WO2024053443A1 - Work machine, system including work machine, and method for controlling work machine - Google Patents

Work machine, system including work machine, and method for controlling work machine Download PDF

Info

Publication number
WO2024053443A1
WO2024053443A1 PCT/JP2023/030884 JP2023030884W WO2024053443A1 WO 2024053443 A1 WO2024053443 A1 WO 2024053443A1 JP 2023030884 W JP2023030884 W JP 2023030884W WO 2024053443 A1 WO2024053443 A1 WO 2024053443A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
work machine
loading
bucket
loading container
Prior art date
Application number
PCT/JP2023/030884
Other languages
French (fr)
Japanese (ja)
Inventor
高史 松山
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024053443A1 publication Critical patent/WO2024053443A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present disclosure relates to a work machine, a system including the work machine, and a method of controlling the work machine.
  • Patent Document 1 discloses control for moving a boom and a bucket to a target position determined according to a moving distance of a wheel loader.
  • the loading operation is usually performed multiple times.
  • the capacity of the load loaded onto the dump truck reaches the loading capacity of the dump truck after multiple loading operations, if the loading condition (packing style) of the loaded load is inappropriate, the dump truck There is a risk that the load may spill while the vehicle is running.
  • the present disclosure proposes a working machine that can properly load a loading container, a system including the working machine, and a method of controlling the working machine.
  • a work machine and a system including the work machine according to an aspect of the present disclosure each include a main body, a work machine, a work machine actuator, and a controller.
  • the work machine is attached to the main body and loads the load into the loading container.
  • the work implement actuator drives the work implement relative to the main body.
  • the controller commands the drive of the work implement actuator based on the detected value of the position of the work implement and the detected value of the position of the loading container with respect to the work machine.
  • the controller acquires information regarding the loading status of the load within the loading container, and determines whether or not it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load, When it is determined that the load needs to be moved within the loading container, the work machine is operated to move the load toward the center of the loading container.
  • a method for controlling a work machine includes acquiring information regarding the loading status of a load in a loading container, and controlling a load in the loading container based on the acquired information regarding the loading status of the load. determining whether the load needs to be moved within the loading container, and operating the work machine to move the load toward the center of the loading container if it is determined that the load needs to be moved within the loading container. It is equipped with the following:
  • the system including the working machine, and the method of controlling the working machine of the present disclosure it is possible to properly load a loading container.
  • FIG. 1 is a side view of a wheel loader as an example of a working machine.
  • FIG. 1 is a block diagram showing a schematic configuration of a control system for a wheel loader.
  • FIG. 2 is a plan view of a wheel loader that performs excavation and loading work.
  • FIG. 1 is a block diagram showing the configuration of an automatic control system for a wheel loader. It is a flowchart which shows the flow of the operation
  • FIG. 3 is a diagram schematically showing the arrangement of a vessel and a wheel loader at the start of a dump approach.
  • FIG. 1 is a side view of a wheel loader 1 as an example of a working machine.
  • the wheel loader 1 includes a vehicle body frame 2, a working machine 3, a traveling device 4, and a cab 5.
  • the vehicle body of the wheel loader 1 is composed of a vehicle body frame 2, a cab 5, and the like.
  • a working machine 3 and a traveling device 4 are attached to the vehicle body of the wheel loader 1.
  • the main body of the wheel loader 1 includes a vehicle body and a traveling device 4.
  • the traveling device 4 causes the vehicle body of the wheel loader 1 to travel, and includes running wheels 4a and 4b.
  • the wheel loader 1 is a wheeled vehicle that includes running wheels 4a and 4b as rotating bodies for running on both sides of the vehicle body in the left-right direction.
  • the wheel loader 1 is self-propelled by rotationally driving running wheels 4a and 4b, and can perform desired work using the working machine 3.
  • the traveling device 4 corresponds to an example of a "traveling body.”
  • the direction in which the wheel loader 1 travels straight is referred to as the front-rear direction of the wheel loader 1.
  • the front direction the side on which the working machine 3 is arranged with respect to the vehicle body frame 2
  • the side opposite to the front direction is defined as the rear direction.
  • the left-right direction of the wheel loader 1 is a direction perpendicular to the front-rear direction when the wheel loader 1 on a flat ground is viewed from above. Looking forward, the right and left sides in the left and right direction are the right direction and left direction, respectively.
