WO2024057448A1 - Electronic control device - Google Patents

Electronic control device Download PDF

Info

Publication number
WO2024057448A1
WO2024057448A1 PCT/JP2022/034430 JP2022034430W WO2024057448A1 WO 2024057448 A1 WO2024057448 A1 WO 2024057448A1 JP 2022034430 W JP2022034430 W JP 2022034430W WO 2024057448 A1 WO2024057448 A1 WO 2024057448A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
torque
torque command
switching condition
switching
Prior art date
Application number
PCT/JP2022/034430
Other languages
French (fr)
Japanese (ja)
Inventor
泰亮 佐藤
滋久 青柳
正悟 宮本
貴哉 塚越
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/034430 priority Critical patent/WO2024057448A1/en
Publication of WO2024057448A1 publication Critical patent/WO2024057448A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines

Definitions

  • the present disclosure relates to an electronic control device that controls an electric motor.
  • Patent Document 1 The invention of a power output device that outputs power for driving has been conventionally known (see Patent Document 1 below).
  • This conventional power output device includes, for example, a plurality of electric motors capable of outputting driving power, a plurality of drive circuits that respectively drive these plurality of electric motors, and a request to set required power based on an operator's operation. It includes a power setting means and a control means for driving and controlling a plurality of drive circuits (Patent Document 1, paragraph 0006, claim 1, abstract, etc.).
  • the plurality of drive circuits each have a switching element, and drive each of the plurality of electric motors by switching the switching element.
  • the control means drives and controls the plurality of drive circuits so that when any of the plurality of drive circuits is in a normal state where it can function normally, the plurality of electric motors output power based on the set required power. . Furthermore, when any one of the plurality of drive circuits is in an abnormal state in which it cannot function normally, the control means drives and controls the plurality of drive circuits as follows.
  • control means controls the plurality of drive circuits based on the switching frequency of the switching element of the drive circuit in the abnormal state and the power from the electric motor driven by the drive circuit in the abnormal state.
  • Drive control More specifically, of the switching frequency and the power, the power is limited in priority to the switching frequency, and the power based on the set required power is output from the plurality of electric motors. drive control of multiple drive circuits so that
  • This conventional power output device can reduce the burden on the drive circuit that is in an abnormal state while suppressing the generation of noise caused by switching of switching elements included in the drive circuit that is in an abnormal state. As a result, it is possible to achieve both good driving of the driving circuit and suppression of noise caused by the driving. Further, the required power can be met regardless of whether any of the plurality of drive circuits is in a normal state (Patent Document 1, paragraph 0007).
  • torque is distributed among multiple electric motors until the temperature of the drive circuit reaches a temperature limit, so the carrier frequency may not be switched while the electric motor is outputting high torque. be. In this way, if the carrier frequency is switched while the electric motor is outputting high torque, there is a risk that noise will be generated from the electric motor.
  • the present disclosure provides an electronic control device that can suppress motor noise when switching carrier frequencies.
  • One aspect of the present disclosure is an electronic control device that controls an electric motor for driving a vehicle, wherein a switching condition is such that the rotation speed of the electric motor is lower than a predetermined lower limit value and the torque command of the electric motor is higher than a predetermined upper limit value.
  • a stored switching condition storage unit a running load calculation unit that calculates a running load of the vehicle based on the rotational speed and torque command of the electric motor, and a running load calculation unit that calculates the running load of the vehicle based on the rotational speed and torque command of the electric motor; a switching condition determining unit that determines whether the switching condition is satisfied after a predetermined time has elapsed based on the switching condition, and when the switching condition determining unit determines that the switching condition is satisfied, the torque command of the electric motor is set to the upper limit
  • the electronic control device is characterized in that it has a frequency control section that lowers the carrier frequency of the electric motor when the carrier frequency is equal to or less than the carrier frequency of the electric motor.
  • FIG. 1 is a block diagram showing an embodiment of an electronic control device of the present disclosure.
  • FIG. 2 is a block diagram of a torque control section that constitutes the electronic control device of FIG. 1;
  • FIG. 2 is a block diagram of a three-phase current control section that constitutes the electronic control device of FIG. 1.
  • FIG. 4 is a graph illustrating a switching condition storage section that constitutes the three-phase current control section in FIG. 3.
  • 4 is a graph illustrating a switching condition storage section that constitutes the three-phase current control section in FIG. 3.
  • FIG. 4 is a block diagram of a PWM control section that constitutes the three-phase current control section in FIG. 3;
  • FIG. 2 is a flow diagram illustrating the operation of the electronic control device in FIG. 1.
  • FIG. 9 is a graph of torque commands, etc. of the electric motor in state (i) of FIG. 8. 9 is a graph showing a torque command etc. of the electric motor in state (ii) of FIG. 8 .
  • FIG. 1 is a block diagram showing an embodiment of an electronic control device according to the present disclosure.
  • the electronic control device 100 of this embodiment is, for example, an electronic control device that is mounted on a vehicle 10 such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, and controls an electric motor 11 for driving the vehicle 10.
  • the vehicle 10 includes, for example, a steering device, a braking device, a power transmission device, a power storage device, and the like that are generally included in a normal vehicle.
  • the vehicle 10 is driven by two motors: a first electric motor 11F that drives left and right front wheels 13F via a gear 12F, and a second electric motor 11R that drives left and right rear wheels 13R via a gear 12R. It has an electric motor 11 for use.
  • the vehicle 10 also includes, for example, an accelerator position sensor 14 that detects the opening degree of the accelerator pedal, and an acceleration sensor 15 that detects the acceleration of the vehicle 10 in the longitudinal direction.
  • the vehicle 10 includes, for example, an ABS control section 16 that constitutes an anti-lock brake system (ABS), and a TCS control section 17 that constitutes a traction control system (TCS). .
  • ABS anti-lock brake system
  • TCS traction control system
  • the vehicle 10 includes various sensors that are generally included in a normal vehicle. Further, the vehicle 10 only needs to have at least one electric motor 11 for traveling, and may have four or more electric motors 11 (in-wheel motors) that drive each wheel 13.
  • the electronic control device 100 is configured by, for example, a plurality of microcontrollers (not shown) and a plurality of electronic circuits including a plurality of electronic components.
  • Each microcontroller making up the electronic control device 100 has, for example, an input/output section, a memory, a timer, and a central processing unit (CPU).
  • the electronic control device 100 realizes various functions described below by, for example, executing programs stored in a memory using a CPU.
  • the electronic control device 100 includes, for example, a torque control section 110 and a three-phase current control section 120. Further, the electronic control device 100 may include an inverter 130, for example.
  • the electronic control device 100 includes, for example, a first three-phase current control section 120F and a first inverter 130F that control a first electric motor 11F, and a second three-phase current control section 120R and a first inverter that control a second electric motor 11R. 2 inverters 130R. That is, one three-phase current control section 120 and one inverter 130 are provided for each electric motor 11.
  • the torque control unit 110 receives, for example, the accelerator pedal operation amount Qac from the accelerator position sensor 14 and the longitudinal acceleration ⁇ of the vehicle 10 from the acceleration sensor 15. Further, the torque control unit 110 receives, for example, a control signal Sab related to anti-lock brakes from the ABS control unit 16, and a control signal Stc related to traction control from the TCS control unit 17.
  • the torque control unit 110 receives, for example, the rotational speed ⁇ of the electric motor 11 from the three-phase current control unit 120.
  • the torque control unit 110 receives, for example, the rotational speed ⁇ F of the first electric motor 11F from the first three-phase current control unit 120F, and the rotation speed ⁇ F of the first electric motor 11F from the second three-phase current control unit 120R.
  • the rotational speed ⁇ R of 11R is input.
  • the torque control unit 110 sets the torque command Tc and the torque change rate limit based on, for example, the input accelerator pedal operation amount Qac, the acceleration ⁇ of the vehicle 10, the rotational speed ⁇ of the electric motor 11, and the control signals Sab and Stc. Output ⁇ Tr. More specifically, the torque control unit 110 outputs a torque command TcF and a torque change rate limit ⁇ TrF for the first electric motor 11F, and a torque command TcR and a torque change rate limit ⁇ TrR for the second electric motor 11R.
  • the three-phase current control unit 120 receives the torque command Tc and torque change rate limit ⁇ Tr for the electric motor 11 from the torque control unit 110. More specifically, the first three-phase current control section 120F receives the torque command TcF and the torque change rate limit ⁇ TrF for the first electric motor 11F from the torque control section 110. Further, the second three-phase current control section 120R receives input from the torque control section 110 of the torque command TcR and the torque change rate limit ⁇ TrR for the second electric motor 11R.
  • the rotation angle ⁇ is input to the three-phase current control unit 120 from the electric motor 11. More specifically, the first three-phase current control section 120F receives the rotation angle ⁇ F from the first electric motor 11F, and the second three-phase current control section 120R receives the rotation angle ⁇ R from the second electric motor 11R. Ru.
  • the three-phase current control unit 120 receives an inverter voltage Vin from the inverter 130. More specifically, the first three-phase current control section 120F receives the inverter voltage VinF from the first inverter 130F, and the second three-phase current control section 120R receives the inverter voltage VinR from the second inverter 130R. is input.
  • the three-phase current control unit 120 receives three-phase currents Iu, Iv, and Iw from the inverter 130. More specifically, the first three-phase current control section 120F and the second three-phase current control section 120R receive three-phase currents Iu, Iv, and Iw from the first inverter 130F and the second inverter 130R, respectively. be done.
  • the three-phase current control section 120 outputs gate signals Iu, Iv, Iw, Ix, Iy, and Iz based on the above-mentioned inputs. More specifically, the first three-phase current control section 120F outputs gate signals Iu, Iv, Iw, Ix, Iy, and Iz to the first inverter 130F, and the second three-phase current control section 120R outputs gate signals Iu, Iv, Iw, Ix, Iy, and Iz to the first inverter 130F. Gate signals Iu, Iv, Iw, Ix, Iy, and Iz are output to the second inverter 130R.
  • the inverter 130 is connected to the power supply voltage Vs, for example, and receives gate signals Iu, Iv, Iw, Ix, Iy, and Iz from the three-phase current control section 120. More specifically, the first inverter 130F and the second inverter 130R receive gate signals Iu, Iv, Iw, Ix, Iy and Iz are input.
  • the inverter 130 Based on the above input, the inverter 130 outputs, for example, three-phase currents Iu, Iv, and Iw to the electric motor 11, and outputs an inverter voltage Vin to the three-phase current control section 120. More specifically, the first inverter 130F and the second inverter 130R output three-phase currents Iu, Iv, and Iw to the first electric motor 11F and the second electric motor 11R, respectively. Further, the first inverter 130F and the second inverter 130R output inverter voltages VinF and VinR to the first three-phase current control section 120F and the second three-phase current control section 120R, respectively.
  • FIG. 2 is a block diagram of the torque control section 110 that constitutes the electronic control device 100 in FIG. 1.
  • the torque control section 110 includes, for example, a required torque generation section 111, a running load calculation section 112, a control torque generation section 113, and a torque command generation section 114.
  • the required torque generation unit 111 receives, for example, the accelerator pedal operation amount Qac and the rotational speed ⁇ ( ⁇ F, ⁇ R) of each electric motor 11. Based on these inputs, the required torque generation unit 111 calculates, for example, the total required torque RTT, the required torque RTF of the first electric motor 11F, and the required torque RTR of the second electric motor 11R, and generates the torque command generation unit. 114.
  • the running load calculation unit 112 receives, for example, the rotational speed ⁇ ( ⁇ F, ⁇ R) of each electric motor 11 and the acceleration ⁇ of the vehicle 10 as input.
  • the running load calculation unit 112 estimates the running resistance value due to the slope from the rotational speed ⁇ of the electric motor 11 and the acceleration ⁇ of the vehicle 10. Further, the running load calculation unit 112 uses the estimated running resistance value, the weight and front projected area of the vehicle 10 stored in the memory, and calculates the running load Lt of the vehicle 10 and outputs it to the torque command generation unit 114. do.
  • the control torque generation unit 113 receives, for example, the control signal Sab from the ABS control unit 16 and the control signal Stc from the TCS control unit 17. Based on these inputs, control torque generation section 113 calculates control torque CT required for control to stabilize vehicle 10, such as anti-lock brakes and traction control, and outputs it to torque command generation section 114.
  • the torque command generation unit 114 receives the total required torque RTT, required torque RTF, and required torque RTR from the required torque generation unit 111, and receives the rotational speed ⁇ of each electric motor 11 from each three-phase current control unit 120. is input. Further, the torque command generation unit 114 receives the running load Lt from the running load calculation unit 112 and receives the control torque CT from the control torque generation unit 113. The torque command generation unit 114 calculates the torque command Tc (TcF, TcR) and torque change rate limit ⁇ Tr ( ⁇ TrF, ⁇ TrR) for each electric motor 11 based on these inputs, Output to 120.
  • FIG. 3 is a block diagram of the three-phase current control section 120 that constitutes the electronic control device 100 of FIG. 1.
  • the three-phase current control unit 120 includes, for example, a running load calculation unit 121, a switching condition storage unit 122, a switching condition determination unit 123, a frequency control unit 124, and a pulse width modulation (PWM) control unit 125. It has .
  • PWM pulse width modulation
  • the running load calculation unit 121 estimates the running resistance value of the vehicle 10 due to the slope, for example, by inputting the torque command Tc and rotational speed ⁇ of each electric motor 11. Furthermore, the running load calculation unit 121 calculates the running load Lt of the vehicle 10 from the running resistance value, the weight of the vehicle 10, the rotational speed ⁇ of each electric motor 11, the front projected area of the vehicle 10, etc. It is output to the condition determination section 123.
  • FIG. 4 and 5 are graphs explaining the switching condition storage section 122, which is a part of the three-phase current control section 120 in FIG. 3. More specifically, in the graph of FIG. 4, the horizontal axis represents the rotational speed ⁇ of the electric motor 11, the vertical axis represents the torque command Tc of the electric motor 11, and shows the operating range OA and the switching area SA of the electric motor 11.
  • the switching region SA is, for example, a region where the rotational speed ⁇ of the electric motor 11 is less than or equal to a predetermined lower limit value ⁇ l, and the torque command Tc of the electric motor 11 is greater than or equal to a predetermined upper limit value Tch.
  • this switching region SA it is necessary to lower the carrier frequency of the electric motor 11 in order to protect the inverter 130. That is, the graph shown in FIG. 4 represents the switching conditions under which carrier frequency switching is required as the switching area SA.
  • the switching area SA is also a restricted area in which switching of the carrier frequency should be restricted from the viewpoint of suppressing the noise of the electric motor 11.
  • the horizontal axis is the rotational speed ⁇ of the electric motor 11, and the vertical axis is the torque command Tc of the electric motor 11, and the torque command Tc of the electric motor 11 and The relationship with rotational speed ⁇ is shown.
  • the change in the torque command Tc with respect to the change in the rotational speed ⁇ of the electric motor 11 increases.
  • the graphs in FIGS. 4 and 5 are created for each electric motor 11, set and recorded in the switching condition storage section 122, and output from the switching condition storage section 122 to the switching condition determination section 123 as necessary.
  • the switching condition determining unit 123 receives, for example, the torque command Tc, torque change rate limit ⁇ Tr, and rotational speed ⁇ of each electric motor 11, and the running load Lt of the vehicle 10.
  • the switching condition determination unit 123 obtains, for example, the operating range OA and switching range SA of each electric motor 11 shown in FIG. Obtain the relationship with ⁇ .
  • the switching area SA represents a switching condition that requires switching the carrier frequency of the electric motor 11.
  • the switching condition determining unit 123 determines whether the relationship between the torque command Tc and the rotational speed ⁇ of each electric motor 11 is a predetermined value based on the above input, the switching area SA shown in FIG. 4, and the relationship shown in FIG. After a period of time has elapsed, it is determined whether or not the switching area SA is entered. Whether or not the switching region SA is entered has the same meaning as whether or not the switching condition that requires lowering the carrier frequency of the electric motor 11 is satisfied. More specifically, the switching condition determination unit 123 superimposes the graphs in FIGS. 4 and 5, and determines whether each electric motor It is determined that the relationship between the torque command Tc and the rotational speed ⁇ of No. 11 satisfies the switching condition after a predetermined period of time has elapsed.
  • the switching condition determining unit 123 determines whether the relationship between the torque command Tc and the rotational speed ⁇ of the electric motor 11 falls within the switching region SA after a predetermined period of time has elapsed, that is, whether the rotational speed ⁇ is lower than the lower limit value ⁇ l and the torque command Tc is lower than the lower limit ⁇ l.
  • a determination result DR as to whether the switching condition greater than the upper limit Tch is satisfied is output to the frequency control unit 124.
  • the frequency control unit 124 outputs a control signal Cfc that lowers the carrier frequency of the electric motor 11 to be controlled to the PWM control unit 125, based on the determination result DR input from the switching condition determination unit 123. More specifically, if the determination result DR is affirmative, the frequency control unit 124 determines that the relationship between the torque command Tc and the rotational speed ⁇ of the electric motor 11 to be controlled satisfies the switching condition after a predetermined period of time has elapsed. If determined, the control signal Cfc is output.
  • FIG. 6 is a block diagram of the PWM control section 125, which is a part of the three-phase current control section 120 in FIG. 3.
  • the PWM control unit 125 inputs the three-phase currents Iu, Iv, Iw of each electric motor 11, the rotation angle ⁇ , the torque command Tc, the inverter voltage Vin, and the control signal Cfc of the frequency control unit 124, and receives the gate signals Iu, Iv, Iw, Ix, Iy, Iz and rotational speed ⁇ are output.
  • the PWM control unit 125 has, for example, a speed calculation unit 125a, a three-phase/dq conversion calculation unit 125b, a current command generation unit 125c, a current control unit 125d, a dq/three-phase conversion calculation unit 125e, and a PWM calculation unit 125f. Each of these units has a general configuration for vector control of the electric motor 11, which is a permanent magnet motor, so a description thereof will be omitted.
  • the PWM control unit 125 lowers the carrier frequency of the power switching device in the inverter 130, for example, based on a control signal Cfc that lowers the carrier frequency of each electric motor 11.
  • FIG. 7 is a flow diagram illustrating the operation of the electronic control device 100.
  • FIG. 8 is a state transition diagram of the vehicle 10 under control of the electronic control device 100.
  • a state (o) shown in FIG. 8 indicates a state in which the electric motor 11 (11F, 11R) is not controlled by the electronic control device 100, such as a state in which the vehicle 10 is stopped. From this state (o), for example, when the electronic control device 100 starts controlling the electric motor 11 and the vehicle 10 starts running, the vehicle 10 transitions to, for example, the state (i) shown in FIG.
  • the device 100 executes the process P1 shown in FIG. State (i) is, for example, a state in which the running load Lt of the vehicle 10 is low and switching of the carrier frequency of the electric motor 11 is unnecessary.
  • the torque control unit 110 of the electronic control device 100 includes, for example, the accelerator pedal operation amount Qac, the acceleration ⁇ of the vehicle 10, the control of the ABS control unit 16 and the TCS control unit 17, as described above. Signals Sab and Stc are input. Based on these inputs, the torque control unit 110 outputs the torque command Tc and the torque change rate limit ⁇ Tr to each three-phase current control unit 120 that controls each electric motor 11, as described above.
  • the electronic control device 100 executes a process P2 of acquiring switching conditions.
  • the switching condition determination unit 123 constituting the three-phase current control unit 120 of the electronic control device 100 determines, for example, the operating area OA and switching area SA in FIG. 4 and the running area SA in FIG.
  • the relationship between the torque command Tc and the rotational speed ⁇ according to the load Lt is acquired from the switching condition storage unit 122.
  • the electronic control device 100 executes a process P3 to determine whether the switching condition is appropriate.
  • the switching condition determination unit 123 of the electronic control device 100 receives the torque command Tc, torque change rate limit ⁇ Tr, and rotational speed ⁇ of each electric motor 11, as well as the running load Lt of the vehicle 10, as described above. is input.
  • the switching condition determining unit 123 determines whether each electric motor 11 satisfies the switching condition after a predetermined period of time has passed, based on these inputs and the graphs of FIGS. 4 and 5 obtained in the previous process P2, for example. judge.
  • FIG. 9 is a graph showing an example of the torque command Tc (TcF, TcR) of each electric motor 11, the carrier frequency, and the total torque of all electric motors 11 in state (i) of the vehicle 10 in FIG.
  • TcF, TcR torque command
  • the maximum torques T1max and T2max of the first electric motor 11F and the second electric motor 11R, respectively, and the noise at the time of carrier frequency switching are sufficiently suppressed. Possible torques T1q and T2q are shown.
  • the switching condition determining unit 123 determines that the switching condition is not satisfied after a predetermined time (NO), and the electronic control device 100 does not execute process P4, which will be described later.
  • Process P5 is executed.
  • the PWM control section 125f that constitutes the PWM control section 125 of the three-phase current control section 120 generates a control signal Cfc for lowering the carrier frequency and a gate signal Iu, which corresponds to the command voltages Vu * , Vv * , Vw * .
  • the torque control unit 110 controls the torque control unit 110 so that, for example, the relationship between the torque commands TcF, TcR and the rotational speeds ⁇ F, ⁇ R of the first electric motor 11F and the second electric motor 11R does not fall into the switching region SA shown in FIG. Torque may be distributed between the first electric motor 11F and the second electric motor 11R.
  • the torque control unit 110 appropriately distributes torque among the plurality of electric motors 11 so that the relationship between the torque command Tc and the rotational speed ⁇ does not fall within the switching region SA, and carrier frequency switching is not necessary. Good too. Further, in this process P5, the torque control unit 110 does not change the torque change rate limit ⁇ Tr, for example.
  • Each inverter 130 outputs three-phase currents Iu, Iv, Iw to each electric motor 11 based on input gate signals Iu, Iv, Iw, Ix, Iy, Iz.
  • each electric motor 11 rotates to rotate the left and right front wheels 13F and the left and right rear wheels 13R via the gears 12F and 12R, thereby causing the vehicle 10 to travel.
  • the electronic control device 100 ends the process shown in FIG. 7, for example, and repeatedly executes the process at a predetermined period.
  • State (ii) is, for example, a state in which the running load Lt of vehicle 10 is higher than state (i), and carrier frequency switching is required in order to protect inverter 130 in some of the plurality of electric motors 11.
  • state (ii) is, for example, when the carrier frequency of the second electric motor 11R is between the first electric motor 11F that drives the front wheels 13F and the second electric motor 11R that drives the rear wheels 13R.
