WO2024053925A1 - Method and device for predicting amyloid pet positivity in patients suspected of amyloid angiopathy - Google Patents

Method and device for predicting amyloid pet positivity in patients suspected of amyloid angiopathy Download PDF

Info

Publication number
WO2024053925A1
WO2024053925A1 PCT/KR2023/012891 KR2023012891W WO2024053925A1 WO 2024053925 A1 WO2024053925 A1 WO 2024053925A1 KR 2023012891 W KR2023012891 W KR 2023012891W WO 2024053925 A1 WO2024053925 A1 WO 2024053925A1
Authority
WO
WIPO (PCT)
Prior art keywords
amyloid
amyloid pet
machine learning
positivity
patient
Prior art date
Application number
PCT/KR2023/012891
Other languages
French (fr)
Korean (ko)
Inventor
정영희
Original Assignee
의료법인 명지의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 의료법인 명지의료재단 filed Critical 의료법인 명지의료재단
Publication of WO2024053925A1 publication Critical patent/WO2024053925A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a method and device for predicting amyloid PET positivity, and more specifically, to a method and device for predicting amyloid PET positivity for patients suspected of amyloid angiopathy.
  • brain imaging techniques for diagnosing and predicting brain diseases include computed tomography (CT), magnetic resonance imaging (MRI), and positron tomography imaging. emission tomography (PET), etc. have been developed.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • PET emission tomography
  • amyloid PET test which can check the accumulation of amyloid beta ( ⁇ ) is known to be effective in diagnosing degenerative brain diseases such as Alzheimer's disease and dementia.
  • Alzheimer's disease is a representative degenerative brain disease that accounts for about 70% of dementia, and its core pathology is the accumulation of beta-amyloid protein in the cerebrum. For an accurate diagnosis of Alzheimer's disease, it is very important to identify cerebral beta-amyloid accumulation. However, for a long time, cerebral beta-amyloid accumulation lesions could only be confirmed through brain autopsy after the patient died, and it was difficult to confirm in a living state, making it difficult to confirm Alzheimer's disease. However, in 2004, William E. Klunk, a geriatric psychiatrist at the University of Pittsburgh, and Chester A. Mathis, a radiochemist, developed a substance called Pittsburgh Compound B (PiB), a positron emission tomography (PET) ligand. .
  • PiB Pittsburgh Compound B
  • PET positron emission tomography
  • PiB PET imaging using this technology made it possible to accurately determine the presence and amount of beta-amyloid accumulation in the brain of a living person, marking a technological turning point in Alzheimer's disease treatment and research. Afterwards, in addition to PiB, additional ligands that can identify beta amyloid, such as florbetaben, were developed and reported to have similar accuracy. In fact, amyloid PET has been approved for clinical use by the U.S. FDA and Korea's KFDA to check for beta-amyloid accumulation in patients with cognitive impairment.
  • the amyloid PET test is performed by injecting a special contrast agent that reacts only to amyloid into the body to determine whether an abnormal form of amyloid, which is produced due to abnormalities in the protein metabolism process, is deposited within the brain. Then, a PET scan is taken to determine whether the deposit is present. It determines whether it is positive or negative.
  • Amyloid beta accumulation is known to affect cognitive function, but early detection is difficult because these differences appear subtly in preclinical Alzheimer's disease. Meanwhile, it is difficult to perform many amyloid PET tests due to concerns about high cost and radioactive tracer problems. In other words, the amyloid PET (PET) test cost is high, there is a problem with radiation exposure, and in particular, there are many cases where the amyloid PET is rejected during clinical trials because it is negative. Therefore, there is a need for a way for clinicians to identify Alzheimer's disease at an early stage in preclinical stages.
  • the present invention was developed to solve the above problems, and its purpose is to provide a positive amyloid PET prediction model for patients suspected of amyloid angiopathies using machine learning.
  • the present invention to achieve this purpose relates to a method for predicting amyloid PET positivity for a patient suspected of amyloid angiopathy in an amyloid PET positivity prediction device, wherein the amyloid PET positivity prediction device receives brain imaging data for the patient.
  • the brain imaging data may be brain MRI (magnetic resonance imaging) data.
  • the machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
  • GBM gradient boosting machine
  • RF random forest
  • machine learning can be performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. .
  • a receiver for receiving brain image data for the patient, performing machine learning on the brain image data received from the receiver, and performing the machine learning. It includes a prediction unit for predicting the amyloid PET positivity rate for the patient and a display unit for displaying the amyloid PET positivity rate predicted by the prediction unit.
  • the brain imaging data may be brain MRI (magnetic resonance imaging) data.
  • the machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
  • GBM gradient boosting machine
  • RF random forest
  • the prediction unit performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. can do.
  • the cost of amyloid PET testing can be reduced and radiation exposure problems can be prevented.
  • the dropout rate due to negative amyloid PET during clinical testing can be reduced.
  • Figure 1 is a block diagram showing the internal configuration of an amyloid pet positive prediction device according to an embodiment of the present invention.
  • Figure 2 is a flowchart showing a method for predicting amyloid PET positivity in the amyloid PET positivity prediction device according to an embodiment of the present invention.
  • Figure 3 is a flowchart showing the amyloid PET positive prediction process according to an embodiment of the present invention.
  • Figure 4 is a chart summarizing the clinical characteristics of patients who participated in the experiment of the present invention.
  • Figure 5 is a graph showing the importance of variables in the GBM model and RF model in the experiment of the present invention.
  • Figure 6 is a graph showing optimal threshold values detected at multiple change points in the GBM model and RF model in the experiment of the present invention.
  • Figure 7 is a table showing cut-off values in the GBM model and RF model in the experiment of the present invention.
  • Figure 8 is a graph showing cutoff values of important variables in the GBM model and RF model in the experiment of the present invention.
  • Figure 9 is a chart summarizing the performance of the GBM model and the RF model in the experiment of the present invention.
  • Figure 1 is a block diagram showing the internal configuration of an amyloid pet positive prediction device according to an embodiment of the present invention.
  • the apparatus 100 for predicting positive amyloid PET for a patient suspected of amyloid angiopathy includes a receiving unit 110, a prediction unit 120, and a display unit 130.
  • the receiving unit 110 serves to receive brain image data 10 about the patient.
  • the brain imaging data 10 may be brain MRI (magnetic resonance imaging) data.
  • the prediction unit 120 performs machine learning on the brain image data received from the receiver 110 and predicts the amyloid PET positivity rate for the patient through machine learning.
  • the display unit 130 serves to display the amyloid PET positivity rate predicted by the prediction unit 120.
  • machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
  • GBM gradient boosting machine
  • RF random forest
  • the prediction unit 120 performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. can be performed.
  • Figure 2 is a flowchart showing a method for predicting amyloid PET positivity in the amyloid PET positivity prediction device according to an embodiment of the present invention.
  • the method for predicting amyloid PET positivity includes receiving brain imaging data 10 for a patient from the amyloid PET positivity prediction device 100 (S201), and receiving brain image data 10 for the patient from the amyloid PET positivity prediction device 100. It includes performing machine learning on brain image data (S203) and predicting the amyloid PET positivity rate for the patient through machine learning in the amyloid PET positivity prediction device 100 (S205).
  • brain imaging data may be brain MRI (magnetic resonance imaging) data.
  • machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
  • GBM gradient boosting machine
  • RF random forest
  • machine learning is performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. You can.
  • Figure 3 is a flowchart showing the amyloid PET positive prediction process according to an embodiment of the present invention.
  • the prediction unit 120 analyzes the brain image data and determines that the number of lobar microbleeds is 14 or more (S303) and the number of lacunar cerebral infarcts is 7. If the number is less than 100% (S305), the patient is over 64 years old (S307), and there is no microhemorrhage in the dentate nucleus (S309), it is judged to be amyloid PET positive (S311).
  • the present invention relates to a method and device for predicting amyloid PET positivity for patients suspected of amyloid angiopathy.
  • Figure 1 is a block diagram showing the internal configuration of an amyloid pet positive prediction device according to an embodiment of the present invention.
  • the apparatus 100 for predicting positive amyloid PET for a patient suspected of amyloid angiopathy includes a receiving unit 110, a prediction unit 120, and a display unit 130.
  • the receiving unit 110 serves to receive brain image data 10 about the patient.
  • the brain imaging data 10 may be brain MRI (magnetic resonance imaging) data.
  • the prediction unit 120 performs machine learning on the brain image data received from the receiver 110 and predicts the amyloid PET positivity rate for the patient through machine learning.
  • the display unit 130 serves to display the amyloid PET positivity rate predicted by the prediction unit 120.
  • machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
  • GBM gradient boosting machine
  • RF random forest
  • the prediction unit 120 performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. can be performed.
  • Figure 2 is a flowchart showing a method for predicting amyloid PET positivity in the amyloid PET positivity prediction device according to an embodiment of the present invention.
  • the method for predicting amyloid PET positivity includes receiving brain imaging data 10 for a patient from the amyloid PET positivity prediction device 100 (S201), and receiving brain image data 10 for the patient from the amyloid PET positivity prediction device 100. It includes performing machine learning on brain image data (S203) and predicting the amyloid PET positivity rate for the patient through machine learning in the amyloid PET positivity prediction device 100 (S205).
  • brain imaging data may be brain MRI (magnetic resonance imaging) data.
  • machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
  • GBM gradient boosting machine
  • RF random forest
  • machine learning is performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. You can.
  • Figure 3 is a flowchart showing the amyloid PET positive prediction process according to an embodiment of the present invention.
  • the prediction unit 120 analyzes the brain image data and determines that the number of lobar microbleeds is 14 or more (S303) and the number of lacunar cerebral infarcts is 7. If the number is less than 100% (S305), the patient is over 64 years old (S307), and there is no microhemorrhage in the dentate nucleus (S309), it is judged to be amyloid PET positive (S311).
  • GBM Gram Boosting Machine
  • GBM GBM
  • GBM GBM
  • GBM GBM
  • GBM GBM
  • GBM GBM
  • GBM GBM
  • GBM GBM
  • RF Random Forest
  • Cerebral amyloid angiopathy is a cerebral small vessel disease (CSVD) characterized by amyloid ⁇ (A ⁇ ) deposition in pial and cortical blood vessels1,2.
  • a ⁇ proton emission tomography (PET) in patients with CAA has been widely investigated.
  • a ⁇ -positive (+) PET scans in patients with CAA MRI markers may have clinical utility in two aspects.
  • a ⁇ positivity in CAA patients allows clinicians to predict the prognosis of cognitive trajectory.
  • a ⁇ + patients with probable CAA have a worse cognitive trajectory than their A ⁇ negative (-) counterparts.
  • a ⁇ PET positivity may provide insight into the underlying vascular pathology in patients with suspected CAA MRI markers. there is. Therefore, predicting A ⁇ positivity in patients with CAA MRI markers would be clinically useful because it may help predict prognosis.
  • GBM Gram Boosting Machine
  • RF Random Forest
  • Figure 4 is a chart summarizing the clinical characteristics of patients who participated in the experiment of the present invention.
  • numbers are expressed as mean ⁇ standard deviation or n (%), where ApoE represents apolipoprotein E, cSS represents cortical superficial siderosis, and ICH represents intracerebral hemorrhage.
  • n n
  • ApoE apolipoprotein E
  • cSS cortical superficial siderosis
  • ICH intracerebral hemorrhage.
  • 71 participants were recruited in the experiment of the present invention, of which 25 participants were A ⁇ negative (-) and the remaining 46 participants were A ⁇ positive (+).
  • Figure 5 is a graph showing the importance of variables in the GBM model and RF model in the experiment of the present invention.
  • HTN represents hypertension.
  • the relative importance was calculated using the GBM and RF algorithms among 17 clinical and imaging variables, and the most important variables that were similar in the two algorithms were selected.
  • the five important variables ranked and their relative importance in the GBM model are lobar CMB number (18.6), deep CMB number (8.8), lacunes number (5.7), age (4.6), and number (4.6).
  • the RF model has six important variables: lobar CMB number (60.4), deep CMB number (23.7), lacune number (23.3), age (15.4), absence of diabetes (8.4), and dentate nucleus CMB number (6.8). selected.
  • Figure 6 is a graph showing optimal threshold values detected at multiple change points in the GBM model and RF model in the experiment of the present invention.
  • ACC accuracy
  • MCC misclassification
  • Class ACC is class per accuracy
  • F1 is the harmonic mean of positive and negative prediction values with equal weights
  • F0.5 gives more weight to PPV than NPV. Represents the average of semi-positive and negative predicted values.
  • the threshold in GBM was determined to be 0.7043 when each of the four metrics (F0.5, ACC, MCC, class ACC) is at its maximum, and in RF it is 3.
  • the threshold was determined to be 0.6561 when each of the metrics (F1, accuracy, and misclassification) was at its maximum value.
  • Figure 7 is a chart showing cut-off values in the GBM model and RF model in the experiment of the present invention
  • Figure 8 shows the cut-off values of important variables in the GBM model and RF model in the experiment of the present invention. It's a graph.
  • the cutoff values of variables for predicting A ⁇ positivity are as follows. In GBM and RF, (1) lobar microbleeds (CMBs) greater than 14, (2) no deep CMBs, (3) number of lacunar cerebral infarcts less than or equal to 7, (4) age greater than 64, (5) This is a case where there is no microbleed (CMB) in the dentate nucleus.
  • Figure 9 is a chart summarizing the performance of the GBM model and the RF model in the experiment of the present invention.
  • MSE mean square error
  • RMSE root mean square error
  • log loss average error per class
  • Gini impurity the better the prediction ability, and the lower the SD, the higher the reliability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Neurology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Psychology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)

