このパラメータに基づいて具体的な血管機能を導出する。具体的な血管機能としては、例えば、血管壁の硬さ(スティフネス)や、血管壁の弾性の強さ(弾性係数)が挙げられる。本実施形態では、血管機能の導出も演算部33が行っており、回帰式や、ニューラルネットワークのモデルを用いてパラメータから血管機能を導出してもよい。 After estimating the parameters of the physical model, a specific vascular function is derived based on the parameters. Specific vascular functions include, for example, the hardness (stiffness) of the vascular wall and the strength of elasticity (elastic coefficient) of the vascular wall. In this embodiment, the calculation unit 33 also derives the vascular function, and the vascular function may be derived from the parameters using a regression equation or a neural network model.
 以上説明したように、本実施形態の血管機能測定システムA1は、被検者の腕又は脚に巻かれる加圧部11を有するカフ部10と、カフ部10に設けられ、加圧部11よりも腕又は脚の末端側に配置される第1センサ21と、加圧部11の加圧力を変化させた際の第1センサ21の出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する演算部33と、を備える。このような構成により、血管機能を高精度に測定でき、被検者に対する負担が少なく、小型且つ低廉な血管機能測定システムA1を提供することができる。 As described above, the vascular function measurement system A1 of the present embodiment includes the cuff section 10 having the pressurizing section 11 that is wrapped around the arm or leg of the subject, and the cuff section 10 that is provided on the cuff section 10 and that A physical model representing the blood vessels of the subject is created based on the first sensor 21 disposed at the distal side of the arm or leg and the output signal of the first sensor 21 when the pressurizing force of the pressurizing section 11 is changed. and a calculation unit 33 for estimating the parameters of. With such a configuration, it is possible to provide a small and inexpensive vascular function measurement system A1 that can measure vascular function with high precision, places less burden on the subject.
 また、血管機能測定システムA1は、カフ部10に設けられ、加圧部11よりも腕又は脚の基端側に配置される第2センサ22を備えてもよい。血管機能測定システムA1は、被検者の心臓近傍に装着される第3センサ23を備えてもよい。これらの第2センサ22、第3センサ23を用いることで、より精度の高い推定を行うことができる。 Additionally, the vascular function measurement system A1 may include a second sensor 22 that is provided in the cuff section 10 and is disposed closer to the proximal end of the arm or leg than the pressurizing section 11 is. The vascular function measurement system A1 may include a third sensor 23 attached near the heart of the subject. By using these second sensor 22 and third sensor 23, more accurate estimation can be performed.
 また、演算部33は、第1センサ21の出力信号が表す、時間軸波形及び周波数スペクトルの時間変化に基づいて、被検者の血管を表す物理モデルのパラメータを推定してもよい。 Furthermore, the calculation unit 33 may estimate the parameters of the physical model representing the blood vessel of the subject based on the time-domain waveform and the time change of the frequency spectrum represented by the output signal of the first sensor 21.
 また、演算部33は、被検者の血管を表す物理モデルのパラメータを推定する際に、物理モデルを分布定数回路モデルに当てはめてシミュレーションを行ってもよい。分布回路定数モデルには、インダクタンスLと、抵抗Rと、キャパシタンスCと、コンダクタンスGと、加圧部11が生じさせる加圧力RCUFFと、インピーダンスZoと、が含まれてもよい。この場合、インダクタンスLは、血流における慣性力に対応する、血流の変化に対する抵抗成分であり、抵抗Rは、血管壁と血液との間における摩擦に対応する、血流に対する抵抗成分であり、キャパシタンスCは、血管の弾性変形による内径増加に対応する、血液を局所的に蓄積する成分であり、コンダクタンスGは、血管の弾性変形の復元力の逆数に対応する、血液の局所的蓄積を解消する成分であり、加圧力RCUFFは、RCUFF=0で加圧部11が腕又は脚を締め付けた状態、RCUFF=∞で加圧部11を開放した状態を表し、インピーダンスZoは、血管の末梢での反射が無く、整合されたインピーダンスで分布回路定数モデルが終端されている状態を表していてもよい。 