WO2024053541A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2024053541A1
WO2024053541A1 PCT/JP2023/031727 JP2023031727W WO2024053541A1 WO 2024053541 A1 WO2024053541 A1 WO 2024053541A1 JP 2023031727 W JP2023031727 W JP 2023031727W WO 2024053541 A1 WO2024053541 A1 WO 2024053541A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
scroll
end surface
partition member
movable
Prior art date
Application number
PCT/JP2023/031727
Other languages
French (fr)
Japanese (ja)
Inventor
イメド ギタリ
幸生 風早
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2024053541A1 publication Critical patent/WO2024053541A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor, and particularly to an anti-rotation mechanism that prevents rotation of a movable scroll.
  • a scroll type compressor is known that is equipped with an anti-rotation mechanism that prevents rotation of the movable scroll without interfering with the orbital movement of the movable scroll relative to the fixed scroll fixed to the housing.
  • the rotation prevention mechanism has a plurality of sets of rotation prevention pins (hereinafter also simply referred to as pins) and regulation rings (hereinafter simply referred to as rings).
  • An anti-rotation mechanism is known.
  • the movable scroll has a disk-shaped end plate and a spiral wall that stands up from the end plate toward the fixed scroll.
  • An annular sliding surface (referred to as a rib in Patent Document 1) that slides into contact with a force receiving plate fixed to the housing is formed near the outermost periphery of the end surface on the opposite side of the spiral wall of the end plate.
  • the surface radially inside this sliding surface (hereinafter referred to as the "retreat surface”) is located with a step that becomes lower from the sliding surface toward the spiral wall.
  • This "retreat surface” is formed with a plurality of bottomed recesses (corresponding to ring fitting parts) that are evenly arranged along a predetermined pitch circle. A ring that engages with a pin fixed to the housing fits into this recess.
  • the length of the ring is longer than the depth of the recess. Further, as mentioned in Patent Document 1 as a prior art, a configuration in which the length of the ring is shorter than the depth of the recess is also known.
  • the fitting between the ring and the recess is preferably not a press fit but a so-called clearance fit with a slight clearance.
  • the ring is mounted in the recess by a clearance fit, the ring is fitted into the recess without being press-fitted, and therefore, the possibility of deformation of the movable scroll or the housing due to press-fitting can be eliminated.
  • the pin receives the load from the ring as a so-called cantilever beam. For this reason, the pin is elastically deformed by the force from the ring, and the tip side of the pin deforms to escape from the ring, whereas the side of the pin near the press-fit part with the housing deforms less and the force from the ring is reduced. Easy to concentrate. Additionally, due to the accumulation of manufacturing errors in multiple mechanical parts, the contact between the ring and pin may not be an ideal line contact, and the inner circumferential surface on the near side or the inner circumferential side of the ring may come into point contact with the pin. .
  • the front end surface of the ring protrudes from the recess formation surface of the retraction surface. Furthermore, even if the length of the ring is shorter than the depth of the recess, the ring that constitutes the anti-rotation mechanism is loosely fitted into the recess, so vibrations from compressor operation or friction with the pin may cause the ring to move in the axial direction of the recess. It is possible that the retraction surface may move and protrude from the recess forming surface.
  • the present invention has been made in order to solve the above-mentioned problems, and aims to provide a technique that can prevent the occurrence of a tilting phenomenon of a ring with respect to a ring fitting part in a pin-and-ring type rotation prevention mechanism. Take it as a challenge.
  • the movable scroll (80) includes a disc-shaped movable plate (81) and a movable spiral wall (82) standing from the movable plate (81), A plate surface (81b) of the movable plate (81) opposite to the movable spiral wall (82) has an opposing surface (81b) that faces the flat surface (31a) of the partition member (30).
  • the opposing surface (81b) is provided at the outermost periphery and includes an annular sliding surface (111) that is slidable on the flat surface (31a) of the partition member (30), and the sliding surface (111). ) and a retraction surface (112) located on the radially inner side of the sliding surface (111) and at a predetermined depth from the sliding surface (111);
  • the rotation prevention mechanism (120) includes a ring fitting portion (130) recessed from the retraction surface (112) in a direction perpendicular to the sliding surface (111) of the movable scroll (80), and A cylindrical ring (140; 240; 340) fitted with a loose fit into the fitting part (130) and a ring (140; 240; 340) so as to be able to contact the inner peripheral surface (144) and an anti-rotation pin (150) extending from the flat surface (31a) of the partition member (30) into the ring (140; 240; 340),
  • a scroll compressor characterized in that it is provided with.
  • the ring is loosely fitted to the inner circumferential surface of the ring fitting portion. Therefore, there is a small gap (clearance) between the inner circumferential surface of the ring fitting portion and the outer circumferential surface of the ring. However, a recessed portion is formed on the inner peripheral surface of the ring. Therefore, the force transmission position of the anti-rotation pin and the ring can be moved away from the end face of the ring, thereby preventing the ring from tilting relative to the ring fitting portion.
  • the ring fitting part (130) has a bottom surface (132) facing the first end surface (142) of the ring (140; 240; 340),
  • the recessed portion (145; 245) extends over the entire circumference of the inner circumferential surface (144) of the ring (140; 240; 145; 245),
  • the boundary (145b) with the circumferential surface (144) is closer to the opening side edge (135) of the inner circumferential surface (131) of the ring fitting portion (130) than the edge (135) on the opening side of the inner circumferential surface (131) of the ring fitting portion (130). It is located on the bottom (132) side.
  • the boundary (145b) is It is located closer to the bottom surface (132) of the ring fitting portion (130) than the edge (135) on the opening side of the inner peripheral surface (131) of the ring fitting portion (130).
  • the recessed portion (145) is formed by a tapered surface of the ring (140) whose diameter decreases toward the back from the second end surface (143).
  • the retraction portion (245) is configured by a cylindrical surface (245a) having a larger diameter than the inner circumferential surface (144) of the ring (240).
  • the recessed portion (145; 245) is formed only on the second end surface (143) side of the ring (140; 240).
  • the ring (140; 240) is provided with a reverse assembly prevention part (160) that prevents the ring (140) from being assembled in the opposite direction to the ring fitting part (130). There is.
  • the recessed portion (145, 245) is provided on both end surfaces (142, 143) of the ring (340) in the axial direction, all around the inner peripheral surface (144) of the ring (340). It is formed over a period of time.
  • FIG. 1 is a sectional view of a scroll compressor according to Example 1.
  • FIG. FIG. 2 is an enlarged view of part 2 of FIG. 1;
  • FIG. 3 is a perspective view of the movable scroll shown in FIG. 2 when viewed from the fixed member side.
  • 3 is an enlarged sectional view of the rotation prevention mechanism shown in FIG. 2.
  • FIG. 5 is an exploded view of the rotation prevention mechanism shown in FIG. 4.
  • FIG. 6A is an explanatory diagram of the rotation prevention mechanism in a state where the ring shown in FIG. 2 is in contact with the bottom surface of the ring fitting portion
  • FIG. 6B is an explanatory diagram of the rotation prevention mechanism in a state where the ring shown in FIG. 2 is separated from the bottom surface of the ring fitting portion.
  • FIG. 3 is a cross-sectional view of a ring of a rotation prevention mechanism of a scroll compressor according to a second embodiment.
  • FIG. 8A is an explanatory diagram of a configuration in which a ring of a rotation prevention mechanism for a scroll compressor according to Embodiment 3 is provided with tapered recessed portions on both end surfaces
  • FIG. 8B is an explanatory diagram of a configuration of a rotation prevention mechanism for a scroll compressor according to Example 3.
  • FIG. 8C is an explanatory diagram of a configuration in which a ring has a cylindrical retraction portion on one end surface and a tapered shape on the other end surface of the ring of a rotation prevention mechanism for a scroll compressor according to Example 3.
  • FIG. 8D is an explanatory diagram of a configuration provided with a retraction portion
  • FIG. 8D is a configuration in which a ring of a rotation prevention mechanism for a scroll compressor according to Embodiment 3 has a tapered retraction portion on one end surface and a cylindrical retraction portion on the other end surface.
  • Example 1 A scroll compressor 10 according to a first embodiment will be described with reference to FIGS. 1 to 6.
  • the scroll compressor 10 is suitable for use in a refrigeration cycle that uses refrigerant as a working fluid, and is used, for example, in a refrigeration cycle of an automobile air conditioner. Note that the use of the scroll compressor 10 is not limited.
  • the scroll compressor 10 includes, for example, a housing 20 that can be installed horizontally, a motor 40 housed in the housing 20, an inverter 45 housed in the housing 20 to drive and control the motor 40, and an inverter 45 housed in the housing 20. and a scroll-type compression mechanism 60 driven by a motor 40.
  • the housing 20 includes, for example, a first housing 21 having a cylindrical shape with a bottom, and a second housing 22 (head member 22) that closes one opening of the first housing 21.
  • the first housing 21 has one end closed by the bottom wall 23 and the other end completely open. This opening is closed by a head member 22 that can be opened and closed.
  • the inside of the first housing 21 is partitioned by a partition member 30 into a first storage chamber 24 on the bottom wall 23 side and a second storage chamber 25 on the open side closed by the head member 22.
  • the first storage chamber 24 may be referred to as the "low pressure chamber 24."
  • the second storage chamber 25 is a storage space defined by the housing 20 and a partition member 30 fixed within the housing 20.
  • this second storage chamber 25 may be referred to as “storage space 25.”
  • the partition member 30 is a disc-shaped member, and both relative rotation and relative movement in the axial direction with respect to the first housing 21 are restricted.
  • the partition member 30 may be referred to as the "fixing member 30.”
  • This partition member 30 is composed of a disk-shaped partition plate portion 31 and a support portion 32 that is integrally provided at the center of this partition plate portion 31.
  • the partition member 30 has a plurality of suction holes 33 that communicate the first storage chamber 24 and the second storage chamber 25.
  • a motor 40 is stored in the first storage chamber 24.
  • a scroll type compression mechanism 60 (hereinafter also simply referred to as compression mechanism 60) is housed in the second storage chamber 25.
  • the partition member 30 can be considered as an element constituting the compression mechanism 60. That is, even if the partition wall 34 is considered to be part of the compression mechanism 60, it does not depart from the spirit of the present invention.
  • the first housing 21 has a suction port 26 that sucks refrigerant into the first storage chamber 24 from the outside.
  • the head member 22 includes a discharge chamber 27 from which refrigerant compressed by the compression mechanism 60 is discharged, an oil separation chamber 28 which separates oil from the refrigerant led from the discharge chamber 27, and an oil separation chamber 28 which separates oil from the refrigerant introduced from the discharge chamber 27. It has a discharge port 29 for discharging the separated and removed gaseous refrigerant to the outside.
  • the first housing 21 includes an inverter chamber 21b that accommodates the inverter 45.
  • the motor 40 includes a rotor 41 whose rotation center is in the longitudinal direction of the housing 20 and an annular stator 42 surrounding the rotor 52, and drives the compression mechanism 60.
  • the stator 42 is fixed to the inner peripheral surface 21a of the first housing 21.
  • a drive shaft 51 (output shaft 51) is fixed to the rotor 41.
  • This drive shaft 51 also serves as the output shaft of the motor 40.
  • the rotor 41 is rotatable with respect to the center line CL1 of the drive shaft 51.
  • the drive shaft 51 passes through the partition member 30 from the first storage chamber 24 to the second storage chamber 25 , and connects a first bearing 52 provided on the support portion 32 of the partition member 30 and the bottom wall 23 of the housing 20 . It is rotatably supported by a second bearing 53 provided in the. Further, the drive shaft 51 has an eccentric shaft 54 on one end surface passing through the partition member 30. The eccentric shaft 54 extends from one end surface of the drive shaft 51 toward the compression mechanism 60 and is parallel to the drive shaft 51 . The center line CL2 of the eccentric shaft 54 is offset from the center line CL1 of the drive shaft 51. An annular bush 55 is rotatably fitted onto the eccentric shaft 54. A counterweight 56 is integrally provided in a part of the bush 55 and projects from the bush 55 in the radial direction.
  • the compression mechanism 60 has a pair of scroll members 70 and 80 housed in the second storage chamber 25.
  • the fixed scroll 70 has a flat disk-shaped fixed plate 71, a cylindrical outer peripheral wall 72, and a spiral-shaped fixed spiral wall 73.
  • the fixed plate 71 has a discharge hole 74 in the central portion.
  • the outer peripheral wall 72 is a cylindrical portion that stands integrally over the entire circumference from the outer edge of one plate surface 71a (the surface 71a facing the partition member 30 side) of the fixed plate 71 toward the partition member 30 side.
  • a refrigerant suction port 75 is formed in the outer peripheral wall 72 for sucking refrigerant from the radially outer side to the inner side.
  • the fixed spiral wall 73 is integrally erected from one plate surface 71a of the fixed plate 71 toward the partition member 30 side.
  • the fixed scroll 70 is supported so as not to be relatively rotatable between the head member 22 and the partition member 30 so that the fixed plate 71 is oriented orthogonal to the center line CL2 of the eccentric shaft 54.
  • the movable scroll 80 has a flat disk-shaped movable plate 81 and a spiral-shaped movable spiral wall 82.
  • the outer diameter of the movable plate 81 is formed to a size that does not interfere with the movable scroll 80 inside the outer circumferential wall 72 of the fixed scroll 70 even if the movable scroll 80 revolves around a predetermined eccentric radius.
  • the movable spiral wall 82 is integrally erected from a surface 81a (hereinafter referred to as "first plate surface 81a") opposite to the plate surface 71a of the fixed plate 71 of the movable plate 81 toward the plate surface 71a of the fixed plate 71. ing.
  • a third bearing 57 is mounted at the center of a plate surface 81b (hereinafter referred to as "second plate surface 81b") opposite to the first plate surface 81a.
  • the outer circumferential surface of the bush 55 described above is fitted into the inner circumferential surface of the third bearing 57 .
  • the "preset eccentric radius” is not a fixed value, but includes one that is automatically adjusted so that the amount of eccentricity of the movable scroll 80 becomes the set ideal amount of eccentricity.
  • a self-aligning function can be provided by fitting the eccentric shaft 54 and the bush 55 so that the spiral walls 73 and 82 are in optimal contact with each other.
  • the movable scroll 80 revolves.
  • the refrigerant sucked from the suction port 26 passes through the gap between the motor 40 in the low-pressure chamber 24, passes through the suction hole 33 of the partition member 30, passes through the refrigerant suction port 75 of the fixed scroll 70, and enters the compression chamber. 83.
  • the compression chamber 83 moves toward the center while gradually decreasing its internal volume. Thereby, the refrigerant in the compression chamber 83 is compressed.
  • the discharge valve 91 opens due to the pressure difference, and the refrigerant in the compression chamber 83 passes through the discharge hole 74 to the discharge chamber 27. flows into.
  • the refrigerant in the discharge chamber 27 is discharged outward from the discharge port 29 via the oil separation chamber 28 .
  • one end surface 31a of the partition plate portion 31 faces the second storage chamber 25 side.
  • This one end surface 31a can support the sliding movement of the movable scroll 80.
  • this one end surface 31a may be referred to as a "flat surface 31a” or a “sliding support surface 31a.”
  • the center line CL3 of the movable scroll is perpendicular to the flat surface 31a.
  • a thrust member 101 capable of receiving a thrust load due to a compression reaction force is interposed between the flat surface 31a of the partition plate portion 31 and the second plate surface 81b of the movable scroll 80.
  • This thrust member 101 is constituted by, for example, a thin plate-like annular thrust race.
  • the thrust member 101 will be referred to as "thrust race 101" as appropriate.
  • the thrust race 101 is made of a material with excellent wear resistance, and can be sandwiched between the flat surface 31a of the partition plate portion 31 and the end surface of the cylindrical outer circumferential wall 72 of the fixed scroll 70.
  • the second plate surface 81b (opposing surface 81b) is provided at the outermost periphery and has an annular sliding surface 111 that is slidable on the flat surface 31a of the partition member 30. , has a retraction surface 112 located radially inside of this sliding surface 111 and at a predetermined depth.
  • the "predetermined depth” may be a specific constant depth or a depth spanning a specific range, but does not include zero.
  • the retracting surface 112 has an annular edge surface 113 protruding from the retracting surface 112 on the radially inner side thereof.
