WO2024055213A1 - 船用推进器、船舶及船用推进器的控制方法 - Google Patents

船用推进器、船舶及船用推进器的控制方法 Download PDF

Info

Publication number
WO2024055213A1
WO2024055213A1 PCT/CN2022/118825 CN2022118825W WO2024055213A1 WO 2024055213 A1 WO2024055213 A1 WO 2024055213A1 CN 2022118825 W CN2022118825 W CN 2022118825W WO 2024055213 A1 WO2024055213 A1 WO 2024055213A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
structural member
conduit
duct
fixed structure
Prior art date
Application number
PCT/CN2022/118825
Other languages
English (en)
French (fr)
Inventor
唐彪
李兴
谢家荣
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to CN202280032112.8A priority Critical patent/CN117242000A/zh
Priority to PCT/CN2022/118825 priority patent/WO2024055213A1/zh
Publication of WO2024055213A1 publication Critical patent/WO2024055213A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • This application relates to the technical field of ship equipment, specifically to ship propellers, ships and control methods of ship propellers.
  • This application provides marine propellers, ships, and control methods for marine propellers to solve the above technical problems.
  • An embodiment of the present application provides a marine propeller, which includes:
  • the frame is provided with an underwater suspension part, and the underwater suspension part is provided with a driving shaft;
  • a propeller connected to the driving shaft
  • a conduit is connected to the frame, and at least part of the conduit is movable relative to the propeller to assume a diversion state or an open form; when the conduit is in a diversion state, the conduit surrounds the propeller and is in contact with the propeller.
  • the propellers are coaxially arranged; when the conduit is in an open state, the conduit is located on the water surface and at least partially forms a wave pressure structure.
  • An embodiment of the present application also provides a ship, including a ship hull and the ship propeller described in the above embodiment, and the ship propeller is disposed at the rear end of the ship body.
  • Embodiments of the present application also provide a control method for a marine propeller, including:
  • the marine propeller, ship and marine propeller control method according to the embodiment of the present application are provided with a duct that can move relative to the propeller.
  • the position of the duct can be adjusted according to the rotation speed of different propellers to form a diversion shape and an open shape, so that the propulsion structure can be in the duct propeller.
  • the deformation structure of the duct is simple, which is beneficial to reducing production modification and maintenance costs.
  • Figure 1 is a schematic structural diagram of a marine propeller according to an embodiment of the present application.
  • Figure 2 is the propulsion performance curve of a large pitch ordinary propeller, a small pitch ordinary propeller and a large pitch ordinary propeller with a duct structure added.
  • Figure 3 is a schematic structural diagram of a marine propeller in the first embodiment.
  • Figure 4 is a schematic structural diagram of a marine propeller in the second embodiment.
  • Figure 5 is a changing state diagram of the marine propeller shown in Figure 3.
  • Fig. 6 is another change state diagram of the marine propeller shown in Fig. 3.
  • Figure 7 is a schematic structural diagram of a marine propeller in the third embodiment.
  • Figure 8 is a schematic structural diagram of a marine propeller in the fourth embodiment.
  • Figure 9 is a schematic structural diagram of a marine propeller in the fifth embodiment.
  • Figure 10 is a schematic structural diagram of a marine propeller in the sixth embodiment.
  • Figure 11 is a schematic structural diagram of a marine propeller in the seventh embodiment.
  • Figure 12 is a schematic structural diagram of a marine propeller in the eighth embodiment.
  • Fig. 13 is a schematic structural diagram of the first driving assembly in the marine propeller shown in Fig. 12.
  • FIG. 14 is a schematic structural diagram of the first power group in the first driving assembly shown in FIG. 13 .
  • FIG. 15 is a schematic structural diagram of the first power group in the first driving assembly shown in FIG. 13 in another embodiment.
  • Fig. 16 is a schematic structural diagram of the second power group in the first driving assembly shown in Fig. 13.
  • FIG. 17 is a schematic structural diagram of the second power group in the first driving assembly shown in FIG. 13 in another embodiment.
  • Figure 18 is a schematic structural diagram of a marine propeller in the ninth embodiment.
  • Fig. 19 is a schematic structural diagram of the second driving assembly of the marine propeller shown in Fig. 18.
  • Fig. 20 is a schematic structural diagram of the third power group in the second driving assembly shown in Fig. 19.
  • FIG. 21 is a schematic structural diagram of the third power group in the second driving assembly shown in FIG. 19 in another embodiment.
  • Figure 22 is a schematic structural diagram of a marine propeller in the tenth embodiment.
  • Figure 23 is a structural block diagram of a marine propeller in one embodiment.
  • Figure 24 is a schematic structural diagram of a ship in one embodiment.
  • Figure 25 is a structural block diagram of a ship in an embodiment.
  • Figure 26 is a flow chart of a control method for a marine propeller in an embodiment.
  • an embodiment of the present application provides a marine propeller 100 , which includes a frame 1 , a propeller 2 and a duct 3 .
  • the frame 1 is provided with an underwater suspension part 11, which is also provided with a driving shaft 12, and the propeller 2 is connected to the driving shaft 12.
  • the duct 3 is connected to the frame 1, and at least part of the duct 3 is movable relative to the propeller 2 to assume a flow-guiding state or an open state.
  • the duct 3 surrounds the propeller 2 and is coaxially arranged with the propeller 2 .
  • the conduit 3 When the conduit 3 is in the open state, the conduit 3 is located on the water surface and at least partially forms a wave pressure structure.
  • the duct 3 when the rotational speed of the propeller 2 is at the first preset threshold, the duct 3 is in a diversion state.
  • the duct 3 arranged coaxially with the propeller 2 can increase the thrust of the propeller 2 and adapt to the situation where the ship's load is relatively large. In other words, when the conduit 3 is in the diversion state, it is suitable for situations where the ship's draft is relatively deep.
  • the second preset threshold is greater than the first preset threshold, and the duct 3 is in an open state, which meets the requirements of the marine propeller 100 when the ship load is relatively small, that is, the duct 3 is in an open state.
  • the conduit 3 When the ship's draft is relatively shallow, the conduit 3 is moved to the water surface and partially used as a wave-pressure structure, which is beneficial to reducing resistance.
  • outboard propulsion market in order to standardize products, generally outboard products will be made into a series of products with different power sizes for sale on the market. Users will customize the products according to their own boat types and required sailing conditions. Different users and different application scenarios will have different priorities in selecting outboard motor products. Therefore, the same model of outboard motor products may be used on boats of different sizes, using one form of propeller matching. Depending on the load capacity of different ships, it is easy to cause waste or insufficient propeller power. Since ships have various load conditions, how to match the marine propeller 100 with various load conditions has become an urgent problem to be solved.
  • Figure 2 is a propulsion performance curve chart of a large pitch ordinary propeller, a small pitch ordinary propeller and a large pitch ordinary propeller with a duct structure under the conditions of input power 30kW and rated speed 1500rpm. Comparing the curves in the figure, it can be seen that the large-pitch propeller after adding the duct and the large-pitch ordinary propeller can completely cover the small-pitch ordinary propeller design on the entire propulsion performance curve.
  • the marine propeller 100 in the embodiment of the present application is provided with a duct 3 that can move relative to the propeller 2.
  • the position of the duct 3 can be adjusted according to the rotational speed of the propeller 2 to form a diversion shape and an open shape, so that the propulsion structure is between a ducted propeller and an ordinary propeller. Quickly switch between the two, so that the marine propeller 100 can match different load conditions in time, greatly improving the propulsion efficiency of the marine propeller 100.
  • the deformation structure of the duct 3 is simple, which is beneficial to reducing production modification and maintenance costs.
  • a marine propeller 100 includes a frame 1 , a propeller 2 and a duct 3 .
  • the frame 1 is provided with an underwater suspension part 11, which is also provided with a driving shaft 12, and the propeller 2 is connected to the driving shaft 12.
  • the duct 3 is connected to the frame 1, and at least part of the duct 3 is movable relative to the propeller 2 to assume a flow-guiding state or an open state.
  • the duct 3 surrounds the propeller 2 and is coaxially arranged with the propeller 2 .
  • the conduit 3 is located on the water surface and at least partially forms a wave pressure structure.
  • the duct 3 includes a guide structure 32 and a fixed structure 31.
  • the fixed structure 31 is fixedly connected to the frame 1.
  • One end of the guide structure 32 is rotatably connected to one end of the fixed structure 31.
  • the other end of the guide structure 32 is detachably connected. Connect the other end of the fixed structure 31.
  • the splicing methods of the flow guide structure 32 and the fixed structure 31 include but are not limited to buckle connection, magnetic connection, sleeve connection, bump and groove matching connection, etc.
  • the spliced ends are separated, and the flow guide structure 32 continues to rotate around the end of the fixed structure 31 until it is folded to the side of the fixed structure 31 away from the propeller 2.
  • the conduit 3 that has completed the deformation action is located on the water surface, and the fixed structure 31 forms the pressure
  • the wave structure reduces the underwater resistance of the guide structure 32 and improves the propulsion efficiency of the marine propeller 100 under low load conditions.
  • the marine propeller 100 of the second embodiment is substantially the same as the first embodiment.
  • the difference is that the flow guide structure 32 of the second embodiment includes a first structural member 33 and a second structure. Part 34, the entire conduit 3 has a roughly three-section structure.
  • the first structural member 33 and the second structural member 34 are rotatably connected to both ends of the fixed structure 31 , and the first structural member 33 and the second structural member 34 are detachably connected.
  • the rotation axis of the first structural member 33 and the rotation axis of the second structural member 34 are both parallel to the axis of the propeller 2 .
  • the first structural member 33 and the second structural member 34 can be flipped relative to the fixed structure 31 to be in an unfolded state with the fixed structure 31, and the first structural member 33 and the second structural member 34 can also be in an unfolded state with each other, or in an unfolded state with each other. Back-to-back status.
  • the first structural member 33 and the second structural member 34 can be flipped relative to the fixed structure 31 to a closed state with the fixed structure 31, and the first structural member 33 and the second structural member 34 are also closed.
  • the first structural member 33 and the second structural member 34 rotate toward the propeller 2 , and the first structural member 33 , the second structural member 34 and the fixed structure 31 are closed and spliced in sequence and surround the propeller 2 , forming a duct propeller structure to increase the thrust of the propeller 2.
  • the first structural member 33 , the second structural member 34 and the fixed structure 31 are spliced into a circular ring structure, one end of the first structural member 33 and the second structural member 34 connected to the fixed structure 31 rotates respectively.
  • first structural member 33 and the second structural member 34 away from the fixed structure 31 are paired during the local rotation of the conduit 3. They can also be connected through buckle connection, magnetic connection, sleeve connection, bump and groove matching connection, etc. Realize the positioning of the joint.
  • Both the first structural member 33 and the second structural member 34 are deployed with the fixed structure 31, thereby preventing the first structural member 33 and the second structural member 34 from being located underwater and preventing the first structural member 33 and the second structural member 34 from being propelled. resistance, thereby improving propulsion efficiency to adapt to the situation of low ship load.
  • the first structural member 33 and the second structural member 34 can be manually turned over relative to the fixed structure 31, or a power device can be provided on the fixed structure 31, and the power device can be used to drive the first structural member 33 and the second structural member. 34 is flipped relative to the fixed structure 31 .
  • the power device can be a motor, a hydraulic cylinder, an electromagnetic module and other devices.
  • the first structural member 33 , the second structural member 34 and the fixed structure 31 are arc-shaped tubular structures, and each is a part of a complete circular structure.
  • the first structural member 33 and the second structural member 34 The arc lengths are respectively greater than or equal to the arc length of the fixed structure 31, which is beneficial to reducing the arc height of the fixed structure 31, thereby reducing the distance between the highest position of the fixed structure 31 and the water surface when used as a wave pressure board, and improving the wave pressure effect. .
