WO2024053632A1 - Microscope system, superimposition unit, superimposition display method, and program - Google Patents

Microscope system, superimposition unit, superimposition display method, and program Download PDF

Info

Publication number
WO2024053632A1
WO2024053632A1 PCT/JP2023/032333 JP2023032333W WO2024053632A1 WO 2024053632 A1 WO2024053632 A1 WO 2024053632A1 JP 2023032333 W JP2023032333 W JP 2023032333W WO 2024053632 A1 WO2024053632 A1 WO 2024053632A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
microscope system
information
light
display position
Prior art date
Application number
PCT/JP2023/032333
Other languages
French (fr)
Japanese (ja)
Inventor
裕徳 宇津木
大輔 水澤
Original Assignee
株式会社エビデント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エビデント filed Critical 株式会社エビデント
Publication of WO2024053632A1 publication Critical patent/WO2024053632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the disclosure of this specification relates to a microscope system, a superimposition unit, a superimposition display method, and a program.
  • AI Artificial Intelligence
  • AR Augmented Reality microscope
  • the auxiliary information is not necessarily limited to what is created using AI.
  • the auxiliary information is specimen information (mainly text information, such as the patient ID of the specimen, etc.) obtained by reading the code attached to the specimen. (patient name, date of birth, age, gender, organ, staining information, etc.).
  • Patent Document 1 Techniques related to such an AR microscope are described in, for example, Patent Document 1 and Patent Document 2.
  • an object of one aspect of the present invention is to provide a technique that allows specimen information to be easily grasped without interfering with observation of specimen images.
  • a microscope system includes an eyepiece, an observation optical system that forms a specimen image on an object-side image plane of the eyepiece using observation light from the specimen, and a reader that reads identification information attached to the specimen.
  • a superimposing section that superimposes the specimen information acquired based on the identification information on the image plane; and a control section that controls the superimposing section, the controller controlling the display position of the specimen information on the image plane when a predetermined condition is satisfied. and a control unit for switching.
  • a superimposing unit is a superimposing unit for a microscope system
  • the superimposing unit is a superimposing unit for a microscope system, in which a specimen is placed on an image plane on which a specimen image is formed, which is an image plane located on the object side of an eyepiece included in the microscope system.
  • the image forming apparatus includes a superimposing section that superimposes specimen information acquired based on identification information attached to the image, and a control section that switches the display position of the specimen information on the image plane when a predetermined condition is satisfied.
  • a superimposed display method is a superimposed display method performed by a microscope system, in which an image plane located on the object side of an eyepiece included in the microscope system and on which a specimen image is formed. , the specimen information acquired based on the identification information attached to the specimen is superimposed, and the display position of the specimen information on the image plane is switched when a predetermined condition is satisfied.
  • a program causes a computer of a microscope system to display an identification mark attached to a specimen on an image plane located on the object side of an eyepiece included in the microscope system and on which a specimen image is formed. Specimen information acquired based on the information is superimposed, and when a predetermined condition is satisfied, processing is executed to switch the display position of the specimen information on the image plane.
  • specimen information can be easily grasped without interfering with observation of specimen images.
  • FIG. 1 is a diagram showing the configuration of a microscope system according to a first embodiment. It is a figure which illustrated a specimen.
  • FIG. 3 is a diagram illustrating the configuration of an optical system within the lens barrel device.
  • FIG. 3 is a diagram illustrating an example of the positional relationship between a non-shading region and a light-shielding region.
  • FIG. 3 is a diagram showing an example of switching display positions.
  • FIG. 7 is a diagram showing another example of switching display positions. It is a figure showing still another example of switching of a display position.
  • FIG. 7 is a diagram showing yet another example of switching display positions. It is a figure which illustrated the relationship between a display position and illumination light intensity. It is a figure which illustrated the relationship between a display position and projection light intensity.
  • FIG. 3 is an example of a flowchart of display position switching processing according to the first embodiment. It is another example of the flowchart of the display position switching process according to the first embodiment. This is an example of the brightness distribution when there is no sample on the optical axis. This is an example of the brightness distribution when there is a sample on the optical axis.
  • FIG. 2 is a diagram showing the configuration of a microscope system according to a second embodiment.
  • FIG. 3 is a diagram for explaining the positional relationship between a stage position and an optical axis of an objective lens.
  • 7 is an example of a flowchart of display position switching processing according to the second embodiment.
  • FIG. 3 is a diagram for explaining a predetermined range of the position of a focusing mechanism. It is an example of the flowchart of the display position switching process based on 3rd Embodiment. It is another example of the flowchart of the display position switching process according to the third embodiment. It is a figure showing the composition of the microscope system concerning a 4th embodiment. It is an example of the flowchart of the display position switching process based on 4th Embodiment. It is another example of the flowchart of the display position switching process according to the fourth embodiment.
  • FIG. 2 is a diagram illustrating a hardware configuration of a computer for realizing a control device.
  • FIG. 3 is a diagram for explaining the relationship between analysis results and display positions. It is an example of the flowchart of analysis result superimposition processing.
  • FIG. 7 is a diagram showing another example of the positional relationship between a non-shaded area and a shaded area.
  • FIG. 7 is a diagram showing still another example of the positional relationship between a non-shaded area and a shaded area.
  • FIG. 7 is a diagram showing still another example of the positional relationship between a non-shaded area and a shaded area.
  • FIG. 1 is a diagram showing the configuration of a microscope system according to this embodiment.
  • FIG. 2 is a diagram illustrating a specimen.
  • a microscope system 1 shown in FIG. 1 is, for example, a microscope system used by a pathologist in pathological diagnosis. However, the use of the microscope system 1 is not limited to this.
  • the microscope system 1 may be a biological microscope system for another purpose.
  • the microscope system 1 is not limited to a biological microscope system, but may also be an industrial microscope system.
  • an upright microscope is illustrated in FIG. 1, the microscope included in the microscope system 1 is not limited to an upright microscope, but may be an inverted microscope.
  • the microscope system 1 includes an eyepiece 30, an observation optical system 100, a reading device 50, a superimposing device 25, and a control device 70. As shown in FIG. 1, the microscope system 1 supports both visual observation through the eyepiece 30 and imaging using the imaging device 40; It may also be possible to respond only to visual observation.
  • the observation optical system 100 forms a specimen image on the object-side image plane of the eyepiece 30 using observation light from the specimen S.
  • the specimen S used in the microscope system 1 is, for example, a preparation fixed with a Kremmel 11a provided on a stage 11, as shown in FIG.
  • the specimen S may be accommodated in a well plate, dish, flask, or the like.
  • the specimen S may be an industrial product such as a circuit board, and may be placed on the stage 11 without being housed in a container.
  • Identification information for identifying the specimen S is attached to the specimen S.
  • the identification information is, for example, information (code C) in which specimen information, which is information regarding the specimen S, is coded.
  • the identification information attached to the specimen S is a barcode, and an example of a one-dimensional code such as CODE128 (registered trademark) is shown, but the identification information is a barcode such as a QR code (registered trademark). It may be a two-dimensional code.
  • the identification information is not limited to encoded information.
  • the identification information attached to the specimen S may be information recorded on an IC tag attached to the specimen S, or may be handwritten character information (for example, an identification number).
  • the reading device 50 is an example of a reading unit that reads identification information attached to the specimen S.
  • the reading device 50 is any reading device such as a barcode reader, an RFID reader, an imaging device, or the like. In the microscope system 1, specimen information is acquired based on the identification information read by the reading device 50.
  • the specimen information may be acquired by the reading device 50.
  • the reading device 50 which is a barcode reader
  • the reading device 50 may read the code C and acquire the specimen information that is the content of the code C.
  • the specimen information may be acquired by the control device 70 based on the identification information read by the reading device 50.
  • the reading device 50 which is a barcode reader, reads the code C and outputs the contents of the code C (for example, the path of specimen information) to the control device 70, and the control device 70 acquires specimen information based on the contents of the code C. You may.
  • the reading device 50 is an imaging device
  • the identification information may be an image
  • the reading device 50 or the control device 70 may acquire the specimen information by performing character recognition on the image.
  • the superimposing device 25 is an example of a superimposing unit that superimposes specimen information acquired based on identification information on an image plane on which a specimen image is formed.
  • the superimposition device 25 may be, for example, a projector that projects specimen information onto an image plane, or a display device placed on the image plane.
  • the projector may be a display device such as a liquid crystal display or an organic EL display, or may be a MEMS such as a DMD.
  • the microscope system 1 further includes a projection optical system that guides the projection light from the superimposing device 25 to an image plane.
  • the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the image plane. Thereby, the user can grasp the specimen information while observing the specimen image without taking his eyes off the eyepiece 30. Further, the control device 70 switches the display position of the specimen information on the image plane when a predetermined condition is satisfied. This predetermined condition is designed in advance in consideration of the user's work flow.
  • specimen information can be displayed at a position that does not overlap with the specimen image during a period when one should concentrate on observing the specimen image, and During the period when the specimen image is not observed, specimen information can be displayed in a position that is easier for the user to see (for example, near the center of the visual field). Therefore, according to the microscope system 1, specimen information can be easily grasped without interfering with observation of specimen images.
  • FIG. 3 is a diagram illustrating the configuration of the optical system within the lens barrel device.
  • FIG. 4 is a diagram illustrating an example of the positional relationship between the non-shaded area and the shaded area.
  • the configuration of the microscope system 1 will be described in detail with reference to FIGS. 1 to 4.
  • the microscope system 1 includes a microscope main body 10, a lens barrel device 20, an eyepiece 30, an imaging device 40, a reading device 50, a control box 60, and a control device 70. .
  • the microscope main body 10 includes a stage 11 on which the specimen S is placed, a stage handle 12 for operating the stage 11, and a light source 13 that emits illumination light to irradiate the specimen S.
  • the microscope main body 10 further includes a condenser 14 that irradiates illumination light onto the specimen S placed on the stage 11, an objective lens 15 attached to a revolver, a focusing device 16 that moves the stage 11 up and down, and a focusing device 16 that moves the stage 11 up and down.
  • a focusing handle 17 connected to the device 16 is provided.
  • the stage 11 includes an XY stage that moves in a direction perpendicular to the optical axis of the objective lens 15.
  • the stage 11 (XY stage) moves in a direction perpendicular to the optical axis of the objective lens 15.
  • the focusing device 16 moves the stage 11, and as a result, the stage 11 moves in the optical axis direction of the objective lens 15.
  • the stage 11 is formed with an opening that is large enough to prevent the specimen S from falling through which the illumination light from the condenser 14 passes.
  • the lens barrel device 20 is attached to the microscope main body 10.
  • the lens barrel device 20 is a trinocular barrel to which an eyepiece 30 and an imaging device 40 can be attached. Inside the lens barrel device 20, an imaging lens 24 and a superimposing device 25 are housed. Light from the sample S irradiated with the illumination light enters the lens barrel device 20 via the objective lens 15. The light incident on the lens barrel device 20 is split within the lens barrel device 20 into light that reaches the eyepiece 30 and light that reaches the imaging device 40 .
  • the lens barrel device 20 is further provided with three physical keys (physical key 21, physical key 22, and physical key 23) operated by the user.
  • the physical key 21 is a power switch of the superimposing device 25, and is used to switch between a state in which projection light is emitted from the superimposing device 25 and a state in which it is not emitted.
  • the physical key 22 is a dimming volume for adjusting the intensity of projection light.
  • the physical key 23 is a changeover switch for changing the display position of specimen information, and is an example of an input unit through which the user inputs an instruction to change the display position. Note that the changeover switch for changing the display position of the specimen information may be two or more physical keys.
  • the eyepiece lens 30 is attached to an eyepiece sleeve provided on the lens barrel device 20.
  • the eyepiece sleeve is provided at a rotating part that rotates in the tilting direction around a horizontal axis. The height of the eyepoint is adjusted by rotating the eyepiece lens 30 attached to the eyepiece sleeve together with the rotating portion.
  • the imaging device 40 is, for example, a digital camera equipped with an image sensor 41.
  • the imaging device 40 images the specimen S to obtain an image of the specimen S.
  • the image sensor 41 is a CCD, CMOS, or the like.
  • the imaging device 40 and the image sensor 41 are mounted on the lens barrel device 20 and are provided on an imaging optical path that branches from the observation optical path that extends from the objective lens 15 to the eyepiece 30 via the imaging lens 24.
  • the reading device 50 is as described above. It is desirable that the reading device 50 be installed at a position where the code C attached to the specimen S can be read, for example, when the specimen S is placed on the stage 11.
  • the control box 60 is a device that controls the microscope main body 10 and is connected to the control device 70.
  • the control box 60 controls the light emission of the light source 13, for example.
  • the control device 70 is a computer that controls the entire microscope system 1.
  • the control device 70 controls the microscope main body 10 and the imaging device 40 in addition to controlling the superimposing device 25 described above.
  • the control device 70 may perform the above-described light emission control, for example, by controlling the microscope main body 10 via the control box 60. Further, the control device 70 may perform imaging control by controlling the imaging device 40, for example.
  • the microscope system 1 includes an illumination optical system that is an optical system placed on the illumination optical path from the light source 13 to the specimen S.
  • the illumination optical system includes a condenser 14.
  • the illumination optical system irradiates the specimen S with illumination light from the light source 13, and illuminates the specimen S with even and uniform illumination intensity using, for example, Koehler illumination.
  • the light source 13 is turned on by turning on a power switch (not shown) provided in the lamp house, and is turned off by turning off the power switch.
  • the light source 13 is, for example, a halogen lamp or an LED, although it is not particularly limited. Illumination light emitted from the light source 13 is irradiated onto the sample S placed on the stage 11 via the condenser 14 that constitutes the illumination optical system.
  • the intensity of the illumination light irradiated onto the specimen S can be adjusted with a dial provided on the microscope main body 10.
  • the amount of illumination light emitted from the light source 13 is controlled in accordance with the rotation of the dial. Further, the intensity of the illumination light irradiated onto the specimen S can be adjusted not only by dial operation but also by a command from the control device 70, which will be described later.
  • the microscope system 1 includes an imaging optical system that is an optical system placed on the optical path from the specimen S to the imaging device 40.
  • the imaging optical system forms a specimen image on the imaging surface of the imaging device 40 using observation light from the specimen S.
  • the specimen image taken by the imaging device 40 is displayed on a display device (not shown) connected to the control device 70, so that the user of the microscope can observe the specimen image taken by the imaging device 40.
  • the imaging optical system includes an objective lens 15, an imaging lens 24, and a splitter 101, as shown in FIGS. 1 and 3.
  • the splitter 101 branches an imaging optical path from an observation optical path.
  • the objective lens 15, the imaging lens 24, and the splitter 101 included in the imaging optical system are also included in the observation optical system 100, which will be described later. That is, the observation optical system 100 and the imaging optical system share at least some optical elements.
  • the microscope system 1 includes an observation optical system 100, which is an optical system placed on an observation optical path from the specimen S to the eyepiece 30.
  • the observation optical system 100 forms a specimen image on the object-side image plane of the eyepiece 30 using observation light from the specimen S.
  • a user of the microscope can visually observe the specimen image formed on the image plane by the observation optical system 100 by looking through the eyepiece 30.
  • the observation optical system 100 includes an objective lens 15, an imaging lens 24, a splitter 101, a mirror 102, a field stop 103, a mirror 104, and a relay lens. 105, a mirror 106, a mirror 107, a composite optical element 108, a mirror 109, a relay lens 110, a mirror 111, and a mirror 112.
  • the observation light converted into parallel light by the objective lens 15 is focused onto the field stop 103 by the imaging lens 24.
  • a primary image of the specimen S is formed on the field stop 103. That is, the field stop 103 is arranged at the primary image plane where the primary image is formed.
  • the observation light from the primary image is once converted into parallel light by the relay lens 105, and then focused by the relay lens 110 onto the field stop 31 placed on the object side of the eyepiece lens 30.
  • a secondary image of the specimen S is formed on the field stop 31.
  • the relay lens 105 and the relay lens 110 are a relay optical system that relays the primary image of the specimen S to the image plane, and the user can view the secondary image plane on which the secondary image is formed through the eyepiece lens 30. Observe.
  • the relationship between the field stop 103 and the field stop 31 is as shown in FIG.
  • the aperture 31a indicates the size of the aperture of the field stop 31.
  • the aperture image 103a indicates the size of the aperture image of the field stop 103 on the secondary image plane.
  • the field stop 103 limits the field of view narrower than the field of view limited by the field stop 31.
  • the field stop 31 corresponds to a field number of 26.5
  • the field stop 103 corresponds to a field number of 22.
  • the region R2 shown in FIG. 4 which corresponds to the field of view limited by the field stop 103, is a region in which observation light is not blocked by the field stop 103, and hence will be referred to as a non-shaded region R2.
  • the non-light-shielding region R2 is, for example, a region corresponding to the field of view number 22, and is a region in which a specimen image is formed.
  • the region R1 shown in FIG. 4 is a region where observation light is blocked by the field stop 103, it will be hereinafter referred to as a light-blocking region R1.
  • the light-shielding region R1 is, for example, a region corresponding to the number of fields of view 26 excluding the region corresponding to the number of fields of view 22. Note that the projection light emitted from the superimposing device 25 joins the observation optical path closer to the eyepiece lens 30 than the field stop 103, as will be described later. Therefore, the light-shielding region R1 is a region into which observation light does not enter, but projection light enters.
  • the microscope system 1 includes a projection optical system that is an optical system placed on a projection optical path from the superimposing device 25 to the eyepiece 30.
  • the projection optical system uses projection light from the superimposing device 25 to form an image of the superimposing device 25 on the object-side image plane of the eyepiece 30 .
  • the superimposing device 25 displays the specimen information, so that the specimen information is displayed on the image plane. Thereby, the user can simultaneously observe the specimen image formed on the image plane by the observation optical system 100 and the specimen information by looking through the eyepiece 30.
  • the projection optical system includes a projection lens 120, a composite optical element 108, a mirror 109, a relay lens 110, a mirror 111, and a mirror 112.
  • the combining optical element 108, mirror 109, relay lens 110, mirror 111, and mirror 112 included in the projection optical system are also included in the observation optical system 100. That is, the observation optical system 100 and the projection optical system share at least some optical elements.
  • the projection light emitted from the superimposing device 25 is converted into parallel light by the projection lens 120, and then guided to the observation optical path by the combining optical element 108. Thereafter, the projection light is incident through a mirror 109 and is focused by a relay lens 110 onto a secondary image plane on which a field stop 31 is arranged. Thereby, the user can observe the specimen information displayed on the superimposing device 25 through the eyepiece 30.
  • the lens barrel device 20 may be formed with observation optical paths for the right eye and for the left eye, respectively.
  • FIGS. 5 to 8 and 11 are diagrams showing examples of switching display positions.
  • FIG. 9 is a diagram illustrating the relationship between display position and illumination light intensity.
  • FIG. 10 is a diagram illustrating the relationship between display position and projection light intensity.
  • the display position is switched by the user inputting a switching instruction
  • a switching instruction that is, an example in which the control device 70 switches the display position in response to the switching instruction input to the input unit.
  • the trigger for such a switching operation is not limited to an explicit switching instruction given by the user. This point will be discussed separately later.
  • the control device 70 controls at least a light-shielding region R1 where observation light is blocked by the field stop 103 and a non-light-shielding region R2 where observation light is not blocked by the field stop 103. It is desirable to switch the display position of the specimen information U1 between.
  • the control device 70 controls the superimposition device 25 to change the display position where the specimen information U1 is displayed to the light-shielding region R1 every time the hard key (physical key 23) is pressed. and the non-shading area R2.
  • the control device 70 controls the superimposition device 25 so that, as shown in FIG. and the non-shading area R2.
  • the software key may be pressed using an input device such as a mouse connected to the control device 70, for example. Two or more software keys may be displayed on the image plane.
  • control device 70 performs processing for controlling the superimposition device 25 to superimpose the specimen information U1 within the light-shielding region R1, and for superimposing the specimen information U1 in the non-shading area, for each input instruction explicitly input by the user.
  • the process of controlling the superimposing device 25 so as to superimpose within the region R2 may be performed in order.
  • the control device 70 may change the display mode of the specimen information U1 according to switching of the display position, and may also change the display mode when the display position is within the light-shielding region R1 and when it is within the non-light-shielding region R2. good. For example, as shown in FIGS. 5 to 8 and 11, when displaying in the light-shielding region R1, the control device 70 wraps the character information included in the sample information U1 so that it fits in the ring-shaped light-shielding region R1. They may be aligned in the direction. On the other hand, for example, as shown in FIGS. 5 to 8 and 11, when displayed in the non-shading area R2, the control device 70 displays character information included in the specimen information U1 in the non-shading area R2 for each item. You can arrange them by starting a new line.
  • the control device 70 may change the parameters of the character information included in the specimen information U1 according to the switching of the display position, and may change the parameters of the character information included in the specimen information U1 depending on whether the display position is within the light-shielding region R1 or within the non-shading region R2. It may be different. This is because the brightness of the background is different between the light-shielding region R1 and the non-light-shielding region R2, so even the same character parameters may appear differently. For example, as shown in FIG. 7, the control device 70 may change the color, font, font size, etc. of the text when it is displayed in the light-shielding area R1 and when it is displayed in the non-shading area R2. , This makes it easier for the user to grasp the specimen information U1 in both the light-shielded region R1 and the non-shaded region R2.
  • the control device 70 may reduce the intensity of the illumination light irradiated onto the specimen S in response to switching the display position from within the light-shielding region R1 to within the non-shading region R2. Conversely, the intensity of the illumination light irradiated onto the specimen S may be increased in response to switching the display position from within the non-shading region R2 to within the light-shielding region R1. This is because if the non-shading area R2 is too bright, when the specimen information U1 is displayed within the non-shading area R2, it will be difficult to provide contrast and it will be difficult to see.
  • the control device 70 may control the intensity of the illumination light emitted from the light source 13 or may control the intensity of the illumination light between the light source 13 and the condenser 14. This makes it easier for the user to grasp the specimen information U1 in both the light-blocking area R1 and the non-light-blocking area R2.
  • the control device 70 may increase the intensity of the projection light in response to switching the display position from inside the light-shielding region R1 to inside the non-shading region R2, or conversely, change the display position from inside the light-shielding region R2 to the non-shading region R2.
  • the intensity of the projection light may be weakened in response to switching from inside the region R2 to inside the light-blocking region R1. This is to display the specimen information U1 with sufficient contrast even when the specimen information U1 is displayed in the non-shading region R2 which is brighter than the shielding region R1.
  • the control device 70 may control the intensity of the projection light emitted from the superimposing device 25. Thereby, the user can easily grasp the specimen information U1 in both the light-shielding region R1 and the non-light-shielding region R2.
  • FIGS. 5 to 8 show an example in which two display positions are switched
  • the control device 70 controls the superimposition device 25 to change the display position where the specimen information U1 is displayed to one of three or more display positions.
  • the three or more display positions may include at least one inside the light-shielding region R1 and one inside the non-shading region R2.
  • the display position may be switched every time a hard key (physical key 23) is pressed.
  • the display position may be switched each time a software key as shown in FIG. 6 is pressed.
  • the three or more display positions may include the center of the visual field and positions deviating from the center of the visual field as display positions within the non-shading area R2.
  • control device 70 switches the display position in response to the user inputting a switching instruction, but hereinafter, an example in which the control device 70 automatically switches the display position according to predetermined criteria will be described. do.
  • FIG. 12 is an example of a flowchart of the display position switching process according to the present embodiment performed by the microscope system 1.
  • the process shown in FIG. 12 is started when the control device 70 executes a predetermined program.
  • the microscope system 1 monitors reading of identification information (step S1).
  • the reading device 50 acquires specimen information from the code C and outputs it to the control device 70.
  • the control device 70 detects that the identification information has been read.
  • the control device 70 controls the superimposition device 25 to superimpose the specimen information in the non-shading region R2, triggered by the reading of the identification information by the reading device 50. Specifically, the control device 70 first sets the non-shading area R2 as a display area for specimen information (step S2), and then starts superimposing the specimen information (step S3). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the non-shading region R2.
  • the control device 70 changes the display position from inside the non-shading region R2 to inside the light-shielding region R1 based on the elapsed time from reading the identification information. Specifically, the control device 70 determines whether or not a predetermined time or more has elapsed since the identification information was read (step S4), and if it is determined that the predetermined time or more has elapsed (step S4 YES), A light shielding area R1 is set as a display area for specimen information (step S5). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