Abstract

The present invention relates to a method for predicting amyloid PET positivity in patients suspected of amyloid angiopathy, using an amyloid PET positivity prediction device, the method comprising the steps of: receiving brain imaging data for the patient in the amyloid PET positivity prediction device; performing machine learning on the brain imaging data received in the amyloid PET positivity prediction device; and predicting the amyloid PET positivity rate for the patient through machine learning in the amyloid PET positivity prediction device. According to the present invention, amyloid PET positivity is predicted using brain imaging for patients suspected of amyloid angiopathy, whereby it is possible to reduce the costs of amyloid PET scanning and prevent issues related to radiation exposure.

Description

아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 방법 및 장치Method and device for predicting amyloid PET positivity for patients suspected of amyloid angiopathy
본 발명은 아밀로이드 펫(amyloid PET) 양성(positivity) 예측 방법 및 장치에 관한 것으로서, 더욱 상세하게는 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 방법 및 장치에 관한 것이다. The present invention relates to a method and device for predicting amyloid PET positivity, and more specifically, to a method and device for predicting amyloid PET positivity for patients suspected of amyloid angiopathy.
최근 과학 기술 및 영상 촬영 기법의 발전으로 뇌질환을 진단 및 예측하기 위한 뇌촬영 기술로서 컴퓨터 단층 촬영(computed tomography, CT), 자기공명 영상 촬영(magnetic resonance imaging, MRI), 양전자 단층 영상 촬영(positron emission tomography, PET) 등이 개발되었다. 이 중 알츠하이머 병, 치매 같은 퇴행성 뇌질환을 진단하는데에는 아밀로이드(amyloid) 베타(β) 축적 여부를 확인할 수 있는 아밀로이드 PET 검사가 효과적인 것으로 알려져 있다. With recent advances in scientific technology and imaging techniques, brain imaging techniques for diagnosing and predicting brain diseases include computed tomography (CT), magnetic resonance imaging (MRI), and positron tomography imaging. emission tomography (PET), etc. have been developed. Among these, the amyloid PET test, which can check the accumulation of amyloid beta (β), is known to be effective in diagnosing degenerative brain diseases such as Alzheimer's disease and dementia.
알츠하이머병은 치매의 약 70%를 차지하는 대표적인 퇴행성 뇌질환으로, 이의 핵심 병리는 대뇌의 베타 아밀로이드 단백질 축적이다. 알츠하이머병의 정확한 진단을 위해서는 대뇌 베타 아밀로이드 축적을 확인하는 하는 것이 매우 중요하다. 그러나 오랫동안 대뇌 베타 아밀로이드 축적 병변은 환자 사망 이후 뇌 부검을 통해서만 확인할 수 있었고, 살아 있는 상태에서는 확인이 어려워 알츠하이머병 확진에 어려움이 있었다. 그러나 2004년 피츠버그대학 노인정신의학자인 William E. Klunk와 방사화학자인 Chester A. Mathis가 양전자 방출 단층촬영(positron emission tomography, PET) 리간드인 피츠버그 화합물 B(Pittsburgh Compound B, PiB)라는 물질을 개발하였다. 이를 이용한 PiB PET 영상을 통해 살아 있는 사람의 뇌에서 베타 아밀로이드 축적의 여부 및 양을 정확히 확인할 수 있게 되어, 알츠하이머병 진료와 연구에 있어 획기적인 전환점이 되었다. 이후 PiB 이외에도 플로베타벤(florbetaben) 등 몇 가지 베타 아밀로이드를 확인할 수 있는 리간드가 추가 개발되었으며 비슷한 정확도를 가진다는 것이 보고되었다. 실제 아밀로이드 PET은 미국 FDA와 우리나라 KFDA에서도 인지장애 환자에서 베타 아밀로이드 축적 여부 확인을 위한 임상 사용 허가를 받았다.Alzheimer's disease is a representative degenerative brain disease that accounts for about 70% of dementia, and its core pathology is the accumulation of beta-amyloid protein in the cerebrum. For an accurate diagnosis of Alzheimer's disease, it is very important to identify cerebral beta-amyloid accumulation. However, for a long time, cerebral beta-amyloid accumulation lesions could only be confirmed through brain autopsy after the patient died, and it was difficult to confirm in a living state, making it difficult to confirm Alzheimer's disease. However, in 2004, William E. Klunk, a geriatric psychiatrist at the University of Pittsburgh, and Chester A. Mathis, a radiochemist, developed a substance called Pittsburgh Compound B (PiB), a positron emission tomography (PET) ligand. . PiB PET imaging using this technology made it possible to accurately determine the presence and amount of beta-amyloid accumulation in the brain of a living person, marking a groundbreaking turning point in Alzheimer's disease treatment and research. Afterwards, in addition to PiB, additional ligands that can identify beta amyloid, such as florbetaben, were developed and reported to have similar accuracy. In fact, amyloid PET has been approved for clinical use by the U.S. FDA and Korea's KFDA to check for beta-amyloid accumulation in patients with cognitive impairment.
아밀로이드 PET 검사는 단백질의 대사과정에 이상이 발생하여 생성되는 비정상적인 형태의 아밀로이드가 뇌내에 침착되어 있는지 여부를 확인하기 위해 아밀로이드에만 반응하는 특수조영제를 체내로 주사한 이후 PET 촬영을 하여 침착 여부에 따라 양성 또는 음성 여부를 판단하는 것이다.The amyloid PET test is performed by injecting a special contrast agent that reacts only to amyloid into the body to determine whether an abnormal form of amyloid, which is produced due to abnormalities in the protein metabolism process, is deposited within the brain. Then, a PET scan is taken to determine whether the deposit is present. It determines whether it is positive or negative.
아밀로이드 베타 축적은 인지기능에 영향을 끼친다고 알려져 있으나, 전 임상 단계의 알츠하이머병에서는 이런 차이가 미묘하게 나타나기 때문에 조기발견에 어려움을 겪고 있다. 한편, 아밀로이드 PET 검사는 고비용 문제와 방사선 물질 트레이서(tracer) 문제로 인한 염려 때문에 많은 검사가 이루어지기 힘든 상황이다. 즉, 아밀로이드 펫(PET)은 검사 비용이 고가이고, 방사능 노출(radiation exposure) 문제가 있으며, 특히 임상 시험시 아밀로이드 펫이 음성이어서 탈락하는 경우가 적지 않다. 따라서, 임상의들이 전 임상 단계의 알츠하이머병을 조기에 확인할 수 있는 방안이 필요한 실정이다.Amyloid beta accumulation is known to affect cognitive function, but early detection is difficult because these differences appear subtly in preclinical Alzheimer's disease. Meanwhile, it is difficult to perform many amyloid PET tests due to concerns about high cost and radioactive tracer problems. In other words, the amyloid PET (PET) test cost is high, there is a problem with radiation exposure, and in particular, there are many cases where the amyloid PET is rejected during clinical trials because it is negative. Therefore, there is a need for a way for clinicians to identify Alzheimer's disease at an early stage in preclinical stages.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 머신 러닝을 이용하여 아밀로이드 혈관병종 의심 환자에 대한 아밀로이드 펫 양성 예측 모델을 제공하는데 그 목적이 있다.The present invention was developed to solve the above problems, and its purpose is to provide a positive amyloid PET prediction model for patients suspected of amyloid angiopathies using machine learning.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the object mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the description below.