  • the fixed structure 31 of the duct 3 can also be moved up or down along the frame 1 to adjust the gap between the fixed structure 31 and the propeller 2 to solve the problem of the propeller 2 being stressed due to the impact of eddy currents on the fixed structure 31. To solve all problems, improve propeller 2 efficiency and reduce propeller 2 vibration.
  • the fixed structure 31 can be directly slidably connected to the frame 1 and slid relative to the frame 1 driven by the power mechanism.
  • the power mechanism can be a motor, an electromagnetic module, or a hydraulic cylinder or other mechanism.
  • the fixed structure 31 can also be fixed to the slider member, and is slidably connected to the frame 1 through the slider member, thereby driving the fixed structure 31 to slide relative to the frame 1 .
  • the sliding direction of the fixed structure 31 relative to the frame 1 is perpendicular to the axis of the propeller 2, and when the marine propeller 100 is operating normally, the fixed structure 31 can slide relative to the frame 1 perpendicular to the water surface.
  • the marine propeller 100 of the third embodiment is substantially the same as the second embodiment.
  • the difference is that the flow guide structure 32 of the third embodiment also includes a third structural member 35 and a fourth structural member 36.
  • the duct 3 The overall structure is roughly five-section.
  • the third structural member 35 is rotatably connected to the first structural member 33
  • the fourth structural member 36 is rotatably connected to the second structural member 34
  • the third structural member 35 and the fourth structural member 36 are detachably connected.
  • the rotation axis of the third structural member 35 and the rotation axis of the fourth structural member 36 are both parallel to the rotation axis of the propeller 2 .
  • the third structural member 35 and the fourth structural member 36 can be flipped relative to the first structural member 33 and the second structural member 34 respectively to assume an expanded state with the first structural member 33 and the second structural member 34, and the third structural member 35 and The fourth structural member 36 may also be in a mutually unfolded state, or folded to the side of the first structural member 33 and the second structural member 34 facing away from the propeller 2 .
  • the third structural member 35 and the fourth structural member 36 can also be flipped relative to the first structural member 33 and the second structural member 34 respectively to a closed state with the first structural member 33 and the second structural member 34, and the third structural member 35 and The fourth structural member 36 is also closed.
  • the third structural member 35 and the fourth structural member 36 can be turned over manually, or a power device can be provided on the first structural member 33 and the second structural member 34 and the power device can be used to drive the third structural member 35 and the fourth structure.
  • Piece 36 flipped.
  • the power devices include but are not limited to motors, hydraulic components, electromagnetic modules and other devices.
  • the fixed structure 31 , the first structural member 33 , the third structural member 35 , the fourth structural member 36 and the second structural member 34 can be spliced in sequence to form an annular structure and surround the propeller 2 .
  • the first structural member 33, the third structural member 35, the second structural member 34 and the fourth structural member 36 are spliced into a circular ring structure, the first structural member 33 and the second structural member 34 are first wound around The end of the fixed structure 31 rotates toward the propeller 2, and the ends of the first structural member 33 and the second structural member 34 are respectively paired with the two end ports of the fixed structure 31 during the rotation process, and are connected through buckle connection, magnetic connection, The positioning of the joint is achieved by means of sleeve connection, bump-groove matching connection, etc.
  • the third structural member 35 and the fourth structural member 36 rotate around the ends of the first structural member 33 and the second structural member 34 respectively, so that the connecting ends of the third structural member 35 and the first structural member 33 are paired and connected.
  • the connecting ends of the fourth structural member 36 and the second structural member 34 are paired and connected to each other.
  • the end of the third structural member 35 away from the first structural member 33 and the end of the fourth structural member 36 away from the second structural member 34 are paired with each other. connect.
  • the first structural member 33 , the second structural member 34 , the third structural member 35 and the fourth structural member 36 can also be connected through buckle connection, magnetic connection, sleeve connection, bump and groove matching connection, etc. positioning.
  • the third structural member 35 and the fourth structural member 36 respectively rotate to the side of the first structural member 33 and the second structural member 34 away from the propeller 2.
  • the first structural member 33 and the second structural member 34 The third structural member 35 and the fourth structural member 36 are respectively carried and folded to the side of the fixed structure 31 away from the propeller 2 .
  • the five-section structure of the conduit 3 is beneficial to reducing the space occupied by the diversion structure 32 after being folded.
  • the marine propeller 100 of the fourth embodiment includes a frame 1 , a propeller 2 and a duct 3 .
  • the frame 1 is provided with an underwater suspension part 11, which is also provided with a driving shaft 12, and the propeller 2 is connected to the driving shaft 12.
  • the duct 3 is connected to the frame 1, and at least part of the duct 3 is movable relative to the propeller 2 to assume a flow-guiding state or an open state.
  • the duct 3 surrounds the propeller 2 and is coaxially arranged with the propeller 2 .
  • the conduit 3 is located on the water surface and at least partially forms a wave pressure structure.
  • the duct 3 includes a flow guide structure 32 and a fixed structure 31.
  • the fixed structure 31 is connected to the frame 1, and the flow guide structure 32 is telescopically connected to the fixed structure 31.
  • the conduit 3 is in a guide state, and the guide structure 32 is extended relative to the fixed structure 31 so that the guide structure 32 and the fixed structure 31 are spliced into a circular ring structure to achieve It is combined with the propeller 2 to form a ducted propeller, which improves the propulsion efficiency of the marine propeller 100 under high load conditions.
  • connection forms between the flow guide structure 32 and the fixed structure 31 include but are not limited to buckle connection, magnetic connection, sleeve connection, bump and groove fitting connection, etc.
  • the flow guide structure 32 can be retracted into the inner cavity of the fixed structure 31 . It can be understood that in other embodiments, the flow guide structure 32 can also be retracted to the outer surface of the fixed structure 31 to form a gap between the guide structure 32 and the inner cavity of the fixed structure 31 .
  • the fixed structure 31 is in a stacked state. Setting the conduit 3 into a telescopic structure is beneficial to further reducing the space occupied by the conduit 3 when deformed.
  • the air guide structure 32 can be provided with a power device on the fixed structure 31, and the power device can be used to drive the air guide structure 32 to contract or expand.
  • the power devices include but are not limited to motors, hydraulic components, electromagnetic modules and other devices.
  • the marine propeller 100 of the fifth embodiment is substantially the same as the fourth embodiment.
  • the air guide structure 32 of the fifth embodiment includes a first structural member 33 and a second structural member 34.
  • the member 33 and the second structural member 34 are telescopically connected to both ends of the fixed structure 31 respectively.
  • the first structural member 33 and the second structural member 34 extend relative to the fixed structure 31 and surround the propeller 2 so that the flow-guiding structure 32 and the fixed structure 31 form a complete annular structure to achieve control of the propeller 2 of diversion.
  • first structural member 33 and the second structural member 34 respectively extend outward from the two ends of the fixed structure 31 until the ends of the first structural member 33 and the second structural member 34 are paired and connected to each other, so as to guide the flow.
  • the structure 32 and the fixed structure 31 form a complete annular structure, and the connection methods include but are not limited to buckle connection, magnetic connection, sleeve connection, bump and groove matching connection, etc.
  • the first structural member 33 and the second structural member 34 respectively shrink relative to the two ends of the fixed structure 31, and the first structural member 33 and the second structural member 34 move into the inner cavity of the fixed structure 31, or Move to the side of the fixed structure 31 away from the propeller 2 .
  • the open conduit 3 can be moved to the water surface, and the fixed structure 31 forms a wave pressure structure.
  • the first structural member 33 and the second structural member 34 can be configured with power devices on the fixed structure 31, and the power devices can be used to drive the first structural member 33 and the second structural member 34 to contract or expand.
  • the power devices include but are not limited to motors, hydraulic components, electromagnetic modules and other devices.
  • the first structural member 33 , the second structural member 34 and the fixed structure 31 are arc-shaped tubular structures, and the arc lengths of the first structural member 33 and the second structural member 34 are respectively greater than or equal to the fixed structure.
  • the arc length of 31 is conducive to reducing the arc height of the fixed structure 31, thereby reducing the distance between the highest position of the fixed structure 31 and the water surface when used as a wave pressure board, and improving the wave pressure effect.
  • the marine propeller 100 of the sixth embodiment is substantially the same as the fifth embodiment.
  • the difference is that the air guide structure 32 of the sixth embodiment also includes a third structural member 35 and a fourth structural member 36.
  • the third The structural member 35 is telescopically connected to the first structural member 33
  • the fourth structural member 36 is telescopically connected to the second structural member 34 .
  • the first structural member 33 and the second structural member 34 respectively extend outward from both ends of the fixed structure 31
  • the third structural member 35 is away from the first structural member 33 and away from the fixed structure 31 .
  • One end extends outward
  • the fourth structural member 36 extends outward from an end of the second structural member 34 away from the fixed structure 31, and the fourth structural member 36 is paired with and connected to the end of the third structural member 35, so that the air guide structure 32 and the fixed structure 31 form a complete annular structure and are arranged around the circumference of the propeller 2 .
  • the fifth embodiment can reduce the amount of time when the conduit 3 is in an open state, the flow guide structure 32 protrudes from the end of the fixed structure 31 length, thereby reducing the impact of the flow guide structure 32 on the wave suppression effect of the fixed structure 31.
  • the marine propeller 100 of the seventh embodiment includes a frame 1 , a propeller 2 and a duct 3 .
  • the frame 1 is provided with an underwater suspension part 11, which is also provided with a driving shaft 12, and the propeller 2 is connected to the driving shaft 12.
  • the duct 3 is connected to the frame 1, and at least part of the duct 3 is movable relative to the propeller 2 to assume a flow-guiding state or an open state.
  • the duct 3 surrounds the propeller 2 and is coaxially arranged with the propeller 2 .
  • the conduit 3 is located on the water surface and at least partially forms a wave pressure structure.
  • the duct 3 includes a flow guide structure 32, a fixed structure 31 and a movable structure 37.
  • the fixed structure 31 is fixedly connected to the frame 1, and the movable structure 37 is rotatably connected between the flow guide structure 32 and the fixed structure 31.
  • the duct 3 is in a flow guiding state, and the movable structure 37 drives the flow guiding structure 32 to rotate toward the propeller 2 along the axial direction of the duct 3.
  • the fixed structure 31 and the flow guiding structure 32 can be spliced into The annular structure can be combined with the propeller 2 to form a duct propeller, thereby improving the propulsion efficiency of the marine propeller 100 under high load conditions.
  • connection methods between the fixed structure 31 and the flow guide structure 32 include but are not limited to buckle connection, magnetic connection, bump and groove fitting connection, etc.
  • the marine propeller 100 of the eighth embodiment is substantially the same as the seventh embodiment.
  • the difference is that the duct 3 of the eighth embodiment can move relative to the frame 1 along the first direction A and the second direction B.
  • One direction A is parallel to the axial direction of the propeller 2
  • the second direction B is perpendicular to the axial direction of the propeller 2 and parallel to the extension direction of the frame 1 .
  • the duct 3 moves along the first direction A and the second direction B to a position surrounding the propeller 2 to guide the propeller 2 .
  • the conduit 3 first moves along the second direction B to a position coaxial with the propeller 2, and then the conduit 3 moves along the first direction A, so that the propeller 2 is sleeved in the conduit 3, and the conduit 3 is arranged around the propeller 2. 3 and propeller 2 together form a duct propeller structure.
  • the conduit 3 moves along the first direction A and the second direction B to a position staggered with the propeller 2, and part of the conduit 3 is located on the water surface, and the other part forms the wave pressure structure.
