WO2024055965A1 - 一种图像显示方法、扩展现实空间中镜像显示方法、装置、电子设备和介质 - Google Patents

一种图像显示方法、扩展现实空间中镜像显示方法、装置、电子设备和介质 Download PDF

Info

Publication number
WO2024055965A1
WO2024055965A1 PCT/CN2023/118297 CN2023118297W WO2024055965A1 WO 2024055965 A1 WO2024055965 A1 WO 2024055965A1 CN 2023118297 W CN2023118297 W CN 2023118297W WO 2024055965 A1 WO2024055965 A1 WO 2024055965A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
camera
virtual
display
target object
Prior art date
Application number
PCT/CN2023/118297
Other languages
English (en)
French (fr)
Inventor
薛名辰
Original Assignee
北京字跳网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211129263.3A external-priority patent/CN117762240A/zh
Priority claimed from CN202211146361.8A external-priority patent/CN117788752A/zh
Application filed by 北京字跳网络技术有限公司 filed Critical 北京字跳网络技术有限公司
Publication of WO2024055965A1 publication Critical patent/WO2024055965A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present disclosure relates to the fields of virtual reality technology and mirror display technology, and in particular to an image display method, device and electronic device, as well as a mirror display method, device, electronic device and medium in extended reality space.
  • Extended reality refers to the use of computers to combine real scenes with virtual content to create an extended reality environment that allows human-computer interaction.
  • users can customize their own online virtual characters and various parameters, and view the image preview from the third perspective provided for them.
  • users can create a three-dimensional virtual image, especially a three-dimensional virtual image that is highly similar to their own image, to represent themselves for a better experience.
  • it is difficult to provide a reference for the creation or modification of the avatar, which affects the user's experience.
  • the company The invention provides an image display method, device and electronic equipment, which enables the mirror camera to follow the movement of the virtual image and always present the virtual image in the virtual mirror.
  • Embodiments of the present disclosure also provide a method, device, electronic device, and medium for mirror display in an extended reality space to solve the problem of poor viewing effects of virtual characters in extended reality scenes for users.
  • the present disclosure provides an image display method, which method includes:
  • a first image is acquired based on the first position and the first orientation, and the first image is displayed on the virtual mirror.
  • the method further includes: in response to the adjustment instruction for the mirror camera, determining a second orientation of the mirror camera; determining a second orientation of the mirror camera according to the position, the preset distance and the second orientation of the first-person perspective camera. Position; based on the second orientation and the second position, obtain the second image, and update and display the second image on the virtual mirror.
  • the first orientation is determined based on a perpendicular direction from the initial position of the first-person perspective camera to the mirror surface of the virtual mirror.
  • the projected length of the line between the first-person perspective camera and the mirror camera on the ground is a preset distance.
  • the position of the first-person perspective camera includes the height of the first-person perspective camera
  • the position of the mirror camera includes the height of the mirror camera
  • the height of the mirror camera is determined based on the height of the first-person perspective camera and/or the height of the virtual mirror.
  • the method of determining the height of the mirror camera includes: determining the reference offset height of the mirror camera in the height direction according to the preset distance, the height of the virtual mirror and the field of view of the mirror camera; determining the offset ratio , the offset ratio is the ratio of the offset height to the mirror half-height of the virtual mirror, the offset height is the first-person perspective camera relative to the virtual mirror The height of the mirror midpoint; determine the offset height of the mirror camera based on the reference offset height and offset ratio; determine the height of the mirror camera based on the offset height of the mirror camera and the height of the mirror midpoint.
  • the first-person perspective camera, the virtual mirror and the mirror camera are in the same virtual space, and the virtual mirror is set perpendicular to the ground.
  • the method is applied to VR headsets.
  • an image display device which includes:
  • a display module configured to acquire a first image based on the first position and the first orientation, and display the first image on the virtual mirror.
  • the processing module is further configured to determine the second orientation of the mirror camera in response to the adjustment instruction for the mirror camera; determine the third orientation of the mirror camera according to the position, preset distance and second orientation of the first-person perspective camera. two positions;
  • the display module is also configured to obtain a second image based on the second orientation and the second position, and update and display the second image on the virtual mirror.
  • the first orientation is determined based on a perpendicular direction from the initial position of the first-person perspective camera to the mirror surface of the virtual mirror.
  • the projected length of the line between the first-person perspective camera and the mirror camera on the ground is a preset distance.
  • the position of the first-person perspective camera includes the height of the first-person perspective camera
  • the position of the mirror camera includes the height of the mirror camera
  • the height of the mirror camera is determined based on the height of the first-person perspective camera and/or the height of the virtual mirror.
  • the processing module is specifically configured to determine the reference offset of the mirror camera in the height direction according to the preset distance, the height of the virtual mirror, and the field of view of the mirror camera. Height; determine the offset ratio, which is the ratio of the offset height to the mirror half-height of the virtual mirror.
  • the offset height is the height of the first-person perspective camera relative to the mirror midpoint of the virtual mirror; based on the baseline offset height and offset According to the shift ratio, determine the offset height of the mirror camera; determine the height of the mirror camera based on the offset height of the mirror camera and the height of the mirror midpoint.
  • the first-person perspective camera, the virtual mirror and the mirror camera are in the same virtual space, and the virtual mirror is set perpendicular to the ground.
  • the present disclosure provides an electronic device, including: a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is implemented when executed by the processor.
  • the image display method as described in the first aspect or any optional implementation manner thereof.
  • the present disclosure provides a computer-readable storage medium, comprising: a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the image display method as described in the first aspect or any optional embodiment thereof is implemented.
  • the present disclosure provides a computer program product, including: when the computer program product is run on a computer, the computer implements the image as described in the first aspect or any optional implementation thereof. Display method.
  • the present disclosure provides a method for mirror display in extended reality space, including:
  • the target object is displayed in the virtual display screen.
  • the parameter information includes: field of view angle;
  • the adjustment of parameter information of the virtual camera based on the mirror display adjustment instruction includes:
  • the field of view angle of the virtual camera is increased based on the mirror display adjustment instruction.
  • the parameter information includes: field of view angle;
  • the mirror display adjustment instruction is specifically used to instruct to adjust the display ratio of the target object in the virtual display screen to a target ratio
  • the adjustment of parameter information of the virtual camera based on the mirror display adjustment instruction includes:
  • Target adjustment parameters are obtained based on the target ratio, and the target adjustment parameters include: target field of view angle;
  • the virtual camera is adjusted based on the target adjustment parameters.
  • obtaining target adjustment parameters based on the target ratio includes:
  • the target field of view angle of the virtual camera is obtained.
  • the target field of view angle is not within the preset field of view angle range
  • the adjusting the virtual camera based on the target adjustment parameter includes:
  • the distance between the virtual camera and the target object is obtained. target distance;
  • the parameter information includes: the distance between the virtual camera and the target object;
  • the adjustment of parameter information of the virtual camera based on the mirror display adjustment instruction includes:
  • Adjust the distance between the virtual camera and the target object further based on the mirror display adjustment instruction.
  • it also includes:
  • the distance between the near clipping plane of the virtual camera and the target object is determined to be the distance between the target object and the virtual display screen.
  • the present disclosure provides a mirror display device in extended reality space, including:
  • the adjustment instruction receiving module is used to receive the mirror display adjustment instruction of the target object triggered by the user, and the mirror display adjustment instruction is used to instruct the adjustment of the display ratio of the target object in the virtual display screen;
  • a parameter information adjustment module configured to adjust the parameter information of the virtual camera based on the mirror display adjustment instruction
  • the target object display module is configured to display the target object in the virtual display screen based on the display image obtained by the virtual camera after adjusting the parameter information.
  • the parameter information includes: field of view angle;
  • the parameter information adjustment module is specifically configured to adjust the field of view angle of the virtual camera based on the mirror display adjustment instruction;
  • the field of view angle of the virtual camera is increased based on the mirror display adjustment instruction.
  • the parameter information includes: field of view angle;
  • the mirror display adjustment instruction is specifically used to instruct to adjust the display ratio of the target object in the virtual display screen to a target ratio
  • the parameter information adjustment module is specifically configured to obtain target adjustment parameters based on the target ratio, where the target adjustment parameters include: target field of view angle;
  • the virtual camera is adjusted based on the target adjustment parameters.
  • the parameter information adjustment module is specifically configured to based on the virtual The initial field of view angle of the camera and the target ratio are used to obtain the target field of view angle of the virtual camera.
  • the target field of view angle is not within the preset field of view angle range
  • the parameter information adjustment module is specifically configured to obtain the virtual camera based on the initial field of view angle, the preset field of view angle, the initial distance between the virtual camera and the target object, and the target proportion.
  • the parameter information includes: the distance between the virtual camera and the target object;
  • the parameter information adjustment module is specifically configured to adjust the distance between the virtual camera and the target object closer based on the mirror display adjustment instruction;
  • Adjust the distance between the virtual camera and the target object further based on the mirror display adjustment instruction.
  • the target object display module is also configured to determine that the distance between the near clipping plane of the virtual camera and the target object is a preset distance
  • the distance between the near clipping plane of the virtual camera and the target object is determined to be the distance between the target object and the virtual display screen.
  • the present disclosure provides an electronic device, including: a memory and a processor, the memory is used to store a computer program; the processor is used to enable the electronic device to implement any one of the first aspects when executing the computer program.
  • the present disclosure provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computing device implements any one of the first aspects. extended reality space mirror Like display method.
  • embodiments of the present disclosure provide a computer program product.
  • the computer can implement the mirror display in the extended reality space described in any of the above embodiments. method.
  • an embodiment of the present disclosure provides a computer program, including: instructions that, when executed by a processor, cause the processor to perform the image display method of any of the above embodiments, and/or expand the real space Medium image display method.
  • Figure 1A is a schematic diagram of an implementation scenario of an image display method provided by an embodiment of the present disclosure
  • FIG. 1B is a schematic diagram of the screen displayed on the display of the VR head-mounted device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of an image display method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the first orientation of the mirror camera in an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of the orientation of the mirror camera in an embodiment of the present disclosure.
  • Figure 5A is a schematic diagram of a preset distance in an embodiment of the present disclosure.
  • Figure 5B is a schematic diagram of the height of the mirror camera in an implementation of the present disclosure.
  • Figure 6 is a schematic diagram of determining the reference offset height of a mirror camera according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram for determining the height of a mirror camera according to an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of determining the first position of the mirror camera provided in an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of an image display device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • Figure 11a is a schematic diagram of an application scenario of the mirror display method in the extended reality space provided by an embodiment of the present disclosure
  • Figure 11b is a schematic diagram of a screen displayed on a display of a head-mounted display device provided by an embodiment of the present disclosure
  • Figure 12 is a step flow chart of a mirror display method in an extended reality space provided by an embodiment of the present disclosure
  • Figure 13a is one of the interface display diagrams of the mirror display method in the extended reality space provided by an embodiment of the present disclosure
  • Figure 13b is the second interface display diagram of the mirror display method in the extended reality space provided by the embodiment of the present disclosure.
  • Figure 13c is the third interface display diagram of the mirror display method in the extended reality space provided by the embodiment of the present disclosure.
  • Figure 13d is the fourth interface display diagram of the mirror display method in the extended reality space provided by the embodiment of the present disclosure.
  • Figure 14a is one of the display diagrams of the shooting range of the virtual camera based on adjusting the field of view angle provided by an embodiment of the present disclosure
  • Figure 14b is the second display diagram of the shooting range of the virtual camera based on adjusting the field of view angle provided by the embodiment of the present disclosure
  • Figure 14c is the third display diagram of the shooting range of the virtual camera based on adjusting the field of view angle provided by the embodiment of the present disclosure
  • Figure 14d is one of the display diagrams of the shooting range of the virtual camera based on adjusting the shooting position provided by an embodiment of the present disclosure
  • Figure 14e is the second display diagram of the shooting range of the virtual camera based on adjusting the shooting position provided by the embodiment of the present disclosure
  • Figure 14f is the third display diagram of the shooting range of the virtual camera based on adjusting the shooting position provided by the embodiment of the present disclosure
  • Figure 15 shows the structure of a mirror display device in extended reality space provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present disclosure.
  • words such as “exemplary” or “such as” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the present disclosure is not intended to be construed as preferred or advantageous over other embodiments or designs. Rather, invocations of the words “exemplary” or “such as” are intended to present the relevant concept in a concrete manner. Furthermore, in the description of the embodiments of the present disclosure, unless otherwise specified, the meaning of “plurality” means two or more.
  • Virtual mirror The display surface in virtual reality will perform image processing together with virtual reality and present it to the user.
  • the function of the mirror camera is to determine the parameters of image acquisition based on the position and attitude of the mirror camera to obtain images.
  • a virtual mirror is displayed in front of the avatar to simulate looking in the mirror and changing clothes in real life.
  • the technical principle is to set up a mirror camera at a certain distance in front of the avatar, and then move the mirror The image of the avatar captured by the camera is displayed on the mirror.
  • the mirror camera set up in this way is fixed. It is difficult for the mirror to show a complete mirror image after the position of the virtual image is changed, which makes it difficult to provide a reference for the creation or modification of the virtual image.
  • the picture in the mirror visually has no depth and is different from real life. There are differences in the mirrors, making it difficult to achieve the effect of virtual reality, making users uncomfortable and affecting the user experience.
  • inventions of the present disclosure provide an image display method, device and electronic equipment.
  • the image display method first determines the first orientation of the mirror camera, and then determines the first orientation of the mirror camera according to the position of the first-person perspective camera, the preset distance and the third An orientation determines the position of the mirror camera, and then acquires a first image based on the first position and the first orientation, and displays the first image on the virtual mirror.
  • the mirror camera is realized to move according to the virtual image, thereby always presenting the image of the virtual image in the virtual mirror, providing a reference for creating or modifying the virtual image, and improving the user experience.
  • Figure 1A is a schematic diagram of an implementation scene of an image display method provided by an embodiment of the present disclosure.
  • the user wears a VR head-mounted display device 101.
  • the VR handheld device 102 for example, joystick
  • the user wishes to modify the three-dimensional virtual image, as shown in Figure 1B.
  • Figure 1B is a schematic diagram of the screen presented on the display of the VR head-mounted device provided by an embodiment of the present disclosure.
  • the figure includes a virtual mirror 11, a mirror camera 12, and an image selection panel 13.
  • first determine the first orientation of the mirror camera 12 first determine the first orientation of the mirror camera 12, then determine the position of the mirror camera according to the position of the first-person perspective camera, the preset distance and the first orientation, and then obtain the first image based on the first position and the first orientation, and perform the virtual The first image is displayed on the mirror.
  • first-person perspective camera and the mirror camera can both be virtual objects for realizing image acquisition in virtual reality. They do not necessarily actually exist in virtual reality, nor will they necessarily be displayed. They are introduced in the figure to facilitate the explanation of the position and posture of image acquisition.
  • the image display method provided in the embodiments of the present disclosure may be implemented through an image display device or an electronic device.
  • the gesture interaction device may be a functional module or functional entity in the electronic device for implementing the image display method.
  • the electronic device may include But it is not limited to mobile phones, computers, AR devices or VR devices, etc.
  • AR devices may include AR glasses
  • VR devices may include VR head-mounted displays, and the like.
  • Figure 2 is a flow chart of an image display method provided by an embodiment of the present disclosure. Schematic diagram of the process, the method includes the following steps S201 ⁇ S204:
  • FIG. 3 is a schematic diagram of the first orientation of the mirror camera in an embodiment of the present disclosure.
  • the figure shows a first-person perspective camera 10, a virtual mirror 11, and a mirror camera 12.
  • the first-person perspective camera 10 points to the vertical direction of the virtual mirror surface, which is the direction indicated by arrow 1.
  • the first-person perspective camera 10 points to the vertical direction of the virtual mirror surface. Orient opposite to the direction indicated by arrow 1, as indicated by arrow 2.
  • a direction control is provided on the virtual mirror 11 .
  • the first orientation of the mirror camera is determined according to the number and/or duration of the user's click on the direction control.
  • the direction control includes a left control, a right control, an upper control, and a lower control. For example, when the user clicks on the right control, it means that the user expects to view the virtual image from the left side. Based on the mirror principle, the direction of the mirror camera is in reverse order. The hour hand direction changes.