  • specimen information is displayed in the non-shading area R2 for a predetermined time after the identification information is read, and thereafter, the specimen information is displayed in the non-shading area R1. Information will be displayed.
  • Such automatic switching of display positions is desirable in light of the user's work flow. This point will be explained below.
  • the user In order to prevent the specimen S from being mixed up, the user usually performs an operation to cause the reading device 50 to read the identification information of the specimen S at the beginning of observation. Thereafter, the user moves the stage 11 to adjust the position of interest within the sample S to be located on the optical axis of the objective lens 15. It can be considered that the specimen S is not substantially observed by the user during the period from reading the identification information to locating the target position of the specimen S on the optical axis. Therefore, immediately after reading the identification information, displaying the specimen information in the non-shading area R2 does not interfere with the user's observation of the specimen image.
  • the user needs to first confirm the specimen information, so it is desirable that the specimen information be displayed near the center of the visual field of the non-shading area R2. According to the process shown in FIG. 12, since the specimen information is displayed in the non-shading area R2 after the reading operation, it is possible for the user to reliably grasp the specimen information, which is desirable.
  • the specimen information includes information used to confirm that the specimen S has not been mixed up, as well as information that contributes to various judgments during observation. Therefore, it is desirable that the specimen information be continuously displayed so that it can be checked as appropriate during observation. On the other hand, if specimen information that overlaps with the specimen image is displayed during observation, there is a risk that observation of the specimen image will be hindered. Therefore, while observing the specimen image, it is desirable that the specimen information be displayed at a position that does not overlap with the specimen image. According to the process shown in FIG.
  • the specimen information is displayed in the light-shielding region R1 after a predetermined period of time has elapsed since the reading operation, so that the specimen information does not interfere with the observation of the specimen image. Moreover, since it is displayed in the light-shielding area R1, the user can check the specimen information at the timing he wants to check without looking away from the eyepiece 30.
  • the display position of the specimen information is automatically switched at an appropriate timing. Thereby, the specimen information can be easily and reliably grasped without interfering with the observation of the specimen image.
  • FIG. 13 is another example of a flowchart of the display position switching process according to this embodiment.
  • FIG. 14 is an example of the brightness distribution when there is no sample on the optical axis.
  • FIG. 15 is an example of the brightness distribution when there is a sample on the optical axis.
  • the microscope system 1 may perform the process shown in FIG. 13 instead of the process shown in FIG. 12.
  • the processing shown in FIG. 13 is similar to the processing shown in FIG. It is different from The process shown in FIG. 13 is also started when the control device 70 executes a predetermined program.
  • step S11 to step S14 in the process shown in FIG. 13 are similar to the processes from step S1 to step S4 in the process shown in FIG. That is, the microscope system 1 monitors the reading of the identification information, starts superimposing the specimen information on the non-shading area, and monitors the elapse of a predetermined time from the reading of the identification information.
  • the control device 70 performs brightness analysis (step S15).
  • the brightness analysis in order to determine whether or not there is a specimen to be observed within the field of view, more specifically, for example, a cell in the case of a pathological specimen, the specimen image obtained by the image sensor 41 is The brightness distribution is analyzed.
  • the brightness distribution may be, for example, a line profile P as shown in FIGS. 14 and 15. For example, when there are no cells or the like within the field of view, the brightness is almost uniform regardless of the position within the field of view, as shown in FIG. 14, and the line profile P shows almost no fluctuation.
  • the control device 70 uses the analysis result of step S15 to determine whether the uniformity of brightness is below the standard (step S16). Then, when it is determined that the brightness uniformity is below the standard, the control device 70 sets the light-shielding region R1 as the specimen information display region (step S17). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1. That is, in the process of FIG. 13, the control device 70 is triggered when the conditions that the elapsed time is a predetermined time or more and the brightness uniformity calculated from the brightness distribution is below the standard are met. Then, the display position is changed from inside the light-shielding region R1 to inside the non-light-shielding region R2.
  • the display position of the specimen information is automatically switched at an appropriate timing.
  • specimen information can be easily and reliably grasped without interfering with observation of the specimen image.
  • the display position is switched using the luminance distribution within the visual field in addition to the elapsed time. Therefore, the display position can be switched by more accurately estimating the timing at which the user observes the specimen image.
  • FIG. 16 is a diagram showing the configuration of the microscope system according to this embodiment.
  • the microscope system 2 shown in FIG. 16 has the following features: the stage 11 is a motorized stage, and includes an input device 19a for operating the stage 11, and a sensor 11s for detecting the position of the stage 11. It is different from 1. The other points are the same as the microscope system 1. Note that the electric stage is driven and controlled by a control box 60.
  • the position information of the stage 11 detected by the sensor 11s is position information in a direction perpendicular to the optical axis of the objective lens 15, is output to the control device 70, and is used for various controls performed by the control device 70. This point will be discussed later.
  • FIG. 17 is a diagram for explaining the positional relationship between the stage position and the optical axis of the objective lens.
  • the position range of the stage 11 corresponding to the state in which the specimen S can be observed (hereinafter referred to as a predetermined range) may be arbitrarily set depending on the specimen S.
  • a predetermined range may be arbitrarily set depending on the specimen S.
  • the control device 70 automatically switches the display position according to a predetermined standard when the predetermined range is preset.
  • FIG. 18 is an example of a flowchart of the display position switching process according to the present embodiment.
  • the process shown in FIG. 18 is started when the control device 70 executes a predetermined program. Note that the process shown in FIG. 18 differs from that shown in FIG. Processing is different.
  • step S21 to step S24 in the process shown in FIG. 18 are similar to the processes from step S1 to step S4 in the process shown in FIG. That is, the microscope system 2 monitors the reading of the identification information, starts superimposing the specimen information on the non-light-shielded area, and monitors the elapse of a predetermined time from the reading of the identification information.
  • the control device 70 acquires the stage position (step S25), and determines whether the stage position is within a predetermined range (step S26).
  • the control device 70 acquires the stage position based on the output from the sensor 11s, and determines whether the acquired stage position is within a predetermined range set in advance as a range in which the specimen S can be observed.
  • the control device 70 determines that the stage position is within the predetermined range (step S26), and then sets the stage 11 in a light-shielded area as the specimen information display area. A region R1 is set (step S27). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
  • the display position of the specimen information is automatically switched at an appropriate timing.
  • specimen information can be easily and reliably grasped without interfering with observation of the specimen image.
  • the display position is switched using the stage position in addition to the elapsed time. Therefore, the display position can be switched by more accurately estimating the timing at which the user observes the specimen image.
  • FIG. 19 is another example of a flowchart of the display position switching process according to this embodiment.
  • the microscope system 2 may perform the process shown in FIG. 19 instead of the process shown in FIG.
  • the control device 70 changes the display position from the non-shaded area R2 to the shaded area based on the luminance distribution of the specimen image acquired by the image sensor 41 in addition to the elapsed time and position information of the stage 11.
  • the difference from the process shown in FIG. 18 is that the process is changed to within R1.
  • the process shown in FIG. 19 is also started when the control device 70 executes a predetermined program.
  • step S31 to step S36 in the processing shown in FIG. 19 is similar to the processing from step S21 to step S26 in the processing shown in FIG. That is, the microscope system 2 monitors the reading of the identification information, starts superimposing the specimen information on the non-shading area, monitors the passage of a predetermined time from the reading of the identification information, and monitors the stage position after the predetermined time has elapsed. .
  • step S37 the control device 70 performs brightness analysis (step S37) and determines whether the uniformity of brightness is below the standard (step S38).
  • step S37 and step S38 in the process shown in FIG. 19 are similar to the processes in step S15 and step S16 in the process shown in FIG.
  • step S39 the control device 70 sets the light-shielding region R1 as the specimen information display region (step S39).
  • the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
  • the display position of the specimen information is automatically switched at an appropriate timing.
  • the control device 70 satisfies the following conditions: the elapsed time is a predetermined time or more, the uniformity of brightness is below a standard, and the stage 11 is within a predetermined range. Taking this as an opportunity, the display position is changed from inside the non-shading area R2 to inside the shading area R1. Therefore, the timing at which the user observes the specimen image can be more accurately estimated and the display position can be switched more accurately than when the process shown in FIG. 18 is executed.
  • FIG. 20 is a diagram showing the configuration of the microscope system according to this embodiment.
  • the microscope system 3 shown in FIG. 20 differs from the microscope system 2 in that it includes an input device 19b for operating the focusing device 16 and a sensor 16s for detecting the position of the focusing device 16. ing.
  • the other points are the same as the microscope system 2.
  • the focusing device 16 is driven and controlled by a control box 60.
  • the position information of the focusing device 16 detected by the sensor 16s is output to the control device 70 and used for various controls performed by the control device 70. This point will be discussed later.
  • FIG. 21 is a diagram for explaining the predetermined range of the position of the focusing mechanism.
  • the focusing device 16 is an example of a focusing unit that moves the focal position of the observation optical system 100 (objective lens 15) relative to the stage 11 in the optical axis direction of the observation optical system 100 (objective lens 15). . If the specimen S is a specimen whose thickness is limited to some extent, the positional relationship between the objective lens 15 and the specimen S in the optical axis direction is determined by the position of the focusing device 16. In the microscope system 3, since the position of the focusing device 16 can be detected by the sensor 16s, the control device 70 determines whether the microscope system 3 is focused on the specimen S based on the position of the focusing device 16. be able to.
  • the position range of the focusing device 16 corresponding to the state in which the specimen S is in focus (hereinafter referred to as a predetermined range) may be arbitrarily set depending on the specimen S and the objective lens 15.
  • a predetermined range may be arbitrarily set depending on the specimen S and the objective lens 15.
  • the control device 70 automatically switches the display position according to a predetermined standard when the predetermined range is preset.
  • FIG. 22 is an example of a flowchart of display position switching processing according to this embodiment.
  • the process shown in FIG. 22 differs from the process shown in FIG. 19 in that the control device 70 uses position information of the focusing device 16 instead of the position information of the stage 11. More specifically, as shown in FIG. 19, the control device 70 changes the display position from inside the non-shading area R2 to inside the shading area R1 based on the elapsed time, the brightness distribution, and the position information of the focusing device 16. This is different from the process shown.
  • the process shown in FIG. 22 is also started when the control device 70 executes a predetermined program.
  • step S41 to step S44 in the processing shown in FIG. 22 is similar to the processing from step S31 to step S34 in FIG. 19. That is, the microscope system 3 monitors the reading of the identification information, starts superimposing the specimen information on the non-light-shielded area, and monitors the elapse of a predetermined time from the reading of the identification information.
  • the control device 70 acquires the position of the focusing section (focusing device 16) (step S45), and determines whether the position of the focusing section (focusing device 16) is within a predetermined range. It is determined whether or not (step S46).
  • the control device 70 acquires the position of the focusing section based on the output from the sensor 16s, and determines whether the acquired position of the focusing section is within a predetermined range set in advance as a focusing range.
  • the control device 70 determines that the position of the focusing section is within the predetermined range (step S46 YES). After that, the control device 70 performs a brightness analysis (step S47), and determines whether the brightness uniformity is below the standard (step S48).
  • the processes in step S47 and step S48 in the process shown in FIG. 22 are similar to the processes in step S37 and step S38 in the process shown in FIG.
  • the control device 70 sets the light-shielding region R1 as the specimen information display region (step S49). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
  • the display position of the specimen information is automatically switched at an appropriate timing.
  • specimen information can be easily and reliably grasped without interfering with observation of the specimen image.
  • the display position is switched using the position of the focusing part and the brightness distribution in addition to the elapsed time. Therefore, it is possible to check whether the object to be observed is within the field of view based on the brightness distribution, and also to check whether it is in focus. Therefore, it is possible to more accurately estimate the timing for observing the specimen image and switch the display position than in the process shown in FIG. 19.
  • FIG. 23 is another example of a flowchart of the display position switching process according to this embodiment.
  • the microscope system 3 may perform the process shown in FIG. 23 instead of the process shown in FIG. 22.
  • the process shown in FIG. 23 differs from the process shown in FIG. 22 in that the control device 70 uses position information of the stage 11 instead of the brightness distribution of the sample image acquired by the image sensor 41. More specifically, the control device 70 changes the display position from inside the non-shading area R2 to inside the shading area R1 based on the elapsed time, the position information of the focusing part, and the position information of the stage 11. This process is different from the process shown in FIG.
  • the process shown in FIG. 23 is also started when the control device 70 executes a predetermined program.
  • the process shown in FIG. 23 is different from the process shown in FIG. 22 in that the process is performed based on the position of the stage 11 in steps S57 and S58 in FIG. This is different from the processing shown in .
  • Other points are similar to the processing shown in FIG. 22.
  • the process based on the brightness distribution in steps S47 and S48 in FIG. 22 and the process based on the position of the stage 11 in steps S57 and S58 in FIG. This is a process performed to determine the , and has the same type of effect. Therefore, by executing the process shown in FIG. 23, the microscope system 3 can obtain the same effect as when executing the process shown in FIG. 22.
  • the position information of the focusing device 16 is used instead of the position information of the stage 11, but the control device 70 displays the information using both the position information of the stage 11 and the position information of the focusing device 16. You may switch positions. That is, the control device 70 changes the display position from inside the non-shading area R2 to inside the shading area R1 based on the elapsed time, the brightness distribution, the stage position information, and the focusing part position information. Good too. More specifically, the control device 70 determines that the elapsed time is a predetermined time or more, the brightness uniformity calculated from the brightness distribution is below a standard, the position of the stage 11 is within a predetermined range, and the focus is on.
  • the display position may be changed from inside the non-shading region R2 to inside the light-shielding region R1. This makes it possible to recognize the start of specimen image observation with higher accuracy and switch the display position of specimen information at an appropriate timing.
  • FIG. 24 is a diagram showing the configuration of the microscope system according to this embodiment.
  • the microscope system 4 shown in FIG. 24 differs from the microscope system 3 in that it includes an input device 19c for operating the revolver 18 and a sensor 18s for detecting the position of the revolver 18.
  • the other points are similar to the microscope system 3.
  • the sensor 18s is, for example, a Hall sensor that detects a magnet attached to a revolver. Note that the position information of the revolver 18 detected by the sensor 18s is output to the control box 60 and used for various controls performed by the control device 70. This point will be discussed later.
  • the revolver 18 is an example of a switching device that switches the objective lens placed on the optical axis of the observation optical system 100.
  • the revolver 18 is an electric revolver, and is provided with a plurality of holes for mounting a plurality of objective lenses.
  • the input device 19c By using the input device 19c, the hole arranged on the optical axis of the observation optical system 100 can be switched.
  • information indicating which objective lens is attached to which hole of the revolver 18 is registered in the control device 70. Therefore, the control device 70 can determine whether or not the objective lens is placed on the optical axis based on the position information output from the sensor 18s and acquired via the control box 60.
  • the position of the revolver 18 is not necessarily limited to a position where one of the holes is arranged on the optical axis. It may be located at a position where there is no hole on the optical axis.
  • FIG. 25 is an example of a flowchart of display position switching processing according to this embodiment.
  • the process shown in FIG. 25 is also started when the control device 70 executes a predetermined program.
  • the control device 70 determines whether the objective lens is on the optical axis (step S61).
  • the control device 70 sets the non-shading area R2 as the specimen information display area (step S62), and when the objective lens is on the optical axis, the control device 70 sets the non-shading area R2 as the specimen information display area.
  • a light shielding area R1 is set as a display area (step S63).
  • the microscope system 4 repeats the above processing until reading of the identification information is detected (step S64 YES). Then, when the identification information is read, the control device 70 starts superimposing the sample information (step S65).
  • the control device 70 determines whether the objective lens is on the optical axis (step S66), and if the objective lens is not on the optical axis, sets the non-shading area R2 as the specimen information display area ( In step S67), if the objective lens is on the optical axis, a light shielding area R1 is set as the specimen information display area (step S68). Then, when the power of the superimposing device 25 is turned off (step S69 YES), the control device 70 ends the process.
  • the control device 70 controls the superimposition device 25 to superimpose the specimen information in the non-shading region R2 while the objective lens is not located on the optical axis, and the objective lens While located on the optical axis, the superimposing device 25 is controlled so as to superimpose the specimen information within the light-shielding region R1.
  • the auxiliary information is displayed in the non-shading area R2 while the objective lens is not placed on the optical axis. Since the specimen image is not projected onto the image plane when the objective lens is not placed on the optical axis, there is no problem in observing the specimen image even if the auxiliary information is displayed near the center of the field of view in the non-shading region R2. Therefore, before placing the objective lens on the optical axis, the user can check the specimen information displayed near the center of the field of view by having the reader 50 read the code C attached to the specimen S. Can be done. Furthermore, after that, when the objective lens is placed on the optical axis and full-scale observation begins, the specimen information is displayed in the light-blocking area R1, so the user can check the specimen information at any time thereafter. can do.
  • FIG. 26 is another example of a flowchart of the display position switching process according to this embodiment.
  • the microscope system 4 may perform the process shown in FIG. 26 instead of the process shown in FIG. 25.
  • the process shown in FIG. 26 is similar to the process shown in FIG. 25 in that the specimen information is displayed in the non-shading area until it is determined that the objective lens is on the optical axis after the start of superimposition.
  • the difference is that after the objective lens is determined to be on the optical axis after the start of superimposition, one of the display position switching controls (step S78) described above in the first to third embodiments is performed. ing.
  • the specimen information is displayed in the non-shading area at least until a predetermined time has elapsed, and the display position is switched to the light-blocking area at the timing when other predetermined conditions are met.
  • Other points are similar to the processing in FIG. 25.
  • the microscope system 4 achieves the effects described in the first to fourth embodiments, and also when the objective lens is not on the optical axis and no specimen image is projected. , specimen information can be displayed near the center of the field of view.
  • FIG. 27 is a diagram showing the configuration of the microscope system according to this embodiment.
  • the microscope system 5 shown in FIG. 27 differs from the microscope system 1 in that a control device 70 is connected to a server 80 via a network.
  • the server 80 is provided with a database that stores specimen information.
  • the control device 70 acquires specimen information from the server 80 based on the identification information.
  • the identification information may be, for example, information for acquiring specimen information from the server.
  • it may be location information such as a path on a server, or it may be a search key for acquiring specimen information from a database.
  • the amount of information that can be treated as specimen information can be significantly increased compared to the case where identification information obtained by encoding the specimen information is attached to the specimen S. can. Furthermore, by centrally managing specimen information on a server, updating the information becomes easier.
  • FIG. 28 is a diagram showing the configuration of the microscope system according to this embodiment.
  • a microscope system 6 shown in FIG. 28 differs from the microscope system 1 in that it includes a lens barrel device 20a instead of the lens barrel device 20.
  • the lens barrel device 20a is an example of a superimposing unit for a microscope system, and differs from the lens barrel device 20 in that it includes a superimposing device 25 and a control circuit 26 that controls the superimposing device 25.
  • the superimposition device 25 is controlled not by the control device 70 but by the control circuit 26. That is, in the lens barrel device 20a, the control circuit 26 operates as a control unit that switches the display position of the specimen information on the image plane when a predetermined condition is satisfied. Additionally, information acquired by the reading device 50 is input to the control circuit 26 . With such a configuration, the superimposing device 25 can independently perform the AR display function of displaying specimen information on the image plane. Therefore, an AR display function can be added simply by attaching the lens barrel device 20a to the microscope main body 10, so it can be easily applied to an existing microscope system.
  • FIG. 29 is a diagram illustrating the hardware configuration of the computer 1000 for realizing the above-described control device.
  • the hardware configuration shown in FIG. 29 includes, for example, a processor 1001, a memory 1002, a storage device 1003, a reading device 1004, a communication interface 1006, and an input/output interface 1007.
  • the processor 1001, memory 1002, storage device 1003, reading device 1004, communication interface 1006, and input/output interface 1007 are connected to each other via a bus 1008, for example.
  • the processor 1001 is any electrical circuit, and may be a single processor, a multiprocessor, or a multicore processor, for example.
  • the processor 1001 may operate as a control unit that controls the display position described above by reading and executing a program stored in the storage device 1003.
  • the memory 1002 is, for example, a semiconductor memory and may include a RAM area and a ROM area.
  • the storage device 1003 is, for example, a hard disk, a semiconductor memory such as a flash memory, or an external storage device.
  • the reading device 1004 accesses the storage medium 1005 according to instructions from the processor 1001, for example.
  • the storage medium 1005 is realized by, for example, a semiconductor device, a medium through which information is input/output by magnetic action, a medium through which information is input/output by optical action, or the like.
  • the semiconductor device is, for example, a USB (Universal Serial Bus) memory.
  • a medium in which information is input/output by magnetic action is, for example, a magnetic disk.
  • Examples of media on which information is input and output by optical action include CD (Compact Disc)-ROM, DVD (Digital Versatile Disk), Blu-ray Disc (Blu-ray is a registered trademark), and the like.
  • the communication interface 1006 communicates with other devices, for example, according to instructions from the processor 1001.
  • the input/output interface 1007 is, for example, an interface between an input device and an output device.
  • the input device may be, for example, a device such as a keyboard, a mouse, or a touch panel that accepts instructions from a user.
  • the output device is, for example, a display device such as a display, and an audio device such as a speaker.
  • a program executed by processor 1001 is provided to computer 1000 in the following format, for example. (1) Installed in the storage device 1003 in advance. (2) Provided by storage medium 1005. (3) Provided by a server such as a program server.
  • the hardware configuration of the computer 1000 for realizing the control device described with reference to FIG. 29 is an example, and the embodiment is not limited to this.
  • some of the configurations described above may be deleted, or new configurations may be added.
  • part or all of the functions of the above-mentioned electric circuit can be implemented as FPGA (Field Programmable Gate Array), SoC (System-on-a-Chip), ASIC (Application Specific Integration). ed Circuit), and It may be implemented as hardware such as a PLD (Programmable Logic Device).
  • FIG. 30 is a diagram for explaining the relationship between analysis results and display positions.
  • FIG. 31 is an example of a flowchart of analysis result superimposition processing. In the embodiment described above, an example was shown in which the superimposing device 25 superimposes the specimen information on the image plane, but the superimposing device 25 may superimpose information other than the specimen information on the image plane.
  • the superimposing device 25 may superimpose the analysis result A1 of the specimen image O1 acquired by the image sensor 41 on the image plane, as shown in FIG. 30.
  • the analysis result A1 of the specimen image O1 is not particularly limited, but may be, for example, an analysis result performed by the control device 70 using an AI model.
  • the AI model is not particularly limited, but may be a trained model obtained by deep learning, for example.
  • the analysis result A1 of the specimen image may indicate, for example, a region of interest (for example, a lesion) found in the specimen, and is preferably displayed over the specimen image O1.
  • a region of interest for example, a lesion
  • the control device 70 may switch between displaying and non-displaying the analysis results in conjunction with switching the display position of the specimen information.
  • the control device 70 determines the display area (step S81), and when determining that the display area is the light-blocking area R1, superimposes the analysis result A1 on the image plane. (Step S82). On the other hand, if it is determined that the display area is the light-blocking area R1, the control device 70 does not need to superimpose the analysis result A1 on the image plane (step S83). Such control may be repeated until the power of the superimposing device 25 is turned off (step S84 YES). Thereby, as shown in FIG. 30, when the specimen information U1 is superimposed within the light-shielding region R1, the control device 70 controls the superimposing device to superimpose the analysis result A1 of the specimen image on the non-shading region R2. 25, the superimposing device 25 can be controlled so that the analysis result A1 of the specimen image O1 is not superimposed within the non-shading region R2 when the specimen information U1 is superimposed within the non-shading region R2.
  • FIGS. 32 to 34 are diagrams showing other examples of the positional relationship between the non-shaded area and the shaded area.
  • the light-shielding region R1 has an annular shape, but the shape of the light-shielding region R1 is not limited to the annular shape, and is not limited to a shape that is symmetrical with respect to the center of the visual field.
  • a part of the outer circumferential area of the field of view of the eyepiece 30 may be used as a light-shielding region, like the light-shielding region R1 shown in FIGS. 32 to 34.
  • the shape of such a light-shielding region R1 can be changed as appropriate by replacing the field stop 103. Therefore, the control device 70 may control the superimposition device 25 to display the specimen information at an appropriate position according to the change in the field stop 103.

