WO2024056525A1 - Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture - Google Patents

Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture Download PDF

Info

Publication number
WO2024056525A1
WO2024056525A1 PCT/EP2023/074633 EP2023074633W WO2024056525A1 WO 2024056525 A1 WO2024056525 A1 WO 2024056525A1 EP 2023074633 W EP2023074633 W EP 2023074633W WO 2024056525 A1 WO2024056525 A1 WO 2024056525A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polymer chain
amine groups
sorbent material
diels
Prior art date
Application number
PCT/EP2023/074633
Other languages
German (de)
French (fr)
Inventor
Armin Aniol
Fabian FISCHER
Christine SCHÜTZ
Marc Rüggeberg
Original Assignee
Volkswagen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Ag filed Critical Volkswagen Ag
Publication of WO2024056525A1 publication Critical patent/WO2024056525A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide

Definitions

  • the invention relates to a method for the reversible storage of CO2 (carbon dioxide) using the Diels-Alder reaction and retro-Diels-Alder reaction.
  • DAC Direct Air Capture
  • Classic sorbent materials for storing CO2 include, for example, the groups of metal organic frameworks (MOFs), amine-functionalized adsorbers, functionalized activated carbon materials, zeolites and other polymers.
  • MOFs metal organic frameworks
  • Polymer-based adsorbers in particular offer a good opportunity to combine high adsorption capacity with economic advantages.
  • KR 2017009796 A discloses a CCh absorber made of 3d porous graphene nanoribbon, in which the CO2 is trapped in the carbon network.
  • a Diels-Alder reaction a nanoribbon with defined 3D pores is built from carbon repeat units.
  • CO2 is released from one of the starting compounds and escapes.
  • this Diels-Alder reaction is irreversible and irreversible.
  • the disadvantage is that CO2 release occurs at elevated temperatures, which leads to degradation processes.
  • US 2013/0048853 A1 describes a heterocyclic copolymer adsorber.
  • the copolymers are made up of divinylbenzene and triallyl cyanurate.
  • WO 2019/101160 A1 discloses a gas adsorber made of 2,5-furanedimine guanidine, as an acidic gas adsorber and as an anionic precipitant.
  • the disadvantage is that the chemical compound has to be dissolved in a solvent in order to be able to separate a yellow CÜ2 adduct (carbonate 2,5-furan-guanidine tetrahydrate) later. This can later release CO2 and H2O again in a complex process.
  • the method disclosed is not suitable for large-scale storage of CO2 because it is very complicated in terms of process technology.
  • Polyethyleneimine polymers which are branched and cross-linked, are also established in order to ensure good adsorption capacity using intermolecular interactions between the carbon dioxide and the aminic polymer.
  • a major disadvantage of these materials is their tendency to degrade over time.
  • the mechanisms of aging include, for example, oxidative degradation at elevated temperatures with the formation of ammonium salts, hydroxylamine structures, amine oxides, nitroso compounds and nitro compounds.
  • Other degradation mechanisms include, for example, aminic degradation with the formation of urea derivatives and the formation of cyclic urea structures from the polymer chain.
  • the most significant degradation mechanism is thermal degradation, as this occurs during the temperature-induced CO2 desorption process.
  • Hofmann elimination occurs with the formation of quaternary ammonium compounds.
  • Further thermal degradation leads to the formation of cyclic imidazole structures as well as the formation of numerous urea derivatives with the breaking of the linear chain structure in the polymer chain.
  • the breaking of the polymer chains and the associated removal of amine structures leads to a reduction in the amine density of the polymer and thus to a constant reduction in the adsorption capacity for CO 2 .
  • a further disadvantage of such known polyethyleneimine polymer networks, in which the polyethyleneimines themselves are irreversibly cross-linked, is the presence of tertiary and quaternary alkyl amine groups formed during the cross-linking between the polyethyleneimine chains (ie those nitrogen atoms to which hydrogen is no longer bonded ).
  • the quaternary alkyl amine groups no longer have a free pair of electrons available on the nitrogen. This leads to a low sorption capacity for CO2.
  • Another disadvantage is that this cross-linking in the polyethyleneimine polymers leads to a lower mobility of these polymer chains and thus tends to lead to longer diffusion times for the CO2.
  • the object of the invention is to provide a process or starting materials so that reversible storage of gaseous CO2 by means of sorption is possible.
  • the process should be simple and the starting materials should be easy to use. What is also important is applicability on an industrial scale.
  • the sorbent material should have a long shelf life and not be subject to strong degradation processes, because the capacity for CO2 absorption should be consistently high over a long period of time.
  • the subject of the invention is a 1,3-diene compound and/or a dienophile compound, each comprising a polymer chain which has amine groups.
  • the repeating units of the polymer chain have the amine groups.
  • both compounds each comprise several such polymer chains.
  • the invention furthermore relates to a sorbent material for the sorption of CO2, which comprises a mixture of the 1,3-diene compound and the dienophile compound.
  • 1,3-diene compound means that within this chemical compound two CC double bonds are arranged next to each other, as is the case, for example, with 1,3-butadiene, which has the following formula: or furan with the following formula:
  • the “dienophile compound” is a chemical compound that is an alkene, i.e. comprises at least one double bond, the compound being a suitable reactant for 1,3-dienes in a Diels-Alder reaction.
  • a Diels-Alder reaction As is well known, electron-withdrawing ones attract Substituents on the double bond lose electrons. This enables the reaction with a 1,3-diene compound.
  • a well-known representative of the dienophiles is, for example, maleic anhydride, which has the following formula: or maleimide with the following formula:
  • Polymer chain in the sense of the invention includes both linear and branched polymers, because it is known to those skilled in the art that amine groups can interact with CO2 and the degree of branching of the polymer chain containing the amine groups can be variable.
  • the branched polymers as a polymer chain are not completely cross-linked. This means they are still soluble in solvents, such as water.
  • the amine groups are secondary and tertiary amine groups, i.e. those that still have a lone pair of electrons on the nitrogen atom, which can interact with the CO2.
  • a polymer chain is recommended as a homopolymer, i.e. made up of the same repeating units, with each repeating unit having such an amine group.
  • copolymers are also possible, in which case at least one of the monomers used has amine groups.
  • coupling groups are contained between the polymer chain and the respective compound, which can be different, depending on whether the polymer chain has been linked to the 1,3-diene compound or to the dienophile compound.
  • the invention utilizes the concept of the Diels-Alder reaction of a 1,3-diene with a dienophile.
  • the concept was modified to form a thermoreversible polymeric sorbent material for CO2 at low temperatures and the possibility of initiating a retro-Diels-Alder reaction by increasing the temperature.
  • the CO2 that is to be bound interacts with the amine groups.
  • it can only be stored for a longer period of time if the 1,3-diene compound according to the invention and the dienophile compound via the Diels-Alder Reaction have been linked, with at least one polymer chain attached to the amine groups on each of the compounds, and thus a 3D network of the polymer chains has been created (i.e. a cross-linked polymer network).
  • the invention allows the cross-linked polymer network to dissolve by increasing the temperature above 70 ° C, which leads to the separation of the polymer chains according to the invention, so that the CO2 is released again over time.
  • the invention furthermore relates to a method for the reversible storage of CO2 with the steps: a) providing a mixture containing a
  • thermoreversible sorbent material • Dienophile compound, each of these two compounds comprising (at least) one polymer chain containing amine groups, at a temperature of ⁇ 70 ° C, to form a thermoreversible sorbent material, b) contacting CO2 with the thermoreversible sorbent material from step a ).
  • thermoreversible sorbent material therefore comprises the adduct of 1,3-diene compound and dienophile compound with the respective polymer chains which have amine groups. It is also included that other substances are included; In particular, unavoidable substances such as solvents, catalysts, etc. in amounts of a maximum of 10% by weight, in particular with a maximum of 2% by weight, or even ⁇ 1% by weight, at best ⁇ 0.3% by weight. %.
  • Contacting with CO2 can take place simultaneously with step a) or downstream of the step. If downstream, the temperature in step b) is the same as in step a).
  • the invention also relates to the use of a 1,3-diene compound and/or a dienophile compound, each comprising a polymer chain containing amine groups, for the reversible storage of CO2, in particular the use of the two compounds according to the invention in the process according to the invention .
