WO2024055261A1 - 电池传感器、电池检测装置、系统及方法 - Google Patents

电池传感器、电池检测装置、系统及方法 Download PDF

Info

Publication number
WO2024055261A1
WO2024055261A1 PCT/CN2022/119149 CN2022119149W WO2024055261A1 WO 2024055261 A1 WO2024055261 A1 WO 2024055261A1 CN 2022119149 W CN2022119149 W CN 2022119149W WO 2024055261 A1 WO2024055261 A1 WO 2024055261A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
grating
fiber grating
fiber
transmission
Prior art date
Application number
PCT/CN2022/119149
Other languages
English (en)
French (fr)
Inventor
郭团
雷美娜
韩喜乐
刘馀斌
刘誌
林真
李伟
Original Assignee
宁德时代新能源科技股份有限公司
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司, 暨南大学 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/119149 priority Critical patent/WO2024055261A1/zh
Publication of WO2024055261A1 publication Critical patent/WO2024055261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • the present application relates to the technical field of battery monitoring, and more specifically, to a battery sensor, a battery detection device, a system and a method.
  • the internal temperature of the battery usually changes, and the positive and negative electrodes of the battery are accompanied by significant mechanical deformation. These changes can not only indirectly reflect the health status of the battery, but can also be used to study the electrochemical behavior of the battery. Therefore, it is particularly important to monitor the temperature and strain inside the battery, so it is necessary to develop a device that can monitor the temperature and strain of the battery.
  • This application provides a battery sensor, battery detection device, system and method, which can realize in-situ detection of battery strain and temperature.
  • a battery sensor including: a transmission optical fiber and a grating assembly;
  • Grating components include fiber gratings with different core diameters
  • the grating component is connected to one end of the transmission fiber and transmits optical signals through the transmission fiber.
  • the battery sensor provided by the embodiment of the present application includes a transmission optical fiber and a grating assembly including fiber gratings with different core diameters, wherein the grating assembly is connected to one end of the transmission optical fiber to transmit optical signals through the transmission optical fiber.
  • the core diameters of fiber gratings are different, their sensitivities to temperature and strain are also different.
  • the grating component by placing the grating component inside the battery, during the operation of the battery, the end of the transmission fiber that is not connected to the grating component is led out to the outside of the battery and connected to the spectrum collector.
  • the temperature and strain inside the battery change, will cause the light field of the core mode of each fiber grating in the grating assembly to be modulated, so that the optical signals output by fiber gratings with different diameters will show different wavelength changes on the spectrum collector. In this way, the wavelength information of the spectrum is analyzed. , the temperature change and strain change inside the battery can be determined, and the in-situ detection of the battery can be realized.
  • the grating component includes a first fiber grating and a second fiber grating, and the core diameter of the first fiber grating is smaller than the core diameter of the second fiber grating;
  • Bragg gratings are engraved on both the first fiber grating and the second fiber grating.
  • the first fiber grating and the second fiber grating are connected end to end;
  • connection between the grating component and one end of the transmission fiber includes:
  • the end of the first fiber grating that is not connected to the second fiber grating is connected to one end of the transmission grating, or the end of the second fiber grating that is not connected to the first fiber grating is connected to one end of the transmission grating.
  • the lengths of the first fiber grating and the second fiber grating are both greater than or equal to 1 mm.
  • the length ratio of the first fiber grating to the second fiber grating ranges from 0.2 to 1.
  • the grating component can have a better reflection bandwidth.
  • both the first fiber grating and the second fiber grating include cladding
  • the cladding diameter of the first fiber grating is greater than or equal to 40 microns
  • the cladding diameter of the second fiber grating is larger than the cladding diameter of the first fiber grating.
  • the first fiber grating and the second fiber grating are connected by welding.
  • the first fiber grating and the second fiber grating are connected by welding, which has the advantages of small node loss and high reliability.
  • embodiments of the present application provide a battery detection device, including: a battery and the battery sensor described in any one of the first aspects;
  • Batteries include cells
  • the battery core has a multi-layer structure, and the grating component of the battery sensor is implanted between the layers of the battery core;
  • the end of the transmission fiber of the battery sensor that is not connected to the grating assembly is led out to the outside of the battery.
  • the battery detection device includes a battery and a battery sensor.
  • the battery includes a multi-layer structure of the battery core.
  • the grating component of the battery sensor is implanted between the layers of the battery core.
  • the transmission optical fiber of the battery sensor is not connected to the grating component. Lead one end to the outside of the battery.
  • the optical signals output by fiber gratings of different diameters show different wavelength changes on the spectrum collector. By analyzing the wavelength information of the spectrum, the respective changes in the internal temperature and strain of the battery can be determined.
  • the battery core includes a cathode pole piece, an anode pole piece and a diaphragm.
  • the implantation position of the grating component is:
  • the temperature and strain of different parts of the battery can be detected according to the different implantation positions of the grating components.
  • embodiments of the present application provide a battery detection system, including: a battery testing system, a spectrum collector, and the battery detection device described in any one of the second aspects;
  • the battery is electrically connected to the battery testing system to set the battery to a working state through the battery testing system;
  • the end of the transmission fiber leading out to the outside of the battery is connected to the spectrum collector.
  • the battery testing system includes a battery testing system, a spectrum collector, and a battery containing a battery sensor.
  • the battery is electrically connected to the battery testing system, and the transmission optical fiber of the battery sensor in the battery is connected to the spectrum collector.
  • the battery is brought into operation by electrically connecting the battery to the battery testing system.
  • one end of the transmission optical fiber is led out to the outside of the battery and connected to the spectrum collector.
  • the change will cause the optical field of the core mode of each fiber grating in the grating assembly to be modulated, so that the optical signals output by fiber gratings with different diameters will show different wavelength changes on the spectrum collector. In this way, through the wavelength information of the spectrum Through analysis, the respective changes in temperature and strain inside the battery can be determined.
  • embodiments of the present application provide a battery detection method, which is applied to the battery detection device described in the second aspect.
  • the method includes:
  • the first optical signal is sent to the grating assembly in the battery through the transmission optical fiber;
  • the spectrum collector generates a spectrum based on the second optical signal
  • the temperature change and stress change inside the battery are determined.
  • the first optical signal is sent to the grating component in the battery through the transmission optical fiber, and the second optical signal returned by the grating component based on the first optical signal is obtained through the transmission optical fiber. , generate a spectrum based on the second optical signal, and determine the temperature change and stress change inside the battery according to the wavelength information of the spectrum.
  • the temperature change and stress change inside the battery can be determined.
  • the temperature change and stress change inside the battery are determined, including:
  • the temperature change and stress change inside the battery are determined.
  • the temperature change and stress change of the battery part can be determined.
  • the grating assembly includes a first fiber grating and a second fiber grating, and according to the central wavelength offset corresponding to each fiber grating, the temperature change and stress change inside the battery are determined, including:
  • the temperature change and stress change of the battery are calculated based on the following decoupling algorithm:
  • ⁇ T represents the temperature change inside the battery
  • represents the stress change inside the battery
  • ⁇ B represents the center wavelength offset of the second fiber grating
  • ⁇ A represents the center wavelength offset of the first fiber grating
  • ⁇ A represents the center wavelength offset of the first fiber grating
  • ⁇ A represents the center wavelength offset of the first fiber grating
  • ⁇ sensitivity of the second fiber grating represents the temperature sensitivity of the first fiber grating
  • represents the strain sensitivity of the second fiber grating Indicates the strain sensitivity of the first fiber grating.
  • embodiments of the present application provide a computer-readable storage medium.
  • Computer program instructions are stored on the computer-readable storage medium.
  • any one of the aspects of the fourth aspect is implemented.
  • the battery strain and temperature detection method is not limited to:
  • embodiments of the present application provide a computer program product.
  • the electronic device can execute any one of the steps described in the fourth aspect. Battery strain and temperature detection methods.
  • Figure 1 is a schematic structural diagram of a battery sensor provided by some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a grating assembly provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a battery sensor provided by other embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a battery sensor provided by some further embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a battery detection device provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of a battery detection system provided by some embodiments of the present application.