  • the center line CL3 of the movable scroll 80 is the center of the movable plate 81 and is orthogonal to the sliding surface 111.
  • the sliding surface 111 of the movable scroll 80 is in close sliding contact with the thrust race 101.
  • the space 114 on the radially inner side of the place where the thrust race 101 and the sliding surface 111 are in close contact can be used as an oil sump space, and the space 114 can be used as an oil reservoir space. It is possible to retain lubricating oil supplied via a supply path (not shown). The lubricating oil retained in the space 114 lubricates the sliding area between the sliding surface 111 of the movable scroll 80 and the thrust race 102 and the contact area between the ring 140 and the pin 150, which will be described later, to suppress sliding resistance. It is possible to suppress wear and tear.
  • the sliding surface 111 of the movable scroll 80 is configured to be in close sliding contact with the flat surface 31a of the partition plate portion 31, either directly or indirectly via the thrust race 101.
  • the sliding surface 111 of the movable scroll 80 is in sliding contact with the flat surface 31a of the partition plate part 31, it is said that the sliding surface 111 of the movable scroll 80 is in sliding contact with the flat surface 31a of the partition plate part 31 directly or through the thrust race 101.
  • the scroll compressor 10 includes a rotation prevention mechanism 120 that prevents the movable scroll 80 from rotating.
  • This rotation prevention mechanism 120 includes a plurality of ring fitting portions 130 that are recessed from the retraction surface 112 along the center line CL3 of the movable scroll 80 (along the direction orthogonal to the sliding surface 111), and these plurality of rings.
  • a plurality of rings 140 also referred to as regulation rings 140
  • a plurality of pins 150 rotation prevention pins
  • the ring fitting portion 130 has a bottomed hole configuration, and is composed of an inner circumferential surface 131 and a bottom surface 132.
  • An inner circumferential surface 131 of the ring fitting portion 130 is formed in a perfect circular shape orthogonal to the sliding surface 111 and is open to the retracting surface 112. It is preferable that the open end 133 of the ring fitting part 130 has a tapered chamfered part 134 for easily inserting the ring 140 into the ring fitting part 130.
  • the corner 135 between the inner circumferential surface 131 of the ring fitting portion 130 and the chamfered portion 134 is referred to as the "opening side edge 135 of the inner circumferential surface 131.”
  • the presence or absence of the chamfered portion 134 is optional. If the chamfered portion 134 is not provided, the edge 135 on the opening side of the inner peripheral surface 131 will match the opening end 133 of the ring fitting portion 130.
  • the bottom surface 132 is a flat surface parallel to the sliding surface 111. Furthermore, in order to reduce the weight of the movable scroll 80 and the number of parts to be machined, a recessed portion 136 may be formed that is recessed from the bottom surface 132 and has a diameter smaller than the inner circumferential surface 131 of the ring fitting portion 130.
  • the depth (first depth) from the sliding surface 111 to the opening-side edge 135 of the inner circumferential surface 131 of the ring fitting portion 130 is D1.
  • the depth from this edge 135 to the bottom surface 132 (second depth) is D2, which is greater than the first depth D1.
  • the ring 140 is a perfectly circular cylindrical member that passes through the ring 140, and is fitted into the ring fitting portion 130 with a "loose fit" (loosely fitted).
  • the degree of clearance fit is such that the outer circumferential surface 141 of the ring 140 fitted to the inner circumferential surface 131 of the ring fitting part 130 can be slid in the axial direction, rotated, and removed. ) is preferably small.
  • the thickness of the ring 140 is uniform in the circumferential direction.
  • the end surface 142 facing the bottom surface 132 of the ring fitting part 130 is defined as a "first end surface 142”
  • the ring 140 has an axis relative to the first end surface 142.
  • the end surface 143 on the opposite side is referred to as a "second end surface 143.”
  • the first end surface 142 and the second end surface 143 are parallel to each other and also parallel to the bottom surface 132 of the ring fitting part 130.
  • the pin 150 is constituted by a cylinder with a perfect circular cross section, and is located parallel to the inner circumferential surface 144 of the ring 140.
  • One end portion 151 of this pin 150 is fixed to a pin hole 34 formed in the partition member 30 by press fitting. That is, the pin 150 has a so-called cantilever structure in which one end 151 is fixed to the partition member 30 and the other end 152 is a free end.
  • the plurality of pins 150 are arranged such that the outer circumferential surface of the other end portion 152 of each pin can come into contact with the inner circumferential surface 144 of the corresponding ring 140.
  • the clearance between the inner diameter of the ring 140 and the outer diameter of the other end 152 of the pin 150 is larger than the amount of movement of the movable scroll 80 (twice the eccentric radius).
  • the ring 140 has a recessed portion 145 that does not come into contact with the pin 150 over the entire circumference at least on the one axial end 143 side (second end surface 143 side) of the inner peripheral surface 144. It is provided.
  • the recessed portion 145 is formed only on the second end surface 143 side of the ring 140.
  • the retracting portion 145 extends over the entire circumference of the inner circumferential surface 144 of the ring 140 and is constituted by a circumferential surface located radially outward from the inner circumferential surface 144 .
  • the recessed portion 145 will be referred to as "surrounding surface 145" as appropriate.
  • This circumferential surface 145 is a surface obtained by rotating a line connecting a predetermined start point 145a and end point 145b of the ring 140 in the axial direction along the center line RL of the ring 140.
  • the starting point 145a is on the second end surface 143 of the ring 140 and is a predetermined amount radially outward from the inner circumferential surface 144 of the ring 140.
  • the end point 145b is on the inner circumferential surface 144 of the ring 140, and is located a predetermined distance away from the second end surface 143 toward the first side end surface 142.
  • This end point 145b is located at the boundary between the inner circumferential surface 144 and the circumferential surface 145 (retreat portion 145) of the ring 140.
  • This end point 145b is appropriately referred to as a "boundary 145b.”
  • this circumferential surface 145 (retreat portion 145) is tapered so that the diameter of the ring 140 decreases from the axial end 143 (second end surface 143) toward the back side (first end surface 142 side). Consists of a tapered surface.
  • the retracting portion 145 is formed of a circumferential surface (a tapered surface) located radially outward from the inner circumferential surface 144 of the ring 140 over the entire circumference.
  • the angle ⁇ 1 between the inner circumferential surface 144 and the recessed portion 145 is an obtuse angle.
  • the length in the axial direction from the starting point 145a to the ending point 145b (the length of the retracting portion 145) is L1.
  • the axial length (straight length) from the end point 145b to the first end surface 142 of the ring 140 is L2, which is longer than the length L1 of the recessed portion 145.
  • the boundary 145b (the end point 145b of the retracted part 145) is inside the ring fitting part 130. It is located closer to the bottom surface 132 of the ring fitting portion 130 than the edge 135 of the peripheral surface 131 on the opening side.
  • the distance L2 (straight length L2) from the bottom surface 132 of the ring fitting part 130 to the boundary 145b is the distance D2 ( the second depth D2).
  • the boundary 145b is the edge 135 on the opening side of the inner peripheral surface 131 of the ring fitting part 130. It is located closer to the bottom surface 132 of the ring fitting portion 130 than the ring fitting portion 130 .
  • the distance L1 from the flat surface 31a to the boundary 145b is the distance D1 from the flat surface 31a to the edge 135 on the opening side of the inner peripheral surface 131 of the ring fitting portion 130 (the first depth D1).
  • the ring 140 is provided with a reverse assembly prevention portion 160 that prevents the ring 140 from being assembled in the opposite direction to the ring fitting portion 130.
  • the reverse assembly prevention portion 160 is constituted by a small protrusion 161 that protrudes radially outward from the outer peripheral surface 141 of the ring 140.
  • This protrusion 161 includes a flange formed on the outer peripheral surface 141 over the entire circumference.
  • the protrusion 161 When the first end surface 142 of the ring 140 is in contact with the bottom surface 132 of the ring fitting part 130, the protrusion 161 is located at a position where it does not contact the retraction surface 112 or the chamfered part 134, that is, the second end surface 142 of the ring 140. It is located near.
  • the protrusion 161 does not interfere with the retraction surface 112 or the chamfered part 134.
  • the protrusion 161 interferes with the retraction surface 112 or the chamfered portion 134, making it impossible to assemble the ring 140. Therefore, it is possible to prevent the ring 140 from being assembled in the opposite direction to the ring fitting part 130.
  • the pin 150 has a cantilever structure with one end 151 fixed to the partition member 30.
  • the inner peripheral surface 144 of the ring 140 comes into line contact with the other end 152 (free end 152) of the pin 150.
  • the other end 152 receives the load acting from the inner peripheral surface 144 of the ring 140.
  • the other end 152 of the pin 150 can be elastically deformed, for example, as shown by the imaginary line.
  • the pin 150 contacts only the boundary 145b (the end point 145b of the retracted portion 145).
  • Boundary 145b receives reaction force fr from pin 150.
  • the direction of this reaction force fr is opposite to the direction in which the movable scroll 80 rotates (the direction of the arrow Ru).
  • the ring 140 that has received this reaction force fr tends to fall in the radial direction of the ring fitting part 130 (in the direction of the arrow Tr) using the edge 135 on the opening side of the ring fitting part 130 as a fulcrum.
  • the outer circumferential surface 141 of the ring 140 is in contact with the inner circumferential surface 131 of the ring fitting portion 130 in the direction in which the reaction force fr acts.
  • the ring 140 can be displaced in the axial direction with respect to the ring fitting part 130 in a range from a position in contact with the bottom surface 132 shown in FIG. 6A to a position in contact with the flat surface 31a shown in FIG. 6B.
  • the boundary 145b is located closer to the bottom surface 132 of the ring fitting part 130 than the edge 135 on the opening side. . That is, the force transmission position 145b (boundary 145b) between the pin 150 and the ring 140 is away from the end surface 143 (second end surface 143) of the ring 140 toward the bottom surface 132 side.
  • the ring 140 is supported by the inner circumferential surface 131 of the ring fitting part 130 so as not to fall in the radial direction of the ring fitting part 130 (in the direction of arrow Tr in FIG. 4). As a result, it is possible to prevent the ring 140 from tilting relative to the ring fitting portion 130.
  • Example 1 The description of Example 1 above is summarized as follows.
  • the scroll compressor 10 includes a housing 20, a partition member 30 fixed within the housing 20, and a storage space 25 (a second A storage chamber 25), a fixed scroll 70 and a movable scroll 80 that are combined and housed in the storage space 25, and a rotation prevention mechanism 120 that prevents the movable scroll 80 from rotating.
  • the movable scroll 80 includes a disk-shaped movable plate 81 and a movable spiral wall 82 erected from the movable plate 81.
  • a plate surface 81b (second plate surface 81b) of the movable plate 81 opposite to the movable spiral wall 82 side has an opposing surface 81b that faces the flat surface 31a of the partition member 30.
  • the opposing surface 81b includes an annular sliding surface 111 that is provided on the outermost periphery and is slidable on the flat surface 31a of the partition member 30, and a diameter of the sliding surface 111. It has a retraction surface 112 located on the inside in the direction and at a predetermined depth from the sliding surface 111.
  • the rotation prevention mechanism 120 has a ring fitting portion 130 that is recessed from the retraction surface 112 in a direction perpendicular to the sliding surface 111 of the movable scroll 80, and A cylindrical ring 140 fitted with a loose fit and an anti-rotation pin 150 extending into the ring 140 from the flat surface 31a of the partition member 30 so as to be able to contact the inner peripheral surface 144 of the ring 140.
  • the ring 140 has a first end surface 142 disposed on the back side of the ring fitting part 130 and a second end surface 143 that is axially opposite to the first end surface 142.
  • a recessed portion 145 that does not come into contact with the anti-rotation pin 150 is provided on the second end surface 143 side over the entire circumference.
  • the ring 140 is fitted into the inner circumferential surface 131 of the ring fitting part 130 in a loose fit. Therefore, there is a gap (clearance) between the inner peripheral surface 131 of the ring fitting part 130 and the outer peripheral surface 141 of the ring 140. However, a recessed portion 145 is formed on the inner circumferential surface 144 of the ring 140. Therefore, the force transmission position of the anti-rotation pin 150 and the ring 140 can be moved away from the end surface 143 (second end surface 143) of the ring 140, thereby preventing the ring 140 from tilting relative to the ring fitting portion 130.
  • the ring fitting part 130 has a bottom surface 132 facing the first end surface 142 of the ring 140.
  • the retracting portion 145 extends over the entire circumference of the inner circumferential surface 144 of the ring 140 and is constituted by a circumferential surface (corresponding to the circumferential surface 145) located radially outward from the inner circumferential surface 144.
  • the boundary 145b between the recessed part 145 and the inner peripheral surface 144 It is located closer to the bottom surface 132 of the ring fitting portion 130 than the edge 135 on the opening side of the inner circumferential surface 131 of the ring fitting portion 130 .
  • the boundary 145b between the recessed part 145 and the inner peripheral surface 144 (the end point 145b of the retracted part 145) It is located closer to the bottom surface 132 than the edge 135 on the opening side of the fitting portion 130 . Therefore, since the rotation prevention pin 150 makes point contact only with the boundary 145b between the retracted portion 145 and the inner circumferential surface 144, even if it is pushed by the rotation prevention pin 150, the rotation prevention pin 150 does not reach the ring 140.
  • the point of action is inside the ring fitting part 130. It is possible to prevent the ring 140 from tilting within the clearance range with the ring fitting portion 130, which is a so-called tilting phenomenon of the ring 140 with respect to the ring fitting portion 130.
  • the boundary 145b between the recessed portion 145 and the inner circumferential surface 144 is It is located closer to the bottom surface 132 of the ring fitting portion 130 than the edge 135 of the inner peripheral surface 131 on the opening side.
  • the retraction portion 145 is constituted by a tapered surface of the ring 140 whose diameter decreases from the second end surface 143 toward the back side (first end surface 142 side). Therefore, the angle ⁇ formed between the inner circumferential surface 144 of the ring 140 and the recessed portion 145 becomes an obtuse angle. Compared to the case where the angle ⁇ is an acute angle, the contact pressure is reduced when the anti-rotation pin 150 makes point contact with the corner 145b (boundary 145b) between the inner circumferential surface 144 of the ring 140 and the recessed portion 145. be able to. Note that by configuring the boundary 145b to have an arc-shaped cross section, the boundary 145b has a roundness, so that the contact pressure can be further alleviated.
  • the recessed portion 145 is formed only on the second end surface 143 side of the ring 140. Therefore, the recessed portion 145 only needs to be formed on one side of the ring 140.
  • the straight length L2 (see FIG. 5) at which the ring 140 and the anti-rotation pin 150 are in line contact can be set longer, and as a result, the linear pressure can be reduced.
  • the ring 140 is provided with a reverse assembly prevention part 160 that prevents the ring 140 from being assembled in the opposite direction to the ring fitting part 130. Therefore, it is possible to easily prevent the ring 140 from being attached to the ring fitting portion 130 in the wrong direction due to human error.
  • Example 2> A scroll compressor 200 according to a second embodiment will be described with reference to FIG. 7.
  • FIG. 7 corresponds to FIG. 5 above.
  • the scroll compressor 200 of the second embodiment is characterized in that the ring 140 of the first embodiment shown in FIGS. 1 to 6 above is replaced with a ring 240 shown in FIG. 7.
  • Other basic configurations are the same as the scroll compressor 10 according to the first embodiment.
  • the reference numerals are used and detailed explanations are omitted.
  • the ring 240 of the second embodiment is characterized by a recessed portion 245, and the other configuration is the same as the structure of the ring 140 of the first embodiment.
  • the retracting section 245 corresponds to the retracting section 145 of the first embodiment shown in FIG.
  • This retracting portion 245 extends over the entire circumference of the inner circumferential surface 144 of the ring 240 and is constituted by a circumferential surface located radially outward from the inner circumferential surface 144.
  • the recessed portion 245 may be referred to as a "surrounding surface 245" as appropriate.
  • the position of the start point 145a and the position of the end point 145b (boundary 145b) of this circumferential surface 245 are the same as the positions of the start point 145a and the end point 145b of the circumferential surface 145 of Example 1 shown in FIG. 5 above.
  • This peripheral surface 245 (retreat portion 245) is a surface obtained by rotating a line connecting a predetermined start point 145a and end point 145b of the ring 240 in the axial direction along the center line RL of the ring 140.