  • the conduit 3 first moves along the first direction A to make the propeller 2 escape from the area surrounded by the conduit 3.
  • the conduit 3 moves along the second direction B to a position staggered with the propeller 2, and part of the structure of the conduit 3 is formed on the water surface.
  • Pressure wave structure In this embodiment, when the conduit 3 moves to the water surface along the second direction B, the bottom structure of the conduit 3 forms the wave-pressure structure, which is used to block the waves on the water surface and reduce the resistance of the ship.
  • the marine propeller 100 includes an adapter 4, which is slidably connected to the frame 1 and can slide relative to the frame 1 along the first direction A and the second direction B.
  • the conduit 3 is fixedly connected to the adapter 4.
  • One end of the adapter 4 is away from the frame 1, so that when the adapter 4 moves, the conduit 3 moves synchronously with the adapter 4, realizing switching between the diversion form and the open form.
  • the marine propeller 100 also includes a first driving component 5.
  • the first driving component 5 connects the frame 1 and the adapter 4, and is used to drive the adapter 4 relative to the frame 1 along the first direction A and the second direction. B slide.
  • the first driving assembly 5 includes a first power group 51 , a second power group 52 and a first bracket 53 .
  • the first power group 51 connects the frame 1 and the first bracket 53 and is used to drive the first bracket 53 to slide relative to the frame 1 along the first direction A.
  • the second power group 52 connects the first bracket 53 and the adapter 4 and is used to drive the adapter 4 to slide relative to the first bracket 53 along the second direction B.
  • the first power group 51 drives the second power group 52 and the conduit 3 to move along the first direction A by driving the first bracket 53
  • the second power group 52 drives the conduit 3 to move along the second direction B through the adapter 4, so that The conduit 3 is switched between the diversion state and the open state.
  • the first power group 51 includes a first motor 511 , a first screw rod 512 and a first nut 513 .
  • the first motor 511 is fixed to the frame 1 .
  • the length direction of the first screw rod 512 is arranged along the first direction A and is connected with the first motor 511 to obtain the rotation torque of the first motor 511 .
  • the first nut 513 is threadedly engaged with the first screw rod 512 , and the first bracket 53 is fixedly connected to the first nut 513 .
  • the first motor 511 drives the first screw rod 512 to rotate, the first nut 513 moves along the first screw rod 512, so that the first bracket 53 drives the second power group 52 and the conduit 3 to move along the first direction A.
  • the first power group 51 includes a first motor 511 , a first gear 514 and a first rack 515 .
  • the first motor 511 is fixed to the frame 1
  • the first gear 514 is connected to the first motor 511 to obtain the rotation torque of the first motor 511 .
  • the length direction of the first rack 515 is arranged along the first direction A and meshes with the first gear 514 .
  • the first bracket 53 is fixedly connected to the first rack 515 .
  • the first motor 511 drives the first gear 514 to rotate
  • the first rack 515 can move along the first direction A along with the rotation of the first gear 514, thereby driving the second power group 52 and the conduit 3 along the direction of the first bracket 53. Move in the first direction A.
  • the second power group 52 includes a second motor 521, a second screw rod 522 and a second nut 523.
  • the second motor 521 is fixed to the first bracket 53.
  • the length of the second screw rod 522 is arranged along the second direction B and is connected with the second motor 521 to obtain the rotation torque of the second motor 521 .
  • the second nut 523 is threadedly engaged with the second screw rod 522 , and the adapter 4 is fixedly connected to the second nut 523 .
  • the second motor 521 drives the second screw rod 522 to rotate, the second nut 523 moves along the second screw rod 522, and the adapter 4 and the second nut 523 move synchronously, thereby driving the conduit 3 to move in the second direction B.
  • the second power group 52 includes a second motor 521 , a second gear 524 and a second rack 525 .
  • the second motor 521 is fixed to the first bracket 53
  • the second gear 524 is connected to the second motor 521 to obtain the rotation torque of the second motor 521 .
  • the length direction of the second rack 525 is arranged along the second direction B, and the second rack 525 meshes with the second gear 524 .
  • the adapter 4 is fixedly connected to the first rack 515 .
  • the marine propeller 100 of the ninth embodiment is substantially the same as the eighth embodiment.
  • the difference is that the conduit 3 in the ninth embodiment can move and rotate relative to the frame 1 along the first direction A.
  • the first direction A rotates, and the first direction is parallel to the axial direction of the propeller 2 .
  • the conduit 3 moves along the first direction A and rotates around the first direction A to a position surrounding the circumference of the propeller 2 to increase the thrust of the propeller 2 .
  • the conduit 3 may first rotate around the first direction A to a position coaxial with the propeller 2 , and then move toward the propeller 2 along the first direction A to a position surrounding the circumference of the propeller 2 .
  • the conduit 3 can also be moved first and then rotated according to the actual situation, so as to ensure that the conduit 3 does not hit the propeller 2 during rotation. This application is not limited to this.
  • the conduit 3 When the conduit 3 is in the open state, the conduit 3 moves along the first direction A and rotates around the first direction A to a position staggered with the propeller 2, and part of the conduit 3 is located on the water surface, and the other part forms the wave pressure structure.
  • the conduit 3 can first move away from the propeller 2 along the first direction A, and then rotate around the first direction A toward the water surface, so that the conduit 3 moves to the water surface, and part of the conduit 3 forms a wave-pressing structure.
  • the marine propeller 100 includes an adapter 4, which is slidably connected to the frame 1, and the adapter 4 can slide relative to the frame 1 along the first direction A and rotate around the first direction A. Rotate in direction A.
  • the conduit 3 is fixedly connected to an end of the adapter 4 away from the frame 1 so that the adapter 4 can drive the conduit 3 to move along the first direction A and rotate around the first direction A.
  • the marine propeller 100 further includes a second driving assembly 6, which connects the frame 1 and the adapter 4 and is used to drive the adapter 4 relative to the The frame 1 slides along the first direction A and rotates around the first direction A.
  • the second driving assembly 6 includes a third power group 61 , a fourth power group 62 and a second bracket 63 .
  • the third power group 61 connects the frame 1 and the second bracket 63 and is used to drive the second bracket 63 to slide relative to the frame 1 along the first direction A.
  • the fourth power group 62 connects the second bracket 63 and the adapter 4 and is used to drive the adapter 4 to rotate around the first direction A.
  • the third power group 61 includes a third motor 611 , a third screw rod 612 and a third nut 613 .
  • the third motor 611 is fixed to the frame 1 , the length direction of the third screw rod 612 is arranged along the first direction A, and the third screw rod 612 is connected to the third motor 611 to obtain the rotation torque of the third motor 611 .
  • the third nut 613 is threadedly engaged with the third screw rod 612 , and the second bracket 63 is fixedly connected to the third nut 613 .
  • the fourth power group 62 may be a rotating motor that can drive the conduit 3 to rotate around the first direction A through the adapter 4 .
  • the third power group 61 includes a third motor 611 , a third gear 614 and a third rack 615 .
  • the third motor 611 is fixed to the frame 1, and the third gear 614 is connected to the third motor 611 to obtain the rotation torque of the third motor 611.
  • the length direction of the third rack 615 is arranged along the first direction A, and the third rack 615 meshes with the third gear 614.
  • the second bracket 63 is fixedly connected to the third rack 615.
  • the marine propeller 100 of the tenth embodiment is substantially the same as the ninth embodiment.
  • the duct 3 can rotate relative to the frame 1 around a third direction.
  • the third direction The axial direction of the vertical propeller 2 and the extension direction of the vertical frame 1, that is, the first direction, the second direction and the third direction are perpendicular to each other.
  • the duct 3 rotates around the third direction to a position surrounding the circumference of the propeller 2 to increase the thrust of the propeller 2 .
  • the conduit 3 When the conduit 3 is in an open state, the conduit 3 rotates around a third direction to a position that is offset from the propeller 2, and part of the conduit 3 is located on the water surface, and the other part forms the wave pressure structure.
  • the marine propeller 100 includes a flip bracket 7 fixedly connected to the frame 1 , and the flip bracket 7 is spaced apart from the propeller 2 .
  • An end of the flip bracket 7 away from the frame 1 is also provided with a flip shaft 71 , the axial direction of the flip shaft 71 forms the third direction, and the conduit 3 is rotationally connected to the flip shaft 71 .
  • the marine propeller 100 includes a rotational driving member 8, which is fixedly provided on the flip bracket 7, and is connected to the flipping shaft 71 for driving the flipping shaft 71.
  • the flip shaft 71 rotates, thereby driving the conduit 3 to rotate around the third direction to switch between the diversion state and the open state.
  • the marine propeller 100 further includes a detection device 91 and a control device 92.
  • the detection device 91 is disposed on the driving shaft 12
  • the control device 92 is used to control the deformation of the catheter 3
  • the detection device 91 is communicatively connected to the control device 92 .
  • the detection device 91 is used to detect the rotation rate of the driving shaft 12
  • the control device 92 drives the conduit 3 to assume a diversion state or an open state according to the detection result of the detection device 91 .
  • An embodiment of the present application also provides a ship 200.
  • the ship 200 includes a hull 201 and the marine propeller 100 described in any of the above embodiments.
  • the marine propeller 100 is disposed on the hull 201. the tail end.
  • the ship 200 further includes a motor 202 .
  • the motor 202 is connected to the driving shaft 12 of the marine propeller 100 and is used to drive the propeller 2 to rotate.
  • the ship 200 further includes a controller 203 and a driver 204.
  • the controller 203 is communicatively connected to the driver 204.
  • the driver 204 drives the conduit 3 to deform according to the instructions of the controller 203.
  • an embodiment of the present application also provides a control method for a marine propeller, which can be applied to the marine propeller 100 described in any of the above embodiments, including:
  • the step of controlling the duct to be in the flow guide state includes: controlling the flow guide structure 32 of the duct 3 to face the propeller 2 relative to the fixed structure 31 of the duct 3 Rotating, the air guide structure 32 and the fixed structure 31 surround the circumference of the propeller 2 .
  • the step of controlling the duct to be in an open state includes: controlling the flow guide structure 32 to move to a side of the fixed structure 31 away from the propeller 2 .
  • the step of controlling the flow guide structure 32 of the conduit 3 to be in a flow guide state includes: controlling the flow guide structure 32 of the conduit 3 to extend relative to the fixed structure 31 of the conduit 3, and the flow guide structure 32 and the fixed structure 31 surrounds the circumferential side of the propeller 2 .
  • the step of controlling the catheter to be in an open state includes: controlling the flow guide structure 32 to shrink relative to the fixed structure 31 .
  • the step of controlling the conduit to be in the diversion state includes: controlling the conduit 3 to move along the second direction, so that The duct 3 is coaxially arranged with the propeller 2; the duct 3 is controlled to move along the first direction to a position surrounding the circumference of the propeller 2.
  • the step of controlling the conduit to be in an open state includes: controlling the conduit 3 to move away from the propeller 2 along the first direction to separate the conduit 3 from the propeller 2; controlling the conduit 3 to move along the second direction, with part of the conduit 3 moving to the water surface, and the other part
  • the conduit 3 forms a pressure wave structure.
  • the step of controlling the conduit 3 to be in the diversion state includes: controlling the conduit 3 to rotate around the first direction. Rotate and move in the first direction to a position surrounding the second circumferential side of the propeller.
  • the step of controlling the conduit to be in an open state includes: controlling the conduit 3 to move along the first direction and rotate around the first direction to a position that is offset from the propeller 2.
  • Part of the conduit 3 is located on the water surface, and the other part forms a pressure wave structure.
  • the step of controlling the duct 3 to be in the flow guide state includes: controlling the duct 3 to rotate in a third direction to surround the propeller. 2 week side position.
  • the step of controlling the duct to be in an open state includes: controlling the duct 3 to rotate around a third direction to a position that is offset from the propeller 2, with part of the duct 3 located on the water surface and the other part forming a wave pressure structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