이와 같은 목적을 달성하기 위한 본 발명은 아밀로이드 펫 양성 예측 장치에서의 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 방법에 관한 것으로서, 상기 아밀로이드 펫 양성 예측 장치에서 상기 환자에 대한 뇌 영상 데이터를 수신하는 단계, 상기 아밀로이드 펫 양성 예측 장치에서 수신한 뇌 영상 데이터에 대한 머신 러닝을 수행하는 단계 및 상기 아밀로이드 펫 양성 예측 장치에서 상기 머신 러닝을 통해 상기 환자에 대한 아밀로이드 펫 양성률을 예측하는 단계를 포함한다. The present invention to achieve this purpose relates to a method for predicting amyloid PET positivity for a patient suspected of amyloid angiopathy in an amyloid PET positivity prediction device, wherein the amyloid PET positivity prediction device receives brain imaging data for the patient. A step of performing machine learning on brain image data received from the amyloid PET positivity prediction device, and predicting an amyloid PET positivity rate for the patient through the machine learning in the amyloid PET positivity prediction device.
상기 뇌 영상 데이터는 뇌 MRI(magnetic resonance imaging) 데이터일 수 있다. The brain imaging data may be brain MRI (magnetic resonance imaging) data.
상기 머신 러닝은 GBM(gradient boosting machine) 알고리즘 또는 RF(random forest) 알고리즘일 수 있다. The machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
상기 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행할 수 있다. In order to predict the amyloid PET positivity rate, machine learning can be performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. .
본 발명의 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 장치에서, 상기 환자에 대한 뇌 영상 데이터를 수신하기 위한 수신부, 상기 수신부에서 수신한 뇌 영상 데이터에 대한 머신 러닝을 수행하고, 상기 머신 러닝을 통해 상기 환자에 대한 아밀로이드 펫 양성률을 예측하는 예측부 및 상기 예측부에서 예측한 아밀로이드 펫 양성률을 표시하기 위한 표시부를 포함한다. In the amyloid PET positive prediction device for a patient suspected of amyloid angiopathy of the present invention, a receiver for receiving brain image data for the patient, performing machine learning on the brain image data received from the receiver, and performing the machine learning. It includes a prediction unit for predicting the amyloid PET positivity rate for the patient and a display unit for displaying the amyloid PET positivity rate predicted by the prediction unit.
상기 뇌 영상 데이터는 뇌 MRI(magnetic resonance imaging) 데이터일 수 있다. The brain imaging data may be brain MRI (magnetic resonance imaging) data.
상기 머신 러닝은 GBM(gradient boosting machine) 알고리즘 또는 RF(random forest) 알고리즘일 수 있다.The machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
상기 예측부는 상기 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행할 수 있다. In order to predict the amyloid PET positivity rate, the prediction unit performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. can do.
본 발명에 의하면, 아밀로이드 혈관병종 의심 환자에 대해 뇌 영상을 이용하여 아밀로이드 펫 양성을 예측함으로써, 아밀로이드 펫 검사 비용을 절감할 수 있고, 방사능 노출 문제를 방지할 수 있는 효과가 있다. 또한, 본 발명에 의하면, 임상 시험시 아밀로이드 펫 음성으로 인한 탈락률을 감소시킬 수 있다. According to the present invention, by predicting amyloid PET positivity using brain imaging for patients suspected of amyloid angiopathies, the cost of amyloid PET testing can be reduced and radiation exposure problems can be prevented. In addition, according to the present invention, the dropout rate due to negative amyloid PET during clinical testing can be reduced.
또한, 본 발명에 의하면 아밀로이드 펫 양성을 예측함으로써, 환자의 인지 기능이나 예후를 예측하는데 도움을 줄 수 있는 효과가 있다. In addition, according to the present invention, by predicting amyloid PET positivity, there is an effect of helping to predict the patient's cognitive function or prognosis.
도 1은 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 장치의 내부 구성을 보여주는 블록도이다. Figure 1 is a block diagram showing the internal configuration of an amyloid pet positive prediction device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 장치에서의 아밀로이드 펫 양성 예측 방법을 보여주는 흐름도이다. Figure 2 is a flowchart showing a method for predicting amyloid PET positivity in the amyloid PET positivity prediction device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 과정을 나타낸 흐름도이다. Figure 3 is a flowchart showing the amyloid PET positive prediction process according to an embodiment of the present invention.
도 4는 본 발명의 실험에 참가한 환자의 임상 특성을 정리한 도표이다. Figure 4 is a chart summarizing the clinical characteristics of patients who participated in the experiment of the present invention.
도 5는 본 발명의 실험에서 GBM 모델 및 RF 모델에서 변수의 중요도를 나타낸 그래프이다. Figure 5 is a graph showing the importance of variables in the GBM model and RF model in the experiment of the present invention.
도 6은 본 발명의 실험에서 GBM 모델 및 RF 모델에서 다수의 변경 포인트에서의 최적 임계값을 감지한 것을 나타낸 그래프이다.Figure 6 is a graph showing optimal threshold values detected at multiple change points in the GBM model and RF model in the experiment of the present invention.
도 7은 본 발명의 실험에서 GBM 모델 및 RF 모델에서의 컷오프(cut-off) 값을 나타낸 도표이다. Figure 7 is a table showing cut-off values in the GBM model and RF model in the experiment of the present invention.
도 8은 본 발명의 실험에서 GBM 모델 및 RF 모델에서의 중요 변수들의 컷오프 값을 도시한 그래프이다. Figure 8 is a graph showing cutoff values of important variables in the GBM model and RF model in the experiment of the present invention.
도 9는 본 발명의 실험에서 GBM 모델 및 RF 모델의 퍼포먼스를 정리한 도표이다. Figure 9 is a chart summarizing the performance of the GBM model and the RF model in the experiment of the present invention.
도 1은 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 장치의 내부 구성을 보여주는 블록도이다. Figure 1 is a block diagram showing the internal configuration of an amyloid pet positive prediction device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에서 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 장치(100)는 수신부(110), 예측부(120), 표시부(130)를 포함한다. Referring to FIG. 1, in the present invention, the apparatus 100 for predicting positive amyloid PET for a patient suspected of amyloid angiopathy includes a receiving unit 110, a prediction unit 120, and a display unit 130.
수신부(110)는 환자에 대한 뇌 영상 데이터(10)를 수신하는 역할을 한다. 본 발명의 일 실시예에서 뇌 영상 데이터(10)는 뇌 MRI(magnetic resonance imaging) 데이터일 수 있다. The receiving unit 110 serves to receive brain image data 10 about the patient. In one embodiment of the present invention, the brain imaging data 10 may be brain MRI (magnetic resonance imaging) data.
예측부(120)는 수신부(110)에서 수신한 뇌 영상 데이터에 대한 머신 러닝(machine learning)을 수행하고, 머신 러닝을 통해 환자에 대한 아밀로이드 펫 양성률을 예측한다. The prediction unit 120 performs machine learning on the brain image data received from the receiver 110 and predicts the amyloid PET positivity rate for the patient through machine learning.