  • the retraction portion 245 is constituted by a cylindrical surface 245a having a larger diameter than the inner circumferential surface 144 of the ring 240.
  • the boundary between the cylindrical surface 245a and the inner circumferential surface 144 is connected directly or indirectly.
  • the retraction portion 245 is configured by a cylindrical surface 245a and a stepped surface 245b at the boundary between the cylindrical surface 245a and the inner circumferential surface 144.
  • the starting point 145a of the cylindrical surface 245a is the position of the second end surface 143 of the ring 240.
  • the stepped surface 245b (end surface 245b) is an annular surface.
  • the inner periphery of this stepped surface 245b is located at the boundary 145b (boundary 145b) with the inner peripheral surface 144 of the ring 240.
  • This Sakai 145b is the end point 145b.
  • the length L1 and the straight length L2 of the retracted portion 145 are the same as those of the ring 140 of the first embodiment.
  • the retraction portion 245 is constituted by a cylindrical surface 245a having a larger diameter than the inner circumferential surface 144 of the ring 240. Since the retraction portion 245 is simply formed into a cylindrical surface 245a, dimensional control is easy.
  • the scroll compressor 200 according to the second embodiment can exhibit the same effects as the scroll compressor 10 of the first embodiment.
  • a line segment in the axial direction along the cylindrical surface 245a is referred to as a "first line segment”
  • a line segment in the radial direction along the stepped surface 245b is referred to as a "second line segment”.
  • a "line” is assumed in which a first line segment and a second line segment are connected, and one end of each line segment is connected to a starting point 145a and an ending point 145b.
  • the "line" connecting the starting point 145a and the ending point 145b is not limited to a straight line, but includes a curved line.
  • the starting point 145a and the ending point 145b may be connected by a curve.
  • the feature of the first and second embodiments is that the rings 140, 240 are provided with a boundary 145b between the inner circumferential surface 144 and the circumferential surfaces 145, 245, as shown in FIGS. 5 and 7.
  • Example 3> A scroll compressor 300 according to a third embodiment will be described with reference to FIGS. 8A to 8D. 8A to 8D correspond to FIG. 5 above.
  • the scroll type compressor 300 of the third embodiment includes the ring 140 of the first embodiment shown in FIGS. 1 to 6 and the ring 240 of the second embodiment shown in the second embodiment shown in FIG. It is characterized by being changed to a ring 340 shown in 8D.
  • Other basic configurations are the same as those of the scroll compressors 10 and 200 according to the first and second embodiments.
  • reference numerals are used and detailed explanations are omitted.
  • the ring 340 shown in FIG. 8A has the recessed portions 145 of the first embodiment shown in FIG. 5 on both end surfaces 142 and 143 in the axial direction.
  • the ring 340 shown in FIG. 8B has the recessed portions 245 of the second embodiment shown in FIG. 7 on both end surfaces 142 and 143 in the axial direction.
  • the ring 340 shown in FIG. 8C has the recessed part 245 of the second embodiment shown in FIG. 7 on the first end face 142, and the retracted part 145 of the first embodiment shown in FIG. have.
  • the ring 340 shown in FIG. 8D has the retraction portion 145 of the first embodiment shown in FIG. 5 on the first end surface 142, and the retraction portion 245 of the second embodiment shown in FIG. have.
  • the recessed portions 145 and 245 are formed on both end surfaces 142 and 143 of the ring 340 in the axial direction over the entire circumference of the inner peripheral surface 144 of the ring 340. Therefore, even if the ring 340 is assembled in the opposite direction to the ring fitting part 130 (see FIG. 5), it is possible to prevent the ring 340 from tilting relative to the ring fitting part 130.
  • the scroll compressor 300 according to the third embodiment can exhibit the same effects as the scroll compressor 10 of the first embodiment.
  • the present invention is not limited to each embodiment as long as the functions and effects of the present invention are achieved.
  • the scroll compressors 10, 200, and 300 are not limited to horizontally mounted electric compressors, and may have a configuration in which the drive shaft 51 is driven by an external power source.
  • the scroll compressors 10, 200, and 300 of each embodiment can be combined with any two or more embodiments.
  • the scroll compressor 10, 200, 300 of the present invention is suitable for use in a refrigeration cycle of a vehicle air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

[Problem] To prevent a phenomenon of tilting of a ring with respect to a ring fitting portion of a rotation prevention mechanism. [Solution] A scroll compressor (10) comprises a rotation prevention mechanism (120) that prevents rotation of a movable scroll (80). The movable scroll (80) has an opposing surface (81b) that faces a flat surface (31a) of a partition member (30). The opposing surface (81b) has an annular sliding surface (111) capable of sliding on the flat surface (31a), and a retracted surface (112) on a radially inner side of the sliding surface (111). The rotation prevention mechanism (120) comprises: a ring fitting portion (130) recessed from the retracted surface (112); a ring (140) that is clearance-fitted in the ring fitting portion (130); and a rotation prevention pin (150) extending from the partition member (30) into the ring (140). The ring (140) has, on the second end surface (143) side of the inner circumferential surface (144), a retracted portion (145) that does not contact the pin (150).

Description

スクロール型圧縮機scroll compressor
 本発明は、スクロール型圧縮機に関し、特に可動スクロールの自転を阻止する自転防止機構に関する。 The present invention relates to a scroll compressor, and particularly to an anti-rotation mechanism that prevents rotation of a movable scroll.
 ハウジングに固定された固定スクロールに対する、可動スクロールの公転旋回運動を妨げることなく、この可動スクロールの自転を阻止する自転防止機構を備えたスクロール型圧縮機が知られている。 A scroll type compressor is known that is equipped with an anti-rotation mechanism that prevents rotation of the movable scroll without interfering with the orbital movement of the movable scroll relative to the fixed scroll fixed to the housing.
 また、自転防止機構には、複数組みの自転防止用ピン(以下、単にピンとも称する)及び規制リング(以下、単にリングとも称する)を有する、いわゆるピンアンドリング式自転防止機構(ピン&リング式自転防止機構)が知られている。 In addition, the rotation prevention mechanism has a plurality of sets of rotation prevention pins (hereinafter also simply referred to as pins) and regulation rings (hereinafter simply referred to as rings). An anti-rotation mechanism) is known.
 特許文献1に開示されるスクロール型圧縮機においては、可動スクロールは、円板状の端板と、この端板から固定スクロールに向かって立設した渦巻壁とを有する。端板の渦巻壁の反対側の端面の最外周近傍には、ハウジングに固定された力受板と摺接する円環状の摺動面(特許文献1ではリブと称されている)が形成されている。 In the scroll compressor disclosed in Patent Document 1, the movable scroll has a disk-shaped end plate and a spiral wall that stands up from the end plate toward the fixed scroll. An annular sliding surface (referred to as a rib in Patent Document 1) that slides into contact with a force receiving plate fixed to the housing is formed near the outermost periphery of the end surface on the opposite side of the spiral wall of the end plate. There is.
 この摺動面より半径方向内側の面と、力受板との間には軸方向のクリアランスが形成される。言い換えれば、摺動面より半径方向内側の面(以下「退避面」と称する)は、摺動面から渦巻壁側へ低くなる段差を有して位置している。この「退避面」には、所定のピッチ円に沿って均等に配置された複数の有底の凹部(リング嵌合部に相当)が形成されている。この凹部の中には、ハウジングに固定されたピンと係合するリングが嵌合している。この複数のピンの外周面と複数のリングの内周面との間は、可動スクロールが所定の旋回半径で公転することが可能なように十分なクリアランスを有するとともに、複数のピンが複数のリングに係合することによって、可動スクロールの回転(自転)が防止され、これにより周知の自転防止機構が構成されている。 An axial clearance is formed between the surface radially inside this sliding surface and the force receiving plate. In other words, the surface radially inside the sliding surface (hereinafter referred to as the "retreat surface") is located with a step that becomes lower from the sliding surface toward the spiral wall. This "retreat surface" is formed with a plurality of bottomed recesses (corresponding to ring fitting parts) that are evenly arranged along a predetermined pitch circle. A ring that engages with a pin fixed to the housing fits into this recess. There is sufficient clearance between the outer circumferential surface of the plurality of pins and the inner circumferential surface of the plurality of rings so that the movable scroll can revolve at a predetermined turning radius, and the plurality of pins are connected to the plurality of rings. By engaging with the movable scroll, rotation (rotation) of the movable scroll is prevented, thereby forming a well-known rotation prevention mechanism.
 駆動軸の回転により、所定の旋回半径で駆動軸の中心周りに可動スクロールが公転すると、可動スクロールの渦巻壁と固定スクロールの渦巻壁の間に形成される圧縮室の容積が小さくなる。これにより圧縮室内に閉じ込められた冷媒の圧力が中心に近くなるほど高くなると、この圧力によって可動スクロールを固定スクロールから離そうとするスラスト方向の力と、可動スクロール自身を回転(自転)させる自転トルクが可動スクロールに作用する。前者の力は、スラストプレート(力受板)により受け止められる。一方、後者の自転トルクは、リングを介してピンによって受け止められ、これにより可動スクロールの回転が阻止される。 When the movable scroll revolves around the center of the drive shaft at a predetermined turning radius due to rotation of the drive shaft, the volume of the compression chamber formed between the spiral wall of the movable scroll and the spiral wall of the fixed scroll becomes smaller. As a result, the pressure of the refrigerant trapped in the compression chamber increases as it gets closer to the center, and this pressure creates a force in the thrust direction that attempts to separate the movable scroll from the fixed scroll, and a rotational torque that causes the movable scroll to rotate (rotate) itself. Acts on movable scroll. The former force is received by a thrust plate (force receiving plate). On the other hand, the latter rotational torque is received by the pin via the ring, thereby preventing the movable scroll from rotating.
 特許文献1に開示される発明においては、リングの長さは、凹部の深さよりも長くなっている。また、特許文献1において、従来技術として触れられているように、リングの長さが凹部の深さよりも短い構成も知られている。 In the invention disclosed in Patent Document 1, the length of the ring is longer than the depth of the recess. Further, as mentioned in Patent Document 1 as a prior art, a configuration in which the length of the ring is shorter than the depth of the recess is also known.
 これら従来の自転防止機構においては、リングと凹部の嵌合は圧入でなく、僅かなクリアランスを有する、いわゆるすきまばめが好ましい。すきまばめによってリングを凹部に装着する構成によれば、リングは圧入されることなく凹部に嵌合されるので、圧入による可動スクロールやハウジングの変形の虞を排除することができる。 In these conventional anti-rotation mechanisms, the fitting between the ring and the recess is preferably not a press fit but a so-called clearance fit with a slight clearance. According to the configuration in which the ring is mounted in the recess by a clearance fit, the ring is fitted into the recess without being press-fitted, and therefore, the possibility of deformation of the movable scroll or the housing due to press-fitting can be eliminated.
 ところで、ピンはハウジングに一方側が圧入された状態で他方側がリングと係合しているので、ピンはいわゆる片持ち梁としてリングからの荷重を受け止めることとなる。このため、リングからの力によりピンが弾性変形し、ピンの先端側はリングから逃げるように変形するのに対し、ピンのハウジングとの圧入部に近い側は変形が小さく、リングからの力が集中しやすい。また、複数の機械部品の製造誤差の積み重ねにより、リングとピンの接触が理想的な線接触にならず、リングの手前側内周面もしくは奥側内周面がピンと点接触することも起こりうる。 By the way, since one side of the pin is press-fitted into the housing and the other side is engaged with the ring, the pin receives the load from the ring as a so-called cantilever beam. For this reason, the pin is elastically deformed by the force from the ring, and the tip side of the pin deforms to escape from the ring, whereas the side of the pin near the press-fit part with the housing deforms less and the force from the ring is reduced. Easy to concentrate. Additionally, due to the accumulation of manufacturing errors in multiple mechanical parts, the contact between the ring and pin may not be an ideal line contact, and the inner circumferential surface on the near side or the inner circumferential side of the ring may come into point contact with the pin. .
特表2017-532495号公報Special Publication No. 2017-532495
 上述した従来の構成においては、リングの長さが凹部(リング嵌合部)の深さよりも長いため、リングの手前側端面が、退避面の凹部形成面から突出している。またリングの長さが凹部の深さより短かったとしても、自転防止機構を構成するリングが凹部に遊嵌しているため、圧縮機運転の振動やピンとの摩擦等によってリングが凹部の軸方向に動き、退避面の凹部形成面から突出することが起こりえる。 In the conventional configuration described above, since the length of the ring is longer than the depth of the recess (ring fitting portion), the front end surface of the ring protrudes from the recess formation surface of the retraction surface. Furthermore, even if the length of the ring is shorter than the depth of the recess, the ring that constitutes the anti-rotation mechanism is loosely fitted into the recess, so vibrations from compressor operation or friction with the pin may cause the ring to move in the axial direction of the recess. It is possible that the retraction surface may move and protrude from the recess forming surface.
 このようにリングの手前側端面が凹部から突出しているときに、先にのべたように、リングの内周面の手前側がピンによって押されると、ピンからリングへの荷重の作用点が、凹部の外に出てしまうので、リングが凹部とのクリアランスの範囲で傾く、いわゆる凹部に対するリングの傾き現象の虞がある。 When the front end surface of the ring protrudes from the recess in this way, if the front end of the ring's inner peripheral surface is pushed by the pin as described above, the point of application of the load from the pin to the ring will be in the recess. Therefore, there is a risk that the ring will tilt within the range of the clearance with the recess, which is a so-called tilting phenomenon of the ring with respect to the recess.
 このような傾き現象が発生すると、リングの凹部内での姿勢が不安定になり振動を発生させたり、リングとスラストプレートが片当たりしてスラストプレートの磨耗やノイズを発生させる虞がある。 When such a tilting phenomenon occurs, there is a risk that the posture of the ring within the recess becomes unstable, causing vibration, or that the ring and thrust plate come into partial contact, causing wear of the thrust plate and noise.
 本発明は、上述の問題を解決するためになされたものであって、ピンアンドリング式の自転防止機構における、リング嵌合部に対するリングの傾き現象の発生を防止できる技術を提供することを、課題とする。 The present invention has been made in order to solve the above-mentioned problems, and aims to provide a technique that can prevent the occurrence of a tilting phenomenon of a ring with respect to a ring fitting part in a pin-and-ring type rotation prevention mechanism. Take it as a challenge.
 以下の説明では、本発明の理解を容易にするために添付図面中の参照符号を括弧書きで付記するが、それによって本発明は図示の形態に限定されるものではない。 In the following description, reference numerals in the accompanying drawings will be added in parentheses in order to facilitate understanding of the present invention, but the present invention is not thereby limited to the illustrated form.
