WO2024055282A1 - Managing electronic shelf label (esl) groups - Google Patents

Managing electronic shelf label (esl) groups Download PDF

Info

Publication number
WO2024055282A1
WO2024055282A1 PCT/CN2022/119268 CN2022119268W WO2024055282A1 WO 2024055282 A1 WO2024055282 A1 WO 2024055282A1 CN 2022119268 W CN2022119268 W CN 2022119268W WO 2024055282 A1 WO2024055282 A1 WO 2024055282A1
Authority
WO
WIPO (PCT)
Prior art keywords
esl
group
processor
esls
transition command
Prior art date
Application number
PCT/CN2022/119268
Other languages
French (fr)
Inventor
Jie Zhang
Xin Wu
Nicolas Graube
Zhuxian GU
Zaiyong CHEN
Zhaoming YANG
Junqi MIAO
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/119268 priority Critical patent/WO2024055282A1/en
Publication of WO2024055282A1 publication Critical patent/WO2024055282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management

Definitions

  • ESLs Electronic Shelf Labels
  • AP network access point
  • Bluetooth Low Energy an energy-efficient, short range wireless communication protocol
  • ESLs may be organized into groups for synchronization with an AP.
  • the AP must disassociate with the ESL and perform a re-onboarding process or resynchronization process with the ESL that is then associated with a new group. This process is time consuming and inefficient.
  • the AP may communicate, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
  • communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability may include broadcasting, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability.
  • the timing information may include countdown information indicating the Group ID time of applicability.
  • the transition command may include an indication of a new ESL ID for each ESL in the group of ESLs.
  • communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability may include communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs.
  • Some aspects may include receiving an advertisement message from one ESL from among the group of ESLs after the Group ID time of applicability, and performing resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
  • communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability may include transmitting, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and receiving from the ESL an acknowledgement of the transition command.
  • Some aspects may include retransmitting to the ESL the transition command in response to determining that the acknowledgement of the transition command has not been received from the ESL.
  • the transition command further may include an indication of a new ESL ID for the ESL.
  • communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability may include communication with the ESL using the new ESL ID.
  • Further aspects include an AP configured with a processor for performing one or more operations of any of the methods summarized above. Further aspects include an AP having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an AP having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an AP that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of an AP to perform operations of any of the methods summarized above. Further aspects include an AP having means for performing functions of any of the methods summarized above.
  • the ESL may receive, from an AP with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability, and communicate with the AP using the second Group ID starting from the Group ID time of applicability.
  • the timing information may include countdown information indicating the Group ID time of applicability.
  • the transition command may include information indicating a new ESL ID for the ESL. Some aspects may include determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL. Some aspects may include transmitting to the AP an acknowledgement of the transition command.
  • Further aspects include an ESL configured with a processor for performing one or more operations of any of the methods summarized above. Further aspects include an ESL having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an ESL having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an ESL that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of an ESL to perform operations of any of the methods summarized above. Further aspects include an ESL having means for performing functions of any of the methods summarized above.
  • FIG. 1A is a system block diagram illustrating an ESL system suitable for implementing any of various embodiments.
  • FIG. 1B is a system block diagram illustrating an example configuration of signal communications in the ESL system 100 according to various embodiments.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for use in a computing device for implementing any of various embodiments.
  • FIG. 3A is a timeline illustrating communication between an AP and ESLs according to various embodiments.
  • FIG. 3B is a timeline illustrating communication between an AP and ESLs according to various embodiments.
  • FIG. 3C is a diagram illustrating example ESL ID information according to various embodiments.
  • FIG. 3D is a diagram illustrating example encoded ESL ID information according to various embodiments.
  • FIG. 3E is a timeline illustrating communication between an AP and ESLs according to various embodiments.
  • FIG. 4A is a process flow diagram of a method of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
  • FIGS. 4B–4E are process flow diagrams of operations that may be performed as part of the method of managing ESL groups performed by a processor of an AP in accordance with various embodiments.
  • FIG. 5 is a process flow diagram of a method of managing ESL groups performed by a processor of an ESL in accordance with various embodiments.
  • FIG. 6 is a component block diagram of an ESL suitable for use with various embodiments.
  • FIG. 7 is a component block diagram of an AP suitable for use with various embodiments.
  • FIG. 8 is a component block diagram of a server suitable for use with various embodiments.
  • FIG. 9 is a component block diagram of a user mobile device suitable for use with various embodiments.
  • Various embodiments include methods, and APs and ESLs configured to implement the methods, of managing ESL groups, in which and AP and ESLs are configured to perform operations to dynamically assign and/or reassign ESLs that are synchronized with the AP to a group of ESLs.
  • Various embodiments increase the efficiency of managing communications between APs and ESLs by increasing the efficiency and speed of ESL group management.
  • ESL electronic shelf label
  • the term “electronic shelf label” or “ESL” is used herein to refer to a computing device with an electronic display that can be placed or secured to, in, on, or near store shelves.
  • the ESL may include a processor, memory, a display, and one or more wireless transceivers, in which the processor may be programmed or provided data to render images (e.g., text, bar codes, trademarks, etc. ) that communicate information (e.g., to people) regarding products near the device.
  • images e.g., text, bar codes, trademarks, etc.
  • information e.g., to people
  • ESLs may be battery powered to enable placement on or near products without the need for a power infrastructure.
  • an ESL may be supplied power by the shelve to which the ESL is secured.
  • a computing device refers to an electronic device equipped with at least a processor, memory, and a device for presenting output such as a location of an object or objects of interest.
  • a computing device may include wireless communication devices such as a transceiver and antenna configured to communicate with wireless communication networks.
  • a computing device may include any one or all of an outer smart device, a base-band, smart watches, smart rings, smart necklaces, smart glasses, smart contact lenses, contactless sleep tracking devices, smart furniture such as a smart bed or smart sofa, smart exercise equipment, Internet of Things (IoT) devices, augmented/virtual reality devices, cellular telephones, smartphones, portable computing devices, personal or mobile multimedia players, laptop computers, tablet computers, 2-in-1 laptop/table computers, smart books, ultrabooks, multimedia Internet-enabled cellular telephones, entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • a computing device may be wearable device by a person.
  • the term “smart” in conjunction with a device refers to a device that includes a processor for automatic operation, for collecting and/or processing of data, and/or may be programmed to perform all or a portion of the operations described with regard to various embodiments.
  • mobile wireless device is used herein to refer to computing devices that include any one or all of customer smartphones, a store picker’s mobile wireless device, cellular telephones, portable computing devices, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, multimedia Internet-enabled cellular telephones, wearable devices including smart watches, smart clothing, smart glasses, earbuds, headphones, smart wrist bands, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • a store picker wireless device may include a processor, memory, an electronic display, wireless transceiver (s) including a Bluetooth transceiver and Wi-Fi transceiver, a barcode scanner, and other components useful for store picking.
  • wireless transceiver including a Bluetooth transceiver and Wi-Fi transceiver
  • barcode scanner and other components useful for store picking.
  • a store when used herein with reference to a physical place refers to a wholesale, retail, or other building in which products are stored for sale and/or distribution.
  • a store may include (but is not limited to) a warehouse, fulfillment center, department store, specialty store, market, supermarket, hypermarket, convenience store, discount store, super store, and/or other storage facility.
  • product is used herein to refer to one or more items, articles, merchandise, or substances that are collected, refined, manufactured, and/or assembled and are maintained in a store or the like, such as products that may be identified on a shopping list and picked by store pickers.
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single computing device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • ESLs may also be positioned on large goods (e.g., furniture, appliances, etc. ) , on or near stands or stacks of goods, on pallets on which products are positioned, and other locations where products may be offered for sale or selection. Further, ESLs may be used for other purposes, such as placed on doors to indicate vacant or occupied status. Use of the term “shelf” (or as signified by the “S” in ESL) is not intended to limit the claims to labels that are only positioned on shelves.
  • ESLs may include extended reality (XR) tags that may send signals to an XR device (e.g., smart glasses, display screen of a smart phone, or other device configured to provide extended reality displays) configured to cause the XR device to generate a visible display.
  • XR extended reality
  • the content visible on a display of an XR device based on signals of the XR tag may be viewable while a store picker or other user looks at (i.e., orients the XR glasses in the direction of) the ESL.
  • an XR device directed at a bag of potato chips may display product related information such as “Lays Potato Chips $1.99.
  • the information provided by the XR tags may be the same or different than what is viewable in the ESL to normal users that do not use XR glasses or another XR device.
  • the ESL may not include a display, but rather may operate as an XR anchor to send operation messages and other information to XR devices. For example, when a user wearing XR glasses looks at a product (e.g., Lays Potato Chips) , a small window may appear on a user interface (UI) showing product information (e.g., “Lays Potato Chips $1.99” ) .
  • UI user interface
  • ESLs may be programmed, reprogrammed or updated (e.g., via onboarding messages transmitted by the AP) so that product information rendered on the display can be updated at any time.
  • the ESLs may serve the function of paper shelf labels with the added efficiency of enabling product information (e.g., prices) to be changed without physically replacing shelf labels.
  • ESLs may be organized into groups for synchronization with an AP. Each group may be associated with Group ID. In some embodiments, an ESL may use information associated with Group ID to determine a timing to exit a low power mode (e.g., to wake up) to listen for a signal from the AP.
  • a low power mode e.g., to wake up
  • ESL system efficiency may be improved by changing a group assignment of one or more ESLs from time to time. For example, ESL system efficiency may be improved by reassigning one or more ESLs to a different group for load-balancing purposes (e.g., as part of operations for performing load balancing per group) .
  • performing load balancing per group may reduce latency of sending responses (e.g., in an AP Sync packet) by sizing groups according to a number of response slots available for response messages. For example, if 11 slots are available in which to send an AP Sync packet, a group size of 11 may be highly efficient.
  • a quantity of ESLs in a group may be reduced to mitigate signal co-existence or interference with other signals from another Radio Access Technology (e.g., wireless local area network (LAN) radio communications, Wi-Fi, BLE) , in particular if a system employs time-multiplexing.
  • the AP may reserve some time slots (or other suitable transmission opportunities) to establish a BLE communication link with ESLs to perform other operations, such as a Generic Attribute (e.g., GATT) operation to transfer a price image (information) to ESLs or to update a software image in ESLs.
  • GATT Generic Attribute
  • the AP also may perform signal scanning for new ESLs.
  • an AP may communicate a transition command to one or more ESLs that are synchronized with the AP and that are associated with the first Group ID.
  • the transition command may include a second Group ID and timing information indicating Group ID time of applicability. Starting from the group time of applicability, the AP may communicate with the one or more ESLs using the second Group ID.
  • the AP may broadcast, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, the transition command that includes a second Group ID and timing information indicating a Group ID time of applicability.
  • An ESL may receive from the AP with which the ESL is synchronized the transition command addressed to a first Group ID. Starting from the Group ID time of applicability, the ESL may communicate with the AP using the second Group ID.
  • the timing information may indicate to the ESLs a specific Group ID time of applicability. In various embodiments, timing information may enable each ESL to determine the Group ID time of applicability. Then, starting at the Group ID time of applicability, the AP and all ESLs that have received at least one transition command may begin communicating using the second Group ID.
  • the AP may broadcast the transition command periodically at discrete times or after a discrete time interval. For example, the AP may broadcast the transition command at intervals in accordance with a configuration of the ESLs, or in accordance with a technical specification, such as at 12.5 millisecond intervals. In some embodiments, the AP may broadcast the transition command a predefined number of times (e.g., a predefined number of repetitions) , and the AP may include in each transmitted transition command information indicating a countdown ( “countdown information” ) .
  • the AP may be configured to broadcast the transition command six times, and in each broadcast the transition command may include information indicating its sequence in a countdown (e.g., 6, 5, 4, 3, 2, or 1) .
  • a countdown e.g. 6, 5, 4, 3, 2, or 1
  • an ESL that receives even only one of the transition commands e.g., a transition command that indicates “4” in a countdown sequence from 6 to 1 may determine the Group ID time of applicability.
  • the number of transition command repetitions may be selected based on a reliability requirement for ESLs, such that at least most ESLs in a group can be expected to receive at least one transition command repetition.
  • an ESL may, in response to determining that the ESL has not received a signal from the AP for all of such repetitions (e.g., the ESL did not receive any of the six repetitions of the transition command) , the ESL may determine that it is out of synchronization with the AP. The ESL may then transmit an advertisement message to the AP to attempt to re-synchronize with the AP. In response to receiving the advertisement message from the ESL, the AP may perform resynchronization operations with the ESL using the second Group ID. In this manner, ESLs that lose synchronization with the AP despite the AP broadcasting the transition command (s) may be re-associated with the AP using the second Group ID.
  • the transition command may include an indication of a new ESL ID for each ESL in the group of ESLs.
  • the transition command may include information a bitmap indicating a data location of the new ESL ID for each ESL, and the new ESL ID at the indicated data location. In some embodiments, such information may enable each ESL to determine its new ESL ID in the new group (i.e., the ESL group associated with the second Group ID) .
  • the AP may communicate with each ESL using the respective new ESL ID.
  • the AP may perform operations to change the group assignment of an individual ESL. In some embodiments, the AP may perform such operations to change the group assignment of a small number of ESLs, such as a number of ESLs that the AP may address in one sync packet, or fewer. For example, in a communication protocol usable with ESLs, one AP sync packet may be configured to address up to 11 ESLs.