표시부(130)는 예측부(120)에서 예측한 아밀로이드 펫 양성률을 표시하는 역할을 한다. The display unit 130 serves to display the amyloid PET positivity rate predicted by the prediction unit 120.
본 발명의 일 실시예에서 머신 러닝은 GBM(gradient boosting machine) 알고리즘 또는 RF(random forest) 알고리즘일 수 있다. In one embodiment of the present invention, machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
예측부(120)는 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행할 수 있다.In order to predict the amyloid PET positivity rate, the prediction unit 120 performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. can be performed.
도 2는 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 장치에서의 아밀로이드 펫 양성 예측 방법을 보여주는 흐름도이다. Figure 2 is a flowchart showing a method for predicting amyloid PET positivity in the amyloid PET positivity prediction device according to an embodiment of the present invention.
도 2를 참조하면, 아밀로이드 펫 양성 예측 방법은, 아밀로이드 펫 양성 예측 장치(100)에서 환자에 대한 뇌 영상 데이터(10)를 수신하는 단계(S201), 아밀로이드 펫 양성 예측 장치(100)에서 수신한 뇌 영상 데이터에 대한 머신 러닝을 수행하는 단계(S203) 및 아밀로이드 펫 양성 예측 장치(100)에서 머신 러닝을 통해 환자에 대한 아밀로이드 펫 양성률을 예측하는 단계(S205)를 포함한다. Referring to FIG. 2, the method for predicting amyloid PET positivity includes receiving brain imaging data 10 for a patient from the amyloid PET positivity prediction device 100 (S201), and receiving brain image data 10 for the patient from the amyloid PET positivity prediction device 100. It includes performing machine learning on brain image data (S203) and predicting the amyloid PET positivity rate for the patient through machine learning in the amyloid PET positivity prediction device 100 (S205).
본 발명의 일 실시예에서 뇌 영상 데이터는 뇌 MRI(magnetic resonance imaging) 데이터일 수 있다. In one embodiment of the present invention, brain imaging data may be brain MRI (magnetic resonance imaging) data.
본 발명의 일 실시예에서 머신 러닝은 GBM(gradient boosting machine) 알고리즘 또는 RF(random forest) 알고리즘일 수 있다. In one embodiment of the present invention, machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
본 발명에서 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행할 수 있다. In order to predict the amyloid PET positivity rate in the present invention, machine learning is performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. You can.
도 3은 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 과정을 나타낸 흐름도이다. Figure 3 is a flowchart showing the amyloid PET positive prediction process according to an embodiment of the present invention.
도 3을 참조하면, 수신부(110)에서 뇌 영상 데이터를 수신하면(S301), 예측부(120)는 뇌 영상 데이터를 분석하여, 엽 미세 출혈이 14 이상이고(S303), 열공 뇌경색 개수가 7개 이하이고(S305), 환자의 나이가 64세 이상이고(S307), 치상핵의 미세출혈이 없으면(S309), 아밀로이드 펫 양성으로 판단한다(S311). Referring to FIG. 3, when brain image data is received from the receiver 110 (S301), the prediction unit 120 analyzes the brain image data and determines that the number of lobar microbleeds is 14 or more (S303) and the number of lacunar cerebral infarcts is 7. If the number is less than 100% (S305), the patient is over 64 years old (S307), and there is no microhemorrhage in the dentate nucleus (S309), it is judged to be amyloid PET positive (S311).
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 갖는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with the meanings they have in the context of the related technology, and should not be interpreted as having ideal or excessively formal meanings, unless explicitly defined in the present application. No.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, when describing with reference to the accompanying drawings, identical components will be assigned the same reference numerals regardless of the reference numerals, and overlapping descriptions thereof will be omitted. In describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 발명은 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫(amyloid PET) 양성 예측 방법 및 장치에 관한 것이다.The present invention relates to a method and device for predicting amyloid PET positivity for patients suspected of amyloid angiopathy.
도 1은 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 장치의 내부 구성을 보여주는 블록도이다. Figure 1 is a block diagram showing the internal configuration of an amyloid pet positive prediction device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에서 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 장치(100)는 수신부(110), 예측부(120), 표시부(130)를 포함한다. Referring to FIG. 1, in the present invention, the apparatus 100 for predicting positive amyloid PET for a patient suspected of amyloid angiopathy includes a receiving unit 110, a prediction unit 120, and a display unit 130.
수신부(110)는 환자에 대한 뇌 영상 데이터(10)를 수신하는 역할을 한다. 본 발명의 일 실시예에서 뇌 영상 데이터(10)는 뇌 MRI(magnetic resonance imaging) 데이터일 수 있다. The receiving unit 110 serves to receive brain image data 10 about the patient. In one embodiment of the present invention, the brain imaging data 10 may be brain MRI (magnetic resonance imaging) data.
예측부(120)는 수신부(110)에서 수신한 뇌 영상 데이터에 대한 머신 러닝(machine learning)을 수행하고, 머신 러닝을 통해 환자에 대한 아밀로이드 펫 양성률을 예측한다. The prediction unit 120 performs machine learning on the brain image data received from the receiver 110 and predicts the amyloid PET positivity rate for the patient through machine learning.
표시부(130)는 예측부(120)에서 예측한 아밀로이드 펫 양성률을 표시하는 역할을 한다. The display unit 130 serves to display the amyloid PET positivity rate predicted by the prediction unit 120.
본 발명의 일 실시예에서 머신 러닝은 GBM(gradient boosting machine) 알고리즘 또는 RF(random forest) 알고리즘일 수 있다. In one embodiment of the present invention, machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
예측부(120)는 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행할 수 있다.In order to predict the amyloid PET positivity rate, the prediction unit 120 performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. can be performed.
도 2는 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 장치에서의 아밀로이드 펫 양성 예측 방법을 보여주는 흐름도이다. Figure 2 is a flowchart showing a method for predicting amyloid PET positivity in the amyloid PET positivity prediction device according to an embodiment of the present invention.