  • Figure 7 is a schematic flowchart of a battery detection method provided by some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited thereto.
  • ⁇ B represents the collected Bragg wavelength
  • n eff represents the effective refractive index of the grating fiber
  • represents the grating spacing
  • represents the stress
  • E represents the elastic modulus
  • represents the strain.
  • represents the change of ⁇ .
  • the above strain detection method uses the change in the wavelength of the single-mode Bragg fiber during the battery operation to demodulate the strain of the battery.
  • the wavelength drift of the single-mode Bragg fiber depends not only on the change in strain, but also on the temperature. Especially when the battery is charged and discharged at a high rate, the electrode surface and the inside are accompanied by a significant temperature rise. At this time, the effect of temperature on the wavelength of the Bragg fiber cannot be ignored, which makes the strain data measured by the single-mode Bragg fiber have a large error.
  • this application provides a battery sensor, battery, battery strain and temperature detection system and method.
  • the battery sensor provided by an embodiment of the present application may include:
  • Transmission fiber 110 and grating assembly 120 are identical to Transmission fiber 110 and grating assembly 120.
  • the grating component 120 includes fiber gratings with different core diameters.
  • the grating assembly 120 is connected to one end of the transmission optical fiber 110 and transmits optical signals through the transmission optical fiber 110 .
  • the battery sensor provided by the embodiment of the present application includes a transmission optical fiber and a grating assembly including fiber gratings with different core diameters, wherein the grating assembly is connected to one end of the transmission optical fiber to transmit optical signals through the transmission optical fiber.
  • the grating assembly is connected to one end of the transmission optical fiber to transmit optical signals through the transmission optical fiber.
  • the changes in temperature and strain inside the battery will cause This causes the light field of the core mode of each fiber grating in the grating assembly to be modulated, causing the optical signals output by fiber gratings of different diameters to show different wavelength changes on the spectrum collector.
  • the respective changes in temperature and strain inside the battery can be determined, thus enabling in-situ detection of the battery.
  • the grating assembly may include a first fiber grating 121 and a second fiber grating 122 , wherein the core diameter of the first fiber grating 121 is smaller than the core diameter of the second fiber grating 122 .
  • Both the first fiber grating 121 and the second fiber grating 122 are engraved with Bragg gratings.
  • the material of the selected optical fiber can be quartz.
  • the optical field of the core mode of the fiber grating is modulated, causing two different changes in the center wavelength of the spectrum to appear on the spectrum collector.
  • the temperature change and stress change of the battery can be determined. In this way, only two sections of fiber gratings with different diameters are needed to detect temperature changes and stress changes inside the battery, which is low cost and has good portability.
  • the period of the Bragg grating in the first fiber grating and the period of the Bragg grating in the second fiber grating may be the same, for example, the period may be 518-552 nm.
  • the first fiber grating and the second fiber grating are engraved with Bragg gratings of the same period, which can greatly improve the grating writing efficiency and the consistency of batch production, and reduce the cost of sensor preparation.
  • the first fiber grating and the second fiber grating in the fiber grating assembly can be connected end to end.
  • the implantation positions of the first fiber grating and the second fiber grating in the battery can be closer, so that the two can react as much as possible. position information, thereby improving the detection accuracy of the internal temperature and strain of the battery.
  • first fiber grating and the second fiber grating may be concentrically connected when connected.
  • Node loss can be reduced by connecting the first fiber grating and the second fiber grating concentrically.
  • the first fiber grating and the second fiber grating can be connected by welding.
  • the first fiber grating and the second fiber grating are connected by welding, which has the advantages of small node loss and high reliability.
  • the core diameter of the first fiber grating is smaller than the core diameter of the second fiber grating.
  • a section of capillary can be made, and the inner diameter of the capillary is equal to or slightly larger than The diameter of the first fiber grating and the outer diameter of the capillary tube are equal to the diameter of the second fiber grating. Insert one end of the first fiber grating into the capillary tube and fix it with the capillary tube. Then use a fiber fusion splicer to connect either end of the second fiber grating. The end of the capillary tube bonded to the first fiber grating is equal-diameter welded.
  • the transmission optical fiber usually includes two ends.
  • one end connecting the transmission optical fiber to the optical fiber component can be used as the first end, and the other end can be used as the third end. Two ends.
  • Connecting the first end of the transmission fiber to the grating component may include: connecting the end of the first fiber grating that is not connected to the second fiber grating to the first end of the transmission fiber, or connecting the end of the second fiber grating that is not connected to the first fiber grating. One end is connected to the first end of the transmission fiber.
  • the core diameter of the transmission fiber may be consistent with the core diameter of the fiber grating to which it is connected.
  • FIG. 3 is a schematic diagram of the connection between the first end of the transmission fiber and the first fiber grating 121, where 301 represents the transmission fiber.
  • FIG 4 is a schematic diagram of the connection between the first end of the transmission fiber and the second fiber grating 122, in which 401 represents the transmission fiber.
  • the transmission optical fiber may be a communication optical fiber.
  • the communication optical fiber is used as the transmission optical fiber to transmit optical signals, so that the optical signal transmission speed is fast, the loss is low, and the anti-interference ability is strong.
  • the transmission optical fiber can be designed as a pigtail.
  • One end of the pigtail is usually an optical fiber movable connector that can be connected to an external device (such as a spectrum collector, etc.), and the other end is an optical fiber break.
  • the broken end of the communication optical fiber can be used as the first end to connect to the first optical fiber grating or the second optical fiber grating.
  • the transmission optical fiber is designed as a pigtail to facilitate connection with external equipment.
  • connection between the first end of the transmission optical fiber and the first fiber grating or the second fiber grating can be made by welding, bonding, mechanical connection or other connection methods.
  • the transmission optical fiber may also be integrally formed with the first fiber grating or the second fiber grating.
  • the transmission optical fiber and the first fiber grating are integrated, when making the battery sensor, you can select a section of optical fiber and divide the section of optical fiber into two parts, one part of which is engraved with Bragg gratings, and the other part is not engraved with Bragg gratings, and then The part with Bragg gratings engraved is used as the first fiber grating, and the part without Bragg gratings is used as the transmission fiber.
  • connecting to the second optical fiber grating connect the end of the first optical fiber grating away from the transmission optical fiber to the end of the second optical fiber grating.
  • the transmission fiber and the second fiber grating are integrated, when making the battery sensor, you can select a section of fiber and divide the section of fiber into two parts, one part with Bragg gratings engraved and the other part without Bragg gratings, and then The part with Bragg gratings engraved is used as the second fiber grating, and the part without Bragg gratings is used as the transmission fiber.
  • the part with Bragg gratings engraved is used as the second fiber grating
  • the part without Bragg gratings is used as the transmission fiber.
  • the transmission fiber and the fiber grating are integrated into one piece, which ensures the firmness of the connection between the transmission fiber and the grating component and reduces the transmission loss of the optical signal.
  • the lengths of the first fiber grating and the second fiber grating are both greater than or equal to 1 mm.
  • the length ratio of the first fiber grating to the second fiber grating may range from 0.2 to 1.
  • the grating component can have a better reflection bandwidth.
  • both the first fiber grating and the second fiber grating further include a cladding for covering the fiber core, wherein the diameter of the cladding of the first fiber grating is greater than or equal to 40 microns, and the diameter of the cladding of the second fiber grating is greater than or equal to 40 microns.
  • the cladding diameter of the grating is larger than the cladding diameter of the first optical fiber.
  • this application also provides a specific implementation of a battery detection device.
  • the battery detection device provided by the embodiment of the present application may include:
  • the battery 501 and the battery sensor 502 provided in the above embodiment.
  • the specific structure of the battery sensor 502 please refer to the description of the battery sensor in the above embodiment, and will not be described again here.
  • the battery 501 includes a battery core 511.
  • the battery core 511 has a multi-layer structure.
  • the grating component 512 of the battery sensor 502 is implanted between the layers of the battery core 511 .
  • the end of the transmission optical fiber 522 of the battery sensor 502 that is not connected to the grating component 512 is led out to the outside of the battery 501 .
  • one end of the transmission optical fiber 522 is led out to the outside of the battery 501 to facilitate connection with external equipment (such as a spectrum collector).
  • the battery provided by the embodiment of the present application includes a battery and a battery sensor.