  • the AP may transmit, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  • the AP may receive from the ESL an acknowledgement (e.g., an acknowledgement (ACK) message) of the transition command.
  • ACK acknowledgement
  • the AP may communicate with the one ESL using the second Group ID.
  • the ESL that does not receive any transition command may determine that it has lost synchronization with the AP.
  • the ESL may broadcast an advertisement message in an attempt to resynchronize with the AP.
  • the AP may receive an advertisement message from one ESL from among the group of ESLs, and may perform resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL. In this manner, the AP may resynchronize (re-onboard) the ESL to the new group associated with the second Group ID.
  • an ESL may receive from an access point with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  • the ESL may communicate with the AP using the second Group ID starting from the Group ID time of applicability.
  • the timing information may include countdown information indicating the Group ID time of applicability.
  • the transition command may include information indicating a new ESL ID for the ESL.
  • the ESL may determine determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL.
  • the ESL may transmit to the AP an acknowledgement of the transition command. In such embodiments, the ESL may communicate with the AP using the second Group ID after transmitting the acknowledgment of the transition command.
  • Various embodiments improve the operation of APs and ESL systems by enabling the dynamic reassignment and/or reallocation of ESLs to new ESL groups.
  • Various embodiments improve the operation of APs and ESL systems by reducing unnecessary power consumption by ESLs.
  • Various embodiments improve the operation of APs and ESL systems by improving the efficiency of communication between APs and ESLs.
  • Various embodiments improve operation of APs and ESL systems by enabling the dynamic balancing of ESL group timing and resource allocation by dynamically configuring ESL groups.
  • FIG. 1A is a component block diagram of an ESL system 100 suitable for implementing various embodiments.
  • System elements that may be deployed within a given store 10 may include a plurality of ESLs 110 deployed on shelves 50 that are configured to communicate with a number of APs 130 that are connected to a store management entity server 150.
  • ESLs 110 may be positioned on shelves 50 associated with products (labeled a, b, c, d, e, f, g, h, i, j, k, and m) .
  • Each ESL 110 may include a display 115 on which is presented product name, product codes, prices, stocking information, barcodes, and the like.
  • Some ESLs 110 may further include an illuminator 117, such as a light emitting diode (LED) or other visible light generating devices configured to illuminate to draw the attention of a store picker and/or other customers as described herein.
  • some ESLs 110 may include a speaker or vibration-generating device to generate visual, audible, and/or tactile notifications.
  • Each ESL 110 may include a beacon transmitter and be configured to detect neighboring ESLs, such as via Bluetooth Low Energy (BLE) signals.
  • Some ESLs 110 may include one or more sensors, such as (but not limited to) a proximity sensor to detect when an individual is standing near the ESL 110, a microphone for monitoring ambient noise as well as receiving speech from a customer or store picker in some embodiments, and/or the like.
  • various ESLs deployed in the ESL system 100 may be configured and/or equipped with different capabilities or with the same capabilities.
  • the ESLs 110 may be configured to receive communications from the store management entity server 150, such as through wireless communication links 112 that may be relayed via the APs 130.
  • the store management entity server 150 may configure each ESL 110 with product information to be displayed, as well as duty cycles for when the ESL should activate to receive signals and transmit wireless beacons.
  • the store management entity server 150 may control the periodicity of ESL duty cycles in order to minimize battery drain/usage, so as to extend the operating life, while ensuring the ESL is responsive to customers and store pickers, such as by increasing the duty cycle when individuals are within proximity of an ESL (e.g., close enough to see and/or read a display of the ESL) .
  • management entity server 150 may configure ESLs 110 to generate an appropriate indication (e.g., visual, audible, and/or tactile indications) at an appropriate time, such as when an ESL is associated with a product that appears on a shopping list of a user that is nearby (e.g., within a predetermined distance) .
  • the store management entity server 150 may be located within or near the store, or located remotely and accessed via a communication network 154.
  • ESLs 110 may be configured to exchange wireless communications with each other through wireless links 112, such as wireless beacons or tones, for various purposes, including in particular for determining the relative and actual location of the ESLs on shelves 50 and with respect to one another as described herein.
  • wireless links 112 such as wireless beacons or tones
  • the ESL system 100 deployed within a store 10 may also include other mechanisms for determining the precise location of ESLs and individual store pickers or customers.
  • the system may include ultrasonic emitters 134 that may be configured to periodically or episodically admit ultrasonic tones (for example) that can be received by a microphone on each ESL 110 for purposes of determining relative location of each ESL via sound ranging processes.
  • the system may include infrared emitters that may be configured to emit an infrared light beam that can be received by a photo-detector on each ESL for the purpose of determining relative location via IR ranging techniques.
  • the system may include cameras 132 coupled to the store management entity server 150 that may be positioned to provide imaging of ESLs 110 as well as individuals (e.g., store pickers, customers, and/or other individuals) . Image data received from such cameras 132 may be used by the store management entity server 150 to determining the location of each ESL and individuals.
  • the camera 132 may be positioned on the shelves so as to view products as well as individuals near the products.
  • ESLs 110 may include a camera and be configured to transmit images to the store management entity server 150 via a wireless link 112 with an AP 130.
  • the store management entity server 150 may be configured with detailed maps of the locations of products within the store, referred to as a planogram, that is correlated or calibrated to an indoor location system, such as supported by the ESLs 110 as described.
  • the store management entity server 150 may also incorporate information from an inventory system that keeps track of the products stocks in order to avoid sending a store picker to the location of a product that is out of stock.
  • the APs 130 may be configured to communicate with ESLs 110 to provide communications with the store management entity server 150.
  • APs may be configured with cameras or be coupled to cameras to provide visual images of ESLs as well as customers and store pickers to provide more precise location information as described herein.
  • APs 130 may also be configured with antenna arrays that enable determining the angle of arrival (AOA) of wireless communications, providing further localization information to the store management entity server 150.
  • AOA angle of arrival
  • the user mobile devices 120 may be any form of mobile device, not just the smart phone as illustrated.
  • the mobile devices 120 that may be used in the system 100 may include smart watches, body cams, augmented reality glasses (e.g., smart glasses) , and facility-specific or enterprise-specific handheld devices that are configured specifically for store pickers.
  • augmented reality glasses e.g., smart glasses
  • FIG. 1B is a system block diagram illustrating an example configuration of signal communications in the ESL system 100 according to various embodiments.
  • ESLs 110 may be configured to communicate with APs 130 via wireless links 112a, such as Bluetooth, and to exchange wireless signals with other ESLs 110 via wireless links 112b.
  • ESLs 110 may transmit certain BLE signals 112a, such ESL advertisements that are configured to be received by a nearby AP 130 and used to onboard the ESL 110.
  • ESLs 110 on opposite sides of an aisle i.e., the separation between two shelves 50
  • BLE signals 112a, 112b may be broadcast at a set or select power level, enabling separation distances to be estimated based upon the measured received signal strength indicator (RSSI) of the signals received by other ESLs 110.
  • RSSI received signal strength indicator
  • APs 130 may be coupled to the store management entity server 150 via wired connections 132.
  • User mobile devices 120 which may be held, carried, or otherwise associated with a store picker or customer may receive a beacon signal, such as through a wireless link from ESLs and communicate with the store management entity server 150 via wireless communications, such as BLE, Wi-Fi, or cellular communications of various types.
  • the APs 130 may be configured to communicate with user mobile devices 120 to provide communications with the store management entity server 150.
  • the APs 130 may also provide user mobile devices 120 with access to external communication networks, such as the communication network 154, to enable customers to access remote servers 156, such as to comparison shop, research products, and otherwise provide Internet access support.
  • beacon signals e.g., BT or BLE
  • received beacon information e.g., identity code and RSS I information
  • Such separate communications 122 may be via Wi-Fi communications (e.g., via APs 130) or via cellular data networks (e.g., fifth generation (5G) cellular networks) .
  • Wi-Fi communications e.g., via APs 130
  • cellular data networks e.g., fifth generation (5G) cellular networks
  • FIG. 2 is a component block diagram illustrating a non-limiting example of a computing and wireless modem system 200 suitable for use in a computing device, such as an AP or some ESLs, for implementing any of various embodiments.
  • a computing device such as an AP or some ESLs
  • Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
  • SOC system-on-chip
  • SIP system in a package
  • the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two SOCs 202, 204 coupled to a clock 206, a voltage regulator 208, a radio module 266 configured to send and receive wireless communications, including BLE messages, via an antenna (not shown and an inertial measurement unit) (IMU) 268.
  • the radio module 266 may be configured to broadcast BLE beacons as described herein.
  • the first SOC 202 may operate as central processing unit (CPU) of the user mobile device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (such as 5 Gbps, etc. ) , or very high frequency short wave length (such as 38 GHz mmWave spectrum, etc. ) communications.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (such as vector co-processor) connected to one or more of the processors, memory 220, custom circuitry 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • modem processor 212 such as graphics processing circuitry
  • application processor 216 such as vector co-processor
  • coprocessors 218 such as vector co-processor
  • the second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (such as FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (such as MICROSOFT WINDOWS) .
  • a processor cluster architecture such as a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a user mobile device.
  • the system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • Various processors 210, 212, 214, 216, 218, 252, 260 may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (such as CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC such as clock 206, voltage regulator 208 may be shared by two or more of the internal SOC processors/cores.
  • FIG. 3A is a timeline 300a illustrating communication between an AP and ESLs according to various embodiments.
  • an AP 302 e.g., 130, 200
  • the AP 302 may broadcast the one or more transition commands 310 using a first Group ID.
  • One or more ESLs (ESL i ...ESL n ) 304 e.g., 110, 200
  • the first Group ID may receive the one or more transition commands 314 (for example, during a frame interval (e.g., 1.6 seconds, or N*subevent intervals or subframe intervals) .
  • a frame interval e.g., 1.6 seconds, or N*subevent intervals or subframe intervals
  • the transition commands may include a second Group ID and timing information indicating Group ID time of applicability 312.
  • the AP 302 may be configured to transmit the transition command 310 a plurality of times (which may be periodically or at regular intervals, such as subevent intervals or subframe intervals, e.g., of 12.5 milliseconds) .
  • number of times that the AP transmits the transition command 310 may be configured such that most if not all of the ESL 304 may receive at least one of the transition commands 310.
  • the AP 302 and the ESLs 304 (or at least those ESLs 304 that have received at least one transition command 310) may begin communication using the second Group ID.
  • the AP may send a polling message to each of the ESLs in the new group to determine whether each of the ESLs respond, indicating that each responding ESL has successfully moved to the new group corresponding with the second Group ID.
  • an ESL that has not received any of the transition commands 310 may not begin communication using the second Group ID at the time of applicability 312.
  • Such ESLs may determine that they have lost synchronization with the AP 302, and at a later time may transmit an advertising message (not illustrated) to attempt to resynchronize with the AP 302.
  • FIG. 3B is a timeline 300b illustrating communication between an AP and ESLs according to various embodiments.
  • an AP 302 e.g., 130, 200
  • each of the transition commands 320 may include information indicating a countdown.
  • timeline 300b illustrates a countdown from 6 to 1.
  • the AP 302 may broadcast the transition command a predefined number of times (e.g., a predefined number of repetitions) , and in each broadcast the transition command 320 may include information indicating a number of the countdown in sequence (as one example, 6, 5, 4, 3, 2, or 1) .
  • each ESL 304 may receive at least one of the transition commands 322, and using the countdown information included in the transition commands 322 each ESL 34 may determine a Group ID time of applicability 326. Some ESLs 304, such as ESL i , may receive a plurality of the transition commands 322. Some ESLs 304, such as ESL n , may receive a few of the transition commands 322, even only one of the transition commands (e.g., 324) .
  • an ESL n that receives only one transition command 324 may determine the Group ID time of applicability 326 because of the presence of the countdown information in the transition command 324 (e.g., information in the transition command 324 indicating a “4” in the countdown sequence from 6 to 1) .
  • the AP 302 broadcasts the transition commands at regular subevent intervals (e.g., 12.5 milliseconds)
  • ESL n may determine the Group ID time of applicability 326.
  • the AP may send a polling message to each of the ESLs in the new group to determine whether each of the ESLs respond, indicating that each responding ESL has successfully moved to the new group corresponding with the second Group ID.
  • FIG. 3C is a diagram illustrating example ESL ID information 300c according to various embodiments.
  • an AP e.g., 130, 200, 302 may transmit to ESLs (e.g., 110, 200, 304) an indication of a new ESL ID for each ESL.
  • the AP may broadcast the ESL ID information 300c in a command format, an example of which is illustrated in FIG. 3C.
  • the ESL ID information 300c may include a timing information field 332 (e.g., “Instant” ) .
  • the timing information field 332 may include information enabling each ESL to determine a Group ID time of applicability.
  • the timing information field 332 may include an indication of a specific time.
  • the timing information field 332 may include countdown information.
  • the timing information field 332 may include other suitable timing information usable by the ESLs to determine the Group ID time of applicability.
  • the ESL ID information 300c may include a subcode field 330.
  • a subcode field value of “0” may instruct all ESLs to move to a new ESL group associated with the second Group ID without changing and assigned ESL ID.
  • the AP may use the subcode field value of “0” in a situation in which there is no ESL ID conflict between the ESL group associated with the first Group ID and of the ESL group associated with the second Group ID.
  • a subcode field value of “1” may instruct each ESL to determine a new ESL ID for use in the new group.
  • the ESL ID information 300c may include a new group ID 334, a source ESL octets map field 336, a source ESL ID bitmap field 338, a target ESL ID octets map field 340, and a target ESL ID bitmap field 342.
  • the ESL ID information 300c includes a subcode field value of “1” instructing each ESL to determine its new ESL ID for use in the new group, each ESL may use the information in the fields 336–342 to determine a respective new ESL ID.
  • FIG. 3D is a diagram illustrating example encoded ESL ID information 300d according to various embodiments.
  • the ESL ID information 300d is an example of information in the fields 336–342 of the ESL ID information 300c.
