WO2020111534A2 - Method and system for estimating brain vascular age from medical image - Google Patents

Method and system for estimating brain vascular age from medical image Download PDF

Info

Publication number
WO2020111534A2
WO2020111534A2 PCT/KR2019/014530 KR2019014530W WO2020111534A2 WO 2020111534 A2 WO2020111534 A2 WO 2020111534A2 KR 2019014530 W KR2019014530 W KR 2019014530W WO 2020111534 A2 WO2020111534 A2 WO 2020111534A2
Authority
WO
WIPO (PCT)
Prior art keywords
cerebrovascular
image
age
cnn
neural network
Prior art date
Application number
PCT/KR2019/014530
Other languages
French (fr)
Korean (ko)
Other versions
WO2020111534A3 (en
Inventor
장진희
남윤호
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of WO2020111534A2 publication Critical patent/WO2020111534A2/en
Publication of WO2020111534A3 publication Critical patent/WO2020111534A3/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to the estimation of cerebrovascular age, and more particularly, to a method and system for estimating cerebrovascular age from medical images using machine learning.
  • the medical image acquires the anatomical and functional information of the object for medical purposes.
  • Medical images can be obtained in various ways from various parts of the human body.
  • various cerebrovascular images can be obtained for the diagnosis of cerebrovascular disease, and one of them is a technique called time-of-flight MR angiography (TOF MRA).
  • TOF MRA time-of-flight MR angiography
  • This technique uses a magnetic resonance image (Magnetic resonance image) to make the signal of blood with a strong flow rate appear strong and the signal of the stationary blood weakly extract only the images of blood vessels from each section and extract the blood vessel images obtained from each section. It is a technical method to obtain images of blood vessels without using contrast agents by combining and reconstructing in two or three dimensions.
  • TOF MRA is a blood vessel imaging technique that is widely used in the medical field because it can present cerebral vessel structures in detail with excellent image resolution.
  • complex blood flow phenomena such as vortices can be diagnosed, and recently, microvascular images can also be obtained.
  • CT cerebral angiography which reconstructs cerebrovascular images by obtaining a computed tomography image after injecting a contrast agent, is widely used for high spatial resolution and fast examination time, and can obtain precise cerebrovascular images and hemodynamic information.
  • aging of the brain is well known and important. Since the brain is rich in blood supply to support high metabolic activity, it is not surprising that age-dependent changes include brain parenchyma as well as brain vasculatures. Histopathological studies have shown changes in cerebral arteries with aging, and microscopic changes have been associated with large morphological changes in the arteries of the head and neck.
  • Patent Document 1 Registered Patent Publication No. 10-1620302 (2016.05.04)
  • the problem to be solved by the present invention was created to solve the limitations and inconveniences of structural analysis of cerebrovascular images using the above-described conventional hand-crafted features, machine learning. For example, by using deep learning to analyze changes in the shape of cerebral blood vessels appearing on cerebrovascular images, medical knowledge that can predict the cerebrovascular age by extracting knowledge-based cerebrovascular features It provides a method and system for estimating cerebrovascular age from imaging.
  • a method of estimating cerebrovascular age from a medical image according to the present invention for achieving the above technical problem includes: collecting cerebrovascular images with age information of a plurality of subjects; Performing pre-processing to detect the location of the middle cerebral artery (MCA) for machine learning through a convolutional neural network (CNN) having a plurality of learning layers on the cerebral blood vessel image having the age information; Consists of a plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the pre-processed cerebrovascular image as an input value of the input layer Machine learning through a convolutional neural network (CNN); And estimating the age of cerebral blood vessels through the machine-learned convolutional neural network (CNN).
  • MCA middle cerebral artery
  • CNN convolutional neural network
  • the pre-processing comprises interpolating cerebral blood vessel images into an isotropic space and normalizing signal strength; Detecting the position of the middle cerebral artery (MCA) of the z-axis to match the coverage of the top and bottom (z-axis) of the head of the cerebrovascular image; Cutting an image of a predetermined size around a position of the detected middle cerebral artery (MCA); And interpolating the cut-sized image slab to adjust the data size.
  • MCA middle cerebral artery
  • MCA middle cerebral artery
  • the method for estimating cerebrovascular age from a medical image before cutting data to reduce sensitivity to spatial variation of cerebrovascular image data in the learning data set of the convolutional neural network (CNN) It is characterized by increasing data by performing shifting, rotation and flipping to reflect the diversity that may occur during medical imaging.
  • CNN convolutional neural network
  • the method for estimating cerebrovascular age from a medical image according to the present invention may further include extracting features of the cerebral blood vessels through the machine-learned convolutional neural network (CNN).
  • the input data of the convolutional neural network (CNN) may further include risk factors that induce cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia.
  • the system for estimating cerebrovascular age from medical images includes: a cerebrovascular imaging DB that collects and stores a 3D TOF MRA image with age information of a subject; A pre-processing unit for performing pre-processing to detect the position of the middle cerebral artery (MCA) to machine learn a 3D cerebrovascular image with age information obtained from the cerebrovascular image DB through a convolutional neural network (CNN); An input unit for inputting age and cerebrovascular disease risk factors of images pre-processed by the pre-processing unit; A plurality of convolutional layers and a plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the cerebral blood vessel image having the pre-processed age information as an input value of the input layer It comprises a plurality of pooling (pooling) layer to reduce the size of the feature map, and includes a convolutional neural network (CNN) that estimates the age of the cerebral blood vessels through regression analysis.
  • CNN convolutional neural network
  • the pre-processing unit is an isotropic standardization unit for interpolating cerebral blood vessel images into an isotropic space and standardizing signal intensity;
  • An MCA detection unit that detects the position of the middle cerebral artery (MCA) on the z-axis in order to align the top-down (z-axis) coverage of the cerebrovascular image;
  • a three-dimensional slab generating unit for cutting the image of a predetermined size based on the detected position of the middle cerebral artery (MCA), interpolating the cut-sized image (slab), adjusting the data size, and inputting machine learning. do.
  • the system for estimating cerebrovascular age from medical images moves before cutting data to reduce sensitivity to spatial variation of cerebrovascular image data during learning and testing of the convolutional neural network (CNN) ( It further includes an image enhancement unit that increases training data by performing shifting, rotation, and flipping.
  • CNN convolutional neural network
  • the convolutional neural network uses the TOF MRA image having the pre-processed age information as an input value of an input layer to apply a weight to the input value to calculate feature maps. hierarchy; A plurality of pooling layers that reduce the size of the feature maps of the plurality of convolution layers through sub-sampling; A full connection layer connected to the pooling layer and all activations; And a regression analysis unit for estimating the age of cerebral blood vessels through regression analysis using the output value of the complete connection layer.
  • the input unit may further include risk factors and sex information for causing cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia.
  • the overall aging state of cerebral blood vessels is quantified by quantifying morphological changes in cerebral blood vessels through machine learning, for example, deep learning.
  • a single measure or index can be provided to evaluate.
  • brain vascular age can be predicted by extracting a knowledge-based cerebrovascular feature by analyzing changes in the shape of cerebral blood vessels appearing on cerebrovascular images using machine learning. It can be used as an imaging biomarker for aging.
  • knowledge-based cerebrovascular characteristics and risk factor information of a patient can be added to provide cerebrovascular information that cannot be previously measured.
  • new cerebrovascular information to check the health status of each individual and utilize it to promote health, early diagnosis and prevention of specific diseases can be prevented.
  • 1 is a block diagram showing the technical idea of the present invention.
  • FIG. 2 shows an example of a change in morphological characteristics of brain blood vessels with age.
  • Figure 3 is a block diagram showing an embodiment of the configuration of the cerebrovascular age estimation system from a medical image according to the present invention.
  • FIG. 4 is a block diagram showing a more specific configuration of the pre-processing unit 320.
  • FIG. 5 shows an embodiment of the pre-processing unit 320 as an MRA image.
  • FIG. 6 shows an example of the image enhancement unit 330.
  • CNN convolutional neural network
  • CNN convolutional neural network
  • FIG. 9 is a flowchart illustrating an embodiment of a method for estimating cerebrovascular age from a medical image according to the present invention.
  • FIG. 11 shows an example of providing services such as risk and lifestyle advice for risk factors using the cerebrovascular age estimated by the system for estimating cerebrovascular age from the medical image according to the present invention.
  • FIG. 1 is a block diagram showing the technical idea of the present invention, as a brain blood vessel image, machine learning through a convolutional neural network (Convolution Neural Network), for example, deep learning, deep learning Indicates that it is estimated.
  • FIG. 2 shows an example of changes in the morphological characteristics of cerebral blood vessels according to age, and it can be seen that the morphological characteristics of the cerebral blood vessels shown in the brain MRA image change with age.
  • Convolution Neural Network convolution Neural Network
  • MRA Magnetic Resonance Angiography
  • the age of the cerebral blood vessels is estimated by deep learning the change of the morphological characteristics of the (130).