Abstract

A microscope system (1) comprises: an eyepiece lens (30); an observation optical system (100); a reading device (50); a superimposition device (25); and a control device (70). The observation optical system (100) forms a specimen image, using observation light from a specimen (S), on an image surface on the object side of the eyepiece lens (30). The reading device (50) reads identification information attached to the specimen (S). The superimposition device (25) superimposes, onto the image surface, specimen information obtained on the basis of the identification information. By controlling the superimposition device, the control device (70) switches the display position of the specimen information on the image surface when prescribed conditions are met.

Description

顕微鏡システム、重畳ユニット、重畳表示方法、プログラムMicroscope system, superimposition unit, superimposition display method, program
 本明細書の開示は、顕微鏡システム、重畳ユニット、重畳表示方法、プログラムに関する。 The disclosure of this specification relates to a microscope system, a superimposition unit, a superimposition display method, and a program.
 近年、顕微鏡下で行う作業をAI(Artificial Intelligence)でサポートすることが期待されている。このようなAIサポートを提供可能な顕微鏡として、AR(Augmented Reality)顕微鏡が知られている。 In recent years, it is expected that AI (Artificial Intelligence) will support work performed under a microscope. An AR (Augmented Reality) microscope is known as a microscope that can provide such AI support.
  AR顕微鏡では、補助情報を像面に表示することで、接眼レンズ越しに標本の光学像(以降、単に標本像と記す。)と補助情報を同時に観察することができる。補助情報は、必ずしもAIを用いて作成されたものに限られない。例えば、病理医などが病理診断で使用する場合であれば、補助情報は、標本に付されたコードを読み取ることで得られる標本情報(主に、テキスト情報であり、例えば、検体の患者ID、患者氏名、生年月日、年齢、性別、臓器、染色情報など)であってもよい。 In an AR microscope, by displaying auxiliary information on the image plane, it is possible to simultaneously observe the optical image of the specimen (hereinafter referred to simply as the specimen image) and the auxiliary information through the eyepiece. Auxiliary information is not necessarily limited to what is created using AI. For example, when used by a pathologist in pathological diagnosis, the auxiliary information is specimen information (mainly text information, such as the patient ID of the specimen, etc.) obtained by reading the code attached to the specimen. (patient name, date of birth, age, gender, organ, staining information, etc.).
 このようなAR顕微鏡に関する技術は、例えば、特許文献1、特許文献2などに記載されている。 Techniques related to such an AR microscope are described in, for example, Patent Document 1 and Patent Document 2.
特開平8-29694号公報Japanese Patent Application Publication No. 8-29694 特表2019‐532352号公報Special Publication No. 2019-532352
 ところで、標本情報が像面において標本像と重なって表示されると、標本像と標本情報のどちらもが見えづらくなってしまう。そこで、接眼レンズの視野内に標本像が投影されない遮光領域を形成し、遮光領域に標本情報を表示することが考えられる。 By the way, if the specimen information is displayed overlapping the specimen image on the image plane, it becomes difficult to see both the specimen image and the specimen information. Therefore, it is conceivable to form a light-shielding area in which the specimen image is not projected within the field of view of the eyepiece, and to display specimen information in the light-shielding area.
 しかしながら、遮光領域を視野の中心付近に設けると、標本像の観察を阻害する恐れがある。一方で、遮光領域を視野の周辺に設けると標本情報の確認に視線の移動が必要となる。 However, if the light shielding area is provided near the center of the field of view, there is a risk that observation of the specimen image will be obstructed. On the other hand, if a light shielding area is provided at the periphery of the field of view, it becomes necessary to move the line of sight to confirm specimen information.
 以上のような実情を踏まえ、本発明の一側面に係る目的は、標本像の観察を妨げることなく標本情報を容易に把握可能とする技術を提供することである。 Based on the above circumstances, an object of one aspect of the present invention is to provide a technique that allows specimen information to be easily grasped without interfering with observation of specimen images.
 本発明の一態様に係る顕微鏡システムは、接眼レンズと、標本からの観察光で接眼レンズの物体側の像面に標本像を形成する観察光学系と、標本に付された識別情報を読み取る読取部と、識別情報に基づいて取得した標本情報を像面に重畳する重畳部と、重畳部を制御する制御部であって、所定条件を満たしたときに像面上における標本情報の表示位置を切り替える、制御部と、を備える。 A microscope system according to one aspect of the present invention includes an eyepiece, an observation optical system that forms a specimen image on an object-side image plane of the eyepiece using observation light from the specimen, and a reader that reads identification information attached to the specimen. a superimposing section that superimposes the specimen information acquired based on the identification information on the image plane; and a control section that controls the superimposing section, the controller controlling the display position of the specimen information on the image plane when a predetermined condition is satisfied. and a control unit for switching.
 本発明の一態様に係る重畳ユニットは、顕微鏡システム用の重畳ユニットであって、顕微鏡システムに含まれる接眼レンズの物体側に位置する像面であって標本像が形成される像面に、標本に付された識別情報に基づいて取得された標本情報を、重畳する重畳部と、所定条件を満たしたときに像面上における標本情報の表示位置を切り替える制御部と、を備える。 A superimposing unit according to one aspect of the present invention is a superimposing unit for a microscope system, and the superimposing unit is a superimposing unit for a microscope system, in which a specimen is placed on an image plane on which a specimen image is formed, which is an image plane located on the object side of an eyepiece included in the microscope system. The image forming apparatus includes a superimposing section that superimposes specimen information acquired based on identification information attached to the image, and a control section that switches the display position of the specimen information on the image plane when a predetermined condition is satisfied.
 本発明の一態様に係る重畳表示方法は、顕微鏡システムが行う重畳表示方法であって、顕微鏡システムに含まれる接眼レンズの物体側に位置する像面であって標本像が形成される像面に、標本に付された識別情報に基づいて取得された標本情報を重畳し、所定条件を満たしたときに像面上における標本情報の表示位置を切り替える。 A superimposed display method according to one aspect of the present invention is a superimposed display method performed by a microscope system, in which an image plane located on the object side of an eyepiece included in the microscope system and on which a specimen image is formed. , the specimen information acquired based on the identification information attached to the specimen is superimposed, and the display position of the specimen information on the image plane is switched when a predetermined condition is satisfied.
 本発明の一態様に係るプログラムは、顕微鏡システムのコンピュータに、顕微鏡システムに含まれる接眼レンズの物体側に位置する像面であって標本像が形成される像面に、標本に付された識別情報に基づいて取得された標本情報を重畳し、所定条件を満たしたときに像面上における標本情報の表示位置を切り替える、処理を実行させる。 A program according to one aspect of the present invention causes a computer of a microscope system to display an identification mark attached to a specimen on an image plane located on the object side of an eyepiece included in the microscope system and on which a specimen image is formed. Specimen information acquired based on the information is superimposed, and when a predetermined condition is satisfied, processing is executed to switch the display position of the specimen information on the image plane.
 上記の態様によれば、標本像の観察を妨げることなく標本情報を容易に把握することができる。 According to the above aspect, specimen information can be easily grasped without interfering with observation of specimen images.
第1の実施形態に係る顕微鏡システムの構成を示した図である。FIG. 1 is a diagram showing the configuration of a microscope system according to a first embodiment. 標本を例示した図である。It is a figure which illustrated a specimen. 鏡筒装置内の光学系の構成を例示した図である。FIG. 3 is a diagram illustrating the configuration of an optical system within the lens barrel device. 非遮光領域と遮光領域の位置関係の一例を示した図である。FIG. 3 is a diagram illustrating an example of the positional relationship between a non-shading region and a light-shielding region. 表示位置の切り替えの一例を示した図である。FIG. 3 is a diagram showing an example of switching display positions. 表示位置の切り替えの別の例を示した図である。FIG. 7 is a diagram showing another example of switching display positions. 表示位置の切り替えの更に別の例を示した図である。It is a figure showing still another example of switching of a display position. 表示位置の切り替えの更に別の例を示した図である。FIG. 7 is a diagram showing yet another example of switching display positions. 表示位置と照明光強度の関係を例示した図である。It is a figure which illustrated the relationship between a display position and illumination light intensity. 表示位置と投影光強度の関係を例示した図である。It is a figure which illustrated the relationship between a display position and projection light intensity. 表示位置の切り替えの更に別の例を示した図である。It is a figure showing still another example of switching of a display position. 第1の実施形態に係る表示位置切り替え処理のフローチャートの一例である。3 is an example of a flowchart of display position switching processing according to the first embodiment. 第1の実施形態に係る表示位置切り替え処理のフローチャートの別の例である。It is another example of the flowchart of the display position switching process according to the first embodiment. 光軸上に標本がない場合の輝度分布の一例である。This is an example of the brightness distribution when there is no sample on the optical axis. 光軸上に標本がある場合の輝度分布の一例である。This is an example of the brightness distribution when there is a sample on the optical axis. 第2の実施形態に係る顕微鏡システムの構成を示した図である。FIG. 2 is a diagram showing the configuration of a microscope system according to a second embodiment. ステージ位置と対物レンズの光軸の位置関係を説明するための図である。FIG. 3 is a diagram for explaining the positional relationship between a stage position and an optical axis of an objective lens. 第2の実施形態に係る表示位置切り替え処理のフローチャートの一例である。7 is an example of a flowchart of display position switching processing according to the second embodiment. 第2の実施形態に係る表示位置切り替え処理のフローチャートの別の例である。It is another example of the flowchart of the display position switching process according to the second embodiment. 第3の実施形態に係る顕微鏡システムの構成を示した図である。It is a figure showing the composition of the microscope system concerning a 3rd embodiment. 焦準機構の位置の所定範囲を説明するための図である。FIG. 3 is a diagram for explaining a predetermined range of the position of a focusing mechanism. 第3の実施形態に係る表示位置切り替え処理のフローチャートの一例である。It is an example of the flowchart of the display position switching process based on 3rd Embodiment. 第3の実施形態に係る表示位置切り替え処理のフローチャートの別の例である。It is another example of the flowchart of the display position switching process according to the third embodiment. 第4の実施形態に係る顕微鏡システムの構成を示した図である。It is a figure showing the composition of the microscope system concerning a 4th embodiment. 第4の実施形態に係る表示位置切り替え処理のフローチャートの一例である。It is an example of the flowchart of the display position switching process based on 4th Embodiment. 第4の実施形態に係る表示位置切り替え処理のフローチャートの別の例である。It is another example of the flowchart of the display position switching process according to the fourth embodiment. 第5の実施形態に係る顕微鏡システムの構成を示した図である。It is a figure showing the composition of the microscope system concerning a 5th embodiment. 第6の実施形態に係る顕微鏡システムの構成を示した図である。It is a figure showing the composition of the microscope system concerning a 6th embodiment. 制御装置を実現するためのコンピュータのハードウェア構成を例示した図である。FIG. 2 is a diagram illustrating a hardware configuration of a computer for realizing a control device. 解析結果と表示位置の関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between analysis results and display positions. 解析結果重畳処理のフローチャートの一例である。It is an example of the flowchart of analysis result superimposition processing. 非遮光領域と遮光領域の位置関係の別の例を示した図である。FIG. 7 is a diagram showing another example of the positional relationship between a non-shaded area and a shaded area. 非遮光領域と遮光領域の位置関係の更に別の例を示した図である。FIG. 7 is a diagram showing still another example of the positional relationship between a non-shaded area and a shaded area. 非遮光領域と遮光領域の位置関係の更に別の例を示した図である。FIG. 7 is a diagram showing still another example of the positional relationship between a non-shaded area and a shaded area.
(第1の実施形態)
 図1は、本実施形態に係る顕微鏡システムの構成を示した図である。図2は、標本を例示した図である。図1に示す顕微鏡システム1は、例えば、病理医が病理診断で用いる顕微鏡システムである。ただし、顕微鏡システム1の用途はこれに限られない。顕微鏡システム1は、別の用途の生物系の顕微鏡システムであってもよい。顕微鏡システム1は、また、生物系の顕微鏡システムに限らず、工業用の顕微鏡システムであってもよい。また、図1では正立顕微鏡が例示されているが、顕微鏡システム1に含まれる顕微鏡は、正立顕微鏡に限らず、倒立顕微鏡であってもよい。
(First embodiment)
FIG. 1 is a diagram showing the configuration of a microscope system according to this embodiment. FIG. 2 is a diagram illustrating a specimen. A microscope system 1 shown in FIG. 1 is, for example, a microscope system used by a pathologist in pathological diagnosis. However, the use of the microscope system 1 is not limited to this. The microscope system 1 may be a biological microscope system for another purpose. The microscope system 1 is not limited to a biological microscope system, but may also be an industrial microscope system. Moreover, although an upright microscope is illustrated in FIG. 1, the microscope included in the microscope system 1 is not limited to an upright microscope, but may be an inverted microscope.
 顕微鏡システム1は、図1に示すように、接眼レンズ30と、観察光学系100と、読取装置50と、重畳装置25と、制御装置70を備えている。顕微鏡システム1は、図1に示すように、接眼レンズ30を介した目視観察と撮像装置40を用いたイメージングの両方に対応しているが、撮像装置40を有さず、接眼レンズ30を介した目視観察にのみ対応してもよい。 As shown in FIG. 1, the microscope system 1 includes an eyepiece 30, an observation optical system 100, a reading device 50, a superimposing device 25, and a control device 70. As shown in FIG. 1, the microscope system 1 supports both visual observation through the eyepiece 30 and imaging using the imaging device 40; It may also be possible to respond only to visual observation.
 観察光学系100は、標本Sからの観察光で接眼レンズ30の物体側の像面に標本像を形成する。なお、顕微鏡システム1で用いられる標本Sは、例えば、図2に示すように、ステージ11に設けられたクレンメル11aで固定されたプレパラートである。ただし、標本Sは、ウェルプレート、デッシュ、フラスコなどに収容されてもよい。また、標本Sは、回路基板などの工業製品であってもよく、容器に収容されずそのままステージ11に配置されてもよい。 The observation optical system 100 forms a specimen image on the object-side image plane of the eyepiece 30 using observation light from the specimen S. The specimen S used in the microscope system 1 is, for example, a preparation fixed with a Kremmel 11a provided on a stage 11, as shown in FIG. However, the specimen S may be accommodated in a well plate, dish, flask, or the like. Further, the specimen S may be an industrial product such as a circuit board, and may be placed on the stage 11 without being housed in a container.
 標本Sには、その標本Sを識別するための識別情報が付されている。識別情報は、図2に示すように、例えば、標本Sに関する情報である標本情報がコード化された情報(コードC)である。図2では、標本Sに付される識別情報は、バーコードであり、CODE128(登録商標)のような一次元コードの例を示したが、識別情報は、QRコード(登録商標)のような二次元コードであってもよい。また、識別情報はコード化された情報に限らない。標本Sに付された識別情報は、標本Sに付されたICタグに記録された情報であってもよく、手書きされた文字情報(例えば、識別番号)などであってもよい。 Identification information for identifying the specimen S is attached to the specimen S. As shown in FIG. 2, the identification information is, for example, information (code C) in which specimen information, which is information regarding the specimen S, is coded. In Figure 2, the identification information attached to the specimen S is a barcode, and an example of a one-dimensional code such as CODE128 (registered trademark) is shown, but the identification information is a barcode such as a QR code (registered trademark). It may be a two-dimensional code. Furthermore, the identification information is not limited to encoded information. The identification information attached to the specimen S may be information recorded on an IC tag attached to the specimen S, or may be handwritten character information (for example, an identification number).
 読取装置50は、標本Sに付された識別情報を読み取る読取部の一例である。読取装置50は、例えば、バーコードリーダー、RFIDリーダー、撮像装置など、任意の読取装置である。顕微鏡システム1では、読取装置50が読み取った識別情報に基づいて標本情報が取得される。 The reading device 50 is an example of a reading unit that reads identification information attached to the specimen S. The reading device 50 is any reading device such as a barcode reader, an RFID reader, an imaging device, or the like. In the microscope system 1, specimen information is acquired based on the identification information read by the reading device 50.
 標本情報は、読取装置50が取得してもよい。例えば、標本情報そのものがコード化されている場合、バーコードリーダーである読取装置50は、コードCを読み取るとともにコードCの内容である標本情報を取得してもよい。また、標本情報は、読取装置50が読み取った識別情報に基づいて制御装置70が取得してもよい。バーコードリーダーである読取装置50は、コードCを読み取るとともにコードCの内容(例えば、標本情報のパス)を制御装置70へ出力し、制御装置70がコードCの内容に基づいて標本情報を取得してもよい。また、読取装置50が撮像装置であれば、識別情報は画像であってもよく、読取装置50又は制御装置70がその画像に対して文字認識を行うことで標本情報を取得してもよい。 The specimen information may be acquired by the reading device 50. For example, if the specimen information itself is encoded, the reading device 50, which is a barcode reader, may read the code C and acquire the specimen information that is the content of the code C. Further, the specimen information may be acquired by the control device 70 based on the identification information read by the reading device 50. The reading device 50, which is a barcode reader, reads the code C and outputs the contents of the code C (for example, the path of specimen information) to the control device 70, and the control device 70 acquires specimen information based on the contents of the code C. You may. Further, if the reading device 50 is an imaging device, the identification information may be an image, and the reading device 50 or the control device 70 may acquire the specimen information by performing character recognition on the image.
 重畳装置25は、識別情報に基づいて取得した標本情報を標本像が形成されている像面に重畳する重畳部の一例である。重畳装置25は、例えば、像面に標本情報を投影するプロジェクタであってもよく、像面に置かれたディスプレイデバイスであってもよい。プロジェクタは、液晶ディスプレイや有機ELディスプレイのようなディスプレイデバイスであってもよく、DMDのようなMEMSであってもよい。重畳装置25がプロジェクタの場合には、顕微鏡システム1は、さらに、重畳装置25からの投影光を像面に導く投影光学系を含んでいる。 The superimposing device 25 is an example of a superimposing unit that superimposes specimen information acquired based on identification information on an image plane on which a specimen image is formed. The superimposition device 25 may be, for example, a projector that projects specimen information onto an image plane, or a display device placed on the image plane. The projector may be a display device such as a liquid crystal display or an organic EL display, or may be a MEMS such as a DMD. When the superimposing device 25 is a projector, the microscope system 1 further includes a projection optical system that guides the projection light from the superimposing device 25 to an image plane.
 制御装置70は、重畳装置25を制御することで重畳装置25に標本情報を像面へ重畳させる。これにより、利用者は、接眼レンズ30から目を離すことなく標本像を観察しながら標本情報を把握することができる。さらに、制御装置70は、所定条件を満たしたときに像面上における標本情報の表示位置を切り替える。この所定条件は、利用者の作業フローを考慮して予め設計される。 The control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the image plane. Thereby, the user can grasp the specimen information while observing the specimen image without taking his eyes off the eyepiece 30. Further, the control device 70 switches the display position of the specimen information on the image plane when a predetermined condition is satisfied. This predetermined condition is designed in advance in consideration of the user's work flow.
 以上の様に構成された顕微鏡システム1では、所定条件が適切に設計されることで、例えば、標本像の観察に集中すべき期間中は標本情報を標本像と重ならない位置に表示し、且つ、標本像を観察しない期間中は標本情報を利用者がより見やすい位置(例えば、視野の中心付近など)に表示することが可能である。従って、顕微鏡システム1によれば、標本像の観察を妨げることなく標本情報を容易に把握可能となる。 In the microscope system 1 configured as described above, by appropriately designing the predetermined conditions, for example, specimen information can be displayed at a position that does not overlap with the specimen image during a period when one should concentrate on observing the specimen image, and During the period when the specimen image is not observed, specimen information can be displayed in a position that is easier for the user to see (for example, near the center of the visual field). Therefore, according to the microscope system 1, specimen information can be easily grasped without interfering with observation of specimen images.
 図3は、鏡筒装置内の光学系の構成を例示した図である。図4は、非遮光領域と遮光領域の位置関係の一例を示した図である。以下、図1から図4を参照しながら、顕微鏡システム1の構成について詳細に説明する。 FIG. 3 is a diagram illustrating the configuration of the optical system within the lens barrel device. FIG. 4 is a diagram illustrating an example of the positional relationship between the non-shaded area and the shaded area. Hereinafter, the configuration of the microscope system 1 will be described in detail with reference to FIGS. 1 to 4.
 顕微鏡システム1は、図1に示すように、顕微鏡本体10と、鏡筒装置20と、接眼レンズ30と、撮像装置40と、読取装置50と、コントロールボックス60と、制御装置70を備えている。 As shown in FIG. 1, the microscope system 1 includes a microscope main body 10, a lens barrel device 20, an eyepiece 30, an imaging device 40, a reading device 50, a control box 60, and a control device 70. .
 顕微鏡本体10は、標本Sを配置するステージ11と、ステージ11を操作するためのステージハンドル12と、標本Sに照射する照明光を出射する光源13と、を備えている。顕微鏡本体10は、さらに、ステージ11に置かれた標本Sに照明光を照射するコンデンサ14と、レボルバに取り付けられた対物レンズ15と、ステージ11を上下へ移動する焦準装置16と、焦準装置16に接続された焦準ハンドル17を備えている。 The microscope main body 10 includes a stage 11 on which the specimen S is placed, a stage handle 12 for operating the stage 11, and a light source 13 that emits illumination light to irradiate the specimen S. The microscope main body 10 further includes a condenser 14 that irradiates illumination light onto the specimen S placed on the stage 11, an objective lens 15 attached to a revolver, a focusing device 16 that moves the stage 11 up and down, and a focusing device 16 that moves the stage 11 up and down. A focusing handle 17 connected to the device 16 is provided.