  • the advantage of the invention is that the low temperatures in the Diels-Alder reaction (that is the reaction that takes place in step a) and when contacting the 1,3-diene compound with the dienophile compound at ⁇ 70 ° C) and also the still relatively low temperature of the retro-Diels-Alder reaction (this is the optional reaction that can be carried out to release the CO2 again from the sorbent material through temperatures >70 °C) prevent the sorbent material from degrading. There is therefore advantageously no or only slight degradation of the sorbent material, in particular of the polymer chains containing the amine groups.
  • Another advantage of the invention is that the “limit temperature” in step b) of 70 ° C is low, which means that a particularly high temperature is not necessary for a later desired desorption.
  • the invention is therefore suitable for the reversible storage of CO2 on a large industrial scale.
  • the advantage of the invention is that the polymer chains with the amine groups do not have to be irreversibly cross-linked in order to absorb the CO2, because the CO2 is bound by the Diels-Alder reaction of the two compounds according to the invention (1,3-diene and dienophile), in which the actual polymer network is first formed, due to which the CO2 remains bound.
  • the amine groups can therefore remain free, i.e. they retain at least one free pair of electrons, or better even an H substituent, so that the capacity of CO2 sorption does not necessarily have to be reduced.
  • a significant advantage is that due to the possibility of keeping the amine groups in the polymer chain free, the diffusion of the CO2 into the sorbent material formed can take place more quickly than if the polymer chains themselves had to be irreversibly cross-linked via the amine groups. to bind the CO2.
  • An important advantage of the invention is that it makes it possible to reversibly store and release CO2 in a simple manner, using only the step of changing the temperature, which is very easy to implement on an industrial scale. No solvent change is necessary.
  • the polymer chain is a branched polymer chain with at least 5% branched repeating units. This means that a maximum of 95% of the repeating units in the polymer chain are unbranched.
  • the polymer chain is not yet cross-linked in a way that would prevent the polymer chains from being dissolved in a solvent.
  • the branched polymer chains in this embodiment are still soluble in a solvent, in particular in water.
  • Particularly preferably at least 20% is branched, in particular even at least 70%.
  • This is particularly effective for reversible storage of CO2.
  • this degree of branching allows a balance between effective storage in the (reversibly cross-linked) sorbent material and rapid CO2 release “Dewetting” of the sorbent material by increasing the temperature (via the retro-Diels-Alder reaction).
  • the branching is in a range obtained when ethyleneimine (aziridine) is polymerized to polyethyleneimine by ring-opening polymerization. This degree of branching is difficult to measure, but is very characteristic and uniform in this production variant.
  • the temperature in step a), that is, when the thermoreversible sorbent material is formed is even ⁇ 65 ° C, in particular also ⁇ 60 ° C.
  • a re-release of the CO2 is achieved by the step: c) heating the thermoreversible sorbent material (after step b) of the method) to a temperature of >70 ° C to release the CO2 (preferably > 75 ° C, in particular even > 80 °C). It makes sense that this temperature does not exceed 90 °C, it is better that it remains below or equal to 85 °C, because the sorbent material should suffer little or no thermal degradation.
  • this temperature for desorption of the CO2 is relatively low, so that on the one hand the sorbent material is not subject to thermal degradation even when CCh is released and on the other hand the operating costs remain manageable on a large industrial scale.
  • thermoreversible sorbent material does not have to break down into its individual parts, but that it is sufficient if the pores expand due to the dissolution of individual crosslinking points.
  • a temperature of > 70 °C up to a maximum of 90 °C is sufficient to achieve this and the associated re-release of the CO2 in an effective manner, without initiating any significant thermal degradation.
  • the temperature in step a) is ⁇ 65 ° C and that in release step c) is then > 75 ° C. Even more preferred is the temperature in step a) ⁇ 60 ° C and in the release step > 80 ° C.
  • the 1,3-diene compound is a furan compound, that is, it comprises a furyl unit. It is preferably a furfuryl alcohol, with the polymer chain according to the invention particularly preferably being attached to the alcohol group of the furfuryl alcohol.
  • furfuryl alcohol can advantageously be produced entirely from renewable raw materials (starting from furfural from agricultural residues).
  • the 1,3-diene compound is a compound which is obtained by substitution of 2-[(oxiranyl-methoxy)methyl]furan (also called 2,3-epoxypropyl 2-furylmethyl ether), that is the following chemical structure or hydrates or salts thereof with the polymer chain containing the amine groups on one of the two carbon atoms of the epoxide unit.
  • 2-[(oxiranyl-methoxy)methyl]furan also called 2,3-epoxypropyl 2-furylmethyl ether
  • the dienophile compound is a maleimide compound, such as maleimide, which has been functionalized on the nitrogen atom with the polymer chain containing the amine groups, or such as /V-hydroxymaleimide, which has been functionalized on the OH group was functionalized with the polymer chain.
  • maleimide this corresponds to the structure: where R2 means the polymer chain containing the amine groups.
  • the 1,3-diene compound is a compound according to formula I and/or the dienophile compound is a compound according to formula II, in which R 1 and R 2 are each the polymer chain containing amine groups :
  • the -CH2-O- joint in the compound according to formula I is advantageous in order to gain a certain flexibility in the (reversibly cross-linked) sorbent material according to the invention, which improves CO2 storage.
  • the polymer chain has a chain length of at least 5 repeating units, each of the repeating units having at least one of the amine groups.
  • the polymer chain according to the invention also has at least this number of amine groups.
  • these repeating units with the amine groups can also be present distributed throughout the entire copolymer. This is particularly effective for reversible storage of CO2.
  • this minimum polymer size allows a balance between effective storage in the (reversibly cross-linked) sorbent material and rapid CO2 release when the sorbent material is “dewetted” by increasing the temperature (via the retro-Diels-Alder reaction).
  • the polymer chain particularly preferably has at least 10 repeating units, very particularly preferably at least 300, in particular 300 - 600, or even 400 - 500.
  • the polymer chain preferably has this as the minimum number of amine groups.
  • the polymer chain is a polyethyleneimine chain. It is particularly preferred to be branched polyethyleneimine. This has a particularly strong interaction with CO2, which has proven to be particularly favorable for reversible storage using the Diels-Alder and retro-Diels-Alder reactions.
  • the polyethyleneimine chain has a molecular weight of 14,000 g/mol to 21,000 g/mol.
  • the molecular weight is determined as an average value using gel permeation chromatography and a light scattering detector number-average molar mass Mn and weight-average molar mass Mw.
  • Mn is in particular 8,000-12,000 g/mol (very particularly preferably 10,000 ⁇ 500 g/mol) and Mw is 20,000-30,000 g/mol (very particularly preferably 25,000 ⁇ 1000 g/mol).
  • the polydispersity is therefore particularly preferably (Mw/Mn) 2.5 ( ⁇ 20%), or also 2.2-2.8.
  • the molar mass (as the average of Mn and Mw) is preferably 14,000 - 21,000 g /mol, especially at 17500 ⁇ 2500 g/mol or even 17000 - 18000 g/mol.
  • These molecular weights have proven to be particularly effective for the reversible storage of CO2 because the molecular distance of the polymer chains between the crosslinking points (which result from the two compounds: 1,3-diene compound and dienophile compound) is so favorable that penetration through the carbon dioxide is possible and interactions with the amine groups can take place.
  • Fig. 1 shows schematically the operation of the invention, where Ri and R2 are the polymer chains which have the amine groups.
  • the sorption of CO2 when the temperature Ti falls below 70 °C is illustrated (because a cross-linked polymer network has been formed due to the Diels-Alder reaction) and the desorption of CO2 when the temperature T2 is also exceeded, which is also 70 °C, due to the retro- Diels-Alder reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The invention relates to a method for reversibly storing CO2 (carbon dioxide) by means of the Diels-Alder reaction and retro-Diels-Alder reaction. The invention further relates to the two starting compounds and use thereof for this purpose. It is envisaged that the following two starting compounds are used as a mixture at a temperature of < 70°C, so that a thermally reversible sorbent material is formed by means of the Diels-Alder reaction: - 1,3-diene compound and a - dienophile compound, wherein each of these two compounds comprises a polymer chain having amine groups. Upon contact with CO2, it is reversibly stored in the thermally reversible sorbent material.

