WO2024055158A1 - 绝缘故障检测方法及相关装置 - Google Patents

绝缘故障检测方法及相关装置 Download PDF

Info

Publication number
WO2024055158A1
WO2024055158A1 PCT/CN2022/118472 CN2022118472W WO2024055158A1 WO 2024055158 A1 WO2024055158 A1 WO 2024055158A1 CN 2022118472 W CN2022118472 W CN 2022118472W WO 2024055158 A1 WO2024055158 A1 WO 2024055158A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation
insulation fault
energy storage
transmission branches
fault detection
Prior art date
Application number
PCT/CN2022/118472
Other languages
English (en)
French (fr)
Inventor
骆聪
赵坤
陈程杰
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/118472 priority Critical patent/WO2024055158A1/zh
Publication of WO2024055158A1 publication Critical patent/WO2024055158A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables

Definitions

  • This application relates to the field of new energy technology, and in particular to an insulation fault detection method, system, device, energy storage system, storage medium and computer program product.
  • the main function of the power conversion system is to charge and discharge the energy storage devices in the energy storage system. Before working, the power conversion system must first ensure that its energy storage side is properly connected. The ground impedance meets the requirements.
  • Embodiments of the present application provide an insulation fault detection method, system, device, energy storage system, storage medium and computer program product, aiming to provide a safe and efficient insulation fault detection solution.
  • this application provides an insulation fault detection method, which may include:
  • Multiple transmission branches on the energy storage side of the control energy storage system are connected to the high-voltage bus through corresponding precharge circuits, and an insulation monitoring module is provided on the high-voltage bus;
  • the insulation monitoring module is controlled to perform insulation fault detection on a target circuit connected to the high-voltage busbar to obtain a first detection result.
  • the target circuit may include multiple first circuits formed by connecting multiple transmission branches to corresponding precharge circuits.
  • insulation fault detection can be directly implemented on all target circuits connected to the high-voltage busbar including the first circuit, and the first circuit is a plurality of transmission branches corresponding to It is formed by connecting precharge circuits, that is, multiple transmission branches are merged into the high-voltage bus through corresponding precharge circuits. Therefore, the precharge circuit can play a protective role and avoid multiple transmission branches when they are connected to the high-voltage bus at the same time.
  • the risk of system short circuit or overcharging of energy storage devices caused by the failure of each transmission branch eliminates the need to connect the transmission branches to the high-voltage busbar one by one for insulation fault detection, thus saving the time for insulation fault detection and thus providing an efficient and safe insulation fault detection solution.
  • the method may also include:
  • the insulation faults of multiple transmission branches are determined and the determination results are obtained.
  • the current values of multiple transmission branches can be obtained, and then multi-branch insulation failure fault judgments can be performed on the multiple transmission branches according to the magnitude of the current values to obtain the judgment results.
  • the current value realizes insulation fault location and can quickly locate the branch where the fault is located.
  • the insulation fault determination is performed on the multiple transmission branches based on the current values of the multiple transmission branches to obtain the determination results, which may include:
  • the determination result indicates that the target transmission branch is an insulation fault branch, and multiple transmission branches may include the target transmission branch.
  • a method for locating insulation faults based on current values of multiple transmission branches is provided, thereby achieving rapid location of ground insulation faults.
  • the method may also include:
  • the first loop where the target transmission branch is located is cut off.
  • Multiple transmission branches may include the target transmission branch.
  • the connection between the target transmission branch and the high-voltage bus can be cut off, thereby reducing the number of transmission branches with insulation faults in the high-voltage system and making the high-voltage bus connection target The number of insulation faults in the loop is reduced or even eliminated, thus enabling the normal operation of the power conversion system.
  • the method may also include:
  • the insulation monitoring module is controlled to detect an insulation fault on the target circuit and obtain a second detection result.
  • the target circuit connected to the high-voltage busbar is re-detected for insulation faults, and it can be discovered in a timely manner whether the insulation fault positioning based on the current value in the early stage has completely eliminated the insulation fault, and the inspection of the insulation fault positioning results is realized.
  • the method may also include:
  • insulation fault detection is performed one by one after eliminating the insulation faults of multiple transmission branches to ground. Therefore, in actual applications, the number of transmission branches detected one by one is reduced, and the overall reduction can be reduced. Time for insulation testing of the energy storage system.
  • the method may also include:
  • the steps are executed: controlling the multiple transmission branches on the energy storage side of the energy storage system to be connected to the high-voltage bus through the corresponding pre-charging circuits respectively.
  • the method may also include:
  • the switch module When the first detection result indicates that there is no insulation fault in the target circuit connected to the high-voltage busbar, the switch module is controlled to be turned on, and the switch module is connected in parallel with the precharge circuit;
  • the precharge circuit is cut off.
  • a complete implementation plan for ground insulation detection on the energy storage side of the energy storage system is given, which can control the normal operation of the power conversion system or continue to detect ground insulation faults based on different first detection results, achieving A complete set of safe and efficient ground insulation fault detection logic.
  • the transmission branch may include multiple energy storage devices connected in series and/or in parallel.
  • this application provides an insulation fault detection system, which may include:
  • the first control module is used to control multiple transmission branches on the energy storage side of the energy storage system and are connected to the high-voltage bus through corresponding precharge circuits.
  • the high-voltage bus is equipped with an insulation monitoring module;
  • the second control module is used to control the insulation monitoring module to detect insulation faults on the target circuit connected to the high-voltage busbar and obtain the first detection result.
  • the target circuit includes multiple transmission branches connected to corresponding precharge circuits. One circuit.
  • the present application provides an insulation fault detection device.
  • the insulation fault detection device may include a processor, a memory, and a program or instructions stored in the memory and executable on the processor. When the program or instructions are executed by the processor, Steps to implement the insulation fault detection method as described above.
  • the present application also provides an insulation fault detection device configured to perform the steps of the insulation fault detection method of the above aspect.
  • the present application also provides an energy storage system, which includes the insulation fault detection device of the above aspect.
  • the present application also provides a readable storage medium, which stores a program or instructions on the readable storage medium.
  • a program or instructions When the program or instructions are executed by a processor, the steps of the insulation fault detection method in the above aspect are implemented.
  • the present application also provides a computer program product, which can be executed by a processor to implement the steps of the insulation fault detection method in the above aspect.
  • Figure 1 is a schematic structural diagram of an energy storage system involved in the insulation fault detection method according to the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an optional circuit module on the energy storage side of the energy storage system involved in the insulation fault detection method according to the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an embodiment of an insulation fault detection method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the insulation fault detection method according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of at least two transmission branches involved in the insulation fault detection method of the embodiment of the present application experiencing insulation failure to ground and forming a loop.
  • Figure 6 is a schematic flow chart of another embodiment of the insulation fault detection method according to the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of the insulation fault detection method according to the embodiment of the present application.
  • Figure 8 is a schematic diagram of an optional module of an insulation fault detection system according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optional hardware structure of the insulation fault detection device according to the embodiment of the present application.
  • K1 main negative relay
  • R precharge resistor
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • FIG 1 is a schematic diagram of an optional architecture of an energy storage system in related technologies.
  • the energy storage system may include a power conversion system 11 (Power Conversion System, PCS).
  • the power conversion system 11 may include DC/AC (Direct Current/Alternating Current) bidirectional converter and control unit.
  • the power conversion system 11 may also include DC-DC (Direct Current-Alternating Current) conversion. device.
  • the control unit can also be electrically connected to the control management module of the energy storage device 14 through an interface. Before the power conversion system 11 works, it must first ensure that the impedance of its energy storage side to ground meets the requirements.