  • FIG. 3 is a block diagram showing an embodiment of the configuration of the cerebral vascular age estimation system from the medical image according to the present invention
  • the cerebral vascular age estimation system from the medical image according to an embodiment of the present invention is a cerebrovascular image DB ( 310, a pre-processing unit 320, an input unit 340, and a convolutional neural network 350, and may further include an image enhancement unit 330.
  • the cerebrovascular image DB 310 may be constructed as a database for collecting and storing cerebrovascular images, for example, three-dimensional TOF MRA images, with age information of a subject.
  • the pre-processing unit 320 performs machine learning through the convolutional neural network (CNN, 350), for example, a cerebral blood vessel image having the age information obtained from the cerebrovascular imaging DB 310, for example, a 3D TOF MRA image. Pre-treatment is performed for deep learning.
  • 4 is a block diagram showing a more specific configuration of the pre-processing unit 320, the pre-processing unit 320 includes an isotropic standardization unit 410, an MCA detection unit 420 and a SLAB generation unit 430. Referring to FIG. 4, the isotropic standardization unit 410 interpolates a cerebrovascular image, for example, a TOP MRA image into an isotropic space and normalizes signal strength.
  • the MCA detection unit 420 detects the position of the middle cerebral artery (MCA) on the z-axis in order to match the coverage in the upper and lower range (z-axis) of the brain vessel image, for example, the 3D TOF MRA image.
  • MCA middle cerebral artery
  • the SLAB generation unit 430 cuts an image of a predetermined size based on the detected position of the middle cerebral artery (MCA) and interpolates the cut-sized image (slab) to reduce the data size.
  • FIG. 5 shows an embodiment of the pre-processing unit 320 as an MRA image.
  • MRA data from cerebral blood vessel imaging with age from specific hospital databases (Our DB, 511) and public databases CASILab (513) and IXI (515) Collected.
  • CASILab 515
  • IXI 515
  • the 3D TOF image is interpolated into a 0.5 mm isotropic space for the MRA DB 510 including three databases 511, 513, and 515, and signal strength is normalized. (510)
  • the position of the middle cerebral artery (MCA) on the z-axis is estimated as shown in Fig. B 520 to match the coverage of the MRA image data in the upper and lower range (z-axis) direction.
  • MCA middle cerebral artery
  • a 6.4 cm thick slab (SLAB, 1.7 cm to 4.7 cm above) is extracted.
  • the central part of the slab (256x256) is cut off and the SLAB (256x256x128), cut off due to limitations in the computational environment, is interpolated into a 1.0mm isotropic space (128x128x64) ( Figure C, 530).
  • the input unit 340 inputs risk factors for cerebrovascular disease including gender, age and hypertension, diabetes, and hyperlipidemia of the image preprocessed in the preprocessing unit 320.
  • the convolutional neural network applies feature maps by applying a weight to the input value using a brain blood vessel image with pre-processed age information, for example, a TOF MRA image as an input value of an input layer. It comprises a plurality of convolutional layers to calculate and a plurality of pooling layers to reduce the size of the feature maps of the plurality of convolutional layers, and the age of cerebral blood vessels is estimated through regression analysis.
  • the image augmentation unit 330 shifts the MRA image before cutting the data to reduce sensitivity to spatial variation of cerebrovascular image data of the data set in the course of learning and testing of the convolutional neural network (CNN, 350). , Rotation and flipping to increase training data.
  • 6 illustrates an example of the image enhancement unit 330, and shows that 652 images can be increased to 20,000 or more images by performing shifting, rotation, and flipping.
  • FIG. 7 shows an example of a convolutional neural network (CNN, 350) used as a component of a cerebrovascular age estimation system from a medical image according to the present invention, a plurality of convolutional layers (720, 740), a plurality of pooling It comprises a (pooling) layer (730, 750), a fully connected (fully connected) layer 760 and a regression (regression) analysis unit 770.
  • CNN convolutional neural network
  • the plurality of convolutional layers 720 and 740 is a feature map by applying a weight to the input value using a TOF MRA image 710 as an input value of an input layer as an example of a cerebrovascular image having pre-processed age information. (feature maps).
  • the plurality of pooling layers 730 and 750 reduce the size of the feature maps of the plurality of convolutional layers 720 and 740 through sub-sampling.
  • the fully connected layer 760 is connected to all activations of the pooling layer 750.
  • the regression analysis unit 770 estimates the age of the cerebral blood vessels through regression analysis using the output value of the complete connection layer 760.
  • FIG. 8 shows an example of an implementation of a convolutional neural network (CNN, 350) used as a component of a cerebrovascular age estimation system from a medical image according to the present invention.
  • CNN convolutional neural network
  • FIG. 8 shows a scheme of 3D CNN, a representative image of an activation map of each layer is shown.
  • the 3D CNN architecture has five weight layers (not shown), three 3D convolutional layers 810, 820, and 830, and two fully connected layers 840.
  • a 3x3x3 convolution kernel 850 with a stride of 1 and a 2x2x2 maximum pooling with a stride of 1 (860) were used for all layers.
  • ReLU rectified linear unit
  • the mean square error was used as a loss function in regression (880) and the batch size was 8.
  • a convolution operation when a convolution operation is performed using a 3x3x3 convolution kernel 850 having a stride of 1 for 3D input data 805 of 128x128x64, a plurality of 128x128x64 Feature maps can be constructed.
  • a subsampling map of 64x64x32 may be constructed by applying 2x2x2 maximum pooling 860 with a stride length of 1 from a feature map of each 128x128x64 in the convolution layer 810.
  • activation can be seen primarily in vascular voxels.
  • Network parameters including learning rate and number of epochs can be adjusted empirically to improve performance for validation through repeated experiments.
  • FIG. 9 is a flowchart illustrating an embodiment of a method for estimating cerebrovascular age from a medical image according to the present invention. 3, 4, 7 and 9, an embodiment of a method for estimating cerebrovascular age from a medical image according to the present invention will be described.
  • a medical image with age information of a plurality of subjects (subject), for example, TOF MRA images are collected to build a cerebrovascular image DB 310 (step S910).
  • the pre-processing unit 320 performs pre-processing to detect the position of the middle cerebral artery (MCA) in order to machine-learn a cerebral blood vessel image with age information through a convolutional neural network (CNN). It shows the process in more detail.
  • the isotropic standardization unit 410 interpolates a cerebrovascular image, for example, a TOF MRA image into an isotropic space and normalizes signal strength.
  • the MCA detection unit 420 heads the TOF MRA image
  • the position of the middle cerebral artery (MCA) of the z-axis is detected in order to match the coverage in the upper and lower range (z-axis).
  • Step S1020 The SLAB generation unit 430 detects the position of the detected middle cerebral artery (MCA). The image of a predetermined size is cut out at the center. (Step S1030) Then, the size of the data is reduced by interpolating the cut image of the predetermined size (Step S1040).
  • the CNN unit 350 applies the TOF MRA image having the pre-processed age information as an input value of an input layer and applies a weight to the input value.
  • Machine learning is performed through a convolutional neural network (CNN) including a plurality of convolutional layers for calculating feature maps (step S930).
  • the regression analysis unit of the CNN unit 350 (step S930) 770) estimates the age of cerebral blood vessels through the machine-learned convolutional neural network (CNN) (step S940).
  • step S920 after pre-processing a cerebrovascular image, for example, a TOF MRA image, data to reduce sensitivity to spatial variation of cerebrovascular image data in the learning data set of the convolutional neural network (CNN).
  • the data can be increased by performing shifting, rotation, and flipping before cutting.
  • the characteristics of the cerebral blood vessels can be extracted through the machine-learned convolutional neural network (CNN).
  • the input data of the convolutional neural network may further include a risk factor that causes cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia.
  • 11 shows an example of providing an analysis of cerebrovascular age and risk factors using a system for estimating cerebrovascular age from a medical image according to the present invention.
  • a 3D cerebral blood vessel image, a patient's gender and age, and risk factors for cerebrovascular disease such as hypertension, diabetes, hyperlipidemia, and cardiovascular disease are input to estimate cerebral vascular age, and estimated cerebrovascular disease
  • it can be used for personal health check and health promotion. Through this, you can improve your lifestyle and diagnose and prevent certain diseases early.
  • the present invention can be embodied as computer readable code on a computer readable recording medium (including all devices having information processing functions).
  • the computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system are stored. Examples of computer-readable recording devices include ROM, RAM, CD-ROM, magnetic tape, floppy disks, and optical data storage devices.
  • the “unit” may be a hardware component such as a processor or circuit, and/or a software component executed by a hardware component such as a processor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Image Analysis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention relates to a method and a system for estimating brain vascular age from a medical image, the method for estimating brain vascular age from a medical image comprising the steps of: collecting brain vascular images with age information of a plurality of subjects; pre-processing a brain vascular image with age information to detect the position of a middle cerebral artery (MCA) for machine learning through a convolutional neural network (CNN) having a plurality of learning layers; machine learning through the convolutional neural network (CNN) comprising a plurality of convolutional layers for calculating feature maps by using the pre-processed brain vascular image with the age information as an input value of an input layer and applying a weight to the input value; and estimating a brain vascular age through the machine-learned convolutional neural network (CNN).