Description

Beschreibung Description
Thermisch reversibel vernetzbare Polymere für eine Anwendung als Sorbentmaterialien im Bereich Carbon Capturing Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture
Die Erfindung betrifft ein Verfahren zur reversiblen Speicherung von CO2 (Kohlenstoffdioxid) mittels Diels-Alder-Reaktion und retro-Diels-Alder-Reaktion. The invention relates to a method for the reversible storage of CO2 (carbon dioxide) using the Diels-Alder reaction and retro-Diels-Alder reaction.
Die Notwendigkeit, den durch Treibhausgasemissionen verursachten globalen Klimawandel zu verlangsamen, ist sehr dringlich. Vor allem der Anstieg der atmosphärischen CC>2-Werte muss nachhaltig vermieden werden. Neben der Vermeidung und der Reduzierung von CO2 sind Technologien zum Adsorbieren von CO2 aus der Umgebungsluft, genannt „Direct Air Capture“ (DAC) geeignet, um durch „negative Kohlenstoffemissionen“ den Anteil an CO2 in der Atmosphärenluft zu reduzieren. Durch die Entwicklung von geeigneten Adsorptionsmaterialien soll eine effiziente und energetisch sinnvolle CC>2-Abscheidung ermöglicht werden. Eine Herausforderung ist, die Entwicklung von effizienten Sorptionsmaterialien/Sorbentmaterialien, die eine hohe CO2- Adsorptionskapazität aufweisen und einen geringen Energieaufwand für die Desorption benötigen, denn dies ist insbesondere im großindustriellen Umfeld wichtig. The need to slow global climate change caused by greenhouse gas emissions is very urgent. Above all, the increase in atmospheric CC>2 values must be sustainably avoided. In addition to avoiding and reducing CO2, technologies for adsorbing CO2 from the ambient air, called “Direct Air Capture” (DAC), are suitable for reducing the proportion of CO2 in the atmospheric air through “negative carbon emissions”. The development of suitable adsorption materials should enable efficient and energetically sensible CC>2 deposition. A challenge is the development of efficient sorption materials/sorbent materials that have a high CO2 adsorption capacity and require little energy for desorption, as this is particularly important in large-scale industrial environments.
Klassische Sorbentmaterialien zur Speicherung von CO2 umfassen beispielsweise die Gruppen der Metal organic frameworks (MOFs), der aminfunktionaliserten Adsorber, der funktionalisierten Aktivkohlematerialien, der Zeolithe sowie anderer Polymere. Hierbei bieten insbesondere die polymerbasierten Adsorber eine gute Möglichkeit, eine hohe Adsorptionskapazität mit ökonomischen Vorteilen zu kombinieren. Classic sorbent materials for storing CO2 include, for example, the groups of metal organic frameworks (MOFs), amine-functionalized adsorbers, functionalized activated carbon materials, zeolites and other polymers. Polymer-based adsorbers in particular offer a good opportunity to combine high adsorption capacity with economic advantages.
KR 2017009796 A offenbart einen CCh-Absorber aus 3d-porösem Graphen-Nanoband, bei dem das CO2 in dem Kohlenstoffnetzwerk eingeschlossen wird. Mittels einer Diels-Alder-Reaktion wird aus Kohlenstoff-Wiederholeinheiten ein Nanoband mit definierten 3d-Poren aufgebaut. Bei der Dies-Alder-Reaktion wird CO2 aus einem der Ausgangsverbindungen freigesetzt und entweicht. In Folge ist diese Diels-Alder-Reaktion irreversibel und nicht umkehrbar. Nachteilig findet die CO2-Freigabe bei erhöhten Temperaturen statt, was zu Abbauprozessen führt. Für gelöste Substanzen, wie pharmazeutische Wirkstoffe, beschreibt US 2013/0048853 A1 einen heterozyklischen Copolymer-Adsorber. Die Copolymere sind aufgebaut aus Divinylbenzol und Triallyl cyanurat. KR 2017009796 A discloses a CCh absorber made of 3d porous graphene nanoribbon, in which the CO2 is trapped in the carbon network. Using a Diels-Alder reaction, a nanoribbon with defined 3D pores is built from carbon repeat units. During the Dies-Alder reaction, CO2 is released from one of the starting compounds and escapes. As a result, this Diels-Alder reaction is irreversible and irreversible. The disadvantage is that CO2 release occurs at elevated temperatures, which leads to degradation processes. For dissolved substances, such as active pharmaceutical ingredients, US 2013/0048853 A1 describes a heterocyclic copolymer adsorber. The copolymers are made up of divinylbenzene and triallyl cyanurate.
WO 2019/101160 A1 offenbart einen Gasadsorber aus 2,5-furandiimin guanidin, als sauren Gasadsorber und als anionisches Fällungsmittel. Nachteilig ist, dass die chemische Verbindung in einem Lösungsmittel gelöst werden muss, um später ein gelbes CÜ2-Addukt (Carbonate 2,5- furan-guanidine tetrahydrate) abtrennen zu können. Dieses kann später aufwendig wieder CO2 und H2O abgeben. Die offenbarte Methode eignet sich nicht zur großtechnischen Speicherung von CO2, denn sie ist verfahrenstechnisch sehr kompliziert. WO 2019/101160 A1 discloses a gas adsorber made of 2,5-furanedimine guanidine, as an acidic gas adsorber and as an anionic precipitant. The disadvantage is that the chemical compound has to be dissolved in a solvent in order to be able to separate a yellow CÜ2 adduct (carbonate 2,5-furan-guanidine tetrahydrate) later. This can later release CO2 and H2O again in a complex process. The method disclosed is not suitable for large-scale storage of CO2 because it is very complicated in terms of process technology.
Etabliert sind auch Polyethylenimin-Polymere (PEI), welche verzweigt und quervernetzt vorliegen, um mithilfe intermolekularen Wechselwirkungen zwischen dem Kohlenstoffdioxid und dem aminischen Polymer eine gute Adsorptionskapazität zu gewährleisten. Ein großer Nachteil dieser Materialien ist jedoch die zeitliche Degradationstendenz. Die Mechanismen der Alterung umfassen beispielsweise oxidative Degradationen bei erhöhten Temperaturen unter Bildung von Ammoniumsalzen, Hydroxylaminstrukturen, Aminoxiden, Nitrosoverbindungen sowie Nitroverbindungen. Weitere Degradationsmechanismen sind beispielsweise die aminische Degradation unter Bildung von Harnstoffderivaten sowie die Bildung von cyclischen Harnstoffstrukturen aus der Polymerkette. Für die CO2-Speicherung in Polymeren ist jedoch der signifikanteste Degradationsmechanismus der thermische Abbau, da dieser während des temperaturinduzierten CO2- Desorptionsprozesses stattfindet. Bei dieser Art der Degradation kommt es beispielsweise zu einer Hofmann-Eliminierung (Hofmann-Degradation) unter der Bildung quartärer Ammoniumverbindung. Weitere thermische Degradationen führen zur Bildung von cyclischen Imidazolstrukturen sowie zur Bildung zahlreicher Harnstoffderivate unter dem Aufbrechen der linearen Kettenstruktur in der Polymerkette. Das Aufbrechen der Polymerketten und der einhergehende Austrag von aminischen Strukturen führt zu einer Verringerung der Amindichte des Polymers und so zu einer stetigen Verringerung der Adsorptionskapazität für CO2. Polyethyleneimine polymers (PEI), which are branched and cross-linked, are also established in order to ensure good adsorption capacity using intermolecular interactions between the carbon dioxide and the aminic polymer. However, a major disadvantage of these materials is their tendency to degrade over time. The mechanisms of aging include, for example, oxidative degradation at elevated temperatures with the formation of ammonium salts, hydroxylamine structures, amine oxides, nitroso compounds and nitro compounds. Other degradation mechanisms include, for example, aminic degradation with the formation of urea derivatives and the formation of cyclic urea structures from the polymer chain. However, for CO2 storage in polymers, the most significant degradation mechanism is thermal degradation, as this occurs during the temperature-induced CO2 desorption process. In this type of degradation, for example, Hofmann elimination (Hofmann degradation) occurs with the formation of quaternary ammonium compounds. Further thermal degradation leads to the formation of cyclic imidazole structures as well as the formation of numerous urea derivatives with the breaking of the linear chain structure in the polymer chain. The breaking of the polymer chains and the associated removal of amine structures leads to a reduction in the amine density of the polymer and thus to a constant reduction in the adsorption capacity for CO 2 .