  • each transmission branch 12 of the energy storage system incorporates a high-voltage The insulation status of each transmission branch 12 cannot be detected before the busbar.
  • the insulation failure of multiple transmission branches 12 may cause the risk of overcharging of the energy storage devices 14 on the transmission branches 12 or short circuit of the entire system. Therefore, in order to detect the insulation status of each transmission branch 12, in the related art, the transmission branches 12 can only be merged into the high-voltage busbar one by one for insulation fault detection. This detection method takes a long time when there are many transmission branches 12. .
  • the inventor of this application designed an insulation fault detection scheme. And correspondingly provide an insulation fault detection method, system, device, energy storage system, storage medium and computer program product, by controlling multiple transmission branches on the energy storage side of the energy storage system and connecting them to each other through corresponding precharge circuits.
  • the high-voltage bus then controls the insulation monitoring module installed on the high-voltage bus to detect insulation faults on the target circuit connected to the high-voltage bus and obtain the first detection result.
  • the target circuit can include multiple transmission branches connected to corresponding precharge circuits. Multiple first circuits.
  • multiple transmission branches are integrated into the high-voltage bus through corresponding precharge circuits.
  • the precharge circuit can perform current limiting protection, allowing multiple transmission branches to be connected to the high-voltage bus at the same time, saving the time of insulation fault detection.
  • it also It can avoid the risk of system short circuit or overcharge of energy storage devices caused by the failure of multiple transmission branches when each transmission branch is connected to the high-voltage bus at the same time. This provides a safe and efficient insulation fault detection solution.
  • the insulation fault detection method, system, device, energy storage system, storage medium and computer program product provided by the embodiment of the present application are described below.
  • the insulation fault detection method provided by the embodiment of the present application is first introduced below.
  • Figure 2 shows a schematic structural diagram of the circuit module on the energy storage side of the energy storage system involved in the insulation fault detection method of the embodiment of the present application.
  • the insulation fault detection method may include the following steps:
  • S310 controls the multiple transmission branches on the energy storage side of the energy storage system to be connected to the high-voltage bus through corresponding precharge circuits.
  • the high-voltage bus is equipped with an insulation monitoring module;
  • the target circuit may include multiple first circuits formed by connecting multiple transmission branches to corresponding precharge circuits.
  • the above insulation fault detection method can be applied to an insulation fault detection device, which can be the power conversion system 11 or other control modules.
  • the high-voltage system in which the above-mentioned power conversion system 11 is located can also include devices such as transformer cabinets.
  • the above-mentioned high-voltage system can also connect multiple transmission branches 12 through transmission interfaces, so that the transmission branches 12 are also connected.
  • the above-mentioned multiple transmission branches 12 can be connected in parallel, and the multiple transmission branches 12 can be respectively installed in corresponding electrical cabinets.
  • Each transmission branch 12 may include multiple energy storage devices 14 connected in series, multiple energy storage devices 14 connected in parallel, or multiple energy storage devices 14 connected in series and parallel combination.
  • the energy storage device 14 may be a battery or a large capacitor, thereby realizing the storage of electrical energy.
  • the insulation monitoring module 13 provided on the high-voltage bus can be used to implement insulation resistance detection.
  • the multiple transmission branches 12 can be controlled to be connected to the high-voltage bus through the corresponding precharge circuit 15, so that the multiple transmission branches 12 are merged into the high-voltage system, and then the insulation monitoring module 13 can be controlled to control the entire high-voltage system (which can be All circuits connected to the high-voltage busbar, that is, the target circuit) are subjected to insulation fault detection.
  • insulation fault detection can be directly implemented on all target circuits connected to the high-voltage busbar including the first circuit, and the first circuit has multiple transmission branches 12 connected to the corresponding precharge circuit 15 That is, multiple transmission branches 12 are respectively merged into the high-voltage bus through the precharge circuit 15. Therefore, the precharge circuit 15 can play a protective role and avoid multiple transmission branches when each transmission branch 12 is connected to the high-voltage bus at the same time. There is no risk of system short circuit or overcharge of energy storage device 14 caused by the failure of circuit 12, and there is no need to connect transmission branches 12 to the high-voltage busbar one by one for insulation fault detection, thus saving the time of insulation fault detection, thus providing an efficient and safe insulation fault detection solution.
  • the above-mentioned precharging circuit 15 may include a precharging resistor R and a precharging relay K3.
  • the precharging relay K3 may be connected between the precharging resistor R and the high-voltage bus.
  • the transmission branch 12 may also include a main positive relay K2 and a main negative relay K1, where the main positive relay K2 is provided between the high-voltage bus and the positive electrode of the battery. During the period, the main negative relay K1 is set between the high-voltage bus and the negative electrode of the battery.
  • the main negative relay K1 and the precharge relay K3 can be controlled to close.
  • the pre-charge relay K3 and the pre-charge resistor R can form a pre-charge circuit 15, thereby realizing the voltage on the side of the main positive relay K2 close to the high-voltage bus. Precharging can prevent the moment when the main positive relay K2 is closed, the pressure difference between the inside and outside of the main positive relay K2 is too large, causing an instantaneous large current to damage the main positive relay K2.
  • the conduction of the main negative relay K1 and the precharge relay K3 enables the transmission branch 12 where the main negative relay K1 is located, the precharge circuit 15 and the high-voltage bus to form a first loop.
  • insulation monitoring module 13 subsequently performs insulation fault detection, insulation fault detection of target circuits including all first circuits can be achieved, thereby improving the efficiency and safety of insulation fault detection.
  • the method may also include:
  • S420 Based on the current values of the multiple transmission branches, perform insulation fault determination on the multiple transmission branches and obtain the determination results.
  • This embodiment considers the solution when the first detection result indicates that there is an insulation fault in the target circuit connected to the high-voltage busbar, and can realize the insulation fault location of some transmission branches based on the current value of the transmission branch.
  • the positive electrode of the energy storage device 14 in these transmission branches with insulation failure can be connected through the high-voltage bus to form a loop. If the number of energy storage devices 14 on the two transmission branches forming the loop is much different, a large voltage difference will be formed. At the same time, since there are only wire harness impedance, energy storage device self-impedance and main positive relay impedance, a The loop impedance is very small. At this time, the 14 transmission branches with a large number of energy storage devices will charge the 14 transmission branches with a relatively small number of energy storage devices at a large rate, resulting in the failure of the insulation of the transmission branches. There is a certain current value on the loop. It is understood that the currents on the transmission branches with different insulation failures may be charging currents or discharging currents.
  • the current values of multiple transmission branches can be obtained, and then the multi-branch insulation failure fault judgment on the multiple transmission branches can be performed according to the size of the current values, and the judgment results can be obtained.
  • the current value realizes insulation fault location and can quickly locate the branch where the fault is located.
  • the current value on the transmission branch can be detected and obtained by arranging a current sensor on the transmission branch.
  • the current sensor can be connected between the main positive relay and the positive electrode of the battery.
  • the current value of the transmission branch can also be measured and converted through other methods.
  • S420 based on the current values of the multiple transmission branches, perform insulation fault determination on multiple transmission branches. , to obtain the judgment results, which can include:
  • the above-mentioned first current range may be 0, or may be another current range close to 0.
  • the transmission branch is a plurality of transmission branches.
  • a method for locating insulation faults based on the current values of multiple transmission branches is given, achieving rapid location of ground insulation faults.
  • the method may also include:
  • S630 When the determination result indicates that the target transmission branch is an insulation fault branch, cut off the first loop where the target transmission branch is located. Multiple transmission branches may include the target transmission branch.
  • the connection between the target transmission branch and the high-voltage bus can be cut off, thereby reducing the number of transmission branches with insulation faults in the high-voltage system and making the high-voltage bus connection target The number of insulation faults in the loop is reduced or even eliminated, thus enabling the normal operation of the power conversion system.