Description

의료 영상으로부터 뇌혈관 나이를 추정하는 방법 및 시스템Method and system for estimating cerebrovascular age from medical imaging
본 발명은 뇌혈관 나이 추정에 관한 것으로서, 특히 기계학습(machine learning)을 이용하여 의료 영상으로부터 뇌혈관 나이를 추정하는 방법 및 시스템에 관한 것이다.The present invention relates to the estimation of cerebrovascular age, and more particularly, to a method and system for estimating cerebrovascular age from medical images using machine learning.
의료 영상은 의학적인 목적으로 대상의 해부학적 및 기능적인 정보를 얻게 된다. 인체의 다양한 부위에서 여러가지 방법으로 의료 영상을 얻을 수 있다. 예를 들어 뇌혈관 질환의 진단 등을 위하여 다양한 뇌혈관 영상을 얻을 수 있으며, 그 중 한 가지 방법은 time-of-flight MR angiography (TOF MRA)라는 기법이다. 이 기법은 자기공명 영상기기 (Magnetic resonance image)를 이용하여 유속이 있는 혈액의 신호는 강하게 나타나고 정지되어 있는 혈액의 신호는 약하게 나타나게 하여 각 단면에서 혈관의 영상만 추출하여 각 단면에서 얻어진 혈관 영상을 결합하여 2차원 또는 3차원적으로 재구성함으로써 조영제를 사용하지 않으면서도 혈관의 영상을 얻을 수 있는 기술적인 방법이다. TOF MRA는 뛰어난 영상 해상도로 뇌혈관 구조를 상세히 제시할 수 있어 현재 의료분야에서 많이 활용되는 혈관 영상 기법이다. 또한, 관련기술이 계속 발달하여 와류와 같은 복합혈류현상도 진단할 수 있고, 최근에는 미세혈관 영상도 얻을 수 있는 등 그 발전속도가 빠르다. 이 외에 조영제를 주입한 뒤 전산화단층촬영 영상을 얻어 뇌혈관 영상을 재구성한 CT 뇌혈관 조영술은 높은 공간해상도 및 빠른 검사시간으로 널리 이용되며, 정밀한 뇌혈관 영상 및 혈류역학적 정보를 얻을 수 있다. 한편, 뇌의 노화는 잘 알려져 있고 중요하다. 뇌는 높은 신진 대사 활동을 지원하기 위해 혈액 공급량이 풍부하기 때문에 나이에 따른 변화에 뇌 실질(brain parenchyma) 뿐 아니라 뇌 혈관계(brain vasculatures)도 포함된다는 것은 놀라운 일이 아니다. 조직 병리학적 연구는 노화에 따른 뇌동맥의 변화를 보여 주고 있고, 현미경적 변화는 머리와 목 부분의 동맥에 대한 큰 형태적 변화와 관련이 있다.The medical image acquires the anatomical and functional information of the object for medical purposes. Medical images can be obtained in various ways from various parts of the human body. For example, various cerebrovascular images can be obtained for the diagnosis of cerebrovascular disease, and one of them is a technique called time-of-flight MR angiography (TOF MRA). This technique uses a magnetic resonance image (Magnetic resonance image) to make the signal of blood with a strong flow rate appear strong and the signal of the stationary blood weakly extract only the images of blood vessels from each section and extract the blood vessel images obtained from each section. It is a technical method to obtain images of blood vessels without using contrast agents by combining and reconstructing in two or three dimensions. TOF MRA is a blood vessel imaging technique that is widely used in the medical field because it can present cerebral vessel structures in detail with excellent image resolution. In addition, as the related technology continues to develop, complex blood flow phenomena such as vortices can be diagnosed, and recently, microvascular images can also be obtained. In addition, CT cerebral angiography, which reconstructs cerebrovascular images by obtaining a computed tomography image after injecting a contrast agent, is widely used for high spatial resolution and fast examination time, and can obtain precise cerebrovascular images and hemodynamic information. Meanwhile, aging of the brain is well known and important. Since the brain is rich in blood supply to support high metabolic activity, it is not surprising that age-dependent changes include brain parenchyma as well as brain vasculatures. Histopathological studies have shown changes in cerebral arteries with aging, and microscopic changes have been associated with large morphological changes in the arteries of the head and neck.
뇌에서 관찰되는 노화를 측정하려는 시도가 있었으며, 일정부분 성공적인 결과를 보여준 반면, 뇌혈관에서 관찰되는 노화의 측정 및 수치화는 그 시도에 비하여 결과가 미약하다. 이는 뇌혈관영상에서 관찰되는 노화와 관련된 특징 (feature)들이 적절히 정의되지 못함에 기인한다. 기존에 손으로 만들어진 특징들(hand-crafted features)을 이용하여 뇌 MRA에서 발견된 연령 관련 변화를 측정 하였으나 정확도가 떨어지고 시간이 많이 소요되는 불편함이 있었다. 또한, 뇌 혈관의 전반적인 노화 상태를 평가하기 위해 단일 척도(measurement) 또는 지표(index)가 없었다. Attempts have been made to measure the aging observed in the brain, and some results have been successful, whereas the measurement and digitization of aging observed in the cerebral blood vessels has weaker results than the attempt. This is due to the fact that features related to aging observed in cerebrovascular imaging are not properly defined. Previously, hand-crafted features were used to measure age-related changes found in brain MRA, but there was a lack of accuracy and time-consuming discomfort. In addition, there was no single measure or index to assess the overall aging status of cerebral blood vessels.
횡단면 모집단(cross-sectional population) 데이터를 사용하여 구조적 뇌 MRI 영상으로부터 연령을 예측하는 것처럼 뇌 혈관 영상에 나타난 혈관의 형태 분석을 통해 뇌혈관 나이를 예측할 수 있다면 뇌와 혈관 노화에 대한 이미징 바이오마커(biomarker)로 사용될 수 있을 것이다.Imaging biomarkers for brain and vascular aging if the age of the cerebral vessels can be predicted by analyzing the morphology of blood vessels shown in cerebral vascular imaging, such as predicting age from structural brain MRI images using cross-sectional population data. biomarker).
[선행기술문헌][Advanced technical literature]
(특허문헌 1) 등록특허공보 제10-1620302호(2016.05.04)(Patent Document 1) Registered Patent Publication No. 10-1620302 (2016.05.04)
본 발명이 해결하고자 하는 과제는 상술한 종래의 손으로 만들어진 특징들(hand-crafted features)을 이용한 뇌혈관 영상의 구조적 분석의 한계와 불편함을 해결하기 위해 창출된 것으로서, 기계학습(machine learning), 예를 들어 딥 러닝(deep learning)을 이용하여 뇌혈관 영상에 나타나는 뇌혈관의 형태 변화를 분석하여 지식기반 뇌혈관 특징(knowledge-based cerebrovascular feature)을 추출하여 뇌혈관 나이를 예측할 수 있는, 의료영상으로부터 뇌혈관 나이를 추정하는 방법 및 시스템을 제공하는 것이다.The problem to be solved by the present invention was created to solve the limitations and inconveniences of structural analysis of cerebrovascular images using the above-described conventional hand-crafted features, machine learning. For example, by using deep learning to analyze changes in the shape of cerebral blood vessels appearing on cerebrovascular images, medical knowledge that can predict the cerebrovascular age by extracting knowledge-based cerebrovascular features It provides a method and system for estimating cerebrovascular age from imaging.
상기 기술적 과제를 이루기 위한 본 발명에 따른 의료영상으로부터 뇌혈관 나이를 추정하는 방법은, 다수의 검사 대상자(subject)의 나이 정보가 있는 뇌혈관 영상들을 수집하는 단계; 상기 나이 정보가 있는 뇌혈관 영상을 복수의 학습 층을 가지는 콘볼루션 신경망(CNN)을 통한 기계학습(machine learning)을 위해 중간대뇌동맥(MCA)의 위치를 검출하는 전처리를 수행하는 단계; 상기 전처리된 나이 정보가 있는 뇌혈관 영상을 입력 계층의 입력 값으로 하여 상기 입력 값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션(convolution) 계층을 포함하여 이루어지는 콘볼루션 신경망(CNN)을 통해 기계학습하는 단계; 및 상기 기계학습된 콘볼루션 신경망(CNN)을 통해 뇌혈관의 나이를 추정하는 단계를 포함한다.A method of estimating cerebrovascular age from a medical image according to the present invention for achieving the above technical problem includes: collecting cerebrovascular images with age information of a plurality of subjects; Performing pre-processing to detect the location of the middle cerebral artery (MCA) for machine learning through a convolutional neural network (CNN) having a plurality of learning layers on the cerebral blood vessel image having the age information; Consists of a plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the pre-processed cerebrovascular image as an input value of the input layer Machine learning through a convolutional neural network (CNN); And estimating the age of cerebral blood vessels through the machine-learned convolutional neural network (CNN).
상기 전처리는 뇌혈관 영상을 등방성 공간으로 보간하고 신호 강도를 표준화 하는 단계; 상기 뇌혈관영상의 머리의 위 아래 범위(z축) 커버리지를 맞추기 위해 상기 z 축의 중간 대뇌 동맥(MCA)의 위치를 검출하는 단계; 상기 검출된 중간 대뇌 동맥(MCA)의 위치를 중심으로 소정 크기의 영상을 잘라내는 단계; 및 상기 잘라낸 소정 크기의 영상(slab)을 보간하여 데이터 크기를 맞추어 주는 단계를 포함한다.The pre-processing comprises interpolating cerebral blood vessel images into an isotropic space and normalizing signal strength; Detecting the position of the middle cerebral artery (MCA) of the z-axis to match the coverage of the top and bottom (z-axis) of the head of the cerebrovascular image; Cutting an image of a predetermined size around a position of the detected middle cerebral artery (MCA); And interpolating the cut-sized image slab to adjust the data size.
본 발명에 따른 의료영상으로부터 뇌혈관 나이를 추정하는 방법은, 상기 콘볼루션 신경망(CNN)의 학습 데이터 세트(data set)의 뇌혈관 영상 데이터의 공간적인 변이에 대한 민감도를 줄이기 위해 데이터를 자르기 전에 의료영상 촬영시 발생할 수 있는 다양성이 반영되도록 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 데이터를 증가하는 것을 특징으로 한다.The method for estimating cerebrovascular age from a medical image according to the present invention, before cutting data to reduce sensitivity to spatial variation of cerebrovascular image data in the learning data set of the convolutional neural network (CNN) It is characterized by increasing data by performing shifting, rotation and flipping to reflect the diversity that may occur during medical imaging.
본 발명에 따른 의료영상으로부터 뇌혈관 나이를 추정하는 방법은, 상기 기계학습된 콘볼루션 신경망(CNN)을 통해 뇌혈관의 특징을 추출하는 단계를 더 포함할 수 있다. 상기 콘볼루션 신경망(CNN)의 입력 데이터는 고혈압, 당뇨, 고지혈을 포함한 뇌혈관 질환을 유발하는 위험인자를 더 포함할 수 있다.The method for estimating cerebrovascular age from a medical image according to the present invention may further include extracting features of the cerebral blood vessels through the machine-learned convolutional neural network (CNN). The input data of the convolutional neural network (CNN) may further include risk factors that induce cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia.