  • an ESL e.g., 110, 200, 304
  • ESL ID information e.g., information in fields 336–342 of the ESL ID information 300c
  • a new ESL ID for use in a new ESL group (i.e., an ESL group associated with the second Group ID) .
  • an ESL group may include up to 256 ESLs.
  • Each ESL may be allocated into a 32 byte ESL ID octet map that indicates octets that are in included in an ESL ID bitmap.
  • a source ESL ID octet map 350 ( “Source Eid Octets map” ) may indicate “10010000 00000000 0000 000000001” , which indicates that a source ESL ID bitmap includes bytes 0, 3, and 31 (corresponding to the position of the “1” bits) .
  • a source ESL ID bitmap 352 may indicate “10110000 00001110 00000001” .
  • Byte 0, “10110000” indicates ESL IDs 0, 2, and 3.
  • Byte 3, “00001110” indicates ESL IDs “28, ” “29, ” and “30. ”
  • Byte 31, “00000001” indicates ESL ID “255. ”
  • Each ESL may then use the source ESL ID bitmap information and target ESL ID bitmap information to determine a respective new ESL ID bit by bit, one bit at a time.
  • a target ESL ID octet map 354 ( “Targets Eid Octets map” ) may indicate “00000100 00000010 00010000 00010000” , which indicates that a target ESL ID bitmap includes bytes 5, 14, 19, and 27 (corresponding to the position of the “1” bits) .
  • Byte 5, “00001000” indicates ESL ID “60” .
  • Byte 14, “10000001” indicates ESL IDs “112” and “119.
  • ESL ID “0” changes to ESL ID “60; ” ESL ID “2” changes to ESL ID “112; ” ESL ID “3” changes to ESL ID “119; ” ESL ID “28” changes to ESL ID “157; ” ESL ID “29” changes to ESL ID “158; ” ESL ID “30” changes to ESL ID “159; ” and ESL ID “255” changes to ESL ID “218. ”
  • the old ESL ID mapping of the new ESL ID mapping must include the same number of raised bits.
  • an AP may transmit ESL ID information in one or more messages depending on space constraints in a single message.
  • a single message transmitted by the AP e.g., an AP sync message
  • the AP may transmit ESL ID information in one or more messages. For example, if a source ESL ID bitmap includes N bytes and a target ESL ID bitmap includes M bytes, if (4+N) +(4+M) ⁇ 62 bytes, then one message (e.g., one AP sync message) can convey all of the necessary information.
  • two AP sync messages may include all of the ESL ID information.
  • the total number of bytes of information, 56 is less than the 62 bytes available in the two AP sync messages, and so the AP may transmit all of the ESL ID information necessary to convey new ESL IDs for every ESL in a group into AP sync messages.
  • the AP may transmit the two AP sync messages in 9.6 seconds each, or in 19.2 seconds total to convey ESL ID information for up to 255 ESLs.
  • FIG. 3E is a timeline 300e illustrating communication between an AP and ESLs according to various embodiments.
  • an AP 302 e.g., 130, 200
  • the transition command 360 may include a second Group ID and timing information indicating Group ID time of applicability 370.
  • the ESL i may receive the transition command 362 and may transmit an acknowledgment 364 of the transition command 362 to the AP 302.
  • the AP 302 may receive the acknowledgment 366.
  • the ESL i may determine a Group ID time of applicability 370 using information in the received transition command 362. Starting at the Group ID time of applicability 370, the AP 302 and the ESL i may communicate using the second Group ID.
  • the AP 302 also may transmit a transition command 368 to another ESL n .
  • the ESL n may not receive the transition command 372, and may not transmit acknowledgment to the AP 302.
  • the AP 302 may determine that an acknowledgment of the transition command 368 is not be received from the ESL n .
  • the AP 302 may retransmit the transition command 374.
  • the ESL n may receive the retransmitted transition command 376, and may transmit and acknowledgment 378 of the transition command 376 to the AP 302.
  • the AP 302 may receive the acknowledgment 380.
  • the ESL n may determine a Group ID time of applicability 370 using information in the received transition command 362. Starting at the Group ID time of applicability 370, the AP 302 and the ESL n may communicate using the second Group ID.
  • the frame interval timing may include a subevent offset to provide the transmitter device an opportunity to do other Bluetooth related activities and assist in synchronizing the Group ID time of applicability 370.
  • FIG. 4A is a process flow diagram of a method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
  • means for performing each of the operations of the method 400a may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
  • the processor may communicate, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability.
  • the processor may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
  • FIG. 4B is a process flow diagram of operations 400b that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
  • means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
  • the processor may broadcast, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  • the timing information may include countdown information indicating Group ID time of applicability.
  • transition command may include an indication of a new ESL ID for each ESL in the group of ESLs.
  • the processor may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
  • the processor may communicate communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs starting from the Group ID time of applicability.
  • FIG. 4C is a process flow diagram of operations 400c that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
  • means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
  • the processor may receive an advertisement message from one ESL from among the group of ESLs in block 420.
  • the processor may perform resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
  • the processor may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability, as described.
  • FIG. 4D is a process flow diagram of operations 400d that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
  • means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
  • the processor may transmit, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  • the transition command may include an indication of a new ESL ID for the ESL.
  • the processor may receive from the ESL and acknowledgment of the transition command.
  • the processor may communicate with the one ESL using the second Group ID starting from the Group ID time of applicability. In some embodiments, the processor may communicate with the ESL using the new ESL ID.
  • FIG. 4E is a process flow diagram of operations 400e that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
  • means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
  • the processor may determine that an acknowledgment of the transition command has not been received from the ESL by the processor in block 440.
  • the processor may retransmit the transition command to the ESL in response to determining that the acknowledgement of the transition command has not been received from the ESL.
  • the processor may receive from the ESL and acknowledgment of the transition command (i.e., the retransmitted transition command) as described.
  • FIG. 5 is a process flow diagram of a method 500 of managing ESL groups performed by a processor of an electronic shelf label (ESL) in accordance with various embodiments.
  • means for performing each of the operations of the method 500 may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an ESL (e.g., 110, 200, 304) and the like.
  • the processor may receive from an access point (AP) with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  • the timing information may include countdown information indicating the Group ID time of applicability.
  • the transition command may include information indicating a new ESL ID for the ESL.
  • the processor may communicate with the AP using the second Group ID starting from the Group ID time of applicability.
  • the processor may determine the new ESL ID for the ESL based on the information indicating the new ESL ID in the transition command.
  • the processor may transmit to the AP and acknowledgment of the transition command.
  • FIG. 6 is a component block diagram of an example of an ESL 110 suitable for use with various embodiments.
  • an ESL 110 may include a display 115 and an illuminator 117 (e.g., an LED or other type of visible indicator) that our coupled to a processor 602 that is configured with processor-executable instructions configured to cause the processor to perform operations of various embodiments.
  • the processor 602 may be coupled to a wireless transceiver 604, such as a BLE transceiver or a combination BLE and Wi-Fi transceiver, that is coupled to an antenna 606 for sending and receiving radio frequency (RF) signals as described herein.
  • RF radio frequency
  • the processor 602 may include an SOC (e.g., 202, 204) .
  • An ESL 110 may be powered by a battery 608, freeing the display from having to be connected to a wired power supply. Alternatively, the ESL 110 may be powered from an external source.
  • FIG. 7 is a component block diagram of an AP 130 suitable for use with various embodiments.
  • the AP 130 may typically include a processor 702, 704 coupled to volatile memory 706 and optionally a larger capacity nonvolatile memory 708.
  • the AP 130 may also include a peripheral memory access device, such as a flash drive, coupled to the processor 702, 704.
  • the AP 130 may also include network access ports 714 (or interfaces) coupled to the processor 702, 704 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers.
  • the AP 130 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
  • the AP 130 may include one or more antennas 707 coupled to a transceiver 717 for sending (i.e., transmitting) and receiving electromagnetic radiation that may be connected to a wireless communication link.
  • FIG. 8 is a component block diagram of a store management entity server 150 suitable for use with various embodiments.
  • the store management entity server 150 may typically include a processor 801 coupled to volatile memory 802 and a large capacity nonvolatile memory, such as a disk drive 803.
  • the store management entity server 150 may also include a peripheral memory access device, such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 806 coupled to the processor 801.
  • the store management entity server 150 may also include network access ports 804 (or interfaces) coupled to the processor 801 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers.
  • the store management entity server 150 may include one or more antennas 807 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link.
  • the store management entity server 150 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
  • FIG. 9 is a component block diagram of a user mobile device 120 suitable for use as a user mobile device or a consumer user equipment (UE) when configured with processor executable instructions to perform operations of various embodiments.
  • the user mobile device 120 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 906, a display 915, and to a speaker 914.
  • the user mobile device 120 may include an antenna 904 for sending and receiving electromagnetic radiation that may be connected to a radio module 266 configured to support wireless local area network data links (e.g., BLE, Wi-Fi, etc. ) and/or wireless wide area networks (e.g., cellular telephone networks) coupled to one or more processors in the first and/or second SOCs 202, 204.
  • the user mobile device 120 typically also include menu selection buttons 920 for receiving user inputs.
  • a typical user mobile device 120 may also include an inertial measurement unit (IMU) 268 that includes a number of micro-electromechanical sensor (MEMS) elements configured to sense accelerations and rotations associated movements of the device, and provide such movement information to the first SOC 202.
  • IMU inertial measurement unit
  • MEMS micro-electromechanical sensor
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 266 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • a user mobile device 120 may be used as a moving AP to diagnose ESLs that have issues establishing communication with the APs or other fixed infrastructure.
  • the user mobile device 120 may be repurposed by the store management entity server by configuring the user mobile device 120 with AP protocols so that the user mobile device 120 may be recognized by ESL as an AP.
  • the processors of ESLs 110, the user mobile device 120, and the store management entity server 150 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of various embodiments described herein.
  • multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications.
  • software applications may be stored in the memory 906 before they are accessed and loaded into the processor.
  • the processors may include internal memory sufficient to store the application software instructions.
  • Implementation examples are described in the following paragraphs. While some of the following implementation examples are described in terms of example methods, further example implementations may include: the example methods discussed in the following paragraphs implemented by an AP or an ESL, including a processor configured to perform operations of the example methods; the example methods discussed in the following paragraphs implemented by an AP or an ESL, including means for performing functions of the example methods; the example methods discussed in the following paragraphs implemented in a processor used in an AP or an ESL that is configured to perform the operations of the example methods; and the example methods discussed in the following paragraphs implemented as a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor or modem processor to perform the operations of the example methods.
  • Example 1 A method for managing ESL groups performed by a processor of an access point (AP) , including communicating, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and communicating with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
  • AP access point
  • Example 2 The method of example 1, in which communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability includes broadcasting, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability.
  • Example 3 The method of either of examples 1 or 2, in which the timing information includes countdown information indicating the Group ID time of applicability.
  • Example 4 The method of any of examples 1-3, in which the transition command further includes an indication of a new ESL ID for each ESL in the group of ESLs.
  • Example 5 The method of example 4, in which communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability includes communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs.
  • Example 6 The method of any of examples 1-5, further including receiving an advertisement message from one ESL from among the group of ESLs, and performing resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
  • Example 7 The method of any of examples 1-6, in which communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability includes transmitting, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and receiving from the ESL an acknowledgement of the transition command.
  • Example 8 The method of example 7, further including retransmitting to the ESL the transition command in response to determining that the acknowledgement of the transition command has not been received from the ESL.
  • Example 9 The method of example 7, in which the transition command further includes an indication of a new ESL ID for the ESL.
  • Example 10 The method of example 9, in which communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability includes communication with the ESL using the new ESL ID.
  • Example 11 A method for managing ESL groups performed by a processor of an electronic shelf label (ESL) , including receiving, from an access point (AP) with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command including a second Group ID and timing information indicating a Group ID time of applicability, and communicating with the AP using the second Group ID starting from the Group ID time of applicability.
  • ESL electronic shelf label
  • Example 12 The method of example 11, in which the timing information includes countdown information indicating the Group ID time of applicability.
  • Example 13 The method of either of examples 11 or 12, in which the transition command includes information indicating a new ESL ID for the ESL.
  • Example 14 The method of any of examples 11-13, further including determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL.
  • Example 15 The method of any of examples 11-14, further including transmitting to the AP an acknowledgement of the transition command.
  • Such services and standards may include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , EDGE, advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I
  • 3GPP third generation partnership project
  • LTE long term evolution
  • 4G fourth generation wireless mobile communication technology
  • 5G fifth generation wireless
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects include methods for managing electronic shelf label (ESL)groups. In some aspects, an access point (AP) may communicate to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. Starting from the Group ID time of applicability, the AP may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability. In some aspects, an ESL may receive from an access point (AP) with which the ESL is synchronized a transition command addressed to a first GroupID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. Starting from the Group ID time of applicability the ESL may communicate with the AP using the second Group ID.