  • the battery includes a battery core with a multi-layer structure.
  • the grating component of the battery sensor is implanted between the layers of the battery core.
  • the end of the transmission optical fiber of the battery sensor that is not connected to the grating component is extracted. to the outside of the battery.
  • the light field of the core mode of each fiber grating in the grating assembly will be modulated.
  • the optical signals output by fiber gratings of different diameters show different wavelength changes on the spectrum collector. By analyzing the wavelength information of the spectrum, the respective changes in the internal temperature and strain of the battery can be determined.
  • the battery can be a lithium-ion battery, a lithium metal battery, a sodium-ion battery, a sodium-sulfur battery, a zinc-ion battery, an aluminum-ion battery, etc.
  • the structure of the battery body can be a soft-pack battery, a laminated battery, or a hard-shell battery.
  • the structure of the battery core is a multi-layer structure, for example, it can be a battery core as shown in Figure 4 .
  • the battery core may include a cathode pole piece, an anode pole piece and a separator.
  • the implantation location can be: between the two layers of separators of the battery core, between the cathode electrode piece of the battery cell and the separator, and/or the anode electrode piece of the battery cell. between the diaphragm.
  • the temperature and strain of different parts of the battery can be detected according to the different implantation positions of the grating components.
  • a battery cell can be implanted into the grating component of one or more battery sensors.
  • One layer of the cell can be embedded with one or more grating components of the battery sensor.
  • the embodiment of the present application provides a specific implementation method of the battery detection system.
  • the battery detection system provided by the embodiment of the present application may include: a battery testing system 601, a spectrum collector 602, and the battery detection device 603 provided in the above embodiment, wherein the battery detection device 603 includes a battery sensor, and the battery detection device 603
  • the battery detection device 603 includes a battery sensor
  • the battery detection device 603 For the specific structure, please refer to the description of the battery detection device in the above embodiment, and will not be described again here.
  • the battery in the battery detection device 603 is electrically connected to the battery testing system 601, and the transmission optical fiber 613 in the battery detection device 603 is led to one end outside the battery and connected to the spectrum collector 602.
  • the battery testing system 601 can be an existing mature battery charging and discharging testing system, such as a charging and discharging machine.
  • the positive and negative electrodes of the battery in the battery testing device 603 can be electrically connected to the battery testing system 601 through connecting wires, so that the battery enters a working state.
  • the working state includes charging, discharging or alternating charging and discharging.
  • the first optical signal emitted by the spectrum collector 602 can be transmitted to the fiber grating component in the battery detection device 603 through the transmission fiber, and the fiber grating component can be transmitted based on the first optical signal.
  • the returned second optical signal is transmitted to the spectrum collector 602 .
  • the battery testing system includes a battery testing system, a spectrum collector and a battery testing device.
  • the battery in the battery testing device is electrically connected to the battery testing system.
  • the transmission optical fiber of the battery sensor in the battery testing device is led to the outside of the battery.
  • One end is connected to the spectrum collector.
  • the battery is brought into working state by electrically connecting the battery to the battery testing system.
  • the grating will be caused to The light field of the core mode of each fiber grating in the component is modulated, so that the optical signals output by fiber gratings with different diameters show different wavelength changes on the spectrum collector. In this way, by analyzing the wavelength information of the spectrum, it can be determined Get the respective changes in battery internal temperature and strain.
  • the embodiment of the present application provides a specific implementation method of the battery detection method.
  • the battery detection method provided by the embodiment of the present application may include the following steps:
  • the battery When testing the strain and temperature of the battery, the battery can be brought into working condition by electrically connecting the positive and negative electrodes of the battery to the battery testing system.
  • one end of the transmission optical fiber can be led out to the outside of the battery and connected to the spectrum collector, and the light source provided on the spectrum collector can be used to emit the first optical signal to the grating assembly inside the battery.
  • the grating component After receiving the first optical signal, the grating component will reflect the first optical signal, and the reflected second optical signal can be returned to the spectrum collector through the transmission optical fiber.
  • a spectrum collector can be used to generate a corresponding spectrum by modulating the second optical signal returned by the grating component.
  • the battery strain and temperature detection method sents a first optical signal to the grating component in the battery through the transmission optical fiber during the operation of the battery, and obtains the second optical signal returned by the grating component based on the first optical signal through the transmission optical fiber.
  • the light signal generates a spectrum based on the second light signal.
  • S74 when S74 determines the wavelength change and temperature change inside the battery based on the wavelength information of the spectrum, it can determine the center wavelength drift corresponding to each fiber grating in the grating assembly based on the wavelength information of the spectrum, and then According to the center wavelength offset corresponding to each fiber grating, the temperature change and stress change inside the battery are determined.
  • the effective refractive index of the fiber core of fiber gratings with different diameters is different, the sensitivity to temperature and strain is also different.
  • the fiber grating will cause the fiber core to have different effective refractive index.
  • the light field of the core mode is modulated, so that the center wavelength changes corresponding to each fiber grating reflected on the spectrum are also different, that is, the center wavelength drift corresponding to each fiber grating is different. Therefore, by measuring the corresponding center wavelength of fiber gratings with different core diameters By analyzing the central wavelength shift, the temperature change and stress change inside the battery can be determined.
  • the grating component of the battery sensor contained in the battery includes a first fiber grating and a second fiber grating. Because the effective refractive index of the cores of fiber gratings with different diameters is different, during the operation of the battery, the With changes in temperature and strain, the optical field of the core mode of the fiber grating is modulated, causing the changes in the center wavelength corresponding to each fiber grating reflected in the spectrum to be different. Therefore, the first fiber grating can be determined based on the wavelength information of the spectrum. The corresponding center wavelength drift amount and the corresponding center wavelength drift amount of the second fiber grating.
  • the center wavelength shift amount corresponding to the first fiber grating and the center wavelength shift amount corresponding to the second fiber grating can be used , the temperature change and stress change of the battery are calculated based on the following decoupling algorithm:
  • ⁇ T represents the temperature change inside the battery
  • represents the stress change inside the battery
  • ⁇ B represents the center wavelength offset of the second fiber grating
  • ⁇ A represents the center wavelength offset of the first fiber grating
  • ⁇ A represents the center wavelength offset of the first fiber grating
  • ⁇ A represents the center wavelength offset of the first fiber grating
  • ⁇ sensitivity of the second fiber grating represents the temperature sensitivity of the first fiber grating
  • represents the strain sensitivity of the second fiber grating Indicates the strain sensitivity of the first fiber grating.
  • the following is an example of strain and temperature detection of a battery equipped with a battery sensor.
  • the grating assembly of the battery sensor includes a first fiber grating and a second fiber grating.
  • the lengths of the first fiber grating and the second fiber grating are 5 mm and 15 mm respectively.
  • the core diameter of the first fiber grating is 7 microns.
  • the core diameter of the second fiber grating is 9 microns, the cladding diameter of the first fiber grating is 80 microns, the cladding diameter of the second fiber grating is 125 microns, the strain sensitivity of the first fiber grating is 1.85pm/ ⁇ , and the strain sensitivity of the first fiber grating is 1.85pm/ ⁇ .
  • the temperature sensitivity of the fiber grating is 11.71pm/°C, the strain sensitivity of the second fiber grating is 0.65pm/ ⁇ , and the temperature sensitivity of the second fiber grating is 10.63pm/°C.
  • the grating component of the above-mentioned battery sensor is placed at a position inside the battery that needs to be detected.
  • it is determined by analyzing the spectrum that the center wavelength drift corresponding to the first fiber grating is 1551.7nm, and the second fiber grating is 1551.7nm.
  • the center wavelength shift corresponding to the grating is 1548.6nm.
  • the values of ⁇ T and ⁇ can be obtained, that is, the temperature change and stress change inside the battery can be obtained.
  • the embodiment of the present application can provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the battery detection methods in the above embodiments is implemented.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • elements of the application are programs or code segments that are used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池传感器、电池、电池检测系统及方法,包括传输光纤和由不同直径的光纤光栅组成的光栅组件,其中,光栅组件与传输光纤的一端连接,以通过传输光纤传输光信号。根据本申请实施例,因为光纤光栅的直径不同,其对温度和应变的灵敏度也不同。通过将光栅组件置于电池内部,将传输光纤未与光栅组件连接的一端引出至电池外测,在电池工作过程中,随着电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,通过对光谱中的波长信息进行分析,便可以确定出电池内部温度和应变的变化量,从而实现对电池的原位检测。

