WO2024053651A1 - プロトン伝導性固体電解質、電解質層および電池 - Google Patents

プロトン伝導性固体電解質、電解質層および電池 Download PDF

Info

Publication number
WO2024053651A1
WO2024053651A1 PCT/JP2023/032421 JP2023032421W WO2024053651A1 WO 2024053651 A1 WO2024053651 A1 WO 2024053651A1 JP 2023032421 W JP2023032421 W JP 2023032421W WO 2024053651 A1 WO2024053651 A1 WO 2024053651A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic radius
less
general formula
basc
excluding
Prior art date
Application number
PCT/JP2023/032421
Other languages
English (en)
French (fr)
Inventor
正知 八島
馨 齊藤
航平 松崎
孝太郎 藤井
健成 梅田
Original Assignee
国立大学法人東京工業大学
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 信越化学工業株式会社 filed Critical 国立大学法人東京工業大学
Publication of WO2024053651A1 publication Critical patent/WO2024053651A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides

Definitions

  • the present invention relates to a proton-conducting solid electrolyte used in a proton-conducting solid electrolyte layer of a fuel cell, a sensor, etc., an electrolyte layer using the same, and a battery.
  • Various types of fuel cells are attracting attention as a key to realizing a next-generation clean energy society and solving environmental problems.
  • Various ion conductors such as metal oxide proton conductors and oxide ion conductors, are known as materials that can be used in fuel cells and sensors.
  • YSZ yttria-stabilized zirconia
  • SOFC solid oxide fuel cells
  • perovskite-type oxides in which oxygen vacancies are introduced through chemical substitution such as BaZr0.8Y0.2O2.9, are known as proton conductors.
  • Patent Document 1 discloses a crystalline inorganic compound that can conduct at least one type of carrier selected from the group consisting of anions, cations, protons, electrons, and holes.
  • Compounds with high electrical conductivity such as compounds exhibiting high ionic conductivity that conduct ions such as oxide ions (O 2 ⁇ ) and protons (H + ), can be used in solid electrolytes such as fuel cells.
  • Patent Document 2 a solid electrolyte containing a hexagonal perovskite-related compound, wherein the compound has the general formula Ba 7- ⁇ Nb (4-x-y) M devis (1+x) M y O (20+z) Discloses a solid electrolyte which is a compound represented by the following, an electrolyte layer and a battery using the solid electrolyte.
  • This solid electrolyte, an electrolyte layer using the same, and a battery have higher electrical conductivity than YSZ even in a lower temperature range, and can be suitably used for SOFC.
  • Patent Document 3 it is represented by the general formula: BaZr 1-x Sc x O 3- ⁇ H y , where x is more than 0.20 and less than 0.65, y is 0.7x to x, and ⁇ is 0.
  • Solid electrolytes are disclosed that include scandium-doped barium zirconate that is ⁇ 0.15x. This technology aims to provide a solid electrolyte that can exhibit proton conductivity and chemical stability above a certain level in a medium temperature range.
  • Patent No. 6448020 International Publication No. 2020/153485 International Publication No. 2021/085366
  • oxide ion conductors with even higher oxide ion conductivity and high oxygen transfer number as well as oxide ion conductors with higher proton conductivity and high proton transfer number.
  • a proton conductor is needed.
  • ionic conductors that have stable properties regardless of the surrounding environment examples include temperature conditions and dependence on oxygen partial pressure.
  • conventional YSZ requires a high temperature of approximately 700° C. or higher to ensure the oxide ion conductivity required for the battery.
  • many conditions are required, such as the fuel cell itself needs to be preheated before operation, and the constituent materials of the fuel cell must have thermal durability.
  • it requires an operating environment and space, and other devices to keep the battery at a high temperature and shut off or cool it so that other environments do not become too hot. Therefore, there is a need for an ion conductor that exhibits high ionic conductivity under a wide range of temperature conditions.
  • the present invention was made in view of the above circumstances, and aims to provide a solid electrolyte that can exhibit excellent proton conductivity in low and medium temperature ranges, an electrolyte layer and a battery using the same. do.
  • the present invention has the following aspects.
  • An element whose ionic radius is 70 to 130% of the ionic radius of A excluding A, Zr, Ce, and Zn, or multiple elements other than A and Zn whose average ionic radius is 70 to 130% of the ionic radius of A.
  • A is Sc
  • M is Mo
  • Ge is Nb, Ta, V, W or Sb
  • x is more than 0 and 1/3 or less
  • M is Ge
  • x is more than 0 and less than 1/2
  • M is Nb, Ta, V, or Sb.
  • x is an element with an average ionic radius of 70 to 130% of the ionic radius of Sc, or a mixed composition of multiple elements other than Sc, Ce, and Zn whose average ionic radius is 70 to 130% of the ionic radius of Sc.
  • x is greater than 0 and less than 0.2.
  • M Cr, Fe, Mn, Co or Ni
  • ionic radius is an element whose average ionic radius is 70 to 130% of the ionic radius of Sc, or a mixed composition of a plurality of elements other than Sc, Ge, and Zn whose average ionic radius is 70 to 130% of the ionic radius of Sc.
  • R is a cation of one element selected from the group consisting of rare earth elements and Ga
  • M is a cation of one element selected from the group consisting of Hf, Sn or Zr. , a proton-conducting solid electrolyte.
  • Solid oxide fuel cells SOFC
  • proton ceramic fuel cells PCFC
  • sensors batteries, electrodes, electrolytes, hydrogen permeable membranes, catalysts, photocatalysts, electrical/electronic/communication equipment, energy/environment-related equipment Or the proton-conducting solid electrolyte according to any one of [1] to [14], which is used for optical equipment.
  • the proton conductive solid electrolyte according to any one of [1] to [14] which is used for a solid oxide fuel cell (SOFC), a proton ceramic fuel cell (PCFC), a sensor, or a hydrogen permeable membrane.
  • aspects of the present invention also have the following aspects.
  • [1A] General formula: Ba 1- ⁇ Sc 1-x Mo x O 3- ⁇ H y , ⁇ is -0.2 to 0.2, x is 0.1 to 0.3, and , y is 0 to 1-3x, and ⁇ is 0 to 1/2-3x/2.
  • [2A] General formula: BaSc 1-x Ge x O 3- ⁇ H Represented by y , x is 0.25 to 0.35, y is 0 to 1-x, and ⁇ is 0 to 1/ 2-x/2 proton conductive solid electrolyte.
  • [3A] General formula: BaSc 1-x Nb x O 3- ⁇ H Represented by y , x is 0.2 to 0.4, y is 0 to 1-2x, and ⁇ is 0 to 1/ A proton-conducting solid electrolyte that is 2-x.
  • [4A] General formula: BaSc 1-x Ta x O 3- ⁇ H Represented by y , x is 0.2 to 0.4, y is 0 to 1-2x, and ⁇ is 0 to 1/ A proton-conducting solid electrolyte that is 2-x.
  • [5A] General formula: BaSc 1-x V x O 3- ⁇ H y , where x is 0.2 to 0.25, y is 0 to 1-2x, and ⁇ is 0 to 1/ A proton-conducting solid electrolyte that is 2-x.
  • [6A] General formula: BaSc 1-x W x O 3- ⁇ H y , where x is 0.15 to 0.25, y is 0 to 1-3x, and ⁇ is 0 to 1/ 2-3x/2 proton conductive solid electrolyte.
  • [7A] General formula: BaSc 1-x Ce x O 3- ⁇ H y , where x is 0.35 to 0.45, y is 0 to 1-x, and ⁇ is 0 to 1/ 2-x/2 proton conductive solid electrolyte.
  • [8A] General formula: BaSc 1-x Sb x O 3- ⁇ H Represented by y , x is 0.35 to 0.45, y is 0 to 1-2x, and ⁇ is 0 to 1/ A proton-conducting solid electrolyte that is 2-x.
  • [9A] Represented by general formula: BaSc 1-x Mo x O 3- ⁇ H y , x is more than 0 and 1/3 or less, y is 0 to 1, and ⁇ is 0 to 1/2 Proton conducting solid electrolyte.
  • [11A] General formula: BaSc 1-x Nb x O 3- ⁇ H y , where x is more than 0 and 1/2 or less, y is 0 to 1, and ⁇ is 0 to 1/2 Proton conducting solid electrolyte.
  • [12A] General formula: BaSc 1-x Ta x O 3- ⁇ H y , where x is more than 0 and 1/2 or less, y is 0 to 1, and ⁇ is 0 to 1/2 Proton conducting solid electrolyte.
  • [13A] Represented by general formula: BaSc 1-x V x O 3- ⁇ H y , x is more than 0 and 1/2 or less, y is 0 to 1, and ⁇ is 0 to 1/2 Proton conducting solid electrolyte.
  • A is an element with an ionic radius of 0.52 to 0.97 ⁇ excluding Ce, In, and Zr
  • M is A
  • An element whose ionic radius is 70 to 130% of the ionic radius of A, excluding Zr and Ce, or a mixed composition of multiple elements other than A whose average ionic radius is 70 to 130% of the ionic radius of A, x is greater than 0 and less than 1, (However, for M Ge, Sn, and Hf, x is greater than 0 and less than 0.95,
  • M is a mixed element containing Ti and any one of Cr, Fe, Mn, Co, and Ni, the ratio of Cr, Fe, Mn, Co, or Ni in M is more than 0.2 and less than 1, or x is greater than 0.2 and less than 1)
  • [20A] General formula: Ba 1- ⁇ Sc 1-x Nb x O 3- ⁇ H y , where x is more than 0 and 1/2 or less, y is 0 to 1, and ⁇ is 0 to 0 .7, a proton conductive solid electrolyte whose ⁇ is 0 to 1/2.
  • Electrolytes [29A] General formula: BaSc 1-x-z Ge x M z O 3- ⁇ H y , x is greater than 0 and less than 1, z is greater than 0 and less than 1, and M represents Sc and Ge.
  • 1 and ⁇ is 0 to 1/2.
  • M Cr, Fe, Mn, Co or Ni
  • y is 0 to 1
  • is 0 to 1/2 Proton conducting solid electrolyte.
  • [36A] General formula: Ba 1- ⁇ Sc 1-x-z Mo x M z O 3- ⁇ H y , x is more than 0 and 1/3 or less, z is more than 0 and less than 1, M is an element whose ionic radius excluding Sc and Mo is 70 to 130% of the ionic radius of Sc, or a mixed composition of multiple elements other than Sc and Mo whose average ionic radius is 70 to 130% of the ionic radius of Sc.
  • y is 0 to 1
  • is 0 to 0.7
  • is 0 to 1/2.
  • [37A] General formula: Ba 1- ⁇ Sc 1-x-z Ge x M z O 3- ⁇ H y , x is greater than 0 and less than 1, z is greater than 0 and less than 1, and M is An element whose ionic radius excluding Sc and Ge is 70 to 130% of the ionic radius of Sc, or a mixed composition of multiple elements other than Sc and Ge whose average ionic radius is 70 to 130% of the ionic radius of Sc, A proton conductive solid electrolyte in which y is 0 to 1, ⁇ is 0 to 0.7, and ⁇ is 0 to 1/2.
  • [40A] General formula: Ba 1- ⁇ Sc 1-x-z V x M z O 3- ⁇ H y , x is more than 0 and 1/2 or less, z is more than 0 and less than 1, M is an element whose ionic radius excluding Sc and V is 70 to 130% of the ionic radius of Sc, or a mixed composition of multiple elements other than Sc and V whose average ionic radius is 70 to 130% of the ionic radius of Sc.
  • y is 0 to 1
  • is 0 to 0.7
  • is 0 to 1/2.
  • [44A] General formula: Ba 5 R 2 Al 2 MO 13
  • R is a cation of one element selected from the group consisting of rare earth elements and Ga
  • M is Hf
  • M in the general formula is Sn and R is Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm or Yb.
  • SOFC solid oxide fuel cells
  • PCFC proton ceramic fuel cells
  • sensors batteries, electrodes, electrolytes, hydrogen permeable membranes, catalysts, photocatalysts, electrical/electronic/communication equipment, energy/environment-related equipment or the proton conductive solid electrolyte according to any one of [1A] to [48A], which is used for optical instruments.
  • the proton conductive solid electrolyte according to any one of [1A] to [49A] which is used for a solid oxide fuel cell (SOFC), a proton ceramic fuel cell (PCFC), a sensor, or a hydrogen per
  • SOFC solid oxide fuel cell
  • PCFC proton ceramic fuel cell
  • a proton-conducting solid electrolyte capable of exhibiting excellent proton conductivity in low and intermediate temperature ranges, and an electrolyte layer and battery using the same are obtained.
  • FIG. 1 is a schematic diagram showing the crystal structure of compound (A) of the present embodiment.
  • FIG. 2 is a schematic diagram showing the crystal structure of compound (B) of the present embodiment.
  • Test Example 1 A graph showing the results of XRD measurement of BaSc 0.8 Mo 0.2 O 3- ⁇ .
  • Test Example 2 A graph showing the results of XRD measurement of BaSc 0.75 Mo 0.25 O 3- ⁇ .
  • Test Example 3 A graph showing the results of XRD measurement of BaSc 0.85 Mo 0.15 O 3- ⁇ .
  • Test Example 4 A graph showing the results of XRD measurement of BaSc 0.7 Ge 0.3 O 3- ⁇ .
  • Test Example 5 A graph showing the results of XRD measurement of BaSc 0.75 Ge 0.25 O 3- ⁇ .
  • Test Example 6 It is a graph diagram showing the results of XRD measurement of BaSc 0.65 Ge 0.35 O 3- ⁇ .
  • Test Example 7 A graph showing the results of XRD measurement of BaSc 0.8 Nb 0.2 O 3- ⁇ .
  • Test Example 8 It is a graph diagram showing the results of XRD measurement of BaSc 0.75 Nb 0.25 O 3- ⁇ .
  • Test Example 9 A graph showing the results of XRD measurement of BaSc 0.7 Nb 0.3 O 3- ⁇ .
  • Test Example 10 A graph showing the results of XRD measurement of BaSc 0.65 Nb 0.35 O 3- ⁇ .
  • Test Example 11 It is a graph diagram showing the results of XRD measurement of BaSc 0.6 Nb 0.4 O 3- ⁇ .
  • Test Example 12 A graph showing the results of XRD measurement of BaSc 0.7 Ta 0.3 O 3- ⁇ .
  • Test Example 13 A graph showing the results of XRD measurement of BaSc 0.8 V 0.2 O 3- ⁇ . It is a graph diagram showing the results of XRD measurement of Test Example 14: BaSc 0.75 V 0.25 O 3- ⁇ .
  • Test Example 15 A graph showing the results of XRD measurement of BaSc 0.8 W 0.2 O 3- ⁇ .
  • Test Example 16 A graph showing the results of XRD measurement of BaSc 0.6 Ce 0.4 O 3- ⁇ .
  • Test Example 17 A graph showing the results of XRD measurement of BaSc 0.6 Sb 0.4 O 3- ⁇ .
  • Test Example 1 Direct current total electrical conductivity measured by cooling BaSc 0.8 Mo 0.2 O 3- ⁇ in humid air (water vapor partial pressure: 0.02 atm at 18°C) and maintaining the temperature.
  • FIG. Test Example 2 Direct current total electrical conductivity measured by cooling and maintaining temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.75 Mo 0.25 O 3- ⁇ .
  • FIG. Test Example 3 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.85 Mo 0.15 O 3- ⁇ .
  • FIG. 1 Direct current total electrical conductivity measured by cooling BaSc 0.8 Mo 0.2 O 3- ⁇ in humid air (water vapor partial pressure: 0.02 atm at 18°C) and maintaining the temperature.
  • FIG. Test Example 2 Direct current total electrical conductivity measured by cooling and maintaining temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.75 Mo 0.25 O 3- ⁇ .
  • Test Example 4 The direct current total electrical conductivity was measured by cooling BaSc 0.7 Ge 0.3 O 3- ⁇ in humid air (water vapor partial pressure: 0.02 atm at 18°C) and maintaining the temperature.
  • FIG. Test Example 5 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.75 Ge 0.25 O 3- ⁇ .
  • FIG. Test Example 6 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.65 Ge 0.35 O 3- ⁇ .
  • Test Example 7 Bulk conductivity and grain boundaries measured by cooling BaSc 0.8 Nb 0.2 O 3- ⁇ in humid air (water vapor partial pressure: 0.02 atm at 18°C) and maintaining the temperature. It is a graph diagram showing conductivity.
  • Test Example 8 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.75 Nb 0.25 O 3- ⁇ .
  • FIG. Test Example 9 Direct current total electrical conductivity measured by cooling and maintaining temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.7 Nb 0.3 O 3- ⁇ .
  • Test Example 10 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.65 Nb 0.35 O 3- ⁇ .
  • FIG. Test Example 11 Direct current total electrical conductivity measured by cooling BaSc 0.6 Nb 0.4 O 3- ⁇ in humid air (water vapor partial pressure: 0.02 atm at 18°C) and maintaining the temperature.
  • FIG. Test Example 12 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.7 Ta 0.3 O 3- ⁇ .
  • Test Example 13 Direct current total electrical conductivity measured by cooling and maintaining temperature in humid air of BaSc 0.8 V 0.2 O 3- ⁇ (water vapor partial pressure: 0.02 atm at 18°C).
  • FIG. Test Example 14 Direct current total electrical conductivity measured by cooling and maintaining temperature in humid air of BaSc 0.75 V 0.25 O 3- ⁇ (water vapor partial pressure: 0.02 atm at 18°C).
  • FIG. Test Example 15 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air of BaSc 0.8 W 0.2 O 3- ⁇ (water vapor partial pressure: 0.02 atm at 18°C).
  • Test Example 16 The direct current total electrical conductivity was measured by cooling and maintaining the temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.6 Ce 0.4 O 3- ⁇ .
  • Test Example 17 Direct current total electrical conductivity measured by cooling and maintaining temperature in humid air (water vapor partial pressure: 0.02 atm at 18°C) of BaSc 0.6 Sb 0.4 O 3- ⁇ .
  • FIG. FIG. 2 is a graph showing intragranular conductivity and grain boundary conductivity in Test Example 1.
  • FIG. FIG. 2 is a graph diagram showing a comparison of electrical conductivity at each temperature between Test Example 1 and a conventional material.
  • FIG. 2 is a graph diagram showing the time dependence of electrical conductivity for each gas atmosphere in Test Example 1.
  • FIG. 2 is a graph showing the oxygen partial pressure dependence of DC total electrical conductivity in a dry atmosphere and a humid atmosphere in Test Example 1.
  • FIG. FIG. 2 is a graph showing an Arrhenius plot of DC total electrical conductivity for each gas atmosphere for Test Example 1.
  • FIG. FIG. 2 is a graph showing the dependence of bulk conductivity on oxygen partial pressure for Test Example 1.
  • FIG. 2 is a graph diagram showing the thermogravimetric analysis results of Test Example 1.
  • FIG. 2 is a graph showing the temperature dependence of proton concentration estimated from the thermogravimetric analysis results of Test Example 1.
  • FIG. 3 is a graph showing an Arrhenius plot of the diffusion coefficient of Test Example 1.
  • FIG. FIG. 2 is a graph showing the stability of Test Example 1 in an oxidizing and reducing atmosphere and in CO 2 .
  • Test Example 2 is a graph showing the results of XRD measurement for each of the synthesis examples of Test Examples 18 to 27.
  • Test Example 18 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Nd 2 Al 2 SnO 13 .
  • Test Example 19 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Sm 2 Al 2 SnO 13 .
  • Test Example 20 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Gd 2 Al 2 SnO 13 .
  • Test Example 21 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Dy 2 Al 2 SnO 13 .
  • Test Example 22 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Ho 2 Al 2 SnO 13 .
  • Test Example 23 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Er 2 Al 2 SnO 13 .
  • Test Example 24 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Tm 2 Al 2 SnO 13 .
  • Test Example 25 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Yb 2 Al 2 SnO 13 .
  • Test Example 26 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Y 2 Al 2 SnO 13 .
  • Test Example 27 It is a graph diagram showing the DC total electrical conductivity of Ba 5 Eu 2 Al 2 SnO 13 .
  • FIG. 3 is a graph showing a summary of the DC total electrical conductivity of Test Examples 18 to 27.
  • Test Example 28 A graph showing the results of XRD measurement of BaSc 0.775 Mo 0.225 O 3- ⁇ .
  • Test Example 28 A graph showing the bulk conductivity of BaSc 0.775 Mo 0.225 O 3- ⁇ in humid air.
  • Test Example 29 A graph showing the results of XRD measurement of BaSc 0.725 Mo 0.275 O 3- ⁇ .
  • Test Example 29 A graph showing the bulk conductivity of BaSc 0.725 Mo 0.275 O 3- ⁇ in humid air.
  • Test Example 30 A graph showing the results of XRD measurement of BaSc 0.7 W 0.3 O 3- ⁇ .
  • Test Example 31 A graph showing the results of XRD measurement of BaSc 0.75 W 0.25 O 3- ⁇ .
  • Test Example 31 A graph showing the DC total electrical conductivity of BaSc 0.75 W 0.25 O 3- ⁇ in humid air.
  • Test Example 32 A graph showing the results of XRD measurement of BaSc 0.8 W 0.2 O 3- ⁇ .
  • Test Example 32 A graph showing the DC total electrical conductivity of BaSc 0.8 W 0.2 O 3- ⁇ in humid air.
  • Test Example 23 It is a graph diagram showing a comparison of electrical conductivity at each temperature between Ba 5 Er 2 Al 2 SnO 13 and a conventional material.
  • Test Example 23 For Ba 5 Er 2 Al 2 SnO 13 , it is a graph showing the dependence of DC total electrical conductivity on oxygen partial pressure in a dry atmosphere and a humid atmosphere at various temperatures.
  • Test Example 2 is a graph showing the time dependence of electrical conductivity for each gas atmosphere for Ba 5 Er 2 Al 2 SnO 13 .
  • Test Example 23 It is a graph diagram showing the thermogravimetric analysis results of Ba 5 Er 2 Al 2 SnO 13 .
  • Test Example 33 It is a graph diagram showing the results of XRD measurement of Ba 5 Er 2 Al 2 Sn 0.5 Zr 0.5 O 13 .
  • Test Example 33 It is a graph diagram showing the DC total electrical conductivity in humid air of Ba 5 Er 2 Al 2 Sn 0.5 Zr 0.5 O 13 .
  • Test Example 34 It is a graph diagram showing the results of XRD measurement of Ba 5 Er 1.9 Al 2.1 SnO 13 . It is a graph diagram showing the results of XRD measurement of Test Example 35: Ba 5 Er 2 Al 2.1 Sn 0.9 O 12.95 .
  • the solid electrolyte is a solid material that conducts ions, and also includes a material that conducts both ions and electrons (or their holes). Note that each compound contained in the solid electrolyte described below includes a small amount of impurity phase, but it is assumed that generally single-phase compounds can be used.
  • a proton-conducting solid electrolyte is a solid electrolyte that mainly contains protons as carriers.