Description

Managing Electronic Shelf Label (ESL) Groups BACKGROUND
Electronic Shelf Labels (ESLs) are devices that can be used in supermarkets, supply stores, warehouses, and the like to monitor and control inventory tracking, product mapping, price change rollouts, and the customer experience generally. ESLs may communicate with a network access point (AP) using an energy-efficient, short range wireless communication protocol such as Bluetooth Low Energy.
ESLs may be organized into groups for synchronization with an AP. Currently, to change an ESL group assignment, the AP must disassociate with the ESL and perform a re-onboarding process or resynchronization process with the ESL that is then associated with a new group. This process is time consuming and inefficient.
SUMMARY
Various aspects of the present disclosure include methods, systems, and devices for dynamically managing the assignment of ESLs to groups of ESL and the transition of ESLs from one group to another group. In some aspects, the AP may communicate, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
In some aspects, communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability may include broadcasting, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a  second Group ID and timing information indicating a Group ID time of applicability. In some aspects, the timing information may include countdown information indicating the Group ID time of applicability. In some aspects, the transition command may include an indication of a new ESL ID for each ESL in the group of ESLs. In some aspects, communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability may include communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs.
Some aspects may include receiving an advertisement message from one ESL from among the group of ESLs after the Group ID time of applicability, and performing resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL. In some aspects, communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability may include transmitting, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and receiving from the ESL an acknowledgement of the transition command.
Some aspects may include retransmitting to the ESL the transition command in response to determining that the acknowledgement of the transition command has not been received from the ESL. In some aspects, the transition command further may include an indication of a new ESL ID for the ESL. In some aspects, communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability may include communication with the ESL using the new ESL ID.
Further aspects include an AP configured with a processor for performing one or more operations of any of the methods summarized above. Further aspects include an AP having a processor configured to perform one or more operations of any of the  methods summarized above. Further aspects include an AP having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an AP that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of an AP to perform operations of any of the methods summarized above. Further aspects include an AP having means for performing functions of any of the methods summarized above.
In various aspects, the ESL may receive, from an AP with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability, and communicate with the AP using the second Group ID starting from the Group ID time of applicability.
In some aspects, the timing information may include countdown information indicating the Group ID time of applicability. In some aspects, the transition command may include information indicating a new ESL ID for the ESL. Some aspects may include determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL. Some aspects may include transmitting to the AP an acknowledgement of the transition command.
Further aspects include an ESL configured with a processor for performing one or more operations of any of the methods summarized above. Further aspects include an ESL having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an ESL having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include an ESL that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage  medium having stored thereon processor-executable instructions configured to cause a processor of an ESL to perform operations of any of the methods summarized above. Further aspects include an ESL having means for performing functions of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the claims, and together with the general description given above and the detailed description given below, serve to explain the features of the claims.
FIG. 1A is a system block diagram illustrating an ESL system suitable for implementing any of various embodiments.
FIG. 1B is a system block diagram illustrating an example configuration of signal communications in the ESL system 100 according to various embodiments.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for use in a computing device for implementing any of various embodiments.
FIG. 3A is a timeline illustrating communication between an AP and ESLs according to various embodiments.
FIG. 3B is a timeline illustrating communication between an AP and ESLs according to various embodiments.
FIG. 3C is a diagram illustrating example ESL ID information according to various embodiments.
FIG. 3D is a diagram illustrating example encoded ESL ID information according to various embodiments.
FIG. 3E is a timeline illustrating communication between an AP and ESLs according to various embodiments.
FIG. 4A is a process flow diagram of a method of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments.
FIGS. 4B–4E are process flow diagrams of operations that may be performed as part of the method of managing ESL groups performed by a processor of an AP in accordance with various embodiments.
FIG. 5 is a process flow diagram of a method of managing ESL groups performed by a processor of an ESL in accordance with various embodiments.
FIG. 6 is a component block diagram of an ESL suitable for use with various embodiments.
FIG. 7 is a component block diagram of an AP suitable for use with various embodiments.
FIG. 8 is a component block diagram of a server suitable for use with various embodiments.
FIG. 9 is a component block diagram of a user mobile device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include methods, and APs and ESLs configured to implement the methods, of managing ESL groups, in which and AP and ESLs are configured to perform operations to dynamically assign and/or reassign ESLs that are synchronized with the AP to a group of ESLs. Various embodiments increase the  efficiency of managing communications between APs and ESLs by increasing the efficiency and speed of ESL group management.
The term “electronic shelf label” or “ESL” is used herein to refer to a computing device with an electronic display that can be placed or secured to, in, on, or near store shelves. The ESL may include a processor, memory, a display, and one or more wireless transceivers, in which the processor may be programmed or provided data to render images (e.g., text, bar codes, trademarks, etc. ) that communicate information (e.g., to people) regarding products near the device. In some aspects, ESLs may be battery powered to enable placement on or near products without the need for a power infrastructure. Alternatively, an ESL may be supplied power by the shelve to which the ESL is secured.
As used herein, the term “computing device” refers to an electronic device equipped with at least a processor, memory, and a device for presenting output such as a location of an object or objects of interest. In some embodiments, a computing device may include wireless communication devices such as a transceiver and antenna configured to communicate with wireless communication networks. A computing device may include any one or all of an outer smart device, a base-band, smart watches, smart rings, smart necklaces, smart glasses, smart contact lenses, contactless sleep tracking devices, smart furniture such as a smart bed or smart sofa, smart exercise equipment, Internet of Things (IoT) devices, augmented/virtual reality devices, cellular telephones, smartphones, portable computing devices, personal or mobile multimedia players, laptop computers, tablet computers, 2-in-1 laptop/table computers, smart books, ultrabooks, multimedia Internet-enabled cellular telephones, entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , and similar electronic devices that include a memory, wireless communication components and a programmable processor. In some embodiments, a computing device may be wearable device by a person. As used herein, the term “smart” in conjunction with a device, refers to a device that includes a processor for automatic operation, for collecting and/or processing of data, and/or may be  programmed to perform all or a portion of the operations described with regard to various embodiments.
The term “mobile wireless device” is used herein to refer to computing devices that include any one or all of customer smartphones, a store picker’s mobile wireless device, cellular telephones, portable computing devices, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, multimedia Internet-enabled cellular telephones, wearable devices including smart watches, smart clothing, smart glasses, earbuds, headphones, smart wrist bands, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “user mobile device” is used to refer to a mobile wireless device that is specifically configured to support users within a store, such as the store picker job functioning within a store picker system according to various embodiments. A store picker wireless device may include a processor, memory, an electronic display, wireless transceiver (s) including a Bluetooth transceiver and Wi-Fi transceiver, a barcode scanner, and other components useful for store picking.
The term “store” when used herein with reference to a physical place refers to a wholesale, retail, or other building in which products are stored for sale and/or distribution. A store may include (but is not limited to) a warehouse, fulfillment center, department store, specialty store, market, supermarket, hypermarket, convenience store, discount store, super store, and/or other storage facility.
The term “product” is used herein to refer to one or more items, articles, merchandise, or substances that are collected, refined, manufactured, and/or assembled and are maintained in a store or the like, such as products that may be identified on a shopping list and picked by store pickers.
The term “system on chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal,  and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single computing device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
While various embodiments are described with reference to ESLs being placed on shelves within a store, ESLs may also be positioned on large goods (e.g., furniture, appliances, etc. ) , on or near stands or stacks of goods, on pallets on which products are positioned, and other locations where products may be offered for sale or selection. Further, ESLs may be used for other purposes, such as placed on doors to indicate vacant or occupied status. Use of the term “shelf” (or as signified by the “S” in ESL) is not intended to limit the claims to labels that are only positioned on shelves.
In some configurations, ESLs may include extended reality (XR) tags that may send signals to an XR device (e.g., smart glasses, display screen of a smart phone, or other device configured to provide extended reality displays) configured to cause the  XR device to generate a visible display. The content visible on a display of an XR device based on signals of the XR tag may be viewable while a store picker or other user looks at (i.e., orients the XR glasses in the direction of) the ESL. For example, an XR device directed at a bag of potato chips may display product related information such as “Lays Potato Chips $1.99. ” The information provided by the XR tags may be the same or different than what is viewable in the ESL to normal users that do not use XR glasses or another XR device. In some embodiments, the ESL may not include a display, but rather may operate as an XR anchor to send operation messages and other information to XR devices. For example, when a user wearing XR glasses looks at a product (e.g., Lays Potato Chips) , a small window may appear on a user interface (UI) showing product information (e.g., “Lays Potato Chips $1.99” ) .
ESLs may be programmed, reprogrammed or updated (e.g., via onboarding messages transmitted by the AP) so that product information rendered on the display can be updated at any time. Thus, the ESLs may serve the function of paper shelf labels with the added efficiency of enabling product information (e.g., prices) to be changed without physically replacing shelf labels.
ESLs may be organized into groups for synchronization with an AP. Each group may be associated with Group ID. In some embodiments, an ESL may use information associated with Group ID to determine a timing to exit a low power mode (e.g., to wake up) to listen for a signal from the AP.
Under some conditions, ESL system efficiency may be improved by changing a group assignment of one or more ESLs from time to time. For example, ESL system efficiency may be improved by reassigning one or more ESLs to a different group for load-balancing purposes (e.g., as part of operations for performing load balancing per group) . In some embodiments, performing load balancing per group may reduce latency of sending responses (e.g., in an AP Sync packet) by sizing groups according to a number of response slots available for response messages. For example, if 11 slots are available in which to send an AP Sync packet, a group size of  11 may be highly efficient. Further, a quantity of ESLs in a group may be reduced to mitigate signal co-existence or interference with other signals from another Radio Access Technology (e.g., wireless local area network (LAN) radio communications, Wi-Fi, BLE) , in particular if a system employs time-multiplexing. As another example, the AP may reserve some time slots (or other suitable transmission opportunities) to establish a BLE communication link with ESLs to perform other operations, such as a Generic Attribute (e.g., GATT) operation to transfer a price image (information) to ESLs or to update a software image in ESLs. The AP also may perform signal scanning for new ESLs.
Currently, no mechanism exists for dynamically transitioning or reassigning an ESL from one ESL group to another ESL group. In order to assign an ESL to a new ESL group, the AP must disassociate from the ESL. The ESL, sensing that it has lost synchronization with the AP, enters an advertising mode and transmits an advertisement message. The AP receives the advertisement message from the ESL and send onboarding information and access point synchronization information to the ESL, along with information for the new ESL group. This process is time-consuming and consumes finite battery resources of the ESL. Further, because this process involves establishing the communication link and performing such operations with each individual ESL, this process is not suitable for APs in communication with numerous ESLs, which may potentially be hundreds or thousands of ESLs.
Various embodiments include methods, and APs and ESLs configured to implement the methods, for managing ESL groups. In various embodiments, an AP may communicate a transition command to one or more ESLs that are synchronized with the AP and that are associated with the first Group ID. The transition command may include a second Group ID and timing information indicating Group ID time of applicability. Starting from the group time of applicability, the AP may communicate with the one or more ESLs using the second Group ID.
In some embodiments, the AP may broadcast, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, the transition command that includes a second Group ID and timing information indicating a Group ID time of applicability. An ESL may receive from the AP with which the ESL is synchronized the transition command addressed to a first Group ID. Starting from the Group ID time of applicability, the ESL may communicate with the AP using the second Group ID. In various embodiments, the timing information may indicate to the ESLs a specific Group ID time of applicability. In various embodiments, timing information may enable each ESL to determine the Group ID time of applicability. Then, starting at the Group ID time of applicability, the AP and all ESLs that have received at least one transition command may begin communicating using the second Group ID.
In some embodiments, the AP may broadcast the transition command periodically at discrete times or after a discrete time interval. For example, the AP may broadcast the transition command at intervals in accordance with a configuration of the ESLs, or in accordance with a technical specification, such as at 12.5 millisecond intervals. In some embodiments, the AP may broadcast the transition command a predefined number of times (e.g., a predefined number of repetitions) , and the AP may include in each transmitted transition command information indicating a countdown ( “countdown information” ) . As a non-limiting example, the AP may be configured to broadcast the transition command six times, and in each broadcast the transition command may include information indicating its sequence in a countdown (e.g., 6, 5, 4, 3, 2, or 1) . In this manner, an ESL that receives even only one of the transition commands (e.g., a transition command that indicates “4” in a countdown sequence from 6 to 1) may determine the Group ID time of applicability.
In some embodiments, the number of transition command repetitions may be selected based on a reliability requirement for ESLs, such that at least most ESLs in a group can be expected to receive at least one transition command repetition. In some embodiments, an ESL may, in response to determining that the ESL has not received a  signal from the AP for all of such repetitions (e.g., the ESL did not receive any of the six repetitions of the transition command) , the ESL may determine that it is out of synchronization with the AP. The ESL may then transmit an advertisement message to the AP to attempt to re-synchronize with the AP. In response to receiving the advertisement message from the ESL, the AP may perform resynchronization operations with the ESL using the second Group ID. In this manner, ESLs that lose synchronization with the AP despite the AP broadcasting the transition command (s) may be re-associated with the AP using the second Group ID.
In some embodiments, the transition command may include an indication of a new ESL ID for each ESL in the group of ESLs. In some embodiments, the transition command may include information a bitmap indicating a data location of the new ESL ID for each ESL, and the new ESL ID at the indicated data location. In some embodiments, such information may enable each ESL to determine its new ESL ID in the new group (i.e., the ESL group associated with the second Group ID) . In some embodiments, the AP may communicate with each ESL using the respective new ESL ID.