 本発明によれば、ハウジング(20)と、前記ハウジング(20)内に固定された仕切り部材(30)と、前記ハウジング(20)内に前記仕切り部材(30)によって区画されている収納空間(25)と、前記収容空間(25)内に組み合わされて収容される固定スクロール(70)と可動スクロール(80)と、前記可動スクロール(80)の自転を防止する自転防止機構(120)を備えており、
 前記可動スクロール(80)は、円板状の可動板(81)と、前記可動板(81)から立設した可動渦巻壁(82)を備え、
 前記可動板(81)の前記可動渦巻壁(82)側とは反対側の板面(81b)は、前記仕切り部材(30)の平坦面(31a)に対向する対向面(81b)を有し、
 前記対向面(81b)は、最外周に設けられ、前記仕切り部材(30)の前記平坦面(31a)に対して摺動可能な環状の摺動面(111)と、前記摺動面(111)の径方向内側且つ前記摺動面(111)から所定の深さに位置する退避面(112)と、を有しており、
 前記自転防止機構(120)は、前記退避面(112)から前記可動スクロール(80)の前記摺動面(111)に直交する方向に沿って窪んだリング嵌合部(130)と、前記リング嵌合部(130)に対してすきまばめに嵌合された筒状のリング(140;240;340)と、前記リング(140;240;340)の内周面(144)に接触できるように、前記仕切り部材(30)の前記平坦面(31a)から前記リング(140;240;340)の中へ延びた自転防止用ピン(150)とを備え、
 前記リング(140;240;340)は、前記リング嵌合部(130)の奥側に配置される第1端面(142)と、前記第1端面(142)の軸方向反対側である第2端面(143)を有し、前記内周面(144)のなかの少なくとも前記第2端面(143)側に全周にわたって、前記自転防止用ピン(150)と接触しない退避部(145,245)が設けられている、ことを特徴とするスクロール型圧縮機が提供される。
According to the present invention, there is provided a housing (20), a partition member (30) fixed within the housing (20), and a storage space defined within the housing (20) by the partition member (30). 25), a fixed scroll (70) and a movable scroll (80) that are housed in combination in the housing space (25), and a rotation prevention mechanism (120) that prevents rotation of the movable scroll (80). and
The movable scroll (80) includes a disc-shaped movable plate (81) and a movable spiral wall (82) standing from the movable plate (81),
A plate surface (81b) of the movable plate (81) opposite to the movable spiral wall (82) has an opposing surface (81b) that faces the flat surface (31a) of the partition member (30). ,
The opposing surface (81b) is provided at the outermost periphery and includes an annular sliding surface (111) that is slidable on the flat surface (31a) of the partition member (30), and the sliding surface (111). ) and a retraction surface (112) located on the radially inner side of the sliding surface (111) and at a predetermined depth from the sliding surface (111);
The rotation prevention mechanism (120) includes a ring fitting portion (130) recessed from the retraction surface (112) in a direction perpendicular to the sliding surface (111) of the movable scroll (80), and A cylindrical ring (140; 240; 340) fitted with a loose fit into the fitting part (130) and a ring (140; 240; 340) so as to be able to contact the inner peripheral surface (144) and an anti-rotation pin (150) extending from the flat surface (31a) of the partition member (30) into the ring (140; 240; 340),
The ring (140; 240; 340) has a first end surface (142) located on the back side of the ring fitting part (130), and a second end surface (142) that is axially opposite to the first end surface (142). a recessed portion (145, 245) having an end surface (143) and extending over the entire circumference at least on the second end surface (143) side of the inner peripheral surface (144) and not coming into contact with the rotation prevention pin (150); Provided is a scroll compressor characterized in that it is provided with.
 このように、リングは、リング嵌合部の内周面に対して、すきまばめに嵌合されている。このため、リング嵌合部の内周面とリングの外周面との間には、微小な隙間(クリアランス)を有している。しかし、リングの内周面には退避部が形成されている。このため、自転防止用ピンとリングの力の伝達位置を、リングの端面から遠ざけて、リング嵌合部に対するリングの傾き現象の発生を防止できる。 In this way, the ring is loosely fitted to the inner circumferential surface of the ring fitting portion. Therefore, there is a small gap (clearance) between the inner circumferential surface of the ring fitting portion and the outer circumferential surface of the ring. However, a recessed portion is formed on the inner peripheral surface of the ring. Therefore, the force transmission position of the anti-rotation pin and the ring can be moved away from the end face of the ring, thereby preventing the ring from tilting relative to the ring fitting portion.
 好ましくは、前記リング嵌合部(130)は、前記リング(140;240;340)の第1端面(142)に向かい合う底面(132)を有し、
 前記退避部(145;245)は、前記リング(140;240;340)の前記内周面(144)の全周にわたり、前記内周面(144)よりも径方向外側に位置する周面(145;245)によって構成されており、
 前記リング(140;240;340)の前記第1端面(142)が前記リング嵌合部(130)の前記底面(132)に接している状態では、前記退避部(145;245)と前記内周面(144)との境界(145b)は、前記リング嵌合部(130)の前記内周面(131)の開口側の縁(135)よりも、前記リング嵌合部(130)の前記底面(132)側に位置している。
Preferably, the ring fitting part (130) has a bottom surface (132) facing the first end surface (142) of the ring (140; 240; 340),
The recessed portion (145; 245) extends over the entire circumference of the inner circumferential surface (144) of the ring (140; 240; 145; 245),
When the first end surface (142) of the ring (140; 240; 340) is in contact with the bottom surface (132) of the ring fitting portion (130), the recess portion (145; 245) and the inner The boundary (145b) with the circumferential surface (144) is closer to the opening side edge (135) of the inner circumferential surface (131) of the ring fitting portion (130) than the edge (135) on the opening side of the inner circumferential surface (131) of the ring fitting portion (130). It is located on the bottom (132) side.
 さらに好ましくは、前記リング(140;240;340)の前記第2端面(143)が前記仕切り部材(30)の前記平坦面(31a)に接している状態では、前記境界(145b)は、前記リング嵌合部(130)の前記内周面(131)の前記開口側の縁(135)よりも、前記リング嵌合部(130)の前記底面(132)側に位置している。 More preferably, in a state where the second end surface (143) of the ring (140; 240; 340) is in contact with the flat surface (31a) of the partition member (30), the boundary (145b) is It is located closer to the bottom surface (132) of the ring fitting portion (130) than the edge (135) on the opening side of the inner peripheral surface (131) of the ring fitting portion (130).
 好ましくは、前記退避部(145)は、前記リング(140)の、前記第2端面(143)から奥側へ向かって縮径する、先細りテーパー面によって構成されている。 Preferably, the recessed portion (145) is formed by a tapered surface of the ring (140) whose diameter decreases toward the back from the second end surface (143).
 他の好ましい例として、前記退避部(245)は、前記リング(240)の前記内周面(144)よりも大径の円筒面(245a)によって構成されている。 As another preferable example, the retraction portion (245) is configured by a cylindrical surface (245a) having a larger diameter than the inner circumferential surface (144) of the ring (240).
 好ましくは、前記退避部(145;245)は、前記リング(140;240)の前記第2端面(143)側のみに形成されている。 Preferably, the recessed portion (145; 245) is formed only on the second end surface (143) side of the ring (140; 240).
 さらに好ましくは、前記リング(140;240)には、前記リング嵌合部(130)に対する前記リング(140)が逆向きに組付けられることを防止する逆組み防止部(160)が設けられている。 More preferably, the ring (140; 240) is provided with a reverse assembly prevention part (160) that prevents the ring (140) from being assembled in the opposite direction to the ring fitting part (130). There is.
 別の好ましい例として、前記退避部(145,245)は、前記リング(340)の軸方向の両端面(142,143)に、前記リング(340)の前記内周面(144)の全周にわたって形成されている。 As another preferable example, the recessed portion (145, 245) is provided on both end surfaces (142, 143) of the ring (340) in the axial direction, all around the inner peripheral surface (144) of the ring (340). It is formed over a period of time.
 本発明では、ピンアンドリング式の自転防止機構における、リング嵌合部に対するリングの傾き現象の発生を防止できる。 According to the present invention, it is possible to prevent the occurrence of a tilting phenomenon of the ring with respect to the ring fitting portion in a pin-and-ring type rotation prevention mechanism.
実施例1によるスクロール型圧縮機の断面図である。1 is a sectional view of a scroll compressor according to Example 1. FIG. 図1の2部の拡大図である。FIG. 2 is an enlarged view of part 2 of FIG. 1; 図2に示される可動スクロールを固定部材側から見た斜視図である。FIG. 3 is a perspective view of the movable scroll shown in FIG. 2 when viewed from the fixed member side. 図2に示される自転防止機構を拡大した断面図である。3 is an enlarged sectional view of the rotation prevention mechanism shown in FIG. 2. FIG. 図4に示される自転防止機構の分解図である。5 is an exploded view of the rotation prevention mechanism shown in FIG. 4. FIG. 図6Aは図2に示されるリングがリング嵌合部の底面に接した状態の自転防止機構の説明図、図6Bは図2に示されるリングがリング嵌合部の底面から離れている状態の自転防止機構の説明図である。6A is an explanatory diagram of the rotation prevention mechanism in a state where the ring shown in FIG. 2 is in contact with the bottom surface of the ring fitting portion, and FIG. 6B is an explanatory diagram of the rotation prevention mechanism in a state where the ring shown in FIG. 2 is separated from the bottom surface of the ring fitting portion. It is an explanatory view of a rotation prevention mechanism. 実施例2によるスクロール型圧縮機の自転防止機構のリングの断面図である。FIG. 3 is a cross-sectional view of a ring of a rotation prevention mechanism of a scroll compressor according to a second embodiment. 図8Aは実施例3によるスクロール型圧縮機の自転防止機構のリングの両端面にテーパー状の退避部を備えた構成の説明図、図8Bは実施例3によるスクロール型圧縮機の自転防止機構のリングの両端面に円筒状の退避部を備えた構成の説明図、図8Cは実施例3によるスクロール型圧縮機の自転防止機構のリングの一端面に円筒状の退避部、他端面にテーパー状の退避部を備えた構成の説明図、図8Dは実施例3によるスクロール型圧縮機の自転防止機構のリングの一端面にテーパー状の退避部、他端面に円筒状の退避部を備えた構成の説明図である。FIG. 8A is an explanatory diagram of a configuration in which a ring of a rotation prevention mechanism for a scroll compressor according to Embodiment 3 is provided with tapered recessed portions on both end surfaces, and FIG. 8B is an explanatory diagram of a configuration of a rotation prevention mechanism for a scroll compressor according to Example 3. An explanatory diagram of a configuration in which a ring has a cylindrical retraction portion on both end surfaces, and FIG. 8C is an explanatory diagram of a configuration in which a ring has a cylindrical retraction portion on one end surface and a tapered shape on the other end surface of the ring of a rotation prevention mechanism for a scroll compressor according to Example 3. FIG. 8D is an explanatory diagram of a configuration provided with a retraction portion, and FIG. 8D is a configuration in which a ring of a rotation prevention mechanism for a scroll compressor according to Embodiment 3 has a tapered retraction portion on one end surface and a cylindrical retraction portion on the other end surface. FIG.
 本発明の実施の形態を添付図に基づいて以下に説明する。なお、添付図に示した形態は本発明の一例であり、本発明は当該形態に限定されない。 Embodiments of the present invention will be described below based on the accompanying drawings. Note that the form shown in the attached drawings is an example of the present invention, and the present invention is not limited to this form.
<実施例1>
 図1~図6を参照しつつ、実施例1のスクロール型圧縮機10を説明する。
<Example 1>
A scroll compressor 10 according to a first embodiment will be described with reference to FIGS. 1 to 6.
 図1に示されるように、スクロール型圧縮機10は、冷媒を作動流体とする冷凍サイクル内で使用するのに適しており、例えば、自動車用空調装置の冷凍サイクル内で用いられる。なお、スクロール型圧縮機10は、用途を限定されるものではない。 As shown in FIG. 1, the scroll compressor 10 is suitable for use in a refrigeration cycle that uses refrigerant as a working fluid, and is used, for example, in a refrigeration cycle of an automobile air conditioner. Note that the use of the scroll compressor 10 is not limited.
 スクロール型圧縮機10は、例えば横置きに設置可能なハウジング20と、ハウジング20に収納されているモータ40と、ハウジング20に収納されてモータ40を駆動制御するインバータ45と、ハウジング20に収納されてモータ40により駆動されるスクロール型圧縮機構60とを備えている。 The scroll compressor 10 includes, for example, a housing 20 that can be installed horizontally, a motor 40 housed in the housing 20, an inverter 45 housed in the housing 20 to drive and control the motor 40, and an inverter 45 housed in the housing 20. and a scroll-type compression mechanism 60 driven by a motor 40.
 ハウジング20は、例えば有底筒状の第1ハウジング21と、この第1ハウジング21の一方の開口を塞ぐ第2ハウジング22(ヘッド部材22)と、によって構成されている。 The housing 20 includes, for example, a first housing 21 having a cylindrical shape with a bottom, and a second housing 22 (head member 22) that closes one opening of the first housing 21.
 第1ハウジング21は、一端を底壁23によって閉鎖されるとともに、他端を全面的に開口している。この開口は、開閉可能なヘッド部材22によって閉鎖されている。第1ハウジング21の内部は、底壁23側の第1収納室24と、ヘッド部材22によって閉鎖された開口側の第2収納室25とに、仕切り部材30によって仕切られている。 The first housing 21 has one end closed by the bottom wall 23 and the other end completely open. This opening is closed by a head member 22 that can be opened and closed. The inside of the first housing 21 is partitioned by a partition member 30 into a first storage chamber 24 on the bottom wall 23 side and a second storage chamber 25 on the open side closed by the head member 22.
 以下、第1収納室24のことを「低圧室24」と言い換えることがある。第2収納室25は、ハウジング20と、このハウジング20内に固定された仕切り部材30とによって区画されている収納空間である。以下、この第2収納室25のことを「収納空間25」と言い換えることがある。 Hereinafter, the first storage chamber 24 may be referred to as the "low pressure chamber 24." The second storage chamber 25 is a storage space defined by the housing 20 and a partition member 30 fixed within the housing 20. Hereinafter, this second storage chamber 25 may be referred to as "storage space 25."
 仕切り部材30は、円盤状の部材であって、第1ハウジング21に対して相対回転と軸方向への相対移動の両方が規制されている。以下、仕切り部材30のことを「固定部材30」と言い換えることがある。 The partition member 30 is a disc-shaped member, and both relative rotation and relative movement in the axial direction with respect to the first housing 21 are restricted. Hereinafter, the partition member 30 may be referred to as the "fixing member 30."
 この仕切り部材30は、円板状の仕切り板部31と、この仕切り板部31の中央に一体に設けられている支持部32とによって、構成されている。この仕切り部材30は、第1収納室24と第2収納室25とを連通した複数の吸入孔33を有する。 This partition member 30 is composed of a disk-shaped partition plate portion 31 and a support portion 32 that is integrally provided at the center of this partition plate portion 31. The partition member 30 has a plurality of suction holes 33 that communicate the first storage chamber 24 and the second storage chamber 25.
 第1収納室24には、モータ40が格納されている。第2収納室25には、スクロール型圧縮機構60(以下、単に圧縮機構60とも称する)が収納されている。なお、前記仕切り部材30は、圧縮機構60を構成する要素として考えることが可能である。つまり、仕切り壁34を圧縮機構60の一部と考えても、本発明の趣旨を逸脱するものではない。 A motor 40 is stored in the first storage chamber 24. A scroll type compression mechanism 60 (hereinafter also simply referred to as compression mechanism 60) is housed in the second storage chamber 25. Note that the partition member 30 can be considered as an element constituting the compression mechanism 60. That is, even if the partition wall 34 is considered to be part of the compression mechanism 60, it does not depart from the spirit of the present invention.
 さらに、第1ハウジング21は、外部から第1収納室24へ冷媒を吸入する吸入ポート26を有する。ヘッド部材22は、圧縮機構60によって圧縮された冷媒が吐出される吐出室27と、この吐出室27から導かれた冷媒からオイルを分離するオイル分離室28と、このオイル分離室28によってオイルが分離除去されたガス状の冷媒を外部へ吐出する吐出ポート29とを有する。さらに第1ハウジング21は、インバータ45を収納するインバータ室21bを備えている。 Furthermore, the first housing 21 has a suction port 26 that sucks refrigerant into the first storage chamber 24 from the outside. The head member 22 includes a discharge chamber 27 from which refrigerant compressed by the compression mechanism 60 is discharged, an oil separation chamber 28 which separates oil from the refrigerant led from the discharge chamber 27, and an oil separation chamber 28 which separates oil from the refrigerant introduced from the discharge chamber 27. It has a discharge port 29 for discharging the separated and removed gaseous refrigerant to the outside. Further, the first housing 21 includes an inverter chamber 21b that accommodates the inverter 45.
 モータ40は、ハウジング20の長手方向を回転中心としたロータ41と、このロータ52の周囲を包囲している環状のステータ42とを備えており、圧縮機構60を駆動する。ステータ42は、第1ハウジング21の内周面21aに固定されている。 The motor 40 includes a rotor 41 whose rotation center is in the longitudinal direction of the housing 20 and an annular stator 42 surrounding the rotor 52, and drives the compression mechanism 60. The stator 42 is fixed to the inner peripheral surface 21a of the first housing 21.
 ロータ41には駆動軸51(出力軸51)が固定されている。この駆動軸51は、モータ40の出力軸を兼ねる。ロータ41は、駆動軸51の中心線CL1を基準として回転可能である。 A drive shaft 51 (output shaft 51) is fixed to the rotor 41. This drive shaft 51 also serves as the output shaft of the motor 40. The rotor 41 is rotatable with respect to the center line CL1 of the drive shaft 51.