상기 기술적 과제를 이루기 위한 본 발명에 따른 의료영상으로부터 뇌혈관 나이를 추정하는 시스템은, 검사 대상자(subject)의 나이 정보가 있는 3차원 TOF MRA 영상을 수집하여 저장하는 뇌혈관 영상 DB; 상기 뇌혈관 영상 DB로부터 획득된 상기 나이 정보가 있는 3차원 뇌혈관 영상을 콘볼루션 신경망(CNN)을 통해 기계학습하기 위해 중간대뇌동맥(MCA)의 위치를 검출하는 전처리를 수행하는 전처리부; 상기 전처리부에서 전처리된 영상의 나이, 뇌혈관질환 위험인자를 입력하는 입력부; 상기 전처리된 나이 정보가 있는 뇌혈관 영상을 입력 계층의 입력값으로 하여 상기 입력값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션 계층 및 상기 다수의 콘볼루션 계층의 특징맵의 크기를 줄이는 다수의 풀링(pooling) 계층을 포함하여 이루어지고, 뇌혈관의 나이를 회귀분석을 통해 추정하는 콘볼루션 신경망(CNN)을 포함한다.The system for estimating cerebrovascular age from medical images according to the present invention for achieving the above technical problem includes: a cerebrovascular imaging DB that collects and stores a 3D TOF MRA image with age information of a subject; A pre-processing unit for performing pre-processing to detect the position of the middle cerebral artery (MCA) to machine learn a 3D cerebrovascular image with age information obtained from the cerebrovascular image DB through a convolutional neural network (CNN); An input unit for inputting age and cerebrovascular disease risk factors of images pre-processed by the pre-processing unit; A plurality of convolutional layers and a plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the cerebral blood vessel image having the pre-processed age information as an input value of the input layer It comprises a plurality of pooling (pooling) layer to reduce the size of the feature map, and includes a convolutional neural network (CNN) that estimates the age of the cerebral blood vessels through regression analysis.
상기 전처리부는 뇌혈관 영상을 등방성 공간으로 보간하고 신호강도를 표준화하는 등방성표준화부; 상기 뇌혈관영상 이미지의 머리 위 아래 방향(z축) 커버리지를 맞추기 위해 상기 z 축의 중간대뇌 동맥(MCA)의 위치를 검출하는 MCA검출부; 및 상기 검출된 중간대뇌 동맥(MCA)의 위치를 중심으로 소정 크기의 영상을 잘라내고 상기 잘라낸 소정 크기의 영상(slab)을 보간하여 데이터 크기를 맞추어 주며 기계학습 입력을 위한 3차원 Slab 생성부를 포함한다. The pre-processing unit is an isotropic standardization unit for interpolating cerebral blood vessel images into an isotropic space and standardizing signal intensity; An MCA detection unit that detects the position of the middle cerebral artery (MCA) on the z-axis in order to align the top-down (z-axis) coverage of the cerebrovascular image; And a three-dimensional slab generating unit for cutting the image of a predetermined size based on the detected position of the middle cerebral artery (MCA), interpolating the cut-sized image (slab), adjusting the data size, and inputting machine learning. do.
본 발명에 따른 의료영상으로부터 뇌혈관 나이를 추정하는 시스템은, 상기 콘볼루션 신경망(CNN)의 학습 및 테스트 과정에서의 뇌혈관 영상 데이터의 공간적인 변이에 대한 민감도를 줄이기 위해 데이터를 자르기 전에 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 트레이닝 데이터를 증가하는 이미지 증강부를 더 포함한다.The system for estimating cerebrovascular age from medical images according to the present invention moves before cutting data to reduce sensitivity to spatial variation of cerebrovascular image data during learning and testing of the convolutional neural network (CNN) ( It further includes an image enhancement unit that increases training data by performing shifting, rotation, and flipping.
상기 콘볼루션 신경망(CNN)은 상기 전처리된 나이 정보가 있는 TOF MRA 영상을 입력 계층의 입력값으로 하여 상기 입력값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션 계층; 상기 다수의 콘볼루션 계층의 특징맵의 크기를 서브 샘플링을 통해 줄이는 다수의 풀링(pooling) 계층; 상기 풀링 계층과 모든 액티베이션과 연결되는 완전연결 계층; 및 상기 완전연결 계층의 출력값을 이용하여 회귀(regression) 분석을 통해 뇌혈관의 나이를 추정하는 회귀분석부를 포함한다. 상기 입력부는 고혈압, 당뇨, 고지혈을 포함한 뇌혈관 질환을 유발하는 위험인자와 성별정보를 더 포함할 수 있다.The convolutional neural network (CNN) uses the TOF MRA image having the pre-processed age information as an input value of an input layer to apply a weight to the input value to calculate feature maps. hierarchy; A plurality of pooling layers that reduce the size of the feature maps of the plurality of convolution layers through sub-sampling; A full connection layer connected to the pooling layer and all activations; And a regression analysis unit for estimating the age of cerebral blood vessels through regression analysis using the output value of the complete connection layer. The input unit may further include risk factors and sex information for causing cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia.
본 발명에 따른 의료영상로부터 뇌혈관 나이 추정 방법 및 시스템에 의하면, 기계학습(machine learning), 예를 들어 딥 러닝(deep learning)을 통해 뇌혈관의 형태적 변화를 정량화함으로써 뇌 혈관의 전반적인 노화 상태를 평가하기 위해 단일 척도(measurement) 또는 지표(index)를 제공할 수 있다.According to the method and system for estimating cerebrovascular age from medical images according to the present invention, the overall aging state of cerebral blood vessels is quantified by quantifying morphological changes in cerebral blood vessels through machine learning, for example, deep learning. A single measure or index can be provided to evaluate.
그리고 본 발명에 의하면, 기계학습을 이용하여 뇌혈관영상에 나타나는 뇌혈관의 형태 변화를 분석하여 지식기반 뇌혈관 특징(knowledge-based cerebrovascular feature)을 추출함으로써 뇌 혈관 나이를 예측할 수 있고, 뇌와 혈관 노화에 대한 이미징 바이오 마커 (biomarker)로 사용할 수 있다.In addition, according to the present invention, brain vascular age can be predicted by extracting a knowledge-based cerebrovascular feature by analyzing changes in the shape of cerebral blood vessels appearing on cerebrovascular images using machine learning. It can be used as an imaging biomarker for aging.
또한 본 발명에 의하면, 지식기반 뇌혈관 특징 및 환자의 위험인자 정보를 더하여 기존에 측정할 수 없었던 뇌혈관 정보를 제공할 수 있다. 또한, 새로운 뇌혈관 정보를 이용하여 개개인의 건강상태를 확인하고 건강 증진에 활용함으로써 특정 질환을 조기에 진단하고 발병을 예방할 수 있다.In addition, according to the present invention, knowledge-based cerebrovascular characteristics and risk factor information of a patient can be added to provide cerebrovascular information that cannot be previously measured. In addition, by using new cerebrovascular information to check the health status of each individual and utilize it to promote health, early diagnosis and prevention of specific diseases can be prevented.
도 1은 본 발명의 기술적 사상을 블록도로 나타낸 것이다. 1 is a block diagram showing the technical idea of the present invention.
도 2는 나이에 따른 뇌 혈관의 형태적 특성의 변화에 대한 예를 나타낸 것이다.2 shows an example of a change in morphological characteristics of brain blood vessels with age.
도 3은 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템의 구성에 대한 일실시예를 블록도로 나타낸 것이다.Figure 3 is a block diagram showing an embodiment of the configuration of the cerebrovascular age estimation system from a medical image according to the present invention.
도 4는 전처리부(320)의 보다 구체적인 구성을 블록도로 나타낸 것이다.4 is a block diagram showing a more specific configuration of the pre-processing unit 320.
도 5는 전처리부(320)의 일실시예를 MRA 영상으로 나타낸 것이다.5 shows an embodiment of the pre-processing unit 320 as an MRA image.
도 6은 이미지 증강부(330)의 일 예를 나타낸 것이다.6 shows an example of the image enhancement unit 330.
도 7은 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템의 구성 요소로 사용되는 콘볼루션 신경망(CNN, 350)의 일 예를 나타낸 것이다.7 shows an example of a convolutional neural network (CNN, 350) used as a component of a cerebrovascular age estimation system from a medical image according to the present invention.
도 8은 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템의 구성 요소로 사용되는 콘볼루션 신경망(CNN, 350)의 구현 예를 나타낸 것이다.8 shows an example of an implementation of a convolutional neural network (CNN, 350) used as a component of a cerebrovascular age estimation system from a medical image according to the present invention.
도 9는 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 방법에 대한 일실시예를 흐름도로 나타낸 것이다.9 is a flowchart illustrating an embodiment of a method for estimating cerebrovascular age from a medical image according to the present invention.
도 10은 전처리 과정을 보다 세부적으로 나타낸 것이다.10 shows the pretreatment process in more detail.
도 11은 본 발명에 의한 의료영상으로부터 뇌혈관 나이를 추정하는 시스템에 의해 추정된 뇌혈관 나이를 이용하여 위험인자에 대한 위험도 및 생활습관 조언 등의 서비스를 제공하는 일 예를 나타낸 것이다.11 shows an example of providing services such as risk and lifestyle advice for risk factors using the cerebrovascular age estimated by the system for estimating cerebrovascular age from the medical image according to the present invention.
이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The configurations shown in the embodiments and drawings described in this specification are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, and various equivalents that can replace them at the time of this application It should be understood that there may be and variations.
도 1은 본 발명의 기술적 사상을 블록도로 나타낸 것으로서, 뇌혈관 영상으로 하여 콘볼루션 신경망(Convolution Neural Network)을 통해 기계학습(machine learning), 예를 들어 딥 러닝(deep learning)하여 뇌혈관의 나이를 추정하는 것을 나타낸다. 도 2는 나이에 따른 뇌 혈관의 형태적 특성의 변화의 예를 나타낸 것으로서, 뇌 MRA영상에 나타나는 뇌혈관의 형태적 특성이 나이에 따라 변화됨을 알 수 있다.Figure 1 is a block diagram showing the technical idea of the present invention, as a brain blood vessel image, machine learning through a convolutional neural network (Convolution Neural Network), for example, deep learning, deep learning Indicates that it is estimated. FIG. 2 shows an example of changes in the morphological characteristics of cerebral blood vessels according to age, and it can be seen that the morphological characteristics of the cerebral blood vessels shown in the brain MRA image change with age.
도 1을 참조하면, 입력부(110)를 통해 입력되는MRA(Magnetic Resonance Angiography) 영상을 트레이닝 데이터 세트(training data set)로 하여 콘볼루션 신경망(Convolution Neural Network, 120)을 통해 MRA 영상에 나타난 뇌혈관의 형태적 특징에 대한 변화를 딥 러닝하여 뇌혈관의 나이를 추정(130)한다.Referring to FIG. 1, a cerebral blood vessel shown in an MRA image through a convolutional neural network 120 using a MRA (Magnetic Resonance Angiography) image input through the input unit 110 as a training data set The age of the cerebral blood vessels is estimated by deep learning the change of the morphological characteristics of the (130).