In some embodiments, the AP may perform operations to change the group assignment of an individual ESL. In some embodiments, the AP may perform such operations to change the group assignment of a small number of ESLs, such as a number of ESLs that the AP may address in one sync packet, or fewer. For example, in a communication protocol usable with ESLs, one AP sync packet may be configured to address up to 11 ESLs.
In some embodiments, the AP may transmit, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. The AP may receive from the ESL an acknowledgement (e.g., an acknowledgement (ACK) message) of the transition command. In response to  receiving the acknowledgment of the transition command, the AP may communicate with the one ESL using the second Group ID.
As noted above, and ESL that does not receive any transition command (or any of multiply transmitted transition commands) may determine that it has lost synchronization with the AP. In response to determining that it has lost synchronization with the AP, the ESL may broadcast an advertisement message in an attempt to resynchronize with the AP. In some embodiments, the AP may receive an advertisement message from one ESL from among the group of ESLs, and may perform resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL. In this manner, the AP may resynchronize (re-onboard) the ESL to the new group associated with the second Group ID.
In various embodiments, an ESL may receive from an access point with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. The ESL may communicate with the AP using the second Group ID starting from the Group ID time of applicability. In some embodiments, the timing information may include countdown information indicating the Group ID time of applicability. It some embodiments, the transition command may include information indicating a new ESL ID for the ESL. In some embodiments, the ESL may determine determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL. In some embodiments, the ESL may transmit to the AP an acknowledgement of the transition command. In such embodiments, the ESL may communicate with the AP using the second Group ID after transmitting the acknowledgment of the transition command.
Various embodiments improve the operation of APs and ESL systems by enabling the dynamic reassignment and/or reallocation of ESLs to new ESL groups. Various embodiments improve the operation of APs and ESL systems by reducing  unnecessary power consumption by ESLs. Various embodiments improve the operation of APs and ESL systems by improving the efficiency of communication between APs and ESLs. Various embodiments improve operation of APs and ESL systems by enabling the dynamic balancing of ESL group timing and resource allocation by dynamically configuring ESL groups.
FIG. 1A is a component block diagram of an ESL system 100 suitable for implementing various embodiments. System elements that may be deployed within a given store 10 may include a plurality of ESLs 110 deployed on shelves 50 that are configured to communicate with a number of APs 130 that are connected to a store management entity server 150.
ESLs 110 may be positioned on shelves 50 associated with products (labeled a, b, c, d, e, f, g, h, i, j, k, and m) . Each ESL 110 may include a display 115 on which is presented product name, product codes, prices, stocking information, barcodes, and the like. Some ESLs 110 may further include an illuminator 117, such as a light emitting diode (LED) or other visible light generating devices configured to illuminate to draw the attention of a store picker and/or other customers as described herein. In some embodiments, some ESLs 110 may include a speaker or vibration-generating device to generate visual, audible, and/or tactile notifications. Each ESL 110 may include a beacon transmitter and be configured to detect neighboring ESLs, such as via Bluetooth Low Energy (BLE) signals. Some ESLs 110 may include one or more sensors, such as (but not limited to) a proximity sensor to detect when an individual is standing near the ESL 110, a microphone for monitoring ambient noise as well as receiving speech from a customer or store picker in some embodiments, and/or the like. In some embodiments, various ESLs deployed in the ESL system 100 may be configured and/or equipped with different capabilities or with the same capabilities.
The ESLs 110 may be configured to receive communications from the store management entity server 150, such as through wireless communication links 112 that may be relayed via the APs 130. Thus, the store management entity server 150 may  configure each ESL 110 with product information to be displayed, as well as duty cycles for when the ESL should activate to receive signals and transmit wireless beacons. The store management entity server 150 may control the periodicity of ESL duty cycles in order to minimize battery drain/usage, so as to extend the operating life, while ensuring the ESL is responsive to customers and store pickers, such as by increasing the duty cycle when individuals are within proximity of an ESL (e.g., close enough to see and/or read a display of the ESL) . Further, management entity server 150 may configure ESLs 110 to generate an appropriate indication (e.g., visual, audible, and/or tactile indications) at an appropriate time, such as when an ESL is associated with a product that appears on a shopping list of a user that is nearby (e.g., within a predetermined distance) . In various embodiments, the store management entity server 150 may be located within or near the store, or located remotely and accessed via a communication network 154.
ESLs 110 may be configured to exchange wireless communications with each other through wireless links 112, such as wireless beacons or tones, for various purposes, including in particular for determining the relative and actual location of the ESLs on shelves 50 and with respect to one another as described herein.
In some embodiments, the ESL system 100 deployed within a store 10 may also include other mechanisms for determining the precise location of ESLs and individual store pickers or customers. For example, in some embodiments, the system may include ultrasonic emitters 134 that may be configured to periodically or episodically admit ultrasonic tones (for example) that can be received by a microphone on each ESL 110 for purposes of determining relative location of each ESL via sound ranging processes. As another example, in some embodiment, the system may include infrared emitters that may be configured to emit an infrared light beam that can be received by a photo-detector on each ESL for the purpose of determining relative location via IR ranging techniques. As another example, the system may include cameras 132 coupled to the store management entity server 150 that may be positioned to provide imaging of ESLs 110 as well as individuals (e.g.,  store pickers, customers, and/or other individuals) . Image data received from such cameras 132 may be used by the store management entity server 150 to determining the location of each ESL and individuals. In some embodiments, the camera 132 may be positioned on the shelves so as to view products as well as individuals near the products. In some embodiments, ESLs 110 may include a camera and be configured to transmit images to the store management entity server 150 via a wireless link 112 with an AP 130.
The store management entity server 150 may be configured with detailed maps of the locations of products within the store, referred to as a planogram, that is correlated or calibrated to an indoor location system, such as supported by the ESLs 110 as described. The store management entity server 150 may also incorporate information from an inventory system that keeps track of the products stocks in order to avoid sending a store picker to the location of a product that is out of stock.
The APs 130 may be configured to communicate with ESLs 110 to provide communications with the store management entity server 150. In some embodiments, APs may be configured with cameras or be coupled to cameras to provide visual images of ESLs as well as customers and store pickers to provide more precise location information as described herein. APs 130 may also be configured with antenna arrays that enable determining the angle of arrival (AOA) of wireless communications, providing further localization information to the store management entity server 150.
The user mobile devices 120 may be any form of mobile device, not just the smart phone as illustrated. For example, in addition to being personal mobile devices, the mobile devices 120 that may be used in the system 100 may include smart watches, body cams, augmented reality glasses (e.g., smart glasses) , and facility-specific or enterprise-specific handheld devices that are configured specifically for store pickers.
FIG. 1B is a system block diagram illustrating an example configuration of signal communications in the ESL system 100 according to various embodiments. With reference to FIGs. 1A and 1B, ESLs 110 may be configured to communicate with APs 130 via wireless links 112a, such as Bluetooth, and to exchange wireless signals with other ESLs 110 via wireless links 112b. For example, ESLs 110 may transmit certain BLE signals 112a, such ESL advertisements that are configured to be received by a nearby AP 130 and used to onboard the ESL 110. In addition, ESLs 110 on opposite sides of an aisle (i.e., the separation between two shelves 50) may transmit certain BLE signals 112b that are configured to be received by a nearby ESL 110 and used for the purposes of determining relative positions of the respective devices.  BLE signals  112a, 112b may be broadcast at a set or select power level, enabling separation distances to be estimated based upon the measured received signal strength indicator (RSSI) of the signals received by other ESLs 110. APs 130 may be coupled to the store management entity server 150 via wired connections 132.
User mobile devices 120, which may be held, carried, or otherwise associated with a store picker or customer may receive a beacon signal, such as through a wireless link from ESLs and communicate with the store management entity server 150 via wireless communications, such as BLE, Wi-Fi, or cellular communications of various types. The APs 130 may be configured to communicate with user mobile devices 120 to provide communications with the store management entity server 150. The APs 130 may also provide user mobile devices 120 with access to external communication networks, such as the communication network 154, to enable customers to access remote servers 156, such as to comparison shop, research products, and otherwise provide Internet access support.
User mobile devices 120 used by store pickers may receive beacon signals (e.g., BT or BLE) from each of the ESLs 110 but also communicate received beacon information (e.g., identity code and RSS I information) directly to the store management entity server 150 via separate communications 122. Such separate  communications 122 may be via Wi-Fi communications (e.g., via APs 130) or via cellular data networks (e.g., fifth generation (5G) cellular networks) .
FIG. 2 is a component block diagram illustrating a non-limiting example of a computing and wireless modem system 200 suitable for use in a computing device, such as an AP or some ESLs, for implementing any of various embodiments. Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
With reference to FIGS. 1A-2, the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two  SOCs  202, 204 coupled to a clock 206, a voltage regulator 208, a radio module 266 configured to send and receive wireless communications, including BLE messages, via an antenna (not shown and an inertial measurement unit) (IMU) 268. When the computing system 200 is used in Aps or ESLs, the radio module 266 may be configured to broadcast BLE beacons as described herein. In some implementations, the first SOC 202 may operate as central processing unit (CPU) of the user mobile device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some implementations, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (such as 5 Gbps, etc. ) , or very high frequency short wave length (such as 38 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (such as vector co-processor) connected to one or more of the processors, memory 220, custom circuitry 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal  management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (such as FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (such as MICROSOFT WINDOWS) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (such as a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a user mobile device. The system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250.  Various processors  210, 212, 214, 216, 218, 252, 260, may be  interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (such as CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (such as clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores.
FIG. 3A is a timeline 300a illustrating communication between an AP and ESLs according to various embodiments. With reference to FIGS. 1A-3A, an AP 302 (e.g., 130, 200) may broadcast one or more transition commands 310. In some embodiments, the AP 302 may broadcast the one or more transition commands 310 using a first Group ID. One or more ESLs (ESL i…ESL n) 304 (e.g., 110, 200) that are associated with the first Group ID may receive the one or more transition commands 314 (for example, during a frame interval (e.g., 1.6 seconds, or N*subevent intervals or subframe intervals) . In some embodiments, the transition commands may include a second Group ID and timing information indicating Group ID time of applicability 312. In some embodiments, the AP 302 may be configured to transmit the transition command 310 a plurality of times (which may be periodically or at regular intervals, such as subevent intervals or subframe intervals, e.g., of 12.5 milliseconds) . In some embodiments, number of times that the AP transmits the transition command 310 may be configured such that most if not all of the ESL 304 may receive at least one of the transition commands 310. At the Group ID time of applicability 312, the AP 302 and  the ESLs 304 (or at least those ESLs 304 that have received at least one transition command 310) may begin communication using the second Group ID.
In various embodiments, the AP may send a polling message to each of the ESLs in the new group to determine whether each of the ESLs respond, indicating that each responding ESL has successfully moved to the new group corresponding with the second Group ID. In some embodiments, an ESL that has not received any of the transition commands 310 may not begin communication using the second Group ID at the time of applicability 312. Such ESLs may determine that they have lost synchronization with the AP 302, and at a later time may transmit an advertising message (not illustrated) to attempt to resynchronize with the AP 302.
FIG. 3B is a timeline 300b illustrating communication between an AP and ESLs according to various embodiments. With reference to FIGS. 1A-3B, an AP 302 (e.g., 130, 200) may broadcast a plurality of transition commands 320. In some embodiments, each of the transition commands 320 may include information indicating a countdown. As a non-limiting example, timeline 300b illustrates a countdown from 6 to 1. The AP 302 may broadcast the transition command a predefined number of times (e.g., a predefined number of repetitions) , and in each broadcast the transition command 320 may include information indicating a number of the countdown in sequence (as one example, 6, 5, 4, 3, 2, or 1) . In various embodiments, different embodiments may use different countdown values. Each ESL 304 may receive at least one of the transition commands 322, and using the countdown information included in the transition commands 322 each ESL 34 may determine a Group ID time of applicability 326. Some ESLs 304, such as ESL i, may receive a plurality of the transition commands 322. Some ESLs 304, such as ESL n, may receive a few of the transition commands 322, even only one of the transition commands (e.g., 324) . In such embodiments, even an ESL n that receives only one transition command 324 may determine the Group ID time of applicability 326 because of the presence of the countdown information in the transition command 324 (e.g., information in the transition command 324 indicating a “4” in the countdown  sequence from 6 to 1) . Because the AP 302 broadcasts the transition commands at regular subevent intervals (e.g., 12.5 milliseconds) , ESL n may determine the Group ID time of applicability 326. In various embodiments, the AP may send a polling message to each of the ESLs in the new group to determine whether each of the ESLs respond, indicating that each responding ESL has successfully moved to the new group corresponding with the second Group ID.
FIG. 3C is a diagram illustrating example ESL ID information 300c according to various embodiments. With reference to FIGS. 1A-3C, an AP (e.g., 130, 200, 302) may transmit to ESLs (e.g., 110, 200, 304) an indication of a new ESL ID for each ESL. In some embodiments, the AP may broadcast the ESL ID information 300c in a command format, an example of which is illustrated in FIG. 3C.
In some embodiments, the ESL ID information 300c may include a timing information field 332 (e.g., “Instant” ) . The timing information field 332 may include information enabling each ESL to determine a Group ID time of applicability. In some embodiments, the timing information field 332 may include an indication of a specific time. In some embodiments, the timing information field 332 may include countdown information. In some embodiments, the timing information field 332 may include other suitable timing information usable by the ESLs to determine the Group ID time of applicability.
In some embodiments, the ESL ID information 300c may include a subcode field 330. In some embodiments, a subcode field value of “0” may instruct all ESLs to move to a new ESL group associated with the second Group ID without changing and assigned ESL ID. In some embodiments, the AP may use the subcode field value of “0” in a situation in which there is no ESL ID conflict between the ESL group associated with the first Group ID and of the ESL group associated with the second Group ID. In some embodiments, a subcode field value of “1” may instruct each ESL to determine a new ESL ID for use in the new group.
In some embodiments, the ESL ID information 300c may include a new group ID 334, a source ESL octets map field 336, a source ESL ID bitmap field 338, a target ESL ID octets map field 340, and a target ESL ID bitmap field 342. For example, if the ESL ID information 300c includes a subcode field value of “1” instructing each ESL to determine its new ESL ID for use in the new group, each ESL may use the information in the fields 336–342 to determine a respective new ESL ID.
FIG. 3D is a diagram illustrating example encoded ESL ID information 300d according to various embodiments. The ESL ID information 300d is an example of information in the fields 336–342 of the ESL ID information 300c. With reference to FIGS. 1A-3D, an ESL (e.g., 110, 200, 304) may use ESL ID information (e.g., information in fields 336–342 of the ESL ID information 300c) to determine a new ESL ID for use in a new ESL group (i.e., an ESL group associated with the second Group ID) .