Description

电池传感器、电池检测装置、系统及方法 技术领域
本申请涉及电池监测技术领域,并且更具体地,涉及一种电池传感器、电池检测装置、系统及方法。
背景技术
随着锂离子电池市场规模的持续扩大,对电池安全和可靠性提出了更严苛的要求。
在电池工作过程中,通常电池内部温度会发生变化,并且电池正负极会伴有显著的机械形变,这些变化规律不仅可间接反映电池的健康状态,也可用于研究电池的电化学行为。因此,对电池内部的温度和应变进行监测显得尤为重要,所以开发一种能够对电池温度和应变进行监测的装置十分必要。
发明内容
本申请提供了一种电池传感器、电池检测装置、系统及方法,其能够实现对电池应变及温度的原位检测。
第一方面,本申请实施例提供了一种电池传感器,包括:传输光纤和光栅组件;
光栅组件包括纤芯直径不同的光纤光栅;
光栅组件与所述传输光纤的一端连接,并通过传输光纤传输光信号。
通过本申请实施例提供的电池传感器,包括传输光纤和包括不同纤芯直径的光纤光栅的光栅组件,其中,光栅组件与传输光纤的一端连接,以通过传输光纤传输光信号。根据本申请实施例,因为光纤光栅的纤芯直径不同,其对温度和应变的灵敏度也不同。在实际应用中,通过将光栅组件置于电池内部,在电池工作过程中,将传输光纤未与光栅组件连接的一端引出至电池外侧并与光谱采集仪连接,随着电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,如此通过对光谱的波长信息进行分析,便可以确定出电池内部的温度变化量和应变变化量,实现对电池的原位检测。
作为一种可能的实现方式,光栅组件包括第一光纤光栅和第二光纤光栅,第一光纤光栅的纤芯直径小于第二光纤光栅的纤芯直径;
第一光纤光栅和第二光纤光栅上均刻有布拉格光栅。
通过该实现方式的技术方案,只需要两段纤芯直径不同的光纤光栅便可以实现对电池内部温度变化量和应力变化量的检测,成本较低,便携性较好。
作为一种可能的实现方式,第一光纤光栅与第二光纤光栅首尾连接;
光栅组件与传输光纤的一端连接包括:
第一光纤光栅未与第二光纤光栅连接的一端与传输光栅的一端连接,或第二光纤光栅未与第一光纤光栅连接的一端与传输光栅的一端连接。
通过该实现方式的技术方案,通过该实现方式的技术方案,只需将传输光纤与光栅组件中的任意一段光纤光栅连接,便可以通过传输 光纤实现对光栅组件中所有光纤光栅的光信号传输。
作为一种可能的实现方式,第一光纤光栅和第二光纤光栅的长度均大于或等于1毫米。
通过该实现方式的技术方案,采用上述长度光纤光栅,可以保证能够采集到质量较好的光谱。
作为一种可能的实现方式,第一光纤光栅与第二光纤光栅的长度比例范围为0.2~1。
通过该实现方式的技术方案,可以使光栅组件具有较优的反射带宽。
作为一种可能的实现方式,第一光纤光栅和第二光纤光栅均包括包层;
第一光纤光栅的包层直径大于或等于40微米;
第二光纤光栅的包层直径大于第一光纤光栅的包层直径。
通过该实现方式的技术方案,采用上述尺寸的第一光纤光栅和第二光纤光栅可以保证能够采集到质量较好的光谱。
作为一种可能的实现方式,第一光纤光栅与第二光纤光栅之间采用熔接的方式连接。
通过该实现方式的技术方案,采用熔接的方式对第一光纤光栅和第二光纤光栅进行连接,具有节点损耗小、可靠性高等优点。
第二方面,本申请实施例提供了一种电池检测装置,包括:电池和第一方面任意一项所述的电池传感器;
电池包括电芯;
电芯为多层结构,电池传感器的光栅组件植入所述电芯的层间;
电池传感器的传输光纤未与光栅组件连接的一端引出至电池的外侧。
通过本申请实施例提供的电池检测装置,包括电池和电池传感器,电池包括多层结构的电芯,电池传感器的光栅组件植入电芯的层间,将电池传感器的传输光纤未与光栅组件连接的一端引出至电池外侧。在电池工作过程中,通过将传输光纤引出至电池外侧的一端与光谱采集仪连接,随着电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,如此通过对光谱的波长信息进行分析,便可以确定出电池内部温度和应变各自变化量。
作为一种可能的实现方式,电芯包括阴极极片、阳极极片和隔膜,光栅组件的植入位置为:
电芯的两层隔膜之间、电芯的阴极极片与隔膜之间和/或电芯的阳极极片与隔膜之间。
通过该实现方式的技术方案,根据光栅组件植入位置的不同,可以实现对电池不同部位的温度和应变的检测。
第三方面,本申请实施例提供了一种电池检测系统,包括:电池测试系统、光谱采集仪和第二方面任意一项所述的电池检测装置;
电池与电池测试系统电连接,以通过电池测试系统将电池设置为工作状态;
传输光纤引出至电池外侧的一端与光谱采集仪连接。
通过本申请实施例提供的电池检测系统,包括电池测试系统、光谱采集仪和包含电池传感器的电池,电池与电池测试系统电连接,电池中电池传感器的传输光纤与光谱采集仪连接。根据本申请实施例,通过将电池与电池测试系统电连接使电池进入工作状态,在电池工作过程中,通过将传输光纤引出至电池外侧的一端与光谱采集仪连接,随着电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤 芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,如此通过对光谱的波长信息进行分析,便可以确定出电池内部温度和应变各自变化量。
第四方面,本申请实施例提供了一种电池检测方法,应用于第二方面所述的电池检测装置,所述方法包括:
在电池工作过程中,通过传输光纤向电池内的光栅组件发送第一光信号;
通过传输光纤获取光栅组件基于第一光信号返回的第二光信号;
光谱采集仪基于第二光信号生成光谱;
根据光谱的波长信息,确定电池内部的温度变化量和应力变化量。
通过本申请实施例提供的电池检测方法,在电池工作过程中,通过传输光纤向电池内的光栅组件发送第一光信号,并通过传输光纤获取光栅组件基于第一光信号返回的第二光信号,基于第二光信号生成光谱,根据光谱的波长信息,确定电池内部的温度变化量和应力变化量。根据本申请实施例,通过对不同纤芯直径的光纤光栅对应的波长信息进行分析,即可确定电池内部的温度变化量和应力变化量。
作为一种可能的实现方式,根据光谱的波长信息,确定电池内部的温度变化量和应力变化量,包括:
根据光谱的波长信息确定光栅组件中各光纤光栅对应的中心波长漂移量;
根据各光纤光栅对应的中心波长偏移量,确定电池内部的温度变化量和应力变化量。
通过该实现方式的技术方案,通过对电池内部纤芯直径不同的光纤光栅对应的中心波长漂移量进行分析,即可确定电池部的温度变化量和应力变化量。
作为一种可能的实现方式,光栅组件包括第一光纤光栅和第二光纤光栅,根据各光纤光栅对应的中心波长偏移量,确定电池内部的温度变化量和应力变化量,包括:
根据第一光纤光栅对应的中心波长漂移量和第二光纤光栅对应的中心波长偏移量,基于下述解耦算法计算得到电池的温度变化量和应力变化量:
Figure PCTCN2022119149-appb-000001
其中,ΔT表示电池内部的温度变化量,Δε表示电池内部的应力变化量,Δλ B表示第二光纤光栅的中心波长偏移量,Δλ A表示第一光纤光栅的中心波长偏移量,
Figure PCTCN2022119149-appb-000002
表示第二光纤光栅的温度灵敏度,
Figure PCTCN2022119149-appb-000003
表示第一光纤光栅的温度灵敏度,
Figure PCTCN2022119149-appb-000004
表示第二光纤光栅的应变灵敏度,
Figure PCTCN2022119149-appb-000005
表示第一光纤光栅的应变灵敏度。
通过该实现方式的技术方案,通过将获取的两个纤芯直径不同的光纤光栅对应的中心波长漂移量输入到矩阵中进行解耦计算,便可以得到电池的温度和应变的各自变化量,方便简单,而且准确率高。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如第四方面任意一项所述的电池应变和温度检测方法。