도 3은 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템의 구성에 대한 일실시예를 블록도로 나타낸 것으로서, 본 발명의 일실시예에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템은 뇌혈관 영상DB(310), 전처리부(320), 입력부(340), 콘볼루션 신경망(350)을 포함하여 이루어지고, 이미지 증강부(330)를 더 포함할 수 있다..Figure 3 is a block diagram showing an embodiment of the configuration of the cerebral vascular age estimation system from the medical image according to the present invention, the cerebral vascular age estimation system from the medical image according to an embodiment of the present invention is a cerebrovascular image DB ( 310, a pre-processing unit 320, an input unit 340, and a convolutional neural network 350, and may further include an image enhancement unit 330.
뇌혈관영상DB(310)는 검사 대상자(subject)의 나이 정보가 있는 뇌혈관 영상 예를 들어 3차원 TOF MRA 영상을 수집하여 저장하는 데이터베이스로 구축할 수 있다.The cerebrovascular image DB 310 may be constructed as a database for collecting and storing cerebrovascular images, for example, three-dimensional TOF MRA images, with age information of a subject.
전처리부(320)는 뇌혈관영상DB(310)로부터 획득된 상기 나이 정보가 있는 뇌혈관 영상, 예를 들어 3차원 TOF MRA 영상을 콘볼루션 신경망(CNN, 350)을 통해 기계학습, 예를 들어 딥 러닝하기 위해 전처리를 수행한다. 도 4는 전처리부(320)의 보다 구체적인 구성을 블록도로 나타낸 것으로서, 전처리부(320)는 등방성 표준화부(410), MCA 검출부(420) 및 SLAB 생성부(430)을 포함하여 이루어진다. 도 4를 참조하면, 등방성 표준화부(410)는 뇌혈관 영상, 예를 들어TOF MRA 이미지를 등방성 공간으로 보간하고 신호강도를 표준화한다.The pre-processing unit 320 performs machine learning through the convolutional neural network (CNN, 350), for example, a cerebral blood vessel image having the age information obtained from the cerebrovascular imaging DB 310, for example, a 3D TOF MRA image. Pre-treatment is performed for deep learning. 4 is a block diagram showing a more specific configuration of the pre-processing unit 320, the pre-processing unit 320 includes an isotropic standardization unit 410, an MCA detection unit 420 and a SLAB generation unit 430. Referring to FIG. 4, the isotropic standardization unit 410 interpolates a cerebrovascular image, for example, a TOP MRA image into an isotropic space and normalizes signal strength.
MCA검출부(420)는 상기 뇌혈관 영상, 예를 들어 3차원 TOF MRA 이미지의 머리의 위 아래 범위(z 축) 방향 커버리지를 맞추기 위해 z 축의 중간대뇌 동맥(MCA)의 위치를 검출한다.The MCA detection unit 420 detects the position of the middle cerebral artery (MCA) on the z-axis in order to match the coverage in the upper and lower range (z-axis) of the brain vessel image, for example, the 3D TOF MRA image.
SLAB 생성부(430)는 상기 검출된 중간대뇌 동맥(MCA)의 위치를 중심으로 소정 크기의 영상을 잘라내고 상기 잘라낸 소정 크기의 영상(slab)을 보간하여 데이터 크기를 줄인다.The SLAB generation unit 430 cuts an image of a predetermined size based on the detected position of the middle cerebral artery (MCA) and interpolates the cut-sized image (slab) to reduce the data size.
도 5는 전처리부(320)의 일실시예를 MRA 영상으로 나타낸 것이다. 5 shows an embodiment of the pre-processing unit 320 as an MRA image.
기계학습, 예를 들어 딥 러닝은 대용량 데이터에 의존하기 때문에, 많은 수의 정상적인(normal) 검사대상자(subjects)와 폭 넓은 연령 분포가 필요하다. 도 5를 참조하면, 본 발명의 실시예에서는 적절한 데이터베이스를 구축하기 위해 특정 병원 데이터베이스(Our DB, 511)과 공공 데이터베이스인 CASILab(513)와 IXI(515)로부터 나이와 함께 뇌혈관 영상으로 MRA 데이터를 수집했다. 본 발명의 실시예에서는 총 1192 개의 3D TOF MRA 이미지가 수집되었다.Since machine learning, for example deep learning, relies on large volumes of data, a large number of normal subjects and a wide age distribution are required. Referring to FIG. 5, in an embodiment of the present invention, in order to construct an appropriate database, MRA data from cerebral blood vessel imaging with age from specific hospital databases (Our DB, 511) and public databases CASILab (513) and IXI (515) Collected. In the embodiment of the present invention, a total of 1192 3D TOF MRA images were collected.
참조번호 512는 특정 병원 데이터베이스(Our DB, 511)의 나이 분포에 따른 MRA 데이터 개수를 나타낸 것이고, 참조번호 514 및 516은 공공 데이터베이스인 CASILab(513)와 IXI(515)의 나이 분포에 따른 MRA 데이터 개수를 나타낸 것이다. 하나의 공공 DB(IXI, 515)와 하나의 병원 DB(Our DB, 511)에는 연령 분포가 균일한 많은 수의 검사 대상자를 포함하고 있기 때문에 공공 DB(IXI, 515)와 병원 DB(Our DB, 511)가 트레이닝과 검증에 사용되었다. 또한 연령 분포를 유지하면서 이 풀링된 데이터를 트레이닝 (n = 652)과 검증(n = 94) set 으로 나누었다. Reference number 512 denotes the number of MRA data according to the age distribution of a specific hospital database (Our DB, 511), and reference numbers 514 and 516 denote MRA data according to the age distribution of public databases CASILab(513) and IXI(515). It shows the number. Because one public DB (IXI, 515) and one hospital DB (Our DB, 511) contain a large number of subjects with a uniform age distribution, the public DB (IXI, 515) and hospital DB (Our DB, 511) was used for training and verification. The pooled data were also divided into training (n = 652) and validation (n = 94) sets while maintaining the age distribution.
상기 3개의 데이터 베이스(511, 513, 515)에 대해 이미징 프로토콜과 이미지 특성이 다를 수 있으므로 기계학습을 하기 전에 전처리가 필요하다. 먼저, 본 발명의 실시예에서는 3개의 데이터 베이스(511, 513, 515)를 포함하는 MRA DB(510)에 대해 3D TOF 영상을 0.5mm 등방성 공간(isotropic space)으로 보간하고 신호 세기를 표준화 한다.(510) Since the imaging protocols and image characteristics may be different for the three databases 511, 513, and 515, pre-processing is required before machine learning. First, in the embodiment of the present invention, the 3D TOF image is interpolated into a 0.5 mm isotropic space for the MRA DB 510 including three databases 511, 513, and 515, and signal strength is normalized. (510)
상기 보간 및 표준화를 한 후에는, MRA 영상 데이터의 머리의 위 아래 범위(z축) 방향 커버리지를 맞추기 위해 z 축의 중간 대뇌 동맥(MCA)의 위치를 그림 B(520)에 나타낸 것처럼 추정한다. MCA의 위치를 추정 한 후, 6.4 cm 두께의 슬래브(SLAB, 1.7 cm 아래에서 4.7 cm 위까지)를 추출한다. 슬래브의 중앙 부분 (256x256)이 잘리고 계산 환경의 한계로 인해 자른 SLAB(256x256x128)이 1.0mm 등방성 공간 (128x128x64)으로 보간된다.(그림 C, 530)After the interpolation and normalization, the position of the middle cerebral artery (MCA) on the z-axis is estimated as shown in Fig. B 520 to match the coverage of the MRA image data in the upper and lower range (z-axis) direction. After estimating the location of the MCA, a 6.4 cm thick slab (SLAB, 1.7 cm to 4.7 cm above) is extracted. The central part of the slab (256x256) is cut off and the SLAB (256x256x128), cut off due to limitations in the computational environment, is interpolated into a 1.0mm isotropic space (128x128x64) (Figure C, 530).
입력부(340)는 전처리부(320)에서 전처리된 영상의 성별, 나이와 고혈압, 당뇨, 고지혈을 포함하는 뇌혈관질환 위험인자를 입력한다.The input unit 340 inputs risk factors for cerebrovascular disease including gender, age and hypertension, diabetes, and hyperlipidemia of the image preprocessed in the preprocessing unit 320.
콘볼루션 신경망(CNN, 350)은 전처리된 나이 정보가 있는 뇌혈관 영상 예를 들어 TOF MRA 영상을 입력 계층의 입력값으로 하여 상기 입력값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션 계층 및 상기 다수의 콘볼루션 계층의 특징맵의 크기를 줄이는 다수의 풀링(pooling) 계층을 포함하여 이루어지고, 뇌혈관의 나이를 회귀분석을 통해 추정한다.The convolutional neural network (CNN, 350) applies feature maps by applying a weight to the input value using a brain blood vessel image with pre-processed age information, for example, a TOF MRA image as an input value of an input layer. It comprises a plurality of convolutional layers to calculate and a plurality of pooling layers to reduce the size of the feature maps of the plurality of convolutional layers, and the age of cerebral blood vessels is estimated through regression analysis.
이미지 증강부(330)는 콘볼루션 신경망(CNN, 350)의 학습 및 테스트 과정에서의 데이터 세트의 뇌혈관 영상 데이터의 공간적인 변이에 대한 민감도를 줄이기 위해 데이터를 자르기 전에 MRA 이미지를 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 트레이닝 데이터를 증가한다. 도 6은 이미지 증강부(330)의 일 예를 나타낸 것으로서, 652개의 이미지를 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 2만개 이상의 이미지로 증가할 수 있는 것을 나타내고 있다. The image augmentation unit 330 shifts the MRA image before cutting the data to reduce sensitivity to spatial variation of cerebrovascular image data of the data set in the course of learning and testing of the convolutional neural network (CNN, 350). , Rotation and flipping to increase training data. 6 illustrates an example of the image enhancement unit 330, and shows that 652 images can be increased to 20,000 or more images by performing shifting, rotation, and flipping.
도 7은 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템의 구성 요소로 사용되는 콘볼루션 신경망(CNN, 350)의 일 예를 나타낸 것으로서, 다수의 콘볼루션 계층(720, 740), 다수의 풀링(pooling) 계층(730, 750), 완전연결(fully connected) 계층(760) 및 회귀(regression) 분석부(770)를 포함하여 이루어진다. FIG. 7 shows an example of a convolutional neural network (CNN, 350) used as a component of a cerebrovascular age estimation system from a medical image according to the present invention, a plurality of convolutional layers (720, 740), a plurality of pooling It comprises a (pooling) layer (730, 750), a fully connected (fully connected) layer 760 and a regression (regression) analysis unit 770.
다수의 콘볼루션 계층(720, 740)은 전처리된 나이 정보가 있는 뇌혈관 영상의 일 예로 TOF MRA 영상(710)을 입력 계층의 입력값으로 하여 상기 입력값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출한다. 다수의 풀링(pooling) 계층(730, 750)은 다수의 콘볼루션 계층(720, 740)의 특징맵의 크기를 서브 샘플링을 통해 줄인다.The plurality of convolutional layers 720 and 740 is a feature map by applying a weight to the input value using a TOF MRA image 710 as an input value of an input layer as an example of a cerebrovascular image having pre-processed age information. (feature maps). The plurality of pooling layers 730 and 750 reduce the size of the feature maps of the plurality of convolutional layers 720 and 740 through sub-sampling.