提供了一种船用推进器(100)、船舶(200)及船用推进器(100)的控制方法。船用推进器(100)包括:机架(1),设有水下悬置部(11),水下悬置部(11)设有驱动转轴(12);螺旋桨(2),与驱动转轴(12)连接;导管(3),与机架(1)连接,导管(3)的至少部分可相对螺旋桨(2)活动,以呈现导流形态或开放形态;导管(3)处于导流形态时,导管(3)环绕螺旋桨(2)周围并与螺旋桨(2)同轴设置;导管(3)处于开放形态时,导管(3)位于水面上,且至少部分形成压浪结构;通过设置可相对螺旋桨(2)活动的导管(3),导管(3)根据不同螺旋桨(2)的转速调整位置以形成导流形态和开放形态,使推进结构在导管螺旋桨和普通螺旋桨之间进行快速切换,从而使船用推进器(100)及时匹配不同的载重情况大幅提高船用推进器(100)的推进效率。

Description

船用推进器、船舶及船用推进器的控制方法 技术领域
本申请涉及船舶设备技术领域,具体而言,涉及船用推进器、船舶及船用推进器的控制方法。
背景技术
在流体(空气、水、其他流体等)推进的螺旋桨领域中,其推进器的流体动力性能与螺旋桨的形式有着很大关系。在不同载重情况下,使用不同形式的螺旋桨有利于提升船只的推进效率。由于船只的载重情况多种多样,如何使一船用推进器与多种载重情况匹配成为急需解决的问题。
发明内容
本申请提供船用推进器、船舶及船用推进器的控制方法,以解决上述技术问题。
本申请的实施例提供一种船用推进器,其包括:
机架,设有水下悬置部,所述水下悬置部设有驱动转轴;
螺旋桨,与所述驱动转轴连接;
导管,与所述机架连接,所述导管的至少部分可相对所述螺旋桨活动,以呈现导流形态或开放形态;所述导管处于导流形态时,所述导管环绕所述螺旋桨周围并与所述螺旋桨同轴设置;所述导管处于开放形态时,所述导管位于水面上,且至少部分形成压浪结构。
本申请的实施例还提供一种船舶,包括船体和上述实施例所述的船用推进器,所述船用推进器设置于所述船体的尾端。
本申请的实施例还提供一种船用推进器的控制方法,包括:
检测螺旋桨的转动速度;
确认螺旋桨的转动速度符合第一预设阈值,控制导管处于导流形态;
确认螺旋桨的转动速度符合第二预设阈值,控制导管处于开放形态。
本申请实施例的船用推进器、船舶及船用推进器的控制方法通过设置可相对螺旋桨活动的导管,导管可以根据不同螺旋桨的转速调整位置以形成导流形态 和开放形态,使推进结构在导管螺旋桨和普通螺旋桨之间进行快速切换,从而使船用推进器可以及时匹配不同的载重情况,大幅提高船用推进器的推进效率,同时导管的变形结构简单,有利于降低生产改造和维修成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例的船用推进器的结构示意图。
图2为大螺距普通螺旋桨、小螺距普通螺旋桨和大螺距普通螺旋桨增加导管结构的推进性能曲线图。
图3为船用推进器在第一实施例中的结构简图。
图4为船用推进器在第二实施例中的结构示意图。
图5为图3所示船用推进器的变化状态图。
图6为图3所示船用推进器的另一变化状态图。
图7为船用推进器在第三实施例中的结构示意图。
图8为船用推进器在第四实施例中的结构示意图。
图9为船用推进器在第五实施例中的结构示意图。
图10为船用推进器在第六实施例中的结构示意图。
图11为船用推进器在第七实施例中的结构示意图。
图12为船用推进器在第八实施例中的结构示意图。
图13为图12所示船用推进器中第一驱动组件的结构简图。
图14为图13所示第一驱动组件中第一动力组的结构简图。
图15为图13所示第一驱动组件中第一动力组在另一实施方式中的结构简图。
图16为图13所示第一驱动组件中第二动力组的结构简图。
图17为图13所示第一驱动组件中第二动力组的在另一实施方式中的结构简图。
图18为船用推进器在第九实施例中的结构示意图。
图19为图18所述船用推进器的第二驱动组件的结构简图。
图20为图19所示第二驱动组件中第三动力组的结构简图。
图21为图19所示第二驱动组件中第三动力组在另一实施方式中的结构简图。
图22为船用推进器在第十实施例中的结构示意图。
图23为船用推进器在一实施方式中的结构框图。
图24为船舶在一实施方式中的结构简图。
图25为船舶在一实施方式中的结构框图。
图26为船用推进器的控制方法在一实施例中的流程图。
主要元件符号说明:
船用推进器 100
机架 1
水下悬置部 11
驱动转轴 12
螺旋桨 2
导管 3
固定结构 31
导流结构 32
第一结构件 33
第二结构件 34
第三结构件 35
第四结构件 36
活动结构 37
转接件 4
第一驱动组件 5
第一动力组 51
第一电机 511
第一丝杆 512
第一螺母 513
第一齿轮 514
第一齿条 515
第二动力组 52
第二电机 521
第二丝杆 522
第二螺母 523
第二齿轮 524
第二齿条 525
第一支架 53
第二支架 63
第二驱动组件 6
第三动力组 61
第三电机 611
第三丝杆 612
第三螺母 613
第三齿轮 614
第三齿条 615
第四动力组 62
翻转支架 7
翻转轴 71
转动驱动件 8
检测装置 91
控制装置 92
船舶 200
船体 201
电机 202
控制器 203
驱动器 204
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
请参阅图1,本申请的实施例提供一种船用推进器100,包括机架1、螺旋桨2和导管3。机架1设有水下悬置部11,该水下悬置部11还设有驱动转轴12,螺旋桨2与驱动转轴12连接。导管3与机架1连接,且导管3的至少部分可相对所述螺旋桨2活动,以呈现导流形态或开放形态。导管3处于导流形态时,导管3环绕在螺旋桨2周围并与螺旋桨2同轴设置。导管3处于开放形态时,导管3位于水面上,且至少部分形成压浪结构。
具体地,螺旋桨2的转速处于第一预设阈值时,所述导管3处于导流状态,与螺旋桨2同轴设置的导管3可以增加螺旋桨2的推力,适配船只载重相对较大的情况,换句话说,导管3处于导流状态时,适用于船只吃水深度相对深的情况。螺旋桨2的转速处于第二预设阈值时,第二预设阈值大于第一预设阈值,所述导管3处于开放状态,满足船用推进器100在船只载重相对较小,即导管3处于开放状态时,适用于船只吃水深度相对浅的情况,且导管3移动至水面上并部分用作压浪结构有利于减少阻力。
可以理解的是,在船外机推进市场,为了产品标准化,一般船外机产品会做出不同功率大小的系列产品在市场上销售,用户则会根据自己的船型及要求航行情况,对产品的动力进行选择,不同的用户,不同的应用场景,对船外机产品选择会有不同的侧重点,所以同型号的船外机产品可能会用到大小不同的船上,使用一种形式的螺旋桨匹配不同船只的载重情况,容易造成推进器的动力存在浪费或不足的情况。由于船只的载重情况多种多样,如何使船用推进器100与多种载重情况匹配成为急需解决的问题。
目前对于推进器等船外机产品,为了适应各种船只匹配需求,传统方案之一是选取匹配量最大的船型载重情况作为额定值,为其设计相匹配的螺旋桨形式,对于其他载重情况只能妥协降低推进效率。另一传统方案则是通过更换不同形式的螺旋桨来实现载重情况匹配,然而会造成使用困难、成本增加等问题。
请参阅图2,图2为输入功率30kW、额定转速1500rpm条件下,大螺距普通螺旋桨、小螺距普通螺旋桨和大螺距普通螺旋桨增加导管结构的推进性能曲线图。对比图中曲线可以看出,增加导管后的大螺距螺旋桨和大螺距普通螺旋桨,在整条推进性能曲线上,可以完全覆盖小螺距普通螺旋桨设计。本申请实施例的船用推进器100通过设置可相对螺旋桨2活动的导管3,导管3可以根据不同螺旋桨2的转速调整位置以形成导流形态和开放形态,使推进结构在导管螺旋桨和普通螺旋桨之间进行快速切换,从而使船用推进器100可以及时匹配不同的载重情况,大幅提高船用推进器100的推进效率,同时导管3的变形结构简单,有利于降低生产改造和维修成本。
下面将结合具体实施例对本申请的船用推进器100结构进行具体说明。
第一实施例
请参阅图3,在第一实施例中,船用推进器100,包括机架1、螺旋桨2和导管3。机架1设有水下悬置部11,该水下悬置部11还设有驱动转轴12,螺旋桨2与驱动转轴12连接。导管3与机架1连接,且导管3的至少部分可相对所述螺旋桨2活动,以呈现导流形态或开放形态。导管3处于导流形态时,导管3环绕在螺旋桨2周围并与螺旋桨2同轴设置。导管3处于开放形态时,导管3位于水面上,且至少部分形成压浪结构。
具体地,导管3包括导流结构32和固定结构31,固定结构31固定连接机架1,导流结构32的一端可转动地连接固定结构31的一端,导流结构32的另一 端可拆卸地连接固定结构31的另一端。螺旋桨2的转速处于第一预设阈值时,导管3处于导流形态,导流结构32可以与固定结构31拼接且围绕螺旋桨2设置,以使导流结构32与固定结构31拼接为圆环结构,实现与螺旋桨2组合形成导管螺旋桨,提升船用推进器100在高载重情况下的推进效率。导流结构32与固定结构31的拼接方式包括但不限于卡扣连接、磁吸连接、套设连接、凸块凹槽配合连接等。螺旋桨2的转速处于第二预设阈值时,导管3处于开放形态,导流结构32可以在电机、液压组件等动力设备的作用下相对固定结构31转动,使导流结构32与固定结构31的拼接端分离,并且导流结构32持续绕固定结构31的端部转动,直至翻折至固定结构31背离螺旋桨2的一侧,完成变形动作的导管3位于水面上,固定结构31形成所述压浪结构,减少导流结构32在水下的阻力,提升船用推进器100在低载重情况下的推进效率。
第二实施例
请参阅图4、图5和图6,第二实施例的船用推进器100与第一实施例大致相同,区别在于,第二实施例的导流结构32包括第一结构件33和第二结构件34,导管3整体大致为三段式结构。第一结构件33和第二结构件34可转动地连接于固定结构31的两端,且第一结构件33与第二结构件34可拆卸地连接。
具体的,第一结构件33的转动轴心和所述第二结构件34的转动轴心均平行于所述螺旋桨2的轴心。第一结构件33和第二结构件34可相对所述固定结构31翻转至与固定结构31呈展开状态,而第一结构件33与第二结构件34也可呈相互展开状态,或者相互呈背靠的状态。第一结构件33和第二结构件34可相对固定结构31翻转至与固定结构31闭合状态,并且第一结构件33与第二结构件34也相闭合。在导管3处于导流形态时,第一结构件33和第二结构件34朝向螺旋桨2转动,第一结构件33、第二结构件34和固定结构31依次闭合拼接并环绕所述螺旋桨2周围,形成导管式螺旋桨结构,以提升螺旋桨2的推力。在本申请的实施例中,第一结构件33、第二结构件34和固定结构31拼接为圆环结构时,第一结构件33和第二结构件34连接固定结构31的一端分别在转动过程中与固定结构31的两端端口配对,并通过卡扣连接、磁吸连接、套设连接、凸块凹槽配合连接等方式实现连接处的定位。第一结构件33和第二结构件34远离固定结构31的一端在导管3局部转动过程中进行配对,也可以通过卡扣连接、磁吸连接、套设连接、凸块凹槽配合连接等方式实现连接处的定位。在导 管3处于开放形态时,第一结构件33和第二结构件34翻折至固定结构31背离所述螺旋桨2的一侧,第一结构件33与第二结构件34断开,且第一结构件33和第二结构件34均与固定结构31相展开,从而避免第一结构件33和第二结构件34位于水下,避免第一结构件33和第二结构件34带来推进阻力,从而提高推进效率,以适配船只载重低的情况。其中,第一结构件33和第二结构件34可以通过手动相对所述固定结构31翻转,也可以是在固定结构31上设置动力器件,利用动力器件驱动第一结构件33和第二结构件34相对固定结构31翻转。该动力器件可以是电机、液压缸、电磁模组等器件。