 駆動軸51は、第1収納室24から第2収納室25へ向かって仕切り部材30を貫通するとともに、仕切り部材30の支持部32に設けられた第1軸受52と、ハウジング20の底壁23に設けられた第2軸受53と、によって回転可能に支持されている。さらに駆動軸51は、仕切り部材30を貫通した一端面に、偏心軸54を有している。この偏心軸54は、駆動軸51の一端面から圧縮機構60へ向かって延びており、駆動軸51に対し平行である。偏心軸54の中心線CL2は、駆動軸51の中心線CL1に対しオフセットしている。この偏心軸54には、環状のブッシュ55が回転自在に嵌合している。ブッシュ55の一部には、このブッシュ55から径方向へ突出したカウンタウェイト56が、一体に設けられている。 The drive shaft 51 passes through the partition member 30 from the first storage chamber 24 to the second storage chamber 25 , and connects a first bearing 52 provided on the support portion 32 of the partition member 30 and the bottom wall 23 of the housing 20 . It is rotatably supported by a second bearing 53 provided in the. Further, the drive shaft 51 has an eccentric shaft 54 on one end surface passing through the partition member 30. The eccentric shaft 54 extends from one end surface of the drive shaft 51 toward the compression mechanism 60 and is parallel to the drive shaft 51 . The center line CL2 of the eccentric shaft 54 is offset from the center line CL1 of the drive shaft 51. An annular bush 55 is rotatably fitted onto the eccentric shaft 54. A counterweight 56 is integrally provided in a part of the bush 55 and projects from the bush 55 in the radial direction.
 圧縮機構60は、第2収納室25に収納された一対のスクロール部材70,80を有する。 The compression mechanism 60 has a pair of scroll members 70 and 80 housed in the second storage chamber 25.
 固定スクロール70は、平坦な円板状の固定板71と円筒状の外周壁72と渦巻形状の固定渦巻壁73とを有する。固定板71は、中央部分に吐出孔74を有している。外周壁72は、固定板71の一方の板面71a(仕切り部材30側へ向いた面71a)の外縁から仕切り部材30側へ、全周にわたって一体に立設した円筒状の部分である。この外周壁72には、径外方から内方へ冷媒を吸入するための冷媒吸入口75が形成されている。固定渦巻壁73は、固定板71の一方の板面71aから仕切り部材30側へ向かって一体に立設している。固定スクロール70は、固定板71が偏心軸54の中心線CL2に対し直交する向きになるように、ヘッド部材22と仕切り部材30との間に相対回転不能に支持されている。 The fixed scroll 70 has a flat disk-shaped fixed plate 71, a cylindrical outer peripheral wall 72, and a spiral-shaped fixed spiral wall 73. The fixed plate 71 has a discharge hole 74 in the central portion. The outer peripheral wall 72 is a cylindrical portion that stands integrally over the entire circumference from the outer edge of one plate surface 71a (the surface 71a facing the partition member 30 side) of the fixed plate 71 toward the partition member 30 side. A refrigerant suction port 75 is formed in the outer peripheral wall 72 for sucking refrigerant from the radially outer side to the inner side. The fixed spiral wall 73 is integrally erected from one plate surface 71a of the fixed plate 71 toward the partition member 30 side. The fixed scroll 70 is supported so as not to be relatively rotatable between the head member 22 and the partition member 30 so that the fixed plate 71 is oriented orthogonal to the center line CL2 of the eccentric shaft 54.
 可動スクロール80は、平坦な円板状の可動板81と、渦巻形状の可動渦巻壁82とを有する。可動板81の外径は、固定スクロール70の外周壁72の内側において、可動スクロール80が所定の偏心半径で公転しても干渉しない大きさに形成されている。可動渦巻壁82は、可動板81の固定板71の板面71aに対向する面81a(以下「第1板面81a」という)から、固定板71の板面71aへ向かって一体に立設している。第1板面81aとは反対の板面81b(以下「第2板面81b」という)の中央には、第3軸受57が装着されている。この第3軸受57の内周面には、前述したブッシュ55の外周面が嵌合している。 The movable scroll 80 has a flat disk-shaped movable plate 81 and a spiral-shaped movable spiral wall 82. The outer diameter of the movable plate 81 is formed to a size that does not interfere with the movable scroll 80 inside the outer circumferential wall 72 of the fixed scroll 70 even if the movable scroll 80 revolves around a predetermined eccentric radius. The movable spiral wall 82 is integrally erected from a surface 81a (hereinafter referred to as "first plate surface 81a") opposite to the plate surface 71a of the fixed plate 71 of the movable plate 81 toward the plate surface 71a of the fixed plate 71. ing. A third bearing 57 is mounted at the center of a plate surface 81b (hereinafter referred to as "second plate surface 81b") opposite to the first plate surface 81a. The outer circumferential surface of the bush 55 described above is fitted into the inner circumferential surface of the third bearing 57 .
 固定渦巻壁73と可動渦巻壁82が噛み合わされることにより、各板71,81と各渦巻壁73,82とに囲まれた圧縮室83が形成される。 By meshing the fixed spiral wall 73 and the movable spiral wall 82, a compression chamber 83 surrounded by each plate 71, 81 and each spiral wall 73, 82 is formed.
 図1及び図2に示されるように、駆動軸51が回転することにより、偏心軸54に嵌合したブッシュ55及び第3軸受57を介して、可動スクロール80の中心は予め設定された偏心半径にて公転(偏心した回転)をすることができる。 As shown in FIGS. 1 and 2, as the drive shaft 51 rotates, the center of the movable scroll 80 is moved to a preset eccentric radius via the bush 55 fitted to the eccentric shaft 54 and the third bearing 57. It can revolve (eccentric rotation) at .
 ここで、「予め設定された偏心半径」は固定の値ではなく、可動スクロール80の偏心量が、設定された理想の偏心量となるように、自動的に調整されるものを含む。例えば、可動スクロール80が公転するときに、各渦巻壁73,82同士が最適に接するように、偏心軸54とブッシュ55との嵌合によって、自動調心機能を備えることが可能である。 Here, the "preset eccentric radius" is not a fixed value, but includes one that is automatically adjusted so that the amount of eccentricity of the movable scroll 80 becomes the set ideal amount of eccentricity. For example, when the movable scroll 80 revolves, a self-aligning function can be provided by fitting the eccentric shaft 54 and the bush 55 so that the spiral walls 73 and 82 are in optimal contact with each other.
 上述のように駆動軸51が回転することにより、可動スクロール80は公転をする。この結果、吸入ポート26から吸入された冷媒は、低圧室24内のモータ40の隙間を通り、仕切り部材30の吸入孔33を経由し、固定スクロール70の冷媒吸入口75を通って、圧縮室83へ取り込まれる。可動スクロール80の公転に伴い、圧縮室83は徐々に内容積を減じながら中心側へ移動していく。これにより、圧縮室83内の冷媒は圧縮される。中心まで移動した圧縮室83内の圧力が、吐出室27内の圧力を超えるまで高まると、圧力差によって吐出弁91が開き、圧縮室83内の冷媒は、吐出孔74を通って吐出室27へ流入する。吐出室27内の冷媒は、オイル分離室28を介して吐出ポート29から外方へ吐出される。 As the drive shaft 51 rotates as described above, the movable scroll 80 revolves. As a result, the refrigerant sucked from the suction port 26 passes through the gap between the motor 40 in the low-pressure chamber 24, passes through the suction hole 33 of the partition member 30, passes through the refrigerant suction port 75 of the fixed scroll 70, and enters the compression chamber. 83. As the movable scroll 80 revolves, the compression chamber 83 moves toward the center while gradually decreasing its internal volume. Thereby, the refrigerant in the compression chamber 83 is compressed. When the pressure in the compression chamber 83 that has moved to the center increases to exceed the pressure in the discharge chamber 27, the discharge valve 91 opens due to the pressure difference, and the refrigerant in the compression chamber 83 passes through the discharge hole 74 to the discharge chamber 27. flows into. The refrigerant in the discharge chamber 27 is discharged outward from the discharge port 29 via the oil separation chamber 28 .
 次に、仕切り部材30の仕切り板部31と可動スクロール80の関係について、詳しく説明する。 Next, the relationship between the partition plate portion 31 of the partition member 30 and the movable scroll 80 will be described in detail.
 図1及び図2に示されるように、仕切り板部31の一端面31aは、第2収納室25側を向いている。この一端面31aは、可動スクロール80の摺動運動を支持することが可能である。この一端面31aのことを、以下「平坦面31a」又は「摺動支持面31a」と言い換えることがある。可動スクロール80の第2端面81bが平坦面31a上に接しているとき、可動スクロールの中心線CL3は平坦面31aに対して直交する。 As shown in FIGS. 1 and 2, one end surface 31a of the partition plate portion 31 faces the second storage chamber 25 side. This one end surface 31a can support the sliding movement of the movable scroll 80. Hereinafter, this one end surface 31a may be referred to as a "flat surface 31a" or a "sliding support surface 31a." When the second end surface 81b of the movable scroll 80 is in contact with the flat surface 31a, the center line CL3 of the movable scroll is perpendicular to the flat surface 31a.
 仕切り板部31の平坦面31aと可動スクロール80の第2板面81bとの間には、圧縮反力によるスラスト荷重を受けることが可能なスラスト部材101を、介在していることが好ましい。このスラスト部材101は、例えば薄板状の環状のスラストレースによって構成される。以下、スラスト部材101のことを、適宜「スラストレース101」と言い換える。このスラストレース101は、耐摩耗性に優れる素材からなり、仕切り板部31の平坦面31aと固定スクロール70の円筒状の外周壁72の先端面との間に、挟み込み可能である。 It is preferable that a thrust member 101 capable of receiving a thrust load due to a compression reaction force is interposed between the flat surface 31a of the partition plate portion 31 and the second plate surface 81b of the movable scroll 80. This thrust member 101 is constituted by, for example, a thin plate-like annular thrust race. Hereinafter, the thrust member 101 will be referred to as "thrust race 101" as appropriate. The thrust race 101 is made of a material with excellent wear resistance, and can be sandwiched between the flat surface 31a of the partition plate portion 31 and the end surface of the cylindrical outer circumferential wall 72 of the fixed scroll 70.
 図3及び図4に示されるように、第2板面81b(対向面81b)は、最外周に設けられ、仕切り部材30の平坦面31aに対して摺動可能な環状の摺動面111と、この摺動面111の径方向内側且つ所定の深さに位置する退避面112を有している。ここで、「所定の深さ」とは、特定の一定の深さでもよいし、特定の範囲にまたがった深さでもよいが、ゼロは含まない。 As shown in FIGS. 3 and 4, the second plate surface 81b (opposing surface 81b) is provided at the outermost periphery and has an annular sliding surface 111 that is slidable on the flat surface 31a of the partition member 30. , has a retraction surface 112 located radially inside of this sliding surface 111 and at a predetermined depth. Here, the "predetermined depth" may be a specific constant depth or a depth spanning a specific range, but does not include zero.
 さらに、この退避面112の径方向内側には、退避面112から突出する環状の縁面113を有している。 Further, the retracting surface 112 has an annular edge surface 113 protruding from the retracting surface 112 on the radially inner side thereof.
 可動スクロール80の中心線CL3は、可動板81の中心であって、摺動面111に直交する。 The center line CL3 of the movable scroll 80 is the center of the movable plate 81 and is orthogonal to the sliding surface 111.
 図4に示されるように、可動スクロール80の摺動面111は、スラストレース101に対し摺接可能に密接している。摺動面111がスラストレース101に密接している状態では、このスラストレース101と摺動面111との密接箇所の径方向内側の空間部114を、油溜めスペースとすることができ、潤滑油供給経路(図示せず)を介して供給された潤滑油を停留させることが可能である。空間部114に停留させた潤滑油によって、可動スクロール80の摺動面111とスラストレース102との摺動部位、及び、後述するリング140とピン150の接触箇所を潤滑し、摺動抵抗の抑制や摩耗の抑制を図ることができる。 As shown in FIG. 4, the sliding surface 111 of the movable scroll 80 is in close sliding contact with the thrust race 101. When the sliding surface 111 is in close contact with the thrust race 101, the space 114 on the radially inner side of the place where the thrust race 101 and the sliding surface 111 are in close contact can be used as an oil sump space, and the space 114 can be used as an oil reservoir space. It is possible to retain lubricating oil supplied via a supply path (not shown). The lubricating oil retained in the space 114 lubricates the sliding area between the sliding surface 111 of the movable scroll 80 and the thrust race 102 and the contact area between the ring 140 and the pin 150, which will be described later, to suppress sliding resistance. It is possible to suppress wear and tear.
 なお、スラストレース101の有無は任意である。本実施例1では、可動スクロール80の摺動面111が、仕切り板部31の平坦面31aに対して直接に、又はスラストレース101を介して間接的に、摺接可能に密接する構成であればよい。本実施例1の説明において、可動スクロール80の摺動面111が、仕切り板部31の平坦面31aに摺接すると言う場合には、平坦面31aに対して直接に、又はスラストレース101を介して間接的に、摺接する構成を含むものとする。 Note that the presence or absence of the thrust race 101 is optional. In the first embodiment, the sliding surface 111 of the movable scroll 80 is configured to be in close sliding contact with the flat surface 31a of the partition plate portion 31, either directly or indirectly via the thrust race 101. Bye. In the description of the first embodiment, when it is said that the sliding surface 111 of the movable scroll 80 is in sliding contact with the flat surface 31a of the partition plate part 31, it is said that the sliding surface 111 of the movable scroll 80 is in sliding contact with the flat surface 31a of the partition plate part 31 directly or through the thrust race 101. This shall include a structure in which there is indirect sliding contact.
 図3及び図4に示されるように、スクロール型圧縮機10は、可動スクロール80の自転を防止する自転防止機構120を備えている。この自転防止機構120は、退避面112から可動スクロール80の中心線CL3に沿って(摺動面111に直交する方向に沿って)窪んだ複数のリング嵌合部130と、これらの複数のリング嵌合部130に各々嵌合された複数のリング140(規制リング140とも称する)と、仕切り部材30の平坦面31aから複数のリング140の中へ各々延びた複数のピン150(自転防止用ピン150とも称する)とを備えている。 As shown in FIGS. 3 and 4, the scroll compressor 10 includes a rotation prevention mechanism 120 that prevents the movable scroll 80 from rotating. This rotation prevention mechanism 120 includes a plurality of ring fitting portions 130 that are recessed from the retraction surface 112 along the center line CL3 of the movable scroll 80 (along the direction orthogonal to the sliding surface 111), and these plurality of rings. A plurality of rings 140 (also referred to as regulation rings 140) each fitted into the fitting portion 130, and a plurality of pins 150 (rotation prevention pins) each extending into the plurality of rings 140 from the flat surface 31a of the partition member 30. 150).
 図5に示されるように、リング嵌合部130は、有底の孔の構成であって、内周面131と底面132とによって構成されている。リング嵌合部130の内周面131は、摺動面111に対して直交した真円状に形成されているとともに、退避面112に開口している。リング嵌合部130の開口端133には、リング嵌合部130に対してリング140を容易に挿入するための、テーパ状の面取り部134を有していることが好ましい。リング嵌合部130の内周面131と面取り部134との、角135のことを「内周面131の開口側の縁135」という。 As shown in FIG. 5, the ring fitting portion 130 has a bottomed hole configuration, and is composed of an inner circumferential surface 131 and a bottom surface 132. An inner circumferential surface 131 of the ring fitting portion 130 is formed in a perfect circular shape orthogonal to the sliding surface 111 and is open to the retracting surface 112. It is preferable that the open end 133 of the ring fitting part 130 has a tapered chamfered part 134 for easily inserting the ring 140 into the ring fitting part 130. The corner 135 between the inner circumferential surface 131 of the ring fitting portion 130 and the chamfered portion 134 is referred to as the "opening side edge 135 of the inner circumferential surface 131."
 なお、面取り部134の有無は任意である。面取り部134を有していない場合には、内周面131の開口側の縁135は、リング嵌合部130の開口端133に合致することになる。 Note that the presence or absence of the chamfered portion 134 is optional. If the chamfered portion 134 is not provided, the edge 135 on the opening side of the inner peripheral surface 131 will match the opening end 133 of the ring fitting portion 130.
 底面132は、摺動面111に対して平行で平坦な面である。さらに、可動スクロール80の軽量化や加工箇所の低減を図るために、底面132から窪み、リング嵌合部130の内周面131の径よりも小さい、窪み部136を形成してもよい。 The bottom surface 132 is a flat surface parallel to the sliding surface 111. Furthermore, in order to reduce the weight of the movable scroll 80 and the number of parts to be machined, a recessed portion 136 may be formed that is recessed from the bottom surface 132 and has a diameter smaller than the inner circumferential surface 131 of the ring fitting portion 130.