  • FIG. 4 is a schematic diagram of the orientation of the mirror camera in an embodiment of the present disclosure. Taking the top view of the virtual space as an example, the figure shows the first orientation A of the mirror camera 12. If the position of the first-person perspective camera 10 does not change, when the user clicks the right control, the direction of the mirror camera 12 is controlled according to the inverse direction. In response to the adjustment instructions for the mirror camera 12, the second orientation of the mirror camera 12 always points to the first-person perspective camera 10. The figure exemplarily shows the second orientations of three mirror cameras: B and C. ,D.
  • S202 Determine the first position of the mirror camera according to the position, preset distance and first orientation of the first-person perspective camera.
  • the first-person perspective camera is equivalent to a camera set up at the position of the virtual image's eyes, allowing the user to observe the virtual space through the first-person perspective camera during the virtual display process of wearing the VR head-mounted device, simulating the human eye field of view in reality, thereby fitting Reality (the position and/or posture of the first-person perspective camera is the same as or related to the position and/or posture of the VR head-mounted device worn by the user).
  • the position of the first-person perspective camera includes the height of the first-person perspective camera, which refers to the height of the first-person perspective camera perpendicular to the ground.
  • the default distance is the projected length of the line between the first-person camera and the mirror camera on the ground.
  • the preset distance includes a first vertical distance and a second vertical distance, wherein the first vertical distance is the vertical distance between the mirror camera and the virtual mirror, and the second vertical distance is between the first-person perspective camera and the virtual mirror. the vertical distance between them.
  • the first vertical distance can be set to a fixed value, for example, the first vertical distance is 1.5 meters, thereby better simulating a realistic scene of a user looking in the mirror.
  • FIG. 5A is a schematic diagram of a preset distance in an embodiment of the present disclosure.
  • the figure shows a positional relationship between the first-person perspective camera 10, the virtual mirror 11 and the mirror camera 12.
  • the midpoint of the bottom edge of the virtual mirror 11 is the coordinate origin, and the first orientation of the mirror camera is the positive Z-axis.
  • the virtual mirror is perpendicular to the ground and upward is the positive direction of the Y axis.
  • the first-person perspective camera 10, the virtual mirror 11 and the mirror camera 12 exist in the same virtual space in the positional relationship shown in the figure.
  • the preset distance includes the first vertical distance D between the mirror camera 12 and the virtual mirror 11 , and the second vertical distance L between the first-person perspective camera 10 and the virtual mirror 11 .
  • the above-mentioned preset distance including the first vertical distance D and the second vertical distance L is only a case where the preset distance is when the virtual mirror is set perpendicular to the ground. It can be understood that in the virtual reality space, The position and attitude of the virtual mirror can be set arbitrarily. For example, if the virtual mirror camera is tilted to the ground, the preset distance will be based on the first-person perspective. The projection of the connection between the corner camera and the mirror camera on the ground is determined and has no direct relationship with the virtual mirror.
  • the process of determining the first position of the mirror camera will be described later by taking the preset distance including the first vertical distance D and the second vertical distance L as an example, and other cases of the preset distance are the same or similar to this. No further details will be given here.
  • the first position of the mirror camera includes the height of the mirror camera.
  • the height of the mirror camera refers to the height of the mirror camera perpendicular to the ground.
  • Figure 5B is a schematic diagram of the height of the mirror camera provided by an embodiment of the present disclosure.
  • the first orientation of the mirror camera is the positive Z-axis
  • the virtual mirror is perpendicular to the ground and upward. is the positive direction of the Y-axis
  • the position of the first-person perspective camera is (x1, y1, z1)
  • the position of the virtual mirror (midpoint of the bottom edge)
  • the height of the mirror camera is the mirror camera on the Y axis
  • the coordinate value of the direction is recorded as y3.
  • the embodiment of the present disclosure provides an implementation method to determine the height of the mirror camera based on the coordinate value of the virtual mirror in the direction perpendicular to the ground and the height of the virtual mirror, that is, the coordinate value y3 of the mirror camera in the Y-axis direction. As shown in formula (1):
  • y2 is the coordinate value of the virtual mirror in the Y-axis direction; M is the height of the virtual mirror.
  • the height of the mirror camera is determined based on the coordinate value y2 of the virtual mirror in the Y-axis direction and the height M of the virtual mirror, so that the virtual image presented in the virtual mirror is always kept in the center, which is more in line with human eye habits and improves the user experience.
  • the coordinate value y2 of the virtual mirror in the Y-axis direction and the virtual mirror determines the coordinate value y3 of the mirror camera in the Y-axis direction.
  • the virtual image presented in the virtual mirror is always kept in the middle and upper position of the virtual mirror.
  • the height of the mirror camera can be further adjusted via a scale factor, increasing flexibility.
  • the proportional coefficient can be set according to actual conditions, and this disclosure does not limit this.
  • the first position of the mirror camera also includes coordinate values along the first direction.
  • the first position of the mirror camera also includes coordinate values in the Z-axis direction.
  • the position of the first-person perspective camera is (x1, y1, z1)
  • the coordinate value z3 of the mirror camera in the Z-axis direction is determined based on the coordinate value z1 of the first-person perspective camera in the Z-axis direction and the preset distance L+D. .
  • z3 z1-(L+D) (2)
  • the coordinate value of the mirror camera also needs to be determined in the direction perpendicular to the ground direction and at the same time perpendicular to the first orientation.
  • the above embodiment determines the first position of the mirror camera through the position of the first-person perspective camera, the position of the virtual mirror, the height of the virtual mirror, the preset distance and the first orientation, which is expressed as three-axis coordinates in the virtual coordinate system, thereby ensuring that the mirror The camera will change its position as the position of the virtual image changes, and the virtual image will always be displayed in the virtual mirror.
  • the process of The specific implementation is the same as or similar to the specific implementation of determining the first position of the mirror camera, and will not be described in detail here.
  • the first-person perspective camera when the position of the avatar changes, the first-person perspective camera The position changes accordingly. If in the virtual coordinate system, the first-person perspective camera moves from the initial position (x1, y1, z1) to (x1 ⁇ , y1 ⁇ , z1 ⁇ ), in order to completely present the virtual image in the virtual mirror, embodiments of the present disclosure provide a In this implementation, first, according to the coordinate value y2 of the virtual mirror in the direction perpendicular to the ground and the height M of the virtual mirror, the height of the mirror camera in the initial state is determined, that is, the coordinate value of the mirror camera in the Y-axis direction, denoted as y0, as Formula (4) shows:
  • the initial height of the mirror camera is the height of the mirror camera when it is in the initial position.
  • the process of determining the initial height of the mirror camera is the same or similar to the aforementioned method of determining the height of the mirror camera.
  • the initial height of the mirror camera can be based on the The determination of the height of the personal perspective camera and/or the height of the virtual mirror will not be described in detail here.
  • the offset height s of the first-person perspective camera relative to the mirror midpoint in the direction perpendicular to the ground, where the mirror midpoint is the midpoint of the direction in which the height of the virtual mirror is located.
  • the offset height s of the first-person perspective camera relative to the midpoint of the mirror in the direction perpendicular to the ground is determined based on the position of the first-person perspective camera, the height of the virtual mirror, and the position of the virtual mirror, as shown in formula (5) Shown:
  • y1 ⁇ is the coordinate value of the first-person perspective camera in the direction perpendicular to the ground
  • M is the height of the virtual mirror
  • y2 is the coordinate value of the virtual mirror in the direction perpendicular to the ground.
  • Figure 6 provides a schematic diagram for determining the reference offset height of the mirror camera according to an embodiment of the present disclosure.
  • the half-height of the mirror M/2 determines the field of view of the mirror camera, as shown in formula (6):
  • Embodiments of the present disclosure provide an implementation method to determine the reference offset height b of the mirror camera in the height direction according to the second vertical distance L and the field of view (Field Of View,) FOV of the mirror camera, where the reference offset height b Height b is the corresponding reverse movement height of the mirror camera when the first-person perspective camera moves half the height of the mirror in the height direction, as shown in formula (7):
  • the offset height of the first-person perspective camera in the height direction is greater than half the height of the mirror, as shown in Figure 7.
  • Figure 7 is a schematic diagram for determining the height of the mirror camera according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a In an implementation manner, the offset ratio a is determined based on the offset height s of the first-person perspective and the mirror half-height M/2 of the virtual mirror, as shown in formula (8):
  • the location is In this way, the position of the mirror camera changes according to the position of the virtual image, so that the virtual image is always fully presented in the virtual mirror, and the position of the first image displayed is aligned with the eyes to provide a reference for the user to create or modify the virtual image.
  • the above embodiment realizes that the three-axis coordinates of the mirror camera change following the movement of the virtual image when the first vertical distance D is a known amount and does not change.
  • the present disclosure also provides a method when the initial value of the first vertical distance is known. In this case, the field of view of the mirror camera remains unchanged, and the virtual image is always displayed in the virtual mirror by adjusting the distance between the mirror camera and the virtual mirror.
  • the position of the virtual image changes.
  • the first-person perspective camera moves from (x1, y1, z1) to (x1 ⁇ , y1 ⁇ , z1 ⁇ )
  • the height of the virtual image created by the user may exceed the height that the virtual mirror can accommodate, so the virtual image cannot be fully presented in the virtual mirror, and because the user is wearing a VR head-mounted display device in a real environment.
  • the complexity of the operation and environment is uncontrollable.
  • the mirror camera position is adjusted to completely display the virtual image along the direction of the mirror camera.
  • Figure 8 is a schematic diagram for determining the first position of the mirror camera provided in the embodiment of the present disclosure.
  • the figure shows the projection points of the first-person perspective camera 10, the virtual mirror 11, and the mirror camera 12 on the YOZ plane.
  • the first-person perspective camera 10 moves from the coordinate y1 to the coordinate y1' in the direction perpendicular to the ground.
  • Embodiments of the present disclosure provide an implementation method to determine the position of the mirror camera by adjusting the first vertical distance between the mirror camera and the virtual mirror:
  • the distance between the mirror camera and the virtual mirror determines the maximum height Hmax of the virtual image that the virtual mirror can present, as shown in formula (12):
  • the first position of the mirror camera can be expressed as
  • the complete virtual image is always presented in the virtual mirror, which improves the visual effect and creates a new world for the user.
  • the avatar or modified avatar provides a reference and improves the user experience.
  • the first position of the mirror camera is determined.
  • the orientation of the mirror camera remains unchanged at the first orientation
  • the virtual image moves that is, the first-person perspective camera Position changes, based on first person
  • the position of the perspective camera and the preset distance determine the first position of the mirror camera, so that the mirror camera follows the movement of the virtual image, and then the mirror camera acquires the first image at the first upward direction and the first position, and displays the first image on the virtual mirror. image, so that the user does not need to actively align with the virtual mirror in the virtual space.
  • the user's movement space in the real world may be limited and it is difficult to find a suitable position or angle to align with the virtual mirror; on the other hand, there is no need to Restricting the user to stand at a specific alignment position of the mirror and no longer moving in order to display the first image, better simulating looking in the mirror, enabling the user to still look in the mirror when the virtual image moves at will, so that no matter how the virtual image moves on the virtual mirror
  • the first image of the avatar is always presented, providing a reference for creating or modifying the avatar and improving the user experience.
  • the orientation of the mirror camera changes from the first orientation to the second orientation
  • the second images in the second orientation and the second position are obtained, and the first image is
  • the update is displayed as a second image, without limiting the virtual image to a specific position and aligning with the virtual mirror in a specific posture, so that the user does not have to spend time and energy looking for a specific position and posture in the virtual space, and it is convenient for the user to view the virtual image from different angles.
  • the image is adapted to diverse virtual display scenarios and enhances the user experience.
  • embodiments of the present disclosure provide an image display method. First, the first orientation of the mirror camera is determined, and then the position of the mirror camera is determined based on the position of the first-person perspective camera, the preset distance and the first orientation, and then the position of the mirror camera is determined based on the first position. Acquire a first image in a first orientation and display the first image on the virtual mirror.
  • the mirror camera is realized to move according to the virtual image, thereby always presenting the image of the virtual image in the virtual mirror, providing a reference for creating or modifying the virtual image, and improving the user experience.
  • Figure 9 is a schematic structural diagram of an image display device provided by an embodiment of the present disclosure.
  • the device includes:
  • the processing module 901 is used to determine the first orientation of the mirror camera; determine the first position of the mirror camera according to the position of the first-person perspective camera, the preset distance and the first orientation;
  • Display module 902 configured to acquire the first image based on the first position and the first orientation, and The first image is displayed on the virtual mirror.
  • the processing module 901 is also configured to determine the second orientation of the mirror camera in response to the adjustment instruction for the mirror camera; determine the second orientation of the mirror camera according to the position of the first-person perspective camera, the preset distance and the second orientation. second position;
  • the display module 902 is also configured to obtain a second image based on the second orientation and the second position, and update and display the second image on the virtual mirror.
  • the first orientation is determined based on a perpendicular direction from the initial position of the first-person perspective camera to the mirror surface of the virtual mirror.
  • the projected length of the line between the first-person perspective camera and the mirror camera on the ground is a preset distance.
  • the position of the first-person perspective camera includes the height of the first-person perspective camera
  • the position of the mirror camera includes the height of the mirror camera
  • the height of the mirror camera is determined based on the height of the first-person perspective camera and/or the height of the virtual mirror.
  • the processing module 901 is specifically configured to determine the reference offset height of the mirror camera in the height direction according to the preset distance, the height of the virtual mirror, and the field of view angle of the mirror camera;
  • the offset ratio is the ratio of the offset height to the mirror half-height of the virtual mirror.
  • the offset height is the height of the first-person perspective camera relative to the mirror midpoint of the virtual mirror;
  • the first-person perspective camera, the virtual mirror and the mirror camera are in the same virtual space, and the virtual mirror is set perpendicular to the ground.
  • modules may be implemented as software components executing on one or more general-purpose processors, or may be implemented as hardware, such as programmable logic devices and/or application-specific integrated circuits, for performing certain functions.
  • these modules may be embodied as software
  • the software product may be stored on a non-volatile storage medium.
  • non-volatile storage media include enabling computer equipment (such as personal computers, servers, network equipment, mobile terminals, etc.) to execute the methods described in the embodiments of the present disclosure.
  • the above modules can also be implemented on a single device or distributed on multiple devices. The functionality of these modules can be combined with each other or further split into sub-modules.
  • embodiments of the present disclosure provide an image display device, which first determines the first orientation of the mirror camera through the processing module, and then determines the position of the mirror camera based on the position of the first-person perspective camera, the preset distance and the first orientation, Then, the display module acquires the first image based on the first position and the first orientation, and displays the first image on the virtual mirror.
  • the mirror camera is realized to move according to the virtual image, thereby always presenting the image of the virtual image in the virtual mirror, providing a reference for creating or modifying the virtual image, and improving the user experience.
  • Figure 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device includes: a processor, a memory, and a computer stored on the memory and capable of running on the processor.
  • Program when the computer program is executed by the processor, each process of the image display method in the above method embodiment is implemented. And can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • Embodiments of the present disclosure provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium. When executed by a processor, the computer program implements each process of the image display method in the above-mentioned method embodiments and can achieve the same results. To avoid repetition, the technical effects will not be repeated here.
  • the computer-readable storage medium can be read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • An embodiment of the present disclosure provides a computer program product, which stores a computer program.
  • the computer program is executed by a processor, the various processes of the image display method in the above method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • the processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • computer-readable media includes both persistent and non-transitory, removable and non-removable storage media.
  • Storage media can be implemented by any method or technology to store information, and information can be computer-readable instructions, data structures, program modules, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes disk storage or other magnetic storage devices, or any other non-transmission medium, can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • the mirror display adjustment instruction adjusts the parameter information of the virtual camera, and displays the target object in the virtual display screen based on the display image obtained by the virtual camera after adjusting the parameter information.
  • the mirror display adjustment instruction is used to instruct the adjustment of the display ratio of the target object in the virtual display screen. That is, in this technical solution, the user instructs the adjustment of the display ratio of the target object in the virtual display screen by triggering the mirror display adjustment instruction. After the mirror display adjustment instruction, adjust the parameter information of the virtual camera.
  • the display image obtained by the virtual camera will change accordingly. Therefore, the display ratio of the target object in the display image will also change. Based on this The display ratio of the display object displayed in the virtual display screen is adjusted.
  • the display ratio of the target object can be adjusted by adjusting the virtual camera parameters, without the user having to move in the extended reality space to adjust, thereby improving The user's viewing effect of the target object in extended reality facilitates the user's adjustment of the parameters of the target object.
  • Figure 11a is a schematic diagram of an application scenario of a mirror display method in an extended real space provided by an embodiment of the present disclosure.
  • the user 111 wears a head-mounted display device.
  • the user wishes to modify the virtual Character image of character image.
  • a virtual mirror 112 instantly appears at a position 1.5 meters along the pointing direction of the virtual ray emitted by the user and the head-mounted display device.