  • the state requires switching.
  • the electronic control device 100 executes the above-mentioned process P3 in this state (ii), for example, as shown in FIG.
  • the change in torque command Tc (TcR) with respect to the change in is larger than in the above-mentioned state (i).
  • the switching condition determination unit 123 determines that, for example, in process P3, the relationship between the torque command TcR and the rotational speed ⁇ R of the second electric motor 11R enters the switching region SA shown in FIG. It is determined that the conditions are satisfied (YES). Further, the switching condition determination unit 123 determines that, for example, in process P3, the relationship between the torque command TcF and the rotational speed ⁇ F of the first electric motor 11F does not fall within the switching region SA shown in FIG. It is determined that the conditions are not satisfied (NO). Thereafter, the frequency control unit 124 outputs the determination result DR of process P3 to the PWM control unit 125.
  • process P3 when it is determined that the switching condition is satisfied in at least one electric motor 11 after a predetermined time has elapsed (YES), the electronic control device 100 executes the next process P4.
  • the electronic control device 100 performs torque distribution among the plurality of electric motors 11, and lowers the carrier frequency of the electric motor 11 that is determined to satisfy the switching condition after a predetermined period of time has elapsed.
  • FIG. 10 shows an example of the torque command Tc (TcF, TcR) of each electric motor 11, carrier frequency, and total torque of all electric motors 11 (11F, 11R) in state (ii) of the vehicle 10 in FIG. It is a graph.
  • the first and second graphs of torque commands TcF and TcR from the top in FIG. 10 show torques T1q and T2q that can sufficiently suppress noise when switching the carrier frequency.
  • the electronic control device 100 sends a control signal Cfc that lowers the carrier frequency from the frequency control section 124 to the PWM control section 125 in the second three-phase current control section 120R that controls the second electric motor 11R.
  • the frequency control unit 124 transmits the control signal Cfc to the PWM control unit 125, for example, before the torque command TcR of the second electric motor 11R exceeds the torque T2q that can sufficiently suppress noise at the time of carrier frequency switching. Output.
  • the carrier frequency of the second electric motor 11R changes to down to a predetermined frequency that can be protected.
  • the noise generated when lowering the carrier frequency of the second electric motor 11R that drives the rear wheels 13R of the vehicle 10 can be sufficiently suppressed.
  • the electronic control device 100 distributes torque to the plurality of electric motors 11, for example, by the torque control unit 110. More specifically, for example, the torque command generation unit 114 shown in FIG. Allocate.
  • This upper limit Tch is an upper limit for preventing the curves showing the relationship between the torque command Tc and rotational speed ⁇ of each of the first electric motor 11F and the second electric motor 11R shown in FIG. 5 from falling into the switching area SA shown in FIG.
  • the value is Tch.
  • the torque control unit 110 controls the first electric motor 11F and the second electric motor so that, for example, the torque command TcF of the first electric motor 11F that drives the front wheels 13F of the vehicle 10 does not enter the switching area SA shown in FIG. Distribute the torque of 11R. More specifically, the torque control unit 110 limits the torque command TcF of the first electric motor 11F that does not reduce the carrier frequency to below the upper limit value Tch.
  • the torque control unit 110 increases the torque command TcR of the second electric motor 11R, which has a lower carrier frequency, beyond the upper limit value Tch within a range that does not exceed the maximum torque T2max. Further, in process P4, the torque control unit 110, for example, reduces the torque change rate limit ⁇ TrR of the second electric motor 11R, and does not change the torque change rate limit ⁇ TrF of the first electric motor 11F.
  • the electronic control device 100 executes the above-mentioned process P5, for example, and ends the process shown in FIG. 7.
  • the torque that is insufficient by limiting the torque command TcF of the first electric motor 11F to below the upper limit value Tch is supplemented by the torque of the second electric motor 11R, and the desired total torque is achieved by the first electric motor 11F and the second electric motor 11R. It becomes possible to output.
  • state of the vehicle 10 changes from state (o) to state (iii) shown in FIG. 8, for example.
  • state (iii) for example, the running load Lt of vehicle 10 is higher than state (ii), and it is necessary to switch carrier frequencies in all electric motors 11 to protect inverters 130.
  • state (iii) is, for example, a state in which the carrier frequency of both the first electric motor 11F that drives the front wheels 13F and the second electric motor 11R that drives the rear wheels 13R needs to be switched. It is.
  • the electronic control device 100 executes the above-mentioned process P3 in this state (iii)
  • the running load Lt of the vehicle 10 increases, for example, as shown in FIG. 5, the first electric motor 11F and the second electric motor 11R
  • the change in torque command Tc (TcF, TcR) with respect to the change in rotational speed ⁇ ( ⁇ F, ⁇ R) becomes larger than in state (ii).
  • the switching condition determining unit 123 determines that the relationship between the torque commands TcF, TcR and the rotational speeds ⁇ F, ⁇ R of the first electric motor 11F and the second electric motor 11R is as shown in FIG. It enters the switching area SA shown in and determines that the switching conditions are satisfied (YES). Thereafter, the frequency control section 124 outputs this determination result DR to the PWM control section 125.
  • the electronic control device 100 executes the next process P4, for example.
  • the electronic control device 100 lowers the carrier frequencies of both the first electric motor 11F and the second electric motor 11R, which are determined to satisfy the switching condition after a predetermined period of time has elapsed, and Torque is distributed between the two electric motors 11R.
  • FIG. 11 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (iii) of FIG. 8.
  • the first and second graphs of torque commands TcF and TcR from the top in FIG. 11 show torques T1q and T2q that can sufficiently suppress noise when switching the carrier frequency.
  • the electronic control device 100 lowers the carrier frequency from the frequency control section 124 to the PWM control section 125 in each three-phase current control section 120 that controls the first electric motor 11F and the second electric motor 11R. Outputs control signal Cfc.
  • the frequency control unit 124 of each three-phase current control unit 120 is configured such that, for example, each torque command TcF, TcR of the first electric motor 11F and the second electric motor 11R sufficiently suppresses noise at the time of carrier frequency switching.
  • a control signal Cfc is output to the PWM control unit 125 before each possible torque T1q, T2q is exceeded.
  • the carrier frequencies of the first electric motor 11F and the second electric motor 11R change. is lowered to a predetermined frequency that can protect the inverter 130. Thereby, the noise generated when lowering the carrier frequency of the first electric motor 11F and the second electric motor 11R of the vehicle 10 can be sufficiently suppressed.
  • the electronic control device 100 uses the torque control unit 110 to appropriately distribute torque to the first electric motor 11F and the second electric motor 11R.
  • the electronic control device 100 executes the above-mentioned process P5, for example, and ends the process shown in FIG. 7.
  • the electronic control device 100 controls the first electric motor 11F and The carrier frequency of the second electric motor 11R is lowered. Thereby, noise generated when lowering the carrier frequency of the first electric motor 11F and the second electric motor 11R of the vehicle 10 can be suppressed.
  • the state (i) in which the running load Lt of the vehicle 10 is low and there is no need to lower the carrier frequencies of all electric motors 11 is a state in which, for example, due to an increase in the running load Lt of the vehicle 10, After (iv), the state transitions to the above-mentioned state (ii).
  • state (iv) for example, the running load Lt of vehicle 10 is higher than in state (i), and it is necessary to switch carrier frequencies in some of the plurality of electric motors 11 to protect inverter 130.
  • the state (iv) is, for example, the carrier frequency of the second electric motor 11R among the first electric motor 11F that drives the front wheels 13F and the second electric motor 11R that drives the rear wheels 13R.
  • the state requires switching.
  • the switching condition determination unit 123 determines that the relationship between the torque command TcR and the rotational speed ⁇ R of the second electric motor 11R is as shown in FIG. It enters the switching area SA shown and determines that the switching conditions are satisfied (YES). Thereafter, the frequency control section 124 outputs this determination result DR to the PWM control section 125.
  • the electronic control device 100 executes the next process P4, for example.
  • the electronic control device 100 first performs torque distribution between the first electric motor 11F and the second electric motor 11R, and then lowers the carrier frequency of the second electric motor 11R.
  • FIG. 12 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (iv) of FIG. 8.
  • the torque control unit 110 before the frequency control unit 124 reduces the carrier frequency of the second electric motor 11R, the torque control unit 110, for example, reduces the torque command TcR of the second electric motor 11R and increases the torque command TcF of the first electric motor 11F to maintain the total torque at a constant value.
  • the torque control unit 110 for example, increases the torque change rate limits ⁇ TrF, ⁇ TrR of the first electric motor 11F and the second electric motor 11R.
  • the frequency control unit 124 outputs a control signal Cfc to the PWM control unit 125,
  • the carrier frequency of the second electric motor 11R is lowered. Thereby, noise caused by switching the carrier frequency of the second electric motor 11R can be suppressed.
  • the torque control unit 110 reduces the torque change rate limit ⁇ TrR at a timing when the carrier frequency of the second electric motor 11R is desired to be switched. Further, the torque control unit 110 increases the torque command TcR of the second electric motor 11R and switches the torque command TcF of the first electric motor 11F, for example, after the frequency control unit 124 decreases the carrier frequency of the second electric motor 11R. It is limited to below the upper limit value Tch that falls within the area SA. This eliminates the need to switch the carrier frequency of the first electric motor 11F, and can prevent the generation of noise when switching the carrier frequency with high torque.
  • the state (i) in which the running load Lt of the vehicle 10 is low and there is no need to lower the carrier frequencies of all electric motors 11 is a state in which, for example, the running load Lt of the vehicle 10 suddenly increases. This causes a transition to the above-mentioned state (iii) via state (v).
  • state (v) for example, the running load Lt of vehicle 10 is higher than in state (ii), and it is necessary to switch carrier frequencies for protection of inverter 130 in all electric motors 11.
  • the switching condition determination unit 123 determines that the respective torque commands TcF, TcR and rotational speeds ⁇ F, ⁇ R of the first electric motor 11F and the second electric motor 11R It is determined that the relationship enters the switching area SA shown in FIG. 4 after a predetermined period of time has passed and that the switching condition is satisfied (YES).
  • the switching condition determining section 123 outputs this determination result DR to the frequency controlling section 124.
  • the electronic control device 100 executes the next process P4, for example.
  • the electronic control device 100 first lowers the carrier frequency of the second electric motor 11R, then performs torque distribution between the first electric motor 11F and the second electric motor 11R, and then Lower the carrier frequency of 11F.
  • FIG. 13 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (v) of FIG. 8.
  • the frequency control unit 124 sends a control signal to the PWM control unit 125 before the relationship between the torque command TcR and the rotational speed ⁇ R of the second electric motor 11R enters the switching region SA shown in FIG. 4 and satisfies the switching conditions.
  • Cfc is output to lower the carrier frequency of the second electric motor 11R.
  • the torque control unit 110 decreases the torque command TcF of the first electric motor 11F, increases the torque command TcR of the second electric motor 11R, and maintains the total torque at a constant value.
  • the torque control unit 110 increases the torque change rate limits ⁇ TrF and ⁇ TrR of the first electric motor 11F and the second electric motor 11R, for example.
  • the frequency control unit 124 outputs a control signal Cfc to the PWM control unit 125 when the torque command TcF of the first electric motor 11F has decreased to a torque T1q that can sufficiently suppress noise caused by carrier frequency switching. , lowers the carrier frequency of the first electric motor 11F. Thereby, noise caused by switching the carrier frequency of the first electric motor 11F can be suppressed.
  • the torque control unit 110 reduces the torque change rate limit ⁇ TrF at a timing at which the carrier frequency of the first electric motor 11F is desired to be switched. Furthermore, for example, after decreasing the carrier frequency of the first electric motor 11F, the torque control unit 110 increases the torque command TcF to the maximum torque T1max, and maintains the torque command TcR of the second electric motor 11R at the maximum torque T2max.
  • state (ii) in which it is necessary to lower the carrier frequency of some electric motors 11 of the vehicle 10 can be changed to state (vi) due to a further increase in the running load Lt of the vehicle 10, for example.
  • state (vi) is, for example, a state in which the running load Lt of vehicle 10 is higher than state (ii), and it is necessary to switch carrier frequencies in all electric motors 11 in order to protect inverter 130.
  • the switching condition determination unit 123 determines that the respective torque commands TcF, TcR and rotational speeds ⁇ F, ⁇ R of the first electric motor 11F and the second electric motor 11R It is determined that the relationship enters the switching area SA shown in FIG. 4 after a predetermined period of time has passed and that the switching condition is satisfied (YES). Thereafter, the frequency control section 124 outputs this determination result DR to the PWM control section 125.
  • the electronic control device 100 executes the next process P4, for example.
  • the electronic control device 100 first lowers the carrier frequency of the second electric motor 11R, then performs torque distribution between the first electric motor 11F and the second electric motor 11R, and then Lower the carrier frequency of 11F.
  • FIG. 14 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (vi) of FIG. 8.
  • the frequency control unit 124 sends a control signal to the PWM control unit 125 before the relationship between the torque command TcR and the rotational speed ⁇ R of the second electric motor 11R enters the switching region SA shown in FIG. 4 and satisfies the switching conditions.
  • Cfc is output to lower the carrier frequency of the second electric motor 11R.
  • the frequency control unit 124 outputs a control signal Cfc to the PWM control unit 125 to lower the carrier frequency of the second electric motor 11R. This makes it possible to more reliably suppress noise caused by switching the carrier frequency of the second electric motor 11R.
  • the torque control unit 110 decreases the torque command TcF of the first electric motor 11F, increases the torque command TcR of the second electric motor 11R, and maintains the total torque at a constant value.
  • the torque control unit 110 increases the torque change rate limits ⁇ TrF and ⁇ TrR of the first electric motor 11F and the second electric motor 11R, for example.
  • the electronic control device 100 sends a control signal Cfc from the frequency control unit 124 to the PWM control unit 125. is output to lower the carrier frequency of the first electric motor 11F. Thereby, noise caused by switching the carrier frequency of the first electric motor 11F can be suppressed.
  • the torque control unit 110 reduces the torque change rate limit ⁇ TrF at a timing at which the carrier frequency of the first electric motor 11F is desired to be switched. Further, the torque control unit 110 increases the torque command TcF after decreasing the carrier frequency of the first electric motor 11F, and limits the torque command TcR of the second electric motor 11R to the maximum torque T2max or less, for example.
  • the electronic control device 100 of the present embodiment includes a switching condition storage section 122, a running load calculation section 121, a switching condition determining section 123, and a frequency control section 124, and has a The electric motor 11 is controlled.
  • the switching condition storage unit 122 stores a switching area SA as a switching condition in which the rotational speed ⁇ of the electric motor 11 is lower than a predetermined lower limit value ⁇ l and the torque command Tc of the electric motor 11 is larger than a predetermined upper limit value Tch.
  • the running load calculation unit 121 calculates the running load Lt of the vehicle 10 based on the rotational speed ⁇ of the electric motor 11 and the torque command Tc.
  • the switching condition determining unit 123 determines whether or not the switching condition is satisfied after a predetermined period of time has elapsed based on the running load Lt of the vehicle 10, the rotational speed ⁇ of the electric motor 11, and the torque command Tc.
  • the frequency control unit 124 lowers the carrier frequency of the electric motor 11 when the torque command Tc of the electric motor 11 is equal to or lower than the upper limit value Tch.
  • the electronic control device 100 of this embodiment can suppress the noise of the electric motor 11 when switching the carrier frequency. More specifically, in the electronic control device 100 of the present embodiment, the switching condition determination unit 123 can determine whether the electric motor 11 satisfies the switching condition after a predetermined period of time has elapsed. This switching condition corresponds to the switching area SA shown in FIG. A necessary condition is to lower the carrier frequency of . However, if the carrier frequency is lowered after the electric motor 11 satisfies the switching conditions, the carrier frequency will be switched while the torque command Tc of the electric motor 11 is high, which may generate noise.
  • the switching condition determining unit 123 determines that the switching condition is satisfied after a predetermined time has elapsed, when the torque command Tc of the electric motor 11 is equal to or less than the predetermined upper limit value Tch, That is, before the switching conditions are satisfied, the carrier frequency of the electric motor 11 is lowered by the frequency control unit 124.
  • the carrier frequency of the electric motor 11 can be lowered when the torque command Tc is lower than when the carrier frequency is lowered after the electric motor 11 satisfies the switching conditions, and the noise caused by switching the carrier frequency can be reduced. It becomes possible to suppress it.
  • the electric motor 11 includes at least a first electric motor 11F and a second electric motor 11R. Further, the switching condition determination unit 123 determines whether the switching conditions are satisfied for each of the first electric motor 11F and the second electric motor 11R. Then, the frequency control unit 124 changes the carrier frequency of at least one of the first electric motor 11F and the second electric motor 11R, which has been determined by the switching condition determination unit 123 to satisfy the switching condition after a predetermined period of time, before the switching condition is satisfied. lower.
  • the electric motor 11 carrier frequency can be lowered. Therefore, compared to the case where the carrier frequency is switched in a state where the torque command Tc of the electric motor 11 is higher than the upper limit value Tch, noise at the time of carrier frequency switching can be suppressed.
  • the electronic control device 100 of this embodiment includes a torque control section 110 that outputs torque commands TcF and TcR to the first electric motor 11F and the second electric motor 11R, respectively.
  • the torque control unit 110 outputs the carrier frequency to one of the first electric motor 11F and the second electric motor 11R, which is not to be switched, for which the switching condition determining unit 123 has determined that the switching condition is not satisfied.
  • the torque command Tc to be used is increased within a range below a predetermined upper limit value Tch.
  • the torque control unit 110 sets a torque command Tc to a predetermined value to be output to the other of the first electric motor 11F or the second electric motor 11R, which is the target of switching the carrier frequency determined by the switching condition determining unit 123 to satisfy the switching condition. lower to The frequency control unit 124 lowers the carrier frequency of the electric motor 11 to be switched when the torque control unit 110 reduces the torque command Tc output to the electric motor 11 to be switched to a predetermined value.
  • the electronic control device 100 of this embodiment can prevent the electric motor 11 whose carrier frequency is not to be switched from satisfying the switching condition. Therefore, it is possible to suppress noise caused by switching the carrier frequency of the electric motor 11 that is not the carrier frequency switching target. Further, after reducing the torque command Tc output to the electric motor 11 whose carrier frequency is to be switched to a predetermined value, the carrier frequency of the electric motor 11 whose carrier frequency is to be switched is lowered. Therefore, noise caused by switching the carrier frequency of the electric motor 11 whose carrier frequency is to be switched with high torque can be suppressed.
  • the torque control unit 110 reduces the torque command Tc output to the electric motor 11 to be switched to a predetermined value, for example, as shown in FIG. Thereafter, the torque control unit 110 may increase the torque command Tc to be output to the electric motor 11 to be switched, for example, when the torque command Tc to be output to the electric motor 11 to be switched has reached a predetermined upper limit value Tch. .
  • the electronic control device 100 of the present embodiment can reduce the torque command Tc output to the electric motor 11 whose carrier frequency is to be switched to a predetermined value, thereby reducing the noise when switching the carrier frequency. Can be done. Furthermore, it is possible to suppress the torque command Tc to be lower than the upper limit value Tch in the electric motor 11 that is not the target of switching, thereby preventing the necessity of switching the carrier frequency. Furthermore, by suppressing the torque command Tc of the electric motor 11 that is not the target of switching, the insufficient torque can be compensated for by increasing the torque command Tc of the electric motor 11 after switching the carrier frequency.
  • the electronic control device 100 of this embodiment includes a torque control section 110 that outputs torque commands TcF and TcR to the first electric motor 11F and the second electric motor 11R, respectively.
  • the switching condition determining unit 123 determines that the first electric motor 11F and the second electric motor 11R satisfy the switching condition after a predetermined period of time has elapsed
  • the frequency control unit 124 controls the first electric motor 11F and the second electric motor 11R as shown in FIGS. Before one of the electric motors 11F and 11R satisfies the switching condition, the carrier frequency of that one electric motor 11 is lowered.
  • the torque control unit 110 increases the torque command Tc of the one electric motor 11, and also increases the torque command Tc of the one electric motor 11 and the first electric motor 11F and the second electric motor 11R.
  • the torque command Tc of the other electric motor 11 is decreased to a predetermined value.
  • the frequency control unit 124 reduces the carrier frequency of the other electric motor 11 when the torque control unit 110 reduces the torque command Tc of the other electric motor 11 to the predetermined value.
  • the electronic control device 100 of this embodiment can suppress noise by switching the carrier frequency of the one electric motor 11 when the torque command Tc of that electric motor 11 is lower than the upper limit value Tch. Furthermore, noise can be suppressed by lowering the torque command Tc of the other electric motor 11 to a predetermined value and then lowering the carrier frequency of that electric motor 11. In addition, when lowering the torque command Tc of the other electric motor 11, a decrease in the total torque can be suppressed by increasing the torque command Tc of the one electric motor 11 whose carrier frequency has been switched.
  • the torque control unit 110 reduces the torque command Tc of the other electric motor 11 to the predetermined value. Thereafter, when the relationship between the torque command Tc of the one electric motor 11 and the rotational speed ⁇ reaches the upper limit of the operating range of the one electric motor 11, the torque control unit 110 controls the torque command Tc of the other electric motor 11. increase.
  • torque is distributed between the first electric motor 11F and the second electric motor 11R, and when the torque command Tc is lower than the upper limit value Tch, the carrier frequency is Noise can be suppressed by switching. Further, by distributing torque between the first electric motor 11F and the second electric motor 11R, it is possible to suppress a decrease in the total torque.
  • the electronic control device suppresses switching of the carrier frequency of the first electric motor close to the driver's seat of the vehicle by preferentially switching the carrier frequency of the second electric motor that is distant from the driver's seat of the vehicle.
  • the electronic control device may preferentially switch the carrier frequency of the first electric motor that is closer to the driver's seat of the vehicle.
  • the electronic control device may include a machine learning unit that learns the driving tendency of the vehicle driver and updates information stored in the switching condition storage unit.