Furthermore, when estimating the parameters of the physical model representing the blood vessel of the subject, the calculation unit 33 may perform simulation by applying the physical model to the distributed constant circuit model. The distributed circuit constant model may include an inductance L, a resistance R, a capacitance C, a conductance G, a pressurizing force R CUFF generated by the pressurizing section 11, and an impedance Zo. In this case, inductance L is a component of resistance to changes in blood flow, which corresponds to inertial force in blood flow, and resistance R is a component of resistance to blood flow, which corresponds to friction between the blood vessel wall and the blood. , capacitance C is a component that locally accumulates blood, which corresponds to an increase in the inner diameter due to elastic deformation of the blood vessel, and conductance G is a component that locally accumulates blood, which corresponds to the reciprocal of the restoring force of elastic deformation of the blood vessel. The pressing force R CUFF represents a state where the pressurizing part 11 tightens the arm or leg when R CUFF = 0, and a state where the pressurizing part 11 is open when R CUFF = ∞, and the impedance Zo is It may also represent a state in which there is no reflection at the periphery of the blood vessel and the distributed circuit constant model is terminated with matched impedance.
 また、演算部33は、試行パラメータを用いて分布定数回路モデルのシミュレーションを開始し、シミュレーションの結果と、第1センサ21の出力信号が示す時間軸波形及び周波数スペクトルとを比較し、両者が所定の精度で一致するまで、試行パラメータを他の値に変化させながらシミュレーションと比較とを繰り返し行って、パラメータを決定してもよい。 Further, the calculation unit 33 starts a simulation of the distributed constant circuit model using the trial parameters, and compares the simulation result with the time axis waveform and frequency spectrum indicated by the output signal of the first sensor 21, so that both of them are set to a predetermined value. The parameters may be determined by repeatedly performing simulation and comparison while changing the trial parameters to other values until they match with an accuracy of .
 また、本実施形態の血管機能測定方法は、被検者の腕又は脚に巻かれた加圧部11の加圧力を変化させた際の、加圧部11よりも腕又は脚の末端側に位置する第1センサ21の出力信号を取得し、取得された第1センサ21の出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する。 In addition, in the vascular function measurement method of the present embodiment, when the pressure applied by the pressurizing part 11 wrapped around the subject's arm or leg is changed, the pressure is applied to the distal side of the arm or leg rather than the pressurizing part 11. The output signal of the located first sensor 21 is acquired, and based on the acquired output signal of the first sensor 21, parameters of a physical model representing the blood vessel of the subject are estimated.
(第2実施形態)
 次に、本開示に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。なお、本実施形態の血管機能測定システムA2に、第3センサ23は設けられていない。
(Second embodiment)
Next, a second embodiment according to the present disclosure will be described, which has the same basic configuration as the first embodiment. Therefore, similar configurations will be given the same reference numerals and their explanations will be omitted, and only the different points will be explained. Note that the third sensor 23 is not provided in the vascular function measurement system A2 of this embodiment.
 図10に示すように、本実施形態の血管機能測定システムA2における第1センサ21は、加圧部11の下流側に配置される上流側第1センサ21aと、上流側第1センサ21aの下流側に配置される下流側第1センサ21bと、を備える。上流側第1センサ21aと下流側第1センサ21bは、それぞれ複数設けられ、各々周方向に並んで配置されている。長軸方向においては、上流側から下流側に向けて、加圧部11、上流側第1センサ21a、下流側第1センサ21bが順に並んでいる。 As shown in FIG. 10, the first sensor 21 in the vascular function measurement system A2 of the present embodiment includes an upstream first sensor 21a disposed downstream of the pressurizing section 11, and a downstream side of the upstream first sensor 21a. and a first downstream sensor 21b disposed on the side. A plurality of the first upstream sensors 21a and the first downstream sensors 21b are provided, and are arranged side by side in the circumferential direction. In the longitudinal direction, the pressurizing part 11, the first upstream sensor 21a, and the first downstream sensor 21b are arranged in order from the upstream side to the downstream side.