  • the virtual mirror 112 is used to display virtual characters
  • the virtual camera 113 is used to photograph the virtual characters displayed on the virtual mirror 112
  • the virtual character selection panel 114 is used to select different virtual characters.
  • the virtual mirror 112 disappears at the same time.
  • the virtual mirror 112 can be set as a floor mirror
  • the height of the virtual mirror 112 can be set to 2 meters
  • the width can be set to 1 meter.
  • the virtual mirror 112 is only visible to the current calling user, and is invisible to other users.
  • Figure 12 is a schematic flowchart of a method for displaying mirror images in an extended reality space according to an embodiment of the present disclosure.
  • the method for displaying mirror images in an extended reality space includes the following steps S21 to S23:
  • the mirror display adjustment instruction is used to instruct to adjust the display ratio of the target object in the virtual display screen.
  • the target object can be understood as the virtual image corresponding to the user in the extended reality scene, which can be a virtual task image, or other virtual images corresponding to the user, such as animals or plants, etc. This disclosure does not limit this.
  • the virtual display screen can be, for example, a virtual mirror.
  • the display position of the virtual display screen in the virtual display space can be set according to scene requirements, and is usually set at a position convenient for user operation.
  • the user can adjust the visual image of the target object by adjusting the parameters of the target object.
  • the target object as the virtual character corresponding to the user as an example
  • the user can adjust the eyelashes, eyes, nose, etc. of the virtual character.
  • Adjustment effect for example, when the user needs to adjust the eyelashes of the avatar, the avatar needs to be enlarged to facilitate precise adjustment of the eyelashes. After the adjustment is completed, the avatar needs to be reduced to observe the overall effect after adjustment.
  • the size of the target object is adjusted by adjusting the display ratio of the target object in the virtual display screen. For example, increasing the display ratio of the target object in the virtual display screen is equivalent to the target object being enlarged, and adjusting the target object smaller in the virtual display screen.
  • the display ratio in the virtual display screen is equivalent to the target object being reduced in size.
  • the mirror display adjustment instruction is triggered.
  • the ways for users to trigger image display adjustment instructions include but are not limited to the following possible implementation methods:
  • an interface for adjusting instructions is displayed on the virtual display screen.
  • the adjustment instructions can be to zoom in or out.
  • pressing the zoom function button in Figure 13a can adjust the display ratio of the target object.
  • the picture on the left is the original picture, and the picture on the right is the display ratio of the target object in the virtual display after being adjusted according to the zoom out instruction after pressing the zoom function button.
  • press the The zoom function button can adjust the display ratio of the target object.
  • the picture on the left is the original image
  • the right side is the display ratio of the target object in the virtual display after being adjusted according to the zoom command after pressing the zoom function button.
  • the parameter information includes: field of view angle, and/or the distance between the virtual camera and the target object.
  • the virtual camera for example, a mirror camera
  • the virtual object is used to implement the acquisition of images containing a target object in a virtual reality scene.
  • Image you can adjust the size of the target object in the collected image by adjusting the position and posture of the virtual object when collecting the image.
  • the size of the target object in the image that is, the concept of virtual camera is introduced to facilitate the explanation of the image acquisition process and the principle of change in the size of the target object in the collected image, but in fact there is no virtual camera in the virtual live environment , the virtual camera is not displayed.
  • the range of the captured image is as shown in Figure 14a; when the field of view becomes larger, the range of the captured image is as shown in Figure 14b shown; when the field of view becomes smaller, the range of the captured image is shown in Figure 14c.
  • the shooting position when the field of view remains unchanged, when the shooting position is the default position, for example, in this embodiment, the default position can be 1.5 meters, the range of the shooting image is as shown in Figure 14d; when the shooting position is zoomed out, That is, when the distance between the position of the virtual camera and the virtual mirror becomes larger, for example, when the distance between the position of the virtual camera and the virtual mirror is 1.8 meters, the range of the captured image is as shown in Figure 14e; when the shooting position is closer, that is, the virtual When the distance between the camera's position and the virtual mirror is reduced, for example, when the distance between the virtual camera's position and the virtual mirror is 0.8 meters, the range of the captured image is as shown in Figure 14f.
  • the user can see the enlarged or reduced image by adjusting the field of view angle and/or the distance of the virtual camera from the target object, so that the user can see the enlarged or reduced image without moving the position. See a clearer picture on the virtual display.
  • displaying the target object on the virtual display screen includes but is not limited to the following possible implementations:
  • One possible implementation method is to determine that the distance between the near clipping plane of the virtual camera and the target object is a preset distance, that is, the image content finally acquired by the virtual camera is the extended reality within the preset distance range from the target object. content in the scene.
  • Another possible implementation method is to determine the distance between the near clipping plane of the virtual camera and the target object as the distance between the target object and the virtual display screen, where the target object is movable in the extended reality space and the virtual display screen
  • the position in the extended reality space is relatively fixed, that is, the image content finally acquired by the virtual camera is the content in the extended reality scene within the range between the target object and the virtual display screen, and this range changes with the movement of the target object.
  • the mirror display method in the extended reality space receives the mirror display adjustment instruction of the target object triggered by the user, adjusts the parameter information of the virtual camera based on the mirror display adjustment instruction, and based on the display obtained by the virtual camera after adjusting the parameter information Image, showing the target object in the virtual display.
  • the mirror display adjustment instruction is used to instruct the adjustment of the display ratio of the target object in the virtual display screen. That is, in this technical solution, the user instructs the adjustment of the display ratio of the target object in the virtual display screen by triggering the mirror display adjustment instruction.
  • the mirror display adjustment instruction adjust the parameter information of the virtual camera. After the parameter information of the virtual camera is adjusted, the display image obtained by the virtual camera will change accordingly.
  • the display ratio of the target object in the display image will also change. Based on this , the display ratio of the display object displayed in the virtual display screen is adjusted.
  • the display ratio of the target object can be adjusted by adjusting the virtual camera parameters, without the user having to move in the extended reality space to adjust. Improve the user's viewing effect of the target object in extended reality and facilitate the user's adjustment of the parameters of the target object.
  • the virtual camera is adjusted based on the mirror display adjustment instruction.
  • Parameter information that is, adjusting the field of view angle of the virtual camera based on the mirror display adjustment instruction, or increasing the field of view angle of the virtual camera based on the mirror display adjustment instruction.
  • it includes but is not limited to the following possible implementations:
  • mirror display adjustment instruction is specifically used to instruct to increase or decrease the display ratio of the target object in the virtual display screen, but does not require the user to indicate the specific display ratio.
  • the adjusted display ratio is 2 times the display ratio before adjustment. If the user triggers a mirror display adjustment instruction indicating a decrease, the adjustment The display ratio after adjustment is 1/2 times the display ratio before adjustment.
  • the adjusted display ratio is 4 times the display ratio before adjustment.
  • the user triggers the instruction to increase the mirror display adjustment instruction once again.
  • the adjusted display ratio is 2 times the display ratio before adjustment.
  • the user triggers the instruction once again.
  • the mirror image display adjustment instruction is reduced.
  • the adjusted display ratio is 1/4 times the display ratio before adjustment.
  • the user triggers the instruction to reduce the mirror image display adjustment instruction once again.
  • the adjusted display ratio is the display ratio before adjustment. 1/2 times.
  • the mirror display adjustment instruction is specifically used to instruct to increase the display ratio of the target object in the virtual display screen, the field of view angle of the virtual camera is decreased based on the mirror display adjustment instruction.
  • the mirror display adjustment instruction is specifically used to instruct to reduce the display ratio of the target object in the virtual display screen, the field of view angle of the virtual camera is increased based on the mirror display adjustment instruction.
  • mirror display adjustment instruction is specifically used to instruct to adjust the display ratio of the target object in the virtual display screen to the target ratio.
  • the target adjustment parameters can be obtained based on the target ratio, and the virtual camera can be adjusted based on the target adjustment parameters.
  • the target Standard ratio based on the initial field of view angle of the virtual camera and the target Standard ratio to obtain the target field of view angle of the virtual camera.
  • the target field of view angle ⁇ x can be obtained according to the following formula:
  • the field of view angle of the virtual camera can be directly adjusted to the target field of view angle.
  • the field of view angle of the virtual camera can be adjusted, and at the same time, the distance between the virtual camera and the target object can be adjusted to adjust the display ratio of the target object in the virtual display screen to the target ratio.
  • the target field of view angle is not within the preset field of view angle range
  • the target field of view angle is too small and there is no stereoscopic effect
  • the target field of view angle is too large, fisheye problems will occur. Therefore, for the target market, the angle is too large or too small.
  • the shooting position of the virtual camera is further adjusted so that the display ratio of the target object in the virtual display screen is adjusted to the target ratio, thereby avoiding the problem of insufficient stereoscopic effect or fisheye distortion.
  • the target distance between the virtual camera and the target object is obtained.
  • the initial field of view angle is ⁇ 0 .
  • the initial field of view angle refers to the field of view angle of the virtual camera before adjustment.
  • the preset field of view angle is ⁇ 1 .
  • the initial distance between the virtual camera and the target object is s 0 .
  • the initial distance is Refers to the distance between the virtual camera and the target object before adjustment.
  • the target ratio is m, then the target distance s x between the virtual camera and the target object:
  • the preset field of view angle may be the first preset field of view angle or the second preset field of view angle. It can be considered that when the target field of view angle is smaller than the first preset field of view angle, the collected There is no three-dimensional sense in the picture. When the target field of view angle is larger than the second preset field of view angle, fisheye distortion will appear in the collected image.
  • the target field of view angle is smaller than the first preset field of view angle, based on the size of the target object, the first preset field of view angle and the target proportion, the virtual camera and the Target distance between target objects; adjust the field of view angle of the virtual camera to the first preset field of view angle, and adjust the virtual camera to the target distance from the target object.
  • the virtual camera and target object can be obtained according to the following formula
  • the target distance s between x1 is
  • the target field of view angle is greater than the second preset field of view angle, based on the size of the target object, the second preset field of view angle and the target proportion, the relationship between the virtual camera and the target object is obtained. the target distance between; adjust the field of view angle of the virtual camera to the second preset field of view angle, and adjust the virtual camera to the target distance away from the target object.
  • the virtual camera and target object can be obtained according to the following formula Target distance s x2 between:
  • This embodiment adjusts the field of view angle of the virtual camera and the alignment between the virtual camera and the target.
  • the distance between the objects is adjusted so that the display ratio of the target object in the virtual display screen is adjusted to the target ratio, thereby avoiding the problem of insufficient stereoscopic effect or fisheye distortion.
  • the parameter information of the virtual camera may also include the distance between the virtual camera and the target object, and the display ratio of the target object in the virtual display screen can be adjusted by individually adjusting the distance between the virtual camera and the target object.
  • the mirror image display adjustment instruction is specifically used to instruct to increase the display ratio of the target object in the virtual display screen, the distance between the virtual camera and the target object is adjusted closer based on the mirror image display adjustment instruction.
  • the mirror image display adjustment instruction is specifically used to instruct to reduce the display ratio of the target object in the virtual display screen, the distance between the virtual camera and the target object is adjusted further based on the mirror image display adjustment instruction.
  • mirror display adjustment instruction is specifically used to instruct to adjust the display ratio of the target object in the virtual display screen to the target ratio.
  • the target adjustment parameters can be obtained based on the target ratio, and the virtual camera can be adjusted based on the target adjustment parameters.
  • the target distance between the virtual camera and the target object may be obtained based on the initial distance between the virtual camera and the target object and the target ratio.
  • the display ratio of the target object in the virtual display screen is adjusted by adjusting the field of view angle of the virtual camera, and the display ratio of the target object in the virtual display screen is adjusted by adjusting the shooting position of the virtual camera.
  • the solutions can be used independently or in combination with each other. This disclosure does not limit this. The implementation principles and technical effects are similar and will not be repeated one by one.
  • the embodiment of the present disclosure also provides An extended reality space mirror display device.
  • This embodiment corresponds to the foregoing method embodiment.
  • this embodiment will not elaborate on the details in the foregoing method embodiment one by one, but it should be clear that this implementation
  • the mirror display device in the extended reality space in the example can correspondingly implement all the contents in the foregoing method embodiments.
  • Embodiments of the present disclosure provide a mirror image display device in an extended reality space.
  • Figure 15 is a schematic structural diagram of a mirror image display device in an extended reality space. As shown in Figure 15, the mirror image display device in an extended reality space includes:
  • the adjustment instruction receiving module 510 is configured to receive a user-triggered mirror display adjustment instruction for a target object, where the mirror display adjustment instruction is used to instruct the adjustment of the display ratio of the target object in the virtual display screen;
  • the parameter information adjustment module 520 is used to adjust the parameter information of the virtual camera based on the mirror display adjustment instruction;
  • the target object display module 530 is configured to display the target object in the virtual display screen based on the display image obtained by the virtual camera after adjusting the parameter information.
  • the parameter information includes: field of view angle;
  • the parameter information adjustment module 520 is specifically configured to adjust the field of view angle of the virtual camera based on the mirror display adjustment instruction;
  • the field of view angle of the virtual camera is increased based on the mirror display adjustment instruction.
  • the parameter information includes: field of view angle;
  • the mirror display adjustment instruction is specifically used to instruct to adjust the display ratio of the target object in the virtual display screen to a target ratio
  • the parameter information adjustment module 520 is specifically configured to obtain target adjustment parameters based on the target ratio, where the target adjustment parameters include: target field of view angle;
  • the virtual camera is adjusted based on the target adjustment parameters.
  • the parameter information adjustment module 520 is specifically configured to obtain the target field of view angle of the virtual camera based on the initial field of view angle of the virtual camera and the target ratio.
  • the target field of view angle is not within the preset field of view angle range
  • the parameter information adjustment module 520 is specifically configured to obtain the desired field of view angle based on the initial field of view angle of the virtual camera, the preset field of view angle, the initial distance between the virtual camera and the target object, and the target proportion. The target distance between the virtual camera and the target object;
  • the parameter information includes: the distance between the virtual camera and the target object;
  • the parameter information adjustment module 520 is specifically configured to adjust the distance between the virtual camera and the target object closer based on the mirror display adjustment instruction;
  • Adjust the distance between the virtual camera and the target object further based on the mirror display adjustment instruction.
  • the target object display module 530 is also used to determine that the distance between the near clipping plane of the virtual camera and the target object is a preset distance
  • the distance between the near clipping plane of the virtual camera and the target object is determined to be the distance between the target object and the virtual display screen.
  • modules may be implemented as software components executing on one or more general-purpose processors, or may be implemented as hardware, such as programmable logic devices and/or application-specific integrated circuits, for performing certain functions.
  • these modules may be embodied in the form of a software product that may be stored in a non-volatile storage medium.
  • non-volatile storage media include enabling computer equipment (such as personal computers, servers, network equipment, mobile terminals, etc.) to execute the methods described in the embodiments of the present disclosure.
  • the above modules can also be implemented on a single device or distributed on multiple devices. The functions of these modules can be combined with each other or further split into multiple sub-modules.
  • the mirror display device in the extended reality space provided in this embodiment can execute the above method
  • the implementation principle and technical effect of the mirror display method in the extended reality space provided in the embodiment are similar, and will not be repeated here.
  • FIG. 16 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device provided by this embodiment includes: a memory 61 and a processor 62.
  • the memory 61 is used to store computer programs; the processing
  • the processor 62 is configured to implement the mirror display method in the extended reality space provided by the above embodiments when executing the computer program.
  • embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computing device implements the above embodiments.
  • embodiments of the present disclosure also provide a computer program product.
  • the program included in the computer program product is run on a computer, the computer can implement the mirror display in the extended real space provided by the above embodiments. method.
  • Some embodiments of the present disclosure also provide a computer program, including: instructions, which when executed by a processor cause the processor to perform the image display method of any of the above embodiments, and/or expand the mirror in real space. Display method.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • the processor can be a Central Processing Unit (CPU), other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), or off-the-shelf programmable processors. Gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Memory may include non-volatile memory in computer-readable media, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media includes permanent and non-permanent, removable and non-removable storage media.
  • Storage media can be implemented by any method or technology to store information, and information can be computer-readable instructions, data structures, program modules, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes disk storage or other magnetic storage devices, or any other non-transmission medium, can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Processing Or Creating Images (AREA)