완전연결(fully connected) 계층(760)은 풀링 계층(750)의 모든 액티베이션과 연결된다. 회귀(regression) 분석부(770)는 완전연결 계층(760)의 출력값을 이용하여 회귀(regression) 분석을 통해 뇌혈관의 나이를 추정한다.The fully connected layer 760 is connected to all activations of the pooling layer 750. The regression analysis unit 770 estimates the age of the cerebral blood vessels through regression analysis using the output value of the complete connection layer 760.
도 8은 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 시스템의 구성 요소로 사용되는 콘볼루션 신경망(CNN, 350)의 구현 예를 나타낸 것이다. 도 8을 참조하면, 3D CNN의 scheme으로서, 각 레이어의 활성화 맵에 대한 대표 이미지를 나타내고 있다. 3D CNN 아키텍처에는 5 개의 weight 레이어(미도시), 3 개의 3D 컨볼루션 레이어(810, 820, 830) 및 2 개의 완전 연결 레이어(840)가 있다. 이 모델에서 보폭(stride)이 1 인 3x3x3 컨볼루션 커널(850)과 보폭이 1 인 2x2x2 최대 풀링(860)이 모든 레이어에 사용되었다. 각각의 콘볼루션 레이어 후에, 정류된 선형 유닛(ReLU, 870)이 적용되었다. 훈련 과정에서 평균 제곱 오차가 회귀 분석(regression, 880)에서 손실 함수로 사용되었으며 배치 크기는 8이다. 8 shows an example of an implementation of a convolutional neural network (CNN, 350) used as a component of a cerebrovascular age estimation system from a medical image according to the present invention. Referring to FIG. 8, as a scheme of 3D CNN, a representative image of an activation map of each layer is shown. The 3D CNN architecture has five weight layers (not shown), three 3D convolutional layers 810, 820, and 830, and two fully connected layers 840. In this model, a 3x3x3 convolution kernel 850 with a stride of 1 and a 2x2x2 maximum pooling with a stride of 1 (860) were used for all layers. After each convolutional layer, a rectified linear unit (ReLU, 870) was applied. In the course of training, the mean square error was used as a loss function in regression (880) and the batch size was 8.
예를 들어, 콘볼루션 계층(810)에서 하나의 128x128x64의 3D 입력 데이터(805)에 대해 보폭(stride)이 1 인 3x3x3 컨볼루션 커널(850)을 사용하여 콘볼루션 연산을 수행하면 다수의 128x128x64의 특징맵을 구성할 수 있다. 콘볼루션 계층(810)에 있는 각각의 128x128x64의 특징 맵으로부터 보폭이 1 인 2x2x2 최대 풀링(860)을 적용하여 64x64x32의 서브샘플링 맵을 구성할 수 있다. 본 발명의 구현예에서는 주로 혈관 voxels에서 활성화를 볼 수 있다. Learning rate와 epoch의 수를 포함하는 네트워크 파라미터들은 경험적으로 조정되어 반복적인 실험을 통해 유효성 검증을 위한 성능을 높일 수 있다.For example, in the convolution layer 810, when a convolution operation is performed using a 3x3x3 convolution kernel 850 having a stride of 1 for 3D input data 805 of 128x128x64, a plurality of 128x128x64 Feature maps can be constructed. A subsampling map of 64x64x32 may be constructed by applying 2x2x2 maximum pooling 860 with a stride length of 1 from a feature map of each 128x128x64 in the convolution layer 810. In embodiments of the invention, activation can be seen primarily in vascular voxels. Network parameters including learning rate and number of epochs can be adjusted empirically to improve performance for validation through repeated experiments.
도 9는 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 방법에 대한 일실시예를 흐름도로 나타낸 것이다. 도 3, 도 4, 도7 및 도 9를 참조하여, 본 발명에 따른 의료영상으로부터 뇌혈관 나이 추정 방법에 대한 일실시예를 설명하기로 한다. 먼저, 다수의 검사 대상자(subject)의 나이 정보가 있는 의료영상, 예를 들어 TOF MRA 영상들을 수집하여 뇌혈관 영상 DB(310)를 구축한다.(S910단계)9 is a flowchart illustrating an embodiment of a method for estimating cerebrovascular age from a medical image according to the present invention. 3, 4, 7 and 9, an embodiment of a method for estimating cerebrovascular age from a medical image according to the present invention will be described. First, a medical image with age information of a plurality of subjects (subject), for example, TOF MRA images are collected to build a cerebrovascular image DB 310 (step S910).
전처리부(320)는 나이 정보가 있는 뇌혈관 영상을 콘볼루션 신경망(CNN)을 통해 기계학습하기 위해 중간대뇌동맥(MCA)의 위치를 검출하는 전처리를 수행한다.(S920단계) 도 10은 상기 전처리 과정을 보다 세부적으로 나타낸 것이다. 도 10을 참조하면, 등방성 표준화부(410)는 뇌혈관 영상 예를 들어 TOF MRA 이미지를 등방성 공간으로 보간하고 신호 강도를 표준화 한다.(S1010단계) MCA 검출부(420)는 상기 TOF MRA 이미지의 머리의 위 아래 범위(z 축) 방향 커버리지를 맞추기 위해 z 축의 중간 대뇌 동맥(MCA)의 위치를 검출한다.(S1020단계) SLAB 생성부(430)는 상기 검출된 중간 대뇌 동맥(MCA)의 위치를 중심으로 소정 크기의 영상을 잘라낸다.(S1030단계) 그리고 나서 상기 잘라낸 소정 크기의 영상(slab)을 보간하여 데이터 크기를 줄인다.(S1040단계)The pre-processing unit 320 performs pre-processing to detect the position of the middle cerebral artery (MCA) in order to machine-learn a cerebral blood vessel image with age information through a convolutional neural network (CNN). It shows the process in more detail. Referring to FIG. 10, the isotropic standardization unit 410 interpolates a cerebrovascular image, for example, a TOF MRA image into an isotropic space and normalizes signal strength. (Step S1010) The MCA detection unit 420 heads the TOF MRA image The position of the middle cerebral artery (MCA) of the z-axis is detected in order to match the coverage in the upper and lower range (z-axis). (Step S1020) The SLAB generation unit 430 detects the position of the detected middle cerebral artery (MCA). The image of a predetermined size is cut out at the center. (Step S1030) Then, the size of the data is reduced by interpolating the cut image of the predetermined size (Step S1040).
뇌혈관 영상 예를 들어 TOF MRA 영상이 전처리 되면, CNN부(350)는 상기 전처리된 나이 정보가 있는 상기 TOF MRA 영상을 입력 계층의 입력 값으로 하여 상기 입력 값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션(convolution) 계층을 포함하여 이루어지는 콘볼루션 신경망(CNN)을 통해 기계학습(machine learning) 한다.(S930단계) CNN부(350)의 회귀분석부(770)는 상기 기계학습된 콘볼루션 신경망(CNN)을 통해 뇌혈관의 나이를 추정한다.(S940단계)When a cerebrovascular image, for example, a TOF MRA image is pre-processed, the CNN unit 350 applies the TOF MRA image having the pre-processed age information as an input value of an input layer and applies a weight to the input value. Machine learning is performed through a convolutional neural network (CNN) including a plurality of convolutional layers for calculating feature maps (step S930). The regression analysis unit of the CNN unit 350 (step S930) 770) estimates the age of cerebral blood vessels through the machine-learned convolutional neural network (CNN) (step S940).
한편, S920단계에서 뇌혈관 영상 예를 들어 TOF MRA 영상을 전처리한 후, 상기 콘볼루션 신경망(CNN)의 학습 데이터 세트(data set)의 뇌혈관 영상 데이터의 공간적인 변이에 대한 민감도를 줄이기 위해 데이터를 자르기 전에 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 데이터를 증가할 수 있다. 그리고 상기 기계학습된 콘볼루션 신경망(CNN)을 통해 뇌혈관의 특징을 추출할 수 있다. Meanwhile, in step S920, after pre-processing a cerebrovascular image, for example, a TOF MRA image, data to reduce sensitivity to spatial variation of cerebrovascular image data in the learning data set of the convolutional neural network (CNN). The data can be increased by performing shifting, rotation, and flipping before cutting. And the characteristics of the cerebral blood vessels can be extracted through the machine-learned convolutional neural network (CNN).
한편, 상기 콘볼루션 신경망(CNN)의 입력 데이터는 고혈압, 당뇨, 고지혈을 포함한 뇌혈관 질환을 유발하는 위험인자를 더 포함할 수 있다. 도 11은 본 발명에 의한 의료영상으로부터 뇌혈관 나이를 추정하는 시스템을 이용하여 뇌혈관 나이와 위험인자에 대한 분석을 제공하는 일 예를 나타낸 것이다. 도 11을 참조하면, 3차원 뇌혈관 영상과 환자의 성별 및 나이, 뇌혈관 질환 위험인자 예를 들어 고혈압, 당뇨, 고지혈증, 심뇌혈관 질환을 입력으로 하여 뇌혈관 나이를 추정하고, 추정된 뇌혈관 정보를 이용하여 노화 측정 결과 및 분석결과를 그래프와 코멘트로 제공함으로써, 개개인의 건강상태 확인 및 건강증진에 활용할 수 있다. 이를 통해 생활습관을 개선하고 특정 질환을 조기에 진단하고 예방할 수도 있다. Meanwhile, the input data of the convolutional neural network (CNN) may further include a risk factor that causes cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia. 11 shows an example of providing an analysis of cerebrovascular age and risk factors using a system for estimating cerebrovascular age from a medical image according to the present invention. Referring to FIG. 11, a 3D cerebral blood vessel image, a patient's gender and age, and risk factors for cerebrovascular disease such as hypertension, diabetes, hyperlipidemia, and cardiovascular disease are input to estimate cerebral vascular age, and estimated cerebrovascular disease By using the information to provide aging measurement results and analysis results in graphs and comments, it can be used for personal health check and health promotion. Through this, you can improve your lifestyle and diagnose and prevent certain diseases early.
본 발명은 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터(정보 처리 기능을 갖는 장치를 모두 포함한다)가 읽을 수 있는 코드로서 구현될 수 있다. 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 장치의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있다. 또한, 본 명세서에서, “부”는 프로세서 또는 회로와 같은 하드웨어 구성(hardware component), 및/또는 프로세서와 같은 하드웨어 구성에 의해 실행되는 소프트웨어 구성(software component)일 수 있다.The present invention can be embodied as computer readable code on a computer readable recording medium (including all devices having information processing functions). The computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system are stored. Examples of computer-readable recording devices include ROM, RAM, CD-ROM, magnetic tape, floppy disks, and optical data storage devices. Also, in this specification, the “unit” may be a hardware component such as a processor or circuit, and/or a software component executed by a hardware component such as a processor.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will understand that various modifications and other equivalent embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (10)