  • the vertical direction of the wheel loader 1 is a direction perpendicular to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the bottom, and the side with the sky is the top.
  • the vehicle body frame 2 includes a front frame 2a and a rear frame 2b.
  • the front frame 2a is arranged in front of the rear frame 2b.
  • the front frame 2a and the rear frame 2b are attached to each other so as to be swingable in the left-right direction.
  • a pair of steering cylinders 11 are attached across the front frame 2a and the rear frame 2b.
  • Steering cylinder 11 is a hydraulic cylinder.
  • the direction of movement of the wheel loader 1 is changed from side to side by the steering cylinder 11 being expanded and contracted by the hydraulic oil from the steering pump.
  • the front frame 2a and the rear frame 2b constitute a vehicle body frame 2 having an articulated structure.
  • the wheel loader 1 is an articulated working machine in which a front frame 2a and a rear frame 2b are connected for bending movement.
  • a working machine 3 and a pair of running wheels (front wheels) 4a are attached to the front frame 2a.
  • the work machine 3 is attached to the front of the main body of the wheel loader 1.
  • the work machine 3 is supported by the vehicle body of the wheel loader 1.
  • the work machine 3 includes a boom 14 and a bucket 6.
  • the bucket 6 is arranged at the tip of the working machine 3.
  • the bucket 6 is a working tool for digging and loading.
  • the cutting edge 6a is the tip of the bucket 6.
  • the back surface 6b is part of the outer surface of the bucket 6.
  • the back surface 6b is formed of a flat surface.
  • the back surface 6b extends rearward from the cutting edge 6a.
  • the base end of the boom 14 is rotatably attached to the front frame 2a by a boom pin 9.
  • the bucket 6 is rotatably attached to the boom 14 by a bucket pin 17 located at the tip of the boom 14.
  • the boom pin 9 and the bucket pin 17 correspond to "a plurality of joints" of the working machine 3.
  • the work machine 3 further includes a bell crank 18 and a link 15.
  • the bell crank 18 is rotatably supported by the boom 14 by a support pin 18a located approximately at the center of the boom 14.
  • the link 15 is connected to a connecting pin 18c provided at the tip of the bell crank 18.
  • Link 15 connects bell crank 18 and bucket 6.
  • Boom cylinder 16 is a hydraulic cylinder.
  • the boom cylinder 16 rotates the boom 14 up and down about the boom pin 9 .
  • a base end of the boom cylinder 16 is attached to the front frame 2a.
  • the tip of the boom cylinder 16 is attached to the boom 14.
  • the boom cylinder 16 is a hydraulic actuator that moves the boom 14 up and down with respect to the front frame 2a. As the boom 14 moves up and down, the bucket 6 attached to the tip of the boom 14 also moves up and down.
  • the bucket cylinder 19 connects the bell crank 18 and the front frame 2a.
  • the base end of the bucket cylinder 19 is attached to the front frame 2a.
  • the tip of the bucket cylinder 19 is attached to a connecting pin 18b provided at the base end of the bell crank 18.
  • the bucket cylinder 19 is a hydraulic actuator that rotates the bucket 6 up and down with respect to the boom 14.
  • Bucket cylinder 19 is a work tool cylinder that drives bucket 6 .
  • Bucket cylinder 19 rotates bucket 6 around bucket pin 17 .
  • Bucket 6 is configured to be movable relative to boom 14 .
  • the bucket 6 is configured to be movable relative to the front frame 2a.
  • the boom cylinder 16 and the bucket cylinder 19 correspond to an example of a "work machine actuator" that drives the work machine 3.
  • a cab 5 on which an operator rides and a pair of running wheels (rear wheels) 4b are attached to the rear frame 2b.
  • a box-shaped cab 5 is arranged behind the boom 14.
  • the cab 5 is placed on the vehicle body frame 2.
  • an operating device 8 Inside the cab 5, a seat on which an operator of the wheel loader 1 sits, an operating device 8 (FIG. 2), which will be described later, and the like are arranged.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the wheel loader 1. As shown in FIG.
  • the engine 21 is a drive source that generates driving force for driving the working machine 3 and the traveling device 4 (FIG. 1), and is, for example, a diesel engine.