  • the method may also include:
  • S640 Control the insulation monitoring module to detect insulation faults on the target circuit and obtain the second detection result.
  • the insulation monitoring module is controlled to detect insulation faults again on all target circuits connected to the high-voltage busbar to obtain the second detection result.
  • the second detection result indicates that there is no insulation fault in the high-voltage system, it means that all the insulation faults found in the first detection result have been cleared, and they are all caused by the insulation fault of the multi-transmission branch to the ground.
  • the second detection result indicates that there is still an insulation fault in the high-voltage system, troubleshooting and location can be continued.
  • the target circuit connected to the high-voltage busbar is re-detected for insulation faults, and it can be discovered in a timely manner whether the insulation fault positioning based on the current value in the early stage has completely eliminated the insulation fault, and the inspection of the insulation fault positioning results is realized.
  • the method may also include:
  • S660 controls the transmission branches other than the target transmission branch to connect to the high-voltage bus one by one, and controls the insulation monitoring module to detect insulation faults one by one on the transmission branches connected to the high-voltage bus.
  • this embodiment considers the situation that the insulation fault cannot be located based on the current value of the transmission branch. It can cut off all the remaining target circuits that are still connected to the high-voltage busbar at this time, and then control the remaining target circuits.
  • the multiple transmission branches involved are connected to the high-voltage bus one by one, so that the insulation monitoring module performs insulation detection one by one to continue to locate the insulation fault branch in the remaining transmission branches.
  • insulation fault detection is performed one by one after the insulation faults of multiple transmission branches to ground are eliminated. Therefore, in actual applications, the number of transmission branches detected one by one is reduced. It can reduce the overall insulation detection time of the energy storage system.
  • S310 may include:
  • the method may also include:
  • the embodiment of this application considers the situation that there is no insulation fault in all target circuits directly connected to the high-voltage bus.
  • the power conversion system meets the requirements for the ground impedance of the energy storage side of the energy storage system before operation.
  • the switch module between the high-voltage bus and the transmission branch and connected in parallel with the precharge circuit can be closed.
  • the switch module can be the main positive relay in Figure 2. After the switch module is turned on for a period of time, it represents energy storage. The main circuit on the energy storage side of the system is operating normally, and the precharge circuit can be cut off at this time.
  • the above-mentioned target loop may include, for example, a first loop formed by a plurality of transmission branches and a precharge circuit, and may also include a loop where a transformer cabinet, etc. connected to a high-voltage busbar is located.
  • a complete implementation plan for ground insulation detection on the energy storage side of the energy storage system is given, which can control the normal operation of the power conversion system or continue to detect ground insulation faults based on different first detection results, achieving A complete set of safe and efficient ground insulation fault detection logic.
  • the system includes:
  • a first control module 810 used to control multiple transmission branches on the energy storage side of the energy storage system to be connected to the high-voltage bus through corresponding pre-charging circuits, and an insulation monitoring module is provided on the high-voltage bus;
  • the second control module 820 is used to control the insulation monitoring module to detect insulation faults on the target circuit connected to the high-voltage busbar and obtain the first detection result.
  • the target circuit includes multiple transmission branches connected to corresponding precharge circuits. First circuit.
  • the above system may also include:
  • An acquisition module configured to acquire the current values of multiple transmission branches respectively when the first detection result indicates that there is an insulation fault in the target circuit connected to the high-voltage busbar;
  • the determination module is used to determine the insulation faults of multiple transmission branches based on the current values of the multiple transmission branches and obtain the determination results.
  • the determination module is configured to, when the current value of the target transmission branch is not in the first current range, the determination result indicates that the target transmission branch is an insulation fault branch, and the plurality of transmission branches include the target transmission branch. branch road.
  • system may also include:
  • the cutting module is used to cut off the first circuit where the target transmission branch is located when the determination result indicates that the target transmission branch is an insulation fault branch, and the plurality of transmission branches include the target transmission branch.
  • system may also include:
  • the third control module is used to control the insulation monitoring module to detect insulation faults on the target circuit and obtain the second detection result.
  • the above-mentioned cutting module can also be used to cut off all target circuits connected to the high-voltage bus when the second detection result indicates that there is an insulation fault in the target circuit connected to the high-voltage bus;
  • the third control module can also be used to control transmission branches other than the target transmission branch to connect to the high-voltage bus one by one, and control the insulation monitoring module to detect insulation faults one by one on the transmission branches connected to the high-voltage bus.
  • the first control module 810 can also be used to obtain the voltage difference between each transmission branch; when the voltage difference between each transmission branch is less than the voltage threshold, multiple transmission branches on the energy storage side of the energy storage system are controlled to be connected to the high-voltage bus through the corresponding pre-charging circuit.
  • the above-mentioned cut-off module can also be used to control the switch module to be turned on when the first detection result indicates that there is no insulation fault in the target circuit connected to the high-voltage bus, and the switch module is connected in parallel with the precharge circuit; when the switch module After the first period of conduction, cut off the precharge circuit.
  • the transmission branch includes multiple energy storage devices connected in series and/or in parallel.
  • FIG. 9 shows a schematic diagram of the hardware structure of the insulation fault detection device provided by the embodiment of the present application.
  • the insulation fault detection device may include a processor 901 and a memory 902 storing computer program instructions.
  • processor 901 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits according to the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 902 may include bulk storage for data or instructions.
  • the memory 902 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above.
  • Memory 902 may include removable or non-removable (or fixed) media, where appropriate.
  • Memory 902 may be internal or external to the device, where appropriate.
  • memory 902 is non-volatile solid-state memory.
  • memory may include read-only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk storage media devices magnetic disk storage media devices
  • optical storage media devices flash memory devices
  • electrical, optical, or other physical/tangible memory storage devices may include read-only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (eg, by one or more processors), which is operable to perform the operations described with reference to a method according to an aspect of the present disclosure.
  • the processor 901 reads and executes the computer program instructions stored in the memory 902 to implement any of the insulation fault detection methods in the above embodiments.
  • the insulation fault detection device may also include a communication interface 903 and a bus 909. Among them, as shown in Figure 9, the processor 901, the memory 902, and the communication interface 903 are connected through the bus 909 and complete communication with each other.
  • the communication interface 903 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
  • Bus 909 includes hardware, software, or both, coupling the components of the device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infinite Bandwidth Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 909 may include one or more buses.
  • the insulation fault detection device can execute the insulation fault detection method in the embodiment of the present application, thereby realizing the insulation fault detection method described in conjunction with the above embodiment.
  • the embodiment of the present application can be implemented by providing a computer storage medium or a readable storage medium.
  • the computer storage medium or the readable storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the insulation fault detection methods in the above embodiments is implemented.
  • an embodiment of the present application also provides a computer program product, including a computer program, which can implement the steps and corresponding contents of the aforementioned method embodiment when executed by a processor.
  • embodiments of the present application also provide an energy storage system that includes the insulation fault detection device or control system of the above embodiments, or the energy storage system can also perform the above insulation fault detection method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种绝缘故障检测方法及相关装置,绝缘故障检测方法包括:控制储能系统的储能侧的多条传输支路(12)分别经对应的预充电电路(15)连接至高压母线(S310),高压母线上设置有绝缘监控模块(13);控制绝缘监控模块(13)对高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果(S320),目标回路包括多条传输支路(12)分别与对应预充电电路(15)连接所形成的多条第一回路。绝缘故障检测方法及相关装置能够安全且高效地实现绝缘故障检测。