 本実施形態の第2センサ22は、加圧部11の上流側に配置される下流側第2センサ22aと、下流側第2センサ22aの上流側に配置される上流側第2センサ22bと、を備える。下流側第2センサ22aと上流側第2センサ22bは、それぞれ複数設けられ、各々周方向に並んで配置されている。長軸方向においては、上流側から下流側に向けて、上流側第2センサ22b、下流側第2センサ22a、及び加圧部11が順に並んでいる。
 このような構成により、長軸方向における、より多くの箇所にセンサが配置されるため、精度の高い推定を行うことができる。
The second sensor 22 of the present embodiment includes a second downstream sensor 22a disposed upstream of the pressurizing part 11, a second upstream sensor 22b disposed upstream of the second downstream sensor 22a, Equipped with A plurality of downstream second sensors 22a and a plurality of upstream second sensors 22b are provided, and are arranged in parallel in the circumferential direction. In the longitudinal direction, the upstream second sensor 22b, the downstream second sensor 22a, and the pressurizing part 11 are arranged in order from the upstream side to the downstream side.
With such a configuration, the sensors are arranged at more locations in the long axis direction, so that highly accurate estimation can be performed.
(第3実施形態)
 次に、本開示に係る第3実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 本実施形態では、図11に示すように、操作制御部30が、第1実施形態の演算部33に代えて、第1演算部38を備え、血管機能測定システムA3が、第2演算部40を備える。第1演算部38及び第2演算部40の構造的な構成は、第1実施形態の演算部33と同様である。第2演算部40は、LANやインターネットといったネットワークに接続されたサーバ等に構築されており、当該ネットワークを介して、通信部35と通信可能に構成されている。第2演算部40と通信部35との間の接続は、有線接続と無線接続のいずれでもよい。
(Third embodiment)
Next, a third embodiment according to the present disclosure will be described, which has the same basic configuration as the first embodiment. For this reason, similar configurations are given the same reference numerals and explanations thereof will be omitted, and only the different points will be explained.
In this embodiment, as shown in FIG. 11, the operation control unit 30 includes a first calculation unit 38 instead of the calculation unit 33 of the first embodiment, and the vascular function measurement system A3 includes a second calculation unit 40. Equipped with The structural configurations of the first arithmetic unit 38 and the second arithmetic unit 40 are similar to the arithmetic unit 33 of the first embodiment. The second calculation unit 40 is constructed in a server or the like connected to a network such as a LAN or the Internet, and is configured to be able to communicate with the communication unit 35 via the network. The connection between the second arithmetic unit 40 and the communication unit 35 may be either a wired connection or a wireless connection.
 本実施形態の第1演算部38と第2演算部40とを合わせた機能は、第1実施形態の演算部33の機能に相当する。すなわち、第1演算部38が、被検者の血管を表す物理モデルのパラメータを推定し、推定されたパラメータを、通信部35を介して第2演算部40に送信し、第2演算部40が、取得したパラメータを用いて血管機能を導出してもよい。導出された血管機能は、第1演算部38の制御の下、第2演算部40から通信部35を介して操作制御部30に入力され、表示部37に表示されてもよい。 The combined functions of the first calculation section 38 and the second calculation section 40 of this embodiment correspond to the functions of the calculation section 33 of the first embodiment. That is, the first calculation unit 38 estimates parameters of a physical model representing the blood vessels of the subject, transmits the estimated parameters to the second calculation unit 40 via the communication unit 35, and sends the estimated parameters to the second calculation unit 40 via the communication unit 35. However, the vascular function may be derived using the acquired parameters. The derived blood vessel function may be inputted from the second calculation unit 40 to the operation control unit 30 via the communication unit 35 under the control of the first calculation unit 38 and displayed on the display unit 37.