Abstract

一种图像显示方法、装置及电子设备,涉及虚拟现实技术领域。该方法包括:确定镜子相机的第一朝向(S201);根据第一人称视角相机的位置、预设距离和第一朝向,确定镜子相机的第一位置(S202);基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像(S203)。还提供了一种扩展现实空间中镜像显示方法、装置、电子设备和介质,涉及镜像显示技术领域。该方法包括:接收用户触发的目标对象的镜像显示调整指令,镜像显示调整指令用于指示调整目标对象在虚拟显示屏中的显示比例(S21);基于镜像显示调整指令调整虚拟摄像机的参数信息(S22),基于调整参数信息后的虚拟摄像机获取的显示图像,在虚拟显示屏中显示目标对象(S23)。

Description

一种图像显示方法、扩展现实空间中镜像显示方法、装置、电子设备和介质
相关申请的交叉引用
本申请是以申请号为202211129263.3、申请日为2022年09月16日的中国专利申请和申请号为202211146361.8、申请日为2022年09月20日的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及虚拟现实技术和镜像显示技术领域,尤其涉及一种图像显示方法、装置及电子设备,以及一种扩展现实空间中镜像显示方法、装置、电子设备和介质。
背景技术
扩展现实是指通过计算机将真实场景与虚拟的内容结合,打造一个可人机交互的扩展现实环境。在扩展现实场景中,用户可自定义设置自己的网络虚拟人物形象和各项参数,并可查看为其提供的第三视角的形象预览。
采用相关技术用户对扩展现实中虚拟人物形象的观看效果不佳,从而导致在扩展现实场景中对虚拟人物形象进行调整时无法达到预期效果。
在虚拟现实中,用户可以创建一个三维虚拟形象、特别是与自我形象高度相似的三维虚拟形象来代表自己,以获得更好体验。在创建或修改虚拟形象的过程中,难以对虚拟形象的创建或修改提供参考,影响用户的使用体验感。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公 开提供了一种图像显示方法、装置及电子设备,实现镜子相机跟随虚拟形象移动,始终在虚拟镜子中呈现虚拟形象。本公开实施例还提供了一种扩展现实空间中镜像显示方法、装置、电子设备和介质,用于解决用户观看扩展现实场景中虚拟人物形象的效果不佳的问题。
为了实现上述目的,本公开实施例提供的技术方案如下:
第一方面,本公开提供一种图像显示方法,该方法包括:
确定镜子相机的第一朝向;
根据第一人称视角相机的位置、预设距离和第一朝向,确定镜子相机的第一位置;
基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。
在一些实施例中,该方法还包括:响应于针对镜子相机的调整指令,确定镜子相机的第二朝向;根据第一人称视角相机的位置、预设距离和第二朝向,确定镜子相机的第二位置;基于第二朝向和第二位置,获取第二图像,并在虚拟镜子上更新显示第二图像。
在一些实施例中,第一朝向根据第一人称视角相机的初始位置到虚拟镜子的镜面的垂线方向确定。
在一些实施例中,第一人称视角相机与镜子相机之间连线在地面上投影的长度为预设距离。
在一些实施例中,第一人称视角相机的位置包括第一人称视角相机的高度,镜子相机的位置包括镜子相机的高度;镜子相机的高度根据第一人称视角相机的高度和/或虚拟镜子的高度确定。
在一些实施例中,确定镜子相机的高度的方式,包括:根据预设距离、虚拟镜子的高度和镜子相机的视场角,确定镜子相机在高度方向上的基准偏移高度;确定偏移比例,偏移比例为偏移高度和虚拟镜子的镜子半高的比例,偏移高度为第一人称视角相机相对于虚拟镜子 的镜子中点的高度;根据基准偏移高度和偏移比例,确定镜子相机偏移高度;根据镜子相机偏移高度和镜子中点的高度,确定镜子相机的高度。
在一些实施例中,第一人称视角相机、虚拟镜子和镜子相机处于同一虚拟空间,虚拟镜子垂直于地面设置。
在一些实施例中,该方法应用于VR头显设备。
第二方面,本公开提供一种图像显示装置,该装置包括:
处理模块,用于确定镜子相机的第一朝向;根据第一人称视角相机的位置、预设距离和第一朝向,确定镜子相机的第一位置;
显示模块,用于基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。
在一些实施例中,处理模块,还用于响应于针对镜子相机的调整指令,确定镜子相机的第二朝向;根据第一人称视角相机的位置、预设距离和第二朝向,确定镜子相机的第二位置;
显示模块,还用于基于第二朝向和第二位置,获取第二图像,并在虚拟镜子上更新显示第二图像。
在一些实施例中,第一朝向根据第一人称视角相机的初始位置到虚拟镜子的镜面的垂线方向确定。
在一些实施例中,第一人称视角相机与镜子相机之间连线在地面上投影的长度为预设距离。
在一些实施例中,第一人称视角相机的位置包括第一人称视角相机的高度,镜子相机的位置包括镜子相机的高度;镜子相机的高度根据第一人称视角相机的高度和/或虚拟镜子的高度确定。
在一些实施例中,处理模块,具体用于根据预设距离、虚拟镜子的高度和镜子相机的视场角,确定镜子相机在高度方向上的基准偏移 高度;确定偏移比例,偏移比例为偏移高度和虚拟镜子的镜子半高的比例,偏移高度为第一人称视角相机相对于虚拟镜子的镜子中点的高度;根据基准偏移高度和偏移比例,确定镜子相机偏移高度;根据镜子相机偏移高度和镜子中点的高度,确定镜子相机的高度。
在一些实施例中,第一人称视角相机、虚拟镜子和镜子相机处于同一虚拟空间,虚拟镜子垂直于地面设置。
第三方面,本公开提供一种电子设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面或其任意一种可选的实施方式所述的图像显示方法。
第四方面,本公开提供一种计算机可读存储介质,包括:所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面或其任意一种可选的实施方式所述的图像显示方法。
第五方面,本公开提供一种计算机程序产品,包括:当所述计算机程序产品在计算机上运行时,使得所述计算机实现如第一方面或其任意一种可选的实施方式所述的图像显示方法。
第六方面,本公开提供一种扩展现实空间中镜像显示方法,包括:
接收用户触发的目标对象的镜像显示调整指令,所述镜像显示调整指令用于指示调整所述目标对象在虚拟显示屏中的显示比例;
基于所述镜像显示调整指令调整虚拟摄像机的参数信息;
基于调整参数信息后的虚拟摄像机获取的显示图像,在所述虚拟显示屏中显示所述目标对象。
在一些实施例中,所述参数信息包括:视场角度;
所述基于所述镜像显示调整指令调整虚拟摄像机的参数信息,包括:
基于所述镜像显示调整指令调小所述虚拟摄像机的视场角度;
或者,
基于所述镜像显示调整指令调大所述虚拟摄像机的视场角度。
在一些实施例中,所述参数信息包括:视场角度;
所述镜像显示调整指令具体用于指示调整所述目标对象在虚拟显示屏中的显示比例至目标比例;
所述基于所述镜像显示调整指令调整虚拟摄像机的参数信息,包括:
基于所述目标比例获取目标调整参数,所述目标调整参数包括:目标视场角;
基于所述目标调整参数调整所述虚拟摄像机。
在一些实施例中,所述基于所述目标比例获取目标调整参数,包括:
基于所述虚拟摄像机的初始视场角度和所述目标比例,获取所述虚拟摄像机的目标视场角度。
在一些实施例中,所述目标视场角度不在预设视场角度范围内;
所述基于所述目标调整参数调整所述虚拟摄像机包括:
基于所述虚拟摄像机的初始视场角度、预设视场角度、所述虚拟摄像机与所述目标对象之间的初始距离、以及所述目标比例,获取所述虚拟摄像机与所述目标对象之间的目标距离;
将所述虚拟摄像机的视场角度调整至所述预设视场角度,并将所述虚拟摄像机调整至与所述目标对象相距所述目标距离处。
在一些实施例中,所述参数信息包括:所述虚拟摄像机与所述目标对象之间的距离;
所述基于所述镜像显示调整指令调整虚拟摄像机的参数信息,包括:
基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调近;
或者,
基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调远。
在一些实施例中,还包括:
确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为预设距离;
或者,
确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为所述目标对象与所述虚拟显示屏之间的距离。
第七方面,本公开提供一种扩展现实空间中镜像显示装置,包括:
调整指令接收模块,用于接收用户触发的目标对象的镜像显示调整指令,所述镜像显示调整指令用于指示调整所述目标对象在虚拟显示屏中的显示比例;
参数信息调整模块,用于基于所述镜像显示调整指令调整虚拟摄像机的参数信息;
目标对象显示模块,用于基于调整参数信息后的虚拟摄像机获取的显示图像,在所述虚拟显示屏中显示所述目标对象。
在一些实施例中,所述参数信息包括:视场角度;
所述参数信息调整模块具体用于基于所述镜像显示调整指令调小所述虚拟摄像机的视场角度;
或者,
基于所述镜像显示调整指令调大所述虚拟摄像机的视场角度。
在一些实施例中,所述参数信息包括:视场角度;
所述镜像显示调整指令具体用于指示调整所述目标对象在虚拟显示屏中的显示比例至目标比例;
所述参数信息调整模块具体用于基于所述目标比例获取目标调整参数,所述目标调整参数包括:目标视场角;
基于所述目标调整参数调整所述虚拟摄像机。
在一些实施例中,所述参数信息调整模块具体用于基于所述虚拟 摄像机的初始视场角度和所述目标比例,获取所述虚拟摄像机的目标视场角度。
在一些实施例中,所述目标视场角度不在预设视场角度范围内;
所述参数信息调整模块具体用于基于所述虚拟摄像机的初始视场角度、预设视场角度、所述虚拟摄像机与所述目标对象之间的初始距离、以及所述目标比例,获取所述虚拟摄像机与所述目标对象之间的目标距离;
将所述虚拟摄像机的视场角度调整至所述预设视场角度,并将所述虚拟摄像机调整至与所述目标对象相距所述目标距离处。
在一些实施例中,所述参数信息包括:所述虚拟摄像机与所述目标对象之间的距离;
所述参数信息调整模块具体用于基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调近;
或者,
基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调远。
在一些实施例中,目标对象显示模块还用于确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为预设距离;
或者,
确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为所述目标对象与所述虚拟显示屏之间的距离。
第八方面,本公开提供一种电子设备,包括:存储器和处理器,所述存储器用于存储计算机程序;所述处理器用于在执行计算机程序时,使得所述电子设备实现第一方面任一项所述的扩展现实空间中镜像显示方法。
第九方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序被计算设备执行时,使得所述计算设备实现第一方面任一项所述的扩展现实空间中镜 像显示方法。
第十方面,本公开实施例提供一种计算机程序产品,当所述计算机程序产品中包含的程序在计算机上运行时,使得所述计算机实现上述任一实施方式所述的扩展现实空间中镜像显示方法。
第十一方面,本公开实施例提供一种计算机程序,包括:指令,所述指令当由处理器执行时使所述处理器执行上述任一个实施例的图像显示方法,和/或扩展现实空间中镜像显示方法。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为本公开实施例提供的一种图像显示方法的一种实现场景示意图;
图1B为本公开实施例提供的VR头显设备的显示器中所呈现的画面示意图;
图2为本公开实施例提供的一种图像显示方法的流程示意图;
图3为本公开实施例中镜子相机的第一朝向的示意图;
图4为本公开实施例中镜子相机的朝向的示意图;
图5A为本公开实施例中预设距离的示意图;
图5B为本公开实施中镜子相机的高度的示意图;
图6为本公开实施例提供确定镜子相机的基准偏移高度的示意图;
图7为本公开实施例提供确定镜子相机的高度的示意图;
图8为本公开实施例中提供的确定镜子相机的第一位置的示意图;
图9为本公开实施例提供的一种图像显示装置的结构示意图;
图10为本公开实施例提供的一种电子设备的结构示意图。
图11a为本公开实施例提供的扩展现实空间中镜像显示方法的应用场景示意图;
图11b为本公开实施例提供的头显设备的显示器中所呈现的画面示意图;
图12为本公开实施例提供的扩展现实空间中镜像显示方法的步骤流程图;
图13a为本公开实施例提供的扩展现实空间中镜像显示方法的界面显示图之一;
图13b为本公开实施例提供的扩展现实空间中镜像显示方法的界面显示图之二;
图13c为本公开实施例提供的扩展现实空间中镜像显示方法的界面显示图之三;
图13d为本公开实施例提供的扩展现实空间中镜像显示方法的界面显示图之四;
图14a为本公开实施例提供的基于调整视场角度虚拟摄像机的拍摄范围的显示图之一;
图14b为本公开实施例提供的基于调整视场角度虚拟摄像机的拍摄范围的显示图之二;
图14c为本公开实施例提供的基于调整视场角度虚拟摄像机的拍摄范围的显示图之三;
图14d为本公开实施例提供的基于调整拍摄位置虚拟摄像机的拍摄范围的显示图之一;
图14e为本公开实施例提供的基于调整拍摄位置虚拟摄像机的拍摄范围的显示图之二;
图14f为本公开实施例提供的基于调整拍摄位置虚拟摄像机的拍摄范围的显示图之三;
图15为本公开实施例提供的扩展现实空间中镜像显示装置的结构 示意图;
图16为本公开实施例提供的电子设备的硬件结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,调用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。此外,在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的技术名词作简单地介绍:
虚拟镜子:虚拟现实中的显示面,会与虚拟现实一同进行图像处理呈现给用户。
镜子相机的作用是能够根据镜子相机的位置和姿态确定图像采集的参数,以获取图像。
在创建或修改虚拟形象的过程中,为增强真实感,在虚拟形象前展示虚拟的镜子来模拟现实生活中照镜子换装,技术原理是在虚拟形象前的一定距离架设镜子相机,然后将镜子相机所拍摄的虚拟形象的画面显示在镜子上。但是,这种方式设置的镜子相机是固定的,虚拟形象位置变动后镜子难以呈现完整的镜像,进而难以对虚拟形象的创建或修改提供参考,并且视觉上镜子里的画面没有深度,与现实生活 中的镜子存在差异,难以达到虚拟现实的效果,使得用户不习惯,影响用户的使用体验感。
为了解决上述问题,本公开实施例提供了一种图像显示方法、装置及电子设备,其中,图像显示方法首先确定镜子相机的第一朝向,然后根据第一人称视角相机的位置、预设距离和第一朝向确定镜子相机的位置,进而基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。实现镜子相机根据虚拟形象移动,从而始终在虚拟镜子中呈现虚拟形象的图像,为创建或修改虚拟形象提供参考,提升了用户的使用体验感。
如图1A所示,图1A为本公开实施例提供的一种图像显示方法的一种实现场景示意图,用户佩戴VR头显设备101,在虚拟现实的场景中,用户通过VR手持设备102(例如摇柄)操作三维虚拟形象。用户期望修改三维虚拟形象,如图1B所示,图1B为本公开实施例提供的VR头显设备的显示器中所呈现的画面示意图,图中包括虚拟镜子11、镜子相机12、形象选择面板13,首先确定镜子相机12的第一朝向,然后根据第一人称视角相机的位置、预设距离和第一朝向确定镜子相机的位置,进而基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。
需要说明的是,第一人称视角相机和镜子相机,都可以是在虚拟现实中实现图像采集的虚拟对象,并不一定是实际存在于虚拟现实中的,也不一定会被显示,图中引入是为了便于说明图像采集的位置和姿态。
本公开实施例中提供的图像显示方法,可以为通过图像显示装置或者电子设备实现,手势交互装置可以为该电子设备中用于实现该图像显示方法的功能模块或者功能实体,该电子设备可以包括但不限于手机、计算机、AR设备或者VR设备等。例如,AR设备可以包括AR眼镜、VR设备可以包括VR头显设备等。
如图2所示,图2为本公开实施例提供的一种图像显示方法的流 程示意图,该方法包括以下步骤S201~S204:
S201、确定镜子相机的第一朝向。
在用户期望修改虚拟形象的场景下,同时显示形象选择面板和虚拟镜子,为模拟现实场景中用户照镜子,虚拟镜子会在虚拟形象的正前方显示,也就是虚拟镜子在第一人称视角相机的正前方显示,则可以确定第一人称视角相机的初始位置指向虚拟镜子的镜面垂线的方向,而镜子相机的第一朝向为与第一人称视角相机的初始位置指向虚拟镜子的镜面垂线的方向相反,这是虚拟镜子的初始朝向。如图3所示,图3为本公开实施例中镜子相机的第一朝向的示意图。图中示出第一人称视角相机10、虚拟镜子11、镜子相机12,其中,第一人称视角相机10指向虚拟镜子镜面的垂线方向,为箭头1所指示方向,初始状态下,镜子相机的第一朝向与箭头1所指示的方向相反,如箭头2所指示的方向。
本公开实施例中,参考图1B,在虚拟镜子11上设置有方向控件,在一些实施例中,根据用户操作点击方向控件的次数和/或时长,确定镜子相机的第一朝向。方向控件包括左控件、右控件、上控件、下控件,示例性的,在用户操作点击右控件时,表示用户期望从偏左侧的角度查看虚拟形象,基于镜像原理,镜子相机的朝向按照逆时针方向变化。