Description

绝缘故障检测方法及相关装置 技术领域
本申请涉及新能源技术领域,尤其涉及一种绝缘故障检测方法、系统、装置、储能系统、存储介质和计算机程序产品。
背景技术
在储能系统中,功率转换系统(Power Conversion System,PCS)的主要功能是对储能系统中的储能器件进行充放电管理,而该功率转换系统在工作前首先要保证其储能侧对地阻抗满足要求。
发明内容
本申请实施例提供了一种绝缘故障检测方法、系统、装置、储能系统、存储介质和计算机程序产品,旨在提供一种安全且高效的绝缘故障检测方案。
一方面,本申请提供一种绝缘故障检测方法,可以包括:
控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,高压母线上设置有绝缘监控模块;
控制绝缘监控模块对高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,目标回路可以包括多条传输支路分别与对应预充电电路连接所形成的多条第一回路。
在这些实施例中,因为在进行绝缘故障检测时,能够直接对第一回路在内的高压母线连接的所有目标回路实现绝缘故障检测,而该第一回路又是多个传输支路分别与对应的预充电电路连接形成的,即多个传输支路分别经对应的预充电电路并入高压母线,因此预充电电路可以起到保护作用,能够避免在各传输支路同时连接高压母线时,多个传输支路失效所导致的系统短路或储能器件过充的风险,也无需逐个将传输支路连接至高压母线进行绝缘故障检测,因此节省了绝缘故障检测的时间,从而提供了一种高效且安全的绝缘故障检测方案。
可选地,得到第一检测结果之后,方法还可以包括:
在第一检测结果指示高压母线连接的目标回路存在绝缘故障时,分别获取多条传输支路的电流值;
根据多条传输支路的电流值,对多条传输支路进行绝缘故障判定,得到判定结果。
在这些实施例中,可以通过获取多条传输支路的电流值,进而根据电流值的大小,对多条传输支路进行多支路绝缘失效故障判定,得到判定结果,由此依据传输支路的电流值实现了绝缘故障定位,能够快速定位故障所在支路。
可选地,其中,根据多条传输支路的电流值,对多条传输支路进行绝缘故障判定,得到判定结果,可以包括:
在目标传输支路的电流值未处在第一电流范围时,判定结果指示目标传输支路为绝缘故障支路,多条传输支路可以包括目标传输支路。
在这些实施例中,给出了根据多条传输支路的电流值定位绝缘故障的方法,实现了对地绝缘故障的快速定位。
可选地,得到判定结果之后,方法还可以包括:
在判定结果指示目标传输支路为绝缘故障支路时,切断目标传输支路所在第一回路,多条传输支路可以包括目标传输支路。
在这些实施例中,在根据判定结果定位到绝缘故障支路时,可以切断目标传输支路至高压母线的连接,由此可以减少高压系统中绝缘故障的传输支路,使高压母线连接的目标回路的绝缘故障数量降低甚至消失,从而可以开启功率变换系统的正常工作。
可选地,切断目标传输支路所在第一回路之后,方法还可以包括:
控制绝缘监控模块对目标回路进行绝缘故障检测,得到第二检测结果。
在这些实施例中,通过绝缘监控模块对高压母线连接的目标回路进行再次绝缘故障检测,能够及时发现前期基于电流值进行绝缘故障定位是否已完全消除绝缘故障,实现了绝缘故障定位结果的检验。
可选地,得到第二检测结果之后,方法还可以包括:
在第二检测结果指示高压母线连接的目标回路存在绝缘故障时,切断高压母线连接的所有目标回路;
控制除目标传输支路以外的传输支路逐个与高压母线连接,并控制绝缘监控模块逐个对高压母线连接的传输支路进行绝缘故障检测。
在这些实施例中是在排除了多传输支路对地绝缘故障的情况下才做出的逐个绝缘故障检测,因此在实际运用中逐个检测传输支路的数量有所减少,能够从整体上降低储能系统绝缘检测的时间。
可选地,控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线之前,方法还可以包括:
获取各传输支路间的电压差;
在各传输支路间的电压差均小于电压阈值时,执行步骤:控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线。
在这些实施例中,通过获取各传输支路间的电压差,并将其与电压阈值进行比较,能够即时发现因压差较大使得传输支路中存在环流的情况。在任意两条传输支路间的电压差大于或等于电压阈值时,可以暂时停止将多条传输支路连接至高压母线,转而对电路进行调整处理,以消除环流,由此保证高压系统的运行安全。
可选地,得到第一检测结果之后,方法还可以包括:
在第一检测结果指示高压母线连接的目标回路未存在绝缘故障时,控制开关模块导通,开关模块与预充电电路并联;
在开关模块导通第一时间后,切断预充电电路。
在这些实施例中,给出了储能系统的储能侧对地绝缘检测的完整实现方案,能够依据不同的第一检测结果控制功率变换系统正常运行或继续进行对地绝缘故障检测,实现了一套完整的安全且高效的对地绝缘故障检测逻辑。
可选地,传输支路上可以包括串联和/或并联的多个储能器件。
另一方面,本申请提供一种绝缘故障检测系统,可以包括:
第一控制模块,用于控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,高压母线上设置有绝缘监控模块;
第二控制模块,用于控制绝缘监控模块对高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,目标回路包括多条传输支路分别与对应预充电电路连接所形成的多条第一回路。
又一方面,本申请提供一种绝缘故障检测装置,该绝缘故障检测装置可以包括处理器,存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如上述方面的绝缘故障检测方法的步骤。
再一方面,本申请还提供一种绝缘故障检测装置,该绝缘故障检测装置被配置为用于执行上述方面的绝缘故障检测方法的步骤。
再一方面,本申请还提供一种储能系统,该储能系统包括上述方面的绝缘故障检测装置。
再一方面,本申请还提供一种可读存储介质,该可读存储介质上可读存储介质上存储程序或指令,程序或指令被处理器执行时实现上述方面的绝缘故障检测方法的步骤。
再一方面,本申请还提供一种计算机程序产品,该计算机程序产品可被处理器执行以实现如上述方面的绝缘故障检测方法的步骤。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例的绝缘故障检测方法所涉及的储能系统的架构示意图。
图2为本申请实施例的绝缘故障检测方法所涉及的储能系统储能侧的一可选电路模块结构示意图。
图3为本申请实施例的绝缘故障检测方法一实施例的流程示意图。
图4为本申请实施例的绝缘故障检测方法另一实施例的流程示意图。
图5为本申请实施例的绝缘故障检测方法所涉及的至少两条传输支路出现对地绝缘失效进而形成回路的示意图。
图6为本申请实施例的绝缘故障检测方法又一实施例的流程示意图。
图7为本申请实施例的绝缘故障检测方法再一实施例的流程示意图。
图8为本申请实施例的绝缘故障检测系统一实施例的可选模块示意图。
图9为本申请实施例的绝缘故障检测装置的可选硬件结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图标记说明:
11、功率转换系统;12、传输支路;13、绝缘监控模块;14、储能器件;15、预充电电路;
K1、主负继电器;K2、主正继电器;K3、预充继电器;R、预充电阻。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域 的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