Abstract

The present disclosure provides an electronic control device that is capable of limiting noise from an electric motor when switching carrier frequencies. This electronic control device controls an electric motor for the travel of a vehicle, the device including a switching condition storage unit (122), a traveling load computing unit (121), a switching condition determining unit (123), and a frequency control unit (124). The switching condition storage unit (122) stores a switching condition in which the rotation speed of the electric motor is less than a predetermined lower limit value and a torque command of the electric motor is higher than a predetermined upper limit value. The traveling load computing unit (121) calculates a traveling load (Lt) of the vehicle on the basis of the rotation speed (ω) and the torque command (Tc) of the electric motor. The switching condition determining unit (123) determines whether the switching condition is satisfied after a predetermined time period has elapsed, on the basis of the traveling load (Lt) of the vehicle and the rotation speed (ω) and the torque command (Tc) of the electric motor. When the switching condition determining unit (123) has determined that the switching condition is satisfied, the frequency control unit (124) reduces the carrier frequency of the electric motor when the torque command of the electric motor is equal to or less than the upper limit value.

Description

電子制御装置electronic control unit
 本開示は、電動機を制御する電子制御装置に関する。 The present disclosure relates to an electronic control device that controls an electric motor.
 従来から駆動用の動力を出力する動力出力装置の発明が知られている(下記特許文献1を参照)。この従来の動力出力装置は、たとえば、駆動用の動力を出力可能な複数の電動機と、これら複数の電動機を各々駆動する複数の駆動回路と、操作者の操作に基づいて要求動力を設定する要求動力設定手段と、複数の駆動回路を駆動制御する制御手段と、を備える(下記特許文献1、第0006段落、請求項1、要約等)。 The invention of a power output device that outputs power for driving has been conventionally known (see Patent Document 1 below). This conventional power output device includes, for example, a plurality of electric motors capable of outputting driving power, a plurality of drive circuits that respectively drive these plurality of electric motors, and a request to set required power based on an operator's operation. It includes a power setting means and a control means for driving and controlling a plurality of drive circuits (Patent Document 1, paragraph 0006, claim 1, abstract, etc.).
 上記複数の駆動回路は、スイッチング素子を有し、そのスイッチング素子のスイッチングにより上記複数の電動機を各々駆動する。上記制御手段は、複数の駆動回路のうちのいずれもが正常に機能し得る通常状態にあるときには設定された要求動力に基づく動力が複数の電動機から出力されるよう複数の駆動回路を駆動制御する。また、上記制御手段は、複数の駆動回路のうちのいずれかが正常に機能できない非通常状態にあるときには、以下のように複数の駆動回路を駆動制御する。 The plurality of drive circuits each have a switching element, and drive each of the plurality of electric motors by switching the switching element. The control means drives and controls the plurality of drive circuits so that when any of the plurality of drive circuits is in a normal state where it can function normally, the plurality of electric motors output power based on the set required power. . Furthermore, when any one of the plurality of drive circuits is in an abnormal state in which it cannot function normally, the control means drives and controls the plurality of drive circuits as follows.
 すなわち、上記制御手段は、上記非通常状態にある駆動回路が有するスイッチング素子のスイッチング周波数と、上記非通常状態にある駆動回路により駆動される電動機からの動力とに基づいて、複数の駆動回路を駆動制御する。より詳細には、上記制御手段は、上記スイッチング周波数と上記動力のうち、上記スイッチング周波数に優先して上記動力が制限されるとともに、上記設定された要求動力に基づく動力が複数の電動機から出力されるよう、複数の駆動回路を駆動制御する。 That is, the control means controls the plurality of drive circuits based on the switching frequency of the switching element of the drive circuit in the abnormal state and the power from the electric motor driven by the drive circuit in the abnormal state. Drive control. More specifically, of the switching frequency and the power, the power is limited in priority to the switching frequency, and the power based on the set required power is output from the plurality of electric motors. drive control of multiple drive circuits so that
 この従来の動力出力装置は、非通常状態にある駆動回路が有するスイッチング素子のスイッチングに伴う騒音の発生を抑制しつつ非通常状態にある駆動回路の負担を低減できる。この結果、駆動回路の良好な駆動と駆動による騒音の抑制とを両立させることができる。また、複数の駆動回路のいずれかが通常状態にあるか否かに拘わらず要求動力に対応することができる(特許文献1、第0007段落)。 This conventional power output device can reduce the burden on the drive circuit that is in an abnormal state while suppressing the generation of noise caused by switching of switching elements included in the drive circuit that is in an abnormal state. As a result, it is possible to achieve both good driving of the driving circuit and suppression of noise caused by the driving. Further, the required power can be met regardless of whether any of the plurality of drive circuits is in a normal state (Patent Document 1, paragraph 0007).
特開2006-197717号公報Japanese Patent Application Publication No. 2006-197717
 上記従来の動力出力装置では、たとえば、駆動回路の温度が温度限界に達するまで複数の電動機の間でトルク配分が行われるため、電動機が高いトルクを出力している状態でキャリア周波数が切り替わることがある。このように、電動機が高いトルクを出力している状態でキャリア周波数が切り替わると、電動機から騒音が発生するおそれがある。 In the conventional power output device described above, for example, torque is distributed among multiple electric motors until the temperature of the drive circuit reaches a temperature limit, so the carrier frequency may not be switched while the electric motor is outputting high torque. be. In this way, if the carrier frequency is switched while the electric motor is outputting high torque, there is a risk that noise will be generated from the electric motor.
 本開示は、キャリア周波数の切り替え時の電動機の騒音を抑制することが可能な電子制御装置を提供する。 The present disclosure provides an electronic control device that can suppress motor noise when switching carrier frequencies.
 本開示の一態様は、車両の走行用の電動機を制御する電子制御装置であって、前記電動機の回転速度が所定の下限値より低く前記電動機のトルク指令が所定の上限値より大きい切替条件が記憶された切替条件記憶部と、前記電動機の回転速度およびトルク指令に基づいて前記車両の走行負荷を算出する走行負荷演算部と、前記車両の前記走行負荷ならびに前記電動機の回転速度およびトルク指令に基づいて所定時間経過後に前記切替条件を満たすか否かを判定する切替条件判定部と、前記切替条件判定部によって前記切替条件を満たすことが判定された場合に、前記電動機のトルク指令が前記上限値以下のときに前記電動機のキャリア周波数を低下させる周波数制御部と、を有することを特徴とする電子制御装置である。 One aspect of the present disclosure is an electronic control device that controls an electric motor for driving a vehicle, wherein a switching condition is such that the rotation speed of the electric motor is lower than a predetermined lower limit value and the torque command of the electric motor is higher than a predetermined upper limit value. a stored switching condition storage unit, a running load calculation unit that calculates a running load of the vehicle based on the rotational speed and torque command of the electric motor, and a running load calculation unit that calculates the running load of the vehicle based on the rotational speed and torque command of the electric motor; a switching condition determining unit that determines whether the switching condition is satisfied after a predetermined time has elapsed based on the switching condition, and when the switching condition determining unit determines that the switching condition is satisfied, the torque command of the electric motor is set to the upper limit The electronic control device is characterized in that it has a frequency control section that lowers the carrier frequency of the electric motor when the carrier frequency is equal to or less than the carrier frequency of the electric motor.
 本開示の上記一態様によれば、キャリア周波数の切り替え時の電動機の騒音を抑制することが可能な電子制御装置を提供することができる。 According to the above-described aspect of the present disclosure, it is possible to provide an electronic control device that can suppress the noise of the electric motor when switching the carrier frequency.
本開示の電子制御装置の実施形態を示すブロック図。FIG. 1 is a block diagram showing an embodiment of an electronic control device of the present disclosure. 図1の電子制御装置を構成するトルク制御部のブロック図。FIG. 2 is a block diagram of a torque control section that constitutes the electronic control device of FIG. 1; 図1の電子制御装置を構成する三相電流制御部のブロック図。FIG. 2 is a block diagram of a three-phase current control section that constitutes the electronic control device of FIG. 1. FIG. 図3の三相電流制御部を構成する切替条件記憶部を説明するグラフ。4 is a graph illustrating a switching condition storage section that constitutes the three-phase current control section in FIG. 3. 図3の三相電流制御部を構成する切替条件記憶部を説明するグラフ。4 is a graph illustrating a switching condition storage section that constitutes the three-phase current control section in FIG. 3. 図3の三相電流制御部を構成するPWM制御部のブロック図。FIG. 4 is a block diagram of a PWM control section that constitutes the three-phase current control section in FIG. 3; 図1の電子制御装置の動作を説明するフロー図。FIG. 2 is a flow diagram illustrating the operation of the electronic control device in FIG. 1. FIG. 図1の電子制御装置の制御による車両の状態遷移図。FIG. 2 is a state transition diagram of the vehicle under control of the electronic control device of FIG. 1. FIG. 図8の状態(i)における電動機のトルク指令等のグラフ。9 is a graph of torque commands, etc. of the electric motor in state (i) of FIG. 8. 図8の状態(ii)における電動機のトルク指令等のグラフ。9 is a graph showing a torque command etc. of the electric motor in state (ii) of FIG. 8 . 図8の状態(iii)における電動機のトルク指令等のグラフ。9 is a graph of torque commands, etc. of the electric motor in state (iii) of FIG. 8. 図8の状態(iv)における電動機のトルク指令等のグラフ。9 is a graph of torque commands, etc. of the electric motor in state (iv) of FIG. 8. 図8の状態(v)における電動機のトルク指令等のグラフ。9 is a graph of the torque command, etc. of the electric motor in state (v) of FIG. 8. 図8の状態(vi)における電動機のトルク指令等のグラフ。9 is a graph of torque commands, etc. of the electric motor in state (vi) of FIG. 8.
 以下、図面を参照して本開示に係る電子制御装置の実施形態を説明する。 Hereinafter, embodiments of an electronic control device according to the present disclosure will be described with reference to the drawings.
 図1は、本開示に係る電子制御装置の実施形態を示すブロック図である。本実施形態の電子制御装置100は、たとえば、電気自動車、ハイブリッド車、燃料電池車などの車両10に搭載され、車両10の走行用の電動機11を制御する電子制御装置である。なお、図1では図示を省略しているが、車両10は、たとえば、通常の車両が一般的に備えている操舵装置、制動装置、動力伝達装置、蓄電装置などを備えている。 FIG. 1 is a block diagram showing an embodiment of an electronic control device according to the present disclosure. The electronic control device 100 of this embodiment is, for example, an electronic control device that is mounted on a vehicle 10 such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, and controls an electric motor 11 for driving the vehicle 10. Although not shown in FIG. 1, the vehicle 10 includes, for example, a steering device, a braking device, a power transmission device, a power storage device, and the like that are generally included in a normal vehicle.
 図1に示す例において、車両10は、ギア12Fを介して左右の前輪13Fを駆動する第1電動機11Fと、ギア12Rを介して左右の後輪13Rを駆動する第2電動機11Rの二つの走行用の電動機11を有している。また、車両10は、たとえば、アクセルペダルの開度を検出するアクセルポジションセンサ14と、車両10の前後方向の加速度を検出する加速度センサ15とを有している。 In the example shown in FIG. 1, the vehicle 10 is driven by two motors: a first electric motor 11F that drives left and right front wheels 13F via a gear 12F, and a second electric motor 11R that drives left and right rear wheels 13R via a gear 12R. It has an electric motor 11 for use. The vehicle 10 also includes, for example, an accelerator position sensor 14 that detects the opening degree of the accelerator pedal, and an acceleration sensor 15 that detects the acceleration of the vehicle 10 in the longitudinal direction.
 また、図1に示す例において、車両10は、たとえば、アンチロックブレーキシステム(ABS)を構成するABS制御部16と、トラクションコントロールシステム(TCS)を構成するTCS制御部17とを有している。また、図1では図示を省略しているが、車両10は、通常の車両が一般的に備える各種のセンサを有している。また、車両10は、走行用の電動機11を少なくとも一つ有していればよく、各々の車輪13を駆動する四つ以上の電動機11(インホイールモータ)を有していてもよい。 Furthermore, in the example shown in FIG. 1, the vehicle 10 includes, for example, an ABS control section 16 that constitutes an anti-lock brake system (ABS), and a TCS control section 17 that constitutes a traction control system (TCS). . Further, although not shown in FIG. 1, the vehicle 10 includes various sensors that are generally included in a normal vehicle. Further, the vehicle 10 only needs to have at least one electric motor 11 for traveling, and may have four or more electric motors 11 (in-wheel motors) that drive each wheel 13.
 電子制御装置100は、たとえば、図示を省略する複数のマイクロコントローラや、複数の電子部品を含む複数の電子回路によって構成されている。電子制御装置100を構成する各々のマイクロコントローラは、たとえば、入出力部、メモリ、タイマーおよび中央処理装置(CPU)を有している。電子制御装置100は、たとえば、メモリに記憶されたプログラムをCPUによって実行することで、後述する様々な機能を実現する。 The electronic control device 100 is configured by, for example, a plurality of microcontrollers (not shown) and a plurality of electronic circuits including a plurality of electronic components. Each microcontroller making up the electronic control device 100 has, for example, an input/output section, a memory, a timer, and a central processing unit (CPU). The electronic control device 100 realizes various functions described below by, for example, executing programs stored in a memory using a CPU.
 図1に示す例において、電子制御装置100は、たとえば、トルク制御部110と、三相電流制御部120とを有している。また、電子制御装置100は、たとえば、インバータ130を有していてもよい。電子制御装置100は、たとえば、第1電動機11Fを制御する第1の三相電流制御部120Fおよび第1のインバータ130Fと、第2電動機11Rを制御する第2の三相電流制御部120Rおよび第2のインバータ130Rとを有している。すなわち、三相電流制御部120とインバータ130は、各々の電動機11に対して一つずつ設けられている。 In the example shown in FIG. 1, the electronic control device 100 includes, for example, a torque control section 110 and a three-phase current control section 120. Further, the electronic control device 100 may include an inverter 130, for example. The electronic control device 100 includes, for example, a first three-phase current control section 120F and a first inverter 130F that control a first electric motor 11F, and a second three-phase current control section 120R and a first inverter that control a second electric motor 11R. 2 inverters 130R. That is, one three-phase current control section 120 and one inverter 130 are provided for each electric motor 11.
 トルク制御部110は、たとえば、アクセルポジションセンサ14からアクセルペダル操作量Qacが入力され、加速度センサ15から車両10の前後方向の加速度αが入力される。また、トルク制御部110は、たとえば、ABS制御部16からアンチロックブレーキに関する制御信号Sabが入力され、TCS制御部17からトラクションコントロールに関する制御信号Stcが入力される。 The torque control unit 110 receives, for example, the accelerator pedal operation amount Qac from the accelerator position sensor 14 and the longitudinal acceleration α of the vehicle 10 from the acceleration sensor 15. Further, the torque control unit 110 receives, for example, a control signal Sab related to anti-lock brakes from the ABS control unit 16, and a control signal Stc related to traction control from the TCS control unit 17.
 さらに、トルク制御部110は、たとえば、三相電流制御部120から電動機11の回転速度ωが入力される。図1に示す例において、トルク制御部110は、たとえば、第1の三相電流制御部120Fから第1電動機11Fの回転速度ωFが入力され、第2の三相電流制御部120Rから第2電動機11Rの回転速度ωRが入力される。 Further, the torque control unit 110 receives, for example, the rotational speed ω of the electric motor 11 from the three-phase current control unit 120. In the example shown in FIG. 1, the torque control unit 110 receives, for example, the rotational speed ωF of the first electric motor 11F from the first three-phase current control unit 120F, and the rotation speed ωF of the first electric motor 11F from the second three-phase current control unit 120R. The rotational speed ωR of 11R is input.
 トルク制御部110は、たとえば、入力されたアクセルペダル操作量Qac、車両10の加速度α、電動機11の回転速度ω、および、制御信号Sab,Stc等に基づいて、トルク指令Tcおよびトルク変化率制限ΔTrを出力する。より具体的には、トルク制御部110は、第1電動機11Fに対するトルク指令TcFおよびトルク変化率制限ΔTrFと、第2電動機11Rに対するトルク指令TcRおよびトルク変化率制限ΔTrRとを出力する。 The torque control unit 110 sets the torque command Tc and the torque change rate limit based on, for example, the input accelerator pedal operation amount Qac, the acceleration α of the vehicle 10, the rotational speed ω of the electric motor 11, and the control signals Sab and Stc. Output ΔTr. More specifically, the torque control unit 110 outputs a torque command TcF and a torque change rate limit ΔTrF for the first electric motor 11F, and a torque command TcR and a torque change rate limit ΔTrR for the second electric motor 11R.
 三相電流制御部120は、トルク制御部110から電動機11に対するトルク指令Tcおよびトルク変化率制限ΔTrが入力される。より詳細には、第1の三相電流制御部120Fは、トルク制御部110から第1電動機11Fに対するトルク指令TcFおよびトルク変化率制限ΔTrFが入力される。また、第2の三相電流制御部120Rは、トルク制御部110から第2電動機11Rに対するトルク指令TcRおよびトルク変化率制限ΔTrRが入力される。 The three-phase current control unit 120 receives the torque command Tc and torque change rate limit ΔTr for the electric motor 11 from the torque control unit 110. More specifically, the first three-phase current control section 120F receives the torque command TcF and the torque change rate limit ΔTrF for the first electric motor 11F from the torque control section 110. Further, the second three-phase current control section 120R receives input from the torque control section 110 of the torque command TcR and the torque change rate limit ΔTrR for the second electric motor 11R.
 また、三相電流制御部120は、電動機11から回転角θが入力される。より詳細には、第1の三相電流制御部120Fは、第1電動機11Fから回転角θFが入力され、第2の三相電流制御部120Rは、第2電動機11Rから回転角θRが入力される。 Furthermore, the rotation angle θ is input to the three-phase current control unit 120 from the electric motor 11. More specifically, the first three-phase current control section 120F receives the rotation angle θF from the first electric motor 11F, and the second three-phase current control section 120R receives the rotation angle θR from the second electric motor 11R. Ru.
 また、三相電流制御部120は、インバータ130からインバータ電圧Vinが入力される。より詳細には、第1の三相電流制御部120Fは、第1のインバータ130Fからインバータ電圧VinFが入力され、第2の三相電流制御部120Rは、第2のインバータ130Rからインバータ電圧VinRが入力される。 Furthermore, the three-phase current control unit 120 receives an inverter voltage Vin from the inverter 130. More specifically, the first three-phase current control section 120F receives the inverter voltage VinF from the first inverter 130F, and the second three-phase current control section 120R receives the inverter voltage VinR from the second inverter 130R. is input.
 また、三相電流制御部120は、インバータ130から三相電流Iu,Iv,Iwが入力される。より詳細には、第1の三相電流制御部120Fと第2の三相電流制御部120Rは、それぞれ、第1のインバータ130Fと第2のインバータ130Rから三相電流Iu,Iv,Iwが入力される。 Additionally, the three-phase current control unit 120 receives three-phase currents Iu, Iv, and Iw from the inverter 130. More specifically, the first three-phase current control section 120F and the second three-phase current control section 120R receive three-phase currents Iu, Iv, and Iw from the first inverter 130F and the second inverter 130R, respectively. be done.
 三相電流制御部120は、前述の入力に基づいて、ゲート信号Iu,Iv,Iw,Ix,Iy,Izを出力する。より詳細には、第1の三相電流制御部120Fは、第1のインバータ130Fへゲート信号Iu,Iv,Iw,Ix,Iy,Izを出力し、第2の三相電流制御部120Rは、第2のインバータ130Rへゲート信号Iu,Iv,Iw,Ix,Iy,Izを出力する。 The three-phase current control section 120 outputs gate signals Iu, Iv, Iw, Ix, Iy, and Iz based on the above-mentioned inputs. More specifically, the first three-phase current control section 120F outputs gate signals Iu, Iv, Iw, Ix, Iy, and Iz to the first inverter 130F, and the second three-phase current control section 120R outputs gate signals Iu, Iv, Iw, Ix, Iy, and Iz to the first inverter 130F. Gate signals Iu, Iv, Iw, Ix, Iy, and Iz are output to the second inverter 130R.
 インバータ130は、たとえば、電源電圧Vsに接続され、三相電流制御部120からゲート信号Iu,Iv,Iw,Ix,Iy,Izが入力される。より詳細には、第1のインバータ130Fおよび第2のインバータ130Rは、それぞれ、第1の三相電流制御部120Fおよび第2の三相電流制御部120Rからゲート信号Iu,Iv,Iw,Ix,Iy,Izが入力される。 The inverter 130 is connected to the power supply voltage Vs, for example, and receives gate signals Iu, Iv, Iw, Ix, Iy, and Iz from the three-phase current control section 120. More specifically, the first inverter 130F and the second inverter 130R receive gate signals Iu, Iv, Iw, Ix, Iy and Iz are input.
 インバータ130は、上記の入力に基づいて、たとえば、電動機11へ三相電流Iu,Iv,Iwを出力し、三相電流制御部120へインバータ電圧Vinを出力する。より詳細には、第1のインバータ130Fおよび第2のインバータ130Rは、それぞれ、第1電動機11Fおよび第2電動機11Rへ三相電流Iu,Iv,Iwを出力する。また、第1のインバータ130Fおよび第2のインバータ130Rは、それぞれ、第1の三相電流制御部120Fおよび第2の三相電流制御部120Rへ、インバータ電圧VinF,VinRを出力する。 Based on the above input, the inverter 130 outputs, for example, three-phase currents Iu, Iv, and Iw to the electric motor 11, and outputs an inverter voltage Vin to the three-phase current control section 120. More specifically, the first inverter 130F and the second inverter 130R output three-phase currents Iu, Iv, and Iw to the first electric motor 11F and the second electric motor 11R, respectively. Further, the first inverter 130F and the second inverter 130R output inverter voltages VinF and VinR to the first three-phase current control section 120F and the second three-phase current control section 120R, respectively.
 図2は、図1の電子制御装置100を構成するトルク制御部110のブロック図である。トルク制御部110は、たとえば、要求トルク生成部111と、走行負荷演算部112と、制御トルク生成部113と、トルク指令生成部114とを有している。 FIG. 2 is a block diagram of the torque control section 110 that constitutes the electronic control device 100 in FIG. 1. The torque control section 110 includes, for example, a required torque generation section 111, a running load calculation section 112, a control torque generation section 113, and a torque command generation section 114.
 要求トルク生成部111は、たとえば、アクセルペダル操作量Qacと、それぞれの電動機11の回転速度ω(ωF,ωR)とを入力とする。要求トルク生成部111は、これらの入力に基づいて、たとえば、総要求トルクRTTと、第1電動機11Fの要求トルクRTFと、第2電動機11Rの要求トルクRTRと、を算出してトルク指令生成部114へ出力する。 The required torque generation unit 111 receives, for example, the accelerator pedal operation amount Qac and the rotational speed ω (ωF, ωR) of each electric motor 11. Based on these inputs, the required torque generation unit 111 calculates, for example, the total required torque RTT, the required torque RTF of the first electric motor 11F, and the required torque RTR of the second electric motor 11R, and generates the torque command generation unit. 114.
 走行負荷演算部112は、たとえば、それぞれの電動機11の回転速度ω(ωF,ωR)と、車両10の加速度αを入力とする。走行負荷演算部112は、電動機11の回転速度ωと車両10の加速度αから勾配による走行抵抗値を推定する。さらに、走行負荷演算部112は、推定した走行抵抗値と、メモリに記憶された車両10の重量および前面投影面積などを用い、車両10の走行負荷Ltを算出してトルク指令生成部114へ出力する。 The running load calculation unit 112 receives, for example, the rotational speed ω (ωF, ωR) of each electric motor 11 and the acceleration α of the vehicle 10 as input. The running load calculation unit 112 estimates the running resistance value due to the slope from the rotational speed ω of the electric motor 11 and the acceleration α of the vehicle 10. Further, the running load calculation unit 112 uses the estimated running resistance value, the weight and front projected area of the vehicle 10 stored in the memory, and calculates the running load Lt of the vehicle 10 and outputs it to the torque command generation unit 114. do.