Ein weiterer Nachteil solcher bekannter Polyethylenimin-Polymernetzwerke, bei denen also die Polyethylenimine selbst irreversibel quervernetzt sind, ist das Vorhandensein von bei der Quervernetzung zwischen den Polyethylenimin-Ketten gebildeten tertiären und quartären Alkyl- Amingruppen (d.h. solche Stickstoffatome, an denen kein Wasserstoff mehr gebunden ist). Insbesondere die quartären Alkyl-Amingruppen haben auch kein freies Elektronenpaar mehr am Stickstoff zur Verfügung. Dies führt zu einer geringen Sorptionskapazität für CO2. Ebenfalls nachteilig ist, dass diese Quervernetzung in den Polyethylenimin-Polymeren zu einer geringeren Mobilität dieser Polymerketten und somit zu tendenziell höheren Diffusionszeiten für das CO2 führt. A further disadvantage of such known polyethyleneimine polymer networks, in which the polyethyleneimines themselves are irreversibly cross-linked, is the presence of tertiary and quaternary alkyl amine groups formed during the cross-linking between the polyethyleneimine chains (ie those nitrogen atoms to which hydrogen is no longer bonded ). In particular, the quaternary alkyl amine groups no longer have a free pair of electrons available on the nitrogen. This leads to a low sorption capacity for CO2. Another disadvantage is that this cross-linking in the polyethyleneimine polymers leads to a lower mobility of these polymer chains and thus tends to lead to longer diffusion times for the CO2.
Aufgabe der Erfindung ist es, ein Verfahren beziehungsweise Ausgangsstoffe bereitzustellen, so dass eine reversible Speicherung von gasförmigem CO2 mittels Sorption möglich ist. Das Verfahren sollte einfach, die Ausgangsstoffe einfach einzusetzen sein. Wichtig ist darüber hinaus eine Anwendbarkeit im großtechnischen Maßstab. Das Sorbentmaterial sollte lange haltbar sein und keinen starken Abbauprozessen unterliegen, denn die Kapazität für die CO2- Aufnahme sollte über lange Zeit gleichbleibend hoch sein. The object of the invention is to provide a process or starting materials so that reversible storage of gaseous CO2 by means of sorption is possible. The process should be simple and the starting materials should be easy to use. What is also important is applicability on an industrial scale. The sorbent material should have a long shelf life and not be subject to strong degradation processes, because the capacity for CO2 absorption should be consistently high over a long period of time.
Gegenstand der Erfindung ist eine 1,3-Dien-Verbindung und/oder eine Dienophil-Verbindung, jeweils umfassend eine Polymerkette, welche Amin-Gruppen aufweist. Insbesondere die Wiederholeinheiten der Polymerkette weisen die Amin-Gruppen auf. Es ist natürlich auch umfasst, dass beide Verbindungen jeweils mehrere solcher Polymerketten umfassen. The subject of the invention is a 1,3-diene compound and/or a dienophile compound, each comprising a polymer chain which has amine groups. In particular, the repeating units of the polymer chain have the amine groups. Of course, it is also included that both compounds each comprise several such polymer chains.
Gegenstand der Erfindung ist ferner ein Sorbentmaterial für die Sorption von CO2, das eine Mischung aus der 1 ,3-Dien-Verbindung und der Dienophil-Verbindung umfasst. The invention furthermore relates to a sorbent material for the sorption of CO2, which comprises a mixture of the 1,3-diene compound and the dienophile compound.
„1 ,3-Dien-Verbindung“ bedeutet bekanntermaßen, dass innerhalb dieser chemischen Verbindung zwei C-C-Doppelbindungen benachbart nebeneinander angeordnet sind, so wie beispielsweise bei 1 ,3-Butadien, welches die folgende Formel aufweist:
Figure imgf000005_0001
oder auch Furan mit der folgenden Formel:
Figure imgf000005_0002
As is well known, “1,3-diene compound” means that within this chemical compound two CC double bonds are arranged next to each other, as is the case, for example, with 1,3-butadiene, which has the following formula:
Figure imgf000005_0001
or furan with the following formula:
Figure imgf000005_0002
Die „Dienophil-Verbindung“ ist eine chemische Verbindung, die ein Alken ist, also mindestens eine Doppelbindung umfasst, wobei die Verbindung ein geeigneter Reaktionspartner für 1,3-Diene in einer Diels-Alder-Reaktion ist. Bekanntermaßen ziehen elektronenziehende Substituenten an der Doppelbindung Elektronen ab. Damit wird die Reaktion mit einer 1 ,3-Dien- Verbindung ermöglicht. Der Fachmann erkennt diese elektronischen Eigenschaften an der Doppelbindung und weiß, welche Verbindungen dafür geeignet sind oder geeignet sein könnten. Ein bekannter Vertreter der Dienophile ist beispielsweise Maleinsäureanhydrid, welches die folgende Formel aufweist:
Figure imgf000006_0001
oder auch Maleinsäureimid mit der folgenden Formel:
Figure imgf000006_0002
The “dienophile compound” is a chemical compound that is an alkene, i.e. comprises at least one double bond, the compound being a suitable reactant for 1,3-dienes in a Diels-Alder reaction. As is well known, electron-withdrawing ones attract Substituents on the double bond lose electrons. This enables the reaction with a 1,3-diene compound. The person skilled in the art recognizes these electronic properties from the double bond and knows which compounds are suitable or could be suitable. A well-known representative of the dienophiles is, for example, maleic anhydride, which has the following formula:
Figure imgf000006_0001
or maleimide with the following formula:
Figure imgf000006_0002
„Polymerkette“ im Sinne der Erfindung umfasst sowohl lineare als auch verzweigte Polymere, denn dem Fachmann ist bekannt, dass Amin-Gruppen mit CO2 wechselwirken können und der Verzweigungsgrad der Polymerkette, aufweisend die Amin-Gruppen, variabel sein kann. Die verzweigten Polymere als Polymerkette sind allerdings nicht vollständig quervernetzt. Das heißt, sie sind noch immer löslich in Lösungsmitteln, beispielsweise in Wasser. Insbesondere handelt es sich bei den Amin-Gruppen um sekundäre und auch tertiäre Amin-Gruppen, d.h. solche, die noch ein freies Elektronenpaar am Stickstoffatom besitzen, welches mit dem CO2 wechselwirken kann. Insbesondere empfiehlt sich eine Polymerkette als Homopolymer, d.h. aufgebaut aus gleichen Wiederholeinheiten, wobei jede Wiederholeinheit eine solche Amin- Gruppe aufweist. Möglich sind allerdings auch Copolymere, wobei dann mindestens eins der verwendeten Monomere Amin-Gruppen aufweist. Es ist im Sinne der Erfindung auch umfasst, dass zwischen Polymerkette und der jeweiligen Verbindung noch Kopplungsgruppen enthalten sind, die unterschiedlich sein können, je nach dem, ob die Polymerkette an die 1,3- Dienverbindung oder an die Dienophil-Verbindung angeknüpft worden ist. “Polymer chain” in the sense of the invention includes both linear and branched polymers, because it is known to those skilled in the art that amine groups can interact with CO2 and the degree of branching of the polymer chain containing the amine groups can be variable. However, the branched polymers as a polymer chain are not completely cross-linked. This means they are still soluble in solvents, such as water. In particular, the amine groups are secondary and tertiary amine groups, i.e. those that still have a lone pair of electrons on the nitrogen atom, which can interact with the CO2. In particular, a polymer chain is recommended as a homopolymer, i.e. made up of the same repeating units, with each repeating unit having such an amine group. However, copolymers are also possible, in which case at least one of the monomers used has amine groups. For the purposes of the invention, it is also included that coupling groups are contained between the polymer chain and the respective compound, which can be different, depending on whether the polymer chain has been linked to the 1,3-diene compound or to the dienophile compound.
Die Erfindung nutzt das Konzept der Diels-Alder-Reaktion eines 1,3-Diens mit einem Dienophil. Das Konzept wurde modifiziert zur Bildung eines thermoreversiblen, polymeren Sorbentmaterials für CO2 bei geringen Temperaturen und der Möglichkeit, durch Erhöhung der Temperatur eine retro-Diels-Alder-Reaktion zu initiieren. Das CO2, welches gebunden werden soll, wechselwirkt mit den Amin-Gruppen. Über längere Zeit speicherbar ist es jedoch nur, wenn die erfindungsgemäße 1,3-Dien-Verbindung und die Dienophil-Verbindung über die Diels-Alder- Reaktion verknüpft worden sind, wobei an jeder der Verbindungen mindestens eine Polymerkette mit den Amin-Gruppen hängt, und so ein 3D-Netzwerk aus den Polymerketten entstanden ist (das heißt ein quervernetztes Polymernetzwerk). Nur dadurch kann das CO2 über lange Zeit gespeichert werden. Die Erfindung erlaubt, durch eine Temperaturerhöhung über 70 °C eine Auflösung des quervernetzten Polymernetzwerks zu bewirken, was zur Vereinzelung der erfindungsgemäßen Polymerketten führt, so dass das CO2 mit der Zeit wieder freigesetzt wird. The invention utilizes the concept of the Diels-Alder reaction of a 1,3-diene with a dienophile. The concept was modified to form a thermoreversible polymeric sorbent material for CO2 at low temperatures and the possibility of initiating a retro-Diels-Alder reaction by increasing the temperature. The CO2 that is to be bound interacts with the amine groups. However, it can only be stored for a longer period of time if the 1,3-diene compound according to the invention and the dienophile compound via the Diels-Alder Reaction have been linked, with at least one polymer chain attached to the amine groups on each of the compounds, and thus a 3D network of the polymer chains has been created (i.e. a cross-linked polymer network). This is the only way the CO2 can be stored for a long time. The invention allows the cross-linked polymer network to dissolve by increasing the temperature above 70 ° C, which leads to the separation of the polymer chains according to the invention, so that the CO2 is released again over time.