 一方、第2演算部40が、パラメータの推定動作と血管機能の導出動作をいずれも行う構成であってもよい。この場合、第1演算部38は、加圧部制御部31やセンサ制御部32の制御動作やセンサの測定結果を、センサ制御部32を介して取得し、通信部35を介して第2演算部40に転送する転送動作等を行うが、パラメータの推定動作と血管機能の導出動作は行わない。第2演算部40によって得られたパラメータと血管機能は、第1演算部38の制御の下、第2演算部40から通信部35を介して操作制御部30に入力され、表示部37に表示されてもよい。 On the other hand, the second calculation unit 40 may be configured to perform both the parameter estimation operation and the blood vessel function derivation operation. In this case, the first calculation section 38 acquires the control operations of the pressurizing section control section 31 and the sensor control section 32 and the measurement results of the sensors via the sensor control section 32, and performs the second calculation via the communication section 35. A transfer operation for transferring data to the unit 40 is performed, but an operation for estimating parameters and an operation for deriving blood vessel function are not performed. The parameters and blood vessel function obtained by the second calculation unit 40 are input from the second calculation unit 40 to the operation control unit 30 via the communication unit 35 under the control of the first calculation unit 38 and are displayed on the display unit 37. may be done.
 先述の例のいずれであっても、操作制御部30における演算部の機能を簡略化できるため、血管機能測定システムA3をさらに簡略化して小型化することができる。また、パラメータの推定等を行う第2演算部40が、ネットワークに接続されたサーバ等に構築されているため、推定に用いるアルゴリズム等を更新する必要が生じた場合にも、第2演算部40のみを更新すればよく、更新に係る手間を削減できる。 In any of the above examples, since the function of the calculation section in the operation control section 30 can be simplified, the vascular function measurement system A3 can be further simplified and downsized. In addition, since the second calculation unit 40 that performs parameter estimation etc. is built on a server etc. connected to a network, even if it becomes necessary to update the algorithm etc. used for estimation, the second calculation unit 40 It is only necessary to update the following files, which reduces the effort involved in updating.
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the technical scope of the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention.
 例えば、前記実施形態では、カフ部10において長軸方向の複数箇所にセンサが設けられ、さらに心臓近傍の第3センサ23も用いられている。しかしながら、被検者の血管を表す物理モデルのパラメータを推定するためには、加圧部11の下流側に配置される第1センサ21が少なくとも設けられていればよい。例えば、先述の第1実施形態において、第2センサ22と第3センサ23が血管機能測定システムA1に設けられない構成も許容できる。第1センサ21のみが設けられている構成であっても、十分な精度でパラメータを推定することができる。 For example, in the embodiment described above, sensors are provided at multiple locations in the longitudinal direction of the cuff portion 10, and a third sensor 23 near the heart is also used. However, in order to estimate the parameters of the physical model representing the blood vessel of the subject, it is sufficient that at least the first sensor 21 disposed downstream of the pressurizing section 11 is provided. For example, in the first embodiment described above, a configuration in which the second sensor 22 and the third sensor 23 are not provided in the vascular function measurement system A1 is also acceptable. Even with a configuration in which only the first sensor 21 is provided, parameters can be estimated with sufficient accuracy.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, the components in the embodiments described above can be replaced with well-known components as appropriate without departing from the spirit of the present invention, and the embodiments and modifications described above may be combined as appropriate.
 本開示は、被検者の血管機能を測定するシステム及び方法に適用できる。 The present disclosure can be applied to a system and method for measuring vascular function of a subject.
10…カフ部 11…加圧部 21…第1センサ 22…第2センサ 23…第3センサ 33…演算部 38…第1演算部 40…第2演算部 A1、A2、A3…血管機能測定システム 10... Cuff part 11... Pressurizing part 21... First sensor 22... Second sensor 23... Third sensor 33... Calculating part 38... First calculating part 40... Second calculating part A1, A2, A3... Vascular function measurement system