 制御トルク生成部113は、たとえば、ABS制御部16からの制御信号SabおよびTCS制御部17からの制御信号Stcを入力とする。制御トルク生成部113は、これらの入力に基づいて、アンチロックブレーキやトラクションコントロールなど、車両10を安定させる制御に要求される制御トルクCTを算出してトルク指令生成部114へ出力する。 The control torque generation unit 113 receives, for example, the control signal Sab from the ABS control unit 16 and the control signal Stc from the TCS control unit 17. Based on these inputs, control torque generation section 113 calculates control torque CT required for control to stabilize vehicle 10, such as anti-lock brakes and traction control, and outputs it to torque command generation section 114.
 トルク指令生成部114は、たとえば、要求トルク生成部111から総要求トルクRTT、要求トルクRTF、および要求トルクRTRが入力され、各々の三相電流制御部120から各々の電動機11の回転速度ωが入力される。また、トルク指令生成部114は、走行負荷演算部112から走行負荷Ltが入力され、制御トルク生成部113から制御トルクCTが入力される。トルク指令生成部114は、これらの入力に基づいて、各々の電動機11のトルク指令Tc(TcF,TcR)とトルク変化率制限ΔTr(ΔTrF,ΔTrR)を算出して、各々の三相電流制御部120へ出力する。 For example, the torque command generation unit 114 receives the total required torque RTT, required torque RTF, and required torque RTR from the required torque generation unit 111, and receives the rotational speed ω of each electric motor 11 from each three-phase current control unit 120. is input. Further, the torque command generation unit 114 receives the running load Lt from the running load calculation unit 112 and receives the control torque CT from the control torque generation unit 113. The torque command generation unit 114 calculates the torque command Tc (TcF, TcR) and torque change rate limit ΔTr (ΔTrF, ΔTrR) for each electric motor 11 based on these inputs, Output to 120.
 図3は、図1の電子制御装置100を構成する三相電流制御部120のブロック図である。三相電流制御部120は、たとえば、走行負荷演算部121と、切替条件記憶部122と、切替条件判定部123と、周波数制御部124と、パルス幅変調(Pulse Width Modulation:PWM)制御部125と、を有している。 FIG. 3 is a block diagram of the three-phase current control section 120 that constitutes the electronic control device 100 of FIG. 1. The three-phase current control unit 120 includes, for example, a running load calculation unit 121, a switching condition storage unit 122, a switching condition determination unit 123, a frequency control unit 124, and a pulse width modulation (PWM) control unit 125. It has .
 走行負荷演算部121は、たとえば、各々の電動機11のトルク指令Tcと回転速度ωを入力として、勾配による車両10の走行抵抗値を推定する。さらに、走行負荷演算部121は、その走行抵抗値と、車両10の重量、各々の電動機11の回転速度ω、および車両10の前面投影面積などから、車両10の走行負荷Ltを算出し、切替条件判定部123へ出力する。 The running load calculation unit 121 estimates the running resistance value of the vehicle 10 due to the slope, for example, by inputting the torque command Tc and rotational speed ω of each electric motor 11. Furthermore, the running load calculation unit 121 calculates the running load Lt of the vehicle 10 from the running resistance value, the weight of the vehicle 10, the rotational speed ω of each electric motor 11, the front projected area of the vehicle 10, etc. It is output to the condition determination section 123.
 図4および図5は、図3の三相電流制御部120の一部である切替条件記憶部122を説明するグラフである。より詳細には、図4のグラフは、横軸を電動機11の回転速度ωとし、縦軸を電動機11のトルク指令Tcとし、電動機11の運転領域OAと切替領域SAを示している。 4 and 5 are graphs explaining the switching condition storage section 122, which is a part of the three-phase current control section 120 in FIG. 3. More specifically, in the graph of FIG. 4, the horizontal axis represents the rotational speed ω of the electric motor 11, the vertical axis represents the torque command Tc of the electric motor 11, and shows the operating range OA and the switching area SA of the electric motor 11.
 切替領域SAは、たとえば、電動機11の回転速度ωが所定の下限値ωl以下、かつ電動機11のトルク指令Tcが所定の上限値Tch以上の領域である。この切替領域SAでは、インバータ130を保護するために電動機11のキャリア周波数を低下させる必要がある。すなわち、図4に示すグラフは、キャリア周波数の切り替えが要求される切替条件を、切替領域SAとして表している。 The switching region SA is, for example, a region where the rotational speed ω of the electric motor 11 is less than or equal to a predetermined lower limit value ωl, and the torque command Tc of the electric motor 11 is greater than or equal to a predetermined upper limit value Tch. In this switching region SA, it is necessary to lower the carrier frequency of the electric motor 11 in order to protect the inverter 130. That is, the graph shown in FIG. 4 represents the switching conditions under which carrier frequency switching is required as the switching area SA.
 しかし、電動機11のトルク指令Tcと回転速度ωとの関係が切替領域SAに入っている状態で電動機11のキャリア周波数を切り替えると騒音が発生する。そのため、切替領域SAでは、電動機11のキャリア周波数の切り替えを回避する必要がある。すなわち、切替領域SAは、電動機11の騒音を抑制する観点からキャリア周波数の切り替えを制限すべき制限領域でもある。 However, if the carrier frequency of the electric motor 11 is switched in a state where the relationship between the torque command Tc and the rotational speed ω of the electric motor 11 is within the switching region SA, noise is generated. Therefore, in the switching area SA, it is necessary to avoid switching the carrier frequency of the electric motor 11. That is, the switching area SA is also a restricted area in which switching of the carrier frequency should be restricted from the viewpoint of suppressing the noise of the electric motor 11.
 また、図5のグラフは、横軸を電動機11の回転速度ωとし、縦軸を電動機11のトルク指令Tcとし、大きさの異なる走行負荷Ltに対して、それぞれ、電動機11のトルク指令Tcと回転速度ωとの関係が示されている。図5に示すように、走行負荷Ltが大きくなるほど、電動機11の回転速度ωの変化に対するトルク指令Tcの変化が大きくなる。図4および図5のグラフは、各々の電動機11に対して作成され、切替条件記憶部122に設定および記録され、必要に応じて切替条件記憶部122から切替条件判定部123へ出力される。 In addition, in the graph of FIG. 5, the horizontal axis is the rotational speed ω of the electric motor 11, and the vertical axis is the torque command Tc of the electric motor 11, and the torque command Tc of the electric motor 11 and The relationship with rotational speed ω is shown. As shown in FIG. 5, as the running load Lt increases, the change in the torque command Tc with respect to the change in the rotational speed ω of the electric motor 11 increases. The graphs in FIGS. 4 and 5 are created for each electric motor 11, set and recorded in the switching condition storage section 122, and output from the switching condition storage section 122 to the switching condition determination section 123 as necessary.
 切替条件判定部123は、たとえば、各々の電動機11のトルク指令Tc、トルク変化率制限ΔTr、および回転速度ω、ならびに車両10の走行負荷Ltが入力される。切替条件判定部123は、たとえば、切替条件記憶部122から、図4に示す各々の電動機11の運転領域OAおよび切替領域SAと、図5に示す走行負荷Ltに応じたトルク指令Tcと回転速度ωとの関係を取得する。切替領域SAは、前述のように、電動機11のキャリア周波数の切り替えが必要となる切替条件を表している。 The switching condition determining unit 123 receives, for example, the torque command Tc, torque change rate limit ΔTr, and rotational speed ω of each electric motor 11, and the running load Lt of the vehicle 10. The switching condition determination unit 123 obtains, for example, the operating range OA and switching range SA of each electric motor 11 shown in FIG. Obtain the relationship with ω. As described above, the switching area SA represents a switching condition that requires switching the carrier frequency of the electric motor 11.
 切替条件判定部123は、たとえば、上記の入力と、図4に示す切替領域SAと、図5に示す関係とに基づいて、各々の電動機11のトルク指令Tcと回転速度ωの関係が、所定時間経過後に、切替領域SAに入るか否かを判定する。切替領域SAに入るか否かは、電動機11のキャリア周波数を低下させる必要がある切替条件を満たすか否かと同義である。より詳細には、切替条件判定部123は、たとえば、図4と図5のグラフを重ね合わせ、図5のTc-ω曲線が図4の切替領域SAに入るかまたは接する場合に、各々の電動機11のトルク指令Tcと回転速度ωの関係が、所定時間経過後に、切替条件を満たすと判断する。 For example, the switching condition determining unit 123 determines whether the relationship between the torque command Tc and the rotational speed ω of each electric motor 11 is a predetermined value based on the above input, the switching area SA shown in FIG. 4, and the relationship shown in FIG. After a period of time has elapsed, it is determined whether or not the switching area SA is entered. Whether or not the switching region SA is entered has the same meaning as whether or not the switching condition that requires lowering the carrier frequency of the electric motor 11 is satisfied. More specifically, the switching condition determination unit 123 superimposes the graphs in FIGS. 4 and 5, and determines whether each electric motor It is determined that the relationship between the torque command Tc and the rotational speed ω of No. 11 satisfies the switching condition after a predetermined period of time has elapsed.
 切替条件判定部123は、所定時間経過後に電動機11のトルク指令Tcと回転速度ωの関係が、切替領域SAに入るか否か、すなわち、回転速度ωが下限値ωlより低くかつトルク指令Tcが上限値Tchより大きい切替条件を満たすか否かの判定結果DRを、周波数制御部124へ出力する。 The switching condition determining unit 123 determines whether the relationship between the torque command Tc and the rotational speed ω of the electric motor 11 falls within the switching region SA after a predetermined period of time has elapsed, that is, whether the rotational speed ω is lower than the lower limit value ωl and the torque command Tc is lower than the lower limit ωl. A determination result DR as to whether the switching condition greater than the upper limit Tch is satisfied is output to the frequency control unit 124.
 周波数制御部124は、たとえば、切替条件判定部123から入力される判定結果DRに基づいて、制御対象の電動機11のキャリア周波数を低下させる制御信号CfcをPWM制御部125へ出力する。より具体的には、周波数制御部124は、判定結果DRが肯定であった場合、すなわち、制御対象の電動機11のトルク指令Tcと回転速度ωの関係が所定時間経過後に切替条件を満たすことが判定された場合に、上記制御信号Cfcを出力する。 For example, the frequency control unit 124 outputs a control signal Cfc that lowers the carrier frequency of the electric motor 11 to be controlled to the PWM control unit 125, based on the determination result DR input from the switching condition determination unit 123. More specifically, if the determination result DR is affirmative, the frequency control unit 124 determines that the relationship between the torque command Tc and the rotational speed ω of the electric motor 11 to be controlled satisfies the switching condition after a predetermined period of time has elapsed. If determined, the control signal Cfc is output.
 図6は、図3の三相電流制御部120の一部であるPWM制御部125のブロック図である。PWM制御部125は、各々の電動機11の三相電流Iu,Iv,Iw、回転角θ、およびトルク指令Tc、インバータ電圧Vin、ならびに周波数制御部124の制御信号Cfcを入力とし、ゲート信号Iu,Iv,Iw,Ix,Iy,Izおよび回転速度ωを出力する。 FIG. 6 is a block diagram of the PWM control section 125, which is a part of the three-phase current control section 120 in FIG. 3. The PWM control unit 125 inputs the three-phase currents Iu, Iv, Iw of each electric motor 11, the rotation angle θ, the torque command Tc, the inverter voltage Vin, and the control signal Cfc of the frequency control unit 124, and receives the gate signals Iu, Iv, Iw, Ix, Iy, Iz and rotational speed ω are output.
 PWM制御部125は、たとえば、速度演算部125aと、三相/dq変換演算部125bと、電流指令生成部125cと、電流制御部125dと、dq/三相変換演算部125eと、PMW演算部125fとを有している。これらの各部は、永久磁石モータである電動機11をベクトル制御する一般的な構成であるため、説明を省略する。PWM制御部125は、たとえば、各々の電動機11のキャリア周波数を低下させる制御信号Cfcに基づいて、インバータ130内のパワースイッチングデバイスのキャリア周波数を低下させる。 The PWM control unit 125 has, for example, a speed calculation unit 125a, a three-phase/dq conversion calculation unit 125b, a current command generation unit 125c, a current control unit 125d, a dq/three-phase conversion calculation unit 125e, and a PWM calculation unit 125f. Each of these units has a general configuration for vector control of the electric motor 11, which is a permanent magnet motor, so a description thereof will be omitted. The PWM control unit 125 lowers the carrier frequency of the power switching device in the inverter 130, for example, based on a control signal Cfc that lowers the carrier frequency of each electric motor 11.
 以下、図7から図14までを参照して、本実施形態の電子制御装置100の作用を説明する。図7は、電子制御装置100の動作を説明するフロー図である。図8は、電子制御装置100の制御による車両10の状態遷移図である。 Hereinafter, the operation of the electronic control device 100 of this embodiment will be explained with reference to FIGS. 7 to 14. FIG. 7 is a flow diagram illustrating the operation of the electronic control device 100. FIG. 8 is a state transition diagram of the vehicle 10 under control of the electronic control device 100.
 図8に示す状態(o)は、たとえば、車両10が停止している状態など、電子制御装置100による電動機11(11F,11R)の制御が実行されていない状態を示している。この状態(o)から、たとえば、電子制御装置100による電動機11の制御が開始されて車両10が走行を開始すると、車両10は、たとえば、図8に示す状態(i)に遷移し、電子制御装置100は、図7に示す処理P1を実行する。状態(i)は、たとえば、車両10の走行負荷Ltが低く、電動機11のキャリア周波数の切り替えが不要な状態である。 A state (o) shown in FIG. 8 indicates a state in which the electric motor 11 (11F, 11R) is not controlled by the electronic control device 100, such as a state in which the vehicle 10 is stopped. From this state (o), for example, when the electronic control device 100 starts controlling the electric motor 11 and the vehicle 10 starts running, the vehicle 10 transitions to, for example, the state (i) shown in FIG. The device 100 executes the process P1 shown in FIG. State (i) is, for example, a state in which the running load Lt of the vehicle 10 is low and switching of the carrier frequency of the electric motor 11 is unnecessary.
 図7に示す処理P1において、電子制御装置100のトルク制御部110には、たとえば、前述のように、アクセルペダル操作量Qac、車両10の加速度α、ABS制御部16およびTCS制御部17の制御信号Sab,Stcが入力される。トルク制御部110は、これらの入力に基づいて、前述のように、各々の電動機11を制御する各々の三相電流制御部120に対してトルク指令Tcとトルク変化率制限ΔTrを出力する。 In the process P1 shown in FIG. 7, the torque control unit 110 of the electronic control device 100 includes, for example, the accelerator pedal operation amount Qac, the acceleration α of the vehicle 10, the control of the ABS control unit 16 and the TCS control unit 17, as described above. Signals Sab and Stc are input. Based on these inputs, the torque control unit 110 outputs the torque command Tc and the torque change rate limit ΔTr to each three-phase current control unit 120 that controls each electric motor 11, as described above.
 次に、電子制御装置100は、切替条件を取得する処理P2を実行する。この処理P2において、電子制御装置100の三相電流制御部120を構成する切替条件判定部123は、たとえば、各々の電動機11に関し、図4の運転領域OAおよび切替領域SAと、図5の走行負荷Ltに応じたトルク指令Tcと回転速度ωとの関係を、切替条件記憶部122から取得する。 Next, the electronic control device 100 executes a process P2 of acquiring switching conditions. In this process P2, the switching condition determination unit 123 constituting the three-phase current control unit 120 of the electronic control device 100 determines, for example, the operating area OA and switching area SA in FIG. 4 and the running area SA in FIG. The relationship between the torque command Tc and the rotational speed ω according to the load Lt is acquired from the switching condition storage unit 122.
 次に、電子制御装置100は、切替条件の適否を判定する処理P3を実行する。この処理P3において、電子制御装置100の切替条件判定部123には、前述のように、各々の電動機11のトルク指令Tc、トルク変化率制限ΔTr、および回転速度ω、ならびに車両10の走行負荷Ltが入力される。切替条件判定部123は、たとえば、これらの入力と、前の処理P2で取得した図4および図5のグラフとに基づいて、各々の電動機11が所定時間経過後に切替条件を満たすか否かを判定する。 Next, the electronic control device 100 executes a process P3 to determine whether the switching condition is appropriate. In this process P3, the switching condition determination unit 123 of the electronic control device 100 receives the torque command Tc, torque change rate limit ΔTr, and rotational speed ω of each electric motor 11, as well as the running load Lt of the vehicle 10, as described above. is input. The switching condition determining unit 123 determines whether each electric motor 11 satisfies the switching condition after a predetermined period of time has passed, based on these inputs and the graphs of FIGS. 4 and 5 obtained in the previous process P2, for example. judge.
 図9は、図8の車両10の状態(i)における各々の電動機11のトルク指令Tc(TcF,TcR)、キャリア周波数、および、すべての電動機11の総トルクの一例を示すグラフである。図9の上から一番目と二番目のトルク指令TcF,TcRのグラフでは、第1電動機11Fと第2電動機11Rのそれぞれの最大トルクT1max,T2maxと、キャリア周波数の切り替え時の騒音を十分に抑制可能なトルクT1q,T2qを示している。 FIG. 9 is a graph showing an example of the torque command Tc (TcF, TcR) of each electric motor 11, the carrier frequency, and the total torque of all electric motors 11 in state (i) of the vehicle 10 in FIG. In the graphs of the first and second torque commands TcF and TcR from the top in FIG. 9, the maximum torques T1max and T2max of the first electric motor 11F and the second electric motor 11R, respectively, and the noise at the time of carrier frequency switching are sufficiently suppressed. Possible torques T1q and T2q are shown.
 この車両10の状態(i)では、走行負荷Ltが比較的に小さいため、図5に示すように、各々の電動機11の回転速度ωの変化に対するトルク指令Tcの変化が比較的に小さくなる。その結果、所定時間経過後の各々の電動機11のトルク指令Tc(TcF,TcR)が図4に示す切替領域SAに入ることがなく、所定時間経過後に切替条件を満たさない。 In this state (i) of the vehicle 10, the running load Lt is relatively small, so as shown in FIG. 5, the change in the torque command Tc with respect to the change in the rotational speed ω of each electric motor 11 is relatively small. As a result, the torque commands Tc (TcF, TcR) of each electric motor 11 after a predetermined period of time do not enter the switching area SA shown in FIG. 4, and the switching conditions are not satisfied after a predetermined period of time has elapsed.
 この場合、図7に示す処理P3において、切替条件判定部123は、所定時間後に切替条件を満たさないこと(NO)を判定し、電子制御装置100は、後述する処理P4を実行することなく、処理P5を実行する。処理P5において、三相電流制御部120のPWM制御部125を構成するPWM制御部125fは、キャリア周波数を低下させる制御信号Cfcと指令電圧Vu,Vv,Vwに応じたゲート信号Iu,Iv,Iw,Ix,Iy,Izを出力する。 In this case, in process P3 shown in FIG. 7, the switching condition determining unit 123 determines that the switching condition is not satisfied after a predetermined time (NO), and the electronic control device 100 does not execute process P4, which will be described later. Process P5 is executed. In process P5, the PWM control section 125f that constitutes the PWM control section 125 of the three-phase current control section 120 generates a control signal Cfc for lowering the carrier frequency and a gate signal Iu, which corresponds to the command voltages Vu * , Vv * , Vw * . Outputs Iv, Iw, Ix, Iy, and Iz.
 ここで、トルク制御部110は、たとえば、第1電動機11Fと第2電動機11Rのトルク指令TcF,TcRと回転速度ωF,ωRとの関係が図4に示す切替領域SAに入らないように、第1電動機11Fと第2電動機11Rのトルク配分を行ってもよい。 Here, the torque control unit 110 controls the torque control unit 110 so that, for example, the relationship between the torque commands TcF, TcR and the rotational speeds ωF, ωR of the first electric motor 11F and the second electric motor 11R does not fall into the switching region SA shown in FIG. Torque may be distributed between the first electric motor 11F and the second electric motor 11R.
 また、車両10が四つ以上の電動機11を有する場合も同様である。すなわち、トルク制御部110は、トルク指令Tcと回転速度ωの関係が切替領域SAに入らず、キャリア周波数の切り替えが不要になるように、複数の電動機11の間のトルクを適切に配分してもよい。また、この処理P5において、トルク制御部110は、たとえば、トルク変化率制限ΔTrを変更しない。 The same applies when the vehicle 10 has four or more electric motors 11. That is, the torque control unit 110 appropriately distributes torque among the plurality of electric motors 11 so that the relationship between the torque command Tc and the rotational speed ω does not fall within the switching region SA, and carrier frequency switching is not necessary. Good too. Further, in this process P5, the torque control unit 110 does not change the torque change rate limit ΔTr, for example.
 各々のインバータ130は、入力されたゲート信号Iu,Iv,Iw,Ix,Iy,Izに基づいて、各々の電動機11へ三相電流Iu,Iv,Iwを出力する。これにより、各々の電動機11が回転して、ギア12F,12Rを介して左右の前輪13Fと左右の後輪13Rを回転させ、車両10を走行させる。その後、電子制御装置100は、たとえば、図7に示す処理を終了させ、所定の周期で繰り返し実行する。 Each inverter 130 outputs three-phase currents Iu, Iv, Iw to each electric motor 11 based on input gate signals Iu, Iv, Iw, Ix, Iy, Iz. As a result, each electric motor 11 rotates to rotate the left and right front wheels 13F and the left and right rear wheels 13R via the gears 12F and 12R, thereby causing the vehicle 10 to travel. After that, the electronic control device 100 ends the process shown in FIG. 7, for example, and repeatedly executes the process at a predetermined period.
 たとえば、車両10が走行を開始した直後に登り坂を走行するなどして走行負荷Ltが増加すると、車両10の状態は、図8に示す状態(o)から状態(ii)に遷移する。状態(ii)は、たとえば、車両10の走行負荷Ltが状態(i)よりも高く、複数の電動機11の一部でインバータ130を保護するためにキャリア周波数の切り替えが必要な状態である。 For example, when the running load Lt increases due to, for example, running uphill immediately after the vehicle 10 starts running, the state of the vehicle 10 transitions from the state (o) shown in FIG. 8 to the state (ii). State (ii) is, for example, a state in which the running load Lt of vehicle 10 is higher than state (i), and carrier frequency switching is required in order to protect inverter 130 in some of the plurality of electric motors 11.
 本実施形態の電子制御装置100において、状態(ii)は、たとえば、前輪13Fを駆動させる第1電動機11Fと、後輪13Rを駆動させる第2電動機11Rのうち、第2電動機11Rのキャリア周波数の切り替えが必要な状態である。この状態(ii)で電子制御装置100が前述の処理P3を実行すると、たとえば、図5に示すように、車両10の走行負荷Ltが増加した結果、第2電動機11Rの回転速度ω(ωR)の変化に対するトルク指令Tc(TcR)の変化が、前述の状態(i)よりも大きくなる。 In the electronic control device 100 of the present embodiment, state (ii) is, for example, when the carrier frequency of the second electric motor 11R is between the first electric motor 11F that drives the front wheels 13F and the second electric motor 11R that drives the rear wheels 13R. The state requires switching. When the electronic control device 100 executes the above-mentioned process P3 in this state (ii), for example, as shown in FIG. The change in torque command Tc (TcR) with respect to the change in is larger than in the above-mentioned state (i).
 その結果、切替条件判定部123は、たとえば、処理P3において、第2電動機11Rのトルク指令TcRと回転速度ωRとの関係が、所定時間経過後に図4に示す切替領域SAに入り、切替条件を満たすこと(YES)を判定する。また、切替条件判定部123は、たとえば、処理P3において、第1電動機11Fのトルク指令TcFと回転速度ωFとの関係が、所定時間経過後に図4に示す切替領域SAに入らず、切替条件を満たさないこと(NO)を判定する。その後、周波数制御部124は、処理P3の判定結果DRをPWM制御部125へ出力する。 As a result, the switching condition determination unit 123 determines that, for example, in process P3, the relationship between the torque command TcR and the rotational speed ωR of the second electric motor 11R enters the switching region SA shown in FIG. It is determined that the conditions are satisfied (YES). Further, the switching condition determination unit 123 determines that, for example, in process P3, the relationship between the torque command TcF and the rotational speed ωF of the first electric motor 11F does not fall within the switching region SA shown in FIG. It is determined that the conditions are not satisfied (NO). Thereafter, the frequency control unit 124 outputs the determination result DR of process P3 to the PWM control unit 125.