第六方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品中的指令由电子设备的处理器执行时,使得所述电子设备能够执行如第四方面任意一项所述的电池应变和温度检测方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的电池传感器的结构示意图;
图2为本申请一些实施例提供的光栅组件的结构示意图;
图3为本申请另一些实施例提供的电池传感器的结构示意图;
图4为本申请又一些实施例提供的电池传感器的结构示意图;
图5为本申请一些实施例提供的电池检测装置的结构示意图;
图6为本申请一些实施例提供的电池检测系统的结构示意图;
图7为本申请一些实施例提供的电池检测方法的流程示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、 “第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、 扁平体、长方体或其它形状等,本申请实施例对此也不限定。
现有的对电池应变进行检测的方式主要为,将单模光纤包埋在电池的电极材料中,并穿出集流体连接至光谱采集仪,通过光谱采集仪采集电池工作过程中的布拉格波长变化,然后根据设置的布拉格条件λ B=n eff∧,将波长的变化参数转化为对应的材料应变,再通过胡克定律σ=Eε计算得到光栅区的应力情况。其中,λ B表示采集到的布拉格波长,n eff表示光栅光纤的有效折射率,∧表示光栅间距,σ表示应力,E表示弹性模量,ε表示应变,
Figure PCTCN2022119149-appb-000006
Δ∧表示∧的变化量。
上述检测应变的方式利用电池工作过程中单模布拉格光纤波长的变化解调电池的应变情况。然而,单模布拉格光纤的波长漂移不只取决于应变的变化,也受温度的影响,尤其是当电池在大倍率充放电时,电极表面及内部均伴随有显著的温升,此时,温度对布拉格光纤波长的影响将不可忽略,这就使得单模布拉格光纤所测得的应变数据将会出现较大误差。
为了解决上述技术问题,本申请提供了一种电池传感器、电池、电池应变和温度检测系统及方法。
下面首先对本申请实施例所提供的电池传感器进行介绍。
参见图1,为本申请一个实施例提供的一种电池传感器的结构示意图,如图1所示,本申请实施例提供的电池传感器可以包括:
传输光纤110和光栅组件120。
其中,光栅组件120中包括纤芯直径不同的光纤光栅。
光栅组件120与传输光纤110的一端连接,并通过传输光纤110传输光信号。
通过本申请实施例提供的电池传感器,包括传输光纤和包括不同纤芯直径的光纤光栅的光栅组件,其中,光栅组件与传输光纤的一端 连接,以通过传输光纤传输光信号。根据本申请实施例,因为光纤光栅的直径不同,其对温度和应变的灵敏度也不同。在实际应用中,通过将光栅组件置于电池内部,将传输光纤未与光栅组件连接的一端引出至电池外侧并与光谱采集仪连接,在电池工作过程中,电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,如此通过对光谱中的波长信息进行分析,便可以确定出电池内部温度和应变各自变化量,从而实现了对电池的原位检测。
在一个实施例中,参见图2,光栅组件可以包括第一光纤光栅121和第二光纤光栅122,其中,第一光纤光栅121的纤芯直径小于第二光纤光栅122的纤芯直径。
第一光纤光栅121和第二光纤光栅122上均刻有布拉格光栅。
在制备光栅组件时,可以选取两段纤芯直径不同的光纤,然后分别在两段光纤上刻制布拉格光栅,并将刻制完备后的两端光纤分别作为第一光纤光栅和第二光纤光栅。其中,选取的光纤的材质可以为石英。通过该实现方式的技术方案,由于第一光纤光栅与第二光纤光栅的纤芯直径不同,所以纤芯有效折射率不同,其对温度和应变的灵敏度也不同,因此,在电池工作过程中,随着电池内部温度和应变的变化,引起光纤光栅的纤芯模的光场受到调制,使得在光谱采集仪上会呈现出两个不同的光谱中心波长的变化,通过对光谱的波长信息进行分析,便可以确定出电池的温度变化量和应力变化量。如此,只需要两段直径不同的光纤光栅便实现对电池内部温度变化量和应力变化量的检测,成本较低,便携性较好。
在一种可能的实现方式中,第一光纤光栅中的布拉格光栅的周期与第二光纤光栅中的布拉格光栅的周期可以相同,例如周期可以为 518-552nm。
通过该实现方式的技术方案,第一光纤光栅和第二光纤光栅上刻有相同周期的布拉格光栅,可大幅提高光栅刻写效率与批量制作的一致性,降低传感器制备成本。
在一种可能的实现方式中,光纤光栅组件中的第一光纤光栅与第二光纤光栅可以首尾连接。
通过该实现方式的技术方案,通过将第一光纤光栅与第二光纤光栅首尾连接可以使得第一光纤光栅和第二光纤光栅在电池中的植入位置更相近,使得两者能够尽可能反应同一位置的信息,从而提高对电池内部温度和应变的检测精度。
在一种可能的实现方式中,第一光纤光栅和第二光纤光栅在连接时可以同心连接。
通过将第一光纤光栅和第二光纤光栅同心连接可以减少节点损耗。
在一种可能的实现方式中,第一光纤光栅和第二光纤光栅之间可以采用熔接的方式连接。
通过该实现方式的技术方案,采用熔接的方式对第一光纤光栅和第二光纤光栅进行连接,具有节点损耗小、可靠性高等优点。
在一种可能的实现方式中,第一光纤光栅的纤芯直径小于第二光纤光栅的纤芯直径,在对上述两段光纤光栅进行熔接时,可以制作一段毛细管,毛细管的内径等于或略大于第一光纤光栅的直径,毛细管的外径等于第二光纤光栅的直径,将第一光纤光栅的一端插入毛细管,并与毛细管进行固定粘接,然后利用光纤熔接机将第二光纤光栅的任意一端与第一光纤光栅粘接了毛细管的一端进行等径熔接。
通过该实现方式的技术方案,使得直径不同的光纤光栅可以实现很好的熔接,而且工序简单,传统简单的光纤熔接机即可实现,熔接 成本低。
在一种可能的实现方式中,传输光纤通常包括两端,在将传输光纤与光栅组件进行连接时,为便于区分可以将传输光纤与光纤组件连接的一端作为第一端,将另一端作为第二端。
传输光纤的第一端与光栅组件连接可以包括:将第一光纤光栅未与第二光纤光栅连接的一端与传输光纤的第一端连接,或将第二光纤光栅未与第一光纤光栅连接的一端与传输光纤的第一端连接。
在一个示例中,为了便于连接,传输光纤的纤芯直径可以与其连接的光纤光栅的纤芯直径一致。
参见图3,为传输光纤的第一端与第一光纤光栅121连接的示意图,其中301表示传输光纤。
参见图4,为传输光纤的第一端与第二光纤光栅122连接的示意图,其中401表示传输光纤。
通过该实现方式的技术方案,只需将传输光纤与光栅组件中的任意一段光纤光栅连接,便可以通过传输光纤实现对光栅组件中所有光纤光栅的光信号传输。
在一种可能的实现方式中,传输光纤可以采用通讯光纤。
通过该实现方式的技术方案,将通讯光纤作为传输光纤进行光信号的传输,使得光信号的传输速度快、损耗低,并且抗扰能力强。
在一种可能的实现方式中,传输光纤可以设计为尾纤。尾纤的两端中通常一端为可以与外接设备(例如光谱采集仪等)进行连接的光纤活动连接器,另一端为光纤断头。在将通讯光纤与第一光纤光栅或第二光纤光栅连接时,可以将通信光纤的光纤断头作为第一端与第一光纤光栅或第二光纤光栅连接。
通过该实现方式的技术方案,将传输光纤设计成尾纤,便于与 外接设备连接。
在将传输光纤的第一端与第一光纤光栅或第二光纤光栅之间的连接,可以采用熔接、粘接、机械连接等连接方式。
在一种可能的实现方式中,传输光纤也可以是与第一光纤光栅或第二光纤光栅一体成型的。
若传输光纤与第一光纤光栅是一体成型的,则在制作电池传感器时,可以选取一段光纤,将该段光纤划分为两部分,其中一部分刻制布拉格光栅,另一部分不刻制布拉格光栅,然后将刻制有布拉格光栅的部分作为第一光纤光栅,将未刻制布拉格光栅的部分作为传输光纤。在与第二光纤光栅连接时,将第一光纤光栅远离传输光纤的一端与第二光纤光栅的一端连接。