  • a motor driven by an electrical storage body may be used instead of the engine 21, or both the engine and the motor may be used.
  • the output of the engine 21 is controlled by adjusting the amount of fuel injected into the cylinders of the engine 21.
  • the driving force generated by the engine 21 is transmitted to the transmission 23.
  • the transmission 23 changes the driving force to appropriate torque and rotational speed.
  • An axle 25 is connected to the output shaft of the transmission 23.
  • the driving force shifted by the transmission 23 is transmitted to the axle 25.
  • Driving force is transmitted from the axle 25 to the running wheels 4a, 4b (FIG. 1). Thereby, the wheel loader 1 travels.
  • both the running wheels 4a and 4b constitute driving wheels that receive driving force and cause the wheel loader 1 to travel.
  • the work equipment pump 13 is a hydraulic pump that is driven by the engine 21 and operates the work equipment 3 (FIG. 1) with discharged hydraulic oil.
  • the work machine 3 is driven by hydraulic oil from a work machine pump 13.
  • Hydraulic oil discharged from the work equipment pump 13 is supplied to the boom cylinder 16 and the bucket cylinder 19 via the main valve 32.
  • the boom 14 moves up and down as the boom cylinder 16 expands and contracts in response to the supply of hydraulic oil.
  • the bucket cylinder 19 is supplied with hydraulic oil and expands and contracts, the bucket 6 rotates up and down.
  • the wheel loader 1 includes a vehicle body controller 50.
  • Vehicle controller 50 includes an engine controller 60, a transmission controller 70, and a work equipment controller 80.
  • the vehicle body controller 50 is generally realized by reading various programs using a CPU (Central Processing Unit).
  • the vehicle body controller 50 has a memory (not shown).
  • the memory functions as a work memory and stores various programs for realizing the functions of the wheel loader 1.
  • the operating device 8 is provided in the cab 5.
  • the operating device 8 is operated by an operator.
  • the operating device 8 includes a plurality of types of operating members that are operated by an operator to operate the wheel loader 1.
  • the operating device 8 includes an accelerator pedal 41 and a work implement operating lever 42.
  • the operating device 8 may include a steering handle, a shift lever, etc. (not shown).
  • the accelerator pedal 41 is operated to set the target rotation speed of the engine 21.
  • Engine controller 60 controls the output of engine 21 based on the amount of operation of accelerator pedal 41 .
  • the operation amount (depression amount) of the accelerator pedal 41 is increased, the output of the engine 21 is increased.
  • the amount of operation of the accelerator pedal 41 is decreased, the output of the engine 21 is decreased.
  • Transmission controller 70 controls transmission 23 based on the amount of operation of accelerator pedal 41 .
  • the work equipment operating lever 42 is operated to operate the work equipment 3.
  • the work machine controller 80 controls the electromagnetic proportional control valves 35 and 36 based on the amount of operation of the work machine operating lever 42.
  • the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is retracted and the bucket 6 moves in the dumping direction (the direction in which the cutting edge of the bucket 6 is lowered). Further, the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is extended and the bucket 6 is moved in the tilt direction (the direction in which the cutting edge of the bucket 6 is raised).
  • the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is retracted and the boom 14 is lowered. Further, the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is extended and the boom 14 is raised.
  • the machine monitor 51 receives command signals from the vehicle controller 50 and displays various information.
  • the various information displayed on the machine monitor 51 includes, for example, information regarding the work performed by the wheel loader 1, vehicle body information such as remaining fuel level, cooling water temperature, and hydraulic oil temperature, and surrounding images of the surroundings of the wheel loader 1. etc.
  • the machine monitor 51 may be a touch panel, and in this case, a signal generated when the operator touches a part of the machine monitor 51 is output from the machine monitor 51 to the vehicle controller 50.
  • the wheel loader 1 of this embodiment performs an excavation and loading operation in which an excavated object such as earth and sand is scooped up and the excavated object is loaded onto a loading object such as a dump truck.
  • FIG. 3 is a plan view of the wheel loader 1 that performs excavation and loading work.
  • FIG. 3 shows a wheel loader 1 that performs so-called V-shape work.
  • FIG. 3(A) shows a wheel loader 1 that moves forward with a so-called empty load.