 処理P3において、電子制御装置100は、たとえば、少なくとも一つの電動機11において所定時間経過後に切替条件を満たすこと(YES)が判定されると、次の処理P4を実行する。この処理P4において、電子制御装置100は、複数の電動機11のトルク配分を行うとともに、所定時間経過後に切替条件を満たすことが判定された電動機11のキャリア周波数を低下させる。 In process P3, for example, when it is determined that the switching condition is satisfied in at least one electric motor 11 after a predetermined time has elapsed (YES), the electronic control device 100 executes the next process P4. In this process P4, the electronic control device 100 performs torque distribution among the plurality of electric motors 11, and lowers the carrier frequency of the electric motor 11 that is determined to satisfy the switching condition after a predetermined period of time has elapsed.
 図10は、図8の車両10の状態(ii)における各々の電動機11のトルク指令Tc(TcF,TcR)、キャリア周波数、および、すべての電動機11(11F,11R)の総トルクの一例を示すグラフである。図10の上から一番目と二番目のトルク指令TcF,TcRのグラフでは、キャリア周波数の切り替え時の騒音を十分に抑制可能なトルクT1q,T2qを示している。 FIG. 10 shows an example of the torque command Tc (TcF, TcR) of each electric motor 11, carrier frequency, and total torque of all electric motors 11 (11F, 11R) in state (ii) of the vehicle 10 in FIG. It is a graph. The first and second graphs of torque commands TcF and TcR from the top in FIG. 10 show torques T1q and T2q that can sufficiently suppress noise when switching the carrier frequency.
 処理P4において、電子制御装置100は、たとえば、第2電動機11Rを制御する第2の三相電流制御部120Rにおいて、周波数制御部124からPWM制御部125へ、キャリア周波数を低下させる制御信号Cfcを出力する。ここで、周波数制御部124は、たとえば、第2電動機11Rのトルク指令TcRが、キャリア周波数の切り替え時の騒音を十分に抑制可能なトルクT2qを超える前に、PWM制御部125へ制御信号Cfcを出力する。 In process P4, the electronic control device 100, for example, sends a control signal Cfc that lowers the carrier frequency from the frequency control section 124 to the PWM control section 125 in the second three-phase current control section 120R that controls the second electric motor 11R. Output. Here, the frequency control unit 124 transmits the control signal Cfc to the PWM control unit 125, for example, before the torque command TcR of the second electric motor 11R exceeds the torque T2q that can sufficiently suppress noise at the time of carrier frequency switching. Output.
 その結果、図10の上から二番目と下から二番目のグラフに示すように、第2電動機11Rのトルク指令TcRがトルクT2qを超える前に、第2電動機11Rのキャリア周波数が、インバータ130を保護可能な所定の周波数まで低下する。これにより、車両10の後輪13Rを駆動する第2電動機11Rのキャリア周波数を低下させる際に発生する騒音を十分に抑制することができる。 As a result, as shown in the second graph from the top and the second graph from the bottom in FIG. 10, the carrier frequency of the second electric motor 11R changes to down to a predetermined frequency that can be protected. Thereby, the noise generated when lowering the carrier frequency of the second electric motor 11R that drives the rear wheels 13R of the vehicle 10 can be sufficiently suppressed.
 なお、第2電動機11Rのトルク指令TcRと回転速度ωRとの関係を示す曲線が切替領域SAに入る前、すなわち、第2電動機11Rのトルク指令TcRが上限値Tch以下のときに、第2電動機11Rのキャリア周波数を低下させることで、騒音抑制効果を得ることが可能である。 Note that before the curve indicating the relationship between the torque command TcR of the second electric motor 11R and the rotational speed ωR enters the switching region SA, that is, when the torque command TcR of the second electric motor 11R is equal to or lower than the upper limit value Tch, the second electric motor By lowering the carrier frequency of 11R, it is possible to obtain a noise suppression effect.
 さらに、図7に示す処理P4において、電子制御装置100は、たとえば、トルク制御部110によって複数の電動機11にトルクを配分する。より具体的には、たとえば、図2に示すトルク指令生成部114は、第1電動機11Fのキャリア周波数の切り替えが必要にならない範囲で、第1電動機11Fと第2電動機11Rにトルク指令TcF,TcRを配分する。 Furthermore, in process P4 shown in FIG. 7, the electronic control device 100 distributes torque to the plurality of electric motors 11, for example, by the torque control unit 110. More specifically, for example, the torque command generation unit 114 shown in FIG. Allocate.
 図10の上から一番目と二番目のトルク指令TcF,TcRのグラフでは、第1電動機11Fと第2電動機11Rのそれぞれの最大トルクT1max,T2maxと、それぞれのトルク指令TcF,TcRの上限値Tchと、を示している。この上限値Tchは、図5に示す第1電動機11Fと第2電動機11Rのそれぞれのトルク指令Tcと回転速度ωとの関係を示す曲線が、図4に示す切替領域SAに入らないための上限値Tchである。 In the graphs of the first and second torque commands TcF and TcR from the top in FIG. It shows. This upper limit Tch is an upper limit for preventing the curves showing the relationship between the torque command Tc and rotational speed ω of each of the first electric motor 11F and the second electric motor 11R shown in FIG. 5 from falling into the switching area SA shown in FIG. The value is Tch.
 処理P4において、トルク制御部110は、たとえば、車両10の前輪13Fを駆動する第1電動機11Fのトルク指令TcFが図4に示す切替領域SAに入らないように、第1電動機11Fと第2電動機11Rのトルクを配分する。より具体的には、トルク制御部110は、キャリア周波数を低下させない第1電動機11Fのトルク指令TcFを、上限値Tch以下に制限する。 In process P4, the torque control unit 110 controls the first electric motor 11F and the second electric motor so that, for example, the torque command TcF of the first electric motor 11F that drives the front wheels 13F of the vehicle 10 does not enter the switching area SA shown in FIG. Distribute the torque of 11R. More specifically, the torque control unit 110 limits the torque command TcF of the first electric motor 11F that does not reduce the carrier frequency to below the upper limit value Tch.
 また、トルク制御部110は、キャリア周波数を低下させた第2電動機11Rのトルク指令TcRを、最大トルクT2maxを超えない範囲で、上限値Tchを超えて増加させる。また、処理P4において、トルク制御部110は、たとえば、第2電動機11Rのトルク変化率制限ΔTrRを小さくし、第1電動機11Fのトルク変化率制限ΔTrFを変更しない。 In addition, the torque control unit 110 increases the torque command TcR of the second electric motor 11R, which has a lower carrier frequency, beyond the upper limit value Tch within a range that does not exceed the maximum torque T2max. Further, in process P4, the torque control unit 110, for example, reduces the torque change rate limit ΔTrR of the second electric motor 11R, and does not change the torque change rate limit ΔTrF of the first electric motor 11F.
 その後、電子制御装置100は、たとえば、前述の処理P5を実行して、図7に示す処理を終了させる。これにより、第1電動機11Fのトルク指令TcFを上限値Tch以下に制限することで不足したトルクを、第2電動機11Rのトルクによって補完し、第1電動機11Fと第2電動機11Rによって所望の総トルクを出力することが可能になる。 After that, the electronic control device 100 executes the above-mentioned process P5, for example, and ends the process shown in FIG. 7. As a result, the torque that is insufficient by limiting the torque command TcF of the first electric motor 11F to below the upper limit value Tch is supplemented by the torque of the second electric motor 11R, and the desired total torque is achieved by the first electric motor 11F and the second electric motor 11R. It becomes possible to output.
 また、車両10が急な登り坂を走行して走行負荷Ltが大きく増加する場合や急加速により、車両10の状態は、たとえば、図8に示す状態(o)から状態(iii)に遷移する。状態(iii)は、たとえば、車両10の走行負荷Ltが状態(ii)よりも高く、すべての電動機11においてインバータ130を保護するためのキャリア周波数の切り替えが必要な状態である。 Further, when the vehicle 10 travels on a steep uphill slope and the running load Lt increases significantly or due to sudden acceleration, the state of the vehicle 10 changes from state (o) to state (iii) shown in FIG. 8, for example. . In state (iii), for example, the running load Lt of vehicle 10 is higher than state (ii), and it is necessary to switch carrier frequencies in all electric motors 11 to protect inverters 130.
 本実施形態の電子制御装置100において、状態(iii)は、たとえば、前輪13Fを駆動させる第1電動機11Fと、後輪13Rを駆動させる第2電動機11Rの双方のキャリア周波数の切り替えが必要な状態である。この状態(iii)で電子制御装置100が前述の処理P3を実行すると、車両10の走行負荷Ltが増加することで、たとえば、図5に示すように、第1電動機11Fおよび第2電動機11Rの回転速度ω(ωF,ωR)の変化に対するトルク指令Tc(TcF,TcR)の変化が、状態(ii)よりも大きくなる。 In the electronic control device 100 of the present embodiment, state (iii) is, for example, a state in which the carrier frequency of both the first electric motor 11F that drives the front wheels 13F and the second electric motor 11R that drives the rear wheels 13R needs to be switched. It is. When the electronic control device 100 executes the above-mentioned process P3 in this state (iii), the running load Lt of the vehicle 10 increases, for example, as shown in FIG. 5, the first electric motor 11F and the second electric motor 11R The change in torque command Tc (TcF, TcR) with respect to the change in rotational speed ω (ωF, ωR) becomes larger than in state (ii).
 その結果、切替条件判定部123は、たとえば、処理P3において、第1電動機11Fと第2電動機11Rのそれぞれのトルク指令TcF,TcRと回転速度ωF,ωRとの関係が、所定時間経過後に図4に示す切替領域SAに入り、切替条件を満たすこと(YES)を判定する。その後、周波数制御部124は、この判定結果DRをPWM制御部125へ出力する。 As a result, in process P3, for example, the switching condition determining unit 123 determines that the relationship between the torque commands TcF, TcR and the rotational speeds ωF, ωR of the first electric motor 11F and the second electric motor 11R is as shown in FIG. It enters the switching area SA shown in and determines that the switching conditions are satisfied (YES). Thereafter, the frequency control section 124 outputs this determination result DR to the PWM control section 125.
 その後、電子制御装置100は、たとえば、次の処理P4を実行する。この処理P4において、電子制御装置100は、たとえば、所定時間経過後に切替条件を満たすことが判定された第1電動機11Fと第2電動機11Rの双方のキャリア周波数を低下させ、第1電動機11Fと第2電動機11Rとの間でトルクを配分する。 After that, the electronic control device 100 executes the next process P4, for example. In this process P4, the electronic control device 100 lowers the carrier frequencies of both the first electric motor 11F and the second electric motor 11R, which are determined to satisfy the switching condition after a predetermined period of time has elapsed, and Torque is distributed between the two electric motors 11R.
 図11は、図8の状態(iii)における電動機11のトルク指令Tc(TcF,TcR)、キャリア周波数、および、すべての電動機11(11F,11R)の総トルクの一例を示すグラフである。図11の上から一番目と二番目のトルク指令TcF,TcRのグラフでは、キャリア周波数の切り替え時の騒音を十分に抑制可能なトルクT1q,T2qを示している。 FIG. 11 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (iii) of FIG. 8. The first and second graphs of torque commands TcF and TcR from the top in FIG. 11 show torques T1q and T2q that can sufficiently suppress noise when switching the carrier frequency.
 処理P4において、電子制御装置100は、たとえば、第1電動機11Fと第2電動機11Rを制御するそれぞれの三相電流制御部120において、周波数制御部124からPWM制御部125へ、キャリア周波数を低下させる制御信号Cfcを出力する。ここで、各々の三相電流制御部120の周波数制御部124は、たとえば、第1電動機11Fと第2電動機11Rの各々のトルク指令TcF,TcRが、キャリア周波数の切り替え時の騒音を十分に抑制可能な各々のトルクT1q,T2qを超える前に、PWM制御部125へ制御信号Cfcを出力する。 In process P4, the electronic control device 100 lowers the carrier frequency from the frequency control section 124 to the PWM control section 125 in each three-phase current control section 120 that controls the first electric motor 11F and the second electric motor 11R. Outputs control signal Cfc. Here, the frequency control unit 124 of each three-phase current control unit 120 is configured such that, for example, each torque command TcF, TcR of the first electric motor 11F and the second electric motor 11R sufficiently suppresses noise at the time of carrier frequency switching. A control signal Cfc is output to the PWM control unit 125 before each possible torque T1q, T2q is exceeded.
 その結果、図11に示すように、第1電動機11Fおよび第2電動機11Rのそれぞれのトルク指令TcF,TcRが、トルクT1q,T2qを超える前に、第1電動機11Fおよび第2電動機11Rのキャリア周波数が、インバータ130を保護可能な所定の周波数まで低下する。これにより、車両10の第1電動機11Fおよび第2電動機11Rのキャリア周波数を低下させる際に発生する騒音を十分に抑制することができる。 As a result, as shown in FIG. 11, before the torque commands TcF and TcR of the first electric motor 11F and the second electric motor 11R exceed the torques T1q and T2q, the carrier frequencies of the first electric motor 11F and the second electric motor 11R change. is lowered to a predetermined frequency that can protect the inverter 130. Thereby, the noise generated when lowering the carrier frequency of the first electric motor 11F and the second electric motor 11R of the vehicle 10 can be sufficiently suppressed.
 なお、第1電動機11Fおよび第2電動機11Rのトルク指令TcRが、それぞれ、上限値Tchを超えて切替領域SAに入る前、すなわち、切替条件を満たす前に、第1電動機11Fおよび第2電動機11Rのキャリア周波数を低下させることで、騒音抑制効果を得ることが可能である。さらに、この処理P4において、電子制御装置100は、たとえば、トルク制御部110によって第1電動機11Fおよび第2電動機11Rに適宜トルクを配分する。 Note that before the torque commands TcR of the first electric motor 11F and the second electric motor 11R exceed the upper limit value Tch and enter the switching area SA, that is, before the switching conditions are satisfied, the first electric motor 11F and the second electric motor 11R It is possible to obtain a noise suppression effect by lowering the carrier frequency of. Further, in this process P4, the electronic control device 100, for example, uses the torque control unit 110 to appropriately distribute torque to the first electric motor 11F and the second electric motor 11R.
 その後、電子制御装置100は、たとえば、前述の処理P5を実行して、図7に示す処理を終了させる。以上のように、電子制御装置100は、車両10の状態(iii)において、トルク指令TcF,TcRがトルクTq1,Tq2または切替領域SAに入らない上限値Tchを超える前に、第1電動機11Fおよび第2電動機11Rのキャリア周波数を低下させる。これにより、車両10の第1電動機11Fおよび第2電動機11Rのキャリア周波数を低下させる際に発生する騒音を抑制することができる。 After that, the electronic control device 100 executes the above-mentioned process P5, for example, and ends the process shown in FIG. 7. As described above, in state (iii) of the vehicle 10, the electronic control device 100 controls the first electric motor 11F and The carrier frequency of the second electric motor 11R is lowered. Thereby, noise generated when lowering the carrier frequency of the first electric motor 11F and the second electric motor 11R of the vehicle 10 can be suppressed.
 また、図8に示すように、車両10の走行負荷Ltが低く、すべての電動機11のキャリア周波数を低下させる必要がない状態(i)は、たとえば、車両10の走行負荷Ltの増加により、状態(iv)を経て、前述の状態(ii)へ遷移する。状態(iv)は、たとえば、車両10の走行負荷Ltが状態(i)よりも高く、複数の電動機11の一部でインバータ130を保護するためのキャリア周波数の切り替えが必要な状態である。 Further, as shown in FIG. 8, the state (i) in which the running load Lt of the vehicle 10 is low and there is no need to lower the carrier frequencies of all electric motors 11 is a state in which, for example, due to an increase in the running load Lt of the vehicle 10, After (iv), the state transitions to the above-mentioned state (ii). In state (iv), for example, the running load Lt of vehicle 10 is higher than in state (i), and it is necessary to switch carrier frequencies in some of the plurality of electric motors 11 to protect inverter 130.
 本実施形態の電子制御装置100において、状態(iv)は、たとえば、前輪13Fを駆動させる第1電動機11Fと、後輪13Rを駆動させる第2電動機11Rのうち、第2電動機11Rのキャリア周波数の切り替えが必要な状態である。この状態(iv)で電子制御装置100が前述の処理P3を実行すると、切替条件判定部123は、第2電動機11Rのトルク指令TcRと回転速度ωRとの関係が、所定時間経過後に図4に示す切替領域SAに入り、切替条件を満たすこと(YES)を判定する。その後、周波数制御部124は、この判定結果DRをPWM制御部125へ出力する。 In the electronic control device 100 of this embodiment, the state (iv) is, for example, the carrier frequency of the second electric motor 11R among the first electric motor 11F that drives the front wheels 13F and the second electric motor 11R that drives the rear wheels 13R. The state requires switching. When the electronic control device 100 executes the above-mentioned process P3 in this state (iv), the switching condition determination unit 123 determines that the relationship between the torque command TcR and the rotational speed ωR of the second electric motor 11R is as shown in FIG. It enters the switching area SA shown and determines that the switching conditions are satisfied (YES). Thereafter, the frequency control section 124 outputs this determination result DR to the PWM control section 125.
 その後、電子制御装置100は、たとえば、次の処理P4を実行する。この処理P4において、電子制御装置100は、まず、第1電動機11Fと第2電動機11Rとの間でトルク配分を行い、その後、第2電動機11Rのキャリア周波数を低下させる。 After that, the electronic control device 100 executes the next process P4, for example. In this process P4, the electronic control device 100 first performs torque distribution between the first electric motor 11F and the second electric motor 11R, and then lowers the carrier frequency of the second electric motor 11R.
 図12は、図8の状態(iv)における電動機11のトルク指令Tc(TcF,TcR)、キャリア周波数、および、すべての電動機11(11F,11R)の総トルクの一例を示すグラフである。処理P4において、周波数制御部124が第2電動機11Rのキャリア周波数を低下させる前に、トルク制御部110は、たとえば、第2電動機11Rのトルク指令TcRを低下させるとともに、第1電動機11Fのトルク指令TcFを増加させ、総トルクを一定の値に維持する。このとき、トルク制御部110は、たとえば、第1電動機11Fおよび第2電動機11Rのトルク変化率制限ΔTrF,ΔTrRを大きくする。 FIG. 12 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (iv) of FIG. 8. In process P4, before the frequency control unit 124 reduces the carrier frequency of the second electric motor 11R, the torque control unit 110, for example, reduces the torque command TcR of the second electric motor 11R and increases the torque command TcF of the first electric motor 11F to maintain the total torque at a constant value. At this time, the torque control unit 110, for example, increases the torque change rate limits ΔTrF, ΔTrR of the first electric motor 11F and the second electric motor 11R.
 その後、周波数制御部124は、第2電動機11Rのトルク指令TcRが、キャリア周波数の切り替えによる騒音を抑制可能な所定の値まで低下したときに、PWM制御部125へ制御信号Cfcを出力して、第2電動機11Rのキャリア周波数を低下させる。これにより、第2電動機11Rのキャリア周波数の切り替えによる騒音を抑制できる。 Thereafter, when the torque command TcR of the second electric motor 11R decreases to a predetermined value that can suppress noise caused by carrier frequency switching, the frequency control unit 124 outputs a control signal Cfc to the PWM control unit 125, The carrier frequency of the second electric motor 11R is lowered. Thereby, noise caused by switching the carrier frequency of the second electric motor 11R can be suppressed.
 トルク制御部110は、たとえば、第2電動機11Rのキャリア周波数を切り替えたいタイミングで、トルク変化率制限ΔTrRを小さくする。また、トルク制御部110は、たとえば、周波数制御部124が第2電動機11Rのキャリア周波数を低下させた後に、第2電動機11Rのトルク指令TcRを増加させ、第1電動機11Fのトルク指令TcFを切替領域SAに入る上限値Tch以下に制限する。これにより、第1電動機11Fのキャリア周波数の切り替えが不要になり、高いトルクでキャリア周波数を切り替えるときの騒音の発生を防止できる。 For example, the torque control unit 110 reduces the torque change rate limit ΔTrR at a timing when the carrier frequency of the second electric motor 11R is desired to be switched. Further, the torque control unit 110 increases the torque command TcR of the second electric motor 11R and switches the torque command TcF of the first electric motor 11F, for example, after the frequency control unit 124 decreases the carrier frequency of the second electric motor 11R. It is limited to below the upper limit value Tch that falls within the area SA. This eliminates the need to switch the carrier frequency of the first electric motor 11F, and can prevent the generation of noise when switching the carrier frequency with high torque.
 また、図8に示すように、車両10の走行負荷Ltが低く、すべての電動機11のキャリア周波数を低下させる必要がない状態(i)は、たとえば、車両10の走行負荷Ltが急激に増加することで、状態(v)を経て、前述の状態(iii)へ遷移する。状態(v)は、たとえば、車両10の走行負荷Ltが状態(ii)よりも高く、すべての電動機11でインバータ130の保護するためのキャリア周波数の切り替えが必要な状態である。 Further, as shown in FIG. 8, the state (i) in which the running load Lt of the vehicle 10 is low and there is no need to lower the carrier frequencies of all electric motors 11 is a state in which, for example, the running load Lt of the vehicle 10 suddenly increases. This causes a transition to the above-mentioned state (iii) via state (v). In state (v), for example, the running load Lt of vehicle 10 is higher than in state (ii), and it is necessary to switch carrier frequencies for protection of inverter 130 in all electric motors 11.
 この状態(v)で電子制御装置100が前述の処理P3を実行すると、切替条件判定部123は、第1電動機11Fおよび第2電動機11Rのそれぞれのトルク指令TcF,TcRと回転速度ωF,ωRとの関係が、所定時間経過後に図4に示す切替領域SAに入り、切替条件を満たすこと(YES)を判定する。切替条件判定部123は、この判定結果DRを周波数制御部124へ出力する。 When the electronic control device 100 executes the above-mentioned process P3 in this state (v), the switching condition determination unit 123 determines that the respective torque commands TcF, TcR and rotational speeds ωF, ωR of the first electric motor 11F and the second electric motor 11R It is determined that the relationship enters the switching area SA shown in FIG. 4 after a predetermined period of time has passed and that the switching condition is satisfied (YES). The switching condition determining section 123 outputs this determination result DR to the frequency controlling section 124.
 その後、電子制御装置100は、たとえば、次の処理P4を実行する。この処理P4において、電子制御装置100は、まず、第2電動機11Rのキャリア周波数を低下させ、次に、第1電動機11Fと第2電動機11Rとの間でトルク配分を行い、その後、第1電動機11Fのキャリア周波数を低下させる。 After that, the electronic control device 100 executes the next process P4, for example. In this process P4, the electronic control device 100 first lowers the carrier frequency of the second electric motor 11R, then performs torque distribution between the first electric motor 11F and the second electric motor 11R, and then Lower the carrier frequency of 11F.
 図13は、図8の状態(v)における電動機11のトルク指令Tc(TcF,TcR)、キャリア周波数、および、すべての電動機11(11F,11R)の総トルクの一例を示すグラフである。処理P4において、周波数制御部124は、第2電動機11Rのトルク指令TcRと回転速度ωRとの関係が、図4に示す切替領域SAに入り切替条件を満たす前に、PWM制御部125へ制御信号Cfcを出力して第2電動機11Rのキャリア周波数を低下させる。 FIG. 13 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (v) of FIG. 8. In process P4, the frequency control unit 124 sends a control signal to the PWM control unit 125 before the relationship between the torque command TcR and the rotational speed ωR of the second electric motor 11R enters the switching region SA shown in FIG. 4 and satisfies the switching conditions. Cfc is output to lower the carrier frequency of the second electric motor 11R.
 その後、この処理P4において、トルク制御部110は、たとえば、第1電動機11Fのトルク指令TcFを低下させるとともに、第2電動機11Rのトルク指令TcRを増加させ、総トルクを一定の値に維持する。このとき、トルク制御部110は、たとえば、第1電動機11Fおよび第2電動機11Rのトルク変化率制限ΔTrF,ΔTrRを大きくする。 After that, in this process P4, the torque control unit 110, for example, decreases the torque command TcF of the first electric motor 11F, increases the torque command TcR of the second electric motor 11R, and maintains the total torque at a constant value. At this time, the torque control unit 110 increases the torque change rate limits ΔTrF and ΔTrR of the first electric motor 11F and the second electric motor 11R, for example.
 その後、周波数制御部124は、第1電動機11Fのトルク指令TcFが、キャリア周波数の切り替えによる騒音を十分に抑制可能なトルクT1qまで低下したときに、PWM制御部125へ制御信号Cfcを出力して、第1電動機11Fのキャリア周波数を低下させる。これにより、第1電動機11Fのキャリア周波数の切り替えによる騒音を抑制できる。 Thereafter, the frequency control unit 124 outputs a control signal Cfc to the PWM control unit 125 when the torque command TcF of the first electric motor 11F has decreased to a torque T1q that can sufficiently suppress noise caused by carrier frequency switching. , lowers the carrier frequency of the first electric motor 11F. Thereby, noise caused by switching the carrier frequency of the first electric motor 11F can be suppressed.
 トルク制御部110は、たとえば、第1電動機11Fのキャリア周波数を切り替えたいタイミングで、トルク変化率制限ΔTrFを小さくする。また、トルク制御部110は、たとえば、第1電動機11Fのキャリア周波数を低下させた後に、トルク指令TcFを最大トルクT1maxまで増加させ、第2電動機11Rのトルク指令TcRを最大トルクT2maxに維持する。 For example, the torque control unit 110 reduces the torque change rate limit ΔTrF at a timing at which the carrier frequency of the first electric motor 11F is desired to be switched. Furthermore, for example, after decreasing the carrier frequency of the first electric motor 11F, the torque control unit 110 increases the torque command TcF to the maximum torque T1max, and maintains the torque command TcR of the second electric motor 11R at the maximum torque T2max.