도 2를 참조하면, 아밀로이드 펫 양성 예측 방법은, 아밀로이드 펫 양성 예측 장치(100)에서 환자에 대한 뇌 영상 데이터(10)를 수신하는 단계(S201), 아밀로이드 펫 양성 예측 장치(100)에서 수신한 뇌 영상 데이터에 대한 머신 러닝을 수행하는 단계(S203) 및 아밀로이드 펫 양성 예측 장치(100)에서 머신 러닝을 통해 환자에 대한 아밀로이드 펫 양성률을 예측하는 단계(S205)를 포함한다. Referring to FIG. 2, the method for predicting amyloid PET positivity includes receiving brain imaging data 10 for a patient from the amyloid PET positivity prediction device 100 (S201), and receiving brain image data 10 for the patient from the amyloid PET positivity prediction device 100. It includes performing machine learning on brain image data (S203) and predicting the amyloid PET positivity rate for the patient through machine learning in the amyloid PET positivity prediction device 100 (S205).
본 발명의 일 실시예에서 뇌 영상 데이터는 뇌 MRI(magnetic resonance imaging) 데이터일 수 있다. In one embodiment of the present invention, brain imaging data may be brain MRI (magnetic resonance imaging) data.
본 발명의 일 실시예에서 머신 러닝은 GBM(gradient boosting machine) 알고리즘 또는 RF(random forest) 알고리즘일 수 있다. In one embodiment of the present invention, machine learning may be a gradient boosting machine (GBM) algorithm or a random forest (RF) algorithm.
본 발명에서 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행할 수 있다. In order to predict the amyloid PET positivity rate in the present invention, machine learning is performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. You can.
도 3은 본 발명의 일 실시예에 따른 아밀로이드 펫 양성 예측 과정을 나타낸 흐름도이다. Figure 3 is a flowchart showing the amyloid PET positive prediction process according to an embodiment of the present invention.
도 3을 참조하면, 수신부(110)에서 뇌 영상 데이터를 수신하면(S301), 예측부(120)는 뇌 영상 데이터를 분석하여, 엽 미세 출혈이 14 이상이고(S303), 열공 뇌경색 개수가 7개 이하이고(S305), 환자의 나이가 64세 이상이고(S307), 치상핵의 미세출혈이 없으면(S309), 아밀로이드 펫 양성으로 판단한다(S311). Referring to FIG. 3, when brain image data is received from the receiver 110 (S301), the prediction unit 120 analyzes the brain image data and determines that the number of lobar microbleeds is 14 or more (S303) and the number of lacunar cerebral infarcts is 7. If the number is less than 100% (S305), the patient is over 64 years old (S307), and there is no microhemorrhage in the dentate nucleus (S309), it is judged to be amyloid PET positive (S311).
이제 본 발명의 일 실시예에 따른 실험 과정과 그 결과를 기술하기로 한다. We will now describe the experimental process and results according to an embodiment of the present invention.
본 발명에서 혈관병증 의심(cerebral amyloid angiopathy, CAA) MRI 마커가 있는 환자에서 아밀로이드-β(Amyloid-β, Aβ) PET 양성을 예측하기 위해 두 가지 해석 가능한 머신 러닝 알고리즘인 GBM(Gradient Boosting Machine)과 RF(Random Forest)를 적용하였다. GBM 알고리즘 및 RF 알고리즘에서 Aβ 양성을 예측하는 데 가장 영향력 있는 변수로서, 엽(lobar) 미세 출혈(cerebral microbleeds, CMBs), 열공(lacunes), 치상 핵(dentate nucleus)의 CMB 수 및 환자의 연령(age)이 선택되었다.In the present invention, two interpretable machine learning algorithms, GBM (Gradient Boosting Machine) and GBM (Gradient Boosting Machine), are used to predict amyloid-β (Aβ) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers. RF (Random Forest) was applied. The most influential variables in predicting Aβ positivity in the GBM algorithm and RF algorithm were the number of lobar cerebral microbleeds (CMBs), lacunes, CMBs in the dentate nucleus, and patient age ( age) was selected.
본 발명에서 환경에서 해석 가능한 머신 러닝을 이용하여, CAA 마커가 의심되는 환자에서 Aβ 양성에 대한 예측 변수의 상대적 중요성과 컷오프 값을 정량화하여 임상 유용성을 입증하였다. In the present invention, using machine learning that can be interpreted in the environment, clinical usefulness was demonstrated by quantifying the relative importance and cutoff value of predictive variables for Aβ positivity in patients suspected of having CAA markers.
대뇌 아밀로이드 혈관병증(CAA)은 연막 및 피질 혈관1,2에 아밀로이드 β(Aβ) 침착이 특징인 대뇌 소혈관 질환(cerebral small vessel disease, CSVD)이다. Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease (CSVD) characterized by amyloid β (Aβ) deposition in pial and cortical blood vessels1,2.
최근 CAA 환자에서 Aβ 양성자 방출 단층 촬영(PET)의 임상적 유용성이 널리 조사되었다. CAA MRI 마커가 있는 환자의 Aβ 양성(+) PET 스캔은 두 가지 측면에서 임상적 유용성을 가질 수 있다. 첫째, CAA 환자의 Aβ 양성을 통해 임상의는 인지 궤적의 예후를 예측할 수 있다. 기존에는 CAA 가능성이 있는 Aβ + 환자가 Aβ 음성(-) 대응 환자보다 인지 궤적이 더 나쁜 것으로 나타났다.둘째, Aβ PET 양성은 CAA MRI 마커가 의심되는 환자의 기본 혈관 병리에 대한 통찰력을 제공할 수 있다. 따라서 CAA MRI 표지자가 있는 환자에서 Aβ 양성을 예측하는 것은 예후를 예측하는 데 도움이 될 수 있기 때문에 임상적으로 유용할 것이다.Recently, the clinical utility of Aβ proton emission tomography (PET) in patients with CAA has been widely investigated. Aβ-positive (+) PET scans in patients with CAA MRI markers may have clinical utility in two aspects. First, Aβ positivity in CAA patients allows clinicians to predict the prognosis of cognitive trajectory. Previously, it has been shown that Aβ+ patients with probable CAA have a worse cognitive trajectory than their Aβ negative (-) counterparts. Second, Aβ PET positivity may provide insight into the underlying vascular pathology in patients with suspected CAA MRI markers. there is. Therefore, predicting Aβ positivity in patients with CAA MRI markers would be clinically useful because it may help predict prognosis.
예측 모델 중 머신 러닝 방법은 높은 예측력과 안정적인 성능으로 인해 많은 주목을 받고 있다. 그러나 내부 처리의 해석 가능성 부족은 머신 러닝 연구의 주요 문제가 되었다. 이 한계를 극복하기 위해 본 발명에서 GBM(Gradient Boosting Machine)15과 Random Forest(RF)의 두 가지 트리 기반 머신 러닝 모델을 선택하였다. 이 두 가지 방법은 변수의 상대적 중요성을 효과적으로 정량화하고 임상적으로 의미 있는 통찰력을 제공하는 컷오프 값을 제공할 수 있다.Among prediction models, machine learning methods are receiving a lot of attention due to their high predictive power and stable performance. However, the lack of interpretability of internal processing has become a major problem in machine learning research. To overcome this limitation, two tree-based machine learning models, GBM (Gradient Boosting Machine)15 and Random Forest (RF), were selected in the present invention. These two methods can effectively quantify the relative importance of variables and provide cutoff values that provide clinically meaningful insights.
따라서 본 발명에서 머신 러닝 기반 모델을 사용하여 Aβ PET 양성을 예측하기 위해 가장 중요한 변수와 이들의 최적 컷오프 값(예를 들어, 엽 미세 출혈 수)을 식별한다. Therefore, in the present invention, we use a machine learning-based model to identify the most important variables and their optimal cutoff values (e.g., number of lobar microbleeds) to predict Aβ PET positivity.
도 4는 본 발명의 실험에 참가한 환자의 임상 특성을 정리한 도표이다. 도 4에서 숫자는 평균 ± 표준편차 또는 n(%)으로 표시되고, ApoE는 apolipoprotein E, cSS는 cortical superficial siderosis, ICH는 intracerebral hemorrhage를 나타낸다. 도 4를 참조하면, 본 발명의 실험에서 71명의 참가자를 모집했으며 그 중 25명의 참가자는 Aβ 음성(-)이고 나머지 46명의 참가자는 Aβ 양성(+)이였다.Figure 4 is a chart summarizing the clinical characteristics of patients who participated in the experiment of the present invention. In Figure 4, numbers are expressed as mean ± standard deviation or n (%), where ApoE represents apolipoprotein E, cSS represents cortical superficial siderosis, and ICH represents intracerebral hemorrhage. Referring to Figure 4, 71 participants were recruited in the experiment of the present invention, of which 25 participants were Aβ negative (-) and the remaining 46 participants were Aβ positive (+).