在本申请的实施例中,第一结构件33、第二结构件34和固定结构31为弧形管状结构,且各自为完整圆环结构的一部分,第一结构件33和第二结构件34的弧长分别大于或等于固定结构31的弧长,有利于减少固定结构31的弧形高度,从而减小作为压浪板使用时固定结构31最高位置处与水面之间的距离,提升压浪效果。
进一步地,导管3的固定结构31还可以沿机架1上移或下移,以调整固定结构31与螺旋桨2之间的间隙,用于解决涡流冲击固定结构31带来的螺旋桨2受力不均的问题,提高螺旋桨2效率和减少螺旋桨2振动。
具体的,固定结构31可直接滑动连接机架1,并在动力机构驱动下相对机架1滑动。动力机构可以是电机,或者是电磁模组,或者是液压缸等机构。固定结构31也可固定于滑块件,通过滑块件滑动连接机架1,从而带动固定结构31相对机架1滑动。固定结构31相对机架1的滑动方向垂直螺旋桨2的轴心,并在船用推进器100正常运行时,固定结构31可相对机架1垂直水面滑动。
第三实施例
请参阅图7,第三实施例的船用推进器100与第二实施例大致相同,区别在于,第三实施例的导流结构32还包括第三结构件35和第四结构件36,导管3整体大致为五段式结构。第三结构件35可转动地连接第一结构件33,第四结构件36可转动地连接第二结构件34,且第三结构件35与第四结构件36可拆卸地连接。
具体地,第三结构件35的转动轴心和第四结构件36的转动轴心均平行与螺旋桨2的转动轴心。第三结构件35和第四结构件36可分别相对第一结构件33和第二结构件34翻转至与第一结构件33和第二结构件34呈展开状态,而第三 结构件35和第四结构件36也可呈相互展开状态,或折叠至第一结构件33和第二结构件34背离螺旋桨2的一侧。第三结构件35和第四结构件36也可以分别相对第一结构件33和第二结构件34翻转至与第一结构件33和第二结构件34闭合状态,并且第三结构件35和第四结构件36也相闭合。
第三结构件35和第四结构件36可以通过手动方式翻转,也可以通过在第一结构件33和第二结构件34上设置动力器件,利用动力器件驱动第三结构件35和第四结构件36翻转。该动力器件包括但不限于电机、液压组件、电磁模组等器件。
导管3处于导流形态时,固定结构31、第一结构件33、第三结构件35、第四结构件36和第二结构件34可依次拼接,形成圆环结构,并环绕螺旋桨2周围。具体地,固定结构31、第一结构件33、第三结构件35、第二结构件34和第四结构件36拼接为圆环结构时,第一结构件33和第二结构件34先绕固定结构31的端部朝向螺旋桨2转动,第一结构件33和第二结构件34的端部分别在转动过程中与固定结构31的两端端口配对,并通过卡扣连接、磁吸连接、套设连接、凸块凹槽配合连接等方式实现连接处的定位。接着第三结构件35和第四结构件36再分别绕第一结构件33和第二结构件34的端部转动,使第三结构件35与第一结构件33的连接端配对并连接,第四结构件36与第二结构件34的连接端相互配对和连接,同时第三结构件35远离第一结构件33的一端与第四结构件36远离第二结构件34的一端相互配对并连接。第一结构件33、第二结构件34、第三结构件35及第四结构件36之间也可以通过卡扣连接、磁吸连接、套设连接、凸块凹槽配合连接等方式实现连接处的定位。
导管3处于开放形态时,第三结构件35和第四结构件36分别转动至第一结构件33和第二结构件34背离螺旋桨2的一侧,第一结构件33和第二结构件34分别携带第三结构件35和第四结构件36翻折至固定结构31背离螺旋桨2的一侧。相比于三段式结构的导管3,五段式结构的导管3有利于减少导流结构32翻折后占用的空间。
第四实施例
请参阅图8,第四实施例的船用推进器100包括机架1、螺旋桨2和导管3。机架1设有水下悬置部11,该水下悬置部11还设有驱动转轴12,螺旋桨2与 驱动转轴12连接。导管3与机架1连接,且导管3的至少部分可相对所述螺旋桨2活动,以呈现导流形态或开放形态。导管3处于导流形态时,导管3环绕在螺旋桨2周围并与螺旋桨2同轴设置。导管3处于开放形态时,导管3位于水面上,且至少部分形成压浪结构。
具体地,导管3包括导流结构32和固定结构31,固定结构31连接机架1,导流结构32可伸缩地连接固定结构31。螺旋桨2的转速处于第一预设阈值时,导管3处于导流形态,所述导流结构32相对所述固定结构31伸展,以使导流结构32与固定结构31拼接为圆环结构,实现与螺旋桨2组合形成导管螺旋桨,提升船用推进器100在高载重情况下的推进效率。导流结构32与固定结构31的连接形式包括但不限于卡扣连接、磁吸连接、套设连接、凸块凹槽配合连接等。螺旋桨2的转速处于第二预设阈值时,导管3处于开放形态,导流结构32相对固定结构31收缩,固定结构31形成压浪结构,并且减少导流结构32在水下的阻力,提升船用推进器100在低载重情况下的推进效率。
在本实施例中,导流结构32可收缩至固定结构31的内腔中,可以理解,在其他实施例中,导流结构32还可以收缩至固定结构31外侧面,形成导流结构32与固定结构31堆叠的状态。将导管3设置为可伸缩的结构有利于进一步减少导管3变形时占用的空间。
导流结构32可以通过在固定结构31上设置动力器件,利用动力器件驱动导流结构32收缩或伸展。该动力器件包括但不限于电机、液压组件、电磁模组等器件。
第五实施例
请参阅图9,第五实施例的船用推进器100与第四实施例大致相同,区别在于,第五实施例的导流结构32包括第一结构件33和第二结构件34,第一结构件33和第二结构件34分别可伸缩地连接于固定结构31的两端。导管3处于导流形态时,第一结构件33和第二结构件34相对固定结构31伸展,并环绕螺旋桨2周围,使导流结构32和固定结构31形成完整的环形结构,实现对螺旋桨2的导流。具体地,第一结构件33和第二结构件34分别自固定结构31的两端向外伸展,直至第一结构件33与第二结构件34的端部相互配对并连接,从而使导流结构32和固定结构31形成完整的环形结构,连接方式包括但不限于卡扣 连接、磁吸连接、套设连接、凸块凹槽配合连接等。导管3处于开放形态时,第一结构件33和第二结构件34分别相对固定结构31的两端收缩,第一结构件33和第二结构件34移动至固定结构31的内腔中,或者移动至固定结构31背离螺旋桨2的一侧。开放形态的导管3可移动至水面上,固定结构31形成压浪结构。
第一结构件33和第二结构件34可以通过在固定结构31上设置动力器件,利用动力器件驱动第一结构件33和第二结构件34收缩或伸展。该动力器件包括但不限于电机、液压组件、电磁模组等器件。
在本申请的实施例中,第一结构件33、第二结构件34和固定结构31为弧形管状结构,且第一结构件33和第二结构件34的弧长分别大于或等于固定结构31的弧长,有利于减少固定结构31的弧形高度,从而减小作为压浪板使用时固定结构31最高位置处与水面之间的距离,提升压浪效果。
第六实施例
请参阅图10,第六实施例的船用推进器100与第五实施例大致相同,区别在于,第六实施例的导流结构32还包括第三结构件35和第四结构件36,第三结构件35可伸缩地连接第一结构件33,第四结构件36可伸缩地连接第二结构件34。
导管3处于导流形态时,具体地,第一结构件33和第二结构件34分别自固定结构31的两端向外伸展,第三结构件35自第一结构件33远离固定结构31的一端向外伸展,第四结构件36自第二结构件34远离固定结构31的一端向外伸展,且第四结构件36与第三结构件35的端部配对并连接,从而使导流结构32和固定结构31形成完整环形结构,并围绕螺旋桨2的周侧设置。
导管3处于开放形态时,第三结构件35和第四结构件36分别相对第一结构件33和第二结构件34收缩,第一结构件33和第二结构件34也相对固定结构31收缩。相比于第五实施例中的三段伸缩式导管3结构,第六实施例中的五段伸缩式导管3结构可以减少导管3处于开放形态时,导流结构32伸出固定结构31端部的长度,进而减少导流结构32对固定结构31的压浪效果的影响。
第七实施例
请参阅图11,第七实施例的船用推进器100包括机架1、螺旋桨2和导管3。机架1设有水下悬置部11,该水下悬置部11还设有驱动转轴12,螺旋桨2与驱动转轴12连接。导管3与机架1连接,且导管3的至少部分可相对所述螺旋桨2活动,以呈现导流形态或开放形态。导管3处于导流形态时,导管3环绕在螺旋桨2周围并与螺旋桨2同轴设置。导管3处于开放形态时,导管3位于水面上,且至少部分形成压浪结构。
具体地,导管3包括导流结构32、固定结构31和活动结构37,固定结构31固定连接机架1,活动结构37可转动地连接于导流结构32和固定结构31之间。螺旋桨2的转速处于第一预设阈值时,导管3处于导流形态,活动结构37带动导流结构32沿导管3的轴向方向朝向螺旋桨2转动,固定结构31和导流结构32可拼接为圆环结构,实现与螺旋桨2组合形成导管螺旋桨,提升船用推进器100在高载重情况下的推进效率。固定结构31与导流结构32的连接方式包括但不限于卡扣连接、磁吸连接、凸块凹槽配合连接等。螺旋桨2的转速处于第二预设阈值时,导管3处于开放形态,活动结构37带动导流结构32沿所述导管3的轴向方向且朝向所述机架1的延伸方向翻转至固定结构31背离螺旋桨2的一侧,此时导管3位于水面上,固定结构31形成压浪结构,并且减少导流结构32在水下的阻力,提升船用推进器100在低载重情况下的推进效率。
第八实施例
请参阅图12,第八实施例的船用推进器100与第七实施例大致相同,区别在于,第八实施例的导管3可相对机架1沿第一方向A和第二方向B移动,第一方向A平行螺旋桨2的轴向方向,第二方向B垂直螺旋桨2的轴向方向且与机架1的延伸方向平行。导管3处于导流状态时,导管3沿第一方向A及第二方向B移动至环绕在螺旋桨2周侧的位置,以实现对螺旋桨2的导流。具体地,导管3先沿第二方向B移动至与螺旋桨2同轴的位置,接着导管3沿第一方向A移动,使螺旋桨2被套设在导管3内,使导管3环绕螺旋桨2设置,导管3与螺旋桨2共同形成导管式螺旋桨结构。导管3处于开放形态时,导管3沿第一方向A及第二方向B移动至与螺旋桨2错开的位置,并且导管3部分位于水面上,另一部分形成所述压浪结构。具体地,导管3先沿第一方向A移动,使螺旋桨2脱离导管3的包围区域,接着导管3沿第二方向B移动至与螺旋桨2 错开的位置,并且导管3的部分结构在水面上形成压浪结构。在本实施例中,导管3沿第二方向B移动至水面上时,导管3的底部结构形成所述压浪结构,用于挡压水面的浪花,减少行船阻力。