Claims (8)

  1.  被検者の腕又は脚に巻かれる加圧部を有するカフ部と、
     前記カフ部に設けられ、前記加圧部よりも前記腕又は脚の末端側に配置される第1センサと、
     前記加圧部の加圧力を変化させた際の前記第1センサの出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する演算部と、
     を備える血管機能測定システム。
    a cuff portion having a pressurizing portion that is wrapped around the arm or leg of the subject;
    a first sensor provided in the cuff part and located closer to the distal end of the arm or leg than the pressurizing part;
    a calculation unit that estimates parameters of a physical model representing a blood vessel of the subject based on an output signal of the first sensor when changing the pressurizing force of the pressurizing unit;
    A vascular function measurement system.
  2.  前記カフ部に設けられ、前記加圧部よりも前記腕又は脚の基端側に配置される第2センサを備える、請求項1に記載の血管機能測定システム。 The vascular function measurement system according to claim 1, further comprising a second sensor that is provided in the cuff part and is located closer to the proximal end of the arm or leg than the pressurizing part.
  3.  被検者の心臓近傍に装着される第3センサを備える、請求項1に記載の血管機能測定システム。 The vascular function measuring system according to claim 1, comprising a third sensor attached near the heart of the subject.
  4.  被検者の心臓近傍に装着される第3センサを備える、請求項2に記載の血管機能測定システム。 The vascular function measurement system according to claim 2, comprising a third sensor attached near the heart of the subject.
  5.  前記演算部は、前記第1センサの出力信号が表す、時間軸波形及び周波数スペクトルの時間変化に基づいて、前記パラメータを推定する、請求項1~4のいずれか一項に記載の血管機能測定システム。 The vascular function measurement according to any one of claims 1 to 4, wherein the calculation unit estimates the parameter based on a time change in a time axis waveform and a frequency spectrum represented by the output signal of the first sensor. system.
  6.  前記演算部は、前記パラメータを推定する際に、前記物理モデルを分布定数回路モデルに当てはめてシミュレーションを行い、
     前記分布定数回路モデルには、インダクタンスLと、抵抗Rと、キャパシタンスCと、コンダクタンスGと、前記加圧部が生じさせる加圧力RCUFFと、インピーダンスZoと、が含まれ、
     前記インダクタンスLは、血流における慣性力に対応する、前記血流の変化に対する抵抗成分であり、
     前記抵抗Rは、血管壁と血液との間における摩擦に対応する、血流に対する抵抗成分であり、
     前記キャパシタンスCは、血管の弾性変形による内径増加に対応する、血液を局所的に蓄積する成分であり、
     前記コンダクタンスGは、血管の弾性変形の復元力の逆数に対応する、血液の局所的蓄積を解消する成分であり、
     前記加圧力RCUFFは、RCUFF=0で前記加圧部が前記腕又は脚を締め付けた状態、RCUFF=∞で前記加圧部を開放した状態を表し、
     前記インピーダンスZoは、血管の末梢での反射が無く、整合されたインピーダンスで前記分布定数回路モデルが終端されている状態を表す、
     請求項5に記載の血管機能測定システム。
    The calculation unit performs simulation by applying the physical model to a distributed constant circuit model when estimating the parameter;
    The distributed constant circuit model includes an inductance L, a resistance R, a capacitance C, a conductance G, a pressurizing force R CUFF generated by the pressurizing section, and an impedance Zo,
    The inductance L is a resistance component to a change in the blood flow corresponding to an inertial force in the blood flow,
    The resistance R is a resistance component to blood flow corresponding to friction between the blood vessel wall and the blood,
    The capacitance C is a component that locally accumulates blood, corresponding to an increase in the inner diameter due to elastic deformation of the blood vessel,
    The conductance G is a component that eliminates local accumulation of blood, which corresponds to the reciprocal of the restoring force of elastic deformation of the blood vessel,
    The pressurizing force R CUFF represents a state in which the pressurizing part tightens the arm or leg when R CUFF = 0, and a state in which the pressurizing part is open when R CUFF = ∞,
    The impedance Zo represents a state in which there is no reflection at the periphery of the blood vessel and the distributed constant circuit model is terminated with a matched impedance.
    The vascular function measurement system according to claim 5.
  7.  前記演算部は、試行パラメータを用いて前記分布定数回路モデルのシミュレーションを開始し、前記シミュレーションの結果と、前記第1センサの出力信号が示す時間軸波形及び周波数スペクトルとを比較し、両者が所定の精度で一致するまで、前記試行パラメータを他の値に変化させながら前記シミュレーションと前記比較とを繰り返し行って、前記パラメータを決定する、請求項6に記載の血管機能測定システム。 The calculation unit starts a simulation of the distributed constant circuit model using the trial parameters, compares the simulation result with a time axis waveform and a frequency spectrum indicated by the output signal of the first sensor, and compares the result of the simulation with a time axis waveform and a frequency spectrum indicated by the output signal of the first sensor, so that both of them are determined to be a predetermined value. 7. The vascular function measuring system according to claim 6, wherein the simulation and the comparison are repeatedly performed while changing the trial parameter to other values until the parameters match with an accuracy of .
  8.  被検者の腕又は脚に巻かれた加圧部の加圧力を変化させた際の、前記加圧部よりも前記腕又は脚の末端側に位置する第1センサの出力信号を取得し、
     取得された前記第1センサの出力信号に基づいて、被検者の血管を表す物理モデルのパラメータを推定する、
     血管機能測定方法。
    Obtaining an output signal of a first sensor located closer to the distal end of the arm or leg than the pressurizing part when changing the pressurizing force of the pressurizing part wrapped around the arm or leg of the subject;
    estimating parameters of a physical model representing the blood vessel of the subject based on the acquired output signal of the first sensor;
    Vascular function measurement method.
PCT/JP2022/034563 2022-09-15 2022-09-15 System and method for measuring blood vessel function WO2024057482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034563 WO2024057482A1 (en) 2022-09-15 2022-09-15 System and method for measuring blood vessel function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034563 WO2024057482A1 (en) 2022-09-15 2022-09-15 System and method for measuring blood vessel function