도 5는 본 발명의 실험에서 GBM 모델 및 RF 모델에서 변수의 중요도를 나타낸 그래프이다. 도 5에서 HTN은 hypertension을 나타낸다. Figure 5 is a graph showing the importance of variables in the GBM model and RF model in the experiment of the present invention. In Figure 5, HTN represents hypertension.
도 5를 참조하면, 본 발명에서 Aβ 양성에 대한 중요한 예측 변수로서, 17개의 임상 및 영상 변수 중 GBM 및 RF 알고리즘을 사용하여 상대적 중요도를 계산하고, 두 알고리즘에서 유사한 가장 중요한 변수를 선택하였다. GBM 모델에서 순위가 *?*매겨진 5가지 중요 변수와 상대적 중요도는 lobar CMB 수(18.6), deep CMB 수(8.8), lacunes 수(5.7), age(4.6) 및 number(4.6)이다. 한편, RF모형은 6개의 중요한 변수를 lobar CMB 수(60.4), deep CMB 수(23.7), lacune 수(23.3), age(15.4), 당뇨병 없음(8.4), 치상핵의 CMB 수(6.8)로 선택하였다. Referring to Figure 5, as important predictors for Aβ positivity in the present invention, the relative importance was calculated using the GBM and RF algorithms among 17 clinical and imaging variables, and the most important variables that were similar in the two algorithms were selected. The five important variables ranked and their relative importance in the GBM model are lobar CMB number (18.6), deep CMB number (8.8), lacunes number (5.7), age (4.6), and number (4.6). Meanwhile, the RF model has six important variables: lobar CMB number (60.4), deep CMB number (23.7), lacune number (23.3), age (15.4), absence of diabetes (8.4), and dentate nucleus CMB number (6.8). selected.
도 6은 본 발명의 실험에서 GBM 모델 및 RF 모델에서 다수의 변경 포인트에서의 최적 임계값을 감지한 것을 나타낸 그래프이다. 도 6에서 ACC는 정확도(accuracy), MCC는 오분류(misclassification), Class ACC는 class per accuracy, F1은 가중치가 동일한 양수 및 음수 예측 값의 조화 평균, F0.5는 NPV보다 PPV에 더 가중치를 준 양수 및 음수 예측값의 평균을 나타낸다. Figure 6 is a graph showing optimal threshold values detected at multiple change points in the GBM model and RF model in the experiment of the present invention. In Figure 6, ACC is accuracy, MCC is misclassification, Class ACC is class per accuracy, F1 is the harmonic mean of positive and negative prediction values with equal weights, and F0.5 gives more weight to PPV than NPV. Represents the average of semi-positive and negative predicted values.
도 6에서 Aβ 양성에 대한 예측 변수의 컷오프 값으로서, GBM에서 임계값은 4개의 메트릭(metric)(F0.5, ACC, MCC, 클래스 ACC)이 각각 최대값일 때 0.7043으로 결정되었고, RF에서는 3개의 메트릭(F1, 정확도, 오분류)이 각각 최대값일 때 임계값이 0.6561로 결정되었다.In Figure 6, as the cutoff value of the predictor for Aβ positivity, the threshold in GBM was determined to be 0.7043 when each of the four metrics (F0.5, ACC, MCC, class ACC) is at its maximum, and in RF it is 3. The threshold was determined to be 0.6561 when each of the metrics (F1, accuracy, and misclassification) was at its maximum value.
본 발명의 실험에서 위와 같이 얻은 임계값을 사용하여 중요한 변수의 컷오프 값을 결정하였다.In the experiment of the present invention, the cutoff values of important variables were determined using the threshold values obtained as above.
도 7은 본 발명의 실험에서 GBM 모델 및 RF 모델에서의 컷오프(cut-off) 값을 나타낸 도표이고, 도 8은 본 발명의 실험에서 GBM 모델 및 RF 모델에서의 중요 변수들의 컷오프 값을 도시한 그래프이다. Figure 7 is a chart showing cut-off values in the GBM model and RF model in the experiment of the present invention, and Figure 8 shows the cut-off values of important variables in the GBM model and RF model in the experiment of the present invention. It's a graph.
도 7 및 도 8을 참조하면, Aβ 양성을 예측하기 위한 변수의 컷오프 값은 다음과 같다. GBM 및 RF에서 (1) 엽 미세 출혈(CMB)이 14이상, (2) 깊은(deep) CMB가 없을 것, (3) 열공 뇌경색 개수가 7 이하, (4) 연령이 64 이상, (5) 치상핵(dentate nucleus)의 미세 출혈(CMB)이 없는 경우이다. Referring to Figures 7 and 8, the cutoff values of variables for predicting Aβ positivity are as follows. In GBM and RF, (1) lobar microbleeds (CMBs) greater than 14, (2) no deep CMBs, (3) number of lacunar cerebral infarcts less than or equal to 7, (4) age greater than 64, (5) This is a case where there is no microbleed (CMB) in the dentate nucleus.
도 9는 본 발명의 실험에서 GBM 모델 및 RF 모델의 퍼포먼스를 정리한 도표이다. 도 9에서 MSE(mean square error), RMSE(root mean square error), 대수 손실, 클래스당 평균 오차, 지니 불순물은 값이 낮을수록 예측력이 좋고, SD가 낮을 수록 신뢰도가 높음을 의미한다. Figure 9 is a chart summarizing the performance of the GBM model and the RF model in the experiment of the present invention. In Figure 9, the lower the value of the mean square error (MSE), root mean square error (RMSE), log loss, average error per class, and Gini impurity, the better the prediction ability, and the lower the SD, the higher the reliability.
도 9에서 보는 바와 같이, 본 발명의 실험에서 GBM 및 RF 기반 예측 모델의 성능을 모델링하였고, 그 결과 GBM과 RF 모델 모두 좋은 성능을 보였다. MSE는 GBM에서 0.14 ± 0.02, RF에서 0.18 ± 0.06이었다. RMSE는 GBM에서 0.41 ± 0.08, RF에서 0.37 ± 0.03이었다. 대수 손실(logarithmic loss)은 GBM에서 0.47 ± 0.07, RF에서 0.53 ± 0.17이었다. 클래스당 평균 오차(Mean per class error)는 GBM에서 0.22 ± 0.06, RF에서 0.25 ± 0.14였다. 지니 불순물(Gini impurity)은 GBM에서 0.65 ± 0.09, RF에서 0.60 ± 0.24였다. AUC(Area Under Curve)는 GBM에서 0.83 ± 0.04, RF에서 0.80 ± 0.12였다. Precision-recall AUC는 GBM에서 0.86 ± 0.04, RF에서 0.67 ± 0.18이었다. As shown in Figure 9, the performance of GBM and RF-based prediction models was modeled in the experiment of the present invention, and as a result, both GBM and RF models showed good performance. MSE was 0.14 ± 0.02 in GBM and 0.18 ± 0.06 in RF. RMSE was 0.41 ± 0.08 in GBM and 0.37 ± 0.03 in RF. Logarithmic loss was 0.47 ± 0.07 for GBM and 0.53 ± 0.17 for RF. The mean per class error was 0.22 ± 0.06 for GBM and 0.25 ± 0.14 for RF. Gini impurity was 0.65 ± 0.09 in GBM and 0.60 ± 0.24 in RF. Area under curve (AUC) was 0.83 ± 0.04 in GBM and 0.80 ± 0.12 in RF. Precision-recall AUC was 0.86 ± 0.04 in GBM and 0.67 ± 0.18 in RF.
이상 본 발명을 몇 가지 바람직한 실시 예를 사용하여 설명하였으나, 이들 실시 예는 예시적인 것이며 한정적인 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.Although the present invention has been described above using several preferred examples, these examples are illustrative and not limiting. Those of ordinary skill in the technical field to which the present invention pertains will understand that various changes and modifications can be made without departing from the spirit of the present invention and the scope of rights set forth in the appended claims.