进一步地,船用推进器100包括转接件4,所述转接件4与机架1滑动连接,并可相对机架1沿第一方向A和第二方向B滑动,导管3固定连接于转接件4远离机架1的一端,从而使转接件4移动时,导管3随转接件4同步移动,实现对导流形态和开放形态的切换。
进一步地,船用推进器100还包括第一驱动组件5,第一驱动组件5连接机架1和转接件4,用于驱动转接件4相对机架1沿第一方向A和第二方向B滑动。
请继续参阅图13,在本申请的其中一实施例中,第一驱动组件5包括第一动力组51、第二动力组52和第一支架53。第一动力组51连接机架1和第一支架53,用于驱动第一支架53沿第一方向A相对机架1滑动。第二动力组52连接第一支架53和转接件4,用于驱动转接件4沿第二方向B相对第一支架53滑动。第一动力组51通过驱动第一支架53来带动第二动力组52和导管3沿第一方向A移动,第二动力组52通过转接件4来带动导管3沿第二方向B移动,从而实现导管3在导流形态和开放形态之间的切换。
请继续参阅图14,在本申请的其中一实施例中,所述第一动力组51包括第一电机511、第一丝杆512和第一螺母513。第一电机511固定于机架1,第一丝杆512长度方向沿第一方向A设置,并与第一电机511连接,以获取第一电机511的转动扭矩。第一螺母513与第一丝杆512螺纹配合,第一支架53固定连接第一螺母513。当第一电机511驱动第一丝杆512旋转时,第一螺母513随之沿第一丝杆512移动,从而使第一支架53带动第二动力组52和导管3沿第一方向A移动。
请参阅图15,在本申请的另一实施例中,所述第一动力组51包括第一电机511、第一齿轮514和第一齿条515。第一电机511固定于机架1,第一齿轮514与第一电机511连接,获取第一电机511的转动扭矩。第一齿条515长度方向沿第一方向A设置,并与第一齿轮514啮合,所述第一支架53固定连接所述第一齿条515。第一电机511驱动第一齿轮514转动时,第一齿条515可随着第一齿轮514的转动而沿第一方向A移动,从而通过第一支架53带动第二动力组 52和导管3沿第一方向A移动。
请参阅图16,在本申请的其中一实施例中,第二动力组52包括第二电机521、第二丝杆522和第二螺母523,第二电机521固定于所述第一支架53,第二丝杆522长度沿第二方向B设置,并与第二电机521连接,以获取第二电机521的转动扭矩。第二螺母523与第二丝杆522螺纹配合,转接件4固定连接第二螺母523。第二电机521驱动第二丝杆522转动时,第二螺母523随之沿第二丝杆522移动,转接件4与第二螺母523同步移动,从而带动导管3沿第二方向B移动。
请参阅图17,在本申请的另一实施例中,所述第二动力组52包括第二电机521、第二齿轮524和第二齿条525。第二电机521固定于所述第一支架53,第二齿轮524与第二电机521连接,获取所述第二电机521的转动扭矩。第二齿条525长度方向沿第二方向B设置,且第二齿条525与第二齿轮524啮合,所述转接件4固定连接所述第一齿条515。第二电机521驱动第二齿轮524转动时,第二齿条525随着第二齿轮524的转动而沿第二方向B移动,转接件4随第二齿条525同步移动,从而带动导管3沿第二方向B移动。
第九实施例
请参阅图18,第九实施例的船用推进器100与第八实施例大致相同,区别在于,第九实施例中的所述导管3可相对所述机架1沿第一方向A移动和绕第一方向A旋转,第一方向平行螺旋桨2的轴向方向。导管3处于导流形态时,导管3沿第一方向A移动并绕第一方向A旋转至环绕在螺旋桨2周侧的位置,以提升螺旋桨2的推力。在形成导流形态的过程中,导管3可以先绕第一方向A转动至与螺旋桨2同轴的位置,再沿第一方向A朝向螺旋桨2移动至环绕螺旋桨2周侧的位置。可以理解,导管3也可以根据实际情况先移动再转动,保证导管3转动过程中不撞击螺旋桨2即可,本申请不对此进行限定。
导管3处于开放形态时,导管3沿第一方向A移动并绕第一方向A旋转至与螺旋桨2错开的位置,且导管3部分位于水面上,另一部分形成所述压浪结构。在形成开放形态的过程中,导管3可先沿第一方向A远离螺旋桨2移动,再绕第一方向A朝向水面转动,使导管3移动至水面上,且部分导管3形成压浪结构。
进一步地,所述船用推进器100包括转接件4,所述转接件4与所述机架1滑动连接,并转接件4可相对机架1沿第一方向A滑动和绕第一方向A转动。导管3固定连接转接件4远离机架1一端,使得转接件4可以带动导管3沿第一方向A移动和绕第一方向A转动。
进一步地,所述船用推进器100还包括第二驱动组件6,所述第二驱动组件6连接所述机架1和所述转接件4,用于驱动所述转接件4相对所述机架1沿第一方向A滑动和绕所述第一方向A转动。
请继续参阅图19,第二驱动组件6包括第三动力组61、第四动力组62和第二支架63。第三动力组61连接所述机架1和所述第二支架63,用于驱动所述第二支架63沿第一方向A相对所述机架1滑动。第四动力组62连接所述第二支架63和所述转接件4,用于驱动所述转接件4绕第一方向A转动。
请继续参阅图20,所述第三动力组61包括第三电机611、第三丝杆612和第三螺母613。第三电机611固定于机架1,第三丝杆612长度方向沿第一方向A设置,且第三丝杆612与第三电机611连接,以获取第三电机611的转动扭矩。第三螺母613与第三丝杆612螺纹配合,第二支架63固定连接所述第三螺母613。第三电机611驱动第三丝杆612转动时,第三螺母613沿第三丝杆612移动,第二支架63随第三螺母613同步移动,从而带动第四动力组62和导管3沿第一方向A移动。第四动力组62可以是一个转动电机,能够通过转接件4带动导管3绕第一方向A转动。
请参阅图21,在本申请的其中一实施例中,所述第三动力组61包括第三电机611、第三齿轮614和第三齿条615。第三电机611固定于所述机架1,第三齿轮614第三电机611连接,获取所述第三电机611的转动扭矩。第三齿条615长度方向沿第一方向A设置,且第三齿条615与第三齿轮614啮合,第二支架63固定连接第三齿条615。第三电机611驱动第三齿轮614转动时,第三齿条615随第三齿轮614的转动而移动,第二支架63随第三齿条615同步移动,以带动第四动力组62和导管3沿第一方向A移动。
第十实施例
请参阅图22,第十实施例的船用推进器100与第九实施例大致相同,区别在于,第十实施例中所述导管3可相对机架1绕第三方向转动,所述第三方向垂 直螺旋桨2的轴向以及垂直机架1的延伸方向,即第一方向、第二方向和第三方向两两垂直。导管3处于导流状态时,导管3绕第三方向转动至环绕螺旋桨2周侧的位置,以提升螺旋桨2的推力。导管3处于开放状态时,导管3绕第三方向转动至与螺旋桨2错开的位置,并且导管3部分位于水面上,另一部分形成所述压浪结构。
进一步地,船用推进器100包括固定连接所述机架1的翻转支架7,所述翻转支架7与螺旋桨2间隔设置。翻转支架7远离机架1的一端还设有翻转轴71,所述翻转轴71的轴向方向形成所述第三方向,所述导管3转动连接所述翻转轴71。
进一步地,所述船用推进器100包括转动驱动件8,所述转动驱动件8固定设于所述翻转支架7上,且所述转动驱动件8连接所述翻转轴71,用于驱动所述翻转轴71旋转,从而带动导管3绕第三方向转动,以切换导流状态和开放状态。
请参阅图23,在本申请的其中一实施例中,船用推进器100还包括检测装置91和控制装置92。所述检测装置91设置于所述驱动转轴12上,所述控制装置92用于控制所述导管3变形,且所述检测装置91通信连接所述控制装置92。具体地,所述检测装置91用于检测所述驱动转轴12的转动速率,所述控制装置92根据所述检测装置91的检测结果驱使所述导管3呈现导流形态或开放形态。
请参阅图24,本申请的实施例还提供一种船舶200,所述船舶200包括船体201和上述任一实施例所述的船用推进器100,所述船用推进器100设置于所述船体201的尾端。
请参阅图25,所述船舶200还包括电机202,所述电机202连接所述船用推进器100的驱动转轴12,用于带动所述螺旋桨2转动。进一步地,所述船舶200还包括控制器203和驱动器204,所述控制器203通信连接所述驱动器204,所述驱动器204根据所述控制器203的指令驱使所述导管3变形。
请参阅图26,本申请的实施例还提供一种船用推进器的控制方法,应用于上 述任一实施例所述的船用推进器100中,包括:
检测螺旋桨的转动速度。
确认螺旋桨的转动速度符合第一预设阈值,控制导管处于导流形态。
确认螺旋桨的转动速度符合第二预设阈值,控制导管处于开放形态。
进一步地,导管3的导流结构32与固定结构31为转动连接关系时,所述控制导管处于导流形态的步骤包括:控制导管3的导流结构32相对导管3的固定结构31朝向螺旋桨2转动,导流结构32和固定结构31环绕螺旋桨2的周侧。
所述控制导管处于开放形态的步骤包括:控制导流结构32移动至固定结构31背离螺旋桨2的一侧。
导管3的导流结构32与固定结构31为伸缩连接关系时,所述控制导管处于导流形态的步骤包括:控制导管3的导流结构32相对导管3的固定结构31伸展,导流结构32和固定结构31环绕螺旋桨2的周侧。
所述控制导管处于开放形态的步骤包括:控制导流结构32相对固定结构31收缩。
导管3可相对机架1沿第一方向A和第二方向B移动以切换导流状态和开放状态时,所述控制导管处于导流形态的步骤包括:控制导管3沿第二方向移动,使导管3与螺旋桨2同轴设置;控制导管3沿第一方向移动至环绕在螺旋桨2周侧的位置。
所述控制导管处于开放形态的步骤包括:控制导管3沿第一方向远离螺旋桨2移动,使导管3与螺旋桨2分离;控制导管3沿第二方向移动,部分导管3移动至水面上,另一部分导管3形成压浪结构。
导管3可相对机架1沿第一方向A移动和绕第一方向A转动以切换导流状态和开放状态时,所述控制导管3处于导流形态的步骤包括:控制导管3绕第一方向转动并沿第一方向移动至环绕在螺旋桨2周侧的位置。
所述控制导管处于开放形态的步骤包括:控制导管3沿第一方向移动并绕第一方向转动至与螺旋桨2错开的位置,导管3部分位于水面上,另一部分形成压浪结构。
所述导管3可相对机架1绕第三方向转动以切换导流状态和开放状态时,所述控制导管处于所述导流形态的步骤包括:控制导管3绕第三方向转动至环绕在螺旋桨2周侧的位置。
所述控制导管处于开放形态的步骤包括:控制导管3绕第三方向转动至与螺旋桨2错开的位置,导管3部分位于水面上,另一部分形成压浪结构。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (43)