在用户操作点击方向控件的情况下,生成针对镜子相机的调整指令,该调整指令用于指示将镜子相机的朝向从第一朝向调整至第二朝向。响应于该调整指令,确定镜子相机的第二朝向。如图4所示,图4为本公开实施例中镜子相机的朝向的示意图。以虚拟空间的俯视图为例,图中示出镜子相机12的第一朝向A,若第一人称视角相机10的位置未发生变化,在用户操作点击右控件时,生成控制镜子相机12的朝向按照逆时针变化的调整指令,响应于针对镜子相机12的调整指令,镜子相机12的第二朝向始终指向第一人称视角相机10,图中示例性的示出3个镜子相机的第二朝向:B、C、D。
S202、根据第一人称视角相机的位置、预设距离和第一朝向,确定镜子相机的第一位置。
其中,第一人称视角相机相当于是在虚拟形象眼睛位置架设的相机,使得用户在佩戴VR头显设备虚拟显示的过程中通过第一人称视角相机观察虚拟空间,模拟现实中的人眼视野,从而贴合现实(所述第一人称视角相机的位置和/或姿态与用户佩戴的VR头显设备的位置和/或姿态相同或者相关)。第一人称视角相机的位置包括第一人称视角相机的高度,第一人称视角相机的高度是指第一人称视角相机垂直于地面的高度。
预设距离是第一人称视角相机与镜子相机之间连线在地面上投影的长度。
一些实施例中,预设距离包括第一垂直距离和第二垂直距离,其中,第一垂直距离是镜子相机和虚拟镜子之间的垂直距离,第二垂直距离是第一人称视角相机和虚拟镜子之间的垂直距离。本公开实施例中,可以设置第一垂直距离为固定值,例如第一垂直距离为1.5米,从而更好的模拟现实的用户照镜子场景。
示例性的,如图5A所示,图5A为本公开实施例中预设距离的示意图。图中示出第一人称视角相机10、虚拟镜子11和镜子相机12三者的一种位置关系,以虚拟镜子11底边中点为坐标原点,以镜子相机的第一朝向为Z轴正向,虚拟镜子垂直于地面向上为Y轴正向,第一人称视角相机10、虚拟镜子11和镜子相机12三者以图示的位置关系存在与同一虚拟空间。其中,预设距离包括镜子相机12和虚拟镜子11之间的第一垂直距离D,以及第一人称视角相机10和虚拟镜子11之间的第二垂直距离L。
需要说明的是,上述预设距离包括第一垂直距离D和第二垂直距离L仅为预设距离在虚拟镜子垂直于地面设置时的一种情况,可以理解的是,在虚拟现实空间中,可以任意设置虚拟镜子的位置和姿态,例如虚拟镜子相机倾斜于地面设置,则预设距离具体根据第一人称视 角相机与镜子相机之间的连线在地面上的投影确定,与虚拟镜子不存在直接关系。为便于说明,后续以预设距离包括第一垂直距离D和第二垂直距离L为例说明确定镜子相机的第一位置的过程,而预设距离的其他情况,与此相同或相似,本公开在此不做赘述。
一些实施例中,镜子相机的第一位置包括镜子相机的高度。镜子相机的高度是指镜子相机垂直于地面方向的高度。
参考图5B所示,图5B为本公开实施例提供的镜子相机的高度的示意图,在图5B所示的坐标系中,镜子相机的第一朝向为Z轴正向,虚拟镜子垂直于地面向上为Y轴正向,第一人称视角相机的位置为(x1,y1,z1),虚拟镜子(底边中点)的位置为(x2,y2,z2),镜子相机的高度是镜子相机在Y轴方向的坐标值,记作y3。
需要说明的是,图5B中虚拟镜子都只是为计算方便引入的,仅为示例性示出,并不代表虚拟镜子的实际位置和姿态,后续图示中的虚拟镜子也是如此,本公开不再赘述。
本公开实施例中提供一种实施方式,根据第一人称视角相机的高度确定镜子相机的高度,y3=y1;或者,根据虚拟镜子垂直于地面的高度确定镜子相机的高度,y3=M/2,其中M是虚拟镜子的高度。
本公开实施例中提供一种实施方式,根据虚拟镜子在垂直于地面方向的坐标值和虚拟镜子的高度确定镜子相机的高度,也就是镜子相机在Y轴方向的坐标值y3。如公式(1)所示:
其中,y2是虚拟镜子在Y轴方向的坐标值;M是虚拟镜子的高度。在一些实施例中,虚拟镜子的底边设置于地面处,y2=0,则y3=M/2。
根据虚拟镜子在Y轴方向的坐标值y2和虚拟镜子的高度M确定镜子相机的高度,使得虚拟镜子中呈现的虚拟形象始终保持在居中位置,更符合人眼习惯,提升用户使用体验感。
在一些实施例中,根据虚拟镜子在Y轴方向的坐标值y2和虚拟镜 子的高度M,以及比例系数,例如1.5,确定镜子相机在Y轴方向的坐标值y3,使得虚拟镜子中呈现的虚拟形象始终保持在虚拟镜子的中上位置。通过比例系数进一步调整镜子相机的高度,提升了灵活性。其中,比例系数可以根据实际情况进行设置,本公开对此不作限定。
镜子相机的第一位置还包括沿第一朝向的坐标值,以前述的虚拟坐标系为例,镜子相机的第一位置还包括Z轴方向的坐标值。在虚拟坐标系中,第一人称视角相机的位置为(x1,y1,z1),镜子相机Z轴方向的坐标值z3根据第一人称视角相机Z轴方向的坐标值z1和预设距离L+D确定。如公式(2)所示:
z3=z1-(L+D)           (2)
在虚拟空间中,在垂直于地面方向且同时垂直于第一朝向的方向上也需要确定镜子相机的坐标值,在前述虚拟坐标系中,将垂直于地面方向且同时垂直于第一朝向的方向作为X轴,根据第一人称视角相机的在X轴的坐标值x1,确定镜子相机在X轴的坐标值x3,如公式(3)所示:
x3=x1            (3)
上述实施例通过第一人称视角相机的位置、虚拟镜子的位置、虚拟镜子的高度、预设距离和第一朝向确定镜子相机的第一位置,在虚拟坐标系中表现为三轴坐标,从而保证镜子相机会随着虚拟形象的位置变化而变化位置,虚拟镜子中始终呈现虚拟形象。
一些实施例中,在响应于针对镜子相机的调整指令确定镜子相机的第二朝向之后,根据第一人称视角相机的位置、预设距离和第二朝向确定镜子相机的第二位置,这一过程的具体实施方式与确定镜子相机的第一位置的具体实施方式相同或相似,本公开在此不做赘述。
一些实施例中,虚拟形象的位置发生变化,则第一人称视角相机 的位置相应发生变化。若在虚拟坐标系中,第一人称视角相机从初始位置(x1,y1,z1)移动至(x1`,y1`,z1`),为了在虚拟镜子中完整呈现虚拟形象,本公开实施例提供一种实施方式,首先根据虚拟镜子在垂直于地面方向的坐标值y2和虚拟镜子的高度M,确定初始状态时镜子相机的高度,也即镜子相机在Y轴方向的坐标值,记作y0,如公式(4)所示:
表示第一人称视角相机在初始位置(x1,y1,z1)时,镜子相机的高度,可以理解为初始高度。
可以理解的是,镜子相机的初始高度是镜子相机在初始位置时的高度,确定镜子相机的初始高度的过程与前述确定镜子相机的高度的方式相同或相似,例如镜子相机的初始高度可以根据第一人称视角相机的高度和/或虚拟镜子的高度确定,本公开在此不做赘述。
在确定镜子相机的初始高度之后,确定第一人称视角相机在垂直于地面方向上相对于镜子中点的偏移高度s,其中镜子中点是虚拟镜子的高度所在的方向的中点。
在一些实施例中,根据第一人称视角相机的位置、虚拟镜子的高度以及虚拟镜子的位置确定第一人称视角相机在垂直于地面方向上相对于镜子中点的偏移高度s,如公式(5)所示:
其中,y1`为第一人称视角相机在垂直于地面方向上的坐标值;M为虚拟镜子的高度;y2为虚拟镜子在垂直于地面方向上的坐标值。
然后,根据预设距离、虚拟镜子的高度和镜子相机的视场角,确定镜子相机在高度方向上的基准偏移高度b;
在一些实施例中,如图6所示,图6为本公开实施例提供确定镜子相机的基准偏移高度的示意图,首先根据第一垂直距离D和虚拟镜 子的镜子半高M/2,确定镜子相机的视场角,如公式(6)所示:
本公开实施例提供一种实施方式,根据第二垂直距离L和镜子相机的视场角(Field Of View,)FOV,确定镜子相机在高度方向上的基准偏移高度b,其中,基准偏移高度b为当第一人称视角相机在高度方向上移动半个镜子高度的情况下,镜子相机对应的反向移动高度,如公式(7)所示:
通常情况下,第一人称视角相机在高度方向上的偏移高度大于半个镜子高度,如图7所示,图7为本公开实施例提供确定镜子相机的高度的示意图,本公开实施例提供一种实施方式,根据第一人称视角的偏移高度s和虚拟镜子的镜子半高M/2确定偏移比例a,如公式(8)所示:
进一步的,根据基准偏移高度b和偏移比例a,确定镜子相机偏移高度l,如公式(9)所示:
l=b*(-a)           (9)
然后,根据镜子相机偏移高度l和镜子中点的高度,确定镜子相机的高度y3`,如公式(10)所示:
根据上述公式(6)、(7)、(8)、(9)、(10)得到镜子相机的高度y3`,如公式(11)所示:
在确定镜子相机的高度之后,可确定镜子相机沿镜子相机的朝向的坐标为z3`=z1`-(D+L),X轴朝向的坐标为x3`=x1`,得到镜子相机的第一位置为从而实现镜子相机的位置根据虚拟形象位置变化而变化,使得虚拟镜子中始终完整呈现虚拟形象,第一图像显示的位置与眼睛对齐为用户创建或修改虚拟形象提供参考。
上述实施例是在第一垂直距离D为已知量不改变的情况下,实现镜子相机的三轴坐标跟随虚拟形象的移动而变化,本公开还提供在已知第一垂直距离的初始值的情况下,镜子相机的视场角不变,通过调整镜子相机和虚拟镜子之间的距离来实现虚拟镜子中始终呈现虚拟形象。
在镜子相机的视场角不变的情况下,虚拟形象的位置发生变化,第一人称视角相机由(x1,y1,z1)移动至(x1`,y1`,z1`)时,由于镜子相机的视场角范围有限,用户创建的虚拟形象的高度可能会超出虚拟镜子所能容纳的高度,则在虚拟镜子中不能够完整呈现虚拟形象,又因为用户是在真实环境中佩戴VR头显设备进行操作,环境的复杂程度不可控,为保证用户的安全,尽量避免用户在真实环境中移动,因此调整镜子相机位置,从而沿镜子相机的朝向完整显示虚拟形象。
如图8所示,图8为本公开实施例中提供的确定镜子相机的第一位置的示意图,图中示出第一人称视角相机10、虚拟镜子11、镜子相机12在YOZ平面的投影点,第一人称视角相机10在垂直于地面方向上从坐标y1移动至坐标y1`。本公开实施例提供一种实施方式通过调整镜子相机和虚拟镜子之间的第一垂直距离以确定镜子相机的位置:
首先,根据镜子相机的视场角FOV、镜子相机和虚拟镜子之间的 距离初始值d、第一人称视角相机和虚拟镜子之间的垂直距离L,确定虚拟镜子所能呈现的虚拟形象的最大高度Hmax,如公式(12)所示:
其中,保持视场角不变。
根据第一人称视角相机移动后垂直于地面方向的坐标y1`确定超出虚拟镜子呈现高度的距离m,如公式(13)所示:
m=y1`-Hmax           (13)
然后,根据镜子相机的视场角FOV和距离m确定镜子相机在第一朝向上需要移动的距离n,如公式(14)所示:
确定镜子相机在第一朝向上的坐标z3,如公式(15)所示:
z3=z1-(D+L)-n       (15)
因此,在视场角为定值FOV的情况下,第一人称视角相机位置变化,则镜子相机的第一位置可表示为
上述实施例在虚拟形象移动且镜子相机的视场角固定的情况下,通过调整镜子相机在第一朝向上的坐标,使得虚拟镜子中始终呈现完整的虚拟形象,提升了视觉效果,给用户创建虚拟形象或修改虚拟形象提供了参考,提升了用户的使用体验感。
S203、基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。
通过上述实施例在确定镜子相机的第一朝向之后,确定镜子相机的第一位置,在镜子相机的朝向为第一朝向保持不变的情况下,若虚拟形象移动,也就是第一人称视角相机的位置发生变化,基于第一人 称视角相机的位置、预设距离确定镜子相机的第一位置,使得镜子相机跟随虚拟形象移动,然后镜子相机第一朝向上、第一位置上获取第一图像,并在虚拟镜子上显示第一图像,从而不需要用户在虚拟空间中去主动地与虚拟镜子对齐,一方面,用户在现实世界的移动空间可能会受限制,难以找到合适的位置或角度与虚拟镜子对齐;另一方面,无需限制用户必须站在镜子特定的对齐位置且不再移动才能显示第一图像,更好地模拟照镜子,实现在虚拟形象随意移动的情况下仍能照镜子,使得无论虚拟形象如何移动虚拟镜子上始终呈现虚拟形象的第一图像,为创建或修改虚拟形象提供参考,提升用户的使用体验感。
另外,上述实施例在镜子相机的朝向由第一朝向变化为第二朝向的情况下,通过确定不同朝向下镜子相机的位置,获取第二朝向、第二位置的第二图像,将第一图像更新显示为第二图像,无需限制虚拟形象在特定的位置,以特定的姿态与虚拟镜子对齐,使得用户不必花费时间、精力在虚拟空间中寻找特定的位置和姿态,方便用户从不同角度查看虚拟形象,适应于多元的虚拟显示场景,提升用户的使用体验感。
综上,本公开实施例提供一种图像显示方法,首先确定镜子相机的第一朝向,然后根据第一人称视角相机的位置、预设距离和第一朝向确定镜子相机的位置,进而基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。实现镜子相机根据虚拟形象移动,从而始终在虚拟镜子中呈现虚拟形象的图像,为创建或修改虚拟形象提供参考,提升了用户的使用体验感。
如图9所示,图9为本公开实施例提供的一种图像显示装置的结构示意图,该装置包括:
处理模块901,用于确定镜子相机的第一朝向;根据第一人称视角相机的位置、预设距离和第一朝向,确定镜子相机的第一位置;
显示模块902,用于基于第一位置和第一朝向获取第一图像,并在 虚拟镜子上显示第一图像。
在一些实施例中,处理模块901,还用于响应于针对镜子相机的调整指令,确定镜子相机的第二朝向;根据第一人称视角相机的位置、预设距离和第二朝向,确定镜子相机的第二位置;
显示模块902,还用于基于第二朝向和第二位置,获取第二图像,并在虚拟镜子上更新显示第二图像。
在一些实施例中,第一朝向根据第一人称视角相机的初始位置到虚拟镜子的镜面的垂线方向确定。
在一些实施例中,第一人称视角相机与镜子相机之间连线在地面上投影的长度为预设距离。
在一些实施例中,第一人称视角相机的位置包括第一人称视角相机的高度,镜子相机的位置包括镜子相机的高度;镜子相机的高度根据第一人称视角相机的高度和/或虚拟镜子的高度确定。
在一些实施例中,处理模块901,具体用于根据预设距离、虚拟镜子的高度和镜子相机的视场角,确定镜子相机在高度方向上的基准偏移高度;
确定偏移比例,偏移比例为偏移高度和虚拟镜子的镜子半高的比例,偏移高度为第一人称视角相机相对于虚拟镜子的镜子中点的高度;
根据基准偏移高度和偏移比例,确定镜子相机偏移高度;
根据镜子相机偏移高度和镜子中点的高度,确定镜子相机的高度。
在一些实施例中,第一人称视角相机、虚拟镜子和镜子相机处于同一虚拟空间,虚拟镜子垂直于地面设置。
上述模块可以被实现为在一个或多个通用处理器上执行的软件组件,也可以被实现为诸如用于执行某些功能的硬件,诸如可编程逻辑器件和/或专用集成电路。在一些实施例中,这些模块可以体现为软件 产品的形式,该软件产品可以存储在非易失性存储介质中。这些非易失性存储介质中包括使得计算机设备(例如个人计算机、服务器、网络设备、移动终端等)执行本公开实施例中描述的方法。在一些实施例中,上述模块还可以在单个设备上实现,也可以分布在多个设备上。这些模块的功能可以相互合并,也可以进一步拆分为多个子模块。
综上,本公开实施例提供一种图像显示装置,该装置首先由处理模块确定镜子相机的第一朝向,然后根据第一人称视角相机的位置、预设距离和第一朝向确定镜子相机的位置,进而由显示模块基于第一位置和第一朝向获取第一图像,并在虚拟镜子上显示第一图像。实现镜子相机根据虚拟形象移动,从而始终在虚拟镜子中呈现虚拟形象的图像,为创建或修改虚拟形象提供参考,提升了用户的使用体验感。
如图10所示,图10为本公开实施例提供的一种电子设备的结构示意图,该电子设备包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述方法实施例中的图像显示方法的各个过程。且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现上述方法实施例中图像显示方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该计算机可读存储介质可以为只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本公开实施例提供一种计算程序产品,该计算机程序产品存储有计算机程序,计算机程序被处理器执行时实现上述方法实施例中图像显示方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域技术人员应明白,本公开的实施例可提供为方法、系统、 或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
本公开中,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本公开中,存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
本公开中,计算机可读介质包括永久性和非永久性、可移动和非可移动存储介质。存储介质可以由任何方法或技术来实现信息存储,信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。根据本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系 或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
本公开实施例提供的扩展现实空间中镜像显示方法、装置、电子设备和介质,通过本公开实施例提供的扩展现实空间中镜像显示方法,通过接收用户触发的目标对象的镜像显示调整指令,基于镜像显示调整指令调整虚拟摄像机的参数信息,基于调整参数信息后的虚拟摄像机获取的显示图像,在虚拟显示屏中显示目标对象。其中,镜像显示调整指令用于指示调整目标对象在虚拟显示屏中的显示比例,即,该技术方案中用户通过触发镜像显示调整指令来指示调整目标对象在虚拟显示屏中的显示比例,接收到镜像显示调整指令之后,调整虚拟摄像机的参数信息,虚拟摄像机的参数信息被调整后虚拟摄像机获取的显示图像会随之发生变化,从而,显示图像中的目标对象的显示比例也发生变化,基于此显示在虚拟显示屏中的显示对象的显示比例得到调整,此过程中,通过虚拟摄像机参数的调整即可实现目标对象的显示比例的调整,无需用户在扩展现实空间中进行移动来调整,从而提升用户对扩展现实中目标对象的观看效果,便于用户对目标对象的参数的调整。