Gegenstand der Erfindung ist des Weiteren ein Verfahren zur reversiblen Speicherung von CO2 mit den Schritten: a) Bereitstellen einer Mischung enthaltend eine The invention furthermore relates to a method for the reversible storage of CO2 with the steps: a) providing a mixture containing a
• 1 ,3-Dien-Verbindung und eine • 1,3-diene compound and a
• Dienophil-Verbindung, wobei jede dieser beiden Verbindungen (mindestens) eine Polymerkette, aufweisend Amin-Gruppen, umfasst, bei einer Temperatur von <70 °C, zur Bildung eines thermoreversiblen Sorbentmaterials, b) Kontaktieren von CO2 mit dem thermoreversiblen Sorbentmaterial aus Schritt a). • Dienophile compound, each of these two compounds comprising (at least) one polymer chain containing amine groups, at a temperature of <70 ° C, to form a thermoreversible sorbent material, b) contacting CO2 with the thermoreversible sorbent material from step a ).
Das thermoreversible Sorbentmaterial umfasst also das Addukt aus 1 ,3-Dien-Verbindung und Dienophil-Verbindung mit den jeweiligen Polymerketten, welche Amin-Gruppen aufweisen. Es ist auch umfasst, dass weitere Substanzen enthalten sind; so insbesondere auch unvermeidbare Substanzen, wie beispielsweise Lösungsmittel, Katalysatoren etc. in Mengen von maximal 10 Gew.-%, insbesondere mit max. 2 Gew.-%, oder auch <1 Gew.-%, bestenfalls <0,3 Gew.-%. Das Kontaktieren mit CO2 kann gleichzeitig mit Schritt a) oder dem Schritt nachgelagert erfolgt. Falls nachgelagert, ist die Temperatur in Schritt b) die gleiche, wie in Schritt a). The thermoreversible sorbent material therefore comprises the adduct of 1,3-diene compound and dienophile compound with the respective polymer chains which have amine groups. It is also included that other substances are included; In particular, unavoidable substances such as solvents, catalysts, etc. in amounts of a maximum of 10% by weight, in particular with a maximum of 2% by weight, or even <1% by weight, at best <0.3% by weight. %. Contacting with CO2 can take place simultaneously with step a) or downstream of the step. If downstream, the temperature in step b) is the same as in step a).
Gegenstand der Erfindung ist schließlich auch die Verwendung einer 1 ,3-Dien-Verbindung und/oder einer Dienophil-Verbindung, jeweils umfassend eine Polymerkette, aufweisend Amin- Gruppen, zur reversiblen Speicherung von CO2, insbesondere die Verwendung der erfindungsgemäßen beiden Verbindungen im erfindungsgemäßen Verfahren. Finally, the invention also relates to the use of a 1,3-diene compound and/or a dienophile compound, each comprising a polymer chain containing amine groups, for the reversible storage of CO2, in particular the use of the two compounds according to the invention in the process according to the invention .
Vorteil der Erfindung ist, dass die niedrigen Temperaturen in der Diels-Alder-Reaktion (das ist die Reaktion, die in Schritt a) und bei Kontaktieren der 1 ,3-Dienverbindung mit der Dienophil- Verbindung bei <70 °C stattfindet) und auch die immer noch relativ niedrige Temperatur der retro- Diels-Alder-Reaktion (das ist die optional durchführbare Reaktion zur Wiederfreisetzung des CO2 aus dem Sorbentmaterial durch Temperaturen >70 °C) es verhindern, dass das Sorbentmaterial abgebaut wird. Es kommt somit vorteilhaft zu keiner oder nur geringfügiger Degradation des Sorbentmaterials, insbesondere der Polymerketten, aufweisend die Amin-Gruppen. The advantage of the invention is that the low temperatures in the Diels-Alder reaction (that is the reaction that takes place in step a) and when contacting the 1,3-diene compound with the dienophile compound at <70 ° C) and also the still relatively low temperature of the retro-Diels-Alder reaction (this is the optional reaction that can be carried out to release the CO2 again from the sorbent material through temperatures >70 °C) prevent the sorbent material from degrading. There is therefore advantageously no or only slight degradation of the sorbent material, in particular of the polymer chains containing the amine groups.
Vorteil der Erfindung ist darüber hinaus, dass die „Grenztemperatur“ in Schritt b) von 70 °C gering ist, das heißt für eine später gewünschte Desorption ist keine besonders hohe Temperatur nötig. Die Erfindung eignet sich somit zur reversiblen Speicherung von CO2 im großindustriellen Maßstab. Another advantage of the invention is that the “limit temperature” in step b) of 70 ° C is low, which means that a particularly high temperature is not necessary for a later desired desorption. The invention is therefore suitable for the reversible storage of CO2 on a large industrial scale.
Vorteil der Erfindung ist, das die Polymerketten mit den Amin-Gruppen nicht irreversibel quervernetzt sein müssen, um das CO2 aufzunehmen, denn das CO2 wird durch die Diels-Alder- Reaktion der beiden erfindungsgemäßen Verbindungen (1 ,3-Dien und Dienophil) gebunden, bei der sich das eigentliche Polymernetzwerk erst bildet, aufgrund dessen das CO2 gebunden bleibt. Die Amin-Gruppen können demnach frei bleiben, d.h. sie behalten mindestens ein freies Elektronenpaar, besser sogar auch einen H-Substituenten, so dass auch die Kapazität der CO2- Sorption nicht notwendigerweise verringert werden muss. The advantage of the invention is that the polymer chains with the amine groups do not have to be irreversibly cross-linked in order to absorb the CO2, because the CO2 is bound by the Diels-Alder reaction of the two compounds according to the invention (1,3-diene and dienophile), in which the actual polymer network is first formed, due to which the CO2 remains bound. The amine groups can therefore remain free, i.e. they retain at least one free pair of electrons, or better even an H substituent, so that the capacity of CO2 sorption does not necessarily have to be reduced.
In diesem Zusammenhang ist ein wesentlicher Vorteil, dass aufgrund der Möglichkeit, die Amin- Gruppen in der Polymerkette frei zu halten die Diffusion des CO2 in das gebildete Sorbentmaterial schneller erfolgen kann, als wenn die Polymerketten über die Amin-Gruppen selbst irreversibel quervernetzt sein müssten, um das CO2 zu binden. In this context, a significant advantage is that due to the possibility of keeping the amine groups in the polymer chain free, the diffusion of the CO2 into the sorbent material formed can take place more quickly than if the polymer chains themselves had to be irreversibly cross-linked via the amine groups. to bind the CO2.
Ein wichtiger Vorteil der Erfindung ist, dass es mit ihr auf einfache Art möglich ist, CO2 reversibel zu speichern und wieder freizugeben, und zwar lediglich durch den großtechnisch sehr einfach zu realisierenden Schritt der Temperaturänderung. Es ist kein Lösungsmittelwechsel nötig. An important advantage of the invention is that it makes it possible to reversibly store and release CO2 in a simple manner, using only the step of changing the temperature, which is very easy to implement on an industrial scale. No solvent change is necessary.
In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei der Polymerkette um eine verzweigte Polymerkette mit mindestens 5% verzweigten Wiederholeinheiten. Das heißt dabei sind maximal 95% der Wiederholeinheiten der Polymerkette unverzweigt. Dabei ist die Polymerkette allerdings noch nicht in einer Weise quervernetzt, die es verhindern würde, dass sich die Polymerketten noch in einem Lösungsmittel lösen lassen. Das heißt die verzweigten Polymerketten in dieser Ausführungsform sind noch in einem Lösungsmittel löslich, insbesondere in Wasser. Besonders bevorzugt sind mindestens 20% verzweigt, insbesondere sogar mindestens 70%. Dies ist besonders effektiv für die reversible Speicherung von CO2. Insbesondere erlaubt dieser Verzweigungsgrad eine ausgewogene Balance zwischen effektiver Speicherung im (reversibel vernetzten) Sorbentmaterial und zügiger CO2-Freisetzung bei „Entnetzung“ des Sorbentmaterials durch Temperaturerhöhung (über die retro-Diels-Alder- Reaktion). In a preferred embodiment of the invention, the polymer chain is a branched polymer chain with at least 5% branched repeating units. This means that a maximum of 95% of the repeating units in the polymer chain are unbranched. However, the polymer chain is not yet cross-linked in a way that would prevent the polymer chains from being dissolved in a solvent. This means that the branched polymer chains in this embodiment are still soluble in a solvent, in particular in water. Particularly preferably at least 20% is branched, in particular even at least 70%. This is particularly effective for reversible storage of CO2. In particular, this degree of branching allows a balance between effective storage in the (reversibly cross-linked) sorbent material and rapid CO2 release “Dewetting” of the sorbent material by increasing the temperature (via the retro-Diels-Alder reaction).