若传输光纤与第二光纤光栅是一体成型的,则在制作电池传感器时,可以选取一段光纤,将该段光纤划分为两部分,其中一部分刻制布拉格光栅,另一部分不刻制布拉格光栅,然后将刻制有布拉格光栅的部分作为第二光纤光栅,将未刻制布拉格光栅的部分作为传输光纤。在与第一光纤光栅连接时,将第二光纤光栅远离传输光纤的一端与第一光纤光栅的一端连接。
通过该实现方式的技术方案,将传输光纤与光纤光栅一体成型,保证了传输光纤与光栅组件之间连接的牢固性,并且降低了光信号的传输损耗。
在一种可能的实现方式中,第一光纤光栅和第二光纤光栅的长度均大于或等于1毫米。
通过该实现方式的技术方案,采用上述长度光纤光栅,可以保证能够采集到质量较好的光谱。
在一种可能的实现方式中,第一光纤光栅与第二光纤光栅的长 度比例范围可以为0.2~1。
通过上述实现方式的技术方案,可以使光栅组件具有较优的反射带宽。
在一种可能的实现方式中,第一光纤光栅和第二光纤光栅还均包括用于包覆纤芯的包层,其中,第一光纤光栅的包层直径大于或等于40微米,第二光纤光栅的包层直径大于第一光纤光纤的包层直径。
通过该实现方式的技术方案,采用上述尺寸的第一光纤光栅和第二光纤光栅可以保证能够采集到质量较好的光谱。
基于上述实施例提供的电池传感器,相应的,本申请还提供了一种电池检测装置的具体实现方式。
参见图5,本申请实施例提供的电池检测装置可以包括:
电池501和上述实施例提供的电池传感器502。其中,电池传感器502的结构具体可以参见上述实施例对电池传感器的描述,此处不再赘述。
其中,电池501包括电芯511。
电芯511为多层结构,电池传感器502的光栅组件512植入电芯511的层间,电池传感器502的传输光纤522未与光栅组件512连接的一端引出至电池501的外侧。
其中,将传输光纤522的一端引出至电池501的外侧,是为了便于与外接设备(例如光谱采集仪)连接。
本申请实施例提供的电池,包括电池和电池传感器,电池包括多层结构的电芯,电池传感器的光栅组件植入电芯的层间,将电池传感器的传输光纤未与光栅组件连接的一端引出至电池外侧。在电池工作过程中,通过将传输光纤引出至电池外侧的一端与光谱采集仪连接,随着电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤 芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,如此通过对光谱的波长信息进行分析,便可以确定出电池内部温度和应变各自变化量。
在一种可能的实现方式中,电池可以为锂离子电池、锂金属电池、钠离子电池、钠硫电池、锌离子电池、铝离子电池等。
电池本体的结构可以为软包电池、叠片或硬壳电池等。
在一种可能的实现方式中,电芯的结构为多层结构,例如可以为如图4所示的电池卷芯。具体的,电芯可以包括阴极极片、阳极极片和隔膜。
在将电池传感器的光栅组件植入电芯的层间时,植入位置可以为:电芯的两层隔膜之间、电芯的阴极极片与隔膜之间和/或电芯的阳极极片与隔膜之间。
通过该实现方式的技术方案,根据光栅组件植入位置的不同,可以实现对电池不同部位的温度和应变的检测。
在一种可能的实现方式中,一个电芯可以植入一个或多个电池传感器的光栅组件。电芯的一层可以植入一个或多个电池传感器的光栅组件。
基于上述实施例提供的电池检测装置,相应的,本申请实施例提供了一种电池检测系统的具体实现方式。
参见图6,本申请实施例提供的电池检测系统可以包括:电池测试系统601、光谱采集仪602和上述实施例提供的电池检测装置603,其中,电池检测装置603包括电池传感器,电池检测装置603的具体结构可以参见上述实施例对电池检测装置的描述,此处不再赘述。
其中,电池检测装置603中的电池与电池测试系统601电连接,电池检测装置603中的传输光纤613引出至电池外侧的一端与光谱采集 仪602连接。
电池测试系统601可以为现有成熟的电池充放电测试系统,例如充放电机。可以通过连接线将电池检测装置603中电池的正极和负极与电池测试系统601电连接,从而使电池进入工作状态。其中,工作状态包括充电、放电或充放电交替等工况。
通过将传输光纤613与光谱采集仪602连接,可以实现将光谱采集仪602发出的第一光信号通过传输光纤传输给电池检测装置603内的光纤光栅组件,并将光纤光栅组件基于第一光信号返回的第二光信号传输至光谱采集仪602。
本申请实施例提供的电池检测系统,包括电池测试系统、光谱采集仪和电池检测装置,电池检测装置中的电池与电池测试系统电连接,电池检测装置中电池传感器的传输光纤引出至电池外侧的一端与光谱采集仪连接。根据本申请实施例,通过将电池与电池测试系统电连接使电池进入工作状态,在电池工作过程中,通过将传输光纤与光谱采集仪连接,随着电池内部温度和应变的变化,会引起光栅组件中各光纤光栅的纤芯模的光场受到调制,使得不同直径的光纤光栅输出的光信号在光谱采集仪上呈现出不同的波长变化,如此通过对光谱的波长信息进行分析,便可以确定出电池内部温度和应变各自变化量。
基于上述实施例提供的电池检测装置,相应的,本申请实施例提供了一种电池检测方法的具体实现方法。
参见图7,本申请实施例提供的电池检测方法可以包括以下步骤:
S71.在电池工作过程中,通过传输光纤向电池内部的光栅组件发送第一光信号。
在对电池进行应变和温度检测时,可以通过将电池的正极和负极与电池测试系统电连接,来使电池进入工作状态。
在一个示例中,可以通过将传输光纤引出至电池外侧的一端与光谱采集仪连接,利用光谱采集仪上设置的光源向电池内部的光栅组件发射第一光信号。
S72.通过传输光纤获取光栅组件基于第一光信号返回的第二光信号。
光栅组件在接收到第一光信号之后,会对第一光信号进行反射,可以通过传输光纤将反射的第二光信号返回光谱采集仪。
S73.基于第二光信号生成光谱。
可以利用光谱采集仪通过对光栅组件返回的第二光信号进行调制生成对应的光谱。
S74.根据光谱的波长信息,确定电池内部的温度变化量和应力变化量。
本申请实施例提供的电池应变和温度检测方法,在电池工作过程中,通过传输光纤向电池内的光栅组件发送第一光信号,并通过传输光纤获取光栅组件基于第一光信号返回的第二光信号,基于第二光信号生成光谱,通过对光谱的波长信息进行分析,便可以确定电池内部的温度变化量和应力变化量。从而实现对电池的原位检测。
在一种可能的实现方式中,S74在根据光谱的波长信息确定电池内部的波长变化量和温度变化量时,可以根据光谱的波长信息确定光栅组件中各光纤光栅对应的中心波长漂移量,然后根据各光纤光栅对应的中心波长偏移量,确定电池内部的温度变化量和应力变化量。
通过该实现方式的技术方案,因为不同直径的光纤光栅的纤芯有效折射率不同,对温度和应变的灵敏度也不同,在电池工作过程中,随着温度和应变的变化,引起光纤光栅的纤芯模的光场受到调制,使得反应到光谱上的各光纤光栅对应的中心波长变化也不同,也即各光 纤光栅对应的中心波长漂移量不同,因此通过对不同纤芯直径的光纤光栅对应的中心波长偏移量进行分析,便可以确定电池内部的温度变化量和应力变化量。
在一种可能的实现方式中,电池中包含的电池传感器的光栅组件包括第一光纤光栅和第二光纤光栅,因为不同直径的光纤光栅的纤芯有效折射率不同,在电池工作过程中,随着温度和应变的变化,引起光纤光栅的纤芯模的光场受到调制,使得反应到光谱上的各光纤光栅对应的中心波长变化也不同,因此根据光谱的波长信息可以确定出第一光纤光栅对应的中心波长漂移量和第二光纤光栅对应的中心波长漂移量。在根据各光纤光栅对应的中心波长偏移量,确定电池内部的温度变化量和应力变化量时,可以根据第一光纤光栅对应的中心波长漂移量和第二光纤光栅对应的中心波长偏移量,基于下述解耦算法计算得到电池的温度变化量和应力变化量:
Figure PCTCN2022119149-appb-000007
其中,ΔT表示电池内部的温度变化量,Δε表示电池内部的应力变化量,Δλ B表示第二光纤光栅的中心波长偏移量,Δλ A表示第一光纤光栅的中心波长偏移量,
Figure PCTCN2022119149-appb-000008
表示第二光纤光栅的温度灵敏度,