  • proton conductive solid electrolytes include proton-oxide ion mixed conductivity, proton-oxide ion-hole mixed conductivity, in which not only protons but also oxide ions, electrons, and electron holes are carriers. It also includes proton-oxide ion-electron mixed conductive solid electrolytes.
  • one aspect of the compound of the present embodiment is a proton-conducting solid electrolyte contained in a compound represented by the following general formula (A), hereinafter referred to as compound (A).
  • A is Sc or an element selected from elements having an ionic radius of 70 to 130% of the ionic radius of Sc.
  • M is a metal element.
  • the compound (A) is a so-called perovskite proton conductor.
  • a perovskite-type proton conductor is a compound that has a perovskite-type structure, a distorted perovskite-type structure, or a perovskite-related structure, and is capable of electrical conduction through proton conduction as described below.
  • Having a perovskite structure refers to a compound having a structure containing a perovskite unit or a compound having a structure similar thereto.
  • A is Sc or an element having an ionic radius of 70 to 130% of the ionic radius of Sc.
  • A may have a mixed composition of a plurality of elements except Sc.
  • A is an element having an ionic radius of approximately 0.52-0.97 ⁇ or a mixed composition having an average ionic radius of approximately 0.52-0.97 ⁇ .
  • the compound of formula (A) contained in the proton-conducting solid electrolyte of the present embodiment it is preferable that A is Sc, but it is preferable that the element has a similar crystal structure when used in place of Sc. This is because it can be used for.
  • the elements within the range of the ionic radius include Al with an ionic radius of 0.535 ⁇ , Li with an ionic radius of 0.76 ⁇ , and elements with an ionic radius of 0.53, 0.58, 0.645, 0.67, or 0.83 ⁇ .
  • M in the compound of formula (A) is a metal element.
  • M in the compound of formula (A) is preferably Mo, Ge, Nb, Ta, V, W, Ce or Sb, more preferably Mo or Ge, and particularly preferably Mo.
  • the composition represented by M may be one type of element, or may be a mixed composition of two types of elements, M1 and M2.
  • the compound contained in the proton conductive solid electrolyte in this embodiment may have a mixed composition in which M in the compound of formula (A) is a plurality of elements.
  • M is a mixed composition of multiple elements, it means that M is a virtual element in which multiple elements are mixed in a certain proportion, for example, m types of elements such as M1, M2, ..., Mm.
  • M indicates a composition that is mixed in a certain proportion. That is, in the following formula, M1 and M2 each have a metal composition of the same element, another element, or a plurality of elements, and may mainly contain a metal element.
  • which is the amount of loss of Ba (atom) in the above formula (A)
  • x which is the amount of substitution of element A with element M
  • B-site substitution is also called the amount of B-site substitution.
  • the compound of this embodiment is a proton conductor. Since the proton conductivity of the proton conductor is relatively high at low temperatures, a proton conductive solid electrolyte suitable for use in low temperature operating type fuel cells can be obtained.
  • FIG. 1 shows the crystal structure of BaSc 0.8 Mo 0.2 O 3- ⁇ among the compounds of formula (A). Note that even when an element having an ionic radius of 70 to 130% of the ionic radius of Sc is used instead of Sc in formula (A), the crystal structure is almost the same.
  • composition of the compound of this embodiment can be determined by X-ray diffraction (XRD), X-ray fluorescence analysis (XRF), energy dispersive X-ray analysis (EDS), ICP emission spectrometry, etc.
  • XRD X-ray diffraction
  • XRF X-ray fluorescence analysis
  • EDS energy dispersive X-ray analysis
  • ICP emission spectrometry ICP emission spectrometry
  • the compound (A) may include compounds represented by [1] to [11] below.
  • An element whose ionic radius is 70 to 130% of the ionic radius of A excluding A, Zr, Ce, and Zn, or multiple elements other than A and Zn whose average ionic radius is 70 to 130% of the ionic radius of A.
  • A is Sc
  • M is Mo
  • Ge is Nb, Ta, V, W or Sb
  • x is more than 0 and 1/3 or less
  • M is Ge
  • x is more than 0 and less than 1/2
  • M is Nb, Ta, V, or Sb.
  • x is an element with an average ionic radius of 70 to 130% of the ionic radius of Sc, or a mixed composition of multiple elements other than Sc, Ce, and Zn whose average ionic radius is 70 to 130% of the ionic radius of Sc.
  • x is greater than 0 and less than 0.2.
  • M Cr, Fe, Mn, Co or Ni
  • ionic radius is an element whose average ionic radius is 70 to 130% of the ionic radius of Sc, or a mixed composition of a plurality of elements other than Sc, Ge, and Zn whose average ionic radius is 70 to 130% of the ionic radius of Sc.
  • the compound (A) may include compounds represented by the following compositions 1 to 7.
  • Composition 1 is a compound represented by the general formula: Ba 1- ⁇ A 1-x M x O 3- ⁇ H y . in particular, (1A) For example, it is represented by the general formula: Ba 1- ⁇ Sc 1-x Mo x O 3- ⁇ H y , where ⁇ is -0.2 to 0.2 and x is 0.1 to 0.3. , y may be 0 to 1-3x, and ⁇ may be 0 to 1/2-3x/2. (2A) Also, it is represented by the general formula: BaSc 1-x Ge x O 3- ⁇ H y , where x is 0.25 to 0.35, y is 0 to 1-x, and ⁇ is 0 to It may be 1/2-x/2.
  • (6A) Also, it is represented by the general formula: BaSc 1-x W x O 3- ⁇ H y , where x is 0.15 to 0.25, y is 0 to 1-3x, and ⁇ is 0 to It may be 1/2-3x/2.
  • (7A) Alternatively, it may be represented by the general formula: BaSc 0.6 Ce 0.4 O 3- ⁇ .
  • (8A) Also, it is represented by the general formula: BaSc 1-x Sb x O 3- ⁇ H y , where x is 0.35 to 0.45, y is 0 to 1-2x, and ⁇ is 0 to It may be 1/2-x.
  • Composition 2 is a compound represented by the general formula: BaA 1-x M x O 3- ⁇ H y . in particular, (9A) For example, represented by the general formula: BaSc 1-x Mo x O 3- ⁇ H y , x is more than 0 and 1/3 or less, y is 0 to 1, and ⁇ is 0 to 1/2 It may be. (10A) Also, it is represented by the general formula: BaSc 1-x Ge x O 3- ⁇ H y , where x is greater than 0 and less than 1/2, y is 0 to 1, and ⁇ is 0 to 1/2. It may be.
  • Composition 3 is a compound represented by the general formula: BaA 1-x M x O 3- ⁇ H y .
  • M in composition 2 is expanded to include various elements. in particular, (16A)
  • it is represented by the general formula: BaA 1-x M x O 3- ⁇ H y , where A is an element with an ionic radius of 0.52 to 0.97 ⁇ excluding Ce, In, and Zr, and M is An element whose ionic radius is 70 to 130% of the ionic radius of A, excluding A, Zr, and Ce, or a mixed composition of multiple elements other than A whose average ionic radius is 70 to 130% of the ionic radius of A.
  • may be 0 to 1/2.
  • the element whose ionic radius is 70 to 130% of the ionic radius of Sc can be selected from those mentioned above.
  • composition 4 is a compound represented by the general formula: Ba 1- ⁇ Sc 1-x M x O 3- ⁇ H y .
  • composition 4 is a composition in which composition 2 is added with Ba deficiency (A site deficiency).
  • Ba deficiency A site deficiency.
  • (18A) General formula: Ba 1- ⁇ Sc 1-x Mo x O 3- ⁇ H y , where x is more than 0 and 1/3 or less, y is 0 to 1, and ⁇ is 0 to 0 .7, ⁇ may be 0 to 1/2.
  • (19A) is represented by the general formula: Ba 1- ⁇ Sc 1-x Ge x O 3- ⁇ H y , where x is greater than 0 and less than 1, y is 0 to 1, and ⁇ is 0 to 0.
  • may be 0 to 1/2.
  • 20A Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x Nb x O 3- ⁇ H y , where x is more than 0 and 1/2 or less, y is 0 to 1, and ⁇ is 0. ⁇ 0.7, ⁇ may be 0 to 1/2.
  • 21A Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x Ta x O 3- ⁇ H y , where x is more than 0 and 1/2 or less, y is 0 to 1, and ⁇ is 0. ⁇ 0.7, ⁇ may be 0 to 1/2.
  • composition 5 is a compound represented by the general formula: Ba 1- ⁇ Sc 1-x M x O 3- ⁇ H y .
  • composition 5 is an embodiment in which M in composition 4 is expanded to include various elements.
  • M is a mixed element containing any one of Ti, Zr, and Ce and any one of Cr, Fe, Mn, Co, and Ni
  • the ratio of Cr, Fe, Mn, Co, or Ni in M is 0.2.
  • is greater than 0.2, or x is greater than 0.2 and less than 1)
  • y is 0 to 1
  • is 0 to 0.7
  • is 0 to 1/2. It's okay.
  • the element whose ionic radius is 70 to 130% of the ionic radius of Sc can be selected from those mentioned above.
  • (27A) Also, it is represented by the general formula: Ba 1- ⁇ A 1-x M x O 3- ⁇ H y , where A is an element with an ionic radius of 0.52 to 0.97 ⁇ , excluding Ce, In, and Zr. Yes, M is an element other than A whose ionic radius is 70 to 130% of the ionic radius of A, or a mixed composition of multiple elements other than A whose average ionic radius is 70 to 130% of the ionic radius of A.
  • Composition 6 is a compound represented by the general formula: BaA 1-x-z M1 x M2 z O 3- ⁇ H y . in particular, (28A) For example, it is represented by the general formula: BaSc 1-x-z Mo x M z O 3- ⁇ H y , where x is more than 0 and 1/3 or less, z is more than 0 and less than 1, and M is An element whose ionic radius excluding Sc and Mo is 70 to 130% of the ionic radius of Sc, or M is a mixed composition of multiple elements excluding Sc and Mo, and the average ionic radius is 70 to 130% of the ionic radius of Sc.
  • y may be 0 to 1
  • may be 0 to 1/2.
  • x is greater than 0 and less than 0.2.
  • M Cr, Fe, Mn, Co or Ni
  • y is 0 to 1
  • is 0 to 1/2 It may be.
  • composition 7 is a compound represented by the general formula: Ba 1- ⁇ A 1-x-z M1 x M2 z O 3- ⁇ H y .
  • composition 7 is a composition obtained by adding Ba deficiency (A site deficiency) to composition 6. in particular, (36A)
  • Ba 1- ⁇ Sc 1-x-z Mo x M z O 3- ⁇ H y where x is greater than 0 and 1/3 or less, and z is greater than 0 and less than 1.
  • (37A) Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x-z Ge x M z O 3- ⁇ H y , where x is greater than 0 and less than 1, and z is greater than 0 and less than 1, M is an element whose ionic radius excluding Sc and Ge is 70 to 130% of the ionic radius of Sc, or M is a mixed composition of multiple elements excluding Sc and Ge, and the average ionic radius is 70 to 130% of the ionic radius of Sc. 130%, y may be 0 to 1, ⁇ may be 0 to 0.7, and ⁇ may be 0 to 1/2.
  • (38A) Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x-z Nb x M z O 3- ⁇ H y , where x is more than 0 and 1/2 or less, and z is more than 0 and less than 1.
  • (39A) Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x-z Ta x M z O 3- ⁇ H y , where x is greater than 0 and 1/2 or less, and z is greater than 0 and less than 1.
  • (40A) Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x-z V x M z O 3- ⁇ H y , where x is greater than 0 and 1/2 or less, and z is greater than 0 and less than 1.
  • (41A) Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x-z W x M z O 3- ⁇ H y , where x is more than 0 and 1/3 or less, and z is more than 0 and less than 1.
  • (42A) Also, it is represented by the general formula: Ba 1- ⁇ Sc 1-x-z Ce x M z O 3- ⁇ H y , where x is greater than 0 and less than 0.8, and z is greater than 0 and less than 1.
  • the proton conductive solid electrolyte containing the compound of this embodiment has high proton conductivity in the low to medium temperature range.
  • a conventional technique an oxide in which Zr in barium zirconate is replaced with a dopant such as Sc, Y, or lanthanoid is known, and attempts have been made to increase the proton concentration by increasing the substitution rate with dopants such as Sc. Ta. Further, in Patent Document 3, an attempt was made to increase the proton conductivity by increasing the proportion of Sc and the proportion of protons.
  • Sc-Mo and a similar crystal structure using elements with ionic radii close to these are used to further increase proton conductivity. We have found a possible configuration.
  • the compound of this embodiment has a proton conductivity that greatly exceeds that of 20Y:BZ, which is a conventional proton conductor.
  • 20Y:BZ which is a conventional proton conductor.
  • BaZr 1-x M x O 3- ⁇ and BaCe 1-x M x O 3- ⁇ have been used as proton conductors.
  • Sr or an element having an ionic radius close to Sr is used, and as M, Mo, Ge, etc. are used.
  • the compound of this embodiment has a proton conductivity that greatly exceeds that of 20Y:BZ, which is a conventional proton conductor.
  • the intragranular conductivity of BaSc 0.8 Mo 0.2 O 3- ⁇ at 175°C is approximately 10 times that of 20Y:BZ at the same temperature ( arrow in Figure 38).
  • the compound of formula (B) is a type of so-called hexagonal perovskite-related compounds.
  • the hexagonal perovskite-related compound in the present embodiment is a compound having a layered structure containing hexagonal perovskite units or a compound having a structure similar thereto.
  • R in the compound of formula (B) is a cation of one type of element selected from the group consisting of rare earth elements and Ga.
  • R is preferably Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm or Yb.
  • M in the compound of formula (B) is Hf, Sn, or Zr.
  • M is preferably Sn.
  • the composition represented by M of the compound of formula (B) may be one type of element, or may be a mixed composition of multiple elements such as Sn, Hf, and Zr.
  • M in the general formula may be Sn, and R may be Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, or Yb. More preferred. Further specific examples of compounds of formula (B) include Ba 5 Er 2 Al 2 Sn 1-x Zr x O 13 , Ba 5 Er 2-x Al 2+x SnO 13 , or Ba 5 Er 2+x Al 2 Sn 1-x Examples include O 13-x/2 .
  • one aspect of the compound of the present embodiment is a proton-conducting solid electrolyte containing a compound represented by the following general formula (B1), hereinafter compound (B1). It may be. Ba5R2Al2MO13 ... ( B1 ) [In formula (B1), R is a cation of one type of element selected from the group consisting of rare earth elements, In and Ga, and M is a cation of one type of element selected from the group consisting of Hf and Sn. ion] More preferably, R is a cation of one element selected from the group consisting of rare earth elements and Ga.
  • the compound (B1) of the present embodiment can exhibit superior proton conductivity in the low to medium temperature range by using Sn or Hf in place of Zr in the conventional compound described above.
  • a proton conductor is a compound that conducts electricity by conducting (moving) protons (hydrogen ions, H + ).
  • the proton conductive solid electrolyte using the compound of this embodiment is preferably used at a temperature of 200 to 1200°C, more preferably used at a temperature of 200 to 1000°C, more than 200°C and less than 700°C.
  • the fuel cell is more preferably used at a temperature of 200 to 600°C, and particularly preferably used at a temperature of 200 to 600°C.
  • the fuel cell can be stably operated in a wider temperature range than conventional fuel cells, so there are fewer restrictions on the equipment and arrangement required for operation, and a wider range of applications can be achieved.
  • the proton conductive solid electrolyte using the compound of this embodiment can also be operated at a temperature exceeding 600° C., which is the operating temperature of a solid oxide fuel cell (SOFC), for example.
  • SOFC solid oxide fuel cell
  • the temperature at which the electrical conductivity expressed in log [ ⁇ (Scm -1 )] becomes greater than -2.0 is The temperature is preferably 350°C or lower. Moreover, it is more preferable that the temperature is 320° C. or less. Since the electrical conductivity at 350° C. or lower is sufficiently high, it has high electrical conductivity at low temperatures and can be particularly suitably used in batteries and other devices that operate at low temperatures.
  • the form of the proton conductive solid electrolyte may be formed into a membrane, layer (sheet or plate), etc. based on powder crystals. It may also be used as a powder.
  • the proton conductive solid electrolyte may contain one type of compound corresponding to the above-mentioned compound (A) or (B), or may contain two or more types.
  • the proton conductive solid electrolyte may contain a compound other than the above-mentioned compound (A) or (B). For example, it may contain other proton conductive compounds.
  • the content ratio of the compound corresponding to compound (A) or (B) is high, and the content should be made only of the compound (A) or (B). You can leave it there.
  • the proton conductive solid electrolyte of this embodiment is a powder, it may be composed of a single crystal or an aggregate of a plurality of crystal grains. Further, the aggregate may be a polycrystalline body. It is also preferable that the average grain size of the crystal grains is 3 ⁇ m or more. When the average grain size of the crystal grains is within the above range, electrical resistance due to grain boundary conduction in the proton conductive solid electrolyte can be suppressed, and proton conductivity can be further improved. Further, it is further preferable that the proton conductive solid electrolyte has an average grain size of 6 to 7 ⁇ m. When the average grain size of the crystal grains is within the above range, an increase in electrical resistance due to grain boundary conduction in the proton conductive solid electrolyte can be suppressed, and proton conductivity can be further improved.
  • the proton conductive solid electrolyte of this embodiment can be formed into a layered structure or formed so as to be included in a layered structure, and used as a proton conductive solid electrolyte layer.
  • the proton conductive solid electrolyte layer may contain other ionic conductors in addition to the proton conductive solid electrolyte of this embodiment. In order for the battery etc.
  • the proton conductive solid electrolyte of this embodiment to exhibit high electrical conductivity and to operate effectively as a low-temperature operation battery described later, for example, 50% by mass of the proton conductive solid electrolyte layer must be It is preferable to contain the proton conductive solid electrolyte containing the compound of the present embodiment in an amount of preferably 70% by mass or more.
  • the proton-conducting solid electrolyte of this embodiment or the electrolyte layer containing this proton-conducting solid electrolyte can be used in a battery containing the same.
  • the proton-conducting solid electrolyte of this embodiment can be particularly suitably used in fuel cells as described above.
  • a battery using the proton-conducting solid electrolyte of this embodiment or an electrolyte layer containing the proton-conducting solid electrolyte can be particularly suitably used as a low-temperature operating battery.
  • the low temperature operating battery is a battery that operates at 200 to 1200°C, preferably 200 to 1000°C, more preferably 200 to less than 700°C, particularly preferably 200 to 600°C, as described above.
  • the battery in this embodiment includes, for example, an anode, a cathode, and the above-mentioned proton-conducting solid electrolyte layer interposed between them.
  • the cathode and the proton-conducting solid electrolyte may form an integrated cathode-proton-conducting solid electrolyte layer assembly.
  • proton-conducting solid electrolytes containing compounds having perovskite-type structures, distorted perovskite-type structures, or perovskite-related structures, or hexagonal perovskite-related compounds exhibit high ionic conductivity and are therefore used in batteries, sensors, ion concentrators, and ion
  • the proton conductive solid electrolyte of this embodiment can be applied in the same way as membranes used for separation and permeation, catalysts, etc.
  • the proton-conducting solid electrolyte of this embodiment can be used not only for fuel cells but also for other batteries, sensors, electrodes, electrolytes, hydrogen concentrators, hydrogen separation membranes, hydrogen permeation membranes, hydrogen pumps, catalysts, photocatalysts, electrical and electronic devices.
  • the proton conductive solid electrolyte layer of this embodiment described above can be particularly suitably used in fuel cells, sensors, and the like.
  • fuel cells include solid oxide fuel cells (SOFC) and proton ceramic fuel cells (PCFC).
  • the proton conductive solid electrolyte of this embodiment can be used as an electrolyte for a gas sensor, for example, as a sensor.
  • a gas sensor By attaching a sensitive electrode corresponding to the gas to be detected on the electrolyte, a gas sensor, gas detector, etc. can be constructed.
  • a hydrogen sensor a carbon dioxide sensor when using a sensitive electrode containing carbonate
  • a NOx sensor when using a sensitive electrode containing nitrate
  • SOx sensor when using a sensitive electrode containing sulfate.
  • a trapping device or decomposition device for NOx and/or SOx contained in exhaust gas can be configured.
  • an adsorbent or adsorption/separation agent for ions can be used as the proton-conducting solid electrolyte of this embodiment, an adsorbent or adsorption/separation agent for ions, or various catalysts.
  • various rare earth elements in the ionic conductor may also act as an activator to form a luminescent center (color center). In this case, it can be used as a wavelength changing material or the like.