 摺動面111からリング嵌合部130の内周面131の開口側の縁135までの深さ(第1深さ)はD1である。この縁135から底面132までの深さ(第2深さ)はD2であり、第1深さD1よりも大きい。 The depth (first depth) from the sliding surface 111 to the opening-side edge 135 of the inner circumferential surface 131 of the ring fitting portion 130 is D1. The depth from this edge 135 to the bottom surface 132 (second depth) is D2, which is greater than the first depth D1.
 図5に示されるように、リング140は、貫通した真円の円筒状の部材であって、リング嵌合部130に対して「すきまばめ」に嵌合される(遊嵌される)。すきまばめの程度は、リング嵌合部130の内周面131に嵌合されたリング140の外周面141が、軸方向へのスライド、回転運動、取り外しが可能であって、最大隙間(クリアランス)が小さいことが好ましい。リング140の厚みは、周方向にわたって均一である。 As shown in FIG. 5, the ring 140 is a perfectly circular cylindrical member that passes through the ring 140, and is fitted into the ring fitting portion 130 with a "loose fit" (loosely fitted). The degree of clearance fit is such that the outer circumferential surface 141 of the ring 140 fitted to the inner circumferential surface 131 of the ring fitting part 130 can be slid in the axial direction, rotated, and removed. ) is preferably small. The thickness of the ring 140 is uniform in the circumferential direction.
 リング140は、リング嵌合部130に嵌合されているときに、このリング嵌合部130の底面132に向かい合う方の端面142を「第1端面142」とし、第1端面142に対して軸方向反対側の端面143を「第2端面143」としている。第1端面142と第2端面143とは、互いに平行であるとともに、リング嵌合部130の底面132に対しても平行である。 When the ring 140 is fitted into the ring fitting part 130, the end surface 142 facing the bottom surface 132 of the ring fitting part 130 is defined as a "first end surface 142", and the ring 140 has an axis relative to the first end surface 142. The end surface 143 on the opposite side is referred to as a "second end surface 143." The first end surface 142 and the second end surface 143 are parallel to each other and also parallel to the bottom surface 132 of the ring fitting part 130.
 図4に示されるように、ピン150は断面真円状の円柱によって構成されており、リング140の内周面144に対して平行に位置している。このピン150の一端部151は、仕切り部材30に形成されているピン用孔34に圧入によって固定されている。つまり、ピン150は、一端部151を仕切り部材30に固定されるとともに、他端部152を自由端とした、いわゆる片持ち梁の構成である。 As shown in FIG. 4, the pin 150 is constituted by a cylinder with a perfect circular cross section, and is located parallel to the inner circumferential surface 144 of the ring 140. One end portion 151 of this pin 150 is fixed to a pin hole 34 formed in the partition member 30 by press fitting. That is, the pin 150 has a so-called cantilever structure in which one end 151 is fixed to the partition member 30 and the other end 152 is a free end.
 複数のピン150は、各々の他端部152の外周面が、対応するリング140の内周面144に接触可能に配置されている。リング140の内径と、ピン150の他端部152の外径の間のクリアランスは、可動スクロール80の可動量(偏心半径の倍)より大きい。複数のリング140と、対応する複数のピン150とが順次線接触することにより、可動スクロール80の自転を防止しつつ、中心線CL3に沿った揺動を許容することができる。 The plurality of pins 150 are arranged such that the outer circumferential surface of the other end portion 152 of each pin can come into contact with the inner circumferential surface 144 of the corresponding ring 140. The clearance between the inner diameter of the ring 140 and the outer diameter of the other end 152 of the pin 150 is larger than the amount of movement of the movable scroll 80 (twice the eccentric radius). By linearly contacting the plurality of rings 140 and the corresponding plurality of pins 150 in sequence, it is possible to prevent the movable scroll 80 from rotating and allow it to swing along the center line CL3.
 図4及び図5に示されるように、リング140には、内周面144のなかの少なくとも軸方向一端143側(第2端面143側)に全周にわたって、ピン150と接触しない退避部145が設けられている。 As shown in FIGS. 4 and 5, the ring 140 has a recessed portion 145 that does not come into contact with the pin 150 over the entire circumference at least on the one axial end 143 side (second end surface 143 side) of the inner peripheral surface 144. It is provided.
 一例を挙げると、図5に示されるように、この退避部145は、リング140の第2端面143側のみに形成されている。この退避部145は、リング140の内周面144の全周にわたり、この内周面144よりも径方向外側に位置する周面によって構成されている。退避部145のことを、適宜「周面145」と言い換える。 For example, as shown in FIG. 5, the recessed portion 145 is formed only on the second end surface 143 side of the ring 140. The retracting portion 145 extends over the entire circumference of the inner circumferential surface 144 of the ring 140 and is constituted by a circumferential surface located radially outward from the inner circumferential surface 144 . The recessed portion 145 will be referred to as "surrounding surface 145" as appropriate.
 この周面145(退避部145)は、リング140の軸方向の所定の始点145aと終点145bとを接続する線を、リング140の中心線RLに沿って回転させた面である。始点145aは、リング140の第2端面143上であって、このリング140の内周面144よりも所定量、径方向外側の位置である。終点145bは、リング140の内周面144上であって、第2端面143から第1側端面142側へ所定量離れた位置である。この終点145bは、リング140の内周面144と周面145(退避部145)との境界に位置する。この終点145bのことを、適宜「境界145b」と言い換える。 This circumferential surface 145 (retreat portion 145) is a surface obtained by rotating a line connecting a predetermined start point 145a and end point 145b of the ring 140 in the axial direction along the center line RL of the ring 140. The starting point 145a is on the second end surface 143 of the ring 140 and is a predetermined amount radially outward from the inner circumferential surface 144 of the ring 140. The end point 145b is on the inner circumferential surface 144 of the ring 140, and is located a predetermined distance away from the second end surface 143 toward the first side end surface 142. This end point 145b is located at the boundary between the inner circumferential surface 144 and the circumferential surface 145 (retreat portion 145) of the ring 140. This end point 145b is appropriately referred to as a "boundary 145b."
 より具体的には、この周面145(退避部145)は、リング140の、軸方向の端143(第2端面143)から奥側(第1端面142側)へ向かって縮径する、先細りテーパー面によって構成されている。このように、退避部145は、リング140の内周面144の全周にわたり、この内周面144よりも径方向外側に位置する周面(先細りテーパー面)によって構成されている。リング140を外周面141側から見て、内周面144と退避部145とのなす角度θ1は、鈍角になる。 More specifically, this circumferential surface 145 (retreat portion 145) is tapered so that the diameter of the ring 140 decreases from the axial end 143 (second end surface 143) toward the back side (first end surface 142 side). Consists of a tapered surface. In this way, the retracting portion 145 is formed of a circumferential surface (a tapered surface) located radially outward from the inner circumferential surface 144 of the ring 140 over the entire circumference. When the ring 140 is viewed from the outer circumferential surface 141 side, the angle θ1 between the inner circumferential surface 144 and the recessed portion 145 is an obtuse angle.
 始点145aから終点145bまでの軸方向の長さ(退避部145の長さ)はL1である。終点145bからリング140の第1端面142までの軸方向の長さ(ストレート長さ)はL2であり、退避部145の長さL1よりも長い。ストレート長さL2を長く設定することにより、リング140の内周面144に対してピン150(図4参照)を安定的に線接触状態とすることができる。 The length in the axial direction from the starting point 145a to the ending point 145b (the length of the retracting portion 145) is L1. The axial length (straight length) from the end point 145b to the first end surface 142 of the ring 140 is L2, which is longer than the length L1 of the recessed portion 145. By setting the straight length L2 long, the pin 150 (see FIG. 4) can be stably brought into line contact with the inner peripheral surface 144 of the ring 140.
 図6Aに示されるように、リング140の第1端面142がリング嵌合部130の底面132に接している状態では、境界145b(退避部145の終点145b)は、リング嵌合部130の内周面131の開口側の縁135よりも、リング嵌合部130の底面132側に位置している。つまり、リング嵌合部130の底面132から境界145bまでの距離L2(ストレート長さL2)は、リング嵌合部130の底面132からリング嵌合部130の開口側の縁135までの距離D2(第2深さD2)よりも短い。この状態であっても、リング140の第2端面143は、リング嵌合部130から仕切り部材30側へ突出している。 As shown in FIG. 6A, when the first end surface 142 of the ring 140 is in contact with the bottom surface 132 of the ring fitting part 130, the boundary 145b (the end point 145b of the retracted part 145) is inside the ring fitting part 130. It is located closer to the bottom surface 132 of the ring fitting portion 130 than the edge 135 of the peripheral surface 131 on the opening side. In other words, the distance L2 (straight length L2) from the bottom surface 132 of the ring fitting part 130 to the boundary 145b is the distance D2 ( the second depth D2). Even in this state, the second end surface 143 of the ring 140 protrudes from the ring fitting portion 130 toward the partition member 30 side.
 図6Bに示されるように、リング140の第2端面143が仕切り部材30の平坦面31aに接している状態では、境界145bは、リング嵌合部130の内周面131の開口側の縁135よりも、リング嵌合部130の底面132側に位置している。つまり、平坦面31aから境界145bまでの距離L1(退避部145の長さL1)は、平坦面31aからリング嵌合部130の内周面131の開口側の縁135までの距離D1(第1深さD1)よりも長い。 As shown in FIG. 6B, when the second end surface 143 of the ring 140 is in contact with the flat surface 31a of the partition member 30, the boundary 145b is the edge 135 on the opening side of the inner peripheral surface 131 of the ring fitting part 130. It is located closer to the bottom surface 132 of the ring fitting portion 130 than the ring fitting portion 130 . In other words, the distance L1 from the flat surface 31a to the boundary 145b (the length L1 of the retracted portion 145) is the distance D1 from the flat surface 31a to the edge 135 on the opening side of the inner peripheral surface 131 of the ring fitting portion 130 (the first depth D1).
 図5及び図6Aに示されるように、リング140には、リング嵌合部130に対するリング140が逆向きに組付けられることを防止する逆組み防止部160が設けられている。例えば、逆組み防止部160は、リング140の外周面141から径外方へ突出した小さい突起161によって構成される。この突起161は、外周面141に全周にわたって形成されたフランジを含む。この突起161は、リング140の第1端面142がリング嵌合部130の底面132に接している状態では、退避面112や面取り部134には当たらない位置、つまり、リング140の第2端面143の近傍に位置している。 As shown in FIGS. 5 and 6A, the ring 140 is provided with a reverse assembly prevention portion 160 that prevents the ring 140 from being assembled in the opposite direction to the ring fitting portion 130. For example, the reverse assembly prevention portion 160 is constituted by a small protrusion 161 that protrudes radially outward from the outer peripheral surface 141 of the ring 140. This protrusion 161 includes a flange formed on the outer peripheral surface 141 over the entire circumference. When the first end surface 142 of the ring 140 is in contact with the bottom surface 132 of the ring fitting part 130, the protrusion 161 is located at a position where it does not contact the retraction surface 112 or the chamfered part 134, that is, the second end surface 142 of the ring 140. It is located near.
 このため、図6Aに示されるように、リング嵌合部130に対してリング140を適正に組み付けた場合には、突起161は退避面112や面取り部134に干渉しない。一方、リング嵌合部130に対してリング140を逆向きに組み付けようとした場合には、突起161は退避面112又は面取り部134に干渉し、リング140を組み付けることができない。従って、リング嵌合部130に対するリング140の逆組みを防止することができる。 Therefore, as shown in FIG. 6A, when the ring 140 is properly assembled to the ring fitting part 130, the protrusion 161 does not interfere with the retraction surface 112 or the chamfered part 134. On the other hand, if an attempt is made to assemble the ring 140 in the opposite direction to the ring fitting portion 130, the protrusion 161 interferes with the retraction surface 112 or the chamfered portion 134, making it impossible to assemble the ring 140. Therefore, it is possible to prevent the ring 140 from being assembled in the opposite direction to the ring fitting part 130.
 次に、可動スクロール80が揺動運動をするときの、リング嵌合部130に対する、リング140の傾き現象の発生防止の原理について、説明する。 Next, the principle of preventing the occurrence of a tilting phenomenon of the ring 140 with respect to the ring fitting portion 130 when the movable scroll 80 makes a swinging motion will be explained.
 図4に示されるように、ピン150は、一端部151を仕切り部材30に固定された、片持ち梁の構成である。例えば、可動スクロール80が矢印Ru方向へ回ったときには、リング140の内周面144が、ピン150の他端部152(自由端152)に線接触する。他端部152は、リング140の内周面144から作用する荷重を、受け止める。 As shown in FIG. 4, the pin 150 has a cantilever structure with one end 151 fixed to the partition member 30. For example, when the movable scroll 80 rotates in the direction of arrow Ru, the inner peripheral surface 144 of the ring 140 comes into line contact with the other end 152 (free end 152) of the pin 150. The other end 152 receives the load acting from the inner peripheral surface 144 of the ring 140.
 この荷重によって、ピン150の他端部152は、例えば想像線によって示されるように弾性変形し得る。ピン150は弾性変形をすることによって、境界145b(退避部145の終点145b)のみに接する。境界145bは、ピン150から反力frを受ける。この反力frの向きは、可動スクロール80が回る方向(矢印Ru方向)に対して、逆向きである。この反力frを受けたリング140は、リング嵌合部130の開口側の縁135を支点として、リング嵌合部130の径方向(矢印Tr方向)へ倒れようとする。しかし、この状態では、リング140の外周面141は、リング嵌合部130の内周面131に対して、反力frが働く方向に接している。 Due to this load, the other end 152 of the pin 150 can be elastically deformed, for example, as shown by the imaginary line. By elastically deforming, the pin 150 contacts only the boundary 145b (the end point 145b of the retracted portion 145). Boundary 145b receives reaction force fr from pin 150. The direction of this reaction force fr is opposite to the direction in which the movable scroll 80 rotates (the direction of the arrow Ru). The ring 140 that has received this reaction force fr tends to fall in the radial direction of the ring fitting part 130 (in the direction of the arrow Tr) using the edge 135 on the opening side of the ring fitting part 130 as a fulcrum. However, in this state, the outer circumferential surface 141 of the ring 140 is in contact with the inner circumferential surface 131 of the ring fitting portion 130 in the direction in which the reaction force fr acts.
 リング140は、図6Aに示される底面132に接する位置から、図6Bに示される平坦面31aに接する位置までの範囲で、リング嵌合部130に対して軸方向へ変位可能である。しかし、リング嵌合部130に対して、リング140が軸方向のどの位置にあっても、境界145bは、開口側の縁135よりも、リング嵌合部130の底面132側に位置している。つまり、ピン150とリング140の力の伝達位置145b(境界145b)は、リング140の端面143(第2端面143)から底面132側へ離れている。リング140は、リング嵌合部130の径方向(図4の矢印Tr方向)へ倒れないように、リング嵌合部130の内周面131によって支えられる。この結果、リング嵌合部130に対する、リング140の傾き現象の発生を防止することができる。 The ring 140 can be displaced in the axial direction with respect to the ring fitting part 130 in a range from a position in contact with the bottom surface 132 shown in FIG. 6A to a position in contact with the flat surface 31a shown in FIG. 6B. However, no matter where the ring 140 is located in the axial direction with respect to the ring fitting part 130, the boundary 145b is located closer to the bottom surface 132 of the ring fitting part 130 than the edge 135 on the opening side. . That is, the force transmission position 145b (boundary 145b) between the pin 150 and the ring 140 is away from the end surface 143 (second end surface 143) of the ring 140 toward the bottom surface 132 side. The ring 140 is supported by the inner circumferential surface 131 of the ring fitting part 130 so as not to fall in the radial direction of the ring fitting part 130 (in the direction of arrow Tr in FIG. 4). As a result, it is possible to prevent the ring 140 from tilting relative to the ring fitting portion 130.
 上記実施例1の説明をまとめると、次の通りである。 The description of Example 1 above is summarized as follows.