Figure PCTCN2022119149-appb-000009
表示第一光纤光栅的温度灵敏度,
Figure PCTCN2022119149-appb-000010
表示第二光纤光栅的应变灵敏度,
Figure PCTCN2022119149-appb-000011
表示第一光纤光栅的应变灵敏度。
其中,
Figure PCTCN2022119149-appb-000012
Figure PCTCN2022119149-appb-000013
并且,
Figure PCTCN2022119149-appb-000014
Figure PCTCN2022119149-appb-000015
都是已知的常量。
通过该实现方式的技术方案,通过将获取的两个直径不同的光纤光栅对应的中心波长漂移量输入到矩阵中进行解耦计算,便可以得到电池的温度和应变的各自变化量,方便简单,而且准确率高。
下面以对一个设置有电池传感器的电池进行应变和温度检测为例进行说明。
电池传感器的光栅组件中包括的第一光纤光栅和第二光纤光栅,第一光纤光栅和第二光纤光栅的长度分别为5毫米和15毫米,第一光纤光栅的纤芯直径为7微米,第二光纤光栅的纤芯直径为9微米,第一光纤光栅的包层直径为80微米,第二光纤光栅的包层直径为125微米,第一光纤光栅的应变灵敏度为1.85pm/με,第一光纤光栅的温度灵敏度为11.71pm/℃,第二光纤光栅的应变灵敏度为0.65pm/με,第二光纤光栅的温度灵敏度为10.63pm/℃。
将上述电池传感器的光栅组件设置在电池内部需要进行检测的位置,在对电池进行应变和温度检测时,通过对光谱进行分析确定第一光纤光栅对应的中心波长漂移量为1551.7nm,第二光纤光栅对应的中心波长漂移量为1548.6nm。
则将上述各应变灵敏度、温度灵敏度和中心波长漂移量代入下述解耦算法:
Figure PCTCN2022119149-appb-000016
得到下述公式:
Figure PCTCN2022119149-appb-000017
通过对上式进行求解,即可得到ΔT和Δε的值,也即得到电池内部的温度变化量和应力变化量。
另外,结合上述实施例中的电池检测方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种电池检测方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器, 使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种电池传感器,包括:传输光纤和光栅组件;
    所述光栅组件包括纤芯直径不同的光纤光栅;
    所述光栅组件与所述传输光纤的一端连接,并通过所述传输光纤传输光信号。
  2. 根据权利要求1所述的电池传感器,其中,所述光栅组件包括第一光纤光栅和第二光纤光栅,所述第一光纤光栅的纤芯直径小于所述第二光纤光栅的纤芯直径;
    所述第一光纤光栅和所述第二光纤光栅上均刻有布拉格光栅。
  3. 根据权利要求2所述的电池传感器,其中,所述第一光纤光栅与所述第二光纤光栅首尾连接;
    所述光栅组件与所述传输光纤的一端连接包括:
    所述第一光纤光栅的未与所述第二光纤光栅连接的一端与所述传输光纤的一端连接,或所述第二光纤光栅的未与所述第一光纤光栅连接的一端与所述传输光纤的一端连接。
  4. 根据权利要求2所述的电池传感器,其中,所述第一光纤光栅和所述第二光纤光栅的长度均大于或等于1毫米。
  5. 根据权利要求2所述的电池传感器,其中,所述所述第一光纤光栅与所述第二光纤光栅的长度比例范围为0.2~1。
  6. 根据权利要求2所述的电池传感器,其中,所述第一光纤光栅和所述第二光纤光栅均包括包层;
    所述第一光纤光栅的包层直径大于或等于40微米;
    所述第二光纤光栅的包层直径大于所述第一光纤光栅的包层直径。
  7. 根据权利要求2所述的电池传感器,其中,所述第一光纤光栅与所述第二光纤光栅之间采用熔接的方式连接。
  8. 一种电池检测装置,包括:电池和权利要求1-7任意一项所述的电池传感器;
    所述电池包括电芯;
    所述电芯为多层结构,所述电池传感器的光栅组件植入所述电芯的层间;
    所述电池传感器的传输光纤未与所述光栅组件连接的一端引出至所述电池的外侧。
  9. 根据权利要求8所述的电池应变和温度检测装置,其中,所述电芯包括阴极极片、阳极极片和隔膜,所述光栅组件的植入位置为:
    所述电芯的两层隔膜之间、所述电芯的阴极极片与隔膜之间和/或所述电芯的阳极极片与隔膜之间。
  10. 一种电池检测系统,包括:电池测试系统、光谱采集仪和权利要求8-9任意一项所述的电池检测装置;
    所述电池与所述电池测试系统电连接,以通过所述电池测试系统将所述电池设置为工作状态;
    所述传输光纤引出至所述电池外侧的一端与所述光谱采集仪连接。
  11. 一种电池检测方法,应用于权利要求8-9任意一项所述的电池应变和温度检测装置,所述方法包括:
    通过传输组件向所述电池内的光栅组件发送第一光信号;
    通过所述传输组件获取所述光栅组件基于所述第一光信号返回的第二光信号;
    基于所述第二光信号生成光谱;
    根据所述光谱的的波长信息,确定所述电池内部的温度变化量和应力变化量。
  12. 根据权利要求11所述的方法,其中,所述根据所述光谱的波长信 息,确定所述电池内部的温度变化量和应力变化量,包括:
    根据所述光谱的波长信息,确定所述光栅组件中各光纤光栅对应的中心波长漂移量;
    根据各所述光纤光栅对应的中心波长偏移量,确定所述电池内部的温度变化量和应力变化量。
  13. 根据权利要求12所述的方法,其中,所述光栅组件包括第一光纤光栅和第二光纤光栅,所述根据各所述光纤光栅对应的中心波长偏移量,确定所述电池内部的温度变化量和应力变化量,包括:
    根据所述第一光纤光栅对应的中心波长漂移量和所述第二光纤光栅对应的中心波长偏移量,基于下述解耦算法计算得到所述电池的温度变化量和应力变化量:
    Figure PCTCN2022119149-appb-100001
    其中,ΔT表示电池内部的温度变化量,Δε表示电池内部的应力变化量,Δλ B表示第二光纤光栅的中心波长偏移量,Δλ A表示第一光纤光栅的中心波长偏移量,
    Figure PCTCN2022119149-appb-100002
    表示第二光纤光栅的温度灵敏度,
    Figure PCTCN2022119149-appb-100003
    表示第一光纤光栅的温度灵敏度,
    Figure PCTCN2022119149-appb-100004
    表示第二光纤光栅的应变灵敏度,
    Figure PCTCN2022119149-appb-100005
    表示第一光纤光栅的应变灵敏度。
  14. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求11-13任意一项所述的电池检测方法。
  15. 一种计算机程序产品,其中,所述计算机程序产品中的指令由电子设备的处理器执行时,使得所述电子设备能够执行如11-13任意一项所述的电池检测方法。
PCT/CN2022/119149 2022-09-15 2022-09-15 电池传感器、电池检测装置、系统及方法 WO2024055261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119149 WO2024055261A1 (zh) 2022-09-15 2022-09-15 电池传感器、电池检测装置、系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119149 WO2024055261A1 (zh) 2022-09-15 2022-09-15 电池传感器、电池检测装置、系统及方法