Claims (10)

  1. 아밀로이드 펫 양성 예측 장치에서의 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 방법에서, In the amyloid FET positive prediction method for patients suspected of amyloid angiopathy in the amyloid FET positive prediction device,
    상기 아밀로이드 펫 양성 예측 장치에서 상기 환자에 대한 뇌 영상 데이터를 수신하는 단계;Receiving brain imaging data for the patient from the amyloid pet positive prediction device;
    상기 아밀로이드 펫 양성 예측 장치에서 수신한 뇌 영상 데이터에 대한 머신 러닝을 수행하는 단계; 및Performing machine learning on brain image data received from the amyloid pet positive prediction device; and
    상기 아밀로이드 펫 양성 예측 장치에서 상기 머신 러닝을 통해 상기 환자에 대한 아밀로이드 펫 양성률을 예측하는 단계Predicting the amyloid PET positivity rate for the patient through the machine learning in the amyloid PET positivity prediction device.
    를 포함하는 아밀로이드 펫 양성 예측 방법. Amyloid PET positive prediction method including.
  2. 청구항 1에 있어서, In claim 1,
    상기 뇌 영상 데이터는 뇌 MRI(magnetic resonance imaging) 데이터인 것을 특징으로 하는 아밀로이드 펫 양성 예측 방법. A method for predicting amyloid PET positivity, characterized in that the brain imaging data is brain MRI (magnetic resonance imaging) data.
  3. 청구항 1에 있어서, In claim 1,
    상기 머신 러닝은 GBM(gradient boosting machine) 알고리즘인 것을 특징으로 하는 아밀로이드 펫 양성 예측 방법. The machine learning is an amyloid PET positive prediction method, characterized in that the GBM (gradient boosting machine) algorithm.
  4. 청구항 1에 있어서, In claim 1,
    상기 머신 러닝은 RF(random forest) 알고리즘인 것을 특징으로 하는 아밀로이드 펫 양성 예측 방법. The machine learning is an amyloid PET positive prediction method, characterized in that the RF (random forest) algorithm.
  5. 청구항 3 또는 청구항 4에 있어서, In claim 3 or claim 4,
    상기 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행하는 것을 특징으로 하는 아밀로이드 펫 양성 예측 방법.In order to predict the amyloid PET positivity rate, machine learning is performed using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. Amyloid PET positive prediction method.
  6. 아밀로이드 혈관병증 의심 환자에 대한 아밀로이드 펫 양성 예측 장치에서, In the amyloid PET positive prediction device for patients suspected of amyloid angiopathy,
    상기 환자에 대한 뇌 영상 데이터를 수신하기 위한 수신부;a receiving unit for receiving brain image data for the patient;
    상기 수신부에서 수신한 뇌 영상 데이터에 대한 머신 러닝을 수행하고, 상기 머신 러닝을 통해 상기 환자에 대한 아밀로이드 펫 양성률을 예측하는 예측부; 및a prediction unit that performs machine learning on the brain image data received from the receiver and predicts an amyloid PET positivity rate for the patient through the machine learning; and
    상기 예측부에서 예측한 아밀로이드 펫 양성률을 표시하기 위한 표시부Display unit to display the amyloid pet positivity rate predicted in the prediction unit
    를 포함하는 아밀로이드 펫 양성 예측 장치. Amyloid PET positive prediction device comprising a.
  7. 청구항 6에 있어서, In claim 6,
    상기 뇌 영상 데이터는 뇌 MRI(magnetic resonance imaging) 데이터인 것을 특징으로 하는 아밀로이드 펫 양성 예측 장치. An amyloid PET positive prediction device, characterized in that the brain imaging data is brain MRI (magnetic resonance imaging) data.
  8. 청구항 6에 있어서, In claim 6,
    상기 머신 러닝은 GBM(gradient boosting machine) 알고리즘인 것을 특징으로 하는 아밀로이드 펫 양성 예측 장치. An amyloid PET positive prediction device, characterized in that the machine learning is a GBM (gradient boosting machine) algorithm.
  9. 청구항 6에 있어서, In claim 6,
    상기 머신 러닝은 RF(random forest) 알고리즘인 것을 특징으로 하는 아밀로이드 펫 양성 예측 장치. An amyloid PET positive prediction device, characterized in that the machine learning is an RF (random forest) algorithm.
  10. 청구항 8 또는 청구항 9에 있어서, In claim 8 or claim 9,
    상기 예측부는 상기 아밀로이드 펫 양성률을 예측하기 위하여, 엽 미세 출혈(lobar cerebral microbleeds), 열공 뇌경색(lacunes) 개수, 환자의 나이 및 치상핵(dentate nucleus)의 미세출혈 여부를 변수로 하여 머신 러닝을 수행하는 것을 특징으로 하는 아밀로이드 펫 양성 예측 장치.In order to predict the amyloid PET positivity rate, the prediction unit performs machine learning using the number of lobar cerebral microbleeds, lacunes, patient's age, and microbleeds in the dentate nucleus as variables. Amyloid pet positive prediction device characterized in that.
PCT/KR2023/012891 2022-09-05 2023-08-30 Method and device for predicting amyloid pet positivity in patients suspected of amyloid angiopathy WO2024053925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0111768 2022-09-05
KR1020220111768A KR102517529B1 (en) 2022-09-05 2022-09-05 Method and apparatus for predicting amyloid PET positivity in patient with suspected cerebral amyloid angiopathy marker