  • the proton-conducting solid electrolyte of this embodiment may also become a superconductor by doping with electron carriers or hole carriers.
  • the proton-conducting solid electrolyte of the present embodiment also uses a proton-conducting solid electrolyte as an ion conductor, and has an inorganic compound or the like that is colored or discolored by insertion and desorption of conductive ions attached to the surface thereof, and further has ITO added thereto. It is also possible to produce an all-solid-state electrochromic device by forming transparent electrodes such as the following. By using this all-solid-state electrochromic element, it is possible to provide an electrochromic display with memory characteristics and reduced power consumption.
  • the compound is produced by a solid phase reaction method.
  • the solid phase reaction method can be carried out by conventionally known steps.
  • the starting materials are mixed so that the molar ratio of the elements becomes a desired chemical composition, pressurized to form pellets, and fired to obtain a perovskite-type compound or a hexagonal perovskite-related compound.
  • a starting material containing elements with a desired chemical composition is prepared.
  • the starting materials may be dried in advance. Drying can be carried out at 200 to 1000° C. for 5 to 20 hours using an electric furnace or the like.
  • the starting materials are mixed so that the molar ratio of the elements becomes the desired chemical composition.
  • the molar ratio composition can be based on the molar ratio of cations.
  • Mixing and grinding can be carried out as appropriate, but for example, using an agate mortar, dry mixing and grinding and wet mixing and grinding using ethanol can be used together, and it can be carried out repeatedly for 0.5 to 2 hours.
  • the resulting mixture is pressed into pellets.
  • the molding can be performed by calcining the mixture and then applying pressure. Calcination can be performed at 300 to 1100°C for 5 to 24 hours using an electric furnace or the like. After calcination, pulverization and the above-mentioned mixing and grinding may be performed again. This mixture is formed into pellets at 62-150 MPa.
  • the formed pellets are fired (sintered). Bake at 1400 to 1700°C for 3 to 24 hours in the atmosphere. More preferably, this firing is performed at 1450 to 1600°C for 8 to 13 hours.
  • the compound of this embodiment can be effectively produced using these production methods, synthesis methods, and firing conditions.
  • the calcined mixture was repeatedly subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was molded into pellets with a diameter of 20 mm by applying pressure at 150 MPa using a uniaxial press.
  • the obtained pellets were placed in an electric furnace and sintered at 1500° C. for 12 hours in the atmosphere. As a result, pellets, which are sintered bodies, were obtained.
  • the resulting mixture was calcined in the atmosphere at 900° C. for 12 hours using an electric furnace.
  • the calcined mixture was subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1500° C. for 12 hours in the atmosphere.
  • the obtained mixture was calcined in the atmosphere at 900° C. for 12 hours using an electric furnace.
  • the calcined mixture was subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1600° C. for 12 hours in the atmosphere.
  • the resulting mixture was calcined in the atmosphere at 900° C. for 12 hours using an electric furnace.
  • the calcined mixture was subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1600° C. for 12 hours in the atmosphere.
  • the resulting mixture was calcined in the atmosphere at 900° C. for 12 hours using an electric furnace.
  • the calcined mixture was subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1600° C. for 12 hours in the atmosphere.
  • the resulting mixture was calcined in the atmosphere at 1000° C. for 12 hours using an electric furnace.
  • the calcined mixture was repeatedly subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1600° C. for 12 hours in the atmosphere.
  • the resulting mixture was calcined in the atmosphere at 1000° C. for 12 hours using an electric furnace.
  • the calcined mixture was repeatedly subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1450° C. for 12 hours in the atmosphere.
  • the resulting mixture was calcined in the atmosphere at 1000° C. for 12 hours using an electric furnace.
  • the calcined mixture was repeatedly subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1600° C. for 12 hours in the atmosphere.
  • the resulting mixture was calcined in the atmosphere at 1000° C. for 12 hours using an electric furnace.
  • the calcined mixture was repeatedly subjected to wet mixing and grinding using ethanol and dry mixing and grinding in an agate mortar for 30 to 60 minutes.
  • the mixture was pressurized at 150 MPa using a uniaxial press to form pellets with a diameter of 20 mm.
  • the obtained pellets were placed in an electric furnace and sintered at 1500° C. for 12 hours in the atmosphere.
  • XRD measurement In order to evaluate the formed phase of the obtained sintered body by X-ray diffraction (XRD), the sintered body was crushed and then ground in an agate mortar for 30 to 60 minutes. For each test example, XRD measurement was performed using a diffractometer Rigaku MiniFlex. The lattice constant was determined by Rietveld analysis of the obtained XRD data.
  • FIG. 3 shows Test Example 1: BaSc 0.8 Mo 0.2 O 3- ⁇
  • FIG. 4 shows Test Example 2: BaSc 0.75 Mo 0.25 O 3- ⁇
  • FIG. 5 shows Test Example 3: BaSc 0.85 Mo 0.15 O 3- ⁇
  • FIG. 6 shows Test Example 4: BaSc 0.7 Ge 0.3 O 3- ⁇
  • FIG. 7 shows Test Example 5: BaSc 0.75 Ge 0.25 O 3- ⁇
  • FIG. 8 shows Test Example 6: BaSc 0.65 Ge 0.35 O 3- ⁇
  • FIG. 9 shows Test Example 7: BaSc 0.8 Nb 0.2 O 3- ⁇
  • FIG. 10 shows Test Example 8: BaSc 0.75 Nb 0.25 O 3- ⁇
  • FIG. 11 shows Test Example 9: BaSc 0.7 Nb 0.3 O 3- ⁇
  • FIG. 11 shows Test Example 9: BaSc 0.7 Nb 0.3 O 3- ⁇
  • FIG. 12 shows Test Example 10: BaSc 0.65 Nb 0.35 O 3- ⁇
  • FIG. 13 shows Test Example 11: BaSc 0.6 Nb 0.4 O 3- ⁇
  • FIG. 14 shows Test Example 12: BaSc 0.7 Ta 0.3 O 3- ⁇
  • FIG. 15 shows Test Example 13: BaSc 0.8 V 0.2 O 3- ⁇
  • FIG. 16 shows Test Example 14: BaSc 0.75 V 0.25 O 3- ⁇
  • FIG. 17 shows Test Example 15: BaSc 0.8 W 0.2 O 3- ⁇
  • FIG. 18 shows Test Example 16: BaSc 0.6 Ce 0.4 O 3- ⁇
  • FIG. 19 shows Test Example 17: BaSc 0.6 Sb 0.4 O 3- ⁇ The results of XRD measurement are shown.
  • Tables 1 and 2 show the lattice constants.
  • the lattice constants in Tables 1 and 2 are values determined by structural optimization using density functional theory calculations, which will be described later.
  • platinum paste was applied to the platinum wires to bring the sample and the platinum wires into close contact.
  • it was heated at 900° C. for 1 hour using an electric furnace.
  • FIG. 20 shows Test Example 1: BaSc 0.8 Mo 0.2 O 3- ⁇
  • FIG. 21 shows Test Example 2: BaSc 0.75 Mo 0.25 O 3- ⁇
  • FIG. 22 shows Test Example 3: BaSc 0.85 Mo 0.15 O 3- ⁇
  • FIG. 23 shows Test Example 4: BaSc 0.7 Ge 0.3 O 3- ⁇
  • FIG. 24 shows Test Example 5: BaSc 0.75 Ge 0.25 O 3- ⁇
  • FIG. 25 shows Test Example 6: BaSc 0.65 Ge 0.35 O 3- ⁇
  • FIG. 26 shows Test Example 7: BaSc 0.8 Nb 0.2 O 3- ⁇
  • FIG. 27 shows Test Example 8: BaSc 0.75 Nb 0.25 O 3- ⁇
  • FIG. 28 shows Test Example 9: BaSc 0.7 Nb 0.3 O 3- ⁇
  • FIG. 29 shows Test Example 10: BaSc 0.65 Nb 0.35 O 3- ⁇
  • FIG. 30 shows Test Example 11: BaSc 0.6 Nb 0.4 O 3- ⁇
  • FIG. 31 shows Test Example 12: BaSc 0.7 Ta 0.3 O 3- ⁇
  • FIG. 32 shows Test Example 13: BaSc 0.8 V 0.2 O 3- ⁇
  • FIG. 33 shows Test Example 14: BaSc 0.75 V 0.25 O 3- ⁇
  • FIG. 34 shows Test Example 15: BaSc 0.8 W 0.2 O 3- ⁇
  • FIG. 35 shows Test Example 16: BaSc 0.6 Ce 0.4 O 3- ⁇
  • FIG. 36 shows Test Example 17: BaSc 0.6 Sb 0.4 O 3- ⁇
  • the Arrhenius plot of the DC total electrical conductivity measured by cooling in humid air and holding at a constant temperature is shown.
  • FIG. 26 bulk conductivity ( ⁇ ) and grain boundary conductivity ( ⁇ ) are shown.
  • FIG. 37 shows an Arrhenius plot of the intragranular conductivity and grain boundary conductivity of Test Example 1: BaSc 0.8 Mo 0.2 O 3- ⁇ .
  • the broken line indicates the Norby gap, and the dotted line indicates the proton conductivity of 0.01 S/cm.
  • FIG. 38 shows a comparison of Arrhenius plots of electrical conductivity of Test Example 1: BaSc 0.8 Mo 0.2 O 3- ⁇ and the conventional material.
  • the results of Test Example 1 are similar to those shown in FIG. 37. As conventional materials, 60Sc:BZ, 20Y:BZ, and Ba 5 Er 2 Al 2 ZrO 13 were shown.
  • Test Example 1 As for conventional materials, the highest performance proton conductor is 60Sc:BZ, that is, BaZr 0.4 Sc 0.6 O 3- ⁇ , but Test Example 1 has a higher proton conductivity than that. showed that. In addition, a material that is close to practical use and is currently being applied is 20Y:BZ, that is, BaZr 0.8 Y 0.2 O 3- ⁇ , and Test Example 1 had a proton conductivity about 10 times higher. In other words, Test Example 1 can be said to be a promising new substance.
  • Oxygen partial pressure dependence of total electrical conductivity The dependence of total electrical conductivity on oxygen partial pressure was measured using the DC four-terminal method. The sample was prepared in the same manner as for the total electrical conductivity measurement described above, and the oxygen partial pressure was controlled using oxygen gas, nitrogen gas, and nitrogen-hydrogen mixed gas. Oxygen partial pressure was monitored using an oxygen sensor installed downstream of the device.
  • Figure 39 shows the time dependence of electrical conductivity, that is, relaxation, when switching from light water (H 2 O) to heavy water (D 2 O) and then back to light water (H 2 O) in moist air for Test Example 1.
  • a graphical diagram of the process is shown. According to the figure, the total electrical conductivity decreases when switching to a D 2 O atmosphere, and the ratio of the conductivities in H 2 O air and D 2 O air is 1.33, which is the ideal ratio of the classical theory of proton conduction. Since the value is close to 1.41, it can be seen that proton conduction is dominant.
  • FIG. 40 shows a graph of the oxygen partial pressure dependence of the dry atmosphere and the wet atmosphere at 300° C. for Test Example 1.
  • the total electrical conductivity in a humid atmosphere is 10 times higher than that in a dry atmosphere, and since the total electrical conductivity is almost independent of the oxygen partial pressure, protons are dominant. Indicates that it is a conductive species.
  • FIG. 41 shows a graph of another Arrhenius plot of electrical conductivity for each gas atmosphere for Test Example 1.
  • the total electrical conductivity in dry air was approximately linear, but in a humid atmosphere, the total electrical conductivity was nonlinear.
  • the total electrical conductivity in light water H 2 O air is higher than that in dry air, especially at 300° C. it is 40 times higher. This result strongly suggests proton conduction.
  • the conductivity of light water H 2 O in air is 1.1 to 1.6 times higher than that of heavy water D 2 O in air, and this result also strongly suggests that proton conduction is dominant. ing.
  • Bulk conductivity evaluation Bulk conductivity was determined using the AC impedance method. The atmosphere was controlled using air gas, nitrogen gas, and nitrogen-hydrogen mixed gas. Oxygen partial pressure was monitored using an oxygen sensor installed downstream of the device.
  • FIG. 42 shows a graph of the dependence of bulk conductivity on oxygen partial pressure for Test Example 1.
  • the figure shows the dependence of bulk conductivity on oxygen partial pressure at 310°C and 147°C in a humid atmosphere. It was found that the bulk conductivity does not depend on the oxygen partial pressure, and that the chemical stability and electrical stability are high on the oxidation side and the reduction side.
  • Thermogravimetric analysis The proton concentration was measured using a thermogravimetric analyzer (manufactured by Netch Corporation, product name: STA449F3 Jupiter). After heating at 1000° C. for 160 minutes in a dry nitrogen atmosphere, the temperature was lowered stepwise and equilibrated in wet nitrogen. The proton concentration at each temperature was determined assuming that the mass increase observed in this operation was due to hydration.
  • FIG. 43 shows a graph of the thermal mass (TG) analysis results of Test Example 1.
  • FIG. 44 shows a graph of the temperature dependence of proton concentration estimated from the thermal mass spectrometry results of Test Example 1.
  • FIG. 45 shows a graph of the Arrhenius plot of the diffusion coefficient of Test Example 1.
  • the figure compares Test Example 1 with conventional materials BaZr 0.8 Y 0.2 O 3- ⁇ and BaSc 0.6 Zr 0.4 O 3- ⁇ . From the figure, it was found that Test Example 1 exhibited a proton diffusion coefficient that was about 10 times higher than that of the conventional material. The high proton conductivity of Test Example 1 is considered to be due to the high diffusion coefficient.
  • This material exhibits a high proton conductivity of 10 mS/cm at temperatures above 320°C and can be used as a proton-conducting solid electrolyte for fuel cells. Therefore, the stability in a carbon dioxide stream, a nitrogen-5% hydrogen mixed gas, and an oxygen gas at 320° C. was evaluated. After measuring the X-ray diffraction data of the sample before stability testing, the powder sample was annealed in a tube furnace at 320° C. for 24 hours in carbon dioxide gas, nitrogen-hydrogen mixture, and oxygen gas. X-ray diffraction data was collected on the powder samples after annealing to evaluate chemical stability.
  • FIG. 46 shows a graph of the stability of Test Example 1 in oxidizing and reducing atmospheres and in CO 2 .
  • a powder sample was annealed under each condition shown in the figure (O 2 , N 2 +H 2 , CO 2 , before testing), and its chemical stability was evaluated. Simulation results for BaCO 3 are also shown.
  • Test Example 1 showed excellent chemical stability in O 2 (oxidizing atmosphere), 95% N 2 +5% H 2 (reducing atmosphere), and CO 2 with no change in the XRD pattern before and after the stability test. Indicated.
  • the obtained mixture was calcined in the atmosphere at 1000° C. for 12 hours using an electric furnace.
  • the calcined mixture was dry mixed and ground in an agate mortar for 30 to 60 minutes.
  • the mixture was molded into pellets with a diameter of 20 mm using a uniaxial press and pressurized at 200 MPa using a cold isostatic press (CIP).
  • CIP cold isostatic press
  • X-ray diffraction measurement In order to evaluate the formed phase of the obtained sintered body by X-ray diffraction (XRD), after crushing the sintered body, wet and dry grinding using ethanol was repeated for 30 to 60 minutes in an agate mortar. went. XRD measurement was performed using an X-ray diffraction device Rigaku MiniFlex. The lattice constant of the perovskite oxide was determined by Rietveld analysis of the obtained XRD data.
  • Table 3 shows the lattice constant of Ba 5 R 2 Al 2 MO 13 estimated by structural optimization using DFT calculation.
  • Table 4 shows the lattice constants of the perovskite oxides synthesized in the above test examples, which were refined by Rietveld analysis of XRD data.
  • the number in parentheses is the standard deviation esd estimated during refinement, and is the last digit of the lattice constant. For example, the esd of 4.1463(2) is 0.0002.
  • Total electrical conductivity measurement (BA 5 Nd 2 Al 2 Sno 13 , BA 5 SM 2 Al 2 Sno 13 , BA 5 EU 2 Al 2 Sno 13 , BA 5 GD 2 Al 2 Sno 13 , BA 5 DY 2 Al 2 SNO 13 , BA 5 Y 2 Measurement of Al 2 SnO 13 )
  • the electrical conductivity of each test example was measured by the DC four-probe method.
  • the synthesized sample was molded into a pellet with a diameter of 5 mm by cold isostatic pressing and sintered at 1400° C. for 12 hours to prepare a sample for conductivity measurement.
  • platinum wires were wrapped around a sintered body for total electrical conductivity measurement using the DC four-terminal method, and platinum paste was applied to the platinum wires to make the sample and the platinum wires adhere. In order to remove organic components contained in the platinum paste, it was heated at 1000° C. for 1 hour using an electric furnace.
  • the electrical conductivity of each test example was measured by the DC four-terminal method.
  • the synthesized sample was molded into a pellet with a diameter of 5 mm by cold isostatic pressing and sintered at 1500° C. for 12 hours to prepare a sample for conductivity measurement.
  • Four platinum wires were wrapped around a sintered body for total electrical conductivity measurement using the DC four-terminal method, and platinum paste was applied to the platinum wires to make the sample and the platinum wires adhere. In order to remove organic components contained in the platinum paste, it was heated at 1000° C. for 1 hour using an electric furnace.
  • FIG. 48 shows Test Example 18: Ba 5 Nd 2 Al 2 SnO 13
  • FIG. 49 shows Test Example 19: Ba 5 Sm 2 Al 2 SnO 13
  • FIG. 50 shows Test Example 20: Ba 5 Gd 2 Al 2 SnO 13
  • FIG. 51 shows Test Example 21: Ba 5 Dy 2 Al 2 SnO 13
  • FIG. 52 shows Test Example 22: Ba 5 Ho 2 Al 2 SnO 13
  • FIG. 53 shows Test Example 23: Ba 5 Er 2 Al 2 SnO 13
  • FIG. 54 shows Test Example 24: Ba 5 Tm 2 Al 2 SnO 13
  • FIG. 55 shows Test Example 25: Ba 5 Yb 2 Al 2 SnO 13
  • FIG. 56 shows Test Example 26: Ba 5 Y 2 Al 2 SnO 13
  • FIG. 57 shows Test Example 27: Ba 5 Eu 2 Al 2 SnO 13
  • a graph of the DC total electrical conductivity is shown. Each atmospheric condition is shown in each figure.
  • FIG. 58 shows a graph summarizing the electrical conductivity of Test Examples 18 to 27.
  • Test Example 23 Further analysis was performed on the compound Ba 5 Er 2 Al 2 SnO 13 .
  • FIG. 68 is a graph showing a comparison of electrical conductivity at each temperature between Test Example 23: Ba 5 Er 2 Al 2 SnO 13 and the conventional material.
  • the figure is a comparison diagram of bulk (intragranular) conductivity, and the broken line indicates Norby Gap.
  • the compound of Test Example 23 was compared to the conventionally used materials Y10:BC and Y20:BZ (BaZr 0.8 Y 0.2 O 3- ⁇ ) at both temperatures of 200 to 350 degrees.
  • the bulk conductivity was higher than that of
  • FIG. 69 is a graph showing the oxygen partial pressure dependence of the DC total electrical conductivity in a dry atmosphere and a humid atmosphere at each temperature for Test Example 23: Ba 5 Er 2 Al 2 SnO 13 .
  • the electrolyte region independent of oxygen partial pressure P(O 2 ) suggests ionic conduction.
  • the conductivity in a humid atmosphere is higher than in a dry atmosphere, suggesting proton conduction.
  • FIG. 70 is a graph showing the time dependence of electrical conductivity for each gas atmosphere for Test Example 23: Ba 5 Er 2 Al 2 SnO 13 . As shown in the figure, the conductivity under H 2 O atmosphere is about 1.5 times higher than under D 2 O atmosphere, suggesting proton conduction.
  • FIG. 71 is a graph showing the thermogravimetric analysis results of Test Example 23: Ba 5 Er 2 Al 2 SnO 13 .
  • the vertical axis of the figure shows the water absorption amount x of the sample.
  • the figure shows that x increases with cooling. From these results, it can be said that Test Example 23 is a promising new substance.
  • Test Examples 33 to 35 Synthesis and analysis of compounds of Ba 5- ⁇ R 2+x Al 2+y M 1+z O 13+ ⁇ ] A compound belonging to Ba 5- ⁇ R 2+x Al 2+y M 1+z O 13+ ⁇ was synthesized and analyzed.
  • Test example 33 Ba 5 Er 2 Al 2 Sn 0.5 Zr 0.5 O 13
  • Test example 34 Ba 5 Er 1.9 Al 2.1 SnO 13
  • Test example 35 Ba 5 Er 2 Al 2.1 Sn 0.9 O 12.95 was synthesized in the same manner as in Test Example 23 above. XRD measurements were conducted in the same manner as in Test Example 23, respectively.
  • FIG. 72 shows the results of XRD measurement of Test Example 33: Ba 5 Er 2 Al 2 Sn 0.5 Zr 0.5 O 13 .
  • FIG. 73 shows Test Example 33: Ba 5 Er 2 Al 2 Sn 0.5 Zr 0.5 O 13 was cooled in humid air (water vapor partial pressure: 0.02 atm at 18° C.) and the temperature was maintained. The measured DC total electrical conductivity is shown.
  • FIG. 74 shows the results of XRD measurement of Test Example 34: Ba 5 Er 1.9 Al 2.1 SnO 13 .
  • FIG. 75 shows the results of XRD measurement of Test Example 35: Ba 5 Er 2 Al 2.1 Sn 0.9 O 12.95 . Similar to Test Example 23, these compounds can be expected to be applied to useful electrolytes and batteries.
  • a proton-conducting solid electrolyte capable of exhibiting excellent proton conductivity in low and intermediate temperature ranges, and an electrolyte layer and battery using the same can be obtained.
  • the proton conductive solid electrolyte, electrolyte layer and battery of the present invention can also be used for solid oxide fuel cells (SOFC), proton ceramic fuel cells (PCFC), sensors, batteries, electrodes, electrolytes, hydrogen permeable membranes, catalysts, photocatalysts, It can be used in electrical/electronic/communication equipment, energy/environment-related equipment, optical equipment, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)