本公开的技术方案可应用于扩展现实场景中,其中,扩展现实包 括但不限于AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)、MR(Mixed Reality,混合现实)等。如图11a所示,图11a为本公开实施例提供的一种扩展现实空间中镜像显示方法的一种应用场景示意图,用户111佩戴头显设备,当用户111进入应用程序后,用户期望修改虚拟人物形象的角色形象。在沿用户和头显设备发射的虚拟射线指向方向1.5米的位置瞬间出现虚拟镜面112,用户从应用程序的主界面进入到虚拟人物形象的编辑模块时,如图11b所示,图11b中的虚拟镜面112用于显示虚拟人物形象,虚拟摄像机113用于拍摄虚拟镜面112上显示的虚拟人物形象,虚拟形象选择面板114用于选择不同的虚拟人物形象。另外,当用户退出虚拟人物形象的编辑模块时,虚拟镜面112同时消失。例如,虚拟镜面112可以设置为落地镜,虚拟镜面112的高度可以设置2米,宽度可以设置为1米。其中,虚拟镜面112仅当前的调起用户可见,其余用户不可见。
下面以几个实施例对本公开的技术方案进行描述。
图12为本公开实施例提供的一种扩展现实空间中镜像显示方法的流程示意图,参照图12所示,该扩展现实空间中镜像显示方法包括如下步骤S21至S23:
S21、接收用户触发的目标对象的镜像显示调整指令。
其中,镜像显示调整指令用于指示调整所述目标对象在虚拟显示屏中的显示比例。目标对象可以理解为用户在扩展现实场景中对应的虚拟形象,可以是虚拟任务形象,也可以是用户对应的其他虚拟形象,例如,动物或植物等,对此,本公开不做限制。其中,虚拟显示屏例如可以是虚拟镜子,虚拟显示屏在虚拟显示空间中的显示位置可以根据场景需求设定,通常设置于便于用户操作的位置。
用户可以通过对目标对象的参数进行调整以调整目标对象的视觉形象,以目标对象为用户对应的虚拟人物形象为例,用户可以调整虚拟人物形象的睫毛、眼睛、鼻子等,用户在调整前、调整中或者调整后,通常需要放大或者缩小虚拟人物形象,以便于进行调整或者观看 调整效果,例如,当用户需要调整虚拟人物形象的睫毛时,需要放大虚拟人物形象,以便于对睫毛进行精准调整,调整结束之后,需要缩小虚拟人物形象,以便于观察调整后的整体效果。
本公开中通过调整目标对象在虚拟显示屏中的显示比例来调整目标对象的大小,例如,调大目标对象在虚拟显示屏中的显示比例,相当于目标对象被调大,调小目标对象在虚拟显示屏中的显示比例,相当于目标对象被调小。
当用户虚拟调整目标对象在虚拟显示屏中的显示比例时,触发镜像显示调整指令。
用户触发镜像显示调整指令的方式包括但不限于如下可能的实现方式:
示例性的,在虚拟显示屏上显示调整指令的界面,一种情况是,调整指令可以是放大或缩小,参照图13a所示,按下图13a中的缩放功能按钮可以对目标对象的显示比例进行调整,左侧图是原图,右侧是当按下缩放功能按钮后,根据缩小指令调整后的目标对象在虚拟显示屏中的显示比例;参照图13b所示,按下图13b中的缩放功能按钮可以对目标对象的显示比例进行调整,左侧图是原图,右侧是当按下放大功能按钮后,根据放大指令调整后的目标对象在虚拟显示屏中的显示比例。
另一种情况是,可以设置具体的调整比例,例如,放大1倍,放大1.5倍,放大2倍;缩小1倍,缩小1.5倍,缩小2倍等。参照图13c所示,按下图13c中的缩放倍数按钮可以对目标对象的显示比例进行调整,图13c中左侧图是原图,图13c中右侧是当按下缩放倍数按钮后,缩小1倍后的目标对象在虚拟显示屏中的显示比例;参照图13d所示,图13d中左侧图是原图,图13d中右侧是放大1倍后的目标对象在虚拟显示屏中的显示比例。另外,还可以通过设置具体的调整步长的方式调整目标对象在虚拟显示界面的显示比例,此处不做具体限制。
S22、基于所述镜像显示调整指令调整虚拟摄像机的参数信息。
其中,参数信息包括:视场角度,和/或,虚拟摄像机与目标对象之间的距离。
需要说明的是,本公开中所描述的虚拟摄像机(例如可以是镜子相机)是指在虚拟现实场景中实现图像采集的虚拟对象,该虚拟对象用于实现在虚拟现实场景中采集包含目标对象的图像,可以通过调整该虚拟对象采集图像时的位置和姿态来调整采集到的图像中目标对象的大小。通过引入虚拟摄像机的概念,假设存在一个虚拟摄像机在某个位置以某个视场角度采集包含目标对象的图像,通过调整该虚拟摄像机距离目标对象的位置和/或视场角度,可以调整采集到的图像中目标对象的大小,也就是,引入虚拟摄像机的概念是为了便于说明图像的采集过程以及采集到的图像中目标对象大小变化的原理,但实际上在虚拟现场环境中并不存在虚拟摄像机,也并不显示该虚拟摄像机。
示例性的,在拍摄位置不变的情况下,当视场角为默认角度时,拍摄图像的范围,如图14a所示;当视场角变大时,拍摄图像的范围,如图14b所示;当视场角变小时,拍摄图像的范围,如图14c所示。在视场角不变的情况下,当拍摄位置为默认位置时,例如,在本实施例中,默认位置可以是1.5米,拍摄图像的范围,如图14d所示;当拍摄位置拉远,即虚拟摄像机的位置与虚拟镜面的距离变大时,例如,当虚拟摄像机的位置与虚拟镜面的距离为1.8米时,拍摄图像的范围,如图14e所示;当拍摄位置拉近,即虚拟摄像机的位置与虚拟镜面的距离缩小时,例如,当虚拟摄像机的位置与虚拟镜面的距离为0.8米时,拍摄图像的范围,如图14f所示。
基于接收到的用户放大或缩小镜中人像的指令,通过调整视场角度和/或虚拟摄像头距离目标对象的距离,让用户看到放大或缩小的图像,使得用户可以在不移动位置的情况下在虚拟显示屏中观看到更加清楚的画面。
S23、基于调整参数信息后的虚拟摄像机获取的显示图像,在所述 虚拟显示屏中显示所述目标对象。
基于调整参数信息后的虚拟摄像机获取的显示图像,在所述虚拟显示屏中显示所述目标对象包括但不限于如下可能的实现方式:
一种可能的实现方式为:确定所述虚拟摄像机的近裁剪平面与目标对象之间的距离为预设距离,也就是虚拟摄像机最终获取的图像内容为距离目标对象预设距离范围内的扩展现实场景中的内容。
另一种可能的实现方式为:确定虚拟摄像机的近裁剪平面与目标对象之间的距离为目标对象与虚拟显示屏之间的距离,其中,目标对象在扩展现实空间内可移动,虚拟显示屏在扩展现实空间中的位置相对固定,也就是虚拟摄像机最终获取的图像内容为目标对象和虚拟显示屏之间的范围内的扩展现实场景中的内容,该范围随目标对象的移动而改变。通过设置目标对象与近裁剪平面之间的距离,可以确保虚拟显示屏中显示的内容更接近用户使用真实镜子的感受。
本公开实施例提供的扩展现实空间中镜像显示方法,通过接收用户触发的目标对象的镜像显示调整指令,基于镜像显示调整指令调整虚拟摄像机的参数信息,基于调整参数信息后的虚拟摄像机获取的显示图像,在虚拟显示屏中显示目标对象。其中,镜像显示调整指令用于指示调整目标对象在虚拟显示屏中的显示比例,即,该技术方案中用户通过触发镜像显示调整指令来指示调整目标对象在虚拟显示屏中的显示比例,接收到镜像显示调整指令之后,调整虚拟摄像机的参数信息,虚拟摄像机的参数信息被调整后虚拟摄像机获取的显示图像会随之发生变化,从而,显示图像中的目标对象的显示比例也发生变化,基于此,显示在虚拟显示屏中的显示对象的显示比例得到调整,此过程中,通过虚拟摄像机参数的调整即可实现目标对象的显示比例的调整,无需用户在扩展现实空间中进行移动来调整,从而提升用户对扩展现实中目标对象的观看效果,便于用户对目标对象的参数的调整。
在一些实施例中,在上述实施例的基础上,以虚拟摄像机的参数信息包括视场角度为例,基于所述镜像显示调整指令调整虚拟摄像机 的参数信息,也就是基于镜像显示调整指令调小虚拟摄像机的视场角度,或者,基于镜像显示调整指令调大虚拟摄像机的视场角度,具体地,包括但不限于如下可能的实现方式:
一种场景为镜像显示调整指令具体用于指示调大或者调小目标对象在虚拟显示屏中的显示比例,但不需要用户指示具体的显示比例。
可以按照固定步长进行调整,例如,用户触发一次指示调大的镜像显示调整指令,调整后的显示比例是调整前的显示比例的2倍,用户触发一次指示减小的镜像显示调整指令,调整后的显示比例是调整前的显示比例的1/2倍。
也可以不按照固定步长进行调整,例如,开始按照大步长调整,之后按照小步长调整,也可以理解为一开始粗调,之后精调,例如,用户触发一次指示调大的镜像显示调整指令,调整后的显示比例是调整前的显示比例的4倍,用户再次触发一次指示调大的镜像显示调整指令,调整后的显示比例是调整前的显示比例的2倍,用户触发一次指示调小的镜像显示调整指令,调整后的显示比例是调整前的显示比例的1/4倍,用户再次触发一次指示调小的镜像显示调整指令,调整后的显示比例是调整前的显示比例的1/2倍。
当所述镜像显示调整指令具体用于指示调大所述目标对象在虚拟显示屏中的显示比例,基于所述镜像显示调整指令调小所述虚拟摄像机的视场角度。
当所述镜像显示调整指令具体用于指示调小所述目标对象在虚拟显示屏中的显示比例,基于所述镜像显示调整指令调大所述虚拟摄像机的视场角度。
另一种场景为镜像显示调整指令具体用于指示调整目标对象在虚拟显示屏中的显示比例至目标比例。
可以基于目标比例获取目标调整参数,基于目标调整参数调整虚拟摄像机。
在一些实施例中,可以基于虚拟摄像机的初始视场角度和所述目 标比例,获取虚拟摄像机的目标视场角度。
假设当前虚拟摄像机的初始视场角度为θ0,目标比例为m,则可以根据如下公式获取目标视场角度θx
在上述实施例中,当目标视场角度在预设视场角度范围内可以直接将虚拟摄像机的视场角度调整至目标视场角度即可。
然而,在一些场景中,可以调整虚拟摄像机的视场角度,同时,调整虚拟摄像机与目标对象之间的距离,以实现将目标对象在虚拟显示屏中的显示比例调整至目标比例。例如,当目标视场角度不在预设视场角度范围内,当目标视场角度过小没有立体感,当目标视场角度过大会出现鱼眼问题,因此,针对目标市场角度过大或者过小,再调整摄像机的参数时还进一步地结合调整虚拟摄像机的拍摄位置,以使得调整目标对象在虚拟显示屏中的显示比例为目标比例,从而,避免立体感不足或者鱼眼失真的问题。
具体地,基于虚拟摄像机的初始视场角度、预设视场角度、虚拟摄像机与目标对象之间的初始距离,以及目标比例,获取虚拟摄像机与目标对象之间的目标距离。先将虚拟摄像机的视场角度调整至预设视场角度,并将虚拟摄像机调整至与目标对象相距目标距离处。
假设初始视场角度为θ0,初始视场角度是指调整之前虚拟摄像机的视场角度,预设视场角度为θ1,虚拟摄像机与目标对象之间的初始距离为s0,初始距离是指调整之前虚拟摄像机和目标对象之间的距离,目标比例为m,则虚拟摄像机与目标对象之间的目标距离sx
在上述实施例中,预设视场角度可以是第一预设视场角度或者第二预设视场角度,可以认为,当目标视场角度小于第一预设视场角度时,采集到的画面没有立体感,当目标视场角度大于第二预设视场角度时,采集到的图面会出现鱼眼失真。
具体地,若所述目标视场角度小于第一预设视场角度,基于所述目标对象的尺寸、所述第一预设视场角度和所述目标比例,获取所述虚拟摄像机与所述目标对象之间的目标距离;将所述虚拟摄像机的视场角度调整至所述第一预设视场角度,并将所述虚拟摄像机调整至与所述目标对象相距所述目标距离处。
假设初始视场角度为θ0,第一预设视场角度为θ11,虚拟摄像机与目标对象之间的初始距离为s0,目标比例为m,则可以根据如下公式获取虚拟摄像机与目标对象之间的目标距离sx1
若所述目标视场角度大于第二预设视场角度,基于所述目标对象的尺寸、所述第二预设视场角度和所述目标比例,获取所述虚拟摄像机与所述目标对象之间的目标距离;将所述虚拟摄像机的视场角度调整至所述第二预设视场角度,并将所述虚拟摄像机调整至与所述目标对象相距所述目标距离处。
假设初始视场角度为θ0,第二预设视场角度为θ12,虚拟摄像机与目标对象之间的初始距离为s0,目标比例为m,则可以根据如下公式获取虚拟摄像机与目标对象之间的目标距离sx2
本实施例通过调整虚拟摄像机的视场角度和虚拟摄像机与目标对 象之间的距离,以使得调整目标对象在虚拟显示屏中的显示比例为目标比例,从而,避免立体感不足或者鱼眼失真的问题。
在上述实施例中,虚拟摄像机的参数信息还可以包括虚拟摄像机与目标对象之间的距离,可以通过单独调整虚拟摄像机与目标对象之间的距离以调整目标对象在虚拟显示屏中的显示比例。
当所述镜像显示调整指令具体用于指示调大所述目标对象在虚拟显示屏中的显示比例时,基于所述镜像显示调整指令调近所述虚拟摄像与所述目标对象之间的距离。
当所述镜像显示调整指令具体用于指示调小所述目标对象在虚拟显示屏中的显示比例时,基于所述镜像显示调整指令调远所述虚拟摄像机与所述目标对象的距离。
另一种场景为镜像显示调整指令具体用于指示调整目标对象在虚拟显示屏中的显示比例至目标比例。
可以基于目标比例获取目标调整参数,基于目标调整参数调整虚拟摄像机。
在一些实施例中,可以基于虚拟摄像机与目标对象之间的初始距离,以及所述目标比例,获取虚拟摄像机与目标对象之间的目标距离。
假设虚拟摄像机与目标对象之间的初始距离为s0,目标比例为m,则可以根据如下公式获取虚拟摄像机与目标对象之间的目标距离sx3
sx3=m·s0
在上述实施例中,通过调整虚拟摄像机的视场角度以调整目标对象在虚拟显示屏中的显示比例的方案,与,通过调整虚拟摄像机的拍摄位置以调整目标对象在虚拟显示屏中的显示比例的方案,可以独立使用也可以相互结合使用,对此,本公开不做限制,其实现原理和技术效果类似,不一一赘述。
基于同一发明构思,作为对上述方法的实现,本公开实施例还提 供了一种扩展现实空间中镜像显示装置,该实施例与前述方法实施例对应,为便于阅读,本实施例不再对前述方法实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的扩展现实空间中镜像显示装置能够对应实现前述方法实施例中的全部内容。
本公开实施例提供了一种扩展现实空间中镜像显示装置,图15为该扩展现实空间中镜像显示装置的结构示意图,如图15所示,该扩展现实空间中镜像显示装置包括:
调整指令接收模块510,用于接收用户触发的目标对象的镜像显示调整指令,所述镜像显示调整指令用于指示调整所述目标对象在虚拟显示屏中的显示比例;
参数信息调整模块520,用于基于所述镜像显示调整指令调整虚拟摄像机的参数信息;
目标对象显示模块530,用于基于调整参数信息后的虚拟摄像机获取的显示图像,在所述虚拟显示屏中显示所述目标对象。
在一些实施例中,所述参数信息包括:视场角度;
所述参数信息调整模块520具体用于基于所述镜像显示调整指令调小所述虚拟摄像机的视场角度;
或者,
基于所述镜像显示调整指令调大所述虚拟摄像机的视场角度。
在一些实施例中,所述参数信息包括:视场角度;
所述镜像显示调整指令具体用于指示调整所述目标对象在虚拟显示屏中的显示比例至目标比例;
所述参数信息调整模块520具体用于基于所述目标比例获取目标调整参数,所述目标调整参数包括:目标视场角;
基于所述目标调整参数调整所述虚拟摄像机。
在一些实施例中,所述参数信息调整模块520具体用于基于所述虚拟摄像机的初始视场角度和所述目标比例,获取所述虚拟摄像机的目标视场角度。
在一些实施例中,所述目标视场角度不在预设视场角度范围内;
所述参数信息调整模块520具体用于基于所述虚拟摄像机的初始视场角度、预设视场角度、所述虚拟摄像机与所述目标对象之间的初始距离、以及所述目标比例,获取所述虚拟摄像机与所述目标对象之间的目标距离;
将所述虚拟摄像机的视场角度调整至所述预设视场角度,并将所述虚拟摄像机调整至与所述目标对象相距所述目标距离处。
在一些实施例中,所述参数信息包括:所述虚拟摄像机与所述目标对象之间的距离;
所述参数信息调整模块520具体用于基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调近;
或者,
基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调远。
在一些实施例中,目标对象显示模块530还用于确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为预设距离;
或者,
确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为所述目标对象与所述虚拟显示屏之间的距离。
上述模块可以被实现为在一个或多个通用处理器上执行的软件组件,也可以被实现为诸如用于执行某些功能的硬件,诸如可编程逻辑器件和/或专用集成电路。在一些实施例中,这些模块可以体现为软件产品的形式,该软件产品可以存储在非易失性存储介质中。这些非易失性存储介质中包括使得计算机设备(例如个人计算机、服务器、网络设备、移动终端等)执行本公开实施例中描述的方法。在一些实施例中,上述模块还可以在单个设备上实现,也可以分布在多个设备上。这些模块的功能可以相互合并,也可以进一步拆分为多个子模块。
本实施例提供的扩展现实空间中镜像显示装置可以执行上述方法 实施例提供的扩展现实空间中镜像显示方法,其实现原理与技术效果类似,此处不再赘述。
基于同一发明构思,本公开实施例还提供了一种电子设备。图16为本公开实施例提供的电子设备的结构示意图,如图16所示,本实施例提供的电子设备包括:存储器61和处理器62,所述存储器61用于存储计算机程序;所述处理器62用于在执行计算机程序时实现上述实施例提供的扩展现实空间中镜像显示方法。
基于同一发明构思,本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当计算机程序被计算设备执行时,使得所述计算设备实现上述实施例提供的扩展现实空间中镜像显示方法。
基于同一发明构思,本公开实施例还提供了一种计算机程序产品,当所述计算机程序产品中包含的程序在计算机上运行时,使得所述计算机实现上述实施例提供的扩展现实空间中镜像显示方法。
本公开一些实施例还提供了一种计算机程序,包括:指令,所述指令当由处理器执行时使所述处理器执行上述任一个实施例的图像显示方法,和/或扩展现实空间中镜像显示方法。
本领域技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动存储介质。存储介质可以由任何方法或技术来实现信息存储,信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。根据本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (21)