  1. 一种船用推进器,其特征在于,包括:
    机架,设有水下悬置部,所述水下悬置部设有驱动转轴;
    螺旋桨,与所述驱动转轴连接;
    导管,与所述机架连接,所述导管的至少部分可相对所述螺旋桨活动,以呈现导流形态或开放形态;所述导管处于导流形态时,所述导管环绕所述螺旋桨周围并与所述螺旋桨同轴设置;所述导管处于开放形态时,所述导管位于水面上,且至少部分形成压浪结构。
  2. 根据权利要求1所述的船用推进器,其特征在于:
    所述导管包括导流结构和固定结构,所述固定结构固定连接所述机架,所述导流结构可转动地连接所述固定结构,所述导管处于导流形态时,所述导流结构与所述固定结构拼接且围绕所述螺旋桨设置,所述导管处于开放形态时,所述导流结构翻折至所述固定结构背离所述螺旋桨的一侧,所述固定结构形成所述压浪结构。
  3. 根据权利要求2所述的船用推进器,其特征在于:
    所述导流结构包括第一结构件和第二结构件,所述第一结构件和所述第二结构件可转动地连接于所述固定结构的两端,在所述导管处于导流形态,所述第一结构件和所述第二结构件朝向所述螺旋桨转动,所述第一结构件、所述第二结构件和所述固定结构环绕所述螺旋桨周围;在所述导管处于开放形态,所述第一结构件和所述第二结构件翻折至所述固定结构背离所述螺旋桨的一侧。
  4. 根据权利要求3所述的船用推进器,其特征在于:
    所述导流结构还包括第三结构件和第四结构件,所述第三结构件可转动地连接所述第一结构件,所述第四结构件可转动地连接所述第二结构件;
    所述导管处于导流形态时,所述固定结构、所述第一结构件、所述第三结构件、所述第四结构件和所述第二结构件可拼接为圆环结构,并环绕所述螺旋桨周围;
    所述导管处于开放形态时,所述第三结构件和所述第四结构件分别转动至所述第一结构件和所述第二结构件背离所述螺旋桨的一侧,所述第一结构件和所述第二结构件分别携带所述第三结构件和所述第四结构件翻折至所述固定结构 背离所述螺旋桨的一侧。
  5. 根据权利要求1所述的船用推进器,其特征在于:
    所述导管包括导流结构和固定结构,所述固定结构连接所述机架,所述导流结构可伸缩地连接所述固定结构;所述导管处于导流形态时,所述导流结构相对所述固定结构伸展,所述导管处于开放形态时,所述导流结构相对所述固定结构收缩,所述固定结构形成所述压浪结构。
  6. 根据权利要求5所述的船用推进器,其特征在于:
    所述导流结构包括第一结构件和第二结构件,所述第一结构件和所述第二结构件可伸缩地连接所述固定结构,所述导管处于导流形态时,所述第一结构件和所述第二结构件相对所述固定结构伸展,并环绕所述螺旋桨周围,所述导管处于开放形态时,所述第一结构件和所述第二结构件相对所述固定结构收缩,所述第一结构件和所述第二结构件移动至所述固定结构的内腔中,或者移动至所述固定结构背离所述螺旋桨的一侧。
  7. 根据权利要求6所述的船用推进器,其特征在于:
    所述导流结构还包括第三结构件和第四结构件,所述第三结构件可伸缩地连接所述第一结构件,所述第四结构件可伸缩地连接所述第二结构件;
    所述导管处于导流形态时,所述第三结构件相对所述第一结构件伸展,所述第四结构件相对所述第二结构件伸展,且所述第四结构件连接所述第三结构件;
    所述导管处于开放形态时,所述第三结构件和所述第四结构件分别相对所述第一结构件和所述第二结构件收缩。
  8. 根据权利要求1所述的船用推进器,其特征在于:
    所述导管包括导流结构、固定结构和活动结构,所述固定结构固定连接所述机架,所述活动结构可转动地连接于所述导流结构和所述固定结构之间;
    所述导管处于导流形态时,所述活动结构带动所述导流结构朝向所述螺旋桨转动,所述固定结构和所述导流结构可拼接为圆环结构;
    所述导管处于开放形态时,所述活动结构带动所述导流结构沿所述导管的轴向方向且朝向所述机架的延伸方向翻转至所述固定结构背离所述螺旋桨的一侧。
  9. 根据权利要求1所述的船用推进器,其特征在于:
    所述导管可相对所述机架沿第一方向和第二方向移动,所述第一方向平行所 述螺旋桨的轴向方向,所述第二方向垂直所述螺旋桨的轴向方向且与所述机架的延伸方向平行,所述导管处于导流状态时,所述导管沿所述第一方向及所述第二方向移动至环绕在所述螺旋桨周侧的位置,所述导管处于开放形态时,所述导管沿所述第一方向及所述第二方向移动至与所述螺旋桨错开的位置,并且所述导管部分位于水面上,另一部分形成所述压浪结构。
  10. 根据权利要求9所述的船用推进器,其特征在于:
    所述船用推进器包括转接件,所述转接件与所述机架滑动连接,并可相对所述机架沿所述第一方向和所述第二方向滑动,所述导管固定连接所述转接件远离所述机架的一端。
  11. 根据权利要求10所述的船用推进器,其特征在于:
    所述船用推进器还包括第一驱动组件,所述第一驱动组件连接所述机架和所述转接件,用于驱动所述转接件相对所述机架沿所述第一方向和所述第二方向滑动。
  12. 根据权利要求11所述的船用推进器,其特征在于:
    第一驱动组件包括第一动力组、第二动力组和第一支架,所述第一动力组连接所述机架和所述第一支架,用于驱动所述第一支架沿所述第一方向相对所述机架滑动,所述第二动力组连接所述第一支架和所述转接件,用于驱动所述转接件沿所述第二方向相对所述第一支架滑动。
  13. 根据权利要求12所述的船用推进器,其特征在于:
    所述第一动力组包括第一电机、第一丝杆和第一螺母,所述第一电机固定于所述机架;所述第一丝杆长度方向沿所述第一方向设置,并与所述第一电机连接,获取所述第一电机的转动扭矩,所述第一螺母与所述第一丝杆螺纹配合,所述第一支架固定连接所述第一螺母。
  14. 根据权利要求12所述的船用推进器,其特征在于:
    所述第一动力组包括第一电机、第一齿轮和第一齿条,所述第一电机固定于所述机架,所述第一齿轮与所述第一电机连接,获取所述第一电机的转动扭矩;所述第一齿条长度方向沿所述第一方向设置,并与所述第一齿轮啮合,所述第一支架固定连接所述第一齿条。
  15. 根据权利要求12所述的船用推进器,其特征在于:
    所述第二动力组包括第二电机、第二丝杆和第二螺母,所述第二电机固定于 所述第一支架,所述第二丝杆长度沿所述第二方向设置,并与所述第二电机连接,所述第二螺母与所述第二丝杆螺纹配合,所述转接件固定连接所述第二螺母。
  16. 根据权利要求12所述的船用推进器,其特征在于:
    所述第二动力组包括第二电机、第二齿轮和第二齿条,所述第二电机固定于所述第一支架,所述第二齿轮与所述第二电机连接,获取所述第二电机的转动扭矩;所述第二齿条长度方向沿所述第二方向设置,并与所述第二齿轮啮合,所述转接件固定连接所述第二齿条。
  17. 根据权利要求1所述的船用推进器,其特征在于:
    所述导管可相对所述机架沿第一方向移动和绕第一方向旋转,所述第一方向平行螺旋桨轴向;
    所述导管处于导流形态时,所述导管沿所述第一方向移动并绕所述第一方向旋转至环绕在所述螺旋桨周侧的位置;
    所述导管处于开放形态时,所述导管沿所述第一方向移动并绕所述第一方向旋转至与所述螺旋桨错开的位置,所述导管部分位于水面上,另一部分形成所述压浪结构。
  18. 根据权利要求17所述的船用推进器,其特征在于:
    所述船用推进器包括转接件,所述转接件与所述机架滑动连接,并可相对所述机架沿所述第一方向滑动和绕所述第一方向转动,所述导管固定连接所述转接件远离所述机架一端。
  19. 根据权利要求18所述的船用推进器,其特征在于:
    所述船用推进器还包括第二驱动组件,所述第二驱动组件连接所述机架和所述转接件,用于驱动所述转接件相对所述机架沿所述第一方向滑动和绕所述第一方向转动。
  20. 根据权利要求19所述的船用推进器,其特征在于:
    第二驱动组件包括第三动力组、第四动力组和第二支架,所述第三动力组连接所述机架和所述第二支架,用于驱动所述第二支架沿所述第一方向相对所述机架滑动,所述第四动力组连接所述第二支架和所述转接件,用于驱动所述转接件绕所述第一方向转动。
  21. 根据权利要求20所述的船用推进器,其特征在于:
    所述第三动力组包括第三电机、第三丝杆和第三螺母,所述第三电机固定于所述机架,所述第三丝杆长度方向沿所述第一方向设置,并与所述第三电机连接,获取第三电机的转动扭矩,所述第三螺母与所述第三丝杆螺纹配合,所述第二支架固定连接所述第三螺母。
  22. 根据权利要求20所述的船用推进器,其特征在于:
    所述第三动力组包括第三电机、第三齿轮和第三齿条,所述第三电机固定于所述机架,所述第三齿轮与所述第三电机连接,获取所述第三电机的转动扭矩;所述第三齿条长度方向沿所述第一方向设置,并与所述第三齿轮啮合,所述第二支架固定连接所述第三齿条。
  23. 根据权利要求1所述的船用推进器,其特征在于:
    所述螺旋桨的转速处于第一预设阈值时,所述导管处于导流状态。
  24. 根据权利要求23所述的船用推进器,其特征在于:
    所述螺旋桨的转速处于第二预设阈值时,所述导管处于开放状态。
  25. 根据权利要求1所述的船用推进器,其特征在于:
    所述导管可相对所述机架绕第三方向转动,所述第三方向垂直所述螺旋桨的轴向以及垂直所述机架的延伸方向,所述导管处于导流状态时,所述导管绕第三方向转动至环绕所述螺旋桨周侧的位置,所述导管处于开放状态时,所述导管绕所述第三方向转动至与所述螺旋桨错开的位置,并且所述导管部分位于水面上,另一部分形成所述压浪结构。
  26. 根据权利要求25所述的船用推进器,其特征在于:
    所述船用推进器包括固定连接所述机架的翻转支架,所述翻转支架与所述螺旋桨间隔设置,所述翻转支架远离所述机架的一端设有翻转轴,所述翻转轴的轴向方向形成所述第三方向,所述导管转动连接所述翻转轴。
  27. 根据权利要求26所述的船用推进器,其特征在于:
    所述船用推进器包括转动驱动件,所述转动驱动件固定设于所述翻转支架上,且所述转动驱动件连接所述翻转轴,用于驱动所述翻转轴旋转。
  28. 根据权利要求3或6所述的船用推进器,其特征在于:
    所述第一结构件、所述第二结构件和所述固定结构为弧形管状结构,所述第一结构件和所述第二结构件的弧长分别大于或等于所述固定结构的弧长。
  29. 根据权利要求1-27任一项所述的船用推进器,其特征在于:
    还包括检测装置和控制装置,所述检测装置设置于所述驱动转轴上,所述控制装置用于控制所述导管变形,且所述检测装置通信连接所述控制装置;
    所述检测装置用于检测所述驱动转轴的转动速率,所述控制装置根据所述检测装置的检测结果驱使所述导管呈现导流形态或开放形态。
  30. 一种船舶,其特征在于,包括船体和如权利要求1-29任一项所述的船用推进器,所述船用推进器设置于所述船体的尾端。
  31. 根据权利要求30所述的船舶,其特征在于:
    所述船舶还包括电机,所述电机连接所述船用推进器的驱动转轴,用于带动所述螺旋桨转动。
  32. 根据权利要求31所述的船舶,其特征在于:
    所述船舶还包括控制器和驱动器,所述控制器通信连接所述驱动器,所述驱动器根据所述控制器的指令驱使所述导管变形。
  33. 一种船用推进器的控制方法,其特征在于,所述控制方法应用于权利要求1-29任一项所述的船用推进器中,包括:
    检测螺旋桨的转动速度;
    确认螺旋桨的转动速度符合第一预设阈值,控制导管处于导流形态;
    确认螺旋桨的转动速度符合第二预设阈值,控制导管处于开放形态。
  34. 根据权利要求33所述的船用推进器的控制方法,其特征在于,所述控制导管处于导流形态包括:
    控制导管的导流结构相对导管的固定结构朝向螺旋桨转动,导流结构和固定结构环绕螺旋桨的周侧。
  35. 根据权利要求34所述的船用推进器的控制方法,其特征在于,所述控制导管处于开放形态包括:
    控制导流结构移动至固定结构背离螺旋桨的一侧。
  36. 根据权利要求33所述的船用推进器的控制方法,其特征在于,所述控制导管处于导流形态包括:
    控制导管的导流结构相对导管的固定结构伸展,导流结构和固定结构环绕螺旋桨的周侧。
  37. 根据权利要求36所述的船用推进器的控制方法,其特征在于,所述控制导管处于开放形态包括:
    控制导流结构相对固定结构收缩。
  38. 根据权利要求33所述的船用推进器的控制方法,其特征在于,所述控制导管处于导流形态包括:
    控制导管沿第二方向移动,使导管与螺旋桨同轴设置;
    控制导管沿第一方向移动至环绕在螺旋桨周侧的位置。
  39. 根据权利要求38所述的船用推进器的控制方法,其特征在于,所述控制导管处于开放形态包括:
    控制导管沿第一方向远离螺旋桨移动,使导管与螺旋桨分离;
    控制导管沿第二方向移动,部分导管移动至水面上,另一部分导管形成压浪结构。
  40. 根据权利要求33所述的船用推进器的控制方法,其特征在于,所述控制导管处于导流形态包括:
    控制导管绕第一方向转动并沿第一方向移动至环绕在螺旋桨周侧的位置。
  41. 根据权利要求40所述的船用推进器的控制方法,其特征在于,所述控制导管处于开放形态包括:
    控制导管沿第一方向移动并绕第一方向转动至与螺旋桨错开的位置,导管部分位于水面上,另一部分形成压浪结构。
  42. 根据权利要求33所述的船用推进器的控制方法,其特征在于,所述控制导管处于所述导流形态包括:
    控制导管绕第三方向转动至环绕在螺旋桨周侧的位置。
  43. 根据权利要求42所述的船用推进器的控制方法,其特征在于,所述控制导管处于开放形态包括:
    控制导管绕第三方向转动至与螺旋桨错开的位置,导管部分位于水面上,另一部分形成压浪结构。
PCT/CN2022/118825 2022-09-14 2022-09-14 船用推进器、船舶及船用推进器的控制方法 WO2024055213A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280032112.8A CN117242000A (zh) 2022-09-14 2022-09-14 船用推进器、船舶及船用推进器的控制方法
PCT/CN2022/118825 WO2024055213A1 (zh) 2022-09-14 2022-09-14 船用推进器、船舶及船用推进器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118825 WO2024055213A1 (zh) 2022-09-14 2022-09-14 船用推进器、船舶及船用推进器的控制方法