Abstract

低温および中温度域において高いプロトン伝導度と安定性を発揮しうるプロトン伝導性固体電解質、それを用いた電解質層および電池を提供する。一例として一般式:Ba1-αSc1-xMo3-δで表され、αが-0.2~0.2であり、xが0.1~0.3であり、yが0~1-3xであり、δが0~1/2-3x/2である、また、一般式:BaSc1-xMo3-δで表され、xが0.15~0.25であり、yが0~1-3xであり、δが0~1/2-3x/2、などであるプロトン伝導性固体電解質、電解質層および電池である。

Description

プロトン伝導性固体電解質、電解質層および電池
 本発明は、燃料電池やセンサ等のプロトン伝導性固体電解質層に用いられるプロトン伝導性固体電解質、それを用いた電解質層、及び電池に関する。
 本願は、2022年9月5日に出願された特願2022-140685号に基づき優先権を主張し、その内容をここに援用する。
 各種の燃料電池は、次世代のクリーンエネルギー社会実現、環境問題解決のキーとして注目を集めている。燃料電池やセンサに用いることのできる物質としては、各種のイオン伝導体、例えば金属酸化物のプロトン伝導体や、酸化物イオン伝導体が知られている。
 従来知られているイオン伝導体としては、酸化物イオン(O2-)伝導性セラミックスとしてイットリア安定化ジルコニア(ZrO-Y)(以下「YSZ」と記す)が知られている。YSZは固体酸化物形燃料電池(以下、「SOFC」という)に利用することができ、SOFCは発電効率が特に高く、燃料の改質装置を必要とせず、長期安定性に優れる利点が知られている。
 一方で、プロトン伝導体としては、BaZr0.8Y0.2O2.9など、化学置換をして酸素空孔を導入したペロブスカイト型酸化物が知られている。
 特許文献1には、陰イオン、陽イオン、プロトン、電子および正孔からなる群より選ばれた少なくとも1種のキャリアが伝導可能な結晶性無機化合物が開示されている。電気伝導度の高い化合物、例えば酸化物イオン(O2-)やプロトン(H)などのイオンを伝導する高いイオン伝導度を示す化合物は、燃料電池等の固体電解質に用いることができる。
 本発明者らは、特許文献2において、六方ペロブスカイト関連化合物を含む固体電解質であって、前記化合物が一般式Ba7-αNb(4-x-y)Mо(1+x)(20+z)などで表される化合物である固体電解質、それを用いた電解質層および電池を開示している。この固体電解質、それを用いた電解質層および電池は、YSZに比べて低い温度領域においても高い電気伝導度を有し、SOFCに好適に用いることができるものである。
 特許文献3では、一般式:BaZr1-xSc3-δで表され、xが0.20超0.65未満であり、yが0.7x~xであり、δが0~0.15xであるスカンジウム添加ジルコン酸バリウムを含む、固体電解質が開示されている。この技術は、中温度域において、一定以上のプロトン伝導度及び化学的安定性を発揮し得る固体電解質を提供しようとするものである。
特許第6448020号公報 国際公開第2020/153485号 国際公開第2021/085366号
 現在、上述のような従来知られているイオン伝導体に加えて、さらに高い酸化物イオン伝導度や高い酸素輸率を有する酸化物イオン伝導体、ならびに高いプロトン伝導度や高いプロトン輸率を有するプロトン伝導体が求められている。
 また、周囲の環境によらず安定した性質を持つイオン伝導体も求められている。周囲の環境としては、例えば温度条件や、酸素分圧への依存性が挙げられる。
 温度条件について、従来のYSZは、電池に必要な酸化物イオン伝導度を確保するにはおよそ700℃以上の高温を要する。電池を700℃以上という高温で動作させるには、燃料電池自体に動作前に予備加熱が必要であり、燃料電池の構成材料に熱的耐久性が求められるといった条件が多く求められる。さらに、動作させる環境やスペース、電池を高温に保ち他の環境が高温とならないよう遮断または冷却するための他の装置などを必要とする。そのため、広い温度条件において高いイオン伝導度を発揮するイオン伝導体が求められている。
 ここで、プロトン伝導体を固体電解質に用いるプロトンセラミック燃料電池(PCFC)では、伝導種のプロトンが高い移動度を持つために、比較的低温でもある程度のイオン伝導度を示すこと、酸素分圧に依存しないイオン伝導度を有することが知られている。
 近年、中温域において十分なプロトン伝導度を示す材料として、前述したBaZr0.8Y0.2O2.9、BaZr1-xSc3-δなどの、ジルコン酸バリウムを用いた検討が行われている。
 しかし、さらに低い温度域で十分なプロトン伝導度を得ることが強く求められている。しかしながら、そのような特性を得るためには、ジルコン酸バリウムとは異なる組成を探索する必要がある。
 本発明は上記のような事情を鑑みてなされたものであり、低温および中温度域において優れたプロトン伝導度を発揮しうる固体電解質、それを用いた電解質層および電池を提供することを目的とする。
 上記課題を解決するため、本発明は以下の態様を有する。
 [1] (1)一般式:Ba1-αSc1-xMo3-δで表され、αが-0.2~0.2であり、xが0.1~0.3であり、yが0~1-3xであり、δが0~1/2-3x/2である、プロトン伝導性固体電解質。
 [2] 一般式:BaA1-x3-δで表され、AはCe、In、ZrおよびZnを除くイオン半径が0.52~0.97Åの元素であり、MはA、Zr、CeおよびZnを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAおよびZnを除く複数の元素の混合組成であり、xが0超1未満であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)、
 yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
 [3] AはScであり、MはMо、Ge、Nb、Ta、V、WまたはSbであり、
 前記MがMо又はWの場合はxが0超1/3以下であり、前記MがGeの場合はxが0超1/2未満であり、前記MがNb、Ta、VまたはSbの場合はxが0超1/2以下である、 [2]に記載のプロトン伝導性固体電解質。
 [4] 以下の(2)~(8)のいずれかの、 [2]または[3]に記載のプロトン伝導性固体電解質。
 (2)一般式:BaSc1-xGe3-δで表され、xが0.25~0.35であり、yが0~1-xであり、δが0~1/2-x/2である。
 (3)一般式:BaSc1-xNb3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xである。
 (4)一般式:BaSc1-xTa3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xである。
 (5)一般式:BaSc1-x3-δで表され、xが0.2~0.25であり、yが0~1-2xであり、δが0~1/2-xである。
 (6)一般式:BaSc1-x3-δで表され、xが0.15~0.25であり、yが0~1-3xであり、δが0~1/2-3x/2である。
 (7)一般式:BaSc0.6Ce0.43-δで表される。
 (8)一般式:BaSc1-xSb3-δで表され、xが0.35~0.45であり、yが0~1-2xであり、δが0~1/2-xである。
 [5] 一般式:BaSc1-x3-δで表され、MはSc、Zr、CeおよびZnを除く複数の元素の混合組成を表し、Mの平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)
 yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
 [6] 一般式:Ba1-εSc1-x3-δで表され、
 MはMо、Ge、Nb、Ta、V、WまたはSbであり、
 yが0~1であり、εが0~0.7、δが0~1/2であり、
 前記MがGeの場合はxが0超1/2未満であり、
 前記MがNb、Ta、VまたはSbの場合は、xが0超1/2以下であり、
 前記MがMоまたはWの場合は、xが0超1/3未満であるプロトン伝導性固体電解質。
 [7] 一般式:Ba1-εSc1-xCe3-δで表され、xが0超1未満であり、yが0~1であり、εが0.05超~0.7(ただし0.05<ε<0.2の場合、0<x<0.5)、δが0~1/2であるプロトン伝導性固体電解質。
 [8] 一般式:Ba1-εSc1-x3-δで表され、MはScおよびZnを除く、イオン半径がScのイオン半径の70~130%となる元素、またはMはScおよびZnを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
 (ただしM=Tiについてはε=0の場合はxが0超0.2未満であり、
 M=Ge、Sn、Hfについてはxが0超0.95未満であり、
 M=Zr、Ceについては、εが0.05超であり、
 MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
 yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
 [9] 一般式:Ba1-ε1-x3-δで表され、AはCe、In、ZrおよびZnを除くイオン半径が0.52~0.97Åの元素であり、MはAおよびZnを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 M=Zr、Ceについては、εが0.05超であり、
 MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
 yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
 [10] 一般式:BaA1-x-zM1M23-δで表され、
 zが0超1未満であり、yが0~1であり、δが0~1/2であり、
 以下の(28)~(35)のいずれかの、プロトン伝導性固体電解質。
 (28)一般式:BaSc1-x-zMo3-δで表され、xが0超1/3以下であり、MはSc、MoおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、MoおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (29)一般式:BaSc1-x-zGe3-δで表され、xが0超1未満であり、MはSc、GeおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、GeおよびZnを除く複数の元素の混合組成である。
 (30)一般式:BaSc1-x-zNb3-δで表され、xが0超1/2以下であり、MはSc、NbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、NbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (31)一般式:BaSc1-x-zTa3-δで表され、xが0超1/2以下であり、MはSc、TaおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、TaおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (32)一般式:BaSc1-x-z3-δで表され、xが0超1/2以下であり、MはSc、VおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、VおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (33)一般式:BaSc1-x-z3-δで表され、xが0超1/3以下であり、MはSc、WおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、WおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (34)一般式:BaSc1-x-zCe3-δで表され、xが0超1未満であり、MはSc、Ce、ZrおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素、または平均イオン半径がScのイオン半径の70~130%となるSc、CeおよびZnを除く複数の元素の混合組成である(ただしz=0の場合、xは0超0.2未満である。M=Cr、Fe、Mn、CоまたはNiについてはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)。
 (35)一般式:BaSc1-x-zSb3-δで表され、xが0超1/2以下であり、MはSc、SbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、SbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 [11] 一般式:Ba1-ε1-x-zM1M23-δで表され、
 zが0超1未満であり、yが0~1であり、εが0~0.7であり、δが0~1/2であり、
 以下の(36)~(43)のいずれかの、プロトン伝導性固体電解質。
 (36)一般式:Ba1-εSc1-x-zMo3-δで表され、xが0超1/3以下であり、MはSc、MoおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、MoおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)
 (37)一般式:Ba1-εSc1-x-zGe3-δで表され、xが0超1未満であり、MはSc、GeおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、GeおよびZnを除く複数の元素の混合組成である。
 (38)一般式:Ba1-εSc1-x-zNb3-δで表され、xが0超1/2以下であり、MはSc、NbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、NbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (39)一般式:Ba1-εSc1-x-zTa3-δで表され、xが0超1/2以下であり、MはSc、TaおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、TaおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (40)一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/2以下であり、MはSc、VおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、VおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (41)一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/3以下であり、MはSc、WおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、WおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (42)一般式:Ba1-εSc1-x-zCe3-δで表され、xが0超0.8未満であり、MはSc、CeおよびZnを除く(さらに、ε=0のときはZrも除く)イオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、CeおよびZnを除く複数の元素の混合組成である(ただしM=Cr、Fe、Mn、CоまたはNiについてはε=0~0.2またはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)。
 (43)一般式:Ba1-εSc1-x-zSb3-δで表され、xが0超1/2以下であり、MはSc、SbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、SbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 [12] 一般式:Ba5-α2+xAl2+y1+z13+δで表され、
 αは0以上2以下であり、xは-1以上1以下であり、yは-1以上1以下であり、zは-0.5以上0.5以下であり、δは-1以上1以下であり、
 前記一般式のRは希土類元素およびGaからなる群より選ばれた1種類の元素の陽イオンであり、MはHf、SnまたはZrからなる群より選ばれた1種類の元素の陽イオンである、プロトン伝導性固体電解質。
 [13] 一般式:BaAlMO13で表され、MはHfおよびSnからなる群より選ばれた1種類の元素の陽イオンである、[12]に記載のプロトン伝導性固体電解質。
 [14] 前記一般式のMがSn、かつRがNd、Sm、Eu、Gd、Dy、Ho、Y、Er、TmまたはYbである、[12]または[13]に記載のプロトン伝導性固体電解質。
 [15] 100~700℃の温度条件で用いるための、[1]~[14]のいずれかに記載のプロトン伝導性固体電解質。
 [16] 200~400℃の温度条件で用いるための、[1]~[14]のいずれかに記載のプロトン伝導性固体電解質。
 [17] 粒内でのプロトン伝導度を測定したとき、lоg[σ(Scm-1)]で表される電気伝導度が-2.0よりも大きくなる温度が350℃以下である、[1]~[14]のいずれかに記載のプロトン伝導性固体電解質。
 [18] 固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、電池、電極、電解質、水素透過膜、触媒、光触媒、電気・電子・通信機器、エネルギー・環境関連用機器または光学機器に用いられる、[1]~[14]のいずれかに記載のプロトン伝導性固体電解質。
 [19] 固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、または水素透過膜に用いられる、[1]~[14]のいずれかに記載のプロトン伝導性固体電解質。
 [20]  [1]~[14]のいずれかに記載のプロトン伝導性固体電解質を含む電解質層。
 [21]  [20]に記載の電解質層を備える電池。
 [22] 固体酸化物形燃料電池(SOFC)またはプロトンセラミック燃料電池(PCFC)である、[21]に記載の電池。
 また、本発明の態様はその他に、以下の側面も有する。
[1A] 一般式:Ba1-αSc1-xMo3-δで表され、αが-0.2~0.2であり、xが0.1~0.3であり、yが0~1-3xであり、δが0~1/2-3x/2であるプロトン伝導性固体電解質。
[2A] 一般式:BaSc1-xGe3-δで表され、xが0.25~0.35であり、yが0~1-xであり、δが0~1/2-x/2であるプロトン伝導性固体電解質。
[3A] 一般式:BaSc1-xNb3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xであるプロトン伝導性固体電解質。
[4A] 一般式:BaSc1-xTa3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xであるプロトン伝導性固体電解質。
[5A] 一般式:BaSc1-x3-δで表され、xが0.2~0.25であり、yが0~1-2xであり、δが0~1/2-xであるプロトン伝導性固体電解質。
[6A]一般式:BaSc1-x3-δで表され、xが0.15~0.25であり、yが0~1-3xであり、δが0~1/2-3x/2であるプロトン伝導性固体電解質。
[7A] 一般式:BaSc1-xCe3-δで表され、xが0.35~0.45であり、yが0~1-xであり、δが0~1/2-x/2であるプロトン伝導性固体電解質。
[8A] 一般式:BaSc1-xSb3-δで表され、xが0.35~0.45であり、yが0~1-2xであり、δが0~1/2-xであるプロトン伝導性固体電解質。
[9A] 一般式:BaSc1-xMo3-δで表され、xが0超1/3以下であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[10A] 一般式:BaSc1-xGe3-δで表され、xが0超1/2未満であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[11A] 一般式:BaSc1-xNb3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[12A] 一般式:BaSc1-xTa3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[13A] 一般式:BaSc1-x3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[14A] 一般式:BaSc1-x3-δで表され、xが0超1/3以下であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[15A] 一般式:BaSc1-xSb3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[16A] 一般式:BaA1-x3-δで表され、AはCe、In、Zrを除くイオン半径が0.52~0.97Åの元素であり、MはA、Zr、Ceを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)
 yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[17A] 一般式:BaSc1-x3-δで表され、MはSc、Zr、Ceを除く複数の元素の混合組成を表し、Mの平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)
 yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[18A] 一般式:Ba1-εSc1-xMo3-δで表され、xが0超1/3以下であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[19A] 一般式:Ba1-εSc1-xGe3-δで表され、xが0超1/2未満であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[20A] 一般式:Ba1-εSc1-xNb3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[21A] 一般式:Ba1-εSc1-xTa3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[22A] 一般式:Ba1-εSc1-x3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[23A] 一般式:Ba1-εSc1-x3-δで表され、xが0超1/3以下であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[24A] 一般式:Ba1-εSc1-xCe3-δで表され、xが0超1未満であり、yが0~1であり、εが0.05超~0.7(ただし0.05<ε<0.2の場合、0<x<0.5)、δが0~1/2であるプロトン伝導性固体電解質。
[25A] 一般式:Ba1-εSc1-xSb3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[26A] 一般式:Ba1-εSc1-x3-δで表され、MはScを除く、イオン半径がScのイオン半径の70~130%となる元素、またはMはScを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
 (ただしM=Tiについてはε=0の場合はxが0超0.2未満であり、
 M=Ge、Sn、Hfについてはxが0超0.95未満であり、
 M=Zr、Ceについては、εが0.05超であり、
 MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
 yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[27A] 一般式:Ba1-ε1-x3-δで表され、AはCe、In、Zrを除くイオン半径が0.52~0.97Åの元素であり、MはAを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 M=Zr、Ceについては、εが0.05超であり、
 MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
 yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[28A] 一般式:BaSc1-x-zMo3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとMoを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとMoを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[29A] 一般式:BaSc1-x-zGe3-δで表され、xが0超1未満であり、zが0超1未満であり、MはScとGeを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとGeを除く複数の元素の混合組成であり、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[30A] 一般式:BaSc1-x-zNb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとNbを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとNbを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[31A] 一般式:BaSc1-x-zTa3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとTaを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとTaを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[32A] 一般式:BaSc1-x-z3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとVを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとVを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[33A] 一般式:BaSc1-x-z3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとWを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとWを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[34A] 一般式:BaSc1-x-zCe3-δで表され、xが0超1未満であり、zが0超1未満であり、MはScとCeとZrを除くイオン半径がScのイオン半径の70~130%となる元素、または平均イオン半径がScのイオン半径の70~130%となるScとCeを除く複数の元素の混合組成であり(ただしz=0の場合、xは0超0.2未満である。M=Cr、Fe、Mn、CоまたはNiについてはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[35A] 一般式:BaSc1-x-zSb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとSbを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとSbを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