  1. 一种图像显示方法,包括:
    确定镜子相机的第一朝向;
    根据第一人称视角相机的位置、预设距离和所述第一朝向,确定所述镜子相机的第一位置;
    基于所述第一位置和所述第一朝向获取第一图像,并在虚拟镜子上显示所述第一图像。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    响应于针对所述镜子相机的调整指令,确定所述镜子相机的第二朝向;
    根据所述第一人称视角相机的位置、所述预设距离和所述第二朝向,确定所述镜子相机的第二位置;
    基于所述第二朝向和所述第二位置,获取第二图像;
    并在所述虚拟镜子上更新显示所述第二图像。
  3. 根据权利要求1或2所述的方法,其中,所述第一朝向根据所述第一人称视角相机的初始位置到所述虚拟镜子的镜面的垂线方向确定。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述预设距离为所述第一人称视角相机与所述镜子相机之间连线在地面上投影的长度。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述第一人称视角相机的位置包括所述第一人称视角相机的高度,所述镜子相机的位置包括所述镜子相机的高度;
    所述镜子相机的高度根据所述第一人称视角相机的高度和/或所述虚拟镜子的高度确定。
  6. 根据权利要求5所述的方法,其中,确定所述镜子相机的高度的方式,包括:
    根据所述预设距离、所述虚拟镜子的高度和所述镜子相机的视场角,确定所述镜子相机在高度方向上的基准偏移高度;
    确定偏移比例,所述偏移比例为偏移高度和所述虚拟镜子的镜子半高的比例,所述偏移高度为所述第一人称视角相机相对于所述虚拟镜子的镜子中点的高度;
    根据所述基准偏移高度和所述偏移比例,确定镜子相机偏移高度;
    根据所述镜子相机偏移高度和所述镜子中点的高度,确定所述镜子相机的高度。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述第一人称视角相机、所述虚拟镜子和所述镜子相机处于同一虚拟空间,所述虚拟镜子垂直于地面设置。
  8. 根据权利要求7所述的方法,其中,所述方法应用于VR头显设备。
  9. 一种图像显示装置,包括:
    处理模块,用于确定镜子相机的第一朝向;根据第一人称视角相机的位置、预设距离和所述第一朝向,确定所述镜子相机的第一位置;
    显示模块,用于基于所述第一位置和所述第一朝向获取第一图像,并在虚拟镜子上显示所述第一图像。
  10. 一种扩展现实空间中镜像显示方法,包括:
    接收用户触发的目标对象的镜像显示调整指令,所述镜像显示调整指令用于指示调整所述目标对象在虚拟显示屏中的显示比例;
    基于所述镜像显示调整指令调整虚拟摄像机的参数信息;
    基于调整参数信息后的虚拟摄像机获取的显示图像,在所述虚拟显示屏中显示所述目标对象。
  11. 根据权利要求10所述的方法,其中,所述参数信息包括:视场角度;
    所述基于所述镜像显示调整指令调整虚拟摄像机的参数信息,包括:
    基于所述镜像显示调整指令调小所述虚拟摄像机的视场角度;
    或者,
    基于所述镜像显示调整指令调大所述虚拟摄像机的视场角度。
  12. 根据权利要求10或11所述的方法,其中,所述参数信息包括:视场角度;
    所述镜像显示调整指令具体用于指示调整所述目标对象在虚拟显示屏中的显示比例至目标比例;
    所述基于所述镜像显示调整指令调整虚拟摄像机的参数信息,包括:
    基于所述目标比例获取目标调整参数,所述目标调整参数包括:目标视场角;
    基于所述目标调整参数调整所述虚拟摄像机。
  13. 根据权利要求12所述的方法,其中,所述基于所述目标比例获取目标调整参数,包括:
    基于所述虚拟摄像机的初始视场角度和所述目标比例,获取所述虚拟摄像机的目标视场角度。
  14. 根据权利要求13所述的方法,其中,所述目标视场角度不在预设视场角度范围内;
    所述基于所述目标调整参数调整所述虚拟摄像机包括:
    基于所述虚拟摄像机的初始视场角度、预设视场角度、所述虚拟摄像机与所述目标对象之间的初始距离、以及所述目标比例,获取所 述虚拟摄像机与所述目标对象之间的目标距离;
    将所述虚拟摄像机的视场角度调整至所述预设视场角度,并将所述虚拟摄像机调整至与所述目标对象相距所述目标距离处。
  15. 根据权利要求10-14中任一项所述的方法,其中,所述参数信息包括:所述虚拟摄像机与所述目标对象之间的距离;
    所述基于所述镜像显示调整指令调整虚拟摄像机的参数信息,包括:
    基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调近;
    或者,
    基于所述镜像显示调整指令将所述虚拟摄像机与所述目标对象之间的距离调远。
  16. 根据权利要求10-15中任一项所述的方法,还包括:
    确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为预设距离;
    或者,
    确定所述虚拟摄像机的近裁剪平面与所述目标对象之间的距离为所述目标对象与所述虚拟显示屏之间的距离。
  17. 一种扩展现实空间中镜像显示装置,包括:
    调整指令接收模块,用于接收用户触发的目标对象的镜像显示调整指令,所述镜像显示调整指令用于指示调整所述目标对象在虚拟显示屏中的显示比例;
    参数信息调整模块,用于基于所述镜像显示调整指令调整虚拟摄像机的参数信息;
    目标对象显示模块,用于基于调整参数信息后的虚拟摄像机获取的显示图像,在所述虚拟显示屏中显示所述目标对象。
  18. 一种电子设备,包括:处理器、存储器及存储在所述存储器 上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的图像显示方法,和/或权利要求10-16中任一项所述的扩展现实空间中镜像显示方法。
  19. 一种计算机可读存储介质,包括:所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的图像显示方法,和/或如权利要求10-16中任一项所述的扩展现实空间中镜像显示方法。
  20. 一种计算机程序产品,包括:指令,当所述指令由处理器执行时,使得处理器实现如权利要求1至8中任一项所述的图像显示方法,和/或如权利要求10-16中任一项所述的扩展现实空间中镜像显示方法。
  21. 一种计算机程序,包括:指令,当所述指令由处理器执行时,使得处理器实现如权利要求1至8中任一项所述的图像显示方法,和/或如权利要求10-16中任一项所述的扩展现实空间中镜像显示方法。
PCT/CN2023/118297 2022-09-16 2023-09-12 一种图像显示方法、扩展现实空间中镜像显示方法、装置、电子设备和介质 WO2024055965A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211129263.3A CN117762240A (zh) 2022-09-16 2022-09-16 扩展现实空间中镜像显示方法、装置、电子设备和介质
CN202211129263.3 2022-09-16
CN202211146361.8 2022-09-20
CN202211146361.8A CN117788752A (zh) 2022-09-20 2022-09-20 一种图像显示方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024055965A1 true WO2024055965A1 (zh) 2024-03-21