In einer Ausführungsform, bei der es sich bei der Polymerkette um Polyethylenimin handelt, liegt die Verzweigung in einem Bereich, den man erhält, wenn Ethylenimin (Aziridin) durch ringöffnende Polymerisation zu Polyethylenimin polymerisiert wird. Dieser Verzweigungsgrad ist schwer messbar, aber bei dieser Herstellungsvariante sehr charakteristisch und einheitlich. In one embodiment, where the polymer chain is polyethyleneimine, the branching is in a range obtained when ethyleneimine (aziridine) is polymerized to polyethyleneimine by ring-opening polymerization. This degree of branching is difficult to measure, but is very characteristic and uniform in this production variant.
In einer Ausführungsform ist die Temperatur in Schritt a), das heißt bei Bildung des thermoreversiblen Sorbentmaterials, sogar < 65 °C, insbesondere auch < 60 °C. In one embodiment, the temperature in step a), that is, when the thermoreversible sorbent material is formed, is even <65 ° C, in particular also < 60 ° C.
In einer bevorzugten Ausführung der Erfindung wird eine Wiederfreisetzung des CO2 erreicht durch den Schritt: c) Erhitzen des thermoreversiblen Sorbentmaterials (nach Schritt b) des Verfahrens) auf eine Temperatur von > 70 °C zur Freisetzung des CO2 (bevorzugt > 75 °C, insbesondere sogar > 80 °C). Sinnvoller Weise übersteigt diese Temperatur nicht die 90 °C, besser sie bleibt unterhalb von oder gleich 85 °C, denn das Sorbentmaterial soll keinen oder nur geringen thermischen Abbau erleiden. In a preferred embodiment of the invention, a re-release of the CO2 is achieved by the step: c) heating the thermoreversible sorbent material (after step b) of the method) to a temperature of >70 ° C to release the CO2 (preferably > 75 ° C, in particular even > 80 °C). It makes sense that this temperature does not exceed 90 °C, it is better that it remains below or equal to 85 °C, because the sorbent material should suffer little or no thermal degradation.
Vorteilhaft ist diese Temperatur zur Desorption des CO2 relativ gering, so dass zum einen das Sorbentmaterial auch bei der CCh-Freisetzung nicht thermischem Abbau unterliegt und zum anderen die Betriebskosten im großindustriellen Maßstab überschaubar bleiben. Advantageously, this temperature for desorption of the CO2 is relatively low, so that on the one hand the sorbent material is not subject to thermal degradation even when CCh is released and on the other hand the operating costs remain manageable on a large industrial scale.
Es hat sich gezeigt, dass nicht das ganze thermoreversible Sorbentmaterial in seine Einzelteile zerfallen muss, sondern dass es ausreicht, wenn sich die Poren durch Auflösung einzelner Vernetzungspunkte aufweiten. Vorteilhaft ist somit die Temperatur von > 70 °C (bis maximal 90 °C) ausreichend, um dies und die damit einhergehende Wiederfreisetzung des CO2 in effektiver Weise zu erreichen, ohne nennenswert thermischen Abbau zu initiieren. It has been shown that the entire thermoreversible sorbent material does not have to break down into its individual parts, but that it is sufficient if the pores expand due to the dissolution of individual crosslinking points. Advantageously, a temperature of > 70 °C (up to a maximum of 90 °C) is sufficient to achieve this and the associated re-release of the CO2 in an effective manner, without initiating any significant thermal degradation.
In einer bevorzugten Variante dieser Ausführung mit einem Freisetzungsschritt durch Erhitzen des thermoreversiblen Sorbentmaterials nach Schritt b) ist die Temperatur in Schritt a) < 65 °C und die im Freisetzungsschritt c) dann > 75 °C. Noch bevorzugter ist die Temperatur in Schritt a) < 60 °C und im Freisetzungsschritt > 80 °C. In a preferred variant of this embodiment with a release step by heating the thermoreversible sorbent material after step b), the temperature in step a) is <65 ° C and that in release step c) is then > 75 ° C. Even more preferred is the temperature in step a) <60 ° C and in the release step > 80 ° C.
In einer besonderen Variante der oben genannten Ausführung mit Schritt c) wird zusätzlich zum Erhitzen auch ein Vakuum angelegt, um die Freisetzung des CO2 zu beschleunigen. In einer bevorzugten Ausführungsform der Erfindung ist die 1 ,3-Dien-Verbindung eine Furan- Verbindung, das heißt sie umfasst eine Furyl-Einheit. Bevorzugt ist sie ein Furfurylalkohol, wobei besonders bevorzugt die erfindungsgemäße Polymerkette an der Alkoholgruppe des Furfurylakohols angebunden ist. Vorteilhaft sind solche Verbindungen großtechnisch leicht erhältlich, somit günstig und in großen Mengen verfügbar. Darüber hinaus ist vorteilhaft Furfurylalkohol vollständig aus nachwachsenden Rohstoffen herstellbar (ausgehend von Furfural aus landwirtschaftlichen Reststoffen). In a special variant of the above-mentioned embodiment with step c), in addition to heating, a vacuum is also applied in order to accelerate the release of the CO2. In a preferred embodiment of the invention, the 1,3-diene compound is a furan compound, that is, it comprises a furyl unit. It is preferably a furfuryl alcohol, with the polymer chain according to the invention particularly preferably being attached to the alcohol group of the furfuryl alcohol. Advantageously, such compounds are easily available on an industrial scale and are therefore inexpensive and available in large quantities. In addition, furfuryl alcohol can advantageously be produced entirely from renewable raw materials (starting from furfural from agricultural residues).
In einer bevorzugten Ausführung der Erfindung ist die 1 ,3-Dien-Verbindung eine Verbindung, welche erhalten wird durch Substitution von 2-[(Oxiranyl-methoxy)methyl]furan (auch 2,3- Epoxypropyl 2-furylmethylether genannt), das heißt der folgenden chemischen Struktur
Figure imgf000010_0001
oder Hydrate oder Salze davon mit der Polymerkette, aufweisend die Amin-Gruppen, an einem der beiden Kohlenstoffatome der Epoxid-Einheit.
In a preferred embodiment of the invention, the 1,3-diene compound is a compound which is obtained by substitution of 2-[(oxiranyl-methoxy)methyl]furan (also called 2,3-epoxypropyl 2-furylmethyl ether), that is the following chemical structure
Figure imgf000010_0001
or hydrates or salts thereof with the polymer chain containing the amine groups on one of the two carbon atoms of the epoxide unit.
In einer bevorzugten Ausführung der Erfindung ist die Dienophil-Verbindung eine Maleimid- Verbindung, wie beispielsweise Maleinsäureimid, welches am Stickstoff atom mit der Polymerkette, aufweisend die Amin-Gruppen, funktionalisiert wurde, oder wie /V-Hydroxymaleinimid, welches an der OH-Gruppe mit der Polymerkette funktionalisiert wurde. Beispielsweise im Falle des Maleinsäureimids entspricht dies der Struktur:
Figure imgf000010_0002
wobei R2 die Polymerkette, aufweisend die Amin-Gruppen, bedeutet.
In a preferred embodiment of the invention, the dienophile compound is a maleimide compound, such as maleimide, which has been functionalized on the nitrogen atom with the polymer chain containing the amine groups, or such as /V-hydroxymaleimide, which has been functionalized on the OH group was functionalized with the polymer chain. For example, in the case of maleimide, this corresponds to the structure:
Figure imgf000010_0002
where R2 means the polymer chain containing the amine groups.
Das /V-Hydroxymaleinimid wird sinnvoller Weise an der OH-Gruppe mit der Polymerkette verknüpft. In einer bevorzugten Ausführungsform der Erfindung ist die 1 ,3-Dien-Verbindung eine Verbindung nach Formel I und/oder die Dienophil-Verbindung eine Verbindung nach Formel II, bei denen R1 und R2 jeweils die Polymerkette, aufweisend Amin-Gruppen, sind:
Figure imgf000011_0001
The /V-hydroxymaleimide is usefully linked to the polymer chain at the OH group. In a preferred embodiment of the invention, the 1,3-diene compound is a compound according to formula I and/or the dienophile compound is a compound according to formula II, in which R 1 and R 2 are each the polymer chain containing amine groups :