  1. 다수의 검사 대상자(subject)의 나이 정보가 있는 뇌혈관 영상들을 수집하는 단계;Collecting cerebrovascular images with age information of a plurality of subjects;
    상기 나이 정보가 있는 뇌혈관 영상을 복수의 학습 층을 가지는 콘볼루션 신경망(CNN)을 통한 기계학습(machine learning)을 위해 중간대뇌동맥(MCA)의 위치를 검출하는 전처리를 수행하는 단계;Performing pre-processing to detect the location of the middle cerebral artery (MCA) for machine learning through a convolutional neural network (CNN) having a plurality of learning layers on the cerebral blood vessel image having the age information;
    상기 전처리된 나이 정보가 있는 뇌혈관 영상을 입력 계층의 입력 값으로 하여 상기 입력 값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션(convolution) 계층을 포함하여 이루어지는 콘볼루션 신경망(CNN)을 통해 기계학습하는 단계; 및 Consists of a plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the pre-processed cerebrovascular image as an input value of the input layer Machine learning through a convolutional neural network (CNN); And
    상기 기계학습된 콘볼루션 신경망(CNN)을 통해 뇌혈관의 나이를 추정하는 단계를 포함하는, 의료영상으로부터 뇌혈관 나이를 추정하는 방법.And estimating the age of cerebral blood vessels through the machine-learned convolutional neural network (CNN).
  2. 제1항에 있어서, 상기 전처리는The method of claim 1, wherein the pre-treatment
    뇌혈관 영상을 등방성 공간으로 보간하고 신호 강도를 표준화 하는 단계;Interpolating cerebrovascular images into isotropic space and normalizing signal strength;
    상기 뇌혈관영상의 머리의 위 아래 범위(z축) 커버리지를 맞추기 위해 상기 z 축의 중간 대뇌 동맥(MCA)의 위치를 검출하는 단계;Detecting the position of the middle cerebral artery (MCA) of the z-axis to match the coverage of the top and bottom (z-axis) of the head of the cerebrovascular image;
    상기 검출된 중간 대뇌 동맥(MCA)의 위치를 중심으로 소정 크기의 영상을 잘라내는 단계; 및Cutting an image of a predetermined size around a position of the detected middle cerebral artery (MCA); And
    상기 잘라낸 소정 크기의 영상(slab)을 보간하여 데이터 크기를 맞추어 주는 단계를 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 방법.And interpolating the cut-sized image (slab) to adjust the data size.
  3. 제1항에 있어서, According to claim 1,
    상기 콘볼루션 신경망(CNN)의 학습 데이터 세트(data set)의 뇌혈관 영상 데이터의 공간적인 변이에 대한 민감도를 줄이기 위해 데이터를 자르기 전에 의료영상 촬영시 발생할 수 있는 다양성이 반영되도록 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 데이터를 증가하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 방법.In order to reduce sensitivity to spatial variation of cerebrovascular image data in the learning data set of the convolutional neural network (CNN), shifting is performed to reflect diversity that may occur during medical imaging before cutting the data, Method of estimating cerebral blood vessel age from medical images, characterized in that the data is increased by performing rotation and flipping.
  4. 제1항에 있어서, According to claim 1,
    상기 기계학습된 콘볼루션 신경망(CNN)을 통해 뇌혈관의 특징을 추출하는 단계를 더 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 방법.Method for estimating cerebral blood vessel age from a medical image, characterized in that it further comprises the step of extracting the features of the cerebral blood vessels through the machine learning convolutional neural network (CNN).
  5. 제1항에 있어서, 상기 콘볼루션 신경망(CNN)의 입력 데이터는According to claim 1, The input data of the convolutional neural network (CNN)
    고혈압, 당뇨, 고지혈을 포함한 뇌혈관 질환을 유발하는 위험인자를 더 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 방법.Method for estimating age of cerebrovascular from medical images, characterized in that it further comprises a risk factor for inducing cerebrovascular disease, including hypertension, diabetes, and hyperlipidemia.
  6. 검사 대상자(subject)의 나이 정보가 있는 3차원 TOF MRA 영상을 수집하여 저장하는 뇌혈관 영상 DB;A cerebrovascular image DB that collects and stores a 3D TOF MRA image with age information of a subject;
    상기 뇌혈관 영상 DB로부터 획득된 상기 나이 정보가 있는 3차원 뇌혈관 영상을 콘볼루션 신경망(CNN)을 통해 기계학습하기 위해 중간대뇌동맥(MCA)의 위치를 검출하는 전처리를 수행하는 전처리부;A pre-processing unit for performing pre-processing to detect the position of the middle cerebral artery (MCA) to machine learn a 3D cerebrovascular image with age information obtained from the cerebrovascular image DB through a convolutional neural network (CNN);
    상기 전처리부에서 전처리된 영상의 나이, 뇌혈관질환 위험인자를 입력하는 입력부;An input unit for inputting age and cerebrovascular disease risk factors of images pre-processed by the pre-processing unit;
    상기 전처리된 나이 정보가 있는 뇌혈관 영상을 입력 계층의 입력값으로 하여 상기 입력값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션 계층 및 상기 다수의 콘볼루션 계층의 특징맵의 크기를 줄이는 다수의 풀링(pooling) 계층을 포함하여 이루어지고, 뇌혈관의 나이를 회귀분석을 통해 추정하는 콘볼루션 신경망(CNN)을 포함하는, 의료영상으로부터 뇌혈관 나이를 추정하는 시스템.A plurality of convolutional layers and a plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the cerebrovascular image having the pre-processed age information as an input value of the input layer It comprises a plurality of pooling (pooling) layer to reduce the size of the feature map, including a convolutional neural network (CNN) that estimates the age of the cerebral blood vessels through regression analysis, to estimate the cerebrovascular age from medical images system.
  7. 제6항에 있어서, 상기 전처리부는The method of claim 6, wherein the pre-processing unit
    뇌혈관 영상을 등방성 공간으로 보간하고 신호강도를 표준화하는 등방성표준화부;An isotropic standardization unit for interpolating cerebrovascular images into isotropic space and standardizing signal intensity;
    상기 뇌혈관영상 이미지의 머리 위 아래 방향(z축) 커버리지를 맞추기 위해 상기 z 축의 중간대뇌 동맥(MCA)의 위치를 검출하는 MCA검출부; 및An MCA detection unit that detects the position of the middle cerebral artery (MCA) on the z-axis in order to align the top-down (z-axis) coverage of the cerebrovascular image; And
    상기 검출된 중간대뇌 동맥(MCA)의 위치를 중심으로 소정 크기의 영상을 잘라내고 상기 잘라낸 소정 크기의 영상(slab)을 보간하여 데이터 크기를 맞추어 주며 기계학습 입력을 위한 3차원 Slab 생성부를 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 시스템.It cuts the image of a predetermined size around the position of the detected middle cerebral artery (MCA), interpolates the cut-off image of the predetermined size (slab), adjusts the data size, and includes a 3D Slab generator for machine learning input A system for estimating cerebrovascular age from medical images.
  8. 제6항에 있어서, The method of claim 6,
    상기 콘볼루션 신경망(CNN)의 학습 및 테스트 과정에서의 뇌혈관 영상 데이터의 공간적인 변이에 대한 민감도를 줄이기 위해 데이터를 자르기 전에 이동(shifting), 회전(rotation) 및 뒤집기(flipping)를 수행하여 트레이닝 데이터를 증가하는 이미지 증강부를 더 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 시스템.Training is performed by shifting, rotating and flipping before cutting data to reduce sensitivity to spatial variation of cerebrovascular image data in the course of learning and testing the convolutional neural network (CNN). A system for estimating cerebrovascular age from medical images, further comprising an image enhancement unit for increasing data.
  9. 제6항에 있어서, 상기 콘볼루션 신경망(CNN)은The method of claim 6, wherein the convolutional neural network (CNN)
    상기 전처리된 나이 정보가 있는 TOF MRA 영상을 입력 계층의 입력값으로 하여 상기 입력값에 가중치(weight)를 적용하여 특징 맵(feature maps)을 산출하는 다수의 콘볼루션 계층;A plurality of convolutional layers for calculating feature maps by applying a weight to the input value using the TOF MRA image having the pre-processed age information as an input value of an input layer;
    상기 다수의 콘볼루션 계층의 특징맵의 크기를 서브 샘플링을 통해 줄이는 다수의 풀링(pooling) 계층;A plurality of pooling layers that reduce the size of the feature maps of the plurality of convolution layers through sub-sampling;
    상기 풀링 계층과 모든 액티베이션과 연결되는 완전연결 계층; 및A full connection layer connected to the pooling layer and all activations; And
    상기 완전연결 계층의 출력값을 이용하여 회귀(regression) 분석을 통해 뇌혈관의 나이를 추정하는 회귀분석부를 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 시스템.And a regression analysis unit for estimating the age of cerebral blood vessels through regression analysis using the output value of the complete connection layer.
  10. 제1항에 있어서, 상기 입력부는The method of claim 1, wherein the input unit
    고혈압, 당뇨, 고지혈을 포함한 뇌혈관 질환을 유발하는 위험인자와 성별정보를 더 포함하는 것을 특징으로 하는, 의료영상으로부터 뇌혈관 나이를 추정하는 시스템.A system for estimating cerebrovascular age from medical images, further comprising risk factors and gender information that induce cerebrovascular diseases including hypertension, diabetes, and hyperlipidemia.
PCT/KR2019/014530 2018-11-27 2019-10-31 Method and system for estimating brain vascular age from medical image WO2020111534A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0148307 2018-11-27
KR1020180148307A KR102225775B1 (en) 2018-11-27 2018-11-27 Method and system for estimating the cerebrovascular age from medical imaging