请参看图1,图1是相关技术中储能系统的可选架构示意图,在该示意图中,储能系统中可以包括功率转换系统11(Power Conversion System,PCS),该功率转换系统11可以包括DC/AC(直流/交流,Direct Current/Alternating Current)双向变流器和控制单元,在一些实施例中,功率转换系统11还可以包括DC-DC(直流-交流,Direct Current-Direct Current)变换器。该控制单元还可以通过接口与储能器件14的控制管理模块电连接。在该功率转换系统11工作前首先要保证其储能侧对地阻抗满足要求。
本申请的发明人在对储能系统的研发和设计的过程中发现,储能系统中仅在高压母线上设置有一个绝缘监控模块13,因此在储能系统的各传输支路12并入高压母线前均无法检测各传输支路12的绝缘状态。
若一次性将所有传输支路12均连接至高压母线,可能会因多个传输支路12绝 缘失效,出现传输支路12上的储能器件14过充或者整个系统短路的风险。因此为了检测各传输支路12的绝缘状态,相关技术中仅能逐个将传输支路12并入高压母线进行绝缘故障检测,这种检测方式在传输支路12较多的情况下耗时较长。
为了解决上述技术问题,避免多个支路绝缘失效所导致的系统短路或储能器件过充的风险,同时尽量减少绝缘故障检测的时间,本申请的发明人设计了一套绝缘故障检测方案,并相应提供了一种绝缘故障检测方法、系统、装置、储能系统、存储介质和计算机程序产品,通过控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,进而控制高压母线上设置的绝缘监控模块对高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,目标回路可以包括多条传输支路分别与对应预充电电路连接所形成的多条第一回路。其中,多个传输支路是经对应预充电电路并入高压母线的,预充电电路可以进行限流保护,能够使得多个传输支路一同连接高压母线,节约了绝缘故障检测的时间,此外也能够避免各传输支路同时连接高压母线,多个传输支路失效所导致的系统短路或储能器件过充的风险,由此提供了一种安全且高效的绝缘故障检测方案。
以下对本申请实施例提供的绝缘故障检测方法、系统、装置、储能系统、存储介质和计算机程序产品进行说明,下面首先对本申请实施例提供的绝缘故障检测方法进行介绍。
请一并参看图1、图2和图3,其中图2示了本申请实施例的绝缘故障检测方法所涉及的储能系统的储能侧的电路模块结构示意图,图3示出了本申请实施例的绝缘故障检测方法一可选实施例的流程示意图。在本实施例中,该绝缘故障检测方法可以包括以下步骤:
S310,控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,高压母线上设置有绝缘监控模块;
S320,控制绝缘监控模块对高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,目标回路可以包括多条传输支路分别与对应预充电电路连接所形成的多条第一回路。
上述绝缘故障检测方法可以应用于绝缘故障检测装置,该绝缘故障检测装置可以是功率转换系统11,也可以是其他控制模块。
上述功率转换系统11所在的高压系统中除包括绝缘监控模块13以外,还可以包括变电柜等装置,上述高压系统还可以通过传输接口连接多条传输支路12,使传输支路12也并入高压系统,上述多条传输支路12可以并联,多条传输支路12可以分别设置在对应的电柜中。每条传输支路12上可以包括串联的多个储能器件14,也可以包括并联的多个储能器件14,还可以包括串并联组合连接的多个储能器件14。示例性地,该储能器件14可以是电池或者大电容,由此实现电能的存储。
在功率转换系统11工作前,可以利用高压母线上设置的绝缘监控模块13实现 绝缘阻抗检测。此时,可以控制多条传输支路12分别经对应的预充电电路15连接至高压母线,从而使得多条传输支路12并入高压系统,进而控制绝缘监控模块13对整个高压系统(可以是高压母线连接的所有回路,即目标回路)进行绝缘故障检测。
而因为在进行绝缘故障检测时,能够直接对第一回路在内的高压母线连接的所有目标回路实现绝缘故障检测,而该第一回路又是多个传输支路12与对应预充电电路15连接形成的,即多个传输支路12分别经预充电电路15并入高压母线,因此预充电电路15可以起到保护作用,能够避免在各传输支路12同时连接高压母线时,多个传输支路12失效所导致的系统短路或储能器件14过充的风险,也无需逐个将传输支路12连接至高压母线进行绝缘故障检测,因此节省了绝缘故障检测的时间,从而提供了一种高效且安全的绝缘故障检测方案。
在一些可选示例中,上述预充电电路15可以包括预充电阻R和预充继电器K3,预充继电器K3可以连接在预充电阻R与高压母线之间。
以上述传输支路12上的储能器件14为电池进行示例说明,传输支路12上还可以包括主正继电器K2和主负继电器K1,其中主正继电器K2设置在高压母线与电池的正极之间,主负继电器K1设置在高压母线与电池负极之间。在需要进行绝缘故障检测时,例如需要将至少一条传输支路12连接至高压母线时,可以控制主负继电器K1和预充继电器K3闭合。
需要说明的是,在将多条传输支路12并入高压母线时,预充继电器K3和预充电阻R可以组成预充电电路15,由此能够实现主正继电器K2靠近高压母线一侧的电压预充,能够防止闭合主正继电器K2的瞬间,主正继电器K2内外压差过大产生瞬间大电流损坏主正继电器K2。而主负继电器K1和预充继电器K3的导通,能够使得主负继电器K1所在传输支路12与预充电电路15和高压母线形成第一回路。后续在绝缘监控模块13进行绝缘故障检测时,能够实现包括所有第一回路在内的目标回路的绝缘故障检测,提高了绝缘故障检测的效率和安全性。
参看图4,基于上述实施例,提出本申请绝缘故障检测方法的另一实施例,在本实施例中,S320中得到第一检测结果之后,方法还可以包括:
S410,在第一检测结果指示高压母线连接的目标回路存在绝缘故障时,分别获取多条传输支路的电流值;
S420,根据多条传输支路的电流值,对多条传输支路进行绝缘故障判定,得到判定结果。
该实施例考虑了第一检测结果指示高压母线连接的目标回路存在绝缘故障时的解决方案,能够根据传输支路的电流值实现部分传输支路的绝缘故障定位。
需要说明的是,请一并参看图2、图4和图5,在多条传输支路中存在至少两条传输支路绝缘失效时,这些绝缘失效的传输支路中储能器件14的正极可以通过高压母线连通,进而形成回路。而形成回路的两条传输支路上的储能器件14个数若相差较 多,则会形成较大的压差,同时由于仅存在线束阻抗、储能器件自身阻抗以及主正继电器阻抗,因此形成的回路阻抗非常小,这时储能器件14个数较多的传输支路将会给储能器件14个数相对少的传输支路进行大倍率充电,由此传输支路绝缘失效所形成的回路上存在一定大小的电流值。可以理解的是,不同绝缘失效的传输支路上的电流可能是充电电流或放电电流。
因此,在本实施例中,可以通过获取多条传输支路的电流值,进而根据电流值的大小进行多条传输支路上多支路绝缘失效故障判定,得到判定结果,由此依据传输支路的电流值实现了绝缘故障定位,能够快速定位故障所在支路。
在一些实施例中,可以通过在传输支路上设置电流传感器,实现传输支路上电流值的检测和获取,例如该电流传感器可以连接在主正继电器和电池正极之间。在另一些实施例中,也可以通过其他方式测量并换算得到传输支路的电流值。
参看图6,基于上述实施例,提出本申请绝缘故障检测方法的又一实施例,在本实施例中,S420,根据多条传输支路的电流值,对多条传输支路进行绝缘故障判定,得到判定结果,可以包括:
S610,在目标传输支路的电流值未处在第一电流范围时,判定结果指示目标传输支路为绝缘故障支路,多条传输支路可以包括目标传输支路。
上述第一电流范围可以是0,也可以是接近于0的其他电流范围,以第一电流范围是0为例,即当传输支路上存在电流值时,该传输支路即为多条传输支路中存在绝缘故障的目标传输支路;反之,当传输支路上不存在电流值即表征该传输支路与其它传输支路未因绝缘失效形成回路,该传输支路不是多支路绝缘失效故障造成的绝缘故障支路。
在本实施中,给出了根据多条传输支路的电流值定位绝缘故障的方法,实现了对地绝缘故障的快速定位。
请继续参看图6,基于上述实施例,提出本申请绝缘故障检测方法的又一实施例,在本实施例中,S420中,得到判定结果之后,方法还可以包括:
S630,在判定结果指示目标传输支路为绝缘故障支路时,切断目标传输支路所在第一回路,多条传输支路可以包括目标传输支路。
在本实施例中,在根据判定结果定位到绝缘故障支路时,可以切断目标传输支路至高压母线的连接,由此可以减少高压系统中绝缘故障的传输支路,使高压母线连接的目标回路的绝缘故障数量降低甚至消失,从而可以开启功率变换系统的正常工作。
请继续参看图6,基于上述实施例,提出本申请绝缘故障检测方法的再一实施例,在本实施例中,S630之后,方法还可以包括:
S640,控制绝缘监控模块对目标回路进行绝缘故障检测,得到第二检测结果。
在基于多条传输支路的电流值定位到多传输支路对地绝缘失效造成的故障,进而切断目标传输支路与高压母线的连接之后,为确保绝缘故障支路均已查找到,还可以控制绝缘监控模块再次对高压母线连接的所有目标回路进行绝缘故障检测,以得到第二检测结果。
需要说明的是,基于传输支路的电流值检测得到的仅是多传输支路对地绝缘产生回路电流的情况,对于单传输支路的绝缘故障,或者多传输支路对地绝缘故障但未进行大倍率充电的情况是无法检测的。因此可以通过绝缘监控模块的再次绝缘故障检测,确定当前目标回路的绝缘故障是否均已清除。
其中,在第二检测结果指示高压系统中无绝缘故障时,表征第一检测结果发现的绝缘故障均已清除,均是由于多传输支路对地绝缘故障引起的。而当第二检测结果指示高压系统还存在绝缘故障,可以继续进行故障的排除和定位。
在这些实施例中,通过绝缘监控模块对高压母线连接的目标回路进行再次绝缘故障检测,能够及时发现前期基于电流值进行绝缘故障定位是否已完全消除绝缘故障,实现了绝缘故障定位结果的检验。
请继续参看图6,基于上述实施例,提出本申请绝缘故障检测方法的再一实施例,在本实施例中,得到第二检测结果之后,方法还可以包括:
S650,在第二检测结果指示高压母线连接的目标回路存在绝缘故障时,切断高压母线连接的所有目标回路;
S660,控制除目标传输支路以外的传输支路逐个与高压母线连接,并控制绝缘监控模块逐个对高压母线连接的传输支路进行绝缘故障检测。
本实施例在前述实施例的基础上,考虑了依据传输支路的电流值无法定位绝缘故障的情况,可以将此时仍然与高压母线连接的剩余目标回路全部切断,进而控制剩余的目标回路中涉及的多条传输支路逐个连接至高压母线,以使绝缘监控模块逐个进行绝缘检测,以继续定位剩下的传输支路中的绝缘故障支路。
可以理解的是,在该实施例中是在排除了多传输支路对地绝缘故障的情况下才做出的逐个绝缘故障检测,因此在实际运用中逐个检测传输支路的数量有所减少,能够从整体上降低储能系统绝缘检测的时间。
请参看图7,基于上述实施例,提出本申请绝缘故障检测方法的再一实施例,在本实施例中,S310可以包括:
S710,获取各传输支路间的电压差;
S720,在各传输支路间的电压差均小于电压阈值时,控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,高压母线上设置有绝缘监控模块。
通过获取各传输支路间的电压差,并将其与电压阈值进行比较,能够即时发现 因压差较大使得传输支路中存在环流的情况。在任意两条传输支路间的电压差大于或等于电压阈值时,可以暂时停止将多条传输支路连接至高压母线,转而对电路进行调整处理,以消除环流,由此保证高压系统的运行安全。
请继续参看图2和7,基于上述实施例,提出本申请绝缘故障检测方法的再一实施例,在本实施例中,S320之后,方法还可以包括:
S730,在第一检测结果指示高压母线连接的目标回路未存在绝缘故障时,控制开关模块导通,开关模块与预充电电路并联;
S740,在开关模块导通第一时间后,切断预充电电路。
本申请实施例在前述实施例的基础上,考虑了高压母线直接连接的所有目标回路均未存在绝缘故障的情况,此时功率转换系统在工作前储能系统储能侧对地阻抗满足要求,可以将高压母线与传输支路之间的,与预充电电路并联的开关模块闭合,例如该开关模块可以是图2中的主正继电器,在开关模块导通一段时间后,此时表征储能系统储能侧的主回路正常运行,此时可以切断预充电电路。
需要说明的是,上述目标回路例如可以包括多条传输支路分别与预充电电路形成的第一回路,还可以包括高压母线连接的变电柜等所在回路。
在这些实施例中,给出了储能系统的储能侧对地绝缘检测的完整实现方案,能够依据不同的第一检测结果控制功率变换系统正常运行或继续进行对地绝缘故障检测,实现了一套完整的安全且高效的对地绝缘故障检测逻辑。
上述图1至图7详细描述了本申请绝缘故障检测方法的实施例,后续对本申请的绝缘故障检测系统和装置进行说明。
参看图8,在本申请绝缘故障检测系统的一实施例中,该系统包括:
第一控制模块810,用于控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,高压母线上设置有绝缘监控模块;
第二控制模块820,用于控制绝缘监控模块对高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,目标回路包括多条传输支路分别与对应预充电电路连接所形成的多条第一回路。
在一些实施例中,上述系统还可以包括:
获取模块,用于在第一检测结果指示高压母线连接的目标回路存在绝缘故障时,分别获取多条传输支路的电流值;
判定模块,用于根据多条传输支路的电流值,对多条传输支路进行绝缘故障判定,得到判定结果。
在另一些实施例中,判定模块,用于在目标传输支路的电流值未处在第一电流范围时,判定结果指示目标传输支路为绝缘故障支路,多条传输支路包括目标传输支 路。
在又一些实施例中,系统还可以包括:
切断模块,用于在判定结果指示目标传输支路为绝缘故障支路时,切断目标传输支路所在第一回路,多条传输支路包括目标传输支路。
在又一些实施例中,系统还可以包括:
第三控制模块,用于控制绝缘监控模块对目标回路进行绝缘故障检测,得到第二检测结果。
在又一些实施例中,上述切断模块还可以用于在第二检测结果指示高压母线连接的目标回路存在绝缘故障时,切断高压母线连接的所有目标回路;
第三控制模块,还可以用于控制除目标传输支路以外的传输支路逐个与高压母线连接,并控制绝缘监控模块逐个对高压母线连接的传输支路进行绝缘故障检测。
在又一些实施例中,第一控制模块810,还可以用于获取各传输支路间的电压差;在各传输支路间的电压差均小于电压阈值时,控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线。
在又一些实施例中,上述切断模块,还可以用于在第一检测结果指示高压母线连接的目标回路未存在绝缘故障时,控制开关模块导通,开关模块与预充电电路并联;在开关模块导通第一时间后,切断预充电电路。
在又一些实施例中,传输支路上包括串联和/或并联的多个储能器件。
图9示出了本申请实施例提供的绝缘故障检测装置的硬件结构示意图。该绝缘故障检测装置可以包括处理器901以及存储有计算机程序指令的存储器902。