Publications (1)

Publication Number Publication Date
WO2024053925A1 true WO2024053925A1 (en) 2024-03-14

Family

ID=85936656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012891 WO2024053925A1 (en) 2022-09-05 2023-08-30 Method and device for predicting amyloid pet positivity in patients suspected of amyloid angiopathy

Country Status (2)

Country Link
KR (1) KR102517529B1 (en)
WO (1) WO2024053925A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517529B1 (en) * 2022-09-05 2023-04-03 의료법인 명지의료재단 Method and apparatus for predicting amyloid PET positivity in patient with suspected cerebral amyloid angiopathy marker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180077819A (en) * 2016-12-29 2018-07-09 사회복지법인 삼성생명공익재단 Method for predictiing prognosis of cerebral amyloid angiopathy
KR102215119B1 (en) * 2019-06-14 2021-02-10 재단법인 아산사회복지재단 Method, program and computing device for predicting alzheimer's disease by quantifying brain features
KR102423315B1 (en) * 2020-05-11 2022-07-21 사회복지법인 삼성생명공익재단 Method and apparatus for predicting amyloid positive for cognitive function normal group
KR102517529B1 (en) * 2022-09-05 2023-04-03 의료법인 명지의료재단 Method and apparatus for predicting amyloid PET positivity in patient with suspected cerebral amyloid angiopathy marker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180077819A (en) * 2016-12-29 2018-07-09 사회복지법인 삼성생명공익재단 Method for predictiing prognosis of cerebral amyloid angiopathy
KR102215119B1 (en) * 2019-06-14 2021-02-10 재단법인 아산사회복지재단 Method, program and computing device for predicting alzheimer's disease by quantifying brain features
KR102423315B1 (en) * 2020-05-11 2022-07-21 사회복지법인 삼성생명공익재단 Method and apparatus for predicting amyloid positive for cognitive function normal group
KR102517529B1 (en) * 2022-09-05 2023-04-03 의료법인 명지의료재단 Method and apparatus for predicting amyloid PET positivity in patient with suspected cerebral amyloid angiopathy marker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG YOUNG HEE, LEE HYEJOO, KIM HEE JIN, NA DUK L., HAN HYUN JEONG, JANG HYEMIN, SEO SANG WON: "Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 10, no. 1, 2 November 2020 (2020-11-02), US , pages 18806 , XP093147314, ISSN: 2045-2322, DOI: 10.1038/s41598-020-75664-8 *

Also Published As

Publication number Publication date
KR102517529B1 (en) 2023-04-03

Similar Documents

Publication Publication Date Title
Rahman et al. High-resolution cardiac magnetic resonance imaging techniques for the identification of coronary microvascular dysfunction
WO2024053925A1 (en) Method and device for predicting amyloid pet positivity in patients suspected of amyloid angiopathy
WO2018074739A1 (en) Stroke diagnosis and prognosis prediction method and system
Maggi et al. CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis
WO2017051944A1 (en) Method for increasing reading efficiency by using gaze information of user in medical image reading process and apparatus therefor
WO2021025459A1 (en) Optical coherence tomography-based system for diagnosis of high-risk lesion and diagnosis method therefor
WO2022119155A1 (en) Apparatus and method for diagnosing explainable multiple electrocardiogram arrhythmias
WO2020111534A2 (en) Method and system for estimating brain vascular age from medical image
WO2019143179A1 (en) Method for automatically detecting same regions of interest between images of same object taken with temporal interval, and apparatus using same
WO2022114522A1 (en) Blood vessel image extracting method and apparatus using plurality of prediction results
WO2022030692A1 (en) Method for diagnosing alzheimer's disease using pet-ce image and apparatus thereof
WO2019098415A1 (en) Method for determining whether subject has developed cervical cancer, and device using same
La Rosa et al. Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues
WO2020197233A2 (en) Learning method for generating multiphase collateral image and multiphase collateral image generating method using machine learning
Shih et al. PET/MRI for evaluating subclinical inflammation of ulcerative colitis
CN111028223A (en) Microsatellite unstable intestinal cancer energy spectrum CT iodine water map image omics feature processing method
WO2023095989A1 (en) Method and device for analyzing multimodality medical images for cerebral disease diagnosis
US10357217B2 (en) Method for positron emission tomography (PET) imaging analysis for classifying and diagnosing of neurological diseases
WO2020180135A1 (en) Brain disease prediction apparatus and method, and learning apparatus for predicting brain disease
Sharifrazi et al. Hypertrophic cardiomyopathy diagnosis based on cardiovascular magnetic resonance using deep learning techniques
Bester et al. Early anisotropy changes in the corpus callosum of patients with optic neuritis
WO2022060099A1 (en) Method and apparatus for calculating risk of vascular disease in ct image using low voltage
WO2017010612A1 (en) System and method for predicting pathological diagnosis on basis of medical image analysis
WO2022119347A1 (en) Method, apparatus, and recording medium for analyzing coronary plaque tissue through ultrasound image-based deep learning
WO2022231147A1 (en) Method and apparatus for automatically evaluating dosimetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863401

Country of ref document: EP

Kind code of ref document: A1