 ステージ11は、対物レンズ15の光軸と直交する方向に移動するXYステージを含んでいる。ステージハンドル12を操作することで、ステージ11(XYステージ)は、対物レンズ15の光軸と直交する方向へ移動する。また、焦準ハンドル17を回転することで、焦準装置16がステージ11を動かし、その結果、ステージ11が対物レンズ15の光軸方向へ移動する。なお、ステージ11には、コンデンサ14からの照明光が通過する、標本Sが落下しない程度の大きさの開口が形成されている。 The stage 11 includes an XY stage that moves in a direction perpendicular to the optical axis of the objective lens 15. By operating the stage handle 12, the stage 11 (XY stage) moves in a direction perpendicular to the optical axis of the objective lens 15. Further, by rotating the focusing handle 17, the focusing device 16 moves the stage 11, and as a result, the stage 11 moves in the optical axis direction of the objective lens 15. Note that the stage 11 is formed with an opening that is large enough to prevent the specimen S from falling through which the illumination light from the condenser 14 passes.
 鏡筒装置20は、顕微鏡本体10に取り付けられている。鏡筒装置20は、接眼レンズ30と撮像装置40を装着可能な3眼鏡筒である。鏡筒装置20内には、結像レンズ24と重畳装置25が収容されている。照明光が照射された標本Sからの光は、対物レンズ15を経由して鏡筒装置20へ入射する。鏡筒装置20へ入射した光は、鏡筒装置20内で接眼レンズ30へ至る光と撮像装置40へ至る光へ分割される。 The lens barrel device 20 is attached to the microscope main body 10. The lens barrel device 20 is a trinocular barrel to which an eyepiece 30 and an imaging device 40 can be attached. Inside the lens barrel device 20, an imaging lens 24 and a superimposing device 25 are housed. Light from the sample S irradiated with the illumination light enters the lens barrel device 20 via the objective lens 15. The light incident on the lens barrel device 20 is split within the lens barrel device 20 into light that reaches the eyepiece 30 and light that reaches the imaging device 40 .
 鏡筒装置20には、さらに、利用者が操作する3つの物理キー(物理キー21、物理キー22、物理キー23)が設けられている。物理キー21は、重畳装置25の電源スイッチであり、重畳装置25から投影光が出射される状態と出射されない状態を切り替えるために用いられる。物理キー22は、投影光の強度を調整するための調光ボリュームである。物理キー23は、標本情報の表示位置を切り替えるための切り替えスイッチであり、利用者が表示位置の切り替え指示を入力する入力部の一例である。なお、標本情報の表示位置を切り替えるための切り替えスイッチは、2つ以上の物理キーであってもよい。 The lens barrel device 20 is further provided with three physical keys (physical key 21, physical key 22, and physical key 23) operated by the user. The physical key 21 is a power switch of the superimposing device 25, and is used to switch between a state in which projection light is emitted from the superimposing device 25 and a state in which it is not emitted. The physical key 22 is a dimming volume for adjusting the intensity of projection light. The physical key 23 is a changeover switch for changing the display position of specimen information, and is an example of an input unit through which the user inputs an instruction to change the display position. Note that the changeover switch for changing the display position of the specimen information may be two or more physical keys.
 接眼レンズ30は、鏡筒装置20に設けられた接眼スリーブに取り付けられている。接眼スリーブは、水平方向の軸周りにあおり方向に回動する回動部に設けられている。回動部とともに接眼スリーブに取り付けられた接眼レンズ30が回動することで、アイポイントの高さが調整される。 The eyepiece lens 30 is attached to an eyepiece sleeve provided on the lens barrel device 20. The eyepiece sleeve is provided at a rotating part that rotates in the tilting direction around a horizontal axis. The height of the eyepoint is adjusted by rotating the eyepiece lens 30 attached to the eyepiece sleeve together with the rotating portion.
 撮像装置40は、例えば、イメージセンサ41を備えたデジタルカメラである。撮像装置40は、標本Sを撮像して、標本Sの画像を取得する。イメージセンサ41は、CCDやCMOSなどである。撮像装置40及びイメージセンサ41は、鏡筒装置20に装着されることで、対物レンズ15から結像レンズ24を経由して接眼レンズ30へ至る観察光路から分岐した、撮像光路上に設けられる。 The imaging device 40 is, for example, a digital camera equipped with an image sensor 41. The imaging device 40 images the specimen S to obtain an image of the specimen S. The image sensor 41 is a CCD, CMOS, or the like. The imaging device 40 and the image sensor 41 are mounted on the lens barrel device 20 and are provided on an imaging optical path that branches from the observation optical path that extends from the objective lens 15 to the eyepiece 30 via the imaging lens 24.
 読取装置50は、上述したとおりである。読取装置50は、例えば、標本Sがステージ11上に置かれたときに、標本Sに付されたコードCが読み取れる位置に設置されることが望ましい。 The reading device 50 is as described above. It is desirable that the reading device 50 be installed at a position where the code C attached to the specimen S can be read, for example, when the specimen S is placed on the stage 11.
 コントロールボックス60は、顕微鏡本体10を制御する装置であり、制御装置70に接続されている。コントロールボックス60は、例えば、光源13の発光制御などを行う。 The control box 60 is a device that controls the microscope main body 10 and is connected to the control device 70. The control box 60 controls the light emission of the light source 13, for example.
 制御装置70は、顕微鏡システム1全体を制御するコンピュータである。制御装置70は、上述した重畳装置25の制御に加えて、顕微鏡本体10や撮像装置40を制御する。制御装置70は、例えば、コントロールボックス60を介して顕微鏡本体10を制御することで、上述した発光制御などを行ってもよい。また、制御装置70は、例えば、撮像装置40を制御することでイメージング制御を行ってもよい。 The control device 70 is a computer that controls the entire microscope system 1. The control device 70 controls the microscope main body 10 and the imaging device 40 in addition to controlling the superimposing device 25 described above. The control device 70 may perform the above-described light emission control, for example, by controlling the microscope main body 10 via the control box 60. Further, the control device 70 may perform imaging control by controlling the imaging device 40, for example.
 顕微鏡システム1は、光源13から標本Sへ至る照明光路上に配置された光学系である照明光学系を備えている。照明光学系は、コンデンサ14を含んでいる。照明光学系は、光源13からの照明光を標本Sに照射し、例えばケーラー照明でムラなく均一な照明強度で標本Sを照明する。 The microscope system 1 includes an illumination optical system that is an optical system placed on the illumination optical path from the light source 13 to the specimen S. The illumination optical system includes a condenser 14. The illumination optical system irradiates the specimen S with illumination light from the light source 13, and illuminates the specimen S with even and uniform illumination intensity using, for example, Koehler illumination.
 より詳細には、ランプハウスに設けられた図示しない電源スイッチを入れることで光源13は点灯し、電源スイッチをオフにすることで光源13は消灯する。光源13は、特に限定しないが、例えば、ハロゲンランプやLEDなどである。光源13から出射した照明光は、照明光学系を構成するコンデンサ14経由で、ステージ11に配置された標本Sに照射される。 More specifically, the light source 13 is turned on by turning on a power switch (not shown) provided in the lamp house, and is turned off by turning off the power switch. The light source 13 is, for example, a halogen lamp or an LED, although it is not particularly limited. Illumination light emitted from the light source 13 is irradiated onto the sample S placed on the stage 11 via the condenser 14 that constitutes the illumination optical system.
 標本Sに照射される照明光の強度は、顕微鏡本体10に設けられたダイヤルで調整可能である。ダイヤルの回転に応じて、光源13から発光される照明光の光量が制御される。また、標本Sに照射される照明光の強度は、ダイヤル操作に限らず、後述する制御装置70からの命令によっても調整可能である。 The intensity of the illumination light irradiated onto the specimen S can be adjusted with a dial provided on the microscope main body 10. The amount of illumination light emitted from the light source 13 is controlled in accordance with the rotation of the dial. Further, the intensity of the illumination light irradiated onto the specimen S can be adjusted not only by dial operation but also by a command from the control device 70, which will be described later.
 顕微鏡システム1は、標本Sから撮像装置40へ至る光路上に配置された光学系である撮像光学系を備えている。撮像光学系は、標本Sからの観察光で撮像装置40の撮像面に標本像を形成する。撮像装置40で撮像した標本像が制御装置70に接続された図示しない表示装置に表示されることで、顕微鏡の利用者は、撮像装置40で撮像した標本像を観察することができる。 The microscope system 1 includes an imaging optical system that is an optical system placed on the optical path from the specimen S to the imaging device 40. The imaging optical system forms a specimen image on the imaging surface of the imaging device 40 using observation light from the specimen S. The specimen image taken by the imaging device 40 is displayed on a display device (not shown) connected to the control device 70, so that the user of the microscope can observe the specimen image taken by the imaging device 40.
 この例では、撮像光学系は、図1及び図3に示すように、対物レンズ15と、結像レンズ24と、スプリッタ101を含んでいる。スプリッタ101は、観察光路から撮像光路を分岐する。撮像光学系に含まれる対物レンズ15と結像レンズ24とスプリッタ101は、後述する観察光学系100にも含まれる。即ち、観察光学系100と撮像光学系は、少なくとも一部の光学素子を共有している。 In this example, the imaging optical system includes an objective lens 15, an imaging lens 24, and a splitter 101, as shown in FIGS. 1 and 3. The splitter 101 branches an imaging optical path from an observation optical path. The objective lens 15, the imaging lens 24, and the splitter 101 included in the imaging optical system are also included in the observation optical system 100, which will be described later. That is, the observation optical system 100 and the imaging optical system share at least some optical elements.
 顕微鏡システム1は、標本Sから接眼レンズ30へ至る観察光路上に配置された光学系である観察光学系100を備えている。観察光学系100は、標本Sからの観察光で接眼レンズ30の物体側の像面に標本像を形成する。顕微鏡の利用者は、接眼レンズ30を覗くことで観察光学系100によって像面に形成された標本像を目視観察することができる。 The microscope system 1 includes an observation optical system 100, which is an optical system placed on an observation optical path from the specimen S to the eyepiece 30. The observation optical system 100 forms a specimen image on the object-side image plane of the eyepiece 30 using observation light from the specimen S. A user of the microscope can visually observe the specimen image formed on the image plane by the observation optical system 100 by looking through the eyepiece 30.
 この例では、図1及び図3に示すように、観察光学系100は、対物レンズ15と、結像レンズ24と、スプリッタ101と、ミラー102と、視野絞り103と、ミラー104と、リレーレンズ105と、ミラー106と、ミラー107と、合成光学素子108と、ミラー109と、リレーレンズ110と、ミラー111と、ミラー112を含んでいる。 In this example, as shown in FIGS. 1 and 3, the observation optical system 100 includes an objective lens 15, an imaging lens 24, a splitter 101, a mirror 102, a field stop 103, a mirror 104, and a relay lens. 105, a mirror 106, a mirror 107, a composite optical element 108, a mirror 109, a relay lens 110, a mirror 111, and a mirror 112.
 観察光学系100では、対物レンズ15で平行光に変換された観察光は、結像レンズ24により視野絞り103上に集光する。これにより、視野絞り103上に標本Sの一次像が形成される。即ち、視野絞り103は、一次像が形成される一次像面に配置されている。 In the observation optical system 100, the observation light converted into parallel light by the objective lens 15 is focused onto the field stop 103 by the imaging lens 24. As a result, a primary image of the specimen S is formed on the field stop 103. That is, the field stop 103 is arranged at the primary image plane where the primary image is formed.
 一次像からの観察光は、リレーレンズ105で一旦平行光に変換され、リレーレンズ110により接眼レンズ30の物体側に置かれた視野絞り31上に集光する。これにより、視野絞り31上に標本Sの二次像が形成される。即ち、リレーレンズ105とリレーレンズ110は、標本Sの一次像を像面にリレーするリレー光学系であり、利用者は、二次像が形成される二次像面を、接眼レンズ30を介して観察する。 The observation light from the primary image is once converted into parallel light by the relay lens 105, and then focused by the relay lens 110 onto the field stop 31 placed on the object side of the eyepiece lens 30. As a result, a secondary image of the specimen S is formed on the field stop 31. That is, the relay lens 105 and the relay lens 110 are a relay optical system that relays the primary image of the specimen S to the image plane, and the user can view the secondary image plane on which the secondary image is formed through the eyepiece lens 30. Observe.
 視野絞り103と視野絞り31の関係は、図4に示すとおりである。開口31aは、視野絞り31の開口部の大きさを示している。開口像103aは、二次像面における視野絞り103の開口像の大きさを示している。図4に示すように、顕微鏡システム1では、視野絞り103は、視野絞り31が制限する視野よりも狭い視野に制限する。一例としては、視野絞り31は、視野数26.5に対応し、視野絞り103は、視野数22に対応する。 The relationship between the field stop 103 and the field stop 31 is as shown in FIG. The aperture 31a indicates the size of the aperture of the field stop 31. The aperture image 103a indicates the size of the aperture image of the field stop 103 on the secondary image plane. As shown in FIG. 4, in the microscope system 1, the field stop 103 limits the field of view narrower than the field of view limited by the field stop 31. As an example, the field stop 31 corresponds to a field number of 26.5, and the field stop 103 corresponds to a field number of 22.
 なお、視野絞り103が制限する視野に対応する、図4に示す領域R2は、視野絞り103で観察光が遮光されない領域であるから、以降では、非遮光領域R2と記す。非遮光領域R2は、例えば、視野数22に対応する領域であり、標本像が形成される領域である。一方で、図4に示す領域R1は、視野絞り103で観察光が遮光される領域であるから、以降では、遮光領域R1と記す。遮光領域R1は、例えば、視野数26に対応する領域のうち視野数22にも対応する領域を除いた領域である。なお、重畳装置25から出射した投影光は、後述するように、視野絞り103よりも接眼レンズ30側で観察光路に合流する。このため、遮光領域R1は、観察光は入射しないが投影光は入射する領域である。 Note that the region R2 shown in FIG. 4, which corresponds to the field of view limited by the field stop 103, is a region in which observation light is not blocked by the field stop 103, and hence will be referred to as a non-shaded region R2. The non-light-shielding region R2 is, for example, a region corresponding to the field of view number 22, and is a region in which a specimen image is formed. On the other hand, since the region R1 shown in FIG. 4 is a region where observation light is blocked by the field stop 103, it will be hereinafter referred to as a light-blocking region R1. The light-shielding region R1 is, for example, a region corresponding to the number of fields of view 26 excluding the region corresponding to the number of fields of view 22. Note that the projection light emitted from the superimposing device 25 joins the observation optical path closer to the eyepiece lens 30 than the field stop 103, as will be described later. Therefore, the light-shielding region R1 is a region into which observation light does not enter, but projection light enters.
 顕微鏡システム1は、重畳装置25から接眼レンズ30へ至る投影光路上に配置された光学系である投影光学系を備えている。投影光学系は、重畳装置25からの投影光で接眼レンズ30の物体側の像面に重畳装置25の像を形成する。顕微鏡システム1では、重畳装置25が標本情報を表示することで、標本情報が像面に表示される。これにより、利用者は、接眼レンズ30を覗くことで観察光学系100によって像面に形成された標本像とともに標本情報を同時に観察することができる。 The microscope system 1 includes a projection optical system that is an optical system placed on a projection optical path from the superimposing device 25 to the eyepiece 30. The projection optical system uses projection light from the superimposing device 25 to form an image of the superimposing device 25 on the object-side image plane of the eyepiece 30 . In the microscope system 1, the superimposing device 25 displays the specimen information, so that the specimen information is displayed on the image plane. Thereby, the user can simultaneously observe the specimen image formed on the image plane by the observation optical system 100 and the specimen information by looking through the eyepiece 30.
 この例では、図3に示すように、投影光学系は、投影レンズ120と、合成光学素子108と、ミラー109と、リレーレンズ110と、ミラー111と、ミラー112を含んでいる。投影光学系に含まれる合成光学素子108と、ミラー109と、リレーレンズ110と、ミラー111と、ミラー112は、観察光学系100にも含まれる。即ち、観察光学系100と投影光学系は、少なくとも一部の光学素子を共有している。 In this example, as shown in FIG. 3, the projection optical system includes a projection lens 120, a composite optical element 108, a mirror 109, a relay lens 110, a mirror 111, and a mirror 112. The combining optical element 108, mirror 109, relay lens 110, mirror 111, and mirror 112 included in the projection optical system are also included in the observation optical system 100. That is, the observation optical system 100 and the projection optical system share at least some optical elements.
 投影光学系では、重畳装置25から出射した投影光は、投影レンズ120で平行光に変換された後、合成光学素子108で観察光路に導かれる。その後、投影光は、ミラー109を介して入射するリレーレンズ110によって視野絞り31が配置された二次像面に集光する。これにより、利用者は、接眼レンズ30を介して重畳装置25に表示されている標本情報を観察することができる。 In the projection optical system, the projection light emitted from the superimposing device 25 is converted into parallel light by the projection lens 120, and then guided to the observation optical path by the combining optical element 108. Thereafter, the projection light is incident through a mirror 109 and is focused by a relay lens 110 onto a secondary image plane on which a field stop 31 is arranged. Thereby, the user can observe the specimen information displayed on the superimposing device 25 through the eyepiece 30.
 なお、図3では、説明を簡略化するため、一本の観察光路が示したが、鏡筒装置20には、右目用と左目用の観察光路がそれぞれ形成されてもよい。 Note that although one observation optical path is shown in FIG. 3 to simplify the explanation, the lens barrel device 20 may be formed with observation optical paths for the right eye and for the left eye, respectively.
 図5から図8及び図11は、表示位置の切り替え例を示した図である。図9は、表示位置と照明光強度の関係を例示した図である。図10は、表示位置と投影光強度の関係を例示した図である。図5から図11を参照しながら、制御装置70が行う標本情報の表示位置の切り替え制御について説明する。 5 to 8 and 11 are diagrams showing examples of switching display positions. FIG. 9 is a diagram illustrating the relationship between display position and illumination light intensity. FIG. 10 is a diagram illustrating the relationship between display position and projection light intensity. With reference to FIGS. 5 to 11, the switching control of the display position of specimen information performed by the control device 70 will be described.
 以下では、利用者が切替指示を入力することで表示位置を切り替える例、つまり、制御装置70が入力部に入力された切り替え指示に応じて表示位置を切り替える例、で説明する。ただし、このような切り替え動作の契機は、利用者が行う明示の切り替え指示に限らない。この点については別途後述する。 In the following, an example will be described in which the display position is switched by the user inputting a switching instruction, that is, an example in which the control device 70 switches the display position in response to the switching instruction input to the input unit. However, the trigger for such a switching operation is not limited to an explicit switching instruction given by the user. This point will be discussed separately later.
 制御装置70は、図5から図8及び図11に示すように、少なくとも、視野絞り103で観察光が遮光される遮光領域R1内と視野絞り103で観察光が遮光されない非遮光領域R2内との間で、標本情報U1の表示位置を切り替えることが望ましい。 As shown in FIGS. 5 to 8 and 11, the control device 70 controls at least a light-shielding region R1 where observation light is blocked by the field stop 103 and a non-light-shielding region R2 where observation light is not blocked by the field stop 103. It is desirable to switch the display position of the specimen information U1 between.
 制御装置70は、重畳装置25を制御することで、例えば、図5に示すように、ハードキー(物理キー23)が押下される毎に、標本情報U1が表示される表示位置を遮光領域R1と非遮光領域R2の間で切り替えてもよい。また、制御装置70は、重畳装置25を制御することで、例えば、図6に示すように、重畳装置25によって像面に表示されるソフトウェアキーが押下される毎に、表示位置を遮光領域R1と非遮光領域R2の間で切り替えてもよい。ソフトウェアキーは、例えば、制御装置70に接続されているマウスなどの入力装置を用いることで押下してもよい。ソフトウェアキーは、像面に2つ以上表示されてもよい。このように、制御装置70は、利用者の明示的に入力した入力指示毎に、標本情報U1を遮光領域R1内に重畳するように重畳装置25を制御する処理と、標本情報U1を非遮光領域R2内に重畳するように重畳装置25を制御する処理と、を順番に行ってもよい。 For example, as shown in FIG. 5, the control device 70 controls the superimposition device 25 to change the display position where the specimen information U1 is displayed to the light-shielding region R1 every time the hard key (physical key 23) is pressed. and the non-shading area R2. In addition, the control device 70 controls the superimposition device 25 so that, as shown in FIG. and the non-shading area R2. The software key may be pressed using an input device such as a mouse connected to the control device 70, for example. Two or more software keys may be displayed on the image plane. In this way, the control device 70 performs processing for controlling the superimposition device 25 to superimpose the specimen information U1 within the light-shielding region R1, and for superimposing the specimen information U1 in the non-shading area, for each input instruction explicitly input by the user. The process of controlling the superimposing device 25 so as to superimpose within the region R2 may be performed in order.
 制御装置70は、標本情報U1の表示態様を、表示位置の切り替えに応じて変更してもよく、表示位置が遮光領域R1内にあるときと非遮光領域R2内にあるときでは異ならせてもよい。例えば、図5から図8及び図11に示すように、遮光領域R1に表示されるときには、制御装置70は、輪帯形状の遮光領域R1に収まるように標本情報U1に含まれる文字情報を周方向に整列してもよい。一方で、例えば、図5から図8及び図11に示すように、非遮光領域R2に表示されるときには、制御装置70は、非遮光領域R2内に標本情報U1に含まれる文字情報を項目ごとに改行して整列してもよい。 The control device 70 may change the display mode of the specimen information U1 according to switching of the display position, and may also change the display mode when the display position is within the light-shielding region R1 and when it is within the non-light-shielding region R2. good. For example, as shown in FIGS. 5 to 8 and 11, when displaying in the light-shielding region R1, the control device 70 wraps the character information included in the sample information U1 so that it fits in the ring-shaped light-shielding region R1. They may be aligned in the direction. On the other hand, for example, as shown in FIGS. 5 to 8 and 11, when displayed in the non-shading area R2, the control device 70 displays character information included in the specimen information U1 in the non-shading area R2 for each item. You can arrange them by starting a new line.