[36A] 一般式:Ba1-εSc1-x-zMo3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとMoを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとMoを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[37A] 一般式:Ba1-εSc1-x-zGe3-δで表され、xが0超1未満であり、zが0超1未満であり、MはScとGeを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとGeを除く複数の元素の混合組成であり、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[38A] 一般式:Ba1-εSc1-x-zNb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとNbを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとNbを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[39A] 一般式:Ba1-εSc1-x-zTa3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとTaを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとTaを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[40A] 一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとVを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとVを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[41A] 一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとWを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとWを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[42A] 一般式:Ba1-εSc1-x-zCe3-δで表され、xが0超0.8未満であり、zが0超1未満であり、MはScとCeを除く(さらに、ε=0のときはZrも除く)イオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとCeを除く複数の元素の混合組成であり(ただしM=Cr、Fe、Mn、CоまたはNiについてはε=0~0.2またはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[43A] 一般式:Ba1-εSc1-x-zSb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとSbを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとSbを除く複数の元素の混合組成であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
[44A] 一般式:BaAlMO13で表され、前記一般式中のRは希土類元素およびGaからなる群より選ばれた1種類の元素の陽イオンであり、MはHfおよびSnからなる群より選ばれた1種類の元素の陽イオンである、プロトン伝導性固体電解質。
[45A] 前記一般式中のMがSn、かつRがNd、Sm、Eu、Gd、Dy、Ho、Y、Er、TmまたはYbである、[44A]に記載のプロトン伝導性固体電解質。
[46A] 100~700℃の温度条件で用いるための、[1A]から[45A]のいずれか1に記載のプロトン伝導性固体電解質。
[47A] 200~400℃の温度条件で用いるための、[1A]から[46A]のいずれか1に記載のプロトン伝導性固体電解質。
[48A] 粒内でのプロトン伝導度を測定したとき、lоg[σ(Scm-1)]で表される電気伝導度が-2.0よりも大きくなる温度が350℃以下である、[1A]から[47A]のいずれか1に記載のプロトン伝導性固体電解質。
[49A] 固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、電池、電極、電解質、水素透過膜、触媒、光触媒、電気・電子・通信機器、エネルギー・環境関連用機器または光学機器に用いられる、[1A]から[48A]のいずれか1に記載のプロトン伝導性固体電解質。
[50A] 固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、または水素透過膜に用いられる、[1A]から[49A]のいずれか1に記載のプロトン伝導性固体電解質。
[51A] [1A]から[50A]のいずれか1項に記載のプロトン伝導性固体電解質を含む電解質層。
[52A] 請求項[51A]に記載の電解質層を備える電池。
[53A] 固体酸化物型燃料電池(SOFC)またはプロトンセラミック燃料電池(PCFC)である、[52A]に記載の電池。
 本発明によれば、低温および中温度域において優れたプロトン伝導度を発揮しうるプロトン伝導性固体電解質、それを用いた電解質層および電池が得られる。
本実施形態の化合物(A)の結晶構造を示す模式図である。 本実施形態の化合物(B)の結晶構造を示す模式図である。 試験例1:BaSc0.8Mo0.23-δのXRD測定の結果を示すグラフ図である。 試験例2:BaSc0.75Mo0.253-δのXRD測定の結果を示すグラフ図である。 試験例3:BaSc0.85Mo0.153-δのXRD測定の結果を示すグラフ図である。 試験例4:BaSc0.7Ge0.33-δのXRD測定の結果を示すグラフ図である。 試験例5:BaSc0.75Ge0.253-δのXRD測定の結果を示すグラフ図である。 試験例6:BaSc0.65Ge0.353-δのXRD測定の結果を示すグラフ図である。 試験例7:BaSc0.8Nb0.23-δのXRD測定の結果を示すグラフ図である。 試験例8:BaSc0.75Nb0.253-δのXRD測定の結果を示すグラフ図である。 試験例9:BaSc0.7Nb0.33-δのXRD測定の結果を示すグラフ図である。 試験例10:BaSc0.65Nb0.353-δのXRD測定の結果を示すグラフ図である。 試験例11:BaSc0.6Nb0.43-δのXRD測定の結果を示すグラフ図である。 試験例12:BaSc0.7Ta0.33-δのXRD測定の結果を示すグラフ図である。 試験例13:BaSc0.80.23-δのXRD測定の結果を示すグラフ図である。 試験例14:BaSc0.750.253-δのXRD測定の結果を示すグラフ図である。 試験例15:BaSc0.80.23-δのXRD測定の結果を示すグラフ図である。 試験例16:BaSc0.6Ce0.43-δのXRD測定の結果を示すグラフ図である。 試験例17:BaSc0.6Sb0.43-δのXRD測定の結果を示すグラフ図である。 試験例1:BaSc0.8Mo0.23-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例2:BaSc0.75Mo0.253-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例3:BaSc0.85Mo0.153-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例4:BaSc0.7Ge0.33-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例5:BaSc0.75Ge0.253-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例6:BaSc0.65Ge0.353-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例7:BaSc0.8Nb0.23-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定したバルク伝導度と粒界伝導度を示すグラフ図である。 試験例8:BaSc0.75Nb0.253-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例9:BaSc0.7Nb0.33-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例10:BaSc0.65Nb0.353-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例11:BaSc0.6Nb0.43-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例12:BaSc0.7Ta0.33-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例13:BaSc0.80.23-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例14:BaSc0.750.253-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例15:BaSc0.80.23-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例16:BaSc0.6Ce0.43-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例17:BaSc0.6Sb0.43-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示すグラフ図である。 試験例1の粒内伝導度と粒界伝導度を示すグラフ図である。 試験例1と従来材料の温度ごとの電気伝導度の比較を示すグラフ図である。 試験例1について、気体雰囲気ごとの電気伝導度の時間依存性を示すグラフ図である。 試験例1について、乾燥雰囲気と湿潤雰囲気における直流全電気伝導度の酸素分圧依存性を示すグラフ図である。 試験例1について、気体雰囲気ごとの直流全電気伝導度のアレニウスプロットを示すグラフ図である。 試験例1について、バルク伝導度の酸素分圧依存性を示すグラフ図である。 試験例1の熱重量分析結果を示すグラフ図である。 試験例1の熱重量分析結果から見積もられたプロトン濃度の温度依存性を示すグラフ図である。 試験例1の拡散係数のアレニウスプロットを示すグラフ図である。 試験例1の酸化、還元雰囲気中とCO中における安定性を示すグラフ図である。 試験例18~27それぞれの合成例についてXRD測定の結果を示すグラフ図である。 試験例18:BaNdAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例19:BaSmAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例20:BaGdAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例21:BaDyAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例22:BaHoAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例23:BaErAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例24:BaTmAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例25:BaYbAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例26:BaAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例27:BaEuAlSnO13の直流全電気伝導度を示すグラフ図である。 試験例18~27の直流全電気伝導度のまとめを示すグラフ図である。 試験例28:BaSc0.775Mo0.2253-δのXRD測定の結果を示すグラフ図である。 試験例28:BaSc0.775Mo0.2253-δの湿潤空気中のバルク伝導度を示すグラフ図である。 試験例29:BaSc0.725Mo0.2753-δのXRD測定の結果を示すグラフ図である。 試験例29:BaSc0.725Mo0.2753-δの湿潤空気中のバルク伝導度を示すグラフ図である。 試験例30:BaSc0.70.33-δのXRD測定の結果を示すグラフ図である。 試験例31:BaSc0.750.253-δのXRD測定の結果を示すグラフ図である。 試験例31:BaSc0.750.253-δの湿潤空気中の直流全電気伝導度を示すグラフ図である。 試験例32:BaSc0.80.23-δのXRD測定の結果を示すグラフ図である。 試験例32:BaSc0.80.23-δの湿潤空気中の直流全電気伝導度を示すグラフ図である。 試験例23:BaErAlSnO13と従来材料の温度ごとの電気伝導度の比較を示すグラフ図である。 試験例23:BaErAlSnO13について、各温度の乾燥雰囲気と湿潤雰囲気における直流全電気伝導度の酸素分圧依存性を示すグラフ図である。 BaErAlSnO13について、気体雰囲気ごとの電気伝導度の時間依存性を示すグラフ図である。 試験例23:BaErAlSnO13の熱重量分析結果を示すグラフ図である。 試験例33:BaErAlSn0.5Zr0.513のXRD測定の結果を示すグラフ図である。 試験例33:BaErAlSn0.5Zr0.513の湿潤空気中の直流全電気伝導度を示すグラフ図である。 試験例34:BaEr1.9Al2.1SnO13のXRD測定の結果を示すグラフ図である。 試験例35:BaErAl2.1Sn0.912.95のXRD測定の結果を示すグラフ図である。
 以下、本発明に係るプロトン伝導性固体電解質、電解質層、及び電池について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。
(プロトン伝導性固体電解質)
 本実施形態において、まず、固体電解質は、イオンが伝導する固体材料であり、イオンおよび電子(またはそのホール)の両方が伝導する材料も含む。なお、以下の固体電解質に含まれる各化合物は、不純物相も少量含まれるが、おおむね単相のものを用いることができるとする。
 プロトン伝導性固体電解質とは、キャリアとして主にプロトンを含む固体電解質である。ここで、プロトン伝導性固体電解質としては、プロトンだけではなく、酸化物イオンや電子や電子のホールなどもキャリアであるプロトン-酸化物イオン混合伝導性、プロトン-酸化物イオン-ホール混合伝導性、プロトン-酸化物イオン-電子混合伝導性固体電解質なども含むものとする。
(第1の実施形態)
(化合物(A):Ba1-ε1-x3-δ
 本実施形態の化合物の一態様は、一般的に言えば、下記一般式(A)で表される化合物、以下化合物(A)に含まれる、プロトン伝導性固体電解質である。
 Ba1-ε1-x3-δ ・・・ (A)
[式(A)中、AはSc、またはScのイオン半径に対して70~130%のイオン半径を有する元素から選択された元素である。Mは金属元素である。]
 ここで、化合物(A)は、いわゆるペロブスカイト型プロトン伝導体である。ペロブスカイト型プロトン伝導体とは、ペロブスカイト型構造、歪んだペロブスカイト型構造あるいはペロブスカイト関連構造を備え、後述するようなプロトン伝導により電気伝導を行うことのできる化合物である。ペロブスカイト構造を備えるとは、ペロブスカイトユニットを含む構造をもつ化合物またはそれに類似した構造をもつ化合物である。
 前記式(A)中、AはSc、またはScのイオン半径に対して70~130%のイオン半径を有する元素である。AはScを除く複数の元素の混合組成でもよい。具体的には、Aはおよそ0.52~0.97Åのイオン半径を有する元素またはおよそ0.52~0.97Åの平均イオン半径を有する混合組成である。
 本実施形態のプロトン伝導性固体電解質に含まれる前記式(A)の化合物は、前記AがScであることが好ましいが、Scにかえて用いることで同様の結晶構造をとる元素であれば好適に使用することができるためである。
 ここで、前記イオン半径の範囲内の元素としては、イオン半径が0.535ÅのAl、0.76ÅのLi、0.53、0.58、0.645、0.67、または0.83ÅのMn、0.54、0.58、0.64、または0.79ÅのV、0.525、0.545、0.575、または0.63ÅのOs、0.95ÅのCd、0.73または0.76ÅのU、0.71、0.72、0.75、および0.87Åのイオン半径をとりうるNp、0.53または0.95ÅのI、0.97ÅのPm、0.56または0.97ÅのTeなどが挙げられる。
 また、本実施形態におけるプロトン伝導性固体電解質に含まれる化合物は、前記式(A)の化合物のMが金属元素である。前記式(A)の化合物のMは、Mо、Ge、Nb、Ta、V、W、CeまたはSbであることが好ましく、Mо、Geであることがより好ましく、Mоであることが特に好ましい。
 また、Mで表される組成は、一種類の元素でもよく、M1とM2の2種類の元素の混合組成であってもよい。
 また、本実施形態におけるプロトン伝導性固体電解質に含まれる化合物は、前記式(A)の化合物のMが複数の元素の混合組成であってもよい。ここで、Mが複数の元素の混合組成であるとは、Mが複数の元素がある割合で混ざった仮想的な元素であり、例えばM1、M2、・・・、Mmのm種類の元素がある割合で混ざっている組成を、Mで表していることを指す。
 すなわち、下記する式において、M1およびM2はそれぞれ同じ元素、別の元素または複数の元素の金属組成で、主に金属元素を含んでいてもよい。
 前記式(A)において、前記x、y、σ、εの具体的な値については後述の具体的組成で説明する。
 ここで前記式(A)におけるBa(原子)の欠損量であるεはAサイト欠損量またはBa欠損量、A元素のM元素への置換量であるxはA元素置換量、M元素置換量またはBサイト置換量とも呼ぶ。
 本実施形態の化合物は、プロトン伝導体である。プロトン伝導体のプロトン伝導度は、低温で比較的高いので、低温作動型の燃料電池に好適に用いられるプロトン伝導性固体電解質が得られる。
 図1に、式(A)の化合物のうち、BaSc0.8Mo0.23-δの結晶構造を示す。なお、式(A)でAにScにかえてScのイオン半径の70~130%のイオン半径の元素を用いた場合でも、結晶構造はほぼ同様である。
 本実施形態の化合物の組成は、X線回折(XRD)、蛍光X線分析(XRF)、エネルギー分散型X線分析(EDS)、ICP発光分析等によって決定することができる。
 本実施形態の具体例として、化合物(A)は、下記[1]~[11]で表される化合物が含まれていてもよい。
 [1] (1)一般式:Ba1-αSc1-xMo3-δで表され、αが-0.2~0.2であり、xが0.1~0.3であり、yが0~1-3xであり、δが0~1/2-3x/2である、プロトン伝導性固体電解質。
 [2] 一般式:BaA1-x3-δで表され、AはCe、In、ZrおよびZnを除くイオン半径が0.52~0.97Åの元素であり、MはA、Zr、CeおよびZnを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAおよびZnを除く複数の元素の混合組成であり、xが0超1未満であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)、
 yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
 [3] AはScであり、MはMо、Ge、Nb、Ta、V、WまたはSbであり、
 前記MがMо又はWの場合はxが0超1/3以下であり、前記MがGeの場合はxが0超1/2未満であり、前記MがNb、Ta、VまたはSbの場合はxが0超1/2以下である、 [2]に記載のプロトン伝導性固体電解質。
 [4] 以下の(2)~(8)のいずれかの、[2]または[3]に記載のプロトン伝導性固体電解質。
 (2)一般式:BaSc1-xGe3-δで表され、xが0.25~0.35であり、yが0~1-xであり、δが0~1/2-x/2である。
 (3)一般式:BaSc1-xNb3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xである。
 (4)一般式:BaSc1-xTa3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xである。
 (5)一般式:BaSc1-x3-δで表され、xが0.2~0.25であり、yが0~1-2xであり、δが0~1/2-xである。
 (6)一般式:BaSc1-x3-δで表され、xが0.15~0.25であり、yが0~1-3xであり、δが0~1/2-3x/2である。
 (7)一般式:BaSc0.6Ce0.43-δで表される。
 (8)一般式:BaSc1-xSb3-δで表され、xが0.35~0.45であり、yが0~1-2xであり、δが0~1/2-xである。
 [5] 一般式:BaSc1-x3-δで表され、MはSc、Zr、CeおよびZnを除く複数の元素の混合組成を表し、Mの平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)
 yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
 [6] 一般式:Ba1-εSc1-x3-δで表され、
 MはMо、Ge、Nb、Ta、V、WまたはSbであり、
 yが0~1であり、εが0~0.7、δが0~1/2であり、
 前記MがGeの場合はxが0超1/2未満であり、
 前記MがNb、Ta、VまたはSbの場合は、xが0超1/2以下であり、
 前記MがMоまたはWの場合は、xが0超1/3未満であるプロトン伝導性固体電解質。
 [7] 一般式:Ba1-εSc1-xCe3-δで表され、xが0超1未満であり、yが0~1であり、εが0.05超~0.7(ただし0.05<ε<0.2の場合、0<x<0.5)、δが0~1/2であるプロトン伝導性固体電解質。
 [8] 一般式:Ba1-εSc1-x3-δで表され、MはScおよびZnを除く、イオン半径がScのイオン半径の70~130%となる元素、またはMはScおよびZnを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
 (ただしM=Tiについてはε=0の場合はxが0超0.2未満であり、
 M=Ge、Sn、Hfについてはxが0超0.95未満であり、
 M=Zr、Ceについては、εが0.05超であり、
 MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
 yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
 [9] 一般式:Ba1-ε1-x3-δで表され、AはCe、In、ZrおよびZnを除くイオン半径が0.52~0.97Åの元素であり、MはAおよびZnを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり、
 (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
 M=Zr、Ceについては、εが0.05超であり、
 MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
 yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
 [10] 一般式:BaA1-x-zM1M23-δで表され、
 zが0超1未満であり、yが0~1であり、δが0~1/2であり、
 以下の(28)~(35)のいずれかの、プロトン伝導性固体電解質。
 (28)一般式:BaSc1-x-zMo3-δで表され、xが0超1/3以下であり、MはSc、MoおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、MoおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (29)一般式:BaSc1-x-zGe3-δで表され、xが0超1未満であり、MはSc、GeおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、GeおよびZnを除く複数の元素の混合組成である。
 (30)一般式:BaSc1-x-zNb3-δで表され、xが0超1/2以下であり、MはSc、NbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、NbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (31)一般式:BaSc1-x-zTa3-δで表され、xが0超1/2以下であり、MはSc、TaおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、TaおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (32)一般式:BaSc1-x-z3-δで表され、xが0超1/2以下であり、MはSc、VおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、VおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (33)一般式:BaSc1-x-z3-δで表され、xが0超1/3以下であり、MはSc、WおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、WおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (34)一般式:BaSc1-x-zCe3-δで表され、xが0超1未満であり、MはSc、Ce、ZrおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素、または平均イオン半径がScのイオン半径の70~130%となるSc、CeおよびZnを除く複数の元素の混合組成である(ただしz=0の場合、xは0超0.2未満である。M=Cr、Fe、Mn、CоまたはNiについてはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)。
 (35)一般式:BaSc1-x-zSb3-δで表され、xが0超1/2以下であり、MはSc、SbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、SbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 [11] 一般式:Ba1-ε1-x-zM1M23-δで表され、
 zが0超1未満であり、yが0~1であり、εが0~0.7であり、δが0~1/2であり、
 以下の(36)~(43)のいずれかの、プロトン伝導性固体電解質。
 (36)一般式:Ba1-εSc1-x-zMo3-δで表され、xが0超1/3以下であり、MはSc、MoおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、MoおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)
 (37)一般式:Ba1-εSc1-x-zGe3-δで表され、xが0超1未満であり、MはSc、GeおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、GeおよびZnを除く複数の元素の混合組成である。