Publications (1)

Publication Number Publication Date
WO2024057482A1 true WO2024057482A1 (en) 2024-03-21

Family

ID=90274614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034563 WO2024057482A1 (en) 2022-09-15 2022-09-15 System and method for measuring blood vessel function

Country Status (1)

Country Link
WO (1) WO2024057482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078687A (en) * 2000-09-05 2002-03-19 Kishino Masakata Pressure pulse wave measuring system for radial artery
JP2003530191A (en) * 2000-04-14 2003-10-14 サウスウエスト・リサーチ・インスティチュート Dynamic cardiovascular monitoring device
JP2004121866A (en) * 1995-11-01 2004-04-22 Seiko Epson Corp Organism condition measuring system
JP2008246010A (en) * 2007-03-30 2008-10-16 Kyoto Univ Blood vessel state evaluation device, blood vessel state evaluation method, and blood vessel state evaluation program
JP2017506110A (en) * 2014-02-24 2017-03-02 クアルコム,インコーポレイテッド Method for determining pulse wave velocity in an artery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121866A (en) * 1995-11-01 2004-04-22 Seiko Epson Corp Organism condition measuring system
JP2003530191A (en) * 2000-04-14 2003-10-14 サウスウエスト・リサーチ・インスティチュート Dynamic cardiovascular monitoring device
JP2002078687A (en) * 2000-09-05 2002-03-19 Kishino Masakata Pressure pulse wave measuring system for radial artery
JP2008246010A (en) * 2007-03-30 2008-10-16 Kyoto Univ Blood vessel state evaluation device, blood vessel state evaluation method, and blood vessel state evaluation program
JP2017506110A (en) * 2014-02-24 2017-03-02 クアルコム,インコーポレイテッド Method for determining pulse wave velocity in an artery

Similar Documents

Publication Publication Date Title
US6355000B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
JP6789280B2 (en) Systems and methods for assessing endothelial function
US20160302678A1 (en) Evaluation of aortic blood pressure waveform using an adaptive peripheral pressure transfer function
JPH09506536A (en) Method and apparatus for treating cardiovascular disorders
KR20150082401A (en) Improved blood pressure monitor and method
JPH06511402A (en) Detection of human arteriosclerosis
Bertaglia et al. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data
US20120101344A1 (en) Non-contact system and method for monitoring a physiological condition
JP7138797B2 (en) Control unit for deriving measures of arterial compliance
Wang et al. Non-invasive vascular resistance monitoring with a piezoelectric sensor and photoplethysmogram
RU2268639C2 (en) Method of pulse-measuring evaluation of functional condition and character of vegetative regulation of human cardio-vascular system
EP3457929A1 (en) Non-invasive system and method for measuring blood pressure variability
JP3712418B2 (en) Apparatus and method for measuring induced perturbations to determine the physical state of the human arterial system
Agham et al. Prevalent approach of learning based cuffless blood pressure measurement system for continuous health-care monitoring
WO2024057482A1 (en) System and method for measuring blood vessel function
Shimazu et al. Vibration technique for indirect measurement of diastolic arterial pressure in human fingers
Zahedi et al. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram
Segers et al. Principles of vascular physiology
US20240008748A1 (en) Method and apparatus for determining information about an arterial property of a subject
JP5887836B2 (en) Measuring device, index calculation method, and index calculation program
US20210219924A1 (en) Noninvasive Diagnostics of Proximal Heart Health Biomarkers
Tree et al. Validation of cardiac output as reported by a permanently implanted wireless sensor
Gallo et al. Testing a patient-specific in-silico model to noninvasively estimate central blood pressure
Sidhu et al. Comparison of artificial intelligence based oscillometric blood pressure estimation techniques: a review paper
Forouzanfar A modeling approach for coefficient-free oscillometric blood pressure estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958805

Country of ref document: EP

Kind code of ref document: A1