 図1に示されるように、スクロール型圧縮機10は、ハウジング20と、このハウジング20内に固定された仕切り部材30と、ハウジング20内に仕切り部材30によって区画されている収納空間25(第2収納室25)と、この収容空間25内に組み合わされて収容される固定スクロール70と可動スクロール80と、可動スクロール80の自転を防止する自転防止機構120を備えている。可動スクロール80は、円板状の可動板81と、可動板81から立設した可動渦巻壁82を備えている。可動板81の可動渦巻壁82側とは反対側の板面81b(第2板面81b)は、仕切り部材30の平坦面31aに対向する対向面81bを有している。 As shown in FIG. 1, the scroll compressor 10 includes a housing 20, a partition member 30 fixed within the housing 20, and a storage space 25 (a second A storage chamber 25), a fixed scroll 70 and a movable scroll 80 that are combined and housed in the storage space 25, and a rotation prevention mechanism 120 that prevents the movable scroll 80 from rotating. The movable scroll 80 includes a disk-shaped movable plate 81 and a movable spiral wall 82 erected from the movable plate 81. A plate surface 81b (second plate surface 81b) of the movable plate 81 opposite to the movable spiral wall 82 side has an opposing surface 81b that faces the flat surface 31a of the partition member 30.
 図3及び図4に示されるように、対向面81bは、最外周に設けられ、仕切り部材30の平坦面31aに対して摺動可能な環状の摺動面111と、摺動面111の径方向内側且つ摺動面111から所定の深さに位置する退避面112と、を有している。 As shown in FIGS. 3 and 4, the opposing surface 81b includes an annular sliding surface 111 that is provided on the outermost periphery and is slidable on the flat surface 31a of the partition member 30, and a diameter of the sliding surface 111. It has a retraction surface 112 located on the inside in the direction and at a predetermined depth from the sliding surface 111.
 図4に示されるように、自転防止機構120は、退避面112から可動スクロール80の摺動面111に直交する方向に沿って窪んだリング嵌合部130と、リング嵌合部130に対してすきまばめに嵌合された筒状のリング140と、リング140の内周面144に接触できるように、仕切り部材30の平坦面31aからリング140の中へ延びた自転防止用ピン150とを備えている。リング140は、リング嵌合部130の奥側に配置される第1端面142と、第1端面142の軸方向反対側である第2端面143を有し、内周面144のなかの少なくとも第2端面143側に全周にわたって、自転防止用ピン150と接触しない退避部145が設けられている。 As shown in FIG. 4, the rotation prevention mechanism 120 has a ring fitting portion 130 that is recessed from the retraction surface 112 in a direction perpendicular to the sliding surface 111 of the movable scroll 80, and A cylindrical ring 140 fitted with a loose fit and an anti-rotation pin 150 extending into the ring 140 from the flat surface 31a of the partition member 30 so as to be able to contact the inner peripheral surface 144 of the ring 140. We are prepared. The ring 140 has a first end surface 142 disposed on the back side of the ring fitting part 130 and a second end surface 143 that is axially opposite to the first end surface 142. A recessed portion 145 that does not come into contact with the anti-rotation pin 150 is provided on the second end surface 143 side over the entire circumference.
 リング140は、リング嵌合部130の内周面131に対して、すきまばめに嵌合されている。このため、リング嵌合部130の内周面131とリング140の外周面141との間には、隙間(クリアランス)を有している。しかし、リング140の内周面144には退避部145が形成されている。このため、自転防止用ピン150とリング140の力の伝達位置を、リング140の端面143(第2端面143)から遠ざけて、リング嵌合部130に対するリング140の傾き現象の発生を防止できる。 The ring 140 is fitted into the inner circumferential surface 131 of the ring fitting part 130 in a loose fit. Therefore, there is a gap (clearance) between the inner peripheral surface 131 of the ring fitting part 130 and the outer peripheral surface 141 of the ring 140. However, a recessed portion 145 is formed on the inner circumferential surface 144 of the ring 140. Therefore, the force transmission position of the anti-rotation pin 150 and the ring 140 can be moved away from the end surface 143 (second end surface 143) of the ring 140, thereby preventing the ring 140 from tilting relative to the ring fitting portion 130.
 図4に示されるように、リング嵌合部130は、リング140の第1端面142に向かい合う底面132を有している。退避部145は、リング140の内周面144の全周にわたり、この内周面144よりも径方向外側に位置する周面(周面145に相当)によって構成されている。 As shown in FIG. 4, the ring fitting part 130 has a bottom surface 132 facing the first end surface 142 of the ring 140. The retracting portion 145 extends over the entire circumference of the inner circumferential surface 144 of the ring 140 and is constituted by a circumferential surface (corresponding to the circumferential surface 145) located radially outward from the inner circumferential surface 144.
 図6Aに示されるように、リング140の第1端面142がリング嵌合部130の底面132に接している状態では、退避部145と内周面144との境界145bは、リング嵌合部130の内周面131の開口側の縁135よりも、リング嵌合部130の底面132側に位置している。 As shown in FIG. 6A, when the first end surface 142 of the ring 140 is in contact with the bottom surface 132 of the ring fitting part 130, the boundary 145b between the recessed part 145 and the inner peripheral surface 144 It is located closer to the bottom surface 132 of the ring fitting portion 130 than the edge 135 on the opening side of the inner circumferential surface 131 of the ring fitting portion 130 .
 このように、リング140の第1端面142がリング嵌合部130の底面132に接している状態で、退避部145と内周面144との境界145b(退避部145の終点145b)は、リング嵌合部130の開口側の縁135よりも底面132側に位置する。このため、自転防止用ピン150が退避部145と内周面144との境界145bのみに点接触することにより、自転防止用ピン150によって押されても、自転防止用ピン150からリング140への作用点は、リング嵌合部130の内方になる。リング140がリング嵌合部130とのクリアランスの範囲で傾く、いわゆるリング嵌合部130に対するリング140の傾き現象の発生を防止できる。 In this way, with the first end surface 142 of the ring 140 in contact with the bottom surface 132 of the ring fitting part 130, the boundary 145b between the recessed part 145 and the inner peripheral surface 144 (the end point 145b of the retracted part 145) It is located closer to the bottom surface 132 than the edge 135 on the opening side of the fitting portion 130 . Therefore, since the rotation prevention pin 150 makes point contact only with the boundary 145b between the retracted portion 145 and the inner circumferential surface 144, even if it is pushed by the rotation prevention pin 150, the rotation prevention pin 150 does not reach the ring 140. The point of action is inside the ring fitting part 130. It is possible to prevent the ring 140 from tilting within the clearance range with the ring fitting portion 130, which is a so-called tilting phenomenon of the ring 140 with respect to the ring fitting portion 130.
 図6Bに示されるように、リング140の第2端面143が仕切り部材30の平坦面31aに接している状態では、退避部145と内周面144との境界145bは、リング嵌合部130の内周面131の開口側の縁135よりも、リング嵌合部130の底面132側に位置している。 As shown in FIG. 6B, when the second end surface 143 of the ring 140 is in contact with the flat surface 31a of the partition member 30, the boundary 145b between the recessed portion 145 and the inner circumferential surface 144 is It is located closer to the bottom surface 132 of the ring fitting portion 130 than the edge 135 of the inner peripheral surface 131 on the opening side.
 リング140がリング嵌合部130から最大に抜けて、仕切り部材30の平坦面31aに接する位置まで抜けたとしても、自転防止用ピン150とリング140の力の伝達位置145b(境界145b)がリング嵌合部130の奥側に位置する。このため、自転防止用ピン150から境界145bに荷重が作用しても、リング嵌合部130に対するリング140の傾き現象の発生を防止できる。 Even if the ring 140 comes out of the ring fitting part 130 to the maximum extent and comes into contact with the flat surface 31a of the partition member 30, the force transmission position 145b (boundary 145b) between the rotation prevention pin 150 and the ring 140 is It is located on the back side of the fitting part 130. Therefore, even if a load is applied from the anti-rotation pin 150 to the boundary 145b, it is possible to prevent the ring 140 from tilting relative to the ring fitting portion 130.
 図5に示されるように、退避部145は、リング140の、第2端面143から奥側(第1端面142側)へ向かって縮径する、先細りテーパー面によって構成されている。このため、リング140の内周面144と退避部145とのなす角度θは、鈍角になる。角度θが鋭角である場合に比べて、リング140の内周面144と退避部145との角145b(境界145b)に、自転防止用ピン150が点接触をしたときに、接触圧力を緩和することができる。なお、境界145bの部分を円弧状断面に構成することによって、境界145bが丸みを有するので、接触圧力をより一層緩和することができる。 As shown in FIG. 5, the retraction portion 145 is constituted by a tapered surface of the ring 140 whose diameter decreases from the second end surface 143 toward the back side (first end surface 142 side). Therefore, the angle θ formed between the inner circumferential surface 144 of the ring 140 and the recessed portion 145 becomes an obtuse angle. Compared to the case where the angle θ is an acute angle, the contact pressure is reduced when the anti-rotation pin 150 makes point contact with the corner 145b (boundary 145b) between the inner circumferential surface 144 of the ring 140 and the recessed portion 145. be able to. Note that by configuring the boundary 145b to have an arc-shaped cross section, the boundary 145b has a roundness, so that the contact pressure can be further alleviated.
 図4に示されるように、退避部145は、リング140の第2端面143側のみに形成されている。このため、リング140への退避部145の形成が片側だけで済む。その分、リング140と自転防止用ピン150とが線接触する、ストレート長さL2(図5参照)を、長く設定することができ、この結果、線圧を小さくすることができる。 As shown in FIG. 4, the recessed portion 145 is formed only on the second end surface 143 side of the ring 140. Therefore, the recessed portion 145 only needs to be formed on one side of the ring 140. Correspondingly, the straight length L2 (see FIG. 5) at which the ring 140 and the anti-rotation pin 150 are in line contact can be set longer, and as a result, the linear pressure can be reduced.
 図4に示されるように、リング140には、リング嵌合部130に対するリング140が逆向きに組付けられることを防止する逆組み防止部160が設けられている。このため、人為的ミスによる、リング嵌合部130に対するリング140の逆向き組付けを、容易に防止することができる。 As shown in FIG. 4, the ring 140 is provided with a reverse assembly prevention part 160 that prevents the ring 140 from being assembled in the opposite direction to the ring fitting part 130. Therefore, it is possible to easily prevent the ring 140 from being attached to the ring fitting portion 130 in the wrong direction due to human error.
<実施例2>
 図7を参照しつつ、実施例2のスクロール型圧縮機200を説明する。図7は上記図5に相当する。
<Example 2>
A scroll compressor 200 according to a second embodiment will be described with reference to FIG. 7. FIG. 7 corresponds to FIG. 5 above.
 実施例2のスクロール型圧縮機200は、上記図1~図6に示される実施例1のリング140を、図7に示されるリング240に変更したことを特徴とする。その他の基本的な構成については、上記実施例1によるスクロール型圧縮機10と共通する。実施例1によるスクロール型圧縮機10と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 The scroll compressor 200 of the second embodiment is characterized in that the ring 140 of the first embodiment shown in FIGS. 1 to 6 above is replaced with a ring 240 shown in FIG. 7. Other basic configurations are the same as the scroll compressor 10 according to the first embodiment. For parts common to the scroll compressor 10 according to the first embodiment, the reference numerals are used and detailed explanations are omitted.
 実施例2のリング240は、退避部245に特徴を有しており、それ以外の構成は実施例1のリング140の構成と同じである。退避部245は、図5に示される実施例1の退避部145に相当する。 The ring 240 of the second embodiment is characterized by a recessed portion 245, and the other configuration is the same as the structure of the ring 140 of the first embodiment. The retracting section 245 corresponds to the retracting section 145 of the first embodiment shown in FIG.
 この退避部245は、リング240の内周面144の全周にわたり、この内周面144よりも径方向外側に位置する周面によって構成されている。退避部245のことを、適宜「周面245」と言い換える。この周面245の、始点145aの位置及び終点145b(境界145b)の位置は、上記図5に示される実施例1の周面145の、始点145a及び終点145bの各位置と同じである。この周面245(退避部245)は、リング240の軸方向の所定の始点145aと終点145bとを接続する線を、リング140の中心線RLに沿って回転させた面である。 This retracting portion 245 extends over the entire circumference of the inner circumferential surface 144 of the ring 240 and is constituted by a circumferential surface located radially outward from the inner circumferential surface 144. The recessed portion 245 may be referred to as a "surrounding surface 245" as appropriate. The position of the start point 145a and the position of the end point 145b (boundary 145b) of this circumferential surface 245 are the same as the positions of the start point 145a and the end point 145b of the circumferential surface 145 of Example 1 shown in FIG. 5 above. This peripheral surface 245 (retreat portion 245) is a surface obtained by rotating a line connecting a predetermined start point 145a and end point 145b of the ring 240 in the axial direction along the center line RL of the ring 140.
 退避部245は、リング240の内周面144よりも大径の円筒面245aによって、構成されている。円筒面245aと内周面144との境は、直接に又は間接的に接続される。例えば、この退避部245は、円筒面245aと、この円筒面245aと内周面144の境の段差面245bと、によって構成されている。 The retraction portion 245 is constituted by a cylindrical surface 245a having a larger diameter than the inner circumferential surface 144 of the ring 240. The boundary between the cylindrical surface 245a and the inner circumferential surface 144 is connected directly or indirectly. For example, the retraction portion 245 is configured by a cylindrical surface 245a and a stepped surface 245b at the boundary between the cylindrical surface 245a and the inner circumferential surface 144.
 円筒面245aの始点145aは、リング240の第2端面143の位置である。段差面245b(端面245b)は、環状の面である。この段差面245bの内周は、リング240の内周面144との堺145b(境界145b)に位置する。この堺145bが、終点145bである。退避部145の長さL1及びストレート長さL2は、実施例1のリング140と同じである。 The starting point 145a of the cylindrical surface 245a is the position of the second end surface 143 of the ring 240. The stepped surface 245b (end surface 245b) is an annular surface. The inner periphery of this stepped surface 245b is located at the boundary 145b (boundary 145b) with the inner peripheral surface 144 of the ring 240. This Sakai 145b is the end point 145b. The length L1 and the straight length L2 of the retracted portion 145 are the same as those of the ring 140 of the first embodiment.
 このように、退避部245は、リング240の内周面144よりも大径の円筒面245aによって構成されている。退避部245を円筒面245aにするだけなので、寸法管理が容易である。 In this way, the retraction portion 245 is constituted by a cylindrical surface 245a having a larger diameter than the inner circumferential surface 144 of the ring 240. Since the retraction portion 245 is simply formed into a cylindrical surface 245a, dimensional control is easy.
 実施例2によるスクロール型圧縮機200は、実施例2の効果の他に、上記実施例1のスクロール型圧縮機10と同様の効果を発揮することができる。 In addition to the effects of the second embodiment, the scroll compressor 200 according to the second embodiment can exhibit the same effects as the scroll compressor 10 of the first embodiment.
 ここで、実施例2の周面245の概念を説明する。図7に示されるように、円筒面245aに沿った軸方向の線分を「第1線分」とし、段差面245bに沿った径方向の線分を「第2線分」とする。第1線分と第2線分を接続し、それぞれの線分の一端を始点145aと終点145bに接続した「線」を想定する。この線を、リング140の中心線RLに沿って回転させることにより、この中心線RLを基準とした周面245が形成される。 Here, the concept of the peripheral surface 245 of Example 2 will be explained. As shown in FIG. 7, a line segment in the axial direction along the cylindrical surface 245a is referred to as a "first line segment", and a line segment in the radial direction along the stepped surface 245b is referred to as a "second line segment". A "line" is assumed in which a first line segment and a second line segment are connected, and one end of each line segment is connected to a starting point 145a and an ending point 145b. By rotating this line along the center line RL of the ring 140, a peripheral surface 245 with this center line RL as a reference is formed.
 このように、始点145aと終点145bに接続した「線」は、直線に限定されず、曲線を含む。始点145aと終点145bを、曲線によって接続してもよい。要するに、実施例1及び実施例2の特徴は、図5及び図7に示されるように、内周面144と周面145,245との境界145bを、リング140,240に設けることにある。 In this way, the "line" connecting the starting point 145a and the ending point 145b is not limited to a straight line, but includes a curved line. The starting point 145a and the ending point 145b may be connected by a curve. In short, the feature of the first and second embodiments is that the rings 140, 240 are provided with a boundary 145b between the inner circumferential surface 144 and the circumferential surfaces 145, 245, as shown in FIGS. 5 and 7.