 (38)一般式:Ba1-εSc1-x-zNb3-δで表され、xが0超1/2以下であり、MはSc、NbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、NbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (39)一般式:Ba1-εSc1-x-zTa3-δで表され、xが0超1/2以下であり、MはSc、TaおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、TaおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (40)一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/2以下であり、MはSc、VおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、VおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (41)一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/3以下であり、MはSc、WおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、WおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 (42)一般式:Ba1-εSc1-x-zCe3-δで表され、xが0超0.8未満であり、MはSc、CeおよびZnを除く(さらに、ε=0のときはZrも除く)イオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、CeおよびZnを除く複数の元素の混合組成である(ただしM=Cr、Fe、Mn、CоまたはNiについてはε=0~0.2またはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)。
 (43)一般式:Ba1-εSc1-x-zSb3-δで表され、xが0超1/2以下であり、MはSc、SbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、SbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
 また、本実施形態の他の側面として、化合物(A)は、下記組成1~7で表される化合物が含まれていてもよい。
 (組成1)
 組成1は、一般式:Ba1-α1-x3-δで表される化合物である。
 具体的には、
(1A)例えば、一般式:Ba1-αSc1-xMo3-δで表され、αが-0.2~0.2であり、xが0.1~0.3であり、yが0~1-3xであり、δが0~1/2-3x/2であってもよい。
(2A)また、一般式:BaSc1-xGe3-δで表され、xが0.25~0.35であり、yが0~1-xであり、δが0~1/2-x/2であってもよい。
(3A)また、一般式:BaSc1-xNb3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xであってもよい。
(4A)また、一般式:BaSc1-xTa3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xであってもよい。
(5A)また、一般式:BaSc1-x3-δで表され、xが0.2~0.25であり、yが0~1-2xであり、δが0~1/2-xであってもよい。
(6A)また、一般式:BaSc1-x3-δで表され、xが0.15~0.25であり、yが0~1-3xであり、δが0~1/2-3x/2であってもよい。
(7A)また、一般式:BaSc0.6Ce0.43-δで表されてもよい。
(8A)また、一般式:BaSc1-xSb3-δで表され、xが0.35~0.45であり、yが0~1-2xであり、δが0~1/2-xであってもよい。
 (組成2)
 組成2は、一般式:BaA1-x3-δで表される化合物である。
 具体的には、
(9A)例えば、一般式:BaSc1-xMo3-δで表され、xが0超1/3以下であり、yが0~1であり、δが0~1/2であってもよい。
(10A)また、一般式:BaSc1-xGe3-δで表され、xが0超1/2未満であり、yが0~1であり、δが0~1/2であってもよい。
(11A)また、一般式:BaSc1-xNb3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であってもよい。
(12A)また、一般式:BaSc1-xTa3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であってもよい。
(13A)また、一般式:BaSc1-x3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であってもよい。
(14A)また、一般式:BaSc1-x3-δで表され、xが0超1/3以下であり、yが0~1であり、δが0~1/2であってもよい。
(15A)また、一般式:BaSc1-xSb3-δで表され、xが0超1/2以下であり、yが0~1であり、δが0~1/2であってもよい。
 (組成3)
 組成3は、一般式:BaA1-x3-δで表される化合物である。一般に、組成3は組成2のMを様々な元素に拡張した態様である。
 具体的には、
(16A)例えば、一般式:BaA1-x3-δで表され、AはCe、In、Zrを除くイオン半径が0.52~0.97Åの元素であり、MはA、Zr、Ceを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり(ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)、yが0~1であり、δが0~1/2であってもよい。ここで、イオン半径がScのイオン半径の70~130%となる元素については前述したものから選択できる。
(17A)また、一般式:BaSc1-x3-δで表され、MはSc、Zr、Ceを除く複数の元素の混合組成を表し、Mの平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり(ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)、yが0~1であり、δが0~1/2であってもよい。
 (組成4)
 組成4は、一般式:Ba1-εSc1-x3-δで表される化合物である。一般に、組成4は組成2にBaの欠損(Aサイト欠損)を付与した組成である。
 具体的には、例えば、
(18A)一般式:Ba1-εSc1-xMo3-δで表され、xが0超1/3以下であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(19A)また、一般式:Ba1-εSc1-xGe3-δで表され、xが0超1未満であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(20A)また、一般式:Ba1-εSc1-xNb3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(21A)また、一般式:Ba1-εSc1-xTa3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(22A)また、一般式:Ba1-εSc1-x3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(23A)また、一般式:Ba1-εSc1-x3-δで表され、xが0超1/3以下であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(24A)また、一般式:Ba1-εSc1-xCe3-δで表され、xが0超1未満であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。ただし、ε=0のときは、xが0超0.8未満である。
(25A)また、一般式:Ba1-εSc1-xSb3-δで表され、xが0超1/2以下であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
 (組成5)
 組成5は、一般式:Ba1-εSc1-x3-δで表される化合物である。一般に、組成5は組成4のMを様々な元素に拡張した態様である。
 具体的には、
(26A)例えば、一般式:Ba1-εSc1-x3-δで表され、MはScを除く、イオン半径がScのイオン半径の70~130%となる元素、またはMはScを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり(ただしM=Tiについてはε=0の場合はxが0超0.2未満であり、M=Ge、Sn、Hfについてはxが0超0.95未満であり、M=Zr、Ceについては、εが0.05超であり、MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。ここで、イオン半径がScのイオン半径の70~130%となる元素については前述したものから選択できる。
(27A)また、一般式:Ba1-ε1-x3-δで表され、AはCe、In、Zrを除くイオン半径が0.52~0.97Åの元素であり、MはAを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり(ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、M=Zr、Ceについては、εが0.05超であり、MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
 (組成6)
 組成6は、一般式:BaA1-x-zM1M23-δで表される化合物である。
 具体的には、
(28A)例えば、一般式:BaSc1-x-zMo3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとMoを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとMoを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
(29A)また、一般式:BaSc1-x-zGe3-δで表され、xが0超1未満であり、zが0超1未満であり、MはScとGeを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとGeを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、yが0~1であり、δが0~1/2であってもよい。
(30A)また、一般式:BaSc1-x-zNb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとNbを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとNbを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
(31A)また、一般式:BaSc1-x-zTa3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとTaを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとTaを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
(32A)また、一般式:BaSc1-x-z3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとVを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとVを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
(33A)また、一般式:BaSc1-x-z3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとWを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとWを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
(34A)また、一般式:BaSc1-x-zCe3-δで表され、xが0超1未満であり、zが0超1未満であり、MはScとCeとZrを除くイオン半径がScのイオン半径の70~130%となる元素、または平均イオン半径がScのイオン半径の70~130%となるScとCeを除く複数の元素の混合組成であり(ただしz=0の場合、xは0超0.2未満である。M=Cr、Fe、Mn、CоまたはNiについてはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
(35A)また、一般式:BaSc1-x-zSb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとSbを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとSbを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、δが0~1/2であってもよい。
 (組成7)
 組成7は、一般式:Ba1-ε1-x-zM1M23-δで表される化合物である。一般に、組成7は組成6にBaの欠損(Aサイト欠損)を付与した組成である。
 具体的には、
(36A)例えば、一般式:Ba1-εSc1-x-zMo3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとMoを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとMoを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(37A)また、一般式:Ba1-εSc1-x-zGe3-δで表され、xが0超1未満であり、zが0超1未満であり、MはScとGeを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとGeを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(38A)また、一般式:Ba1-εSc1-x-zNb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとNbを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとNbを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(39A)また、一般式:Ba1-εSc1-x-zTa3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとTaを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとTaを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(40A)また、一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとVを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとVを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(41A)また、一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/3以下であり、zが0超1未満であり、MはScとWを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとWを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(42A)また、一般式:Ba1-εSc1-x-zCe3-δで表され、xが0超0.8未満であり、zが0超1未満であり、MはScとCeを除く(さらに、ε=0のときはZrも除く)イオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるScとCeを除く複数の元素の混合組成であり(ただしM=Cr、Fe、Mn、CоまたはNiについてはε=0~0.2またはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(43A)また、一般式:Ba1-εSc1-x-zSb3-δで表され、xが0超1/2以下であり、zが0超1未満であり、MはScとSbを除くイオン半径がScのイオン半径の70~130%となる元素またはMはScとSbを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)、yが0~1であり、εが0~0.7、δが0~1/2であってもよい。
(本実施形態の効果)
 本実施形態の化合物を含むプロトン伝導性固体電解質は、低~中温度領域において高いプロトン伝導度を有する。
 従来技術としては、ジルコン酸バリウムのZrをSc、Y、ランタノイド等のドーパントで置き換えた酸化物が知られており、Sc等のドーパントによる置換率を高めることでプロトン濃度を高めることが試みられていた。また、特許文献3では、Scの割合及びプロトンの割合を高めることによって、プロトン伝導度を高めようとしていた。
 これに対して、本実施形態では、特許文献3のZr-Scにかえて、Sc-Mо、およびこれらにイオン半径が近い元素を用いた同様の結晶構造により、さらにプロトン伝導度を高めることのできる構成を見出したものである。
 本実施形態の化合物は、従来のプロトン伝導体である20Y:BZを大きく上回るプロトン伝導度を有する。従来、プロトン伝導体としては、BaZr1-x3-δ、BaCe1-x3-δ(いずれも、M=主にY、Scなど)が用いられていた。本実施形態の化合物は、ZrまたはCeにかえて、Srまたはそれにイオン半径の近い元素を用い、MとしてMo、Geなどを用いている。特にM=Mоを用いた場合、従来技術に比べて概ね一桁高いプロトン伝導度を得ることができる。
 特に、本実施形態の化合物は、従来のプロトン伝導体である20Y:BZを大きく上回るプロトン伝導度を有する。具体的には、175℃においてBaSc0.8Mo0.23-δの粒内伝導度は同温度における20Y:BZの粒内伝導度に対しておよそ10倍の値を示している(図38の矢印)。
 加えて、10-25~およそ0気圧の広い酸素分圧領域において、全電気伝導度が酸素分圧にほとんど依存せず、ほぼ一定であり、安定性も高い。本実施形態の化合物は、プロトン伝導が支配的であることが示唆される。
(第2の実施形態)
 (化合物(B):Ba5-α2+xAl2+y1+z13+δ
 本実施形態の化合物の一態様は、下記一般式(B)で表される化合物、以下化合物(B)を含む、プロトン伝導性固体電解質である。
 Ba5-α2+xAl2+y1+z13+δ・・・ (B)
 [式(B)中、αは0以上2以下であり、xは-1以上1以下であり、yは-1以上1以下であり、zは-0.5以上0.5以下であり、δは-1以上1以下であり、
 前記一般式中のRは希土類元素およびGaからなる群より選ばれた1種類の元素の陽イオンであり、MはHf、Sn及びZrからなる群より選ばれた1種類の元素の陽イオンである]
 ここで前記式(B)の化合物は、いわゆる六方ペロブスカイト関連化合物の一種である。本実施形態における六方ペロブスカイト関連化合物とは、六方ペロブスカイトユニットを含む層状構造をもつ化合物またはそれに類似した構造をもつ化合物である。
 また、本実施形態におけるプロトン伝導性固体電解質に含まれる化合物は、前記式(B)の化合物のRが希土類元素およびGaからなる群より選ばれた1種類の元素の陽イオンである。前記式(B)の化合物のRは、RがNd、Sm、Eu、Gd、Dy、Ho、Y、Er、TmまたはYbであることが好ましい。
 また、本実施形態におけるプロトン伝導性固体電解質に含まれる化合物は、前記式(B)の化合物のMがHf、Sn又はZrである。このうち、MはSnであることが好ましい。また、前記式(B)の化合物のMで表される組成は、一種類の元素でもよく、Sn、Hf、Zrなどの複数の元素の混合組成であってもよい。
 本実施形態のプロトン伝導性固体電解質に含まれる化合物は、一般式中のMがSn、かつ、RがNd、Sm、Eu、Gd、Dy、Ho、Y、Er、TmまたはYbであることがより好ましい。
 式(B)の化合物のさらなる具体例としては、BaErAlSn1-xZr13、BaEr2-xAl2+xSnO13、またはBaEr2+xAlSn1-x13-x/2などが挙げられる。
(化合物(B1):BaAlMO13
 また、化合物(B)に含まれる化合物の具体例として、本実施形態の化合物の一態様は、下記一般式(B1)で表される化合物、以下化合物(B1)を含む、プロトン伝導性固体電解質であってもよい。
 BaAlMO13・・・ (B1)
 [式(B1)中、Rは希土類元素、InおよびGaからなる群より選ばれた1種類の元素の陽イオンであり、MはHfおよびSnからなる群より選ばれた1種類の元素の陽イオンである]
 Rは希土類元素およびGaからなる群より選ばれた1種類の元素の陽イオンであることがより好ましい。
 図2に、式(B1)の化合物のうち、BaNdAlSnO13の結晶構造を示す。なお、式(B1)でR=Nd、Sm、Eu、Gd、Dy、Ho、Y、Er、TmまたはYbを用いても、結晶構造はほぼ同様である。
 従来、プロトン伝導体としては、BaNdAlZrO13などが知られていた。本実施形態の化合物(B1)は特に、前述の従来の化合物のZrにかえてSnまたはHfを用いることで、低~中温度領域においてより優れたプロトン伝導度を発揮し得る。
(本実施形態の化合物のプロトン伝導の性質)
 本実施形態において、上述の化合物(A)および(B)の各条件を有する化合物は、各種のイオン伝導体としての性質を有することが考えられる。特に、上述の化合物は、プロトン伝導体として用いる場合に、有効な電気伝導度が得られることを想定している。プロトン伝導体とは、プロトン(水素イオン、H)の伝導(移動)により電気が伝導する化合物である。また、本実施形態の化合物を用いたプロトン伝導性固体電解質は、200~1200℃の温度条件で用いることが好ましく、200~1000℃の温度条件で用いることがより好ましく、200℃以上700℃未満で用いることがさらに好ましく、200~600℃で用いることが特に好ましい。この温度条件で用いることで、従来の燃料電池よりも広い温度領域で安定して動作させることができるため、動作に必要な装置や配置等の制約が少なく、広い応用範囲が得られる。
 なお、本実施形態の化合物を用いたプロトン伝導性固体電解質は、例えば固体酸化物形燃料電池(SOFC)の動作温度である600℃を超える温度で動作させることも可能である。
 本実施形態のプロトン伝導性固体電解質は、粒内でのプロトン伝導度を測定したとき、lоg[σ(Scm-1)]で表される電気伝導度が-2.0よりも大きくなる温度が350℃以下であることが好ましい。また、前記温度320℃以下であることがより好ましい。350℃以下における電気伝導度が充分に高いことで、低温において高い電気伝導度を有し、低温で作動する電池その他の装置に特に好適に用いることができる。
 プロトン伝導性固体電解質の形態としては、粉体の結晶をもとに、膜状、層状(シート状または板状)等に成形して用いてもよい。また、粉体として用いても良い。
 プロトン伝導性固体電解質は、上述の化合物(A)または(B)に該当する化合物を1種含んでいても、また2種以上含んでいてもよい。プロトン伝導性固体電解質は、上述の化合物(A)または(B)以外の化合物を含んでいてもよい。例えば、他のプロトン伝導性の化合物を含んでいてもよい。ただし、電解質を膜状、層状等の材料に加工する場合、均一な材料を得るために、化合物(A)または(B)に該当する化合物の含有割合が多いことが好ましく、該化合物のみからなっていてもよい。
 本実施形態のプロトン伝導性固体電解質は、粉体である場合、単一の結晶からなっていてもよく、複数の結晶粒の集合体であってもよい。また、前記集合体は、多結晶体であってもよい。
 結晶粒の平均粒径が3μm以上であることも好ましい。結晶粒の平均粒径が上記範囲内であることによって、プロトン伝導性固体電解質における粒界伝導による電気抵抗を抑制することができ、プロトン伝導度をより向上させることができる。また、プロトン伝導性固体電解質は、結晶粒の平均粒径が6~7μmであることもさらに好ましい。結晶粒の平均粒径が上記範囲内であることによって、プロトン伝導性固体電解質における粒界伝導による電気抵抗の上昇を抑制することができ、プロトン伝導度を更に向上させることができる。
(プロトン伝導性固体電解質層)
 本実施形態のプロトン伝導性固体電解質は、層状に形成し、または層状の構造に含まれるよう形成して、プロトン伝導性固体電解質層として用いることができる。プロトン伝導性固体電解質層は、本実施形態のプロトン伝導性固体電解質以外にも他のイオン伝導体等を含んでいてもよい。本実施形態のプロトン伝導性固体電解質を用いた電池等が高い電気伝導度を示し、また、特に後述の低温作動電池として有効に動作させるためには、例えばプロトン伝導性固体電解質層の50質量%以上、好ましくは70質量%以上、本実施形態の化合物を含むプロトン伝導性固体電解質を含有することが好ましい。
(プロトン伝導性固体電解質またはプロトン伝導性固体電解質層を含む電池)
 本実施形態のプロトン伝導性固体電解質、またはこのプロトン伝導性固体電解質を含む電解質層は、これを含む電池に用いることができる。本実施形態のプロトン伝導性固体電解質は、このうち上述したように燃料電池に特に好適に用いることができる。
 本実施形態におけるプロトン伝導性固体電解質、またはこのプロトン伝導性固体電解質を含む電解質層を用いた電池は、低温作動電池に特に好適に用いることができる。低温作動電池は、本実施形態においては前述したように200~1200℃、好ましくは200~1000℃、より好ましくは200以上700℃未満、特に好ましくは200~600℃で動作する電池である。
 本実施形態における電池は、例えば、陽極、陰極およびこれらの間に介在している上述のプロトン伝導性固体電解質層を含む。陰極とプロトン伝導性固体電解質は一体化した陰極-プロトン伝導性固体電解質層接合体を形成していてもよい。
(プロトン伝導性固体電解質の他の用途)
 従来、ペロブスカイト型構造、歪んだペロブスカイト型構造またはペロブスカイト関連構造を有する化合物または六方ペロブスカイト関連化合物を含むプロトン伝導性固体電解質は、高いイオン伝導度を示すことから、電池、センサ、イオン濃縮器、イオン分離や透過等に用いる膜、及び触媒等にも幅広く応用されているが、本実施形態のプロトン伝導性固体電解質は、これらと同様に応用することができる。例えば、本実施形態のプロトン伝導性固体電解質は、燃料電池の他、その他の電池、センサ、電極、電解質、水素濃縮器、水素分離膜、水素透過膜、水素ポンプ、触媒、光触媒、電気・電子・通信機器、エネルギー・環境関連用機器または光学機器等に用いることができる。
 上述した本実施形態のプロトン伝導性固体電解質層は、燃料電池、センサ等に特に好適に用いることができる。燃料電池としては、固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)などが挙げられる。
 本実施形態のプロトン伝導性固体電解質は、例えばセンサとしては、ガスセンサ等の電解質に用いることができる。電解質上に検知したいガスに応じた感応電極を取り付けることにより、ガスセンサまたはガス検知器等を構成できる。たとえば、水素センサ、炭酸塩を含む感応電極を用いた場合に炭酸ガスセンサ、硝酸塩を含む感応電極を用いた場合にNOxセンサ、硫酸塩を含む感応電極を用いた場合にSOxセンサが得られる。また、電解セルを組むことにより、排ガス中に含まれるNOxおよび/またはSOx等の捕集装置または分解装置を構成できる。
 本実施形態のプロトン伝導性固体電解質または、イオン等の吸着剤または吸着分離剤、または各種触媒等として用いることができる。
 本実施形態のプロトン伝導性固体電解質はまた、イオン伝導体中の各種希土類が発光中心(カラーセンター)を形成する賦活剤として作用する場合がある。この場合、波長変更材料等として用いることができる。