 制御装置70は、標本情報U1に含まれる文字情報のパラメータを、表示位置の切り替えに応じて変更してもよく、表示位置が遮光領域R1内にあるときと非遮光領域R2内にあるときでは異ならせてもよい。これは、遮光領域R1と非遮光領域R2では背景の明るさが異なるため、同じ文字パラメータでも見え方が異なり得るからである。例えば、図7に示すように、遮光領域R1に表示されるときと非遮光領域R2に表示されるときとでは、制御装置70は、文字の色、フォント、フォントサイズなどを変更してもよく、これにより、遮光領域R1と非遮光領域R2のどちらでも標本情報U1を利用者が把握しやすくなる。 The control device 70 may change the parameters of the character information included in the specimen information U1 according to the switching of the display position, and may change the parameters of the character information included in the specimen information U1 depending on whether the display position is within the light-shielding region R1 or within the non-shading region R2. It may be different. This is because the brightness of the background is different between the light-shielding region R1 and the non-light-shielding region R2, so even the same character parameters may appear differently. For example, as shown in FIG. 7, the control device 70 may change the color, font, font size, etc. of the text when it is displayed in the light-shielding area R1 and when it is displayed in the non-shading area R2. , This makes it easier for the user to grasp the specimen information U1 in both the light-shielded region R1 and the non-shaded region R2.
 制御装置70は、図8及び図9に示すように、表示位置を遮光領域R1内から非遮光領域R2内へ切り替えるのに応じて、標本Sに照射される照明光の強度を低下させてもよく、反対に、表示位置を非遮光領域R2内から遮光領域R1内へ切り替えるのに応じて、標本Sに照射される照明光の強度を高めてもよい。非遮光領域R2が明るすぎると、非遮光領域R2内に標本情報U1を表示したときにコントラストが付きにくく、見えづらくなるからである。制御装置70は、光源13から出射される照明光の強度を制御してもよく、光源13とコンデンサ14の間で照明光の強度を制御してもよい。これにより、遮光領域R1と非遮光領域R2のどちらでも標本情報U1を利用者が把握しやすくなる。 As shown in FIGS. 8 and 9, the control device 70 may reduce the intensity of the illumination light irradiated onto the specimen S in response to switching the display position from within the light-shielding region R1 to within the non-shading region R2. Conversely, the intensity of the illumination light irradiated onto the specimen S may be increased in response to switching the display position from within the non-shading region R2 to within the light-shielding region R1. This is because if the non-shading area R2 is too bright, when the specimen information U1 is displayed within the non-shading area R2, it will be difficult to provide contrast and it will be difficult to see. The control device 70 may control the intensity of the illumination light emitted from the light source 13 or may control the intensity of the illumination light between the light source 13 and the condenser 14. This makes it easier for the user to grasp the specimen information U1 in both the light-blocking area R1 and the non-light-blocking area R2.
 制御装置70は、図10に示すように、表示位置を遮光領域R1内から非遮光領域R2内へ切り替えるのに応じて、投影光の強度を高めてもよく、反対に、表示位置を非遮光領域R2内から遮光領域R1内へ切り替えるのに応じて、投影光の強度を弱めてもよい。遮光領域R1に比べて明るい非遮光領域R2内に標本情報U1を表示したときでも標本情報U1を十分なコントラストで表示するためである。制御装置70は、重畳装置25から出射される投影光の強度を制御してもよい。これにより、遮光領域R1と非遮光領域R2のどちらでも標本情報U1を利用者が容易に把握しやすくなる。 As shown in FIG. 10, the control device 70 may increase the intensity of the projection light in response to switching the display position from inside the light-shielding region R1 to inside the non-shading region R2, or conversely, change the display position from inside the light-shielding region R2 to the non-shading region R2. The intensity of the projection light may be weakened in response to switching from inside the region R2 to inside the light-blocking region R1. This is to display the specimen information U1 with sufficient contrast even when the specimen information U1 is displayed in the non-shading region R2 which is brighter than the shielding region R1. The control device 70 may control the intensity of the projection light emitted from the superimposing device 25. Thereby, the user can easily grasp the specimen information U1 in both the light-shielding region R1 and the non-light-shielding region R2.
 図5から図8では、2つの表示位置を切り替える例を示したが、制御装置70は、重畳装置25を制御することで、標本情報U1が表示される表示位置を3つ以上の表示位置の間で切り替えてもよく、3つ以上の表示位置には、少なくとも遮光領域R1内と非遮光領域R2内を1つずつ含んでいればよい。表示位置の切替は、例えば、図11に示すように、ハードキー(物理キー23)が押下される毎に行われてもよい。なお、ハードキーの代わりに、図6に示すようなソフトウェアキーが押下される度に表示位置を切り替えてもよい。図11に示すように、3つ以上の表示位置には、非遮光領域R2内の表示位置として、視野中心と視野中心から逸れた位置を含んでもよい。 Although FIGS. 5 to 8 show an example in which two display positions are switched, the control device 70 controls the superimposition device 25 to change the display position where the specimen information U1 is displayed to one of three or more display positions. The three or more display positions may include at least one inside the light-shielding region R1 and one inside the non-shading region R2. For example, as shown in FIG. 11, the display position may be switched every time a hard key (physical key 23) is pressed. Note that instead of the hard keys, the display position may be switched each time a software key as shown in FIG. 6 is pressed. As shown in FIG. 11, the three or more display positions may include the center of the visual field and positions deviating from the center of the visual field as display positions within the non-shading area R2.
 以上では、利用者が切替指示を入力することで制御装置70が表示位置を切り替える例を説明したが、以降では、制御装置70が予め決められた基準に従って表示位置を自動的に切り替える例について説明する。 The above describes an example in which the control device 70 switches the display position in response to the user inputting a switching instruction, but hereinafter, an example in which the control device 70 automatically switches the display position according to predetermined criteria will be described. do.
 図12は、顕微鏡システム1が行う本実施形態に係る表示位置切り替え処理のフローチャートの一例である。図12に示す処理は、制御装置70が所定のプログラムを実行することで開始される。まず、顕微鏡システム1は、識別情報の読み取りを監視する(ステップS1)。利用者は、標本Sに付されたコードCを読取装置50に読み取らせると、読取装置50がコードCから標本情報を取得し、制御装置70へ出力する。制御装置70は、これを受けて、識別情報が読み取られたことを検出する。 FIG. 12 is an example of a flowchart of the display position switching process according to the present embodiment performed by the microscope system 1. The process shown in FIG. 12 is started when the control device 70 executes a predetermined program. First, the microscope system 1 monitors reading of identification information (step S1). When the user causes the reading device 50 to read the code C attached to the specimen S, the reading device 50 acquires specimen information from the code C and outputs it to the control device 70. In response to this, the control device 70 detects that the identification information has been read.
 識別情報が読み取られると、制御装置70は、読取装置50による識別情報の読み取りを契機に、標本情報を非遮光領域R2内に重畳するように重畳装置25を制御する。具体的には、制御装置70は、まず、標本情報の表示領域として非遮光領域R2を設定し(ステップS2)、その後、標本情報の重畳を開始する(ステップS3)。これにより、制御装置70は、重畳装置25を制御して、重畳装置25に、非遮光領域R2に標本情報を重畳させる。 When the identification information is read, the control device 70 controls the superimposition device 25 to superimpose the specimen information in the non-shading region R2, triggered by the reading of the identification information by the reading device 50. Specifically, the control device 70 first sets the non-shading area R2 as a display area for specimen information (step S2), and then starts superimposing the specimen information (step S3). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the non-shading region R2.
 その後、制御装置70は、識別情報の読み取りからの経過時間に基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更する。具体的には、制御装置70は、識別情報の読み取りからの経過時間が所定時間以上経過したか否かを判定し(ステップS4)、所定時間以上経過したと判定した場合に(ステップS4YES)、標本情報の表示領域として遮光領域R1を設定する(ステップS5)。これにより、制御装置70は、重畳装置25を制御して、重畳装置25に、遮光領域R1に標本情報を重畳させる。 Thereafter, the control device 70 changes the display position from inside the non-shading region R2 to inside the light-shielding region R1 based on the elapsed time from reading the identification information. Specifically, the control device 70 determines whether or not a predetermined time or more has elapsed since the identification information was read (step S4), and if it is determined that the predetermined time or more has elapsed (step S4 YES), A light shielding area R1 is set as a display area for specimen information (step S5). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
 以上の様に、顕微鏡システム1が図12に示す処理を実行することで、識別情報が読み取られてから所定時間内は非遮光領域R2に標本情報が表示され、その後は、遮光領域R1に標本情報が表示される。このような表示位置の自動的な切り替えは、利用者の作業フローに照らして望ましい。この点について以下で説明する。 As described above, when the microscope system 1 executes the process shown in FIG. 12, specimen information is displayed in the non-shading area R2 for a predetermined time after the identification information is read, and thereafter, the specimen information is displayed in the non-shading area R1. Information will be displayed. Such automatic switching of display positions is desirable in light of the user's work flow. This point will be explained below.
 利用者は、標本Sの取り違えなどを防止するために、観察開始時に標本Sの識別情報を読取装置50に読み取らせる操作を行うのが通常である。その後、利用者は、ステージ11を動かして標本S内の注目位置が対物レンズ15の光軸上に位置するように調整する。識別情報の読み取りから標本Sの注目位置を光軸上に位置付けるまでの間、利用者によって標本Sの実質的な観察は行われていないと見做すことができる。このため、識別情報を読み取った直後については、標本情報を非遮光領域R2に表示しても利用者による標本像の観察の妨げにはならない。むしろ識別情報の読み取り直後については、利用者は最初に標本情報をしっかりと確認する必要があるため、非遮光領域R2の視野中心付近に標本情報が表示されることが望ましい。図12に示す処理によれば、読取操作後に標本情報が非遮光領域R2に表示されるため、利用者が確実に標本情報を把握することが可能であり、望ましい。 In order to prevent the specimen S from being mixed up, the user usually performs an operation to cause the reading device 50 to read the identification information of the specimen S at the beginning of observation. Thereafter, the user moves the stage 11 to adjust the position of interest within the sample S to be located on the optical axis of the objective lens 15. It can be considered that the specimen S is not substantially observed by the user during the period from reading the identification information to locating the target position of the specimen S on the optical axis. Therefore, immediately after reading the identification information, displaying the specimen information in the non-shading area R2 does not interfere with the user's observation of the specimen image. Rather, immediately after reading the identification information, the user needs to first confirm the specimen information, so it is desirable that the specimen information be displayed near the center of the visual field of the non-shading area R2. According to the process shown in FIG. 12, since the specimen information is displayed in the non-shading area R2 after the reading operation, it is possible for the user to reliably grasp the specimen information, which is desirable.
 また、識別情報の読み取りからある程度の時間が経過すると、注目位置が光軸上に位置付けられて、本格的に標本像の観察が開始される。標本情報には、標本Sを取り違えていないことの確認に利用される情報の他、観察中における各種の判断に資する情報も含まれる。そのため、標本情報は、観察中に適宜確認できるよう継続して表示されることが望ましい。一方で、観察中に標本像と重なった標本情報が表示されると、標本像の観察に支障を来たす虞がある。従って、標本像の観察中は、標本像と重ならない位置に標本情報が表示されることが望ましい。図12に示す処理によれば、読取操作から所定時間経過は標本情報が遮光領域R1に表示されるため、標本情報が標本像の観察を妨げることがない。また、遮光領域R1に表示されているため、利用者が確認したいタイミングで接眼レンズ30から目をそらすことなく標本情報を確認することができる。 Furthermore, after a certain amount of time has passed since the identification information was read, the position of interest is positioned on the optical axis, and observation of the specimen image begins in earnest. The specimen information includes information used to confirm that the specimen S has not been mixed up, as well as information that contributes to various judgments during observation. Therefore, it is desirable that the specimen information be continuously displayed so that it can be checked as appropriate during observation. On the other hand, if specimen information that overlaps with the specimen image is displayed during observation, there is a risk that observation of the specimen image will be hindered. Therefore, while observing the specimen image, it is desirable that the specimen information be displayed at a position that does not overlap with the specimen image. According to the process shown in FIG. 12, the specimen information is displayed in the light-shielding region R1 after a predetermined period of time has elapsed since the reading operation, so that the specimen information does not interfere with the observation of the specimen image. Moreover, since it is displayed in the light-shielding area R1, the user can check the specimen information at the timing he wants to check without looking away from the eyepiece 30.
 以上の様に、顕微鏡システム1が図12に示す処理を実行することで、標本情報の表示位置が自動的に適切なタイミングで切り替わる。これにより、標本像の観察を妨げることなく標本情報を容易に且つ確実に把握することができる。 As described above, by the microscope system 1 executing the process shown in FIG. 12, the display position of the specimen information is automatically switched at an appropriate timing. Thereby, the specimen information can be easily and reliably grasped without interfering with the observation of the specimen image.
 図13は、本実施形態に係る表示位置切り替え処理のフローチャートの別の例である。図14は、光軸上に標本がない場合の輝度分布の一例である。図15は、光軸上に標本がある場合の輝度分布の一例である。顕微鏡システム1は、図12に示す処理の代わりに、図13に示す処理を行ってもよい。図13に示す処理は、経過時間とイメージセンサ41で取得した標本像の輝度分布とに基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更する点が、図12に示す処理とは異なっている。図13に示す処理も、制御装置70が所定のプログラムを実行することで開始される。 FIG. 13 is another example of a flowchart of the display position switching process according to this embodiment. FIG. 14 is an example of the brightness distribution when there is no sample on the optical axis. FIG. 15 is an example of the brightness distribution when there is a sample on the optical axis. The microscope system 1 may perform the process shown in FIG. 13 instead of the process shown in FIG. 12. The processing shown in FIG. 13 is similar to the processing shown in FIG. It is different from The process shown in FIG. 13 is also started when the control device 70 executes a predetermined program.
 図13に示す処理のステップS11からステップS14の処理は、図12に示す処理のステップS1からステップS4の処理と同様である。即ち、顕微鏡システム1は、識別情報の読み取りを監視し、非遮光領域へ標本情報の重畳を開始し、識別情報の読み取りからの所定時間の経過を監視する。 The processes from step S11 to step S14 in the process shown in FIG. 13 are similar to the processes from step S1 to step S4 in the process shown in FIG. That is, the microscope system 1 monitors the reading of the identification information, starts superimposing the specimen information on the non-shading area, and monitors the elapse of a predetermined time from the reading of the identification information.
 その後、所定時間経過したと判断すると、制御装置70は、輝度解析を行う(ステップS15)。輝度解析では、視野内に、標本、より詳細には、例えば、病理標本であれば細胞などの観察すべき対象が存在するか否かを判断するために、イメージセンサ41で取得した標本像の輝度分布が解析される。輝度分布は、例えば、図14及び図15に示すようなラインプロファイルPであってもよい。例えば、細胞などが視野内に存在しない場合には、図14に示すように、輝度は視野内の位置によらずほぼ一様であり、ラインプロファイルPにはほとんど変動は見られない。これに対して、細胞などが視野内に存在する場合には、図15に示すように、細胞がある位置とない位置で輝度が大きく異なる。このため、ラインプロファイルPにも大きな変動は見られる。従って、輝度の一様性の高低で観察対象が視野内にあるか否かを推定することができる。 Thereafter, when determining that a predetermined period of time has elapsed, the control device 70 performs brightness analysis (step S15). In the brightness analysis, in order to determine whether or not there is a specimen to be observed within the field of view, more specifically, for example, a cell in the case of a pathological specimen, the specimen image obtained by the image sensor 41 is The brightness distribution is analyzed. The brightness distribution may be, for example, a line profile P as shown in FIGS. 14 and 15. For example, when there are no cells or the like within the field of view, the brightness is almost uniform regardless of the position within the field of view, as shown in FIG. 14, and the line profile P shows almost no fluctuation. On the other hand, when cells or the like are present within the field of view, the brightness differs greatly between the positions where the cells are present and the positions where they are not, as shown in FIG. For this reason, large fluctuations are also seen in the line profile P. Therefore, it is possible to estimate whether the observation target is within the field of view based on the level of uniformity of brightness.
 そこで、制御装置70は、ステップS15の解析結果を用いて、輝度の一様性が基準以下か否かを判定する(ステップS16)。そして、輝度の一様性が基準以下と判断した場合に、制御装置70は、標本情報の表示領域として遮光領域R1を設定する(ステップS17)。これにより、制御装置70は、重畳装置25を制御して、重畳装置25に、遮光領域R1に標本情報を重畳させる。つまり、図13の処理では、制御装置70は、経過時間が所定時間以上であり、且つ、輝度分布から算出される輝度の一様性が基準以下である、という条件が満たされたことを契機に、表示位置を遮光領域R1内から非遮光領域R2内へ変更する。 Therefore, the control device 70 uses the analysis result of step S15 to determine whether the uniformity of brightness is below the standard (step S16). Then, when it is determined that the brightness uniformity is below the standard, the control device 70 sets the light-shielding region R1 as the specimen information display region (step S17). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1. That is, in the process of FIG. 13, the control device 70 is triggered when the conditions that the elapsed time is a predetermined time or more and the brightness uniformity calculated from the brightness distribution is below the standard are met. Then, the display position is changed from inside the light-shielding region R1 to inside the non-light-shielding region R2.
 以上の様に、図13に示す処理を実行することによっても、標本情報の表示位置が自動的に適切なタイミングで切り替わる。これにより、図12に示す処理を実行した場合と同様に、標本像の観察を妨げることなく標本情報を容易に且つ確実に把握することができる。さらに、図13に示す処理では、経過時間に加えて視野内の輝度分布を用いて表示位置の切り替えが行われる。このため、利用者が標本像を観察するタイミングをより正確に推定して表示位置の切り替えを行うことができる。 As described above, by executing the process shown in FIG. 13, the display position of the specimen information is automatically switched at an appropriate timing. Thereby, as in the case where the process shown in FIG. 12 is executed, specimen information can be easily and reliably grasped without interfering with observation of the specimen image. Furthermore, in the process shown in FIG. 13, the display position is switched using the luminance distribution within the visual field in addition to the elapsed time. Therefore, the display position can be switched by more accurately estimating the timing at which the user observes the specimen image.
(第2の実施形態)
 図16は、本実施形態に係る顕微鏡システムの構成を示した図である。図16に示す顕微鏡システム2は、ステージ11が電動ステージであり、ステージ11を操作するための入力装置19aを備えている点と、ステージ11の位置を検出するセンサ11sを備える点が、顕微鏡システム1とは異なっている。その他の点は、顕微鏡システム1と同様である。なお、電動ステージはコントロールボックス60によって駆動制御される。センサ11sで検出したステージ11の位置情報は、対物レンズ15の光軸と直交する方向の位置情報であり、制御装置70へ出力され、制御装置70が行う各種制御に利用される。この点については後述する。
(Second embodiment)
FIG. 16 is a diagram showing the configuration of the microscope system according to this embodiment. The microscope system 2 shown in FIG. 16 has the following features: the stage 11 is a motorized stage, and includes an input device 19a for operating the stage 11, and a sensor 11s for detecting the position of the stage 11. It is different from 1. The other points are the same as the microscope system 1. Note that the electric stage is driven and controlled by a control box 60. The position information of the stage 11 detected by the sensor 11s is position information in a direction perpendicular to the optical axis of the objective lens 15, is output to the control device 70, and is used for various controls performed by the control device 70. This point will be discussed later.
 図17は、ステージ位置と対物レンズの光軸の位置関係を説明するための図である。クレンメル11aに標本Sを固定する場合など、ステージ11上で標本Sが置かれる位置が予め決まっている場合には、ステージ11の位置が定まれば、標本Sと対物レンズ15の光軸の位置関係も定まる。顕微鏡システム2では、センサ11sでステージ11の位置を検出可能なため、制御装置70は、ステージ11の位置によって、顕微鏡システム2が標本Sを観察可能な状態か否かを判断することができる。なお、標本Sを観察可能な状態に対応するステージ11の位置範囲(以降、所定範囲と記す)は、標本Sに応じて任意に設定されてもよい。以降では、所定範囲が予め設定されている場合において、制御装置70が予め決められた基準に従って表示位置を自動的に切り替える例について説明する。 FIG. 17 is a diagram for explaining the positional relationship between the stage position and the optical axis of the objective lens. When the position of the specimen S on the stage 11 is determined in advance, such as when fixing the specimen S to the Kremmel 11a, once the position of the stage 11 is determined, the position of the optical axis of the specimen S and the objective lens 15 is determined. The relationship is also determined. In the microscope system 2, since the position of the stage 11 can be detected by the sensor 11s, the control device 70 can determine whether the microscope system 2 is in a state where the specimen S can be observed based on the position of the stage 11. Note that the position range of the stage 11 corresponding to the state in which the specimen S can be observed (hereinafter referred to as a predetermined range) may be arbitrarily set depending on the specimen S. Hereinafter, an example will be described in which the control device 70 automatically switches the display position according to a predetermined standard when the predetermined range is preset.
 図18は、本実施形態に係る表示位置切り替え処理のフローチャートの一例である。図18に示す処理は、制御装置70が所定のプログラムを実行することで開始される。なお、図18に示す処理は、制御装置70が、経過時間とステージ11の位置情報とに基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更する点が、図12に示す処理とは異なっている。 FIG. 18 is an example of a flowchart of the display position switching process according to the present embodiment. The process shown in FIG. 18 is started when the control device 70 executes a predetermined program. Note that the process shown in FIG. 18 differs from that shown in FIG. Processing is different.