<実施例3>
 図8A~図8Dを参照しつつ、実施例3のスクロール型圧縮機300を説明する。図8A~図8Dは上記図5に相当する。
<Example 3>
A scroll compressor 300 according to a third embodiment will be described with reference to FIGS. 8A to 8D. 8A to 8D correspond to FIG. 5 above.
 実施例3のスクロール型圧縮機300は、上記図1~図6に示される実施例1のリング140及び図7に示される実施例2に示される実施例2のリング240を、図8A~図8Dに示されるリング340に変更したことを特徴とする。その他の基本的な構成については、上記実施例1,2によるスクロール型圧縮機10,200と共通する。実施例1,2によるスクロール型圧縮機10,200と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 The scroll type compressor 300 of the third embodiment includes the ring 140 of the first embodiment shown in FIGS. 1 to 6 and the ring 240 of the second embodiment shown in the second embodiment shown in FIG. It is characterized by being changed to a ring 340 shown in 8D. Other basic configurations are the same as those of the scroll compressors 10 and 200 according to the first and second embodiments. For parts common to the scroll type compressors 10 and 200 according to Examples 1 and 2, reference numerals are used and detailed explanations are omitted.
 図8Aに示されるリング340は、軸方向の両端面142,143に、図5に示される実施例1の退避部145を有している。
 図8Bに示されるリング340は、軸方向の両端面142,143に、図7に示される実施例2の退避部245を有している。
 図8Cに示されるリング340は、第1端面142に、図7に示される実施例2の退避部245を有するとともに、第2端面143に、図5に示される実施例1の退避部145を有している。
 図8Dに示されるリング340は、第1端面142に、図5に示される実施例1の退避部145を有するとともに、第2端面143に、図7に示される実施例2の退避部245を有している。
The ring 340 shown in FIG. 8A has the recessed portions 145 of the first embodiment shown in FIG. 5 on both end surfaces 142 and 143 in the axial direction.
The ring 340 shown in FIG. 8B has the recessed portions 245 of the second embodiment shown in FIG. 7 on both end surfaces 142 and 143 in the axial direction.
The ring 340 shown in FIG. 8C has the recessed part 245 of the second embodiment shown in FIG. 7 on the first end face 142, and the retracted part 145 of the first embodiment shown in FIG. have.
The ring 340 shown in FIG. 8D has the retraction portion 145 of the first embodiment shown in FIG. 5 on the first end surface 142, and the retraction portion 245 of the second embodiment shown in FIG. have.
 このように、退避部145,245は、リング340の軸方向の両端面142,143に、リング340の内周面144の全周にわたって形成されている。このため、リング嵌合部130(図5参照)に対して、リング340を逆方向に組み付けても、リング嵌合部130に対するリング340の傾き現象の発生を防止できる。 In this way, the recessed portions 145 and 245 are formed on both end surfaces 142 and 143 of the ring 340 in the axial direction over the entire circumference of the inner peripheral surface 144 of the ring 340. Therefore, even if the ring 340 is assembled in the opposite direction to the ring fitting part 130 (see FIG. 5), it is possible to prevent the ring 340 from tilting relative to the ring fitting part 130.
 実施例3によるスクロール型圧縮機300は、実施例2~3の効果の他に、上記実施例1のスクロール型圧縮機10と同様の効果を発揮することができる。 In addition to the effects of Examples 2 and 3, the scroll compressor 300 according to the third embodiment can exhibit the same effects as the scroll compressor 10 of the first embodiment.
 なお、本発明の作用及び効果を奏する限りにおいて、本発明は、各実施例に限定されるものではない。
 例えば、スクロール型圧縮機10,200,300は、横置き型の電動式圧縮機に限定されるものではなく、駆動軸51を外部の動力源によって駆動する構成であってもよい。例えば、駆動軸51に設けられたプーリーにエンジン動力をベルトによって伝達させるベルト駆動式のスクロール圧縮機とすることが可能である。
 各実施例のスクロール型圧縮機10,200,300は、任意の2つ以上の実施例同士を組み合わせることができる。
Note that the present invention is not limited to each embodiment as long as the functions and effects of the present invention are achieved.
For example, the scroll compressors 10, 200, and 300 are not limited to horizontally mounted electric compressors, and may have a configuration in which the drive shaft 51 is driven by an external power source. For example, it is possible to use a belt-driven scroll compressor that transmits engine power to a pulley provided on the drive shaft 51 via a belt.
The scroll compressors 10, 200, and 300 of each embodiment can be combined with any two or more embodiments.
 本発明のスクロール型圧縮機10,200,300は、車両用空調装置の冷凍サイクル内で用いるのに好適である。 The scroll compressor 10, 200, 300 of the present invention is suitable for use in a refrigeration cycle of a vehicle air conditioner.
 10,200,300  スクロール型圧縮機
 20   ハウジング
 30   仕切り部材
 31a  平坦面(摺動支持面)
 60   スクロール圧縮機構
 70   固定スクロール
 80   可動スクロール
 81   可動板
 81b  可動渦巻壁とは反対側の板面
 82   可動渦巻壁
 111  摺動面
 112  退避面
 120  自転防止機構
 130  リング嵌合部
 131  内周面
 132  底面
 133  リング嵌合部の開口端
 140,240,340  リング
 141  外周面
 142  第1端面
 143  第2端面(内周面のなかの軸方向一端)
 144  内周面
 145,245  退避部(周面)
 145b 境界
 150  自転防止用ピン
 160  逆組み防止部
 245a 円筒面
10,200,300 Scroll compressor 20 Housing 30 Partition member 31a Flat surface (sliding support surface)
60 Scroll compression mechanism 70 Fixed scroll 80 Movable scroll 81 Movable plate 81b Plate surface opposite to the movable scroll wall 82 Movable scroll wall 111 Sliding surface 112 Evacuation surface 120 Rotation prevention mechanism 130 Ring fitting portion 131 Inner peripheral surface 132 Bottom surface 133 Open end of ring fitting part 140, 240, 340 Ring 141 Outer peripheral surface 142 First end surface 143 Second end surface (one end in the axial direction of the inner peripheral surface)
144 Inner peripheral surface 145, 245 Retraction part (peripheral surface)
145b Boundary 150 Rotation prevention pin 160 Reverse assembly prevention part 245a Cylindrical surface

Claims (8)

  1.  ハウジング(20)と、前記ハウジング(20)内に固定された仕切り部材(30)と、前記ハウジング(20)内に前記仕切り部材(30)によって区画されている収納空間(25)と、前記収容空間(25)内に組み合わされて収容される固定スクロール(70)と可動スクロール(80)と、前記可動スクロール(80)の自転を防止する自転防止機構(120)を備えており、
     前記可動スクロール(80)は、円板状の可動板(81)と、前記可動板(81)から立設した可動渦巻壁(82)を備え、
     前記可動板(81)の前記可動渦巻壁(82)側とは反対側の板面(81b)は、前記仕切り部材(30)の平坦面(31a)に対向する対向面(81b)を有し、
     前記対向面(81b)は、最外周に設けられ、前記仕切り部材(30)の前記平坦面(31a)に対して摺動可能な環状の摺動面(111)と、前記摺動面(111)の径方向内側且つ前記摺動面(111)から所定の深さに位置する退避面(112)と、を有しており、
     前記自転防止機構(120)は、前記退避面(112)から前記可動スクロール(80)の前記摺動面(111)に直交する方向に沿って窪んだリング嵌合部(130)と、前記リング嵌合部(130)に対してすきまばめに嵌合された筒状のリング(140;240;340)と、前記リング(140;240;340)の内周面(144)に接触できるように、前記仕切り部材(30)の前記平坦面(31a)から前記リング(140;240;340)の中へ延びた自転防止用ピン(150)とを備え、
     前記リング(140;240;340)は、前記リング嵌合部(130)の奥側に配置される第1端面(142)と、前記第1端面(142)の軸方向反対側である第2端面(143)を有し、前記内周面(144)のなかの少なくとも前記第2端面(143)側に全周にわたって、前記自転防止用ピン(150)と接触しない退避部(145,245)が設けられている、
    ことを特徴とするスクロール型圧縮機。
    a housing (20); a partition member (30) fixed within the housing (20); a storage space (25) defined within the housing (20) by the partition member (30); It includes a fixed scroll (70) and a movable scroll (80) that are combined and housed in the space (25), and a rotation prevention mechanism (120) that prevents rotation of the movable scroll (80),
    The movable scroll (80) includes a disc-shaped movable plate (81) and a movable spiral wall (82) standing from the movable plate (81),
    A plate surface (81b) of the movable plate (81) opposite to the movable spiral wall (82) has an opposing surface (81b) that faces the flat surface (31a) of the partition member (30). ,
    The opposing surface (81b) is provided at the outermost periphery and includes an annular sliding surface (111) that is slidable on the flat surface (31a) of the partition member (30), and the sliding surface (111). ) and a retraction surface (112) located on the radially inner side of the sliding surface (111) and at a predetermined depth from the sliding surface (111);
    The rotation prevention mechanism (120) includes a ring fitting portion (130) recessed from the retraction surface (112) in a direction perpendicular to the sliding surface (111) of the movable scroll (80), and A cylindrical ring (140; 240; 340) fitted with a loose fit into the fitting part (130) and a ring (140; 240; 340) so as to be able to contact the inner peripheral surface (144) and an anti-rotation pin (150) extending from the flat surface (31a) of the partition member (30) into the ring (140; 240; 340),
    The ring (140; 240; 340) has a first end surface (142) located on the back side of the ring fitting part (130), and a second end surface (142) that is axially opposite to the first end surface (142). a recessed portion (145, 245) having an end surface (143) and extending over the entire circumference at least on the second end surface (143) side of the inner peripheral surface (144) and not coming into contact with the rotation prevention pin (150); is provided,
    A scroll compressor characterized by:
  2.  前記リング嵌合部(130)は、前記リング(140;240;340)の第1端面(142)に向かい合う底面(132)を有し、
     前記退避部(145;245)は、前記リング(140;240;340)の前記内周面(144)の全周にわたり、前記内周面(144)よりも径方向外側に位置する周面(145;245)によって構成されており、
     前記リング(140;240;340)の前記第1端面(142)が前記リング嵌合部(130)の前記底面(132)に接している状態では、前記退避部(145;245)と前記内周面(144)との境界(145b)は、前記リング嵌合部(130)の前記内周面(131)の開口側の縁(135)よりも、前記リング嵌合部(130)の前記底面(132)側に位置している、ことを特徴とする請求項1に記載のスクロール型圧縮機。
    The ring fitting part (130) has a bottom surface (132) facing the first end surface (142) of the ring (140; 240; 340),
    The recessed portion (145; 245) extends over the entire circumference of the inner circumferential surface (144) of the ring (140; 240; 145; 245),
    When the first end surface (142) of the ring (140; 240; 340) is in contact with the bottom surface (132) of the ring fitting portion (130), the recess portion (145; 245) and the inner The boundary (145b) with the circumferential surface (144) is closer to the opening side edge (135) of the inner circumferential surface (131) of the ring fitting portion (130) than the edge (135) on the opening side of the inner circumferential surface (131) of the ring fitting portion (130). The scroll compressor according to claim 1, wherein the scroll compressor is located on the bottom (132) side.
  3.  前記リング(140;240;340)の前記第2端面(143)が前記仕切り部材(30)の前記平坦面(31a)に接している状態では、前記境界(145b)は、前記リング嵌合部(130)の前記内周面(131)の前記開口側の縁(135)よりも、前記リング嵌合部(130)の前記底面(132)側に位置している、ことを特徴とする請求項2に記載のスクロール型圧縮機。 When the second end surface (143) of the ring (140; 240; 340) is in contact with the flat surface (31a) of the partition member (30), the boundary (145b) is located at the ring fitting portion. Claim (130) characterized in that it is located closer to the bottom surface (132) of the ring fitting part (130) than the edge (135) on the opening side of the inner circumferential surface (131). Scroll compressor according to item 2.
  4.  前記退避部(145)は、前記リング(140)の、前記第2端面(143)から奥側へ向かって縮径する、先細りテーパー面によって構成されている、ことを特徴とする請求項1に記載のスクロール型圧縮機。 2. The retracting portion (145) is configured by a tapered surface of the ring (140) whose diameter decreases toward the back from the second end surface (143). The scroll type compressor described.
  5.  前記退避部(245)は、前記リング(240)の前記内周面(144)よりも大径の円筒面(245a)によって構成されている、ことを特徴とする請求項1に記載のスクロール型圧縮機。 The scroll type according to claim 1, wherein the retracting portion (245) is constituted by a cylindrical surface (245a) having a larger diameter than the inner circumferential surface (144) of the ring (240). compressor.
  6.  前記退避部(145;245)は、前記リング(140;240)の前記第2端面(143)側のみに形成されている、ことを特徴とする請求項1に記載のスクロール型圧縮機。 The scroll compressor according to claim 1, wherein the recessed portion (145; 245) is formed only on the second end surface (143) side of the ring (140; 240).
  7.  前記リング(140;240)には、前記リング嵌合部(130)に対する前記リング(140)が逆向きに組付けられることを防止する逆組み防止部(160)が設けられている、ことを特徴とする請求項6に記載のスクロール型圧縮機。 The ring (140; 240) is provided with a reverse assembly prevention part (160) that prevents the ring (140) from being assembled in the opposite direction to the ring fitting part (130). The scroll compressor according to claim 6.
  8.  前記退避部(145;245)は、前記リング(340)の軸方向の両端面(142,143)に、前記リング(340)の前記内周面(144)の全周にわたって形成されている、ことを特徴とする請求項1に記載のスクロール型圧縮機。 The recessed portion (145; 245) is formed on both axial end surfaces (142, 143) of the ring (340) over the entire circumference of the inner peripheral surface (144) of the ring (340). The scroll compressor according to claim 1, characterized in that:
PCT/JP2023/031727 2022-09-09 2023-08-31 Scroll compressor WO2024053541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-143455 2022-09-09
JP2022143455 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053541A1 true WO2024053541A1 (en) 2024-03-14

Family

ID=90191034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031727 WO2024053541A1 (en) 2022-09-09 2023-08-31 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2024053541A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098316A (en) * 2012-11-13 2014-05-29 Toyota Industries Corp Scroll type compressor
JP2016075175A (en) * 2014-10-03 2016-05-12 サンデンホールディングス株式会社 Scroll type fluid machine
JP2016089772A (en) * 2014-11-07 2016-05-23 アネスト岩田株式会社 Scroll fluid machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098316A (en) * 2012-11-13 2014-05-29 Toyota Industries Corp Scroll type compressor
JP2016075175A (en) * 2014-10-03 2016-05-12 サンデンホールディングス株式会社 Scroll type fluid machine
JP2016089772A (en) * 2014-11-07 2016-05-23 アネスト岩田株式会社 Scroll fluid machine

Similar Documents

Publication Publication Date Title
JP3869865B2 (en) Scroll type machine
JP2001221171A (en) Scroll machine
JPH08319981A (en) Scroll type compressor
KR20050060338A (en) The axis direction rise preventing device of eccentric bush for scroll compressor
JPH0893665A (en) Scroll compressor
AU2005320203B2 (en) Scroll fluid machine
JPH02176179A (en) Compressor
JPH03138472A (en) Scroll type fluid machinery
CN110319003B (en) Orbiting scroll drive assembly and scroll compressor
WO2010073612A1 (en) Scroll type compressor
WO2024053541A1 (en) Scroll compressor
KR20050060347A (en) The stopper device of eccentric bush for scroll compressor
JPH02298601A (en) Scroll type fluid machine
WO2022202116A1 (en) Scroll-type compressor
JP3783294B2 (en) Electric fluid machine
JP2594717B2 (en) Scroll type fluid machine
JP2018071480A (en) Scroll Type Fluid Machine
JP4094504B2 (en) Scroll compressor
JP2007247567A (en) Scroll compressor
JP7410749B2 (en) scroll type fluid machine
WO2023181728A1 (en) Scroll-type fluid machine
JP4013992B2 (en) Scroll type fluid machinery
JP2000009062A (en) Scroll type compressor
WO2023106116A1 (en) Scroll-type fluid machine
CN115523139A (en) Scroll compressor having a discharge port

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863079

Country of ref document: EP

Kind code of ref document: A1