 本実施形態のプロトン伝導性固体電解質はまた、電子キャリアまたは正孔キャリアをドープすることにより、超伝導体になる場合がある。
 本実施形態のプロトン伝導性固体電解質はまた、プロトン伝導性固体電解質をイオン伝導体とし、その表面に伝導イオンの挿入・脱離によって着色または変色する無機化合物等を付着させ、さらにその上にITO等の透光性電極を形成することにより、全固体型エレクトロクロミック素子を作製することも可能である。この全固体型エレクトロクロミック素子を用いることにより、消費電力が抑制された、メモリー特性を有するエレクトロクロミックディスプレイを提供することができる。
(プロトン伝導性固体電解質の製造方法)
 本実施形態のプロトン伝導性固体電解質の製造方法は、固相反応法によって前記化合物を製造する。
 固相反応法は、従来知られた工程により行うことができる。例えば、出発原料の元素のモル比が目的の化学組成となるよう混合し、加圧してペレットに成形し、焼成して、ペロブスカイト型化合物あるいは六方ペロブスカイト関連化合物とする。
 まず、目的の化学組成の元素を含む出発原料を用意する。出発原料はあらかじめ乾燥させておいてもよい。乾燥は電気炉などを用いて、200~1000℃で5~20時間行うことができる。
 ついで、出発原料を元素のモル比が目的の化学組成となるよう混合する。モル比の組成は、陽イオンのモル比を目安とすることができる。混合磨砕は適宜行うことができるが、例えばメノウ乳鉢を用いて、乾式の混合磨砕、エタノールを用いた湿式の混合磨砕を併用して、繰り返し0.5~2時間行うことができる。
 得られた混合物を、加圧してペレットに成形する。成形は、前記混合物を仮焼した後、加圧して行うことができる。仮焼は電気炉などを用いて、300~1100℃で5~24時間行うことができる。仮焼の後、粉砕および上記の混合磨砕を再度行ってもよい。この混合物を、62~150MPaで、ペレットに成形する。
 この成形したペレットを、焼成(焼結)を行う。大気下で1400~1700℃で3~24時間焼成する。この焼成は1450~1600℃で8~13時間焼成することがより好ましい。
 これらの製造方法、合成法と焼成条件により、本実施形態の化合物を効果的に製造することができる。
 以下に、実施例を示して本実施形態を説明するが、本発明は以下の実施例に限定されるものではない。
[試験例1~17:化合物(A)、BaA1-x3-δの合成および解析]
(BaSc0.8Mo0.23-δの合成)
 固相反応法により試料を合成した。出発原料として、BaCO、Sc、MoOを用いた。あらかじめ出発原料を300℃で12時間乾燥させた後、電子天秤で秤量した。メノウ乳鉢を用いて乾式の混合磨砕、およびエタノールを用いた湿式の混合磨砕を繰り返し30~60分行った。電気炉を用いて大気下900℃で12時間、得られた混合物を仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返し行った。一軸プレス機を用いて150MPaで加圧することで混合物を直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1500℃で12時間焼結した。その結果焼結体であるペレットを得た。
(化合物(A)の他の組成の合成)
 BaSc0.8Mo0.23-δ以外の、BaA1-x3-δに相当する他の化合物についても、上記同様及び以下に挙げる工程により合成を行った。
 固相反応法により試料を合成した。出発原料として、BaCO、Sc、MoO、GeO、Nb、Ta、WO、V、CeO、Sbを用いた。あらかじめ出発原料を300℃で12時間乾燥させた後、電子天秤で秤量した。メノウ乳鉢を用いて乾式の混合磨砕、およびエタノールを用いた湿式の混合磨砕を繰り返し30~60分行った。
(Ba-Sc-Mo-O系について)
 得られた混合物を電気炉を用いて大気下900℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返した。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1500℃で12時間焼結した。
(Ba-Sc-Ge-O系について)
 得られた混合物を電気炉を用いて大気下900℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返した。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1600℃で12時間焼結した。
(Ba-Sc-Nb-O系について)
 得られた混合物を電気炉を用いて大気下900℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返した。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1600℃で12時間焼結した。
(Ba-Sc-Ta-O系について)
 得られた混合物を電気炉を用いて大気下900℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返した。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1600℃で12時間焼結した。
(Ba-Sc-W-O系について)
 得られた混合物を電気炉を用いて大気下1000℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返し行った。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて 1600℃で12時間焼結した。
(Ba-Sc-V-O系について)
 得られた混合物を電気炉を用いて大気下1000℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返し行った。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1450℃で12時間焼結した。
(Ba-Sc-Ce-O系について)
 得られた混合物を電気炉を用いて大気下1000℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返し行った。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1600℃で12時間焼結した。
(Ba-Sc-Sb-O系について)
 得られた混合物を電気炉を用いて大気下1000℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にてエタノールを用いた湿式の混合磨砕、乾式の混合磨砕を30~60分の間繰り返し行った。一軸プレス機を用いて150MPaで混合物を加圧することで直径20mmのペレット状に成型した。得られたペレットを電気炉に入れ、大気下にて1500℃で12時間焼結した。
 (XRD測定)
 得られた焼結体の生成相をX線回折(XRD)により評価するため、焼結体を粉砕した後、メノウ乳鉢で30~60分磨砕した。各試験例について、回折装置Rigaku MiniFlexによりXRD測定を行った。得られたXRDデータのリートベルト解析により格子定数を求めた。
 図3に、試験例1:BaSc0.8Mo0.23-δ
 図4に、試験例2:BaSc0.75Mo0.253-δ
 図5に、試験例3:BaSc0.85Mo0.153-δ
 図6に、試験例4:BaSc0.7Ge0.33-δ
 図7に、試験例5:BaSc0.75Ge0.253-δ
 図8に、試験例6:BaSc0.65Ge0.353-δ
 図9に、試験例7:BaSc0.8Nb0.23-δ
 図10に、試験例8:BaSc0.75Nb0.253-δ
 図11に、試験例9:BaSc0.7Nb0.33-δ
 図12に、試験例10:BaSc0.65Nb0.353-δ
 図13に、試験例11:BaSc0.6Nb0.43-δ
 図14に、試験例12:BaSc0.7Ta0.33-δ
 図15に、試験例13:BaSc0.80.23-δ
 図16に、試験例14:BaSc0.750.253-δ
 図17に、試験例15:BaSc0.80.23-δ
 図18に、試験例16:BaSc0.6Ce0.43-δ
 図19に、試験例17:BaSc0.6Sb0.43-δ
 の、XRD測定の結果を示した。
 また、表1、2に格子定数を示した。表1、2の格子定数については、後述する密度汎関数理論計算による構造最適化で求めた値である。
 表1、表2には、DFT計算による構造最適化により見積もったBa1-α1-x3-δの格子定数a(Å)を示した。a=b=c、α=β=γ=90°である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(全電気伝導度測定)
 各試験例の電気伝導度を直流四端子法により測定した。18℃で水蒸気分圧P(HO)=0.02atmの湿潤雰囲気と-40℃での水蒸気分圧P(HO)<1.5×10-4atmの乾燥雰囲気において電気伝導度を測定することによってプロトン伝導性を評価した。また、軽水(HO)の湿潤雰囲気だけでは無く、重水(DO)の湿潤雰囲気においてプロトン伝導性を評価した。合成した試料を一軸加圧により直径5mmφのペレットに成型し、大気下にて1500℃で12時間再び焼結して伝導度測定用試料を作製した。この焼結体に四本の白金線を巻き付け、試料と白金線を密着させるために白金線上に白金ペーストを塗った。白金ペーストに含まれる有機物成分を取り除くために、電気炉を用いて900℃で1時間加熱した。
 図20に、試験例1:BaSc0.8Mo0.23-δ
 図21に、試験例2:BaSc0.75Mo0.253-δ
 図22に、試験例3:BaSc0.85Mo0.153-δ
 図23に、試験例4:BaSc0.7Ge0.33-δ
 図24に、試験例5:BaSc0.75Ge0.253-δ
 図25に、試験例6:BaSc0.65Ge0.353-δ
 図26に、試験例7:BaSc0.8Nb0.23-δ
 図27に、試験例8:BaSc0.75Nb0.253-δ
 図28に、試験例9:BaSc0.7Nb0.33-δ
 図29に、試験例10:BaSc0.65Nb0.353-δ
 図30に、試験例11:BaSc0.6Nb0.43-δ
 図31に、試験例12:BaSc0.7Ta0.33-δ
 図32に、試験例13:BaSc0.80.23-δ
 図33に、試験例14:BaSc0.750.253-δ
 図34に、試験例15:BaSc0.80.23-δ
 図35に、試験例16:BaSc0.6Ce0.43-δ
 図36に、試験例17:BaSc0.6Sb0.43-δ
 の、湿潤空気中で冷却し、一定温度に保持して測定した直流全電気伝導度のアレニウスプロットを示した。
 なお、図26中、バルク伝導度(○)と粒界伝導度(□)を示す。
 図37に、試験例1:BaSc0.8Mo0.23-δの粒内伝導度と粒界伝導度のアレニウスプロットを示した。
 なお、図37において、破線はNorbyギャップを、点線は0.01S/cmのプロトン伝導度を示す。
 図38に、試験例1:BaSc0.8Mo0.23-δと従来材料の電気伝導度のアレニウスプロットの比較を示した。試験例1の結果は図37と同様である。従来材料としては60Sc:BZ、20Y:BZ、BaErAlZrO13を示した。
 従来材料としては、最も高性能のプロトン伝導体とされているのが60Sc:BZすなわちBaZr0.4Sc0.63-δであるが、試験例1は、それよりも高いプロトン伝導度を示した。また、特に現在応用が進んでいる実用化に近い材料が20Y:BZすなわちBaZr0.80.23-δであるが、試験例1は、約10倍プロトン伝導度が高かった。すなわち、試験例1は期待される新物質であるといえる。
 また、一般に実用化に必要とされるのはプロトン伝導度が0.01Scm-1(lоg[σ(Scm-1)]=-2.0)に到達することだとされている。従来技術のプロトン伝導体では、高温でなければプロトン伝導度が0.01Scm-1には到達せず、20Y:BZで534℃、60Sc:BZでは396℃で到達する。一方、試験例1の化合物は、図37、38より、320℃において到達する。すなわち、実用化が進んでいる材料の20Y:BZに比べても214℃低温で、実用化に必要なプロトン伝導度を達成することが示された。
 また、実用化に必要とされる課題が図37、38において破線のV字型線で示されている、Norby Gapよりも上の部位にグラフが到達することといわれる。従来の材料では、60Sc:BZが280℃前後のわずかな温度域にて到達するに過ぎない。これに対して、試験例1の化合物は250~400℃近くの広い温度域でNorby Gapに到達し、実用性が高いことが期待される。
(全電気伝導度の酸素分圧依存性)
 直流四端子法により全電気伝導度の酸素分圧依存性を測定した。試料は上述の全電気伝導度測定と同様に準備し、また、酸素ガス、窒素ガス、窒素-水素混合ガスを用いて酸素分圧を制御した。装置下流に設置した酸素センサを用いて酸素分圧をモニターした。
 図39に、試験例1について、軽水(HO)から重水(DO)、そして再び軽水(HO)の湿潤空気に切り替えたときの、電気伝導度の時間依存性、すなわち緩和過程のグラフ図を示した。図によると、DO雰囲気に切り替えた時に全電気伝導度が下がっており、HO空気中とDO空気中の伝導度の比が1.33とプロトン伝導の古典論の理想的な値1.41に近いことから、プロトン伝導が支配的であることがわかる。
 図40に、試験例1について、300℃における乾燥雰囲気と湿潤雰囲気の酸素分圧依存性のグラフ図を示す。湿潤雰囲気中の全電気伝導度は乾燥雰囲気中の全電気伝導度に比べて全電気伝導度が10倍高く、さらに全電気伝導度が酸素分圧に殆ど依存しないことから、プロトンが支配的な伝導種であることを示す。
 図41に、試験例1について、気体雰囲気ごとの電気伝導度の別のアレニウスプロットのグラフ図を示した。
 乾燥空気中における全電気伝導度は線形な直線にほぼ乗るが、湿潤雰囲気においては非線形な全電気伝導度を示した。軽水HO空気中の全電気伝導度は乾燥空気中の全電気伝導度に比べて高く、特に300℃では,40倍高い。この結果はプロトン伝導を強く示唆している。また、軽水HO空気中の伝導度は重水DO空気中の伝導度に比べて1.1~1.6倍高く、この結果もまたプロトン伝導が支配的であることを強く示唆している。
(バルク伝導度評価)
 交流インピーダンス法によりバルク伝導度を求めた。雰囲気は空気ガス、窒素ガス、窒素-水素混合ガスを用いて制御した。装置下流に設置した酸素センサを用いて酸素分圧をモニターした。
 図42に、試験例1について、バルク伝導度の酸素分圧依存性のグラフ図を示した。図は、湿潤雰囲気中における310℃と147℃におけるバルク伝導度の酸素分圧依存性である。バルク伝導度は酸素分圧に依存せず、酸化側、還元側において化学的安定性と電気的安定性が高いことが分かった。
(熱重量分析)
 熱重量分析装置(ネッチ社製、製品名:STA449F3 Jupiter)を用いてプロトン濃度を測定した。乾燥窒素雰囲気下1000℃で160分間加熱した後、湿潤窒素中で温度を段階的に平衡をとりながら下げていった。この操作で観測された質量増加量が水和が原因であると仮定して各温度におけるプロトン濃度を決定した。
 図43に、試験例1の熱質量(TG)分析結果のグラフ図を示す。
 図44に、試験例1の熱質量分析結果から見積もられたプロトン濃度の温度依存性のグラフ図を示す。
(拡散係数の算出)
 交流インピーダンス法によって測定したバルクプロトン伝導度と熱重量分析によって測定したプロトン濃度を用いることでプロトン拡散係数の温度依存性を算出した。具体的にはNernst-Einsteinの式に基づいて算出した。
 図45に、試験例1の拡散係数のアレニウスプロットのグラフ図を示す。図は、試験例1と従来材料BaZr0.80.23-δ、BaSc0.6Zr0.43-δを比較している。
 図より、試験例1は従来材料に比べて10倍程高いプロトンの拡散係数を示すことが分かった。試験例1の高いプロトン伝導度は、高い拡散係数に起因していると考えられる。
(化学的安定性)
 本材料は320℃以上で10mS/cmの高いプロトン伝導度を示し、燃料電池のプロトン伝導性固体電解質として利用できる。そこで320℃における二酸化炭素気流中および窒素-5%水素混合ガス中および酸素ガス中における安定性を評価した。安定性をテストする前の試料のX線回折データを測定した後、同粉末試料を管状炉にて320℃で24時間二酸化炭素ガス中と窒素-水素混合ガス中と酸素ガス中でアニールした。アニール後の粉末試料についてX線回折データを収集し、化学的安定性を評価した。
 図46に、試験例1の酸化、還元雰囲気中とCO中における安定性のグラフ図を示した。粉末状態のサンプルを図中の各条件(O、N+H、CO、試験前)でアニールし、その化学的安定性を評価した。BaCOについてのシミュレーション結果も示した。
 試験例1は、安定性試験前後におけるXRDパターンに変化はなく,O中(酸化雰囲気)、95%N+5%H中(還元雰囲気)とCO中において優れた化学的安定性を示した。
[化合物(B)、BaAlSnO13の合成および解析]
 固相反応法により試料を合成した。出発原料として、BaCO、SnO、Al、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Y、Ndを用いた。あらかじめ出発原料を300℃で12時間乾燥させた。また、Ndは1000℃で12時間乾燥させた。電子天秤で秤量し、メノウ乳鉢を用いて乾式の混合磨砕、およびエタノールを用いた湿式の混合磨砕を繰り返し30~60分行った。
(BaNdAlSnO13、BaSmAlSnO13、BaEuAlSnO13、BaGdAlSnO13、BaDyAlSnO13、BaAlSnO13の合成)
 電気炉を用いて、得られた混合物を大気下1000℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢により乾式の混合磨砕を30~60分の間行った。一軸プレス機を用いて直径20mmのペレット状に混合物を成型し、冷間等方圧加圧装置(CIP)により200MPaで加圧した。得られたペレットを電気炉に入れ、大気下にて1400℃で12時間焼結した。
(BaHoAlSnO13、BaErAlSnO13、BaTmAlSnO13、BaYbAlSnO13の合成)
 電気炉を用いて得られた混合物を大気下1000℃で12時間仮焼した。仮焼した混合物をメノウ乳鉢にて乾式の磨砕を30~60分の間行った。一軸プレス機を用いて直径20mmのペレット状に混合物を成型し、冷間等方圧加圧装置(CIP)を用いて200MPaで加圧した。得られたペレットを電気炉に入れ、大気下にて1500℃で12時間焼結した。
(X線回折測定)
 得られた焼結体の生成相をX線回折(XRD)により評価するため、焼結体を粉砕した後、メノウ乳鉢でエタノールを用いた湿式と乾式の磨砕を30~60分の間繰り返し行った。X線回折装置Rigaku MiniFlexを用いてXRD測定を行った。得られたXRDデータのリートベルト解析によりペロブスカイト型酸化物の格子定数を求めた。
 表3には、DFT計算による構造最適化により見積もったBaAlMO13の格子定数を示した。
 表4には、XRDデータのリートベルト解析により精密化した、上記試験例で合成したペロブスカイト型酸化物の格子定数を示す。表4において、室温におけるXRDデータのリートベルト解析により得られたペロブスカイト型プロトン伝導体の格子定数aを示した。a=b=c,α=β=γ=90°である。括弧内の数字は精密化した際に見積もられた標準偏差esdであり、格子定数の最後の桁の数字である。例えば4.1463(2)のesdは0.0002である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図47に、R=Nd、Sm、Eu、Gd、Dy、Ho、Y、Er、Tm、Ybのそれぞれの合成例についてのXRD測定の結果を示した。
(全電気伝導度測定)
(BaNdAlSnO13、BaSmAlSnO13、BaEuAlSnO13、BaGdAlSnO13、BaDyAlSnO13、BaAlSnO13の測定)
 各試験例の電気伝導度を直流四端子法により測定した。合成した試料を冷間等方圧加圧法により直径5mmφのペレットに成型し、1400℃で12時間焼結して伝導度測定用試料を作製した。直流四端子法による全電気伝導度測定用の焼結体に四本の白金線を巻き付け、サンプルと白金線を密着させるために白金線上に白金ペーストを塗った。白金ペーストに含まれる有機物成分を取り除くために、電気炉を用いて1000℃で1時間加熱した。
(BaHoAlSnO13、BaErAlSnO13、BaTmAlSnO13、BaYbAlSnO13の測定)
 各試験例の電気伝導度を直流四端子法により測定した。合成した試料を冷間等方圧加圧法により直径5mmφのペレットに成型し、1500℃で12時間焼結して伝導度測定用試料を作製した。直流四端子法による全電気伝導度測定用の焼結体に四本の白金線を巻き付け、サンプルと白金線を密着させるために白金線上に白金ペーストを塗った。白金ペーストに含まれる有機物成分を取り除くために、電気炉を用いて1000℃で1時間加熱した。
 図48に、試験例18:BaNdAlSnO13
 図49に、試験例19:BaSmAlSnO13
 図50に、試験例20:BaGdAlSnO13
 図51に、試験例21:BaDyAlSnO13
 図52に、試験例22:BaHoAlSnO13
 図53に、試験例23:BaErAlSnO13
 図54に、試験例24:BaTmAlSnO13
 図55に、試験例25:BaYbAlSnO13
 図56に、試験例26:BaAlSnO13
 図57に、試験例27:BaEuAlSnO13
 の、直流全電気伝導度のグラフ図を示した。各雰囲気条件はそれぞれの図中に示した。
 図58に試験例18~27の電気伝導度のまとめのグラフ図を示した。
 いずれの試験例も、目安として1000/T(K-1)=1.2前後でlоg[σ(Scm-1)]が-3前後という結果が出ており、実用性の高いプロトン伝導性固体電解質に用いることができることが期待される。
 [構造最適化計算]
 密度汎関数理論に基づく構造最適化計算を実施し、構造最適化により得られた格子定数を求めた。
 プログラムVASPを利用して一般化勾配近似とPBE汎関数を用いた密度汎関数理論計算を行った。表1および表2に格子定数の結果を示した。
 いずれの組成も最適化された構造は本実施形態の化合物の結晶構造を保っており、これらの組成を合成できる可能性を示している。これらの化合物もプロトン伝導を示すと考えられる。
 [試験例28:BaSc0.775Mo0.2253-δの合成及び解析]
 一般式:Ba1-αSc1-xMo3-δで表される化合物の例として、前記試験例1~17と同様にしてBaSc0.775Mo0.2253-δの合成を行った。
 図59に、試験例28:BaSc0.775Mo0.2253-δのXRD測定の結果を示した。
 得られた試験例28の化合物に対して、前記試験例1~17と同様にして電気伝導度測定を行った。
 図60に、試験例28:BaSc0.775Mo0.2253-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定したバルク伝導度を示した。
 [試験例29:BaSc0.725Mo0.2753-δの合成及び解析]
 一般式:Ba1-αSc1-xMo3-δで表される化合物の例として、前記試験例1~17と同様にしてBaSc0.725Mo0.2753-δの合成を行った。
 図61に、試験例29:BaSc0.725Mo0.2753-δのXRD測定の結果を示した。
 得られた試験例29の化合物に対して、前記試験例1~17と同様にして電気伝導度測定を行った。
 図62に、試験例29:BaSc0.725Mo0.2753-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定したバルク伝導度を示した。
 [試験例30:BaSc0.70.33-δの合成及び解析]
 一般式:BaSc1-x3-δで表される化合物の例として、前記試験例1~17と同様にしてBaSc0.70.33-δの合成を行った。
 図63に、試験例30:BaSc0.70.33-δのXRD測定の結果を示した。
 [試験例31:BaSc0.750.253-δの合成及び解析]
 一般式:BaSc1-x3-δで表される化合物の例として、前記試験例1~17と同様にしてBaSc0.750.253-δの合成を行った。
 図64に、試験例31:BaSc0.750.253-δのXRD測定の結果を示した。
 得られた試験例31の化合物に対して、前記試験例1~17と同様にして電気伝導度測定を行った。
 図65に、試験例31:BaSc0.750.253-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示した。
 [試験例32:BaSc0.80.23-δの合成及び解析]
 一般式:BaSc1-x3-δで表される化合物の例として、前記試験例1~17と同様にしてBaSc0.80.23-δの合成を行った(試験例15と同様だが、再度合成、測定を行った)。
 図66に、試験例32:BaSc0.80.23-δのXRD測定の結果を示した。
 得られた試験例32の化合物に対して、前記試験例1~17と同様にして電気伝導度測定を行った。
 図67に、試験例32:BaSc0.80.23-δの湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示した。
 [試験例23の化合物の解析]
 試験例23:BaErAlSnO13の化合物について、さらなる解析を行った。
 図68は、試験例23:BaErAlSnO13と従来材料の温度ごとの電気伝導度の比較を示すグラフ図である。図中はバルク(粒内)伝導度の比較図で、破線はNorby Gapを示す。
 図に示すように、試験例23の化合物は200~350度のいずれにおいても、従来用いられている材料であるY10:BC及びY20:BZ(BaZr0.80.23-δ)よりもバルク伝導度が高かった。
 図69は、試験例23:BaErAlSnO13について、各温度の乾燥雰囲気と湿潤雰囲気における直流全電気伝導度の酸素分圧依存性を示すグラフ図である。
 図に示すように、酸素分圧P(O)に依存しない電解質領域がイオン伝導を示唆している。湿潤雰囲気での伝導度が乾燥雰囲気より高いことから、プロトン伝導を示唆される。
 図70は、試験例23:BaErAlSnO13について、気体雰囲気ごとの電気伝導度の時間依存性を示すグラフ図である。
 図に示すように、DO雰囲気下に比べてHO雰囲気下における伝導度が約1.5倍高いので、プロトン伝導が示唆される。
 図71は、試験例23:BaErAlSnO13の熱重量分析結果を示すグラフ図である。
 図の縦軸には試料の吸水量xを示している。図は、xは冷却と共に増加していることを示している。
 これらの結果から、試験例23は期待される新物質であるといえる。
 [試験例33~35:Ba5-α2+xAl2+y1+z13+δの化合物の合成および解析]
 Ba5-α2+xAl2+y1+z13+δに属する化合物を合成し、解析を行った。
 試験例33:BaErAlSn0.5Zr0.513
 試験例34:BaEr1.9Al2.1SnO13
 試験例35:BaErAl2.1Sn0.912.95
 を、前記試験例23と同様にして合成を行った。それぞれ前記試験例23と同様にXRD測定を行った。
 図72に、試験例33:BaErAlSn0.5Zr0.513のXRD測定の結果を示した。
 図73に、試験例33:BaErAlSn0.5Zr0.513の湿潤空気中(水蒸気分圧:18℃で0.02気圧)において冷却して温度を保持して測定した直流全電気伝導度を示した。
 図74に、試験例34:BaEr1.9Al2.1SnO13のXRD測定の結果を示した。
 図75に、試験例35:BaErAl2.1Sn0.912.95のXRD測定の結果を示した。
 これらの化合物も、試験例23同様に有用な電解質及び電池に応用できることが期待できる。
 本発明のプロトン伝導性固体電解質、電解質層および電池によれば、低温および中温度域において優れたプロトン伝導度を発揮しうるプロトン伝導性固体電解質、それを用いた電解質層および電池が得られる。
 本発明のプロトン伝導性固体電解質、電解質層および電池はまた、固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、電池、電極、電解質、水素透過膜、触媒、光触媒、電気・電子・通信機器、エネルギー・環境関連用機器または光学機器等に利用することができる。