 図18に示す処理のステップS21からステップS24の処理は、図12に示す処理のステップS1からステップS4の処理と同様である。即ち、顕微鏡システム2は、識別情報の読み取りを監視し、非遮光領域へ標本情報の重畳を開始し、識別情報の読み取りからの所定時間の経過を監視する。 The processes from step S21 to step S24 in the process shown in FIG. 18 are similar to the processes from step S1 to step S4 in the process shown in FIG. That is, the microscope system 2 monitors the reading of the identification information, starts superimposing the specimen information on the non-light-shielded area, and monitors the elapse of a predetermined time from the reading of the identification information.
 その後、所定時間経過したと判断すると、制御装置70は、ステージ位置を取得し(ステップS25)、ステージ位置が所定範囲内か否かを判定する(ステップS26)。制御装置70は、センサ11sからの出力に基づいてステージ位置を取得し、取得したステージ位置が予め標本Sを観察可能な範囲として設定された所定範囲内か否かを判定する。 Thereafter, when determining that a predetermined period of time has elapsed, the control device 70 acquires the stage position (step S25), and determines whether the stage position is within a predetermined range (step S26). The control device 70 acquires the stage position based on the output from the sensor 11s, and determines whether the acquired stage position is within a predetermined range set in advance as a range in which the specimen S can be observed.
 利用者が入力装置19aを操作してステージ11が所定範囲内へ移動すると、制御装置70は、ステージ位置が所定範囲内にあると判定し(ステップS26)、その後、標本情報の表示領域として遮光領域R1を設定する(ステップS27)。これにより、制御装置70は、重畳装置25を制御して、重畳装置25に、遮光領域R1に標本情報を重畳させる。 When the user operates the input device 19a to move the stage 11 within the predetermined range, the control device 70 determines that the stage position is within the predetermined range (step S26), and then sets the stage 11 in a light-shielded area as the specimen information display area. A region R1 is set (step S27). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
 以上の様に、図18に示す処理を実行することによっても、標本情報の表示位置が自動的に適切なタイミングで切り替わる。これにより、図12に示す処理を実行した場合と同様に、標本像の観察を妨げることなく標本情報を容易に且つ確実に把握することができる。さらに、図18に示す処理では、経過時間に加えてステージ位置を用いて表示位置の切り替えが行われる。このため、利用者が標本像を観察するタイミングをより正確に推定して表示位置の切り替えを行うことができる。 As described above, by executing the process shown in FIG. 18, the display position of the specimen information is automatically switched at an appropriate timing. Thereby, as in the case where the process shown in FIG. 12 is executed, specimen information can be easily and reliably grasped without interfering with observation of the specimen image. Furthermore, in the process shown in FIG. 18, the display position is switched using the stage position in addition to the elapsed time. Therefore, the display position can be switched by more accurately estimating the timing at which the user observes the specimen image.
 図19は、本実施形態に係る表示位置切り替え処理のフローチャートの別の例である。顕微鏡システム2は、図18に示す処理の代わりに、図19に示す処理を行ってもよい。図19に示す処理は、制御装置70が、経過時間とステージ11の位置情報に加えて、イメージセンサ41で取得した標本像の輝度分布に基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更する点が、図18に示す処理とは異なっている。図19に示す処理も、制御装置70が所定のプログラムを実行することで開始される。 FIG. 19 is another example of a flowchart of the display position switching process according to this embodiment. The microscope system 2 may perform the process shown in FIG. 19 instead of the process shown in FIG. In the process shown in FIG. 19, the control device 70 changes the display position from the non-shaded area R2 to the shaded area based on the luminance distribution of the specimen image acquired by the image sensor 41 in addition to the elapsed time and position information of the stage 11. The difference from the process shown in FIG. 18 is that the process is changed to within R1. The process shown in FIG. 19 is also started when the control device 70 executes a predetermined program.
 図19に示す処理のステップS31からステップS36の処理は、図18に示す処理のステップS21からステップS26の処理と同様である。即ち、顕微鏡システム2は、識別情報の読み取りを監視し、非遮光領域へ標本情報の重畳を開始し、識別情報の読み取りからの所定時間の経過を監視し、所定時間経過するとステージ位置を監視する。 The processing from step S31 to step S36 in the processing shown in FIG. 19 is similar to the processing from step S21 to step S26 in the processing shown in FIG. That is, the microscope system 2 monitors the reading of the identification information, starts superimposing the specimen information on the non-shading area, monitors the passage of a predetermined time from the reading of the identification information, and monitors the stage position after the predetermined time has elapsed. .
 その後、ステージ位置が所定範囲内に入ったと判断すると、制御装置70は、輝度解析を行い(ステップS37)、輝度の一様性が基準以下か否かを判定する(ステップS38)。図19に示す処理のステップS37及びステップS38の処理は、図13に示す処理のステップS15及びステップS16の処理と同様である。そして、輝度の一様性が基準以下と判断した場合に、制御装置70は、標本情報の表示領域として遮光領域R1を設定する(ステップS39)。これにより、制御装置70は、重畳装置25を制御して、重畳装置25に、遮光領域R1に標本情報を重畳させる。 Thereafter, when determining that the stage position is within the predetermined range, the control device 70 performs brightness analysis (step S37) and determines whether the uniformity of brightness is below the standard (step S38). The processes in step S37 and step S38 in the process shown in FIG. 19 are similar to the processes in step S15 and step S16 in the process shown in FIG. Then, when it is determined that the brightness uniformity is below the standard, the control device 70 sets the light-shielding region R1 as the specimen information display region (step S39). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
 以上の様に、図19に示す処理を実行することによっても、標本情報の表示位置が自動的に適切なタイミングで切り替わる。これにより、図18に示す処理を実行した場合と同様に、標本像の観察を妨げることなく標本情報を容易に且つ確実に把握することができる。さらに、図19に示す処理では、制御装置70は、経過時間が所定時間以上であり、輝度の一様性が基準以下であり、且つ、ステージ11が所定範囲内である、という条件が満たされたことを契機に、表示位置を非遮光領域R2内から遮光領域R1内へ変更する。このため、図18に示す処理を実行した場合よりも利用者が標本像を観察するタイミングをさらに正確に推定して表示位置の切り替えを行うことができる。 As described above, by executing the process shown in FIG. 19, the display position of the specimen information is automatically switched at an appropriate timing. Thereby, as in the case where the process shown in FIG. 18 is executed, specimen information can be easily and reliably grasped without interfering with observation of the specimen image. Furthermore, in the process shown in FIG. 19, the control device 70 satisfies the following conditions: the elapsed time is a predetermined time or more, the uniformity of brightness is below a standard, and the stage 11 is within a predetermined range. Taking this as an opportunity, the display position is changed from inside the non-shading area R2 to inside the shading area R1. Therefore, the timing at which the user observes the specimen image can be more accurately estimated and the display position can be switched more accurately than when the process shown in FIG. 18 is executed.
(第3の実施形態)
 図20は、本実施形態に係る顕微鏡システムの構成を示した図である。図20に示す顕微鏡システム3は、焦準装置16を操作するための入力装置19bを備えている点と、焦準装置16の位置を検出するセンサ16sを備える点が、顕微鏡システム2とは異なっている。その他の点は、顕微鏡システム2と同様である。なお、焦準装置16は、コントロールボックス60によって駆動制御される。センサ16sで検出した焦準装置16の位置情報は、制御装置70へ出力され、制御装置70が行う各種制御に利用される。この点については後述する。
(Third embodiment)
FIG. 20 is a diagram showing the configuration of the microscope system according to this embodiment. The microscope system 3 shown in FIG. 20 differs from the microscope system 2 in that it includes an input device 19b for operating the focusing device 16 and a sensor 16s for detecting the position of the focusing device 16. ing. The other points are the same as the microscope system 2. Note that the focusing device 16 is driven and controlled by a control box 60. The position information of the focusing device 16 detected by the sensor 16s is output to the control device 70 and used for various controls performed by the control device 70. This point will be discussed later.
 図21は、焦準機構の位置の所定範囲を説明するための図である。焦準装置16は、観察光学系100(対物レンズ15)の焦点位置をステージ11に対して観察光学系100(対物レンズ15)の光軸方向に相対的に移動する合焦部の一例である。標本Sがプレパラートように厚さがある程度制限されるものの場合には、焦準装置16の位置によって対物レンズ15と標本Sの光軸方向の位置関係が定まる。顕微鏡システム3では、センサ16sで焦準装置16の位置を検出可能なため、制御装置70は、焦準装置16の位置によって、顕微鏡システム3が標本Sに合焦しているか否かを判断することができる。 FIG. 21 is a diagram for explaining the predetermined range of the position of the focusing mechanism. The focusing device 16 is an example of a focusing unit that moves the focal position of the observation optical system 100 (objective lens 15) relative to the stage 11 in the optical axis direction of the observation optical system 100 (objective lens 15). . If the specimen S is a specimen whose thickness is limited to some extent, the positional relationship between the objective lens 15 and the specimen S in the optical axis direction is determined by the position of the focusing device 16. In the microscope system 3, since the position of the focusing device 16 can be detected by the sensor 16s, the control device 70 determines whether the microscope system 3 is focused on the specimen S based on the position of the focusing device 16. be able to.
 なお、標本Sに合焦した状態に対応する焦準装置16の位置範囲(以降、所定範囲と記す)は、標本Sや対物レンズ15に応じて任意に設定されてもよい。以降では、所定範囲が予め設定されている場合において、制御装置70が予め決められた基準に従って表示位置を自動的に切り替える例について説明する。 Note that the position range of the focusing device 16 corresponding to the state in which the specimen S is in focus (hereinafter referred to as a predetermined range) may be arbitrarily set depending on the specimen S and the objective lens 15. Hereinafter, an example will be described in which the control device 70 automatically switches the display position according to a predetermined standard when the predetermined range is preset.
 図22は、本実施形態に係る表示位置切り替え処理のフローチャートの一例である。図22に示す処理は、制御装置70が、ステージ11の位置情報の代わりに焦準装置16の位置情報を用いる点が、図19に示す処理とは異なっている。より具体的には、制御装置70は、経過時間と輝度分布と焦準装置16の位置情報に基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更する点が、図19に示す処理とは異なっている。図22に示す処理も、制御装置70が所定のプログラムを実行することで開始される。 FIG. 22 is an example of a flowchart of display position switching processing according to this embodiment. The process shown in FIG. 22 differs from the process shown in FIG. 19 in that the control device 70 uses position information of the focusing device 16 instead of the position information of the stage 11. More specifically, as shown in FIG. 19, the control device 70 changes the display position from inside the non-shading area R2 to inside the shading area R1 based on the elapsed time, the brightness distribution, and the position information of the focusing device 16. This is different from the process shown. The process shown in FIG. 22 is also started when the control device 70 executes a predetermined program.
 図22に示す処理のステップS41からステップS44の処理は、図19のステップS31からステップS34の処理と同様である。即ち、顕微鏡システム3は、識別情報の読み取りを監視し、非遮光領域へ標本情報の重畳を開始し、識別情報の読み取りからの所定時間の経過を監視する。 The processing from step S41 to step S44 in the processing shown in FIG. 22 is similar to the processing from step S31 to step S34 in FIG. 19. That is, the microscope system 3 monitors the reading of the identification information, starts superimposing the specimen information on the non-light-shielded area, and monitors the elapse of a predetermined time from the reading of the identification information.
 その後、所定時間経過したと判断すると、制御装置70は、合焦部(焦準装置16)の位置を取得し(ステップS45)、合焦部(焦準装置16)の位置が所定範囲内か否かを判定する(ステップS46)。制御装置70は、センサ16sからの出力に基づいて合焦部の位置を取得し、取得した合焦部の位置が予め合焦範囲として設定された所定範囲内か否かを判定する。 After that, when determining that a predetermined time has elapsed, the control device 70 acquires the position of the focusing section (focusing device 16) (step S45), and determines whether the position of the focusing section (focusing device 16) is within a predetermined range. It is determined whether or not (step S46). The control device 70 acquires the position of the focusing section based on the output from the sensor 16s, and determines whether the acquired position of the focusing section is within a predetermined range set in advance as a focusing range.
 利用者が入力装置19bを操作して焦準装置16が所定範囲内へ移動すると、制御装置70は、合焦部の位置が所定範囲内にあると判定する(ステップS46YES)。その後、制御装置70は、輝度解析を行い(ステップS47)、輝度の一様性が基準以下か否かを判定する(ステップS48)。図22に示す処理のステップS47及びステップS48の処理は、図19に示す処理のステップS37及びステップS38の処理と同様である。そして、輝度の一様性が基準以下と判断した場合に、制御装置70は、標本情報の表示領域として遮光領域R1を設定する(ステップS49)。これにより、制御装置70は、重畳装置25を制御して、重畳装置25に、遮光領域R1に標本情報を重畳させる。 When the user operates the input device 19b and the focusing device 16 moves within the predetermined range, the control device 70 determines that the position of the focusing section is within the predetermined range (step S46 YES). After that, the control device 70 performs a brightness analysis (step S47), and determines whether the brightness uniformity is below the standard (step S48). The processes in step S47 and step S48 in the process shown in FIG. 22 are similar to the processes in step S37 and step S38 in the process shown in FIG. Then, when it is determined that the brightness uniformity is below the standard, the control device 70 sets the light-shielding region R1 as the specimen information display region (step S49). Thereby, the control device 70 controls the superimposing device 25 to cause the superimposing device 25 to superimpose the sample information on the light-shielding region R1.
 以上の様に、図22に示す処理を実行することによっても、標本情報の表示位置が自動的に適切なタイミングで切り替わる。これにより、図19に示す処理を実行した場合と同様に、標本像の観察を妨げることなく標本情報を容易に且つ確実に把握することができる。さらに、図22に示す処理では、経過時間に加えて合焦部の位置と輝度分布を用いて表示位置の切り替えが行われる。このため、輝度分布により観察対象が視野内に存在するどうかを確認するとともにさらに合焦しているかどうかを確認することができる。従って、図19に示す処理よりも標本像を観察するタイミングをさらに正確に推定して表示位置の切り替えを行うことができる。 As described above, by executing the process shown in FIG. 22, the display position of the specimen information is automatically switched at an appropriate timing. Thereby, as in the case where the process shown in FIG. 19 is executed, specimen information can be easily and reliably grasped without interfering with observation of the specimen image. Furthermore, in the process shown in FIG. 22, the display position is switched using the position of the focusing part and the brightness distribution in addition to the elapsed time. Therefore, it is possible to check whether the object to be observed is within the field of view based on the brightness distribution, and also to check whether it is in focus. Therefore, it is possible to more accurately estimate the timing for observing the specimen image and switch the display position than in the process shown in FIG. 19.
 図23は、本実施形態に係る表示位置切り替え処理のフローチャートの別の例である。顕微鏡システム3は、図22に示す処理の代わりに、図23に示す処理を行ってもよい。図23に示す処理は、制御装置70が、イメージセンサ41で取得した標本像の輝度分布の代わりに、ステージ11の位置情報を用いる点が、図22に示す処理とは異なっている。より具体的には、制御装置70は、経過時間と合焦部の位置情報とステージ11の位置情報とに基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更する点が、図22に示す処理とは異なっている。図23に示す処理も、制御装置70が所定のプログラムを実行することで開始される。 FIG. 23 is another example of a flowchart of the display position switching process according to this embodiment. The microscope system 3 may perform the process shown in FIG. 23 instead of the process shown in FIG. 22. The process shown in FIG. 23 differs from the process shown in FIG. 22 in that the control device 70 uses position information of the stage 11 instead of the brightness distribution of the sample image acquired by the image sensor 41. More specifically, the control device 70 changes the display position from inside the non-shading area R2 to inside the shading area R1 based on the elapsed time, the position information of the focusing part, and the position information of the stage 11. This process is different from the process shown in FIG. The process shown in FIG. 23 is also started when the control device 70 executes a predetermined program.
 図23に示す処理は、図22のステップS47及びステップS48の輝度分布に基づいて処理の代わりに図23のステップS57及びステップS58のステージ11の位置に基づいて処理が行われる点が、図22に示す処理とは異なっている。その他の点は、図22に示す処理と同様である。 The process shown in FIG. 23 is different from the process shown in FIG. 22 in that the process is performed based on the position of the stage 11 in steps S57 and S58 in FIG. This is different from the processing shown in . Other points are similar to the processing shown in FIG. 22.
 図22のステップS47及びステップS48の輝度分布に基づいて処理と、図23のステップS57及びステップS58のステージ11の位置に基づいて処理は、いずれも視野内に観察対象物が存在するか否かを判定するために行われる処理であり、同種の効果を有している。従って、図23に示す処理を実行することにより、顕微鏡システム3は、図22に示す処理を実行した場合と同様の効果を得ることができる。 The process based on the brightness distribution in steps S47 and S48 in FIG. 22 and the process based on the position of the stage 11 in steps S57 and S58 in FIG. This is a process performed to determine the , and has the same type of effect. Therefore, by executing the process shown in FIG. 23, the microscope system 3 can obtain the same effect as when executing the process shown in FIG. 22.
 なお、図22では、ステージ11の位置情報の代わりに焦準装置16の位置情報を用いたが、制御装置70は、ステージ11の位置情報と焦準装置16の位置情報の両方を用いて表示位置を切り替えてもよい。即ち、制御装置70は、経過時間と、輝度分布と、ステージの位置情報と、合焦部の位置情報と、に基づいて、表示位置を非遮光領域R2内から遮光領域R1内へ変更してもよい。より詳細には、制御装置70は、経過時間が所定時間以上であり、輝度分布から算出される輝度の一様性が基準以下であり、ステージ11の位置が所定範囲内であり、且つ、焦準装置16の位置が所定範囲内である、という条件が満たされたことを契機に、表示位置を非遮光領域R2内から遮光領域R1内へ変更してもよい。これにより、より高い精度で標本像の観察開始を認識して適切なタイミングで標本情報の表示位置を切り替えることできる。 Note that in FIG. 22, the position information of the focusing device 16 is used instead of the position information of the stage 11, but the control device 70 displays the information using both the position information of the stage 11 and the position information of the focusing device 16. You may switch positions. That is, the control device 70 changes the display position from inside the non-shading area R2 to inside the shading area R1 based on the elapsed time, the brightness distribution, the stage position information, and the focusing part position information. Good too. More specifically, the control device 70 determines that the elapsed time is a predetermined time or more, the brightness uniformity calculated from the brightness distribution is below a standard, the position of the stage 11 is within a predetermined range, and the focus is on. When the condition that the position of the quasi-device 16 is within a predetermined range is satisfied, the display position may be changed from inside the non-shading region R2 to inside the light-shielding region R1. This makes it possible to recognize the start of specimen image observation with higher accuracy and switch the display position of specimen information at an appropriate timing.
(第4の実施形態)
 図24は、本実施形態に係る顕微鏡システムの構成を示した図である。図24に示す顕微鏡システム4は、レボルバ18を操作するための入力装置19cを備えている点と、レボルバ18の位置を検出するセンサ18sを備える点が、顕微鏡システム3とは異なっている。その他の点は、顕微鏡システム3と同様である。センサ18sは、例えば、レボルバに取り付けられた磁石を検出するホールセンサである。なお、センサ18sで検出したレボルバ18の位置情報は、コントロールボックス60へ出力され、制御装置70が行う各種制御に利用される。この点については後述する。
(Fourth embodiment)
FIG. 24 is a diagram showing the configuration of the microscope system according to this embodiment. The microscope system 4 shown in FIG. 24 differs from the microscope system 3 in that it includes an input device 19c for operating the revolver 18 and a sensor 18s for detecting the position of the revolver 18. The other points are similar to the microscope system 3. The sensor 18s is, for example, a Hall sensor that detects a magnet attached to a revolver. Note that the position information of the revolver 18 detected by the sensor 18s is output to the control box 60 and used for various controls performed by the control device 70. This point will be discussed later.
 レボルバ18は、観察光学系100の光軸上に配置する対物レンズを切り替える切り替え装置の一例である。レボルバ18は、電動レボルバであり、複数の対物レンズを装着するための複数の穴が設けられている。入力装置19cを用いることで、観察光学系100の光軸上に配置する穴を切り替えることができる。また、制御装置70には、レボルバ18のどの穴にどの対物レンズが装着されているかを示す情報が登録されている。従って、制御装置70は、センサ18sから出力されコントロールボックス60経由で取得する位置情報に基づいて、光軸上に対物レンズが配置されているか否かを判断することができる。なお、レボルバ18の位置は、必ずしもいずれかの穴が光軸上に配置される位置に限らない。光軸上に穴がない位置であってもよい。 The revolver 18 is an example of a switching device that switches the objective lens placed on the optical axis of the observation optical system 100. The revolver 18 is an electric revolver, and is provided with a plurality of holes for mounting a plurality of objective lenses. By using the input device 19c, the hole arranged on the optical axis of the observation optical system 100 can be switched. Furthermore, information indicating which objective lens is attached to which hole of the revolver 18 is registered in the control device 70. Therefore, the control device 70 can determine whether or not the objective lens is placed on the optical axis based on the position information output from the sensor 18s and acquired via the control box 60. Note that the position of the revolver 18 is not necessarily limited to a position where one of the holes is arranged on the optical axis. It may be located at a position where there is no hole on the optical axis.