具体地,上述处理器901可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器902可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器902可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器902可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器902可在设备的内部或外部。在特定实施例中,存储器902是非易失性固态存储器。
在特定实施例中,存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个有形(非暂态)计算机可读存储介质(例如,存储器设备),该计算机可读存储介质编码有包括计算机可执 行指令的软件,并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器901通过读取并执行存储器902中存储的计算机程序指令,以实现上述实施例中的任意一种绝缘故障检测方法。
在一个示例中,绝缘故障检测装置还可包括通信接口903和总线909。其中,如图9所示,处理器901、存储器902、通信接口903通过总线909连接并完成相互间的通信。
通信接口903,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线909包括硬件、软件或两者,将设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线909可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该绝缘故障检测装置可以执行本申请实施例中的绝缘故障检测方法,从而实现结合上述实施例描述的绝缘故障检测方法。
另外,结合上述实施例中的绝缘故障检测方法,本申请实施例可提供一种计算机存储介质或者可读存储介质来实现。该计算机存储介质或者可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种绝缘故障检测方法。
另外,本申请实施例还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时可实现前述方法实施例的步骤及相应内容。
另外,本申请实施例还提供了一种储能系统,该储能系统包括上述实施例的绝缘故障检测装置或控制系统,或者该储能系统也可以执行上述绝缘故障检测方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种绝缘故障检测方法,所述方法包括:
    控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,所述高压母线上设置有绝缘监控模块;
    控制所述绝缘监控模块对所述高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,所述目标回路包括多条所述传输支路分别与对应所述预充电电路连接所形成的多条第一回路。
  2. 根据权利要求1所述的方法,其中,所述得到第一检测结果之后,所述方法还包括:
    在所述第一检测结果指示所述高压母线连接的所述目标回路存在绝缘故障时,分别获取多条所述传输支路的电流值;
    根据多条所述传输支路的所述电流值,对多条所述传输支路进行绝缘故障判定,得到判定结果。
  3. 根据权利要求2所述的方法,其中,所述根据多条所述传输支路的所述电流值,对多条所述传输支路进行绝缘故障判定,得到判定结果,包括:
    在目标传输支路的电流值未处在第一电流范围时,所述判定结果指示所述目标传输支路为绝缘故障支路,多条所述传输支路包括所述目标传输支路。
  4. 根据权利要求2所述的方法,其中,所述得到判定结果之后,所述方法还包括:
    在所述判定结果指示目标传输支路为绝缘故障支路时,切断所述目标传输支路所在第一回路,多条所述传输支路包括所述目标传输支路。
  5. 根据权利要求4所述的方法,其中,所述切断所述目标传输支路 所在第一回路之后,所述方法还包括:
    控制所述绝缘监控模块对所述目标回路进行绝缘故障检测,得到第二检测结果。
  6. 根据权利要求5所述的方法,其中,所述得到第二检测结果之后,所述方法还包括:
    在所述第二检测结果指示所述高压母线连接的所述目标回路存在绝缘故障时,切断所述高压母线连接的所有所述目标回路;
    控制除所述目标传输支路以外的所述传输支路逐个与所述高压母线连接,并控制所述绝缘监控模块逐个对所述高压母线连接的所述传输支路进行绝缘故障检测。
  7. 根据权利要求1所述的方法,其中,所述控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线之前,所述方法还包括:
    获取各所述传输支路间的电压差;
    在各所述传输支路间的电压差均小于电压阈值时,执行步骤:控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线。
  8. 根据权利要求1所述的方法,其中,所述得到第一检测结果之后,所述方法还包括:
    在所述第一检测结果指示所述高压母线连接的所述目标回路未存在绝缘故障时,控制开关模块导通,所述开关模块与所述预充电电路并联;
    在所述开关模块导通第一时间后,切断所述预充电电路。
  9. 根据权利要求1所述的方法,其中,所述传输支路上包括串联和/或并联的多个储能器件。
  10. 一种绝缘故障检测系统,所述系统包括:
    第一控制模块,用于控制储能系统的储能侧的多条传输支路分别经对应的预充电电路连接至高压母线,所述高压母线上设置有绝缘监控模块;
    第二控制模块,用于控制所述绝缘监控模块对所述高压母线连接的目标回路进行绝缘故障检测,得到第一检测结果,所述目标回路包括多条所述传输支路分别与对应所述预充电电路连接所形成的多条第一回路。
  11. 一种绝缘故障检测装置,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1~9任一项所述的绝缘故障检测方法的步骤。
  12. 一种绝缘故障检测装置,被配置为用于执行权利要求1~9任一项所述的绝缘故障检测方法的步骤。
  13. 一种储能系统,所述储能系统包括权利要求11或12所述的绝缘故障检测装置。
  14. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1~9任一项所述的绝缘故障检测方法的步骤。
  15. 一种计算机程序产品,所述计算机程序产品可被处理器执行以实现如权利要求1~9中任一项所述的绝缘故障检测方法的步骤。
PCT/CN2022/118472 2022-09-13 2022-09-13 绝缘故障检测方法及相关装置 WO2024055158A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118472 WO2024055158A1 (zh) 2022-09-13 2022-09-13 绝缘故障检测方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118472 WO2024055158A1 (zh) 2022-09-13 2022-09-13 绝缘故障检测方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024055158A1 true WO2024055158A1 (zh) 2024-03-21