Claims (22)

  1.  (1)一般式:Ba1-αSc1-xMo3-δで表され、αが-0.2~0.2であり、xが0.1~0.3であり、yが0~1-3xであり、δが0~1/2-3x/2である、プロトン伝導性固体電解質。
  2.  一般式:BaA1-x3-δで表され、AはCe、In、ZrおよびZnを除くイオン半径が0.52~0.97Åの元素であり、MはA、Zr、CeおよびZnを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAおよびZnを除く複数の元素の混合組成であり、xが0超1未満であり、
     (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
     MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)、
     yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
  3.  AはScであり、MはMо、Ge、Nb、Ta、V、WまたはSbであり、
     前記MがMо又はWの場合はxが0超1/3以下であり、前記MがGeの場合はxが0超1/2未満であり、前記MがNb、Ta、VまたはSbの場合はxが0超1/2以下である、請求項2に記載のプロトン伝導性固体電解質。
  4.  以下の(2)~(8)のいずれかの、請求項2または3に記載のプロトン伝導性固体電解質。
     (2)一般式:BaSc1-xGe3-δで表され、xが0.25~0.35であり、yが0~1-xであり、δが0~1/2-x/2である。
     (3)一般式:BaSc1-xNb3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xである。
     (4)一般式:BaSc1-xTa3-δで表され、xが0.2~0.4であり、yが0~1-2xであり、δが0~1/2-xである。
     (5)一般式:BaSc1-x3-δで表され、xが0.2~0.25であり、yが0~1-2xであり、δが0~1/2-xである。
     (6)一般式:BaSc1-x3-δで表され、xが0.15~0.25であり、yが0~1-3xであり、δが0~1/2-3x/2である。
     (7)一般式:BaSc0.6Ce0.43-δで表される。
     (8)一般式:BaSc1-xSb3-δで表され、xが0.35~0.45であり、yが0~1-2xであり、δが0~1/2-xである。
  5.  一般式:BaSc1-x3-δで表され、MはSc、Zr、CeおよびZnを除く複数の元素の混合組成を表し、Mの平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
     (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
     MがTiと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、またはxが0.2超1未満であり)
     yが0~1であり、δが0~1/2であるプロトン伝導性固体電解質。
  6.  一般式:Ba1-εSc1-x3-δで表され、
     MはMо、Ge、Nb、Ta、V、WまたはSbであり、
     yが0~1であり、εが0~0.7、δが0~1/2であり、
     前記MがGeの場合はxが0超1/2未満であり、
     前記MがNb、Ta、VまたはSbの場合は、xが0超1/2以下であり、
     前記MがMоまたはWの場合は、xが0超1/3未満であるプロトン伝導性固体電解質。
  7.  一般式:Ba1-εSc1-xCe3-δで表され、xが0超1未満であり、yが0~1であり、εが0.05超~0.7(ただし0.05<ε<0.2の場合、0<x<0.5)、δが0~1/2であるプロトン伝導性固体電解質。
  8.  一般式:Ba1-εSc1-x3-δで表され、MはScおよびZnを除く、イオン半径がScのイオン半径の70~130%となる元素、またはMはScおよびZnを除く複数の元素の混合組成であり、平均イオン半径がScのイオン半径の70~130%であり、xが0超1以下であり、
     (ただしM=Tiについてはε=0の場合はxが0超0.2未満であり、
     M=Ge、Sn、Hfについてはxが0超0.95未満であり、
     M=Zr、Ceについては、εが0.05超であり、
     MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
     yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
  9.  一般式:Ba1-ε1-x3-δで表され、AはCe、In、ZrおよびZnを除くイオン半径が0.52~0.97Åの元素であり、MはAおよびZnを除く、イオン半径がAのイオン半径の70~130%となる元素、または平均イオン半径がAのイオン半径の70~130%となるAを除く複数の元素の混合組成であり、xが0超1未満であり、
     (ただしM=Ge、Sn、Hfについてはxが0超0.95未満であり、
     M=Zr、Ceについては、εが0.05超であり、
     MがTi、Zr、Ceのいずれかと、Cr、Fe、Mn、Co、Niのいずれかと、を含む混合元素であるとき、Mにおける前記Cr、Fe、Mn、CoもしくはNiの比率が0.2超1未満、εが0.2超、または、xが0.2超1未満であり)
     yが0~1であり、εが0~0.7、δが0~1/2であるプロトン伝導性固体電解質。
  10.  一般式:BaA1-x-zM1M23-δで表され、
     zが0超1未満であり、yが0~1であり、δが0~1/2であり、
     以下の(28)~(35)のいずれかの、プロトン伝導性固体電解質。
     (28)一般式:BaSc1-x-zMo3-δで表され、xが0超1/3以下であり、MはSc、MoおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、MoおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (29)一般式:BaSc1-x-zGe3-δで表され、xが0超1未満であり、MはSc、GeおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、GeおよびZnを除く複数の元素の混合組成である。
     (30)一般式:BaSc1-x-zNb3-δで表され、xが0超1/2以下であり、MはSc、NbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、NbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (31)一般式:BaSc1-x-zTa3-δで表され、xが0超1/2以下であり、MはSc、TaおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、TaおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (32)一般式:BaSc1-x-z3-δで表され、xが0超1/2以下であり、MはSc、VおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、VおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (33)一般式:BaSc1-x-z3-δで表され、xが0超1/3以下であり、MはSc、WおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、WおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (34)一般式:BaSc1-x-zCe3-δで表され、xが0超1未満であり、MはSc、Ce、ZrおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素、または平均イオン半径がScのイオン半径の70~130%となるSc、CeおよびZnを除く複数の元素の混合組成である(ただしz=0の場合、xは0超0.2未満である。M=Cr、Fe、Mn、CоまたはNiについてはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)。
     (35)一般式:BaSc1-x-zSb3-δで表され、xが0超1/2以下であり、MはSc、SbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、SbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
  11.  一般式:Ba1-ε1-x-zM1M23-δで表され、
     zが0超1未満であり、yが0~1であり、εが0~0.7であり、δが0~1/2であり、
     以下の(36)~(43)のいずれかの、プロトン伝導性固体電解質。
     (36)一般式:Ba1-εSc1-x-zMo3-δで表され、xが0超1/3以下であり、MはSc、MoおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、MoおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)
     (37)一般式:Ba1-εSc1-x-zGe3-δで表され、xが0超1未満であり、MはSc、GeおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、GeおよびZnを除く複数の元素の混合組成である。
     (38)一般式:Ba1-εSc1-x-zNb3-δで表され、xが0超1/2以下であり、MはSc、NbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、NbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (39)一般式:Ba1-εSc1-x-zTa3-δで表され、xが0超1/2以下であり、MはSc、TaおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、TaおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (40)一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/2以下であり、MはSc、VおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、VおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (41)一般式:Ba1-εSc1-x-z3-δで表され、xが0超1/3以下であり、MはSc、WおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、WおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
     (42)一般式:Ba1-εSc1-x-zCe3-δで表され、xが0超0.8未満であり、MはSc、CeおよびZnを除く(さらに、ε=0のときはZrも除く)イオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、CeおよびZnを除く複数の元素の混合組成である(ただしM=Cr、Fe、Mn、CоまたはNiについてはε=0~0.2またはx=0.01~0.02の範囲を、M=Mо、Nb、Ta、V、WまたはSbについてはz=0.01~0.2またはx=0.74~0.84の範囲を除く)。
     (43)一般式:Ba1-εSc1-x-zSb3-δで表され、xが0超1/2以下であり、MはSc、SbおよびZnを除くイオン半径がScのイオン半径の70~130%となる元素または平均イオン半径がScのイオン半径の70~130%となるSc、SbおよびZnを除く複数の元素の混合組成である(ただしM=Ceについてはx=0.01~0.2またはz=0.74~0.84の範囲を除く)。
  12.  一般式:Ba5-α2+xAl2+y1+z13+δで表され、
     αは0以上2以下であり、xは-1以上1以下であり、yは-1以上1以下であり、zは-0.5以上0.5以下であり、δは-1以上1以下であり、
     前記一般式のRは希土類元素およびGaからなる群より選ばれた1種類の元素の陽イオンであり、MはHf、SnおよびZrからなる群より選ばれた1種類の元素の陽イオンである、プロトン伝導性固体電解質。
  13.  一般式:BaAlMO13で表され、MはHfおよびSnからなる群より選ばれた1種類の元素の陽イオンである、請求項12に記載のプロトン伝導性固体電解質。
  14.  前記一般式のMがSn、かつRがNd、Sm、Eu、Gd、Dy、Ho、Y、Er、TmまたはYbである、請求項12または13に記載のプロトン伝導性固体電解質。
  15.  100~700℃の温度条件で用いるための、請求項1、2、5~12のいずれか1項に記載のプロトン伝導性固体電解質。
  16.  200~400℃の温度条件で用いるための、請求項1、2、5~12のいずれか1項に記載のプロトン伝導性固体電解質。
  17.  粒内でのプロトン伝導度を測定したとき、lоg[σ(Scm-1)]で表される電気伝導度が-2.0よりも大きくなる温度が350℃以下である、請求項1、2、5~12のいずれか1項に記載のプロトン伝導性固体電解質。
  18.  固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、電池、電極、電解質、水素透過膜、触媒、光触媒、電気・電子・通信機器、エネルギー・環境関連用機器または光学機器に用いられる、請求項1、2、5~12のいずれか1項に記載のプロトン伝導性固体電解質。
  19.  固体酸化物形燃料電池(SOFC)、プロトンセラミック燃料電池(PCFC)、センサ、または水素透過膜に用いられる、請求項1、2、5~12のいずれか1項に記載のプロトン伝導性固体電解質。
  20.  請求項1、2、5~12のいずれか1項に記載のプロトン伝導性固体電解質を含む電解質層。
  21.  請求項20に記載の電解質層を備える電池。
  22.  固体酸化物形燃料電池(SOFC)またはプロトンセラミック燃料電池(PCFC)である、請求項21に記載の電池。
PCT/JP2023/032421 2022-09-05 2023-09-05 プロトン伝導性固体電解質、電解質層および電池 WO2024053651A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140685 2022-09-05
JP2022140685 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053651A1 true WO2024053651A1 (ja) 2024-03-14

Family

ID=90191201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032421 WO2024053651A1 (ja) 2022-09-05 2023-09-05 プロトン伝導性固体電解質、電解質層および電池

Country Status (1)

Country Link
WO (1) WO2024053651A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171984A (ja) * 2013-08-27 2015-10-01 国立大学法人東京工業大学 結晶性無機化合物
WO2020153485A1 (ja) * 2019-01-24 2020-07-30 国立大学法人東京工業大学 固体電解質、電解質層および電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171984A (ja) * 2013-08-27 2015-10-01 国立大学法人東京工業大学 結晶性無機化合物
WO2020153485A1 (ja) * 2019-01-24 2020-07-30 国立大学法人東京工業大学 固体電解質、電解質層および電池

Similar Documents

Publication Publication Date Title
Anantharaman et al. Potential of pyrochlore structure materials in solid oxide fuel cell applications
Snijkers et al. Proton conductivity and phase composition in BaZr0. 9Y0. 1O3− δ
Lv et al. Structure and electrochemical properties of Sm0. 5Sr0. 5Co1− xFexO3− δ cathodes for solid oxide fuel cells
Hui et al. A brief review of the ionic conductivity enhancement for selected oxide electrolytes
Nagasawa et al. Ca3Co4O9− δ: A thermoelectric material for SOFC cathode
Yamaura et al. Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell
Kim et al. Layered NdBaCo2− xNixO5+ δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells
He et al. Sr-doped LaInO3 and its possible application in a single layer SOFC
JP2009519191A (ja) 固体状酸化物燃料電池/イオン輸送膜用の新規な陰極と電解質材料
Zhang et al. BaCo0. 4Fe0. 4Zr0. 2O3-δ: evaluation as a cathode for ceria-based electrolyte IT-SOFCs
Peña-Martínez et al. On Ba0. 5Sr0. 5Co1− yFeyO3− δ (y= 0.1–0.9) oxides as cathode materials for La0. 9Sr0. 1Ga0. 8Mg0. 2O2. 85 based IT-SOFCs
Zhang et al. Effects of Pr-deficiency on thermal expansion and electrochemical properties in Pr1− xBaCo2O5+ δ cathodes for IT-SOFCs
Yao et al. Investigation of layered perovskite NdBa0. 5Sr0. 25Ca0. 25Co2O5+ δ as cathode for solid oxide fuel cells
US10059584B2 (en) Cathode material for low temperature solid oxide fuel cells
Kim et al. Characterization of (Y1-xCax) BaCo4-yZnyO7 as cathodes for intermediate temperature solid oxide fuel cells
JP7478439B2 (ja) 固体電解質、電解質層および電池
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
Padmasree et al. Electrochemical properties of Sr2. 7-xCaxLn0. 3Fe2-yCoyO7-δ cathode for intermediate-temperature solid oxide fuel cells
Li et al. Electrical properties of SDC–BCY composite electrolytes for intermediate temperature solid oxide fuel cell
Wu et al. Fabrication and characterization of Ca2+, Sr2+, Ba2+, Sm3+, and La3+ co-doped ceria-based electrolyte powders for low-temperature anode-supported solid oxide fuel cells
Li et al. High-performance fluorine-doped cobalt-free oxide as a potential cathode material for solid oxide fuel cells
Fu et al. Performance of Pd-impregnated Sr1. 9FeNb0. 9Mo0. 1O6-δ double perovskites as symmetrical electrodes for direct hydrocarbon solid oxide fuel cells
Padmasree et al. Synthesis and characterization of Ca3-xLaxCo4-yCuyO9+ δ cathodes for intermediate temperature solid oxide fuel cells
Zheng et al. A promising Bi-doped La0. 8Sr0. 2Ni0. 2Fe0. 8O3-δ oxygen electrode for reversible solid oxide cells
Wang et al. Decreasing the polarization resistance of LaSrCoO4 cathode by Fe substitution for Ba (Zr0. 1Ce0. 7Y0. 2) O3 based protonic ceramic fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863189

Country of ref document: EP

Kind code of ref document: A1