In some embodiments, an ESL group may include up to 256 ESLs. Each ESL may be allocated into a 32 byte ESL ID octet map that indicates octets that are in included in an ESL ID bitmap. For example, a source ESL ID octet map 350 ( “Source Eid Octets map” ) may indicate “10010000 00000000 00000000 000000001” , which indicates that a source ESL ID bitmap includes  bytes  0, 3, and 31 (corresponding to the position of the “1” bits) . Further, a source ESL ID bitmap 352 may indicate “10110000 00001110 00000001” . Byte 0, “10110000” , indicates  ESL IDs  0, 2, and 3. Byte 3, “00001110” , indicates ESL IDs “28, ” “29, ” and “30. ” Byte 31, “00000001” , indicates ESL ID “255. ”
Each ESL may then use the source ESL ID bitmap information and target ESL ID bitmap information to determine a respective new ESL ID bit by bit, one bit at a time. For example, a target ESL ID octet map 354 ( “Targets Eid Octets map” ) may indicate “00000100 00000010 00010000 00010000” , which indicates that a target ESL ID bitmap includes  bytes  5, 14, 19, and 27 (corresponding to the position of the “1” bits) . Byte 5, “00001000” , indicates ESL ID “60” . Byte 14, “10000001” ,  indicates ESL IDs “112” and “119. ” Byte 19, “00001000” , indicates ESL IDs “157, ” “158, ” and “159” . Byte 27, “00100000” , indicates ESL ID “218. ” Accordingly, ESL ID “0” changes to ESL ID “60; ” ESL ID “2” changes to ESL ID “112; ” ESL ID “3” changes to ESL ID “119; ” ESL ID “28” changes to ESL ID “157; ” ESL ID “29” changes to ESL ID “158; ” ESL ID “30” changes to ESL ID “159; ” and ESL ID “255” changes to ESL ID “218. ” In various embodiments, the old ESL ID mapping of the new ESL ID mapping must include the same number of raised bits.
In some implementations, an AP may transmit ESL ID information in one or more messages depending on space constraints in a single message. For example, a single message transmitted by the AP (e.g., an AP sync message) may have a 62 byte payload limitation (e.g., 64 total bytes, with one byte reserved for message type and one byte reserved for message length) . In some implementations, the AP may transmit ESL ID information in one or more messages. For example, if a source ESL ID bitmap includes N bytes and a target ESL ID bitmap includes M bytes, if (4+N) +(4+M) ≤ 62 bytes, then one message (e.g., one AP sync message) can convey all of the necessary information. Otherwise, the AP may transmit two or more packets, as needed. In some embodiments, two AP sync messages may include all of the ESL ID information. For example, the target ESL ID information includes information for all group ESL IDs (e.g., 4 + 32 = 36 bytes) , and the source ESL ID information may be divided into two parts (e.g., each including 4 + 16 = 20 bytes) . The total number of bytes of information, 56, is less than the 62 bytes available in the two AP sync messages, and so the AP may transmit all of the ESL ID information necessary to convey new ESL IDs for every ESL in a group into AP sync messages. In this example, the AP may transmit the two AP sync messages in 9.6 seconds each, or in 19.2 seconds total to convey ESL ID information for up to 255 ESLs.
FIG. 3E is a timeline 300e illustrating communication between an AP and ESLs according to various embodiments. With reference to FIGS. 1A-3E, an AP 302 (e.g., 130, 200) may transmit a transition command 360 to an ESL 304, e.g., ESL i that is associated with a first Group ID. The transition command 360 may include a  second Group ID and timing information indicating Group ID time of applicability 370. The ESL i may receive the transition command 362 and may transmit an acknowledgment 364 of the transition command 362 to the AP 302. The AP 302 may receive the acknowledgment 366. The ESL i may determine a Group ID time of applicability 370 using information in the received transition command 362. Starting at the Group ID time of applicability 370, the AP 302 and the ESL i may communicate using the second Group ID.
The AP 302 also may transmit a transition command 368 to another ESL n. However the ESL n may not receive the transition command 372, and may not transmit acknowledgment to the AP 302. The AP 302 may determine that an acknowledgment of the transition command 368 is not be received from the ESL n. In response to determining that the acknowledgment of the transition command is not be received from the ESL n, the AP 302 may retransmit the transition command 374. The ESL n may receive the retransmitted transition command 376, and may transmit and acknowledgment 378 of the transition command 376 to the AP 302. The AP 302 may receive the acknowledgment 380. The ESL n may determine a Group ID time of applicability 370 using information in the received transition command 362. Starting at the Group ID time of applicability 370, the AP 302 and the ESL n may communicate using the second Group ID. In some embodiments, the frame interval timing may include a subevent offset to provide the transmitter device an opportunity to do other Bluetooth related activities and assist in synchronizing the Group ID time of applicability 370.
FIG. 4A is a process flow diagram of a method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments. With reference to FIGS. 1A–4A, means for performing each of the operations of the method 400a may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
In block 402, the processor may communicate, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability.
In block 404, the processor may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
FIG. 4B is a process flow diagram of operations 400b that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments. With reference to FIGS. 1A–4B, means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
In block 410, the processor may broadcast, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. In some embodiments, the timing information may include countdown information indicating Group ID time of applicability. In some embodiments, transition command may include an indication of a new ESL ID for each ESL in the group of ESLs.
In block 412, the processor may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability. In some embodiments, the processor may communicate communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs starting from the Group ID time of applicability.
FIG. 4C is a process flow diagram of operations 400c that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments. With reference to FIGS. 1A–4C, means for performing each of the operations of the method 400b may include  a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
After the processor broadcasts a transition command to group of ESLs that are synchronized with the AP in block 410 as described, the processor may receive an advertisement message from one ESL from among the group of ESLs in block 420.
In block 422, the processor may perform resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
In block 412, the processor may communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability, as described.
FIG. 4D is a process flow diagram of operations 400d that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments. With reference to FIGS. 1A–4D, means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
In block 430, the processor may transmit, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. In some embodiments, the transition command may include an indication of a new ESL ID for the ESL.
In block 432, the processor may receive from the ESL and acknowledgment of the transition command.
In block 434, the processor may communicate with the one ESL using the second Group ID starting from the Group ID time of applicability. In some embodiments, the processor may communicate with the ESL using the new ESL ID.
FIG. 4E is a process flow diagram of operations 400e that may be performed as part of the method 400a of managing ESL groups performed by a processor of an access point (AP) in accordance with various embodiments. With reference to FIGS. 1A–4E, means for performing each of the operations of the method 400b may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an AP (e.g., 130, 200, 302) and the like.
After the processor transmits a transition command in block 430 to one ESL that is synchronized with the AP and that is associated with a first Group ID as described, the processor may determine that an acknowledgment of the transition command has not been received from the ESL by the processor in block 440.
In block 442, the processor may retransmit the transition command to the ESL in response to determining that the acknowledgement of the transition command has not been received from the ESL.
In block 432, the processor may receive from the ESL and acknowledgment of the transition command (i.e., the retransmitted transition command) as described.
FIG. 5 is a process flow diagram of a method 500 of managing ESL groups performed by a processor of an electronic shelf label (ESL) in accordance with various embodiments. With reference to FIGS. 1A–5, means for performing each of the operations of the method 500 may include a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 702, and/or 704) and/or a transceiver (e.g., 717) of an ESL (e.g., 110, 200, 304) and the like.
In block 502, the processor may receive from an access point (AP) with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability. In some embodiments, the timing information may include countdown information indicating the Group ID time of applicability. In some embodiments, the transition command may include information indicating a new ESL ID for the ESL.
In block 504, the processor may communicate with the AP using the second Group ID starting from the Group ID time of applicability.
In optional block 506, the processor may determine the new ESL ID for the ESL based on the information indicating the new ESL ID in the transition command.
In optional block 508, the processor may transmit to the AP and acknowledgment of the transition command.
FIG. 6 is a component block diagram of an example of an ESL 110 suitable for use with various embodiments. With reference to FIGS. 1A–6, an ESL 110 may include a display 115 and an illuminator 117 (e.g., an LED or other type of visible indicator) that our coupled to a processor 602 that is configured with processor-executable instructions configured to cause the processor to perform operations of various embodiments. The processor 602 may be coupled to a wireless transceiver 604, such as a BLE transceiver or a combination BLE and Wi-Fi transceiver, that is coupled to an antenna 606 for sending and receiving radio frequency (RF) signals as described herein. In various embodiments, the processor 602 may include an SOC (e.g., 202, 204) . An ESL 110 may be powered by a battery 608, freeing the display from having to be connected to a wired power supply. Alternatively, the ESL 110 may be powered from an external source.
FIG. 7 is a component block diagram of an AP 130 suitable for use with various embodiments. With reference to FIGS. 1A–7, the AP 130 may typically include a  processor  702, 704 coupled to volatile memory 706 and optionally a larger capacity nonvolatile memory 708. The AP 130 may also include a peripheral memory access device, such as a flash drive, coupled to the  processor  702, 704. The AP 130 may also include network access ports 714 (or interfaces) coupled to the  processor  702, 704 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers. The AP 130 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices. The AP 130 may include  one or more antennas 707 coupled to a transceiver 717 for sending (i.e., transmitting) and receiving electromagnetic radiation that may be connected to a wireless communication link.
FIG. 8 is a component block diagram of a store management entity server 150 suitable for use with various embodiments. With reference to FIGS. 1A–8, the store management entity server 150 may typically include a processor 801 coupled to volatile memory 802 and a large capacity nonvolatile memory, such as a disk drive 803. The store management entity server 150 may also include a peripheral memory access device, such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 806 coupled to the processor 801. The store management entity server 150 may also include network access ports 804 (or interfaces) coupled to the processor 801 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers. The store management entity server 150 may include one or more antennas 807 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link. The store management entity server 150 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
FIG. 9 is a component block diagram of a user mobile device 120 suitable for use as a user mobile device or a consumer user equipment (UE) when configured with processor executable instructions to perform operations of various embodiments. With reference to FIGS. 1A–9, the user mobile device 120 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to internal memory 906, a display 915, and to a speaker 914. Additionally, the user mobile device 120 may include an antenna 904 for sending and receiving electromagnetic radiation that may be connected to a radio module 266 configured to support wireless local area network data links (e.g., BLE, Wi-Fi, etc. ) and/or wireless wide area networks (e.g., cellular telephone networks) coupled to one or more processors in the first and/or  second  SOCs  202, 204. The user mobile device 120 typically also include menu selection buttons 920 for receiving user inputs.
A typical user mobile device 120 may also include an inertial measurement unit (IMU) 268 that includes a number of micro-electromechanical sensor (MEMS) elements configured to sense accelerations and rotations associated movements of the device, and provide such movement information to the first SOC 202. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 266 may include a digital signal processor (DSP) circuit (not shown separately) .
In some embodiments, a user mobile device 120 may be used as a moving AP to diagnose ESLs that have issues establishing communication with the APs or other fixed infrastructure. For example, the user mobile device 120 may be repurposed by the store management entity server by configuring the user mobile device 120 with AP protocols so that the user mobile device 120 may be recognized by ESL as an AP.
The processors of ESLs 110, the user mobile device 120, and the store management entity server 150 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of various embodiments described herein. In some user mobile devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Typically, software applications may be stored in the memory 906 before they are accessed and loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any  one example embodiment. For example, one or more of the operations of the methods and operations 400a–400e and/or 500 may be substituted for or combined with one or more operations of the methods400a–400e and/or 500.
Implementation examples are described in the following paragraphs. While some of the following implementation examples are described in terms of example methods, further example implementations may include: the example methods discussed in the following paragraphs implemented by an AP or an ESL, including a processor configured to perform operations of the example methods; the example methods discussed in the following paragraphs implemented by an AP or an ESL, including means for performing functions of the example methods; the example methods discussed in the following paragraphs implemented in a processor used in an AP or an ESL that is configured to perform the operations of the example methods; and the example methods discussed in the following paragraphs implemented as a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor or modem processor to perform the operations of the example methods.
Example 1. A method for managing ESL groups performed by a processor of an access point (AP) , including communicating, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and communicating with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
Example 2. The method of example 1, in which communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability includes broadcasting, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a  transition command including a second Group ID and timing information indicating a Group ID time of applicability.
Example 3. The method of either of examples 1 or 2, in which the timing information includes countdown information indicating the Group ID time of applicability.
Example 4. The method of any of examples 1-3, in which the transition command further includes an indication of a new ESL ID for each ESL in the group of ESLs.
Example 5. The method of example 4, in which communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability includes communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs.
Example 6. The method of any of examples 1-5, further including receiving an advertisement message from one ESL from among the group of ESLs, and performing resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
Example 7. The method of any of examples 1-6, in which communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability includes transmitting, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command including a second Group ID and timing information indicating a Group ID time of applicability, and receiving from the ESL an acknowledgement of the transition command.
Example 8. The method of example 7, further including retransmitting to the ESL the transition command in response to determining that the acknowledgement of the transition command has not been received from the ESL.
Example 9. The method of example 7, in which the transition command further includes an indication of a new ESL ID for the ESL.
Example 10. The method of example 9, in which communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability includes communication with the ESL using the new ESL ID.
Example 11. A method for managing ESL groups performed by a processor of an electronic shelf label (ESL) , including receiving, from an access point (AP) with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command including a second Group ID and timing information indicating a Group ID time of applicability, and communicating with the AP using the second Group ID starting from the Group ID time of applicability.
Example 12. The method of example 11, in which the timing information includes countdown information indicating the Group ID time of applicability.
Example 13. The method of either of examples 11 or 12, in which the transition command includes information indicating a new ESL ID for the ESL.
Example 14. The method of any of examples 11-13, further including determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL.
Example 15. The method of any of examples 11-14, further including transmitting to the AP an acknowledgement of the transition command.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from various aspects. Such services and standards may include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) ,  universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , EDGE, advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I &II (WPA, WPA2) , integrated digital enhanced network (iDEN) , C-V2X, V2V, V2P, V2I, and V2N, etc. Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and  design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM,  FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (30)