 図25は、本実施形態に係る表示位置切り替え処理のフローチャートの一例である。図25に示す処理も、制御装置70が所定のプログラムを実行することで開始される。プログラムが実行されると、制御装置70は、対物レンズが光軸上にあるかどうか判定する(ステップS61)。制御装置70は、対物レンズが光軸上にない場合には、標本情報の表示領域として非遮光領域R2を設定し(ステップS62)、対物レンズが光軸上にある場合には、標本情報の表示領域として遮光領域R1を設定する(ステップS63)。 FIG. 25 is an example of a flowchart of display position switching processing according to this embodiment. The process shown in FIG. 25 is also started when the control device 70 executes a predetermined program. When the program is executed, the control device 70 determines whether the objective lens is on the optical axis (step S61). When the objective lens is not on the optical axis, the control device 70 sets the non-shading area R2 as the specimen information display area (step S62), and when the objective lens is on the optical axis, the control device 70 sets the non-shading area R2 as the specimen information display area. A light shielding area R1 is set as a display area (step S63).
 以上の処理を、顕微鏡システム4は、識別情報の読み取りが検出されるまで(ステップS64YES)繰り返す。そして、識別情報が読み取られると、制御装置70は、標本情報の重畳を開始する(ステップS65)。 The microscope system 4 repeats the above processing until reading of the identification information is detected (step S64 YES). Then, when the identification information is read, the control device 70 starts superimposing the sample information (step S65).
 重畳開始後は、重畳装置25の電源がOFFになるまで、同様の処理を繰り返す。つまり、制御装置70は、対物レンズが光軸上にあるかどうか判定し(ステップS66)、対物レンズが光軸上にない場合には、標本情報の表示領域として非遮光領域R2を設定し(ステップS67)、対物レンズが光軸上にある場合には、標本情報の表示領域として遮光領域R1を設定する(ステップS68)。そして、制御装置70は、重畳装置25の電源がOFFになると(ステップS69YES)、処理を終了する。 After starting the superimposition, the same process is repeated until the power of the superimposition device 25 is turned off. That is, the control device 70 determines whether the objective lens is on the optical axis (step S66), and if the objective lens is not on the optical axis, sets the non-shading area R2 as the specimen information display area ( In step S67), if the objective lens is on the optical axis, a light shielding area R1 is set as the specimen information display area (step S68). Then, when the power of the superimposing device 25 is turned off (step S69 YES), the control device 70 ends the process.
 これにより、制御装置70は、識別情報の読み取り後に、対物レンズが光軸上に位置していない間、標本情報を非遮光領域R2内に重畳するように重畳装置25を制御し、対物レンズが光軸上に位置している間、標本情報を遮光領域R1内に重畳するように重畳装置25を制御する。 Accordingly, after reading the identification information, the control device 70 controls the superimposition device 25 to superimpose the specimen information in the non-shading region R2 while the objective lens is not located on the optical axis, and the objective lens While located on the optical axis, the superimposing device 25 is controlled so as to superimpose the specimen information within the light-shielding region R1.
 以上の様に、顕微鏡システム4では、図25に示す処理を実行することで、対物レンズが光軸上に配置されていない間、補助情報が非遮光領域R2に表示される。対物レンズが光軸上に配置されていない状態では、標本像は像面に投影されないため、補助情報が非遮光領域R2の視野中心付近に表示されても、標本像の観察に支障はない。このため、利用者は、対物レンズを光軸上に配置する前に、標本Sに付されたコードCを読取装置50に読み取らせることで、視野中心付近に表示される標本情報を確認することができる。さらに、その後、対物レンズを光軸上に配置して本格的な観察を開始した際には、遮光領域R1に標本情報が表示されるため、利用者はその後も必要なタイミングで標本情報を確認することができる。 As described above, in the microscope system 4, by executing the process shown in FIG. 25, the auxiliary information is displayed in the non-shading area R2 while the objective lens is not placed on the optical axis. Since the specimen image is not projected onto the image plane when the objective lens is not placed on the optical axis, there is no problem in observing the specimen image even if the auxiliary information is displayed near the center of the field of view in the non-shading region R2. Therefore, before placing the objective lens on the optical axis, the user can check the specimen information displayed near the center of the field of view by having the reader 50 read the code C attached to the specimen S. Can be done. Furthermore, after that, when the objective lens is placed on the optical axis and full-scale observation begins, the specimen information is displayed in the light-blocking area R1, so the user can check the specimen information at any time thereafter. can do.
 図26は、本実施形態に係る表示位置切り替え処理のフローチャートの別の例である。顕微鏡システム4は、図25に示す処理の代わりに、図26に示す処理を行ってもよい。図26に示す処理は、重畳開始後に対物レンズが光軸上にあると判定されるまで非遮光領域に標本情報が表示される点は、図25に示す処理と同様である。ただし、重畳開始後に対物レンズが光軸上にあると判定された後に、第1の実施形態から第3の実施形態で上述したいずれかの表示位置切替制御(ステップS78)が行われる点が異なっている。つまり、少なくとも所定時間経過するまでは非遮光領域に標本情報を表示し、その他の所定の条件を満たしたタイミングで表示位置を遮光領域に切り替える。その他の点は、図25の処理と同様である。 FIG. 26 is another example of a flowchart of the display position switching process according to this embodiment. The microscope system 4 may perform the process shown in FIG. 26 instead of the process shown in FIG. 25. The process shown in FIG. 26 is similar to the process shown in FIG. 25 in that the specimen information is displayed in the non-shading area until it is determined that the objective lens is on the optical axis after the start of superimposition. However, the difference is that after the objective lens is determined to be on the optical axis after the start of superimposition, one of the display position switching controls (step S78) described above in the first to third embodiments is performed. ing. That is, the specimen information is displayed in the non-shading area at least until a predetermined time has elapsed, and the display position is switched to the light-blocking area at the timing when other predetermined conditions are met. Other points are similar to the processing in FIG. 25.
 顕微鏡システム4が、図26に示す処理を実行することで、第1の実施形態から第4の実施形態で説明した効果を奏するとともに、対物レンズが光軸上にない標本像が投影されない状態では、標本情報を視野の中心付近に表示することができる。 By executing the process shown in FIG. 26, the microscope system 4 achieves the effects described in the first to fourth embodiments, and also when the objective lens is not on the optical axis and no specimen image is projected. , specimen information can be displayed near the center of the field of view.
(第5の実施形態)
 図27は、本実施形態に係る顕微鏡システムの構成を示した図である。図27に示す顕微鏡システム5は、制御装置70がネットワーク経由でサーバ80に接続されている点が、顕微鏡システム1とは異なっている。サーバ80には、標本情報を格納したデータベースが設けられている。
(Fifth embodiment)
FIG. 27 is a diagram showing the configuration of the microscope system according to this embodiment. The microscope system 5 shown in FIG. 27 differs from the microscope system 1 in that a control device 70 is connected to a server 80 via a network. The server 80 is provided with a database that stores specimen information.
 顕微鏡システム5では、読取装置50が識別情報を読み込むと、制御装置70は、識別情報に基づいてサーバ80から標本情報を取得する。この場合、識別情報は、例えば、サーバから標本情報を取得するための情報であればよい。例えば、サーバ上のパスなどの位置情報であってもよく、データベースから標本情報を取得するための検索キーであってもよい。 In the microscope system 5, when the reading device 50 reads the identification information, the control device 70 acquires specimen information from the server 80 based on the identification information. In this case, the identification information may be, for example, information for acquiring specimen information from the server. For example, it may be location information such as a path on a server, or it may be a search key for acquiring specimen information from a database.
 このように、サーバ80から標本情報を取得することで、標本情報をコード化した識別情報を標本Sに付す場合と比較して、標本情報として扱うことができる情報量を大幅に増加することができる。また、サーバ上に標本情報を一元管理することで、情報の更新も容易になる。 In this way, by acquiring the specimen information from the server 80, the amount of information that can be treated as specimen information can be significantly increased compared to the case where identification information obtained by encoding the specimen information is attached to the specimen S. can. Furthermore, by centrally managing specimen information on a server, updating the information becomes easier.
(第6の実施形態)
 図28は、本実施形態に係る顕微鏡システムの構成を示した図である。図28に示す顕微鏡システム6は、鏡筒装置20の代わりに鏡筒装置20aを備える点が顕微鏡システム1とは異なっている。鏡筒装置20aは、顕微鏡システム用の重畳ユニットの一例であり、重畳装置25と、重畳装置25を制御する制御回路26を備える点が、鏡筒装置20とは異なっている。
(Sixth embodiment)
FIG. 28 is a diagram showing the configuration of the microscope system according to this embodiment. A microscope system 6 shown in FIG. 28 differs from the microscope system 1 in that it includes a lens barrel device 20a instead of the lens barrel device 20. The lens barrel device 20a is an example of a superimposing unit for a microscope system, and differs from the lens barrel device 20 in that it includes a superimposing device 25 and a control circuit 26 that controls the superimposing device 25.
 顕微鏡システム6では、重畳装置25が制御装置70ではなく制御回路26によって制御される。つまり、鏡筒装置20aでは、制御回路26が、所定条件を満たしたときに像面上における標本情報の表示位置を切り替える制御部として動作する。また、読取装置50で取得した情報が制御回路26へ入力される。このような構成であれば、像面に標本情報を表示するAR表示機能を重畳装置25が単独で担うことができる。従って、鏡筒装置20aを顕微鏡本体10に取り付けるだけでAR表示機能を追加することができるため、既存の顕微鏡システムへ容易に適用することができる。 In the microscope system 6, the superimposition device 25 is controlled not by the control device 70 but by the control circuit 26. That is, in the lens barrel device 20a, the control circuit 26 operates as a control unit that switches the display position of the specimen information on the image plane when a predetermined condition is satisfied. Additionally, information acquired by the reading device 50 is input to the control circuit 26 . With such a configuration, the superimposing device 25 can independently perform the AR display function of displaying specimen information on the image plane. Therefore, an AR display function can be added simply by attaching the lens barrel device 20a to the microscope main body 10, so it can be easily applied to an existing microscope system.
 上述した実施形態は、発明の理解を容易にするために具体例を示したものであり、本発明はこれらの実施形態に限定されるものではない。上述の実施形態を変形した変形形態および上述した実施形態に代替する代替形態が包含され得る。つまり、各実施形態は、その趣旨および範囲を逸脱しない範囲で構成要素を変形することが可能である。また、1つ以上の実施形態に開示されている複数の構成要素を適宜組み合わせることにより、新たな実施形態を実施することができる。また、各実施形態に示される構成要素からいくつかの構成要素を削除してもよく、または実施形態に示される構成要素にいくつかの構成要素を追加してもよい。さらに、各実施形態に示す処理手順は、矛盾しない限り順序を入れ替えて行われてもよい。即ち、本発明の顕微鏡システム、重畳ユニット、重畳方法、プログラムは、特許請求の範囲の記載を逸脱しない範囲において、さまざまな変形、変更が可能である。 The embodiments described above are specific examples to facilitate understanding of the invention, and the present invention is not limited to these embodiments. Variations on the embodiments described above and alternatives to the embodiments described above may be included. In other words, the components of each embodiment can be modified without departing from the spirit and scope thereof. Further, new embodiments can be implemented by appropriately combining a plurality of components disclosed in one or more embodiments. Further, some components may be deleted from the components shown in each embodiment, or some components may be added to the components shown in the embodiments. Furthermore, the processing procedures shown in each embodiment may be performed in a different order as long as there is no contradiction. That is, the microscope system, superimposing unit, superimposing method, and program of the present invention can be variously modified and changed without departing from the scope of the claims.
 図29は、上述した制御装置を実現するためのコンピュータ1000のハードウェア構成を例示した図である。図29に示すハードウェア構成は、例えば、プロセッサ1001、メモリ1002、記憶装置1003、読取装置1004、通信インタフェース1006、及び入出力インタフェース1007を備える。なお、プロセッサ1001、メモリ1002、記憶装置1003、読取装置1004、通信インタフェース1006、及び入出力インタフェース1007は、例えば、バス1008を介して互いに接続されている。 FIG. 29 is a diagram illustrating the hardware configuration of the computer 1000 for realizing the above-described control device. The hardware configuration shown in FIG. 29 includes, for example, a processor 1001, a memory 1002, a storage device 1003, a reading device 1004, a communication interface 1006, and an input/output interface 1007. Note that the processor 1001, memory 1002, storage device 1003, reading device 1004, communication interface 1006, and input/output interface 1007 are connected to each other via a bus 1008, for example.
 プロセッサ1001は、任意の電気回路であり、例えば、シングルプロセッサであっても、マルチプロセッサやマルチコアプロセッサであってもよい。プロセッサ1001は、記憶装置1003に格納されているプログラムを読み出して実行することで、上述した表示位置を制御する制御部として動作してもよい。 The processor 1001 is any electrical circuit, and may be a single processor, a multiprocessor, or a multicore processor, for example. The processor 1001 may operate as a control unit that controls the display position described above by reading and executing a program stored in the storage device 1003.
 メモリ1002は、例えば、半導体メモリであり、RAM領域およびROM領域を含んでいてよい。記憶装置1003は、例えばハードディスク、フラッシュメモリ等の半導体メモリ、または外部記憶装置である。 The memory 1002 is, for example, a semiconductor memory and may include a RAM area and a ROM area. The storage device 1003 is, for example, a hard disk, a semiconductor memory such as a flash memory, or an external storage device.
 読取装置1004は、例えば、プロセッサ1001の指示に従って記憶媒体1005にアクセスする。記憶媒体1005は、例えば、半導体デバイス、磁気的作用により情報が入出力される媒体、光学的作用により情報が入出力される媒体などにより実現される。なお、半導体デバイスは、例えば、USB(Universal Serial Bus)メモリである。また、磁気的作用により情報が入出力される媒体は、例えば、磁気ディスクである。光学的作用により情報が入出力される媒体は、例えば、CD(Compact Disc)-ROM、DVD(Digital Versatile Disk)、Blu-ray Disc等(Blu-rayは登録商標)である。 The reading device 1004 accesses the storage medium 1005 according to instructions from the processor 1001, for example. The storage medium 1005 is realized by, for example, a semiconductor device, a medium through which information is input/output by magnetic action, a medium through which information is input/output by optical action, or the like. Note that the semiconductor device is, for example, a USB (Universal Serial Bus) memory. Further, a medium in which information is input/output by magnetic action is, for example, a magnetic disk. Examples of media on which information is input and output by optical action include CD (Compact Disc)-ROM, DVD (Digital Versatile Disk), Blu-ray Disc (Blu-ray is a registered trademark), and the like.
 通信インタフェース1006は、例えば、プロセッサ1001の指示に従って、他の装置と通信する。入出力インタフェース1007は、例えば、入力装置および出力装置との間のインタフェースである。入力装置は、例えば、ユーザからの指示を受け付けるキーボード、マウス、タッチパネルなどのデバイスであってもよい。出力装置は、例えばディスプレイなどの表示装置、およびスピーカなどの音声装置である。 The communication interface 1006 communicates with other devices, for example, according to instructions from the processor 1001. The input/output interface 1007 is, for example, an interface between an input device and an output device. The input device may be, for example, a device such as a keyboard, a mouse, or a touch panel that accepts instructions from a user. The output device is, for example, a display device such as a display, and an audio device such as a speaker.
 プロセッサ1001が実行するプログラムは、例えば、下記の形態でコンピュータ1000に提供される。
(1)記憶装置1003に予めインストールされている。
(2)記憶媒体1005により提供される。
(3)プログラムサーバなどのサーバから提供される。
A program executed by processor 1001 is provided to computer 1000 in the following format, for example.
(1) Installed in the storage device 1003 in advance.
(2) Provided by storage medium 1005.
(3) Provided by a server such as a program server.
 なお、図29を参照して述べた制御装置を実現するためのコンピュータ1000のハードウェア構成は例示であり、実施形態はこれに限定されるものではない。例えば、上述の構成の一部が、削除されてもよく、また、新たな構成が追加されてもよい。また、別の実施形態では、例えば、上述の電気回路の一部または全部の機能がFPGA(Field Programmable Gate Array)、SoC(System-on-a-Chip)、ASIC(Application Specific Integrated Circuit)、およびPLD(Programmable Logic Device)などによるハードウェアとして実装されてもよい。 Note that the hardware configuration of the computer 1000 for realizing the control device described with reference to FIG. 29 is an example, and the embodiment is not limited to this. For example, some of the configurations described above may be deleted, or new configurations may be added. In another embodiment, for example, part or all of the functions of the above-mentioned electric circuit can be implemented as FPGA (Field Programmable Gate Array), SoC (System-on-a-Chip), ASIC (Application Specific Integration). ed Circuit), and It may be implemented as hardware such as a PLD (Programmable Logic Device).
 図30は、解析結果と表示位置の関係を説明するための図である。図31は、解析結果重畳処理のフローチャートの一例である。上述した実施形態では、重畳装置25が標本情報を像面に重畳する例を示したが、重畳装置25は、標本情報以外の情報を像面に重畳してもよい。重畳装置25は、図30に示すように、イメージセンサ41で取得した標本像O1の解析結果A1を像面に重畳してもよい。標本像O1の解析結果A1は、特に限定しないが、例えば、制御装置70がAIモデルを用いて行った解析結果であってもよい。AIモデルは、特に限定しないが、例えば、深層学習で得られた学習済みモデルであってもよい。 FIG. 30 is a diagram for explaining the relationship between analysis results and display positions. FIG. 31 is an example of a flowchart of analysis result superimposition processing. In the embodiment described above, an example was shown in which the superimposing device 25 superimposes the specimen information on the image plane, but the superimposing device 25 may superimpose information other than the specimen information on the image plane. The superimposing device 25 may superimpose the analysis result A1 of the specimen image O1 acquired by the image sensor 41 on the image plane, as shown in FIG. 30. The analysis result A1 of the specimen image O1 is not particularly limited, but may be, for example, an analysis result performed by the control device 70 using an AI model. The AI model is not particularly limited, but may be a trained model obtained by deep learning, for example.
 標本像の解析結果A1は、例えば、標本中に見つかった注目領域(例えば、病変部など)を示すものであってもよく、標本像O1に重ねて表示することが望ましい。一方で、標本像O1と解析結果A1が重なった領域(非遮光領域R2)に、さらに標本情報U1までもが重なって表示されると、視認性が劣化して、それらの情報を区別して認識することが困難になる虞がある。このため、上述した実施形態に係る顕微鏡システムでは、制御装置70が標本情報の表示位置の切り替えに連動して解析結果の表示/非表示を切り替えてもよい。 The analysis result A1 of the specimen image may indicate, for example, a region of interest (for example, a lesion) found in the specimen, and is preferably displayed over the specimen image O1. On the other hand, if the specimen information U1 is also displayed in the area where the specimen image O1 and the analysis result A1 overlap (non-shading area R2), the visibility deteriorates and it becomes difficult to distinguish and recognize these pieces of information. It may become difficult to do so. Therefore, in the microscope system according to the embodiment described above, the control device 70 may switch between displaying and non-displaying the analysis results in conjunction with switching the display position of the specimen information.
 具体的には、図31に示すように、制御装置70は、表示領域を判定し(ステップS81)、表示領域が遮光領域R1であると判定した場合には、解析結果A1を像面に重畳してもよい(ステップS82)。一方で、表示領域が遮光領域R1であると判定した場合には、制御装置70は、解析結果A1を像面に重畳しなくてもよい(ステップS83)。このような制御を重畳装置25の電源がOFFになるまで(ステップS84YES)、繰り返してもよい。これにより、制御装置70は、図30に示すように、標本情報U1が遮光領域R1内に重畳されているときに、標本像の解析結果A1を非遮光領域R2内に重畳するように重畳装置25を制御し、標本情報U1が非遮光領域R2内に重畳されているときに、標本像O1の解析結果A1を非遮光領域R2内に重畳しないように重畳装置25を制御することができる。 Specifically, as shown in FIG. 31, the control device 70 determines the display area (step S81), and when determining that the display area is the light-blocking area R1, superimposes the analysis result A1 on the image plane. (Step S82). On the other hand, if it is determined that the display area is the light-blocking area R1, the control device 70 does not need to superimpose the analysis result A1 on the image plane (step S83). Such control may be repeated until the power of the superimposing device 25 is turned off (step S84 YES). Thereby, as shown in FIG. 30, when the specimen information U1 is superimposed within the light-shielding region R1, the control device 70 controls the superimposing device to superimpose the analysis result A1 of the specimen image on the non-shading region R2. 25, the superimposing device 25 can be controlled so that the analysis result A1 of the specimen image O1 is not superimposed within the non-shading region R2 when the specimen information U1 is superimposed within the non-shading region R2.
 図32から図34は、非遮光領域と遮光領域の位置関係の別の例を示した図である。上述した実施形態では、遮光領域R1が輪帯形状を有する例を示したが、遮光領域R1の形状は輪帯形状に限らず、さらに、視野中心に対して対称な形状にも限らない。例えば、図32から図34に示す遮光領域R1のように、接眼レンズ30の視野の外周領域の一部を遮光領域として利用してもよい。このような遮光領域R1の形状は、視野絞り103を交換することで適宜変更可能である。従って、制御装置70は、視野絞り103の変更に応じて適切な位置に標本情報を表示するように重畳装置25を制御してもよい。 FIGS. 32 to 34 are diagrams showing other examples of the positional relationship between the non-shaded area and the shaded area. In the embodiment described above, an example was shown in which the light-shielding region R1 has an annular shape, but the shape of the light-shielding region R1 is not limited to the annular shape, and is not limited to a shape that is symmetrical with respect to the center of the visual field. For example, a part of the outer circumferential area of the field of view of the eyepiece 30 may be used as a light-shielding region, like the light-shielding region R1 shown in FIGS. 32 to 34. The shape of such a light-shielding region R1 can be changed as appropriate by replacing the field stop 103. Therefore, the control device 70 may control the superimposition device 25 to display the specimen information at an appropriate position according to the change in the field stop 103.
1~6:顕微鏡システム、11:ステージ、11s、16s、18s:センサ、13:光源、15:対物レンズ、16:焦準装置、18:レボルバ、19a~19c:入力装置、20、20a:鏡筒装置、21~23:物理キー、25:重畳装置、26:制御回路、30:接眼レンズ、31、103:視野絞り、31a、103a:開口、40:撮像装置、41:イメージセンサ、50:読取装置、70:制御装置、100:観察光学系、105、110:リレーレンズ、1000:コンピュータ、1001:プロセッサ、1002:メモリ、A1:解析結果、C:コード、O1:標本像、P:ラインプロファイル、R1:遮光領域、R2:非遮光領域
S:標本、U1:標本情報
 