Figure imgf000011_0001
Dies eignet sich besonders gut für die reversible Speicherung von CO2. Insbesondere auch das -CH2-O- Gelenk in der Verbindung nach Formel I ist günstig, um eine gewisse Flexibilität im erfindungsgemäßen (reversibel quervernetzten) Sorbentmaterial zu gewinnen, was die CO2-Speicherung verbessert. This is particularly suitable for the reversible storage of CO2. In particular, the -CH2-O- joint in the compound according to formula I is advantageous in order to gain a certain flexibility in the (reversibly cross-linked) sorbent material according to the invention, which improves CO2 storage.
In einer weiteren Ausführungsform der Erfindung weist die Polymerkette eine Kettenlänge von mindestens 5 Wiederholeinheiten auf, wobei jede der Wiederholeinheiten mindestens eine der Amin-Gruppen aufweist. Das heißt insbesondere weist die erfindungsgemäße Polymerkette mindestens auch diese Anzahl an Amin-Gruppen auf. Im Falle eines Copolymers können diese Wiederholeinheiten mit den Amin-Gruppen auch über das ganze Copolymer verteilt vorliegen. Dies ist besonders effektiv für die reversible Speicherung von CO2. Insbesondere erlaubt diese Mindestpolymergröße eine ausgewogene Balance zwischen effektiver Speicherung im (reversibel vernetzten) Sorbentmaterial und zügiger CO2-Freisetzung bei „Entnetzung“ des Sorbentmaterials durch Temperaturerhöhung (über die retro-Diels-Alder-Reaktion). In a further embodiment of the invention, the polymer chain has a chain length of at least 5 repeating units, each of the repeating units having at least one of the amine groups. This means that in particular the polymer chain according to the invention also has at least this number of amine groups. In the case of a copolymer, these repeating units with the amine groups can also be present distributed throughout the entire copolymer. This is particularly effective for reversible storage of CO2. In particular, this minimum polymer size allows a balance between effective storage in the (reversibly cross-linked) sorbent material and rapid CO2 release when the sorbent material is “dewetted” by increasing the temperature (via the retro-Diels-Alder reaction).
Besonders bevorzugt weist die Polymerkette mindestens 10 Wiederholeinheiten auf, ganz besonders bevorzugt mindestens 300, insbesondere auch 300 - 600, oder sogar 400 - 500. Auch hier hat die Polymerkette bevorzugt auch dies als mindeste Zahl von Amin-Gruppen. The polymer chain particularly preferably has at least 10 repeating units, very particularly preferably at least 300, in particular 300 - 600, or even 400 - 500. Here too, the polymer chain preferably has this as the minimum number of amine groups.
In einer bevorzugten Ausführungsform der Erfindung ist die Polymerkette eine Polyethylenimin- Kette. Besonders bevorzugt handelt es sich um verzweigtes Polyethylenimin. Dies weist eine besonders starke Wechselwirkung zu CO2 auf, was sich für die reversible Speicherung mittels Diels-Alder- und retro-Diels-Alder-Reaktion als besonders günstig erwiesen hat. In a preferred embodiment of the invention, the polymer chain is a polyethyleneimine chain. It is particularly preferred to be branched polyethyleneimine. This has a particularly strong interaction with CO2, which has proven to be particularly favorable for reversible storage using the Diels-Alder and retro-Diels-Alder reactions.
In einer besonders bevorzugten Variante dieser Ausführungsform der Erfindung weist die Polyethylenimin-Kette eine Molmasse von 14.000 g/mol bis 21.000 g/mol auf. Die Molmasse wird bestimmt mittels Gelpermeationschromatographie und Lichtstreudetektor als Mittelwert von zahlenmittlerer Molmasse Mn und gewichtsmittlerer Molmasse Mw. Mn ist insbesondere 8.000- 12.000 g/mol (ganz besonders bevorzugt 10.000 ±500 g/mol) und Mw ist 20.000-30.000 g/mol (ganz besonders bevorzugt 25 000 ±1000 g/mol). Die Polydispersität liegt somit besonders bevorzugt bei (Mw/Mn) 2,5 (±20%), oder auch 2, 2-2, 8. Schließlich liegt jedenfalls die Molmasse (als Mittelwert von Mn und Mw) bevorzugt bei 14.000 - 21.000 g/mol, insbesondere bei 17500 ± 2500 g/mol oder sogar 17000 - 18000 g/mol. Diese Molmassen haben sich als besonders effektiv für die reversible Speicherung von CO2 erwiesen, denn der molekulare Abstand der Polymerketten zwischen den Vernetzungspunkten (die sich aus den beiden Verbindungen: 1 ,3- Dien-Verbindung und Dienophil-Verbindung ergeben) ist hierbei so günstig gestaltet, dass eine Penetration durch das Kohlenstoffdioxid möglich ist und Wechselwirkungen zu den Amin- Gruppen stattfinden können. In a particularly preferred variant of this embodiment of the invention, the polyethyleneimine chain has a molecular weight of 14,000 g/mol to 21,000 g/mol. The molecular weight is determined as an average value using gel permeation chromatography and a light scattering detector number-average molar mass Mn and weight-average molar mass Mw. Mn is in particular 8,000-12,000 g/mol (very particularly preferably 10,000 ± 500 g/mol) and Mw is 20,000-30,000 g/mol (very particularly preferably 25,000 ± 1000 g/mol). The polydispersity is therefore particularly preferably (Mw/Mn) 2.5 (±20%), or also 2.2-2.8. Finally, the molar mass (as the average of Mn and Mw) is preferably 14,000 - 21,000 g /mol, especially at 17500 ± 2500 g/mol or even 17000 - 18000 g/mol. These molecular weights have proven to be particularly effective for the reversible storage of CO2 because the molecular distance of the polymer chains between the crosslinking points (which result from the two compounds: 1,3-diene compound and dienophile compound) is so favorable that penetration through the carbon dioxide is possible and interactions with the amine groups can take place.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen. Further preferred embodiments of the invention result from the remaining features mentioned in the subclaims.
Die verschiedenen in dieser Anmeldung genannten Ausführungsformen der Erfindung sind, sofern im Einzelfall nicht anders ausgeführt, mit Vorteil miteinander kombinierbar. The various embodiments of the invention mentioned in this application can be advantageously combined with one another, unless stated otherwise in individual cases.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnung erläutert. The invention is explained below in exemplary embodiments using the associated drawing.
Fig. 1 zeigt schematisch die Funktionsweise der Erfindung, wobei Ri und R2 die Polymerketten sind, welche die Amingruppen aufweisen. Verdeutlicht wird die erfolgte Sorption von CO2 bei Unterschreiten einer Temperatur Ti 70 °C (denn aufgrund der Diels-Alder-Reaktion hat sich ein vernetztes Polymernetzwerk gebildet) und die Desorption von CO2 bei Überschreiten einer Temperatur T2 von ebenfalls 70 °C aufgrund der retro-Diels-Alder-Reaktion. Fig. 1 shows schematically the operation of the invention, where Ri and R2 are the polymer chains which have the amine groups. The sorption of CO2 when the temperature Ti falls below 70 °C is illustrated (because a cross-linked polymer network has been formed due to the Diels-Alder reaction) and the desorption of CO2 when the temperature T2 is also exceeded, which is also 70 °C, due to the retro- Diels-Alder reaction.
Ausführungsbeispiel 1 : Example 1:
Zur Aufnahme von CO2 wurden die beiden Ausgangsstoffe PEI-funktionalisiertes Maleinsäureimid (Maleimid) und PEI-funktionalisiertes 2-[(Oxiranyl-methoxy)methyl]furan eingesetzt. The two starting materials PEI-functionalized maleimide (maleimide) and PEI-functionalized 2-[(oxiranyl-methoxy)methyl]furan were used to absorb CO2.
Beide Substanzen wurden in geeigneten Lösungsmitteln gelöst. CO2 wurde bei Raumtemperatur (15 °C - 45 °C) durch die Lösung geblasen. Zur Freisetzung wurde die flüssige Lösung auf 82 °C erhitzt und unter leichtem Vakuum von 500 mbar über 1 Stunde behandelt. Als Polymerketten an den beiden Ausgangsstoffen wurde also PEI (Polyethylenimin) (verzweigt) verwendet mit 25 kDa (Mw) mit Mw bei ca. 25.000 (ermittelt mit Lichtstreudetektor) und Mn bei ca. 10.000 ermittelt durch GPC. Der berechnete Polymerisationsgrad beträgt ungefähr 43. Both substances were dissolved in suitable solvents. CO2 was bubbled through the solution at room temperature (15°C - 45°C). To release the liquid solution, it was heated to 82 °C and treated under a slight vacuum of 500 mbar for 1 hour. The polymer chains used on the two starting materials were PEI (polyethyleneimine) (branched) with 25 kDa (Mw) with Mw at approx. 25,000 (determined with a light scattering detector) and Mn at approx. 10,000 determined by GPC. The calculated degree of polymerization is approximately 43.