  1. A method for managing ESL groups performed by a processor of an access point (AP) , comprising:
    communicating, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability; and
    communicating with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
  2. The method of claim 1, wherein:
    communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability comprises broadcasting, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  3. The method of claim 1, wherein the timing information comprises countdown information indicating the Group ID time of applicability.
  4. The method of claim 1, wherein the transition command further comprises an indication of a new ESL ID for each ESL in the group of ESLs.
  5. The method of claim 4, wherein communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability comprises communicating with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs.
  6. The method of claim 1, further comprising:
    receiving an advertisement message from one ESL from among the group of ESLs after the Group ID time of applicability; and
    performing resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
  7. The method of claim 1, wherein communicating to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability comprises:
    transmitting, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability; and
    receiving from the ESL an acknowledgement of the transition command.
  8. The method of claim 7, further comprising:
    retransmitting to the ESL the transition command in response to determining that the acknowledgement of the transition command has not been received from the ESL.
  9. The method of claim 7, wherein the transition command further comprises an indication of a new ESL ID for the ESL.
  10. The method of claim 9, wherein communicating with the group of ESLs using the second Group ID starting from the Group ID time of applicability comprises communication with the ESL using the new ESL ID.
  11. An access point (AP) , comprising:
    a transceiver; and
    a processor coupled to the transceiver and configured with processor-executable instructions to:
    communicate, to one or more ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability; and
    communicate with the one or more ESLs using the second Group ID starting from the Group ID time of applicability.
  12. The AP of claim 11, wherein the processor is further configured with processor-executable instructions to broadcast, to a group of ESLs that are synchronized with the AP and that are associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability.
  13. The AP of claim 11, wherein the processor is further configured with processor-executable instructions such that the timing information comprises countdown information indicating the Group ID time of applicability.
  14. The AP of claim 11, wherein the processor is further configured with processor-executable instructions such that the transition command further comprises an indication of a new ESL ID for each ESL in the group of ESLs.
  15. The AP of claim 4, wherein the processor is further configured with processor-executable instructions to communicate with each ESL of the group of ESLs using the new ESL ID for each ESL in the group of ESLs.
  16. The AP of claim 11, wherein the processor is further configured with processor-executable instructions to:
    receive an advertisement message from one ESL from among the group of ESLs after the Group ID time of applicability; and
    perform resynchronization operations with the one ESL using the second Group ID in response to receiving the advertisement message from the one ESL.
  17. The AP of claim 11, wherein the processor is further configured with processor-executable instructions to:
    transmit, to one ESL that is synchronized with the AP and that is associated with a first Group ID, a transition command comprising a second Group ID and timing information indicating a Group ID time of applicability; and
    receive from the ESL an acknowledgement of the transition command.
  18. The AP of claim 7, wherein the processor is further configured with processor-executable instructions to retransmit to the ESL the transition command in response to determining that the acknowledgement of the transition command has not been received from the ESL.
  19. The AP of claim 7, wherein the processor is further configured with processor-executable instructions such that the transition command further comprises an indication of a new ESL ID for the ESL.
  20. The AP of claim 9, wherein the processor is further configured with processor-executable instructions to communicate with the ESL using the new ESL ID.
  21. A method for managing ESL groups performed by a processor of an electronic shelf label (ESL) , comprising:
    receiving, from an access point (AP) with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability; and
    communicating with the AP using the second Group ID starting from the Group ID time of applicability.
  22. The method of claim 21, wherein the timing information comprises countdown information indicating the Group ID time of applicability.
  23. The method of claim 21, wherein the transition command comprises information indicating a new ESL ID for the ESL.
  24. The method of claim 21, further comprising determining the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL.
  25. The method of claim 21, further comprising transmitting to the AP an acknowledgement of the transition command.
  26. An electronic shelf label (ESL) , comprising:
    a transceiver; and
    a processor coupled to the transceiver and configured with processor-executable instructions to:
    receive, from an access point (AP) with which the ESL is synchronized, a transition command addressed to a first Group ID, the transition command comprising a second Group ID and timing information indicating a Group ID time of applicability; and
    communicate with the AP using the second Group ID starting from the Group ID time of applicability.
  27. The ESL of claim 26, wherein the processor is further configured with processor-executable instructions such that the timing information comprises countdown information indicating the Group ID time of applicability.
  28. The ESL of claim 26, wherein the processor is further configured with processor-executable instructions such that the transition command comprises information indicating a new ESL ID for the ESL.
  29. The ESL of claim 26, wherein the processor is further configured with processor-executable instructions to determine the new ESL ID for the ESL based on the information indicating the new ESL ID for the ESL.
  30. The ESL of claim 26, wherein the processor is further configured with processor-executable instructions to transmit to the AP an acknowledgement of the transition command.
PCT/CN2022/119268 2022-09-16 2022-09-16 Managing electronic shelf label (esl) groups WO2024055282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119268 WO2024055282A1 (en) 2022-09-16 2022-09-16 Managing electronic shelf label (esl) groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119268 WO2024055282A1 (en) 2022-09-16 2022-09-16 Managing electronic shelf label (esl) groups