  • the wheel loader 1 travels forward along an excavation route R1 toward an excavation target 310 such as earth and sand.
  • the wheel loader 1 thrusts the bucket 6 into the excavated object 310 and stops moving forward.
  • an excavation operation in which at least a portion of the object 310 to be excavated is scooped into the bucket 6 is performed.
  • FIG. 3(B) shows a wheel loader 1 that performs so-called backward movement with a loaded load.
  • An excavated object 310 is loaded into the bucket 6 as a load.
  • the wheel loader 1 travels backward along the excavation route R1 to the position where forward travel is started in FIG. 3(A).
  • FIG. 3(C) shows a wheel loader 1 that advances a load.
  • the wheel loader 1 With the load (excavated object 310) loaded in the bucket 6, the wheel loader 1 travels forward toward the vessel 301 of the dump truck 300. The wheel loader 1 moves forward from the position where it starts moving forward in FIG. 3(A) toward the dump truck 300 along the loading route R2.
  • the wheel loader 1 loads the load 310 in the bucket 6 into the vessel 301.
  • the vessel 301 corresponds to an example of a "loading container" for loading the cargo 310 in the bucket 6.
  • FIG. 3(D) shows a wheel loader 1 that moves backward with no load.
  • the wheel loader 1 can repeatedly perform a series of operations such as excavation, retreat, dump approach, earth removal, and retreat.
  • FIG. 4 is a block diagram showing the configuration of the automatic control system of the wheel loader 1.
  • the automation controller 100 is configured to be able to send and receive signals to and from the vehicle body controller 50 described using FIG. 2.
  • the automation controller 100 is also configured to be able to send and receive signals to and from the external world information acquisition section 110.
  • the external world information acquisition unit 110 includes a perception device 111 and a position information acquisition device 112.
  • the perception device 111 and the position information acquisition device 112 are mounted on the wheel loader 1.
  • the perception device 111 acquires information around the wheel loader 1.
  • the sensing device 111 is attached, for example, to the upper front surface of the cab 5, as shown in FIG.
  • the sensing device 111 corresponds to an example of an "object sensor" that detects objects around the main body of the wheel loader 1.
  • the sensing device 111 detects the direction of an object outside the wheel loader 1 and the distance to the object in a non-contact manner.
  • the perception device 111 is, for example, a LiDAR (Light Detection and Ranging) that emits a laser beam to obtain information about an object.
  • Perceptual device 111 may be a visual sensor including a camera.
  • the perception device 111 may be a Radar (Radio Detection and Ranging) that acquires information about an object by emitting radio waves.
  • the sensing device 111 may be an infrared sensor.
  • the position information acquisition device 112 acquires information on the current position of the wheel loader 1.
  • the position information acquisition device 112 uses, for example, a satellite positioning system to acquire position information of the wheel loader 1 in a global coordinate system based on the earth.
  • the position information acquisition device 112 uses, for example, GNSS (Global Navigation Satellite Systems) and has a GNSS receiver.
  • the satellite positioning system calculates the position of the wheel loader 1 by calculating the position of the antenna of the GNSS receiver based on the positioning signal that the GNSS receiver receives from the satellite.
  • the external world information of the wheel loader 1 obtained by the sensing device 111 and the position information of the wheel loader 1 obtained by the position information acquisition device 112 are input to the automation controller 100.
  • the vehicle body controller 50 is configured to be able to send and receive signals to and from the vehicle information acquisition section 120, and receives input of information about the wheel loader 1 that the vehicle information acquisition section 120 acquires.
  • the vehicle information acquisition unit 120 is composed of various sensors mounted on the wheel loader 1.
  • the vehicle information acquisition unit 120 includes an articulate angle sensor 121, a vehicle speed sensor 122, a boom angle sensor 123, a bucket angle sensor 124, and a boom cylinder pressure sensor 125.
  • the articulate angle sensor 121 detects an articulate angle, which is the angle formed by the front frame 2a and the rear frame 2b, and generates a signal of the detected articulate angle.
  • the articulate angle sensor 121 outputs an articulate angle signal to the vehicle body controller 50.