 また、図8に示すように、車両10の一部の電動機11のキャリア周波数を低下させる必要がある状態(ii)は、たとえば、車両10の走行負荷Ltのさらなる増加により、状態(vi)を経て、前述の状態(iii)へ遷移する。状態(vi)は、たとえば、車両10の走行負荷Ltが状態(ii)よりも高く、すべての電動機11において、インバータ130を保護するためにキャリア周波数の切り替えが必要な状態である。 Further, as shown in FIG. 8, the state (ii) in which it is necessary to lower the carrier frequency of some electric motors 11 of the vehicle 10 can be changed to state (vi) due to a further increase in the running load Lt of the vehicle 10, for example. After that, the state transitions to the state (iii) described above. State (vi) is, for example, a state in which the running load Lt of vehicle 10 is higher than state (ii), and it is necessary to switch carrier frequencies in all electric motors 11 in order to protect inverter 130.
 この状態(vi)で電子制御装置100が前述の処理P3を実行すると、切替条件判定部123は、第1電動機11Fおよび第2電動機11Rのそれぞれのトルク指令TcF,TcRと回転速度ωF,ωRとの関係が、所定時間経過後に図4に示す切替領域SAに入り、切替条件を満たすこと(YES)を判定する。その後、周波数制御部124は、この判定結果DRをPWM制御部125へ出力する。 When the electronic control device 100 executes the above-mentioned process P3 in this state (vi), the switching condition determination unit 123 determines that the respective torque commands TcF, TcR and rotational speeds ωF, ωR of the first electric motor 11F and the second electric motor 11R It is determined that the relationship enters the switching area SA shown in FIG. 4 after a predetermined period of time has passed and that the switching condition is satisfied (YES). Thereafter, the frequency control section 124 outputs this determination result DR to the PWM control section 125.
 その後、電子制御装置100は、たとえば、次の処理P4を実行する。この処理P4において、電子制御装置100は、まず、第2電動機11Rのキャリア周波数を低下させ、次に、第1電動機11Fと第2電動機11Rとの間でトルク配分を行い、その後、第1電動機11Fのキャリア周波数を低下させる。 After that, the electronic control device 100 executes the next process P4, for example. In this process P4, the electronic control device 100 first lowers the carrier frequency of the second electric motor 11R, then performs torque distribution between the first electric motor 11F and the second electric motor 11R, and then Lower the carrier frequency of 11F.
 図14は、図8の状態(vi)における電動機11のトルク指令Tc(TcF,TcR)、キャリア周波数、および、すべての電動機11(11F,11R)の総トルクの一例を示すグラフである。処理P4において、周波数制御部124は、第2電動機11Rのトルク指令TcRと回転速度ωRとの関係が、図4に示す切替領域SAに入り切替条件を満たす前に、PWM制御部125へ制御信号Cfcを出力して第2電動機11Rのキャリア周波数を低下させる。 FIG. 14 is a graph showing an example of the torque command Tc (TcF, TcR) of the electric motor 11, the carrier frequency, and the total torque of all the electric motors 11 (11F, 11R) in state (vi) of FIG. 8. In process P4, the frequency control unit 124 sends a control signal to the PWM control unit 125 before the relationship between the torque command TcR and the rotational speed ωR of the second electric motor 11R enters the switching region SA shown in FIG. 4 and satisfies the switching conditions. Cfc is output to lower the carrier frequency of the second electric motor 11R.
 より詳細には、周波数制御部124は、第2電動機11Rのトルク指令TcRがキャリア周波数の切り替え時の騒音を十分に抑制可能なトルクT2qを超える前に、PWM制御部125へ制御信号Cfcを出力して第2電動機11Rのキャリア周波数を低下させる。これにより、第2電動機11Rのキャリア周波数の切り替えによる騒音をより確実に抑制することができる。 More specifically, before the torque command TcR of the second electric motor 11R exceeds the torque T2q that can sufficiently suppress noise when the carrier frequency is switched, the frequency control unit 124 outputs a control signal Cfc to the PWM control unit 125 to lower the carrier frequency of the second electric motor 11R. This makes it possible to more reliably suppress noise caused by switching the carrier frequency of the second electric motor 11R.
 その後、この処理P4において、トルク制御部110は、たとえば、第1電動機11Fのトルク指令TcFを低下させるとともに、第2電動機11Rのトルク指令TcRを増加させ、総トルクを一定の値に維持する。このとき、トルク制御部110は、たとえば、第1電動機11Fおよび第2電動機11Rのトルク変化率制限ΔTrF,ΔTrRを大きくする。 After that, in this process P4, the torque control unit 110, for example, decreases the torque command TcF of the first electric motor 11F, increases the torque command TcR of the second electric motor 11R, and maintains the total torque at a constant value. At this time, the torque control unit 110 increases the torque change rate limits ΔTrF and ΔTrR of the first electric motor 11F and the second electric motor 11R, for example.
 その後、電子制御装置100は、第1電動機11Fのトルク指令TcFが、キャリア周波数の切り替えによる騒音を抑制可能な所定の値まで低下したときに、周波数制御部124からPWM制御部125へ制御信号Cfcを出力して、第1電動機11Fのキャリア周波数を低下させる。これにより、第1電動機11Fのキャリア周波数の切り替えによる騒音を抑制できる。 Thereafter, when the torque command TcF of the first electric motor 11F decreases to a predetermined value capable of suppressing noise caused by carrier frequency switching, the electronic control device 100 sends a control signal Cfc from the frequency control unit 124 to the PWM control unit 125. is output to lower the carrier frequency of the first electric motor 11F. Thereby, noise caused by switching the carrier frequency of the first electric motor 11F can be suppressed.
 トルク制御部110は、たとえば、第1電動機11Fのキャリア周波数を切り替えたいタイミングで、トルク変化率制限ΔTrFを小さくする。また、トルク制御部110は、たとえば、第1電動機11Fのキャリア周波数を低下させた後に、トルク指令TcFを増加させ、第2電動機11Rのトルク指令TcRを最大トルクT2max以下に制限する。 For example, the torque control unit 110 reduces the torque change rate limit ΔTrF at a timing at which the carrier frequency of the first electric motor 11F is desired to be switched. Further, the torque control unit 110 increases the torque command TcF after decreasing the carrier frequency of the first electric motor 11F, and limits the torque command TcR of the second electric motor 11R to the maximum torque T2max or less, for example.
 以上のように、本実施形態の電子制御装置100は、切替条件記憶部122と、走行負荷演算部121と、切替条件判定部123と、周波数制御部124とを有し、車両10の走行用の電動機11を制御する。切替条件記憶部122は、電動機11の回転速度ωが所定の下限値ωlより低く電動機11のトルク指令Tcが所定の上限値Tchより大きい切替条件としての切替領域SAが記憶されている。走行負荷演算部121は、電動機11の回転速度ωおよびトルク指令Tcに基づいて車両10の走行負荷Ltを算出する。切替条件判定部123は、車両10の走行負荷Ltならびに電動機11の回転速度ωおよびトルク指令Tcに基づいて所定時間経過後に切替条件を満たすか否かを判定する。周波数制御部124は、切替条件判定部123によって切替条件を満たすことが判定された場合に、電動機11のトルク指令Tcが上限値Tch以下のときに電動機11のキャリア周波数を低下させる。 As described above, the electronic control device 100 of the present embodiment includes a switching condition storage section 122, a running load calculation section 121, a switching condition determining section 123, and a frequency control section 124, and has a The electric motor 11 is controlled. The switching condition storage unit 122 stores a switching area SA as a switching condition in which the rotational speed ω of the electric motor 11 is lower than a predetermined lower limit value ωl and the torque command Tc of the electric motor 11 is larger than a predetermined upper limit value Tch. The running load calculation unit 121 calculates the running load Lt of the vehicle 10 based on the rotational speed ω of the electric motor 11 and the torque command Tc. The switching condition determining unit 123 determines whether or not the switching condition is satisfied after a predetermined period of time has elapsed based on the running load Lt of the vehicle 10, the rotational speed ω of the electric motor 11, and the torque command Tc. When the switching condition determination unit 123 determines that the switching condition is satisfied, the frequency control unit 124 lowers the carrier frequency of the electric motor 11 when the torque command Tc of the electric motor 11 is equal to or lower than the upper limit value Tch.
 このような構成により、本実施形態の電子制御装置100は、キャリア周波数の切り替え時の電動機11の騒音を抑制することが可能になる。より詳細には、本実施形態の電子制御装置100は、切替条件判定部123によって、電動機11が所定時間経過後に切替条件を満たすか否かを判定することができる。この切替条件は、図4に示す切替領域SAに対応し、電動機11の回転速度ωが所定の下限値ωlより低く、かつ、電動機11のトルク指令Tcが所定の上限値Tchより大きく、電動機11のキャリア周波数を低下させることが必要な条件である。しかし、電動機11が切替条件を満たしてからキャリア周波数を低下させると、電動機11のトルク指令Tcが高い状態でキャリア周波数を切り替えることになり、騒音が発生するおそれがある。そのため、本実施形態の電子制御装置100では、切替条件判定部123によって所定時間経過後に切替条件を満たすことが判定された場合に、電動機11のトルク指令Tcが所定の上限値Tch以下のとき、すなわち切替条件を満たす前に、周波数制御部124によって電動機11のキャリア周波数を低下させる。これにより、電動機11が切替条件を満たしてからキャリア周波数を低下させる場合と比較して、より低いトルク指令Tcのときに電動機11のキャリア周波数を低下させることができ、キャリア周波数の切り替えによる騒音を抑制することが可能になる。 With such a configuration, the electronic control device 100 of this embodiment can suppress the noise of the electric motor 11 when switching the carrier frequency. More specifically, in the electronic control device 100 of the present embodiment, the switching condition determination unit 123 can determine whether the electric motor 11 satisfies the switching condition after a predetermined period of time has elapsed. This switching condition corresponds to the switching area SA shown in FIG. A necessary condition is to lower the carrier frequency of . However, if the carrier frequency is lowered after the electric motor 11 satisfies the switching conditions, the carrier frequency will be switched while the torque command Tc of the electric motor 11 is high, which may generate noise. Therefore, in the electronic control device 100 of the present embodiment, when the switching condition determining unit 123 determines that the switching condition is satisfied after a predetermined time has elapsed, when the torque command Tc of the electric motor 11 is equal to or less than the predetermined upper limit value Tch, That is, before the switching conditions are satisfied, the carrier frequency of the electric motor 11 is lowered by the frequency control unit 124. As a result, the carrier frequency of the electric motor 11 can be lowered when the torque command Tc is lower than when the carrier frequency is lowered after the electric motor 11 satisfies the switching conditions, and the noise caused by switching the carrier frequency can be reduced. It becomes possible to suppress it.
 また、本実施形態の電子制御装置100において、電動機11は、少なくとも第1電動機11Fと第2電動機11Rとを含む。また、切替条件判定部123は、第1電動機11Fと第2電動機11Rのそれぞれについて切替条件を満たすか否かを判定する。そして、周波数制御部124は、切替条件判定部123によって所定時間経過後に切替条件を満たすことが判定された第1電動機11Fと第2電動機11Rの少なくとも一方のキャリア周波数を、切替条件を満たす前に低下させる。 Furthermore, in the electronic control device 100 of this embodiment, the electric motor 11 includes at least a first electric motor 11F and a second electric motor 11R. Further, the switching condition determination unit 123 determines whether the switching conditions are satisfied for each of the first electric motor 11F and the second electric motor 11R. Then, the frequency control unit 124 changes the carrier frequency of at least one of the first electric motor 11F and the second electric motor 11R, which has been determined by the switching condition determination unit 123 to satisfy the switching condition after a predetermined period of time, before the switching condition is satisfied. lower.
 このような構成により、本実施形態の電子制御装置100によれば、第1電動機11Fと第2電動機11Rの少なくとも一方のトルク指令TcF,TcRが所定の上限値Tch以下の状態で、その電動機11のキャリア周波数を低下させることができる。したがって、その電動機11のトルク指令Tcが上限値Tchよりも高い状態でキャリア周波数を切り替える場合と比較して、キャリア周波数の切り替え時の騒音を抑制することができる。 With such a configuration, according to the electronic control device 100 of the present embodiment, when the torque commands TcF and TcR of at least one of the first electric motor 11F and the second electric motor 11R are equal to or lower than the predetermined upper limit value Tch, the electric motor 11 carrier frequency can be lowered. Therefore, compared to the case where the carrier frequency is switched in a state where the torque command Tc of the electric motor 11 is higher than the upper limit value Tch, noise at the time of carrier frequency switching can be suppressed.
 また、本実施形態の電子制御装置100は、第1電動機11Fと第2電動機11Rのそれぞれへトルク指令TcF,TcRを出力するトルク制御部110を有している。トルク制御部110は、たとえば、図12に示すように、切替条件判定部123によって切替条件を満たさないことが判定されたキャリア周波数の切り替え対象でない第1電動機11Fまたは第2電動機11Rの一方へ出力するトルク指令Tcを所定の上限値Tch以下の範囲で増加させる。また、トルク制御部110は、切替条件判定部123によって切替条件を満たすことが判定されたキャリア周波数の切り替え対象となる第1電動機11Fまたは第2電動機11Rの他方に出力するトルク指令Tcを所定値まで低下させる。周波数制御部124は、トルク制御部110が切り替え対象の電動機11へ出力するトルク指令Tcを所定値まで低下させたときに、その切り替え対象の電動機11のキャリア周波数を低下させる。 Furthermore, the electronic control device 100 of this embodiment includes a torque control section 110 that outputs torque commands TcF and TcR to the first electric motor 11F and the second electric motor 11R, respectively. For example, as shown in FIG. 12, the torque control unit 110 outputs the carrier frequency to one of the first electric motor 11F and the second electric motor 11R, which is not to be switched, for which the switching condition determining unit 123 has determined that the switching condition is not satisfied. The torque command Tc to be used is increased within a range below a predetermined upper limit value Tch. Further, the torque control unit 110 sets a torque command Tc to a predetermined value to be output to the other of the first electric motor 11F or the second electric motor 11R, which is the target of switching the carrier frequency determined by the switching condition determining unit 123 to satisfy the switching condition. lower to The frequency control unit 124 lowers the carrier frequency of the electric motor 11 to be switched when the torque control unit 110 reduces the torque command Tc output to the electric motor 11 to be switched to a predetermined value.
 このような構成により、本実施形態の電子制御装置100によれば、キャリア周波数の切り替え対象でない電動機11が切替条件を満たすことを防止できる。したがって、キャリア周波数の切り替え対象でない電動機11のキャリア周波数の切り替えによる騒音を抑制できる。また、キャリア周波数の切り替え対象となる電動機11に出力するトルク指令Tcを所定値まで低下させてから、その切り替え対象の電動機11のキャリア周波数を低下させる。したがって、キャリア周波数の切り替え対象の電動機11のキャリア周波数を高いトルクで切り替えることによる騒音を抑制できる。 With such a configuration, the electronic control device 100 of this embodiment can prevent the electric motor 11 whose carrier frequency is not to be switched from satisfying the switching condition. Therefore, it is possible to suppress noise caused by switching the carrier frequency of the electric motor 11 that is not the carrier frequency switching target. Further, after reducing the torque command Tc output to the electric motor 11 whose carrier frequency is to be switched to a predetermined value, the carrier frequency of the electric motor 11 whose carrier frequency is to be switched is lowered. Therefore, noise caused by switching the carrier frequency of the electric motor 11 whose carrier frequency is to be switched with high torque can be suppressed.
 また、本実施形態の電子制御装置100において、トルク制御部110は、たとえば、図12に示すように、切り替え対象の電動機11へ出力するトルク指令Tcを所定値まで低下させる。その後、トルク制御部110は、たとえば、切り替え対象でない電動機11へ出力するトルク指令Tcが所定の上限値Tchに達したときに、切り替え対象の電動機11へ出力するトルク指令Tcを増加させてもよい。 Furthermore, in the electronic control device 100 of this embodiment, the torque control unit 110 reduces the torque command Tc output to the electric motor 11 to be switched to a predetermined value, for example, as shown in FIG. Thereafter, the torque control unit 110 may increase the torque command Tc to be output to the electric motor 11 to be switched, for example, when the torque command Tc to be output to the electric motor 11 to be switched has reached a predetermined upper limit value Tch. .
 このような構成により、本実施形態の電子制御装置100によれば、キャリア周波数の切り替え対象の電動機11へ出力するトルク指令Tcを所定値まで低下させ、キャリア周波数の切り替え時の騒音を低下させることができる。また、切り替え対象でない電動機11においてトルク指令Tcを上限値Tch以下に抑制して、キャリア周波数の切り替えが必要になることを防止できる。さらに、切り替え対象でない電動機11のトルク指令Tcを抑制することで不足するトルクを、キャリア周波数を切り替えた後の電動機11のトルク指令Tcを増加させることで補うことができる。 With such a configuration, the electronic control device 100 of the present embodiment can reduce the torque command Tc output to the electric motor 11 whose carrier frequency is to be switched to a predetermined value, thereby reducing the noise when switching the carrier frequency. Can be done. Furthermore, it is possible to suppress the torque command Tc to be lower than the upper limit value Tch in the electric motor 11 that is not the target of switching, thereby preventing the necessity of switching the carrier frequency. Furthermore, by suppressing the torque command Tc of the electric motor 11 that is not the target of switching, the insufficient torque can be compensated for by increasing the torque command Tc of the electric motor 11 after switching the carrier frequency.
 また、本実施形態の電子制御装置100は、第1電動機11Fと第2電動機11Rのそれぞれへトルク指令TcF,TcRを出力するトルク制御部110を有している。周波数制御部124は、切替条件判定部123によって第1電動機11Fと第2電動機11Rが所定時間経過後に切替条件を満たすことが判定された場合に、図13および図14に示すように、第1電動機11Fと第2電動機11Rのうちの一方の電動機11が切替条件を満たす前に、その一方の電動機11のキャリア周波数を低下させる。また、トルク制御部110は、周波数制御部124が上記一方の電動機11のキャリア周波数を低下させた後に、上記一方の電動機11のトルク指令Tcを増加させるとともに、第1電動機11Fと第2電動機11Rのうちの他方の電動機11のトルク指令Tcを所定値まで低下させる。さらに、周波数制御部124は、トルク制御部110が上記他方の電動機11のトルク指令Tcを上記所定値まで低下させたときに上記他方の電動機11のキャリア周波数を低下させる。 Furthermore, the electronic control device 100 of this embodiment includes a torque control section 110 that outputs torque commands TcF and TcR to the first electric motor 11F and the second electric motor 11R, respectively. When the switching condition determining unit 123 determines that the first electric motor 11F and the second electric motor 11R satisfy the switching condition after a predetermined period of time has elapsed, the frequency control unit 124 controls the first electric motor 11F and the second electric motor 11R as shown in FIGS. Before one of the electric motors 11F and 11R satisfies the switching condition, the carrier frequency of that one electric motor 11 is lowered. Further, after the frequency control unit 124 reduces the carrier frequency of the one electric motor 11, the torque control unit 110 increases the torque command Tc of the one electric motor 11, and also increases the torque command Tc of the one electric motor 11 and the first electric motor 11F and the second electric motor 11R. The torque command Tc of the other electric motor 11 is decreased to a predetermined value. Furthermore, the frequency control unit 124 reduces the carrier frequency of the other electric motor 11 when the torque control unit 110 reduces the torque command Tc of the other electric motor 11 to the predetermined value.
 このような構成により、本実施形態の電子制御装置100によれば、上記一方の電動機11のキャリア周波数を、その電動機11のトルク指令Tcが上限値Tchよりも低いときに切り替えて、騒音を抑制することができる。さらに、上記他方の電動機11のトルク指令Tcを所定値まで低下させてから、その電動機11のキャリア周波数を低下させることで、騒音を抑制することができる。加えて、上記他方の電動機11のトルク指令Tcを低下させるときに、キャリア周波数を切り替えた上記一方の電動機11のトルク指令Tcを増加させることで、総トルクが減少するのを抑制できる。 With this configuration, the electronic control device 100 of this embodiment can suppress noise by switching the carrier frequency of the one electric motor 11 when the torque command Tc of that electric motor 11 is lower than the upper limit value Tch. Furthermore, noise can be suppressed by lowering the torque command Tc of the other electric motor 11 to a predetermined value and then lowering the carrier frequency of that electric motor 11. In addition, when lowering the torque command Tc of the other electric motor 11, a decrease in the total torque can be suppressed by increasing the torque command Tc of the one electric motor 11 whose carrier frequency has been switched.
 また、本実施形態の電子制御装置100において、トルク制御部110は、上記他方の電動機11のトルク指令Tcを上記所定値まで低下させる。その後、トルク制御部110は、上記一方の電動機11のトルク指令Tcと回転速度ωの関係が上記一方の電動機11の運転範囲の上限に達したときに、上記他方の電動機11のトルク指令Tcを増加させる。 Furthermore, in the electronic control device 100 of the present embodiment, the torque control unit 110 reduces the torque command Tc of the other electric motor 11 to the predetermined value. Thereafter, when the relationship between the torque command Tc of the one electric motor 11 and the rotational speed ω reaches the upper limit of the operating range of the one electric motor 11, the torque control unit 110 controls the torque command Tc of the other electric motor 11. increase.
 このような構成により、本実施形態の電子制御装置100によれば、第1電動機11Fと第2電動機11Rとの間でトルクを配分し、トルク指令Tcが上限値Tchよりも低いときにキャリア周波数を切り替えて騒音を抑制できる。また、第1電動機11Fと第2電動機11Rとの間でトルクを配分して、総トルクが低下するのを抑制できる。 With such a configuration, according to the electronic control device 100 of the present embodiment, torque is distributed between the first electric motor 11F and the second electric motor 11R, and when the torque command Tc is lower than the upper limit value Tch, the carrier frequency is Noise can be suppressed by switching. Further, by distributing torque between the first electric motor 11F and the second electric motor 11R, it is possible to suppress a decrease in the total torque.
 以上、図面を用いて本開示に係る電子制御装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。たとえば、前述の実施形態において、電子制御装置は、車両の運転席から離れた第2電動機のキャリア周波数を優先的に切り替えることで、車両の運転席に近い第1電動機のキャリア周波数の切り替えを抑制する例を説明した。しかし、電子制御装置は、車両の運転席から近い第1電動機のキャリア周波数を優先的に切り替えてもよい。また、電子制御装置は、車両の運転者の運転傾向を学習して、切替条件記憶部に記憶される情報を更新する機械学習部を備えていてもよい。 Although the embodiment of the electronic control device according to the present disclosure has been described above in detail using the drawings, the specific configuration is not limited to this embodiment, and design changes may be made within the scope of the gist of the present disclosure. etc., they are included in the present disclosure. For example, in the above-described embodiment, the electronic control device suppresses switching of the carrier frequency of the first electric motor close to the driver's seat of the vehicle by preferentially switching the carrier frequency of the second electric motor that is distant from the driver's seat of the vehicle. I explained an example. However, the electronic control device may preferentially switch the carrier frequency of the first electric motor that is closer to the driver's seat of the vehicle. Further, the electronic control device may include a machine learning unit that learns the driving tendency of the vehicle driver and updates information stored in the switching condition storage unit.
10  車両
11  電動機
11F 第1電動機
11R 第2電動機
100 電子制御装置
110 トルク制御部
121 走行負荷演算部
122 切替条件記憶部
123 切替条件判定部
124 周波数制御部
Lt  走行負荷
Tc  トルク指令
TcF トルク指令
Tch 上限値
TcR トルク指令
ω   回転速度
ωF  回転速度
ωl  下限値
ωR  回転速度
10 Vehicle 11 Electric motor 11F First electric motor 11R Second electric motor 100 Electronic control unit 110 Torque control unit 121 Running load calculation unit 122 Switching condition storage unit 123 Switching condition determining unit 124 Frequency control unit Lt Running load Tc Torque command TcF Torque command Tch Upper limit Value TcR Torque command ω Rotation speed ωF Rotation speed ωl Lower limit value ωR Rotation speed