Family

ID=90274054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118472 WO2024055158A1 (zh) 2022-09-13 2022-09-13 绝缘故障检测方法及相关装置

Country Status (1)

Country Link
WO (1) WO2024055158A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124814A (ja) * 1999-10-28 2001-05-11 Matsushita Electric Works Ltd インバータ装置における絶縁劣化検出装置及びそれを用いた太陽光発電システム並びに電気自動車
CN103802763A (zh) * 2014-02-20 2014-05-21 中国北方车辆研究所 一种装甲车辆直流高压大电流组合配电保护装置
CN205283491U (zh) * 2015-12-25 2016-06-01 比亚迪股份有限公司 多模块逆变器直流侧绝缘监测装置及包含其的光伏系统
CN205609645U (zh) * 2016-03-26 2016-09-28 深圳市沃特玛电池有限公司 一种电池储能系统
CN106569137A (zh) * 2016-10-20 2017-04-19 深圳市沃特玛电池有限公司 绝缘检测系统以及绝缘检测方法
CN113644646A (zh) * 2021-07-27 2021-11-12 合肥同智机电控制技术有限公司 一种多个任务负载与母线之间的电压均衡控制方法
CN214958763U (zh) * 2021-04-01 2021-11-30 深圳市沈括科技创新有限公司 一种应用于高压直流设备的多簇并联储能系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124814A (ja) * 1999-10-28 2001-05-11 Matsushita Electric Works Ltd インバータ装置における絶縁劣化検出装置及びそれを用いた太陽光発電システム並びに電気自動車
CN103802763A (zh) * 2014-02-20 2014-05-21 中国北方车辆研究所 一种装甲车辆直流高压大电流组合配电保护装置
CN205283491U (zh) * 2015-12-25 2016-06-01 比亚迪股份有限公司 多模块逆变器直流侧绝缘监测装置及包含其的光伏系统
CN205609645U (zh) * 2016-03-26 2016-09-28 深圳市沃特玛电池有限公司 一种电池储能系统
CN106569137A (zh) * 2016-10-20 2017-04-19 深圳市沃特玛电池有限公司 绝缘检测系统以及绝缘检测方法
CN214958763U (zh) * 2021-04-01 2021-11-30 深圳市沈括科技创新有限公司 一种应用于高压直流设备的多簇并联储能系统
CN113644646A (zh) * 2021-07-27 2021-11-12 合肥同智机电控制技术有限公司 一种多个任务负载与母线之间的电压均衡控制方法

Similar Documents

Publication Publication Date Title
AU2018261510B2 (en) Nested microgrid control system
WO2021088537A1 (zh) 一种电池组并联充放电控制方法和系统
CN103311991B (zh) 一种电池管理系统及其均衡状态在线监控方法
TWI497272B (zh) Usb集線器和usb集線器的電力供應方法
EP3151360B1 (en) Battery system
CN107918046B (zh) 电流检测装置和电池管理系统
EP3876333A1 (en) Battery energy storage bms system enabling dual path-based information sampling and detection and protection control
WO2019101084A1 (zh) 一种多电源供电回路检测方法、系统及装置
CN109358548A (zh) 一种汽车诊断装置、汽车诊断及汽车诊断器的充电方法
CN105790379A (zh) 电动汽车逐电芯监测多回路分级控制电池管理系统
CN206892292U (zh) 一种蓄电池组主熔断器熔断及开路检测装置
CN104655973B (zh) 一种ups系统中检测电池模块短路的方法和装置
JP6321996B2 (ja) 給電システム、給電制御装置、給電システムにおける給電制御方法及びプログラム
WO2024055158A1 (zh) 绝缘故障检测方法及相关装置
CN110912161A (zh) 一种牵引变电所电源进线缺相故障判别方法
TW201308823A (zh) 電池電源管理系統與方法
CN104079066B (zh) 一种判断远端变电站二次直流电源消失的方法
WO2015163693A1 (ko) Dc-dc 전압 컨버터의 작동을 비활성화하기 위한 전압 공급 시스템 및 방법
CN108110831A (zh) 一种用于共享充电宝的充电线故障检测方法
WO2023169091A1 (zh) 电池系统、电池系统的控制方法、设备及存储介质
CN116224160A (zh) 电芯断线检测电路、afe芯片及电池管理系统
CN106340954A (zh) 一种电源线路断线识别并切换到备用电源的方法
CN207683352U (zh) 一种高压互锁系统
CN207039285U (zh) 外部电源接入低压供电系统装置
WO2018103334A1 (zh) 故障检测方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958352

Country of ref document: EP

Kind code of ref document: A1