Claims

Patentansprüche 1,3-Dien-Verbindung und/oder Dienophil-Verbindung, jeweils umfassend eine Polymerkette, aufweisend Amin-Gruppen. Verfahren zur reversiblen Speicherung von CO2 mit den Schritten: a) Bereitstellen einer Mischung enthaltend eine Claims 1,3-Diene compound and/or dienophile compound, each comprising a polymer chain containing amine groups. Method for the reversible storage of CO2 with the steps: a) Providing a mixture containing a
• 1 ,3-Dien-Verbindung und eine • 1,3-diene compound and a
• Dienophil-Verbindung, wobei jede dieser beiden Verbindungen eine Polymerkette, aufweisend Amin-Gruppen, umfasst, bei einer Temperatur von < 70 °C, zur Bildung eines thermoreversiblen Sorbentmaterials, b) Kontaktieren von CO2 mit dem thermoreversiblen Sorbentmaterial aus Schritt a). Verfahren nach Anspruch 2, wobei die Freisetzung des CO2 erreicht wird durch den Schritt: c) Erhitzen des thermoreversiblen Sorbentmaterials nach Schritt b) auf eine Temperatur von > 70 °C zur Freisetzung des CO2. Verfahren nach einem der Ansprüche 2 oder 3, wobei die 1 ,3-Dien-Verbindung eine Furan-Verbindung ist. Verfahren nach einem der Ansprüche 2 bis 4, wobei die Dienophil-Verbindung eine Maleimid-Verbindung ist. Verfahren nach einem der der Ansprüche 2 bis 5, wobei die 1,3-Dien-Verbindung eine Verbindung nach Formel I und/oder die Dienophil-Verbindung eine Verbindung nach Formel II ist, bei denen R1 und R2 jeweils die Polymerkette, aufweisend Amin-Gruppen, sind:
Figure imgf000014_0001
• Dienophile compound, each of these two compounds comprising a polymer chain containing amine groups, at a temperature of <70 ° C, to form a thermoreversible sorbent material, b) contacting CO2 with the thermoreversible sorbent material from step a). The method according to claim 2, wherein the release of the CO2 is achieved by the step: c) heating the thermoreversible sorbent material after step b) to a temperature of > 70 ° C to release the CO2. A method according to any one of claims 2 or 3, wherein the 1,3-diene compound is a furan compound. A method according to any one of claims 2 to 4, wherein the dienophile compound is a maleimide compound. Process according to one of claims 2 to 5, wherein the 1,3-diene compound is a compound according to formula I and/or the dienophile compound is a compound according to formula II, in which R 1 and R 2 each have the polymer chain Amine groups are:
Figure imgf000014_0001
(I) (II) Verfahren nach einem der Ansprüche 2 bis 6, wobei die Polymerkette eine Kettenlänge von mindestens 5 Wiederholeinheiten aufweist, wobei jede der Wiederholeinheiten mindestens eine der Amin-Gruppen aufweist. Verfahren nach einem der Ansprüche 2 bis 7, wobei die Polymerkette eine Polyethylenimin-Kette ist. Verfahren nach Anspruch 8, wobei die Polyethylenimin-Kette eine Molmasse von 14.000 g/mol bis 21.000 g/mol aufweist. Verwendung einer 1,3-Dien-Verbindung und/oder einer Dienophil-Verbindung, jeweils umfassend eine Polymerkette, aufweisend Amin-Gruppen, zur reversiblen Speicherung von CO2. (I) (II) A method according to any one of claims 2 to 6, wherein the polymer chain has a chain length of at least 5 repeating units, each of the repeating units having at least one of the amine groups. A method according to any one of claims 2 to 7, wherein the polymer chain is a polyethyleneimine chain. The method of claim 8, wherein the polyethyleneimine chain has a molecular weight of 14,000 g/mol to 21,000 g/mol. Use of a 1,3-diene compound and/or a dienophile compound, each comprising a polymer chain containing amine groups, for the reversible storage of CO2.
PCT/EP2023/074633 2022-09-14 2023-09-07 Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture WO2024056525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022123491.6 2022-09-14
DE102022123491.6A DE102022123491A1 (en) 2022-09-14 2022-09-14 Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture

Publications (1)

Publication Number Publication Date
WO2024056525A1 true WO2024056525A1 (en) 2024-03-21

Family

ID=87974589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/074633 WO2024056525A1 (en) 2022-09-14 2023-09-07 Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture

Country Status (2)

Country Link
DE (1) DE102022123491A1 (en)
WO (1) WO2024056525A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011146577A2 (en) * 2010-05-19 2011-11-24 Drexel University Remendable interfaces for polymer composites
US20130048853A1 (en) 2010-04-28 2013-02-28 Hitachi High-Technologies Corporation Adsorbent and Method for Producing Same
KR20170009796A (en) 2015-07-16 2017-01-25 한국과학기술원 Adsorbents of Carbon Dioxide or Freon Gases Comprising Three Dimension Porous Graphene Nano Ribbon Structure and Method of Preparing the Same
WO2019101160A1 (en) 2017-11-24 2019-05-31 中山大学 Imine guanidine derivative containing furan skeleton, and preparation and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048853A1 (en) 2010-04-28 2013-02-28 Hitachi High-Technologies Corporation Adsorbent and Method for Producing Same
WO2011146577A2 (en) * 2010-05-19 2011-11-24 Drexel University Remendable interfaces for polymer composites
KR20170009796A (en) 2015-07-16 2017-01-25 한국과학기술원 Adsorbents of Carbon Dioxide or Freon Gases Comprising Three Dimension Porous Graphene Nano Ribbon Structure and Method of Preparing the Same
WO2019101160A1 (en) 2017-11-24 2019-05-31 中山大学 Imine guanidine derivative containing furan skeleton, and preparation and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUNG WEI-CHIH ET AL: "Maleimide-Functionalized PEI600 Grafted Polyurethane: Synthesis, Nano-Complex Formation with DNA and Thiol-Conjugation of the Complexes for Dual DNA Transfection", POLYMERS, vol. 7, no. 10, 23 October 2015 (2015-10-23), pages 2131 - 2145, XP093034431, DOI: 10.3390/polym7101503 *
MARIN LUMINITA ET AL: "Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO2 adsorption", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 120, 31 August 2019 (2019-08-31), XP085894244, ISSN: 0014-3057, [retrieved on 20190831], DOI: 10.1016/J.EURPOLYMJ.2019.109214 *

Also Published As

Publication number Publication date
DE102022123491A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
Kalaj et al. MOF-polymer hybrid materials: from simple composites to tailored architectures
DE102006010862B4 (en) Activated carbon with catalytic activity
EP2705897B1 (en) Electron beam induced modification of membranes by polymers
EP2776153B1 (en) Nitrogen-modified activated carbon and method for producing such an activated carbon
DE102012211300B4 (en) Application of porous structured organic films for gas absorption
DE2045096C3 (en) Macro-networked polystyrene backbones for ion exchangers and processes for their production
DE102014213027A1 (en) Process for the preparation of an isoporous separating-active layer membrane with adjustable pore size, membrane, filtration module and use
WO2014023379A1 (en) Membrane with isoporous, active separation layer and method for producing a membrane
Tian et al. Reusable and cross‐linked cellulose nanofibrils aerogel for the removal of heavy metal ions
WO2014190444A1 (en) Fire protection glazing and method for producing a fire protection glazing
DE202011103382U1 (en) Unit with porous organic polymers II
DE892243C (en) Process for the production of shaped structures from polyacrylic acid nitrile
WO2024056525A1 (en) Thermally reversibly crosslinkable polymers for use as sorbent materials in the area of carbon capture
DE2414396A1 (en) FOAM
Shi et al. Micrometer-sized MOF particles incorporated mixed-matrix membranes driven by π-π interfacial interactions for improved gas separation
DE848257C (en) Process for the production of insoluble ion resin exchangers
EP1912895B1 (en) Method for producing spherical activated carbon
DE102012006272A1 (en) Self-supporting structures with adsorptive properties
WO2020120142A1 (en) Coating material for producing an adsorbent, porous, flexible coating for a heat exchanger and method for producing said coating material
EP1919827B1 (en) Method for producing spherical activated carbon
DE102014112088A1 (en) Process for the preparation of microporous organic membranes, microporous organic membranes and their use
DE102005059863A1 (en) Fiber or foil, useful to prepare high temperature-resistant and/or tear-proof textiles, comprises polymer, preferably polyamide or polyester, as macro cyclic ring molecule of cyclodextrin or cucurbituril and as rotaxan or pseudorotaxan
DE102008052711A1 (en) Preparing crosslinkable polyester, useful e.g. as a coating material in paints, a conductive material in electrical engineering, and to produce molded products, comprises providing alpha-methylene lactones, and ring-opening polymerization
DE202006003674U1 (en) Forming activated carbon with catalytic activity for e.g. odor filter involves subjecting carbonaceous organic polymers into which, in course of their formation, metal has been interpolymerized, to carbonization and subsequent activation
DE2221604A1 (en) Permselective membranes and processes for their manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23767897

Country of ref document: EP

Kind code of ref document: A1