Publications (1)

Publication Number Publication Date
WO2024055261A1 true WO2024055261A1 (zh) 2024-03-21

Family

ID=90273966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119149 WO2024055261A1 (zh) 2022-09-15 2022-09-15 电池传感器、电池检测装置、系统及方法

Country Status (1)

Country Link
WO (1) WO2024055261A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945666A (en) * 1996-05-20 1999-08-31 The United States Of America As Represented By The Secretary Of The Navy Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
CN102829893A (zh) * 2012-09-20 2012-12-19 中国人民解放军国防科学技术大学 一种通过腐蚀得到不同直径光纤光栅来同时测量温度和应力的方法
CN113285131A (zh) * 2021-07-21 2021-08-20 北京理工大学 一种内置光纤传感器的智能电池及其健康状态估计方法
CN114421037A (zh) * 2022-01-21 2022-04-29 深圳太辰光通信股份有限公司 测量电池内部温度和应变的装置、方法及电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945666A (en) * 1996-05-20 1999-08-31 The United States Of America As Represented By The Secretary Of The Navy Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
CN102829893A (zh) * 2012-09-20 2012-12-19 中国人民解放军国防科学技术大学 一种通过腐蚀得到不同直径光纤光栅来同时测量温度和应力的方法
CN113285131A (zh) * 2021-07-21 2021-08-20 北京理工大学 一种内置光纤传感器的智能电池及其健康状态估计方法
CN114421037A (zh) * 2022-01-21 2022-04-29 深圳太辰光通信股份有限公司 测量电池内部温度和应变的装置、方法及电池

Similar Documents

Publication Publication Date Title
Nascimento et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries
US11894526B2 (en) Smart battery
WO2022037589A1 (en) Methods and system for in operando battery state monitoring
Han et al. A review on various optical fibre sensing methods for batteries
EP2937928B1 (en) Battery management based on internal optical sensing
US5949219A (en) Optical state-of-charge monitor for batteries
KR102172737B1 (ko) 삽입 단계 변화 검출에 의한 전기화학 에너지 장치 모니터링/관리 방법
JP2016025081A (ja) 電池管理のための埋め込み光ファイバケーブル
US10403922B2 (en) Battery with embedded fiber optic cable
CN109950641A (zh) 一种锂离子电池内部温度测量系统及方法
CN113285131A (zh) 一种内置光纤传感器的智能电池及其健康状态估计方法
CN114894892B (zh) 储能设备声光原位检测系统及方法
CN115143893A (zh) 通过光纤光栅传感器检测固态锂电池内部应变原位的方法
WO2024055261A1 (zh) 电池传感器、电池检测装置、系统及方法
CN115792664A (zh) 一种电池参数检测装置
Zhang et al. Health monitoring by optical fiber sensing technology for rechargeable batteries
EP3517938B1 (en) Optical detector and method for detection of a chemical compound
CN114994545A (zh) 一种基于光纤spr和fbg传感器的混合监测电池结构健康系统
CN213715408U (zh) 电池包监测装置和系统
CN115876232A (zh) 电池单体以及用于该电池单体的光纤
Li et al. Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
JP2015099711A (ja) センサ光回路並びにリチウムイオン二次電池
CN209689741U (zh) 一种分区式光纤测振系统
WO2024055209A1 (zh) 硬壳电池检测装置、方法及系统
CN113804986A (zh) 一种基于窄带光源的高分辨率电场检测探头及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958453

Country of ref document: EP

Kind code of ref document: A1