Publications (2)

Publication Number Publication Date
WO2020111534A2 true WO2020111534A2 (en) 2020-06-04
WO2020111534A3 WO2020111534A3 (en) 2020-10-15

Family

ID=70854036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014530 WO2020111534A2 (en) 2018-11-27 2019-10-31 Method and system for estimating brain vascular age from medical image

Country Status (2)

Country Link
KR (1) KR102225775B1 (en)
WO (1) WO2020111534A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786190A (en) * 2021-01-14 2021-05-11 金陵科技学院 Medical health diagnosis and treatment model with multi-dimensional data fusion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210145590A (en) 2020-05-25 2021-12-02 삼성전자주식회사 Light source module including light emitting diode
CN116597041B (en) * 2023-07-17 2023-09-15 首都医科大学附属北京天坛医院 Nuclear magnetic image definition optimization method and system for cerebrovascular diseases and electronic equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620302B1 (en) 2014-06-03 2016-05-18 사회복지법인 삼성생명공익재단 Biological brain age calculation apparatus and the method
KR101754291B1 (en) * 2017-04-04 2017-07-06 이현섭 Medical image processing system and method for personalized brain disease diagnosis and status determination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786190A (en) * 2021-01-14 2021-05-11 金陵科技学院 Medical health diagnosis and treatment model with multi-dimensional data fusion
CN112786190B (en) * 2021-01-14 2024-02-13 金陵科技学院 Medical health diagnosis and treatment method based on multidimensional data fusion

Also Published As

Publication number Publication date
WO2020111534A3 (en) 2020-10-15
KR20200062656A (en) 2020-06-04
KR102225775B1 (en) 2021-03-09

Similar Documents

Publication Publication Date Title
US11344199B2 (en) Systems and methods for detection and prediction of brain disorders based on neural network interaction
WO2020111534A2 (en) Method and system for estimating brain vascular age from medical image
JP7170145B2 (en) Information processing device, program, trained model, diagnosis support device, learning device, and prediction model generation method
JP7247159B2 (en) Brain activity classifier harmonization system and brain activity classifier program
Irimia et al. Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes
WO2020075737A1 (en) Brain functional connectivity correlation value adjustment method, brain functional connectivity correlation value adjustment system, brain activity classifier harmonization method, brain activity classifier harmonization system, and brain activity biomarker system
CN111447874A (en) Determination device, method for determining depression symptom, method for determining level of depression symptom, method for classifying depression patient, method for determining treatment effect of depression symptom, and brain activity training device
US20170156630A1 (en) System and method for adaptive and patient-specific magnetic resonance imaging
KR102001790B1 (en) Method and system for classification of vessel segments based on artifical intelligence
US20200074214A1 (en) Systems and methods for the identification of perivascular spaces in magnetic resonance imaging (mri)
WO2013037070A1 (en) Simultaneous segmentation and grading of structures for state determination
KR102020157B1 (en) Method and system for detecting lesion and diagnosing lesion status based on fluid attenuation inverted recovery
CN110858399A (en) Method and apparatus for providing virtual tomographic stroke follow-up detection images
Weng et al. Automatic postprocessing for the assessment of quantitative human myocardial perfusion using MRI
Amyar et al. Impact of deep learning architectures on accelerated cardiac T1 mapping using MyoMapNet
WO2020179950A1 (en) Deep learning-based method and device for prediction of progression of brain disease
Goh et al. Neuroinformatics challenges to the structural, connectomic, functional and electrophysiological multimodal imaging of human traumatic brain injury
US20240046454A1 (en) Method and system for extracting multi-dimensional disconnection network region of symptom mapping
US11734915B2 (en) Automated and assisted identification of stroke using feature-based brain imaging
KR20230128210A (en) Device and method of medical image regression for the diagnosis of dementia
Karamitsos et al. Detecting diffuse myocardial fibrosis with CMR: the future has only just begun
JP7457292B2 (en) Brain image analysis device, control method, and program
US11361430B2 (en) System and method for medical imaging
Kollmann et al. Cardiac function in a large animal model of myocardial infarction at 7 T: deep learning based automatic segmentation increases reproducibility
US12029575B2 (en) Mesial temporal lobe epilepsy classifier based on volume and shape of subcortical brain regions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888470

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888470

Country of ref document: EP

Kind code of ref document: A2