Family

ID=90274311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118297 WO2024055965A1 (zh) 2022-09-16 2023-09-12 一种图像显示方法、扩展现实空间中镜像显示方法、装置、电子设备和介质

Country Status (1)

Country Link
WO (1) WO2024055965A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210093A (zh) * 2012-12-18 2015-12-30 艾斯适配有限公司 捕获和显示外观的装置、系统和方法
CN106775245A (zh) * 2016-12-19 2017-05-31 传线网络科技(上海)有限公司 基于虚拟现实的用户属性设置方法及装置
US20170365092A1 (en) * 2016-06-21 2017-12-21 Apple Inc. Method and System for Vision Based 3D Reconstruction and Object Tracking
US20210011607A1 (en) * 2019-07-12 2021-01-14 Cinemoi North America, LLC Providing a first person view in a virtual world using a lens
CN113672189A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 图像显示方法、装置、终端设备、存储介质及程序产品
CN115049803A (zh) * 2022-04-11 2022-09-13 北京字跳网络技术有限公司 增强现实画面的展示方法、装置、计算机设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210093A (zh) * 2012-12-18 2015-12-30 艾斯适配有限公司 捕获和显示外观的装置、系统和方法
US20170365092A1 (en) * 2016-06-21 2017-12-21 Apple Inc. Method and System for Vision Based 3D Reconstruction and Object Tracking
CN106775245A (zh) * 2016-12-19 2017-05-31 传线网络科技(上海)有限公司 基于虚拟现实的用户属性设置方法及装置
US20210011607A1 (en) * 2019-07-12 2021-01-14 Cinemoi North America, LLC Providing a first person view in a virtual world using a lens
CN113672189A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 图像显示方法、装置、终端设备、存储介质及程序产品
CN115049803A (zh) * 2022-04-11 2022-09-13 北京字跳网络技术有限公司 增强现实画面的展示方法、装置、计算机设备及存储介质

Similar Documents

Publication Publication Date Title
US9704299B2 (en) Interactive three dimensional displays on handheld devices
US11282264B2 (en) Virtual reality content display method and apparatus
JP5405264B2 (ja) 表示制御プログラム、ライブラリプログラム、情報処理システム、および、表示制御方法
KR101686693B1 (ko) 스테레오 영화용 시청자 중심 사용자 인터페이스
US11880956B2 (en) Image processing method and apparatus, and computer storage medium
CN108939556B (zh) 一种基于游戏平台的截图方法及装置
US11074755B2 (en) Method, device, terminal device and storage medium for realizing augmented reality image
EP3428874A1 (en) Image processing method and device
US11659150B2 (en) Augmented virtuality self view
KR102461232B1 (ko) 화상 처리 방법 및 장치, 전자 디바이스, 및 저장 매체
CN107844190B (zh) 基于虚拟现实vr设备的图像展示方法及装置
EP3683656A1 (en) Virtual reality (vr) interface generation method and apparatus
CN110738736B (zh) 图像处理装置、图像处理方法和存储介质
JP2003284093A (ja) 立体画像処理方法および装置
JP7392105B2 (ja) 没入型ビデオコンテンツをフォービエイテッドメッシュを用いてレンダリングするための方法、システム、および媒体
Hoberman et al. Immersive training games for smartphone-based head mounted displays
EP4054186A1 (en) Information processing apparatus, information processing method, and program
JP2003284095A (ja) 立体画像処理方法および装置
WO2024055965A1 (zh) 一种图像显示方法、扩展现实空间中镜像显示方法、装置、电子设备和介质
CN110060349B (zh) 一种扩展增强现实头戴式显示设备视场角的方法
JP6369461B2 (ja) 画像処理装置、画像処理方法、およびプログラム
Chu et al. Design of a motion-based gestural menu-selection interface for a self-portrait camera
CN111381750B (zh) 电子装置及其控制方法和计算机可读存储介质
CN114449169A (zh) 一种将全景视频展现在cave空间中的裁剪方法及系统
JP2003284094A (ja) 立体画像処理方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864697

Country of ref document: EP

Kind code of ref document: A1