Publications (1)

Publication Number Publication Date
WO2024055282A1 true WO2024055282A1 (en) 2024-03-21

Family

ID=90273980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119268 WO2024055282A1 (en) 2022-09-16 2022-09-16 Managing electronic shelf label (esl) groups

Country Status (1)

Country Link
WO (1) WO2024055282A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123339A (en) * 2012-12-20 2014-07-03 Samsung Electro-Mechanics Co Ltd Esl terminal and control method thereof
US20170193593A1 (en) * 2016-01-05 2017-07-06 Samsung Electronics Co., Ltd. Apparatus and method for providing service information
CN110310174A (en) * 2019-06-24 2019-10-08 上海保资智能科技有限公司 A kind of electronics price tag shows the more new control method and system of information
CN113596745A (en) * 2021-07-26 2021-11-02 努比亚技术有限公司 Electronic price tag scheduling method and device and computer readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123339A (en) * 2012-12-20 2014-07-03 Samsung Electro-Mechanics Co Ltd Esl terminal and control method thereof
US20170193593A1 (en) * 2016-01-05 2017-07-06 Samsung Electronics Co., Ltd. Apparatus and method for providing service information
CN110310174A (en) * 2019-06-24 2019-10-08 上海保资智能科技有限公司 A kind of electronics price tag shows the more new control method and system of information
CN113596745A (en) * 2021-07-26 2021-11-02 努比亚技术有限公司 Electronic price tag scheduling method and device and computer readable storage medium

Similar Documents

Publication Publication Date Title
AU2022204250B2 (en) Multi-interface transponder device
US20220051310A1 (en) Methods Using Electronic Shelf Labels To Improve Item Gathering In Store And Warehouse Systems
US20170193593A1 (en) Apparatus and method for providing service information
WO2014164598A1 (en) Techniques for wirelessly docking to a device
CN111866838A (en) Electronic price tag system and communication method thereof
US11843934B2 (en) Methods and systems for tracking of assets and user navigation
CN105976196B (en) System, apparatus and method for providing location-based services
WO2024055282A1 (en) Managing electronic shelf label (esl) groups
WO2024026714A1 (en) Managing channel map update information in local wireless networks
WO2024098364A1 (en) Managing timing of electronic shelf label connections
WO2024045118A1 (en) MANAGING SCHEDULING OF AUXILIARY CONNECTION REQUEST MESSAGES (ACRQs)
WO2023225998A1 (en) Methods and systems for onboarding electronic shelf labels
WO2024065370A1 (en) Scheduling access point and electronic shelf label communication
WO2021140982A1 (en) Article management system and article management method
WO2024045152A1 (en) User scenario-based solutions for performance optimization in electronic store label networks
WO2021140983A1 (en) Article management system and article management method
US11125427B2 (en) Systems and methods for using a hybrid lighting and inventory system for motion detection
JP2021111163A (en) Article management system and article management method
US20230252405A1 (en) Item tracking with a wireless communication system based on a fifth generation identifier (5gid) and a global tracking item number (gtin)
EP4095541A1 (en) Methods and systems for tracking of assets and user navigation
JP2021111164A (en) Information distribution system and information distribution method
CN117917670A (en) Communication method and device
JP2014057273A (en) Position information management system, position information management method, and radio terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958473

Country of ref document: EP

Kind code of ref document: A1