Claims (6)

  1.  車両の走行用の電動機を制御する電子制御装置であって、
     前記電動機の回転速度が所定の下限値より低く前記電動機のトルク指令が所定の上限値より大きい切替条件が記憶された切替条件記憶部と、
     前記電動機の回転速度およびトルク指令に基づいて前記車両の走行負荷を算出する走行負荷演算部と、
     前記車両の前記走行負荷ならびに前記電動機の回転速度およびトルク指令に基づいて所定時間経過後に前記切替条件を満たすか否かを判定する切替条件判定部と、
     前記切替条件判定部によって前記切替条件を満たすことが判定された場合に、前記電動機のトルク指令が前記上限値以下のときに前記電動機のキャリア周波数を低下させる周波数制御部と、
     を有することを特徴とする電子制御装置。
    An electronic control device that controls an electric motor for driving a vehicle,
    a switching condition storage unit storing switching conditions in which the rotation speed of the electric motor is lower than a predetermined lower limit value and the torque command of the electric motor is higher than a predetermined upper limit value;
    a running load calculation unit that calculates a running load of the vehicle based on the rotational speed and torque command of the electric motor;
    a switching condition determining unit that determines whether or not the switching condition is satisfied after a predetermined period of time based on the running load of the vehicle and the rotational speed and torque command of the electric motor;
    a frequency control unit that reduces the carrier frequency of the electric motor when the torque command of the electric motor is equal to or less than the upper limit value when the switching condition determination unit determines that the switching condition is satisfied;
    An electronic control device comprising:
  2.  前記電動機は、少なくとも第1電動機と第2電動機とを含み、
     前記切替条件判定部は、前記第1電動機と前記第2電動機のそれぞれについて前記切替条件を満たすか否かを判定し、
     前記周波数制御部は、前記切替条件判定部によって所定時間経過後に前記切替条件を満たすことが判定された前記第1電動機と前記第2電動機の少なくとも一方のキャリア周波数を、前記切替条件を満たす前に低下させることを特徴とする請求項1に記載の電子制御装置。
    The electric motor includes at least a first electric motor and a second electric motor,
    The switching condition determining unit determines whether the switching condition is satisfied for each of the first electric motor and the second electric motor,
    The frequency control section controls the carrier frequency of at least one of the first electric motor and the second electric motor, which is determined by the switching condition determination section to satisfy the switching condition after a predetermined period of time, before the switching condition is satisfied. 2. The electronic control device according to claim 1, wherein the electronic control device lowers the power consumption.
  3.  前記第1電動機と前記第2電動機のそれぞれへトルク指令を出力するトルク制御部を有し、
     前記トルク制御部は、前記切替条件判定部によって前記切替条件を満たさないことが判定されたキャリア周波数の切り替え対象でない前記第1電動機または前記第2電動機の一方へ出力するトルク指令を前記上限値以下の範囲で増加させ、前記切替条件判定部によって前記切替条件を満たすことが判定されたキャリア周波数の切り替え対象となる前記第1電動機または前記第2電動機の他方に出力するトルク指令を所定値まで低下させ、
     前記周波数制御部は、前記トルク制御部が前記切り替え対象の前記電動機へ出力するトルク指令を前記所定値まで低下させたときに前記切り替え対象の前記電動機のキャリア周波数を低下させることを特徴とする請求項2に記載の電子制御装置。
    a torque control unit that outputs a torque command to each of the first electric motor and the second electric motor,
    The torque control unit is configured to output a torque command to one of the first electric motor and the second electric motor, which is not the carrier frequency switching target for which the switching condition is determined not to satisfy the switching condition by the switching condition determination unit, to be less than or equal to the upper limit value. and decreases to a predetermined value a torque command to be output to the other of the first electric motor or the second electric motor to which the carrier frequency determined by the switching condition determination unit satisfies the switching condition is to be switched. let me,
    Claim characterized in that the frequency control unit reduces the carrier frequency of the electric motor to be switched when the torque control unit reduces the torque command output to the electric motor to be switched to the predetermined value. Item 2. Electronic control device according to item 2.
  4.  前記トルク制御部は、前記切り替え対象の前記電動機へ出力するトルク指令を前記所定値まで低下させた後、前記切り替え対象でない前記電動機へ出力するトルク指令が前記上限値に達したときに、前記切り替え対象の前記電動機へ出力するトルク指令を増加させることを特徴とする請求項3に記載の電子制御装置。 The torque control unit reduces the torque command output to the electric motor that is the switching target to the predetermined value, and then controls the switching when the torque command output to the electric motor that is not the switching target reaches the upper limit value. The electronic control device according to claim 3, wherein the electronic control device increases a torque command output to the target electric motor.
  5.  前記第1電動機と前記第2電動機のそれぞれへトルク指令を出力するトルク制御部を有し、
     前記周波数制御部は、前記切替条件判定部によって前記第1電動機と前記第2電動機が所定時間経過後に前記切替条件を満たすことが判定された場合に、前記第1電動機と前記第2電動機のうちの一方の前記電動機が前記切替条件を満たす前に、前記一方の前記電動機のキャリア周波数を低下させ、
     前記トルク制御部は、前記周波数制御部が前記一方の前記電動機のキャリア周波数を低下させた後に前記一方の前記電動機のトルク指令を増加させるとともに、前記第1電動機と前記第2電動機のうちの他方の前記電動機のトルク指令を所定値まで低下させ、
     前記周波数制御部は、前記トルク制御部が前記他方の前記電動機のトルク指令を前記所定値まで低下させたときに前記他方の前記電動機のキャリア周波数を低下させることを特徴とする請求項2に記載の電子制御装置。
    a torque control unit that outputs a torque command to each of the first electric motor and the second electric motor,
    The frequency control unit is configured to select one of the first electric motor and the second electric motor when the switching condition determining unit determines that the first electric motor and the second electric motor satisfy the switching condition after a predetermined period of time has elapsed. before the one of the electric motors satisfies the switching condition, lowering the carrier frequency of the one of the electric motors,
    The torque control unit increases the torque command of the one electric motor after the frequency control unit reduces the carrier frequency of the one electric motor, and increases the torque command of the one of the electric motors. reducing the torque command of the electric motor to a predetermined value;
    3. The frequency control section lowers the carrier frequency of the other electric motor when the torque control section lowers the torque command of the other electric motor to the predetermined value. electronic control unit.
  6.  前記トルク制御部は、前記他方の前記電動機のトルク指令を前記所定値まで低下させた後、前記一方の前記電動機のトルク指令と回転速度の関係が前記一方の前記電動機の運転範囲の上限に達したときに、前記他方の前記電動機のトルク指令を増加させることを特徴とする請求項5に記載の電子制御装置。 The torque control unit reduces the torque command of the other electric motor to the predetermined value, and then controls the relationship between the torque command and rotational speed of the one electric motor to reach an upper limit of the operating range of the one electric motor. 6. The electronic control device according to claim 5, wherein the torque command for the other electric motor is increased when the electric motor is turned off.
PCT/JP2022/034430 2022-09-14 2022-09-14 Electronic control device WO2024057448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034430 WO2024057448A1 (en) 2022-09-14 2022-09-14 Electronic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034430 WO2024057448A1 (en) 2022-09-14 2022-09-14 Electronic control device