Publications (1)

Publication Number Publication Date
WO2024055213A1 true WO2024055213A1 (zh) 2024-03-21

Family

ID=89083059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118825 WO2024055213A1 (zh) 2022-09-14 2022-09-14 船用推进器、船舶及船用推进器的控制方法

Country Status (2)

Country Link
CN (1) CN117242000A (zh)
WO (1) WO2024055213A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1405408A (en) * 1971-10-06 1975-09-10 Hydroconic Ltd Ships propulsion systems
CN107428403A (zh) * 2015-03-31 2017-12-01 三井造船株式会社 船舶
CN109050853A (zh) * 2018-08-10 2018-12-21 哈尔滨工程大学 一种船用可拆导管螺旋桨
CN110282107A (zh) * 2019-07-02 2019-09-27 哈尔滨工程大学 一种可分离式船用导管螺旋桨
CN112319747A (zh) * 2020-11-08 2021-02-05 西北工业大学 一种分体导管矢量推进器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1405408A (en) * 1971-10-06 1975-09-10 Hydroconic Ltd Ships propulsion systems
CN107428403A (zh) * 2015-03-31 2017-12-01 三井造船株式会社 船舶
CN109050853A (zh) * 2018-08-10 2018-12-21 哈尔滨工程大学 一种船用可拆导管螺旋桨
CN110282107A (zh) * 2019-07-02 2019-09-27 哈尔滨工程大学 一种可分离式船用导管螺旋桨
CN112319747A (zh) * 2020-11-08 2021-02-05 西北工业大学 一种分体导管矢量推进器

Also Published As

Publication number Publication date
CN117242000A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN112319747B (zh) 一种分体导管矢量推进器
WO2024055213A1 (zh) 船用推进器、船舶及船用推进器的控制方法
CN109050853B (zh) 一种船用可拆导管螺旋桨
CN1749104A (zh) 仿鱼形吊舱推进器
US20150139803A1 (en) Electrically driven, retractable rudder propeller including a step-down gear unit
US3482402A (en) Fluid propulsion system
CN109018187A (zh) 一种可调可拆卸的高速船尾部压浪装置
CN109572970B (zh) 一种水下机器人的矢量推进器
EP0690806B1 (de) Wasserstrahlantrieb für wasserfahrzeuge mit steuerelementen zur richtungsänderung des vortrieb liefernden wasserstrahles
CN110562421A (zh) 涵道式螺旋滚筒推进器及侧向控制阀系统
WO2008013476A1 (en) Engine provided with dynamic hydrofoils (variants)
CN218506105U (zh) 螺旋桨组件、水域可移动设备
CN218506106U (zh) 螺旋桨组件及水域可移动设备
CN218506104U (zh) 螺旋桨组件、水域可移动设备
CN109050863B (zh) 分体式双叶结构船用舵及其控制方法
CN218489880U (zh) 螺旋桨组件及水域可移动设备
CN109664698B (zh) 一种螺旋桨折叠装置
CN115258114B (zh) 一种可变导管船用动力推进装置
CN218489879U (zh) 螺旋桨组件、水域可移动设备
CN105799898B (zh) 一种大功率万向拖船
CN208746221U (zh) 一种船用可拆导管螺旋桨
CN110329468B (zh) 一种可旋转式前置节能导管
CN206914599U (zh) 一种船舶前置调头装置
CN212556743U (zh) 可绕双轴转动的舵系及船
CN114987726B (zh) 一种拖网渔船可调节式驱动装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280032112.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958406

Country of ref document: EP

Kind code of ref document: A1