1 to 6: microscope system, 11: stage, 11s, 16s, 18s: sensor, 13: light source, 15: objective lens, 16: focusing device, 18: revolver, 19a to 19c: input device, 20, 20a: mirror Cylinder device, 21 to 23: Physical key, 25: Superimposing device, 26: Control circuit, 30: Eyepiece, 31, 103: Field diaphragm, 31a, 103a: Aperture, 40: Imaging device, 41: Image sensor, 50: Reading device, 70: Control device, 100: Observation optical system, 105, 110: Relay lens, 1000: Computer, 1001: Processor, 1002: Memory, A1: Analysis result, C: Code, O1: Specimen image, P: Line Profile, R1: Shade area, R2: Non-shade area S: Specimen, U1: Specimen information

Claims (20)

  1.  接眼レンズと、
     標本からの観察光で前記接眼レンズの物体側の像面に標本像を形成する観察光学系と、
     前記標本に付された識別情報を読み取る読取部と、
     前記識別情報に基づいて取得した標本情報を前記像面に重畳する重畳部と、
     前記重畳部を制御する制御部であって、所定条件を満たしたときに前記像面上における前記標本情報の表示位置を切り替える、前記制御部と、を備える
    ことを特徴とする顕微鏡システム。
    eyepiece and
    an observation optical system that forms a specimen image on an object-side image plane of the eyepiece using observation light from the specimen;
    a reading unit that reads identification information attached to the specimen;
    a superimposition unit that superimposes specimen information acquired based on the identification information on the image plane;
    A microscope system comprising: a control section that controls the superimposing section, and switches the display position of the specimen information on the image plane when a predetermined condition is satisfied.
  2.  請求項1に記載の顕微鏡システムにおいて、さらに、
     前記観察光学系は、
      前記標本の一次像を前記像面にリレーするリレー光学系と、
      前記一次像が形成される一次像面に配置された視野絞りと、備え、
     前記制御部は、少なくとも、前記視野絞りで前記観察光が遮光される遮光領域内と前記視野絞りで前記観察光が遮光されない非遮光領域内との間で、前記表示位置を切り替える
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 1, further comprising:
    The observation optical system is
    a relay optical system that relays a primary image of the specimen to the image plane;
    a field stop disposed on the primary image plane on which the primary image is formed;
    The control unit switches the display position at least between a light-blocking area where the observation light is blocked by the field diaphragm and a non-shading area where the observation light is not blocked by the field diaphragm. microscope system.
  3.  請求項2に記載の顕微鏡システムにおいて、
     前記制御部は、
      前記読取部による前記識別情報の読み取りを契機に、前記標本情報を前記非遮光領域内に重畳するように前記重畳部を制御し、
      前記識別情報の読み取りからの経過時間に基づいて、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 2,
    The control unit includes:
    Controlling the superimposing section so as to superimpose the specimen information in the non-shading area in response to reading of the identification information by the reading section;
    The microscope system is characterized in that the display position is changed from inside the non-shading area to inside the shading area based on the elapsed time from reading the identification information.
  4.  請求項3に記載の顕微鏡システムにおいて、さらに、
     前記観察光学系の光路から分岐した光路上に配置されたイメージセンサを備え、
     前記制御部は、前記経過時間と、前記イメージセンサで取得した標本像の輝度分布と、に基づいて、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 3, further comprising:
    comprising an image sensor disposed on an optical path branching from the optical path of the observation optical system,
    The microscope is characterized in that the control unit changes the display position from inside the non-shading area to inside the shading area based on the elapsed time and a brightness distribution of the specimen image acquired by the image sensor. system.
  5.  請求項4に記載の顕微鏡システムにおいて、
     前記制御部は、前記経過時間が所定時間以上であり、且つ、前記輝度分布から算出される輝度の一様性が基準以下である、という条件が満たされたことを契機に、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 4,
    The control unit changes the display position when the elapsed time is a predetermined time or more and the brightness uniformity calculated from the brightness distribution is below a standard. A microscope system characterized by changing from inside the non-light-shielding area to inside the light-shielding area.
  6.  請求項4に記載の顕微鏡システムにおいて、さらに、
     前記標本が配置される、前記観察光学系の光軸と直交する方向へ移動するステージを備え、
     前記制御部は、前記経過時間と、前記輝度分布と、前記ステージの位置情報と、に基づいて、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 4, further comprising:
    comprising a stage that moves in a direction perpendicular to the optical axis of the observation optical system on which the specimen is placed;
    The microscope system is characterized in that the control unit changes the display position from inside the non-shading area to inside the shading area based on the elapsed time, the brightness distribution, and position information of the stage. .
  7.  請求項6に記載の顕微鏡システムにおいて、
     前記制御部は、前記経過時間が所定時間以上であり、前記輝度分布から算出される輝度の一様性が基準以下であり、且つ、前記ステージが所定範囲内である、という条件が満たされたことを契機に、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 6,
    The control unit satisfies the following conditions: the elapsed time is a predetermined time or more, the brightness uniformity calculated from the brightness distribution is below a standard, and the stage is within a predetermined range. Taking this as an opportunity, the microscope system changes the display position from inside the non-shading area to inside the shading area.
  8.  請求項6に記載の顕微鏡システムにおいて、さらに、
     前記観察光学系の焦点位置を前記ステージに対して前記観察光学系の光軸方向に相対的に移動する合焦部を備え、
     前記制御部は、前記経過時間と、前記輝度分布と、前記ステージの位置情報と、前記合焦部の位置情報と、に基づいて、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 6, further comprising:
    comprising a focusing section that moves the focal position of the observation optical system relative to the stage in the optical axis direction of the observation optical system,
    The control unit changes the display position from inside the non-shading area to inside the shading area based on the elapsed time, the brightness distribution, position information of the stage, and position information of the focusing unit. A microscope system characterized by changes.
  9.  請求項8に記載の顕微鏡システムにおいて、
     前記制御部は、前記経過時間が所定時間以上であり、前記輝度分布から算出される輝度の一様性が基準以下であり、前記ステージの位置が所定範囲内であり、且つ、前記合焦部の位置が所定範囲内である、という条件が満たされたことを契機に、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 8,
    The control unit is configured such that the elapsed time is a predetermined time or more, the brightness uniformity calculated from the brightness distribution is below a standard, the position of the stage is within a predetermined range, and the focusing unit A microscope system characterized in that the display position is changed from inside the non-light-shielding area to inside the light-shielding area when a condition that the position of the object is within a predetermined range is satisfied.
  10.  請求項3に記載の顕微鏡システムにおいて、さらに、
     前記標本が配置される、前記観察光学系の光軸と直交する方向へ移動するステージを備え、
     前記制御部は、前記経過時間と、前記ステージの位置情報と、に基づいて、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 3, further comprising:
    comprising a stage that moves in a direction perpendicular to the optical axis of the observation optical system on which the specimen is placed;
    The microscope system is characterized in that the control unit changes the display position from inside the non-shading area to inside the shading area based on the elapsed time and position information of the stage.
  11.  請求項4に記載の顕微鏡システムにおいて、さらに、
     前記標本が配置される、前記観察光学系の光軸と直交する方向へ移動するステージと、
     前記観察光学系の焦点位置を前記ステージに対して前記観察光学系の光軸方向に相対的に移動する合焦部と、を備え、
     前記制御部は、前記経過時間と、前記輝度分布と、前記合焦部の位置情報と、に基づいて、前記表示位置を前記非遮光領域内から前記遮光領域内へ変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 4, further comprising:
    a stage that moves in a direction perpendicular to the optical axis of the observation optical system, on which the specimen is placed;
    a focusing section that moves the focal point position of the observation optical system relative to the stage in the optical axis direction of the observation optical system,
    The control unit changes the display position from inside the non-shading area to inside the shading area based on the elapsed time, the brightness distribution, and position information of the focusing unit. Microscope system.
  12.  請求項2乃至請求項11のいずれか1項に記載の顕微鏡システムにおいて、さらに、
     前記観察光学系の光軸上に配置する対物レンズを切り替える切り替え装置を備え、
     前記制御部は、前記読取部による前記識別情報の読み取り後に、前記対物レンズが前記光軸上に位置していない間、前記標本情報を前記非遮光領域内に重畳するように前記重畳部を制御する
    ことを特徴とする顕微鏡システム。
    The microscope system according to any one of claims 2 to 11, further comprising:
    comprising a switching device for switching an objective lens arranged on the optical axis of the observation optical system,
    After the reading unit reads the identification information, the control unit controls the superimposing unit to superimpose the specimen information in the non-shading area while the objective lens is not located on the optical axis. A microscope system characterized by:
  13.  請求項2に記載の顕微鏡システムにおいて、さらに、
     前記観察光学系の光軸上に配置する対物レンズを切り替える切り替え装置を備え、
     前記制御部は、前記読取部による前記識別情報の読み取り後に、
      前記対物レンズが前記光軸上に位置していない間、前記標本情報を前記非遮光領域内に重畳するように前記重畳部を制御し、
      前記対物レンズが前記光軸上に位置している間、前記標本情報を前記遮光領域内に重畳するように前記重畳部を制御する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 2, further comprising:
    comprising a switching device for switching an objective lens arranged on the optical axis of the observation optical system,
    After the reading unit reads the identification information, the control unit:
    controlling the superimposing unit to superimpose the specimen information in the non-shading area while the objective lens is not located on the optical axis;
    The microscope system is characterized in that, while the objective lens is located on the optical axis, the superimposing section is controlled so that the specimen information is superimposed within the light-blocking area.
  14.  請求項2に記載の顕微鏡システムにおいて、さらに、
     照明光を出射する光源を備え、
     前記制御部は、前記表示位置を前記遮光領域内から前記非遮光領域内へ切り替えるのに応じて、前記標本に照射される前記照明光の強度を低下させる
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 2, further comprising:
    Equipped with a light source that emits illumination light,
    The microscope system is characterized in that the control unit reduces the intensity of the illumination light applied to the specimen in response to switching the display position from inside the light-shielding area to inside the non-shading area.
  15.  請求項1に記載の顕微鏡システムにおいて、
     前記標本情報は、文字情報を含み、
     前記制御部は、前記文字情報のパラメータを、前記表示位置の切り替えに応じて変更する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 1,
    The specimen information includes character information,
    The microscope system is characterized in that the control unit changes parameters of the character information in response to switching of the display position.
  16.  請求項1に記載の顕微鏡システムにおいて、さらに、
     利用者が前記表示位置の切り替え指示を入力する入力部を備え、
     前記制御部は、前記入力部に入力された前記切り替え指示に応じて、前記表示位置を切り替える
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 1, further comprising:
    comprising an input section through which a user inputs an instruction to switch the display position,
    The microscope system is characterized in that the control unit switches the display position in response to the switching instruction input to the input unit.
  17.  請求項1に記載の顕微鏡システムにおいて、さらに、
     前記観察光学系の光路から分岐した光路上に配置されたイメージセンサを備え、
     前記制御部は、
      前記標本情報が前記遮光領域内に重畳されているときに、前記イメージセンサで取得した標本像の解析結果を前記非遮光領域内に重畳するように前記重畳部を制御し、
      前記標本情報が前記非遮光領域内に重畳されているときに、前記イメージセンサで取得した標本像の解析結果を前記非遮光領域内に重畳しないように前記重畳部を制御する
    ことを特徴とする顕微鏡システム。
    The microscope system according to claim 1, further comprising:
    comprising an image sensor disposed on an optical path branching from the optical path of the observation optical system,
    The control unit includes:
    controlling the superimposing unit so as to superimpose an analysis result of a specimen image acquired by the image sensor in the non-shading area when the specimen information is superimposed within the light-shielding area;
    When the specimen information is superimposed within the non-shading area, the superimposing unit is controlled so as not to superimpose the analysis result of the specimen image acquired by the image sensor into the non-shading area. Microscope system.
  18.  顕微鏡システム用の重畳ユニットであって、
     前記顕微鏡システムに含まれる接眼レンズの物体側に位置する像面であって標本像が形成される前記像面に、標本に付された識別情報に基づいて取得された標本情報を、重畳する重畳部と、
     所定条件を満たしたときに前記像面上における前記標本情報の表示位置を切り替える制御部と、を備える
    ことを特徴とする重畳ユニット。
    A superimposition unit for a microscope system, comprising:
    Superimposition of superimposing specimen information acquired based on identification information attached to the specimen on the image surface located on the object side of the eyepiece included in the microscope system and on which the specimen image is formed. Department and
    A superimposition unit comprising: a control section that switches the display position of the specimen information on the image plane when a predetermined condition is satisfied.
  19.  顕微鏡システムが行う重畳表示方法であって、
     前記顕微鏡システムに含まれる接眼レンズの物体側に位置する像面であって標本像が形成される前記像面に、標本に付された識別情報に基づいて取得された標本情報を重畳し、
     所定条件を満たしたときに前記像面上における前記標本情報の表示位置を切り替える
    ことを特徴とする重畳表示方法。
    A superimposed display method performed by a microscope system, the method comprising:
    superimposing specimen information acquired based on identification information attached to the specimen on the image surface located on the object side of the eyepiece included in the microscope system and on which the specimen image is formed;
    A superimposed display method comprising switching the display position of the specimen information on the image plane when a predetermined condition is satisfied.
  20.  顕微鏡システムのコンピュータに、
     前記顕微鏡システムに含まれる接眼レンズの物体側に位置する像面であって標本像が形成される前記像面に、標本に付された識別情報に基づいて取得された標本情報を重畳し、
     所定条件を満たしたときに前記像面上における前記標本情報の表示位置を切り替える、
    処理を実行させることを特徴とするプログラム。
     

     
    to the microscope system computer.
    superimposing specimen information acquired based on identification information attached to the specimen on the image surface located on the object side of the eyepiece included in the microscope system and on which the specimen image is formed;
    switching the display position of the specimen information on the image plane when a predetermined condition is satisfied;
    A program characterized by executing processing.


PCT/JP2023/032333 2022-09-05 2023-09-05 Microscope system, superimposition unit, superimposition display method, and program WO2024053632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140605 2022-09-05
JP2022-140605 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053632A1 true WO2024053632A1 (en) 2024-03-14

Family

ID=90191243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032333 WO2024053632A1 (en) 2022-09-05 2023-09-05 Microscope system, superimposition unit, superimposition display method, and program

Country Status (1)

Country Link
WO (1) WO2024053632A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151403A (en) * 1984-12-26 1986-07-10 Hitachi Ltd Pattern detector
JPH05215969A (en) * 1992-02-06 1993-08-27 Olympus Optical Co Ltd Microscope system
JP2002011022A (en) * 2000-06-27 2002-01-15 Olympus Optical Co Ltd Microscope for operation
JP2003070806A (en) * 2001-09-05 2003-03-11 Olympus Optical Co Ltd Microscope for operation
JP2004145130A (en) * 2002-10-25 2004-05-20 Olympus Corp Microscope device
WO2020066042A1 (en) * 2018-09-28 2020-04-02 オリンパス株式会社 Microscope system, projection unit, and image projection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151403A (en) * 1984-12-26 1986-07-10 Hitachi Ltd Pattern detector
JPH05215969A (en) * 1992-02-06 1993-08-27 Olympus Optical Co Ltd Microscope system
JP2002011022A (en) * 2000-06-27 2002-01-15 Olympus Optical Co Ltd Microscope for operation
JP2003070806A (en) * 2001-09-05 2003-03-11 Olympus Optical Co Ltd Microscope for operation
JP2004145130A (en) * 2002-10-25 2004-05-20 Olympus Corp Microscope device
WO2020066042A1 (en) * 2018-09-28 2020-04-02 オリンパス株式会社 Microscope system, projection unit, and image projection method

Similar Documents

Publication Publication Date Title
JP4970869B2 (en) Observation apparatus and observation method
JP5875812B2 (en) Microscope system and illumination intensity adjustment method
US11869166B2 (en) Microscope system, projection unit, and image projection method
US20070064101A1 (en) Observation apparatus
US20210191101A1 (en) Microscope system, projection unit, and image projection method
WO2020066043A1 (en) Microscope system, projection unit, and image projection method
JP2005331889A (en) Fluorescence microscope and fluorescence observation method
WO2024053632A1 (en) Microscope system, superimposition unit, superimposition display method, and program
JP2015219515A (en) Image display method, control device, and microscope system
JP2009025394A (en) Microscope system
JP5904737B2 (en) Microscope system
JP4712334B2 (en) Microscope device, microscope unit, program
JP4828738B2 (en) Microscope device and observation method using this microscope device
JP5532318B2 (en) Microscope device and recording medium
EP3730989A1 (en) Image acquisition device and image acquisition method
JP6406008B2 (en) Optical observation device
JP2023163524A (en) Microscope system, projection unit, and method for projecting image
JP2002040334A (en) Microscopic controller, method for using microscopic controller and method for controlling microscopic apparatus
JP2009237267A (en) Microscope system, control method used for microscope system, and program
JP2009098229A (en) Illumination controller for microscope, illuminating device for microscope, microscope, and program
JP2024000239A (en) microscope system
JP2008310022A (en) Motor-driven microscope
JPH09203866A (en) Microscope photographing device
JP2005189675A (en) Automatic focusing method and device
JP2015087561A (en) Microscope system