Publications (1)

Publication Number Publication Date
WO2024057448A1 true WO2024057448A1 (en) 2024-03-21

Family

ID=90274537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034430 WO2024057448A1 (en) 2022-09-14 2022-09-14 Electronic control device

Country Status (1)

Country Link
WO (1) WO2024057448A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143303A (en) * 2005-11-18 2007-06-07 Toyota Motor Corp Control device of electric vehicle
JP2008131851A (en) * 2006-11-27 2008-06-05 Nissan Motor Co Ltd Vehicle drive control arrangement, vehicle drive control method, and vehicle driving device
JP2020162202A (en) * 2019-03-25 2020-10-01 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143303A (en) * 2005-11-18 2007-06-07 Toyota Motor Corp Control device of electric vehicle
JP2008131851A (en) * 2006-11-27 2008-06-05 Nissan Motor Co Ltd Vehicle drive control arrangement, vehicle drive control method, and vehicle driving device
JP2020162202A (en) * 2019-03-25 2020-10-01 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Similar Documents

Publication Publication Date Title
US7071642B2 (en) Method and apparatus for adaptive control of traction drive units in a hybrid vehicle
US9855858B2 (en) Control device for electric vehicle
US10017075B2 (en) Device for controlling electric automobile
JP7410740B2 (en) Control device
JP6396180B2 (en) Drive control device for wheel independent drive type vehicle
JP2004175313A (en) Vehicle controller
JP2016052164A (en) Drive control device of wheel independent drive type vehicle
EP3323664B1 (en) An electric vehicle controller
JP6517089B2 (en) Drive control device for a wheel independent drive type vehicle
US20240079986A1 (en) Motor Control Unit
GB2478956A (en) Controlling speed and spin of a motorised vehicle having independently driven wheels
WO2016031663A1 (en) Drive control device for wheel independent driving vehicle
JP7176360B2 (en) electric vehicle
WO2017018335A1 (en) Motor drive device
WO2024057448A1 (en) Electronic control device
WO2020184299A1 (en) Electric motor control device and electric motor control method
US20220348184A1 (en) Method for controlling electrically driven four-wheel-drive vehicle, and device for controlling electrically driven four-wheel-drive vehicle
JP6651374B2 (en) Drive control device for wheel independent drive type vehicle
EP1958838B1 (en) Vehicle drive system
JP6769209B2 (en) Electric vehicle
WO2014103522A1 (en) Control device for electric vehicle and control method for electric vehicle
JP3706675B2 (en) Motor drive control device for electric vehicle
WO2018066624A1 (en) Power supply system control device
WO2022085082A1 (en) Driving force control method and driving force control device
WO2024089848A1 (en) Electric vehicle control method and electric vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958776

Country of ref document: EP

Kind code of ref document: A1