  • the vehicle speed sensor 122 detects the moving speed of the wheel loader 1 by the traveling device 4 (FIG. 1) by, for example, detecting the rotational speed of the output shaft of the transmission 23 (FIG. 2), and sends a signal of the detected vehicle speed. Occur. Vehicle speed sensor 122 outputs a vehicle speed signal to vehicle controller 50.
  • the vehicle speed sensor 122 corresponds to an example of a "traveling sensor" that detects the progress of the traveling device 4 (traveling object).
  • the boom angle sensor 123 is composed of, for example, a rotary encoder provided on the boom pin 9, which is the attachment portion of the boom 14 to the vehicle body frame 2.
  • the boom angle sensor 123 detects the angle of the boom 14 with respect to the horizontal direction and generates a signal of the detected angle of the boom 14.
  • Boom angle sensor 123 outputs a signal indicating the angle of boom 14 to vehicle controller 50 .
  • the bucket angle sensor 124 is composed of, for example, a rotary encoder provided on the support pin 18a, which is the rotation axis of the bell crank 18. Bucket angle sensor 124 detects the angle of bucket 6 with respect to boom 14 and generates a signal of the detected angle of bucket 6. Bucket angle sensor 124 outputs a signal indicating the angle of bucket 6 to vehicle controller 50 .
  • the boom angle sensor 123 and the bucket angle sensor 124 correspond to an example of a "work machine attitude sensor” that detects the attitude of the work machine 3.
  • the work equipment attitude sensor may be an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 instead of or in addition to the boom angle sensor 123 and the bucket angle sensor 124.
  • the work machine attitude sensor is not limited to the above rotary encoder, but may be a stroke sensor, an IMU (Inertial Measurement Unit), a potentiometer, a visual sensor, or the like.
  • a stroke sensor is attached to each of the boom cylinder 16 and the bucket cylinder 19, for example.
  • the stroke amount of each cylinder 16, 19 can be detected by the stroke sensor.
  • the respective postures of the boom 14 and the bucket 6 can be detected based on this stroke amount.
  • the IMU When an IMU is used as a work machine attitude sensor, the IMU is attached to each of the boom 14 and the bucket 6, for example. Each IMU detects angles (or angular velocities) and accelerations in three axes. The postures of the boom 14 and the bucket 6 can be detected based on the three-axis angles (or angular velocities) and accelerations detected by the IMU.
  • the potentiometer When a potentiometer is used as the work machine attitude sensor, the potentiometer is attached, for example, near the end of the boom cylinder 16 on the boom 14 side and near the end of the bucket cylinder 19 on the bell crank 18 side. Each potentiometer can detect the rotation angle of the boom 14 with respect to the main body of the wheel loader 1 and the rotation angle of the bucket 6 with respect to the boom 14. The attitude of the working machine 3 can be detected from these rotation angles.
  • the state of the boom 14 and bucket 6 is captured by the visual sensor.
  • the postures of the boom 14 and the bucket 6 can be detected from the image information captured by the visual sensor.
  • the visual sensor is, for example, an imaging device such as a camera.
  • the boom cylinder pressure sensor 125 detects the pressure on the bottom side of the boom cylinder 16 (boom bottom pressure) and generates a signal of the detected boom bottom pressure.
  • the boom bottom pressure is high when the bucket 6 is loaded and low when it is empty.
  • Boom cylinder pressure sensor 125 outputs a boom bottom pressure signal to vehicle body controller 50.
  • the vehicle body controller 50 outputs the information input from the vehicle information acquisition unit 120 to the automation controller 100.
  • the automation controller 100 receives detected values from the vehicle speed sensor 122, boom angle sensor 123, and bucket angle sensor 124 via the vehicle body controller 50.
  • the actuator 140 is configured to be able to transmit and receive signals to and from the vehicle body controller 50. In response to a command signal from the vehicle body controller 50, the actuator 140 is driven.
  • the actuator 140 includes a brake EPC (electromagnetic proportional control valve) 141 for operating the brake of the traveling device 4, a steering EPC 142 for adjusting the running direction of the wheel loader 1, and a working machine for operating the working machine 3. It includes an EPC 143 and an HMT (Hydraulic Mechanical Transmission) 144.
  • the electromagnetic proportional control valves 35 and 36 shown in FIG. 2 constitute a working machine EPC 143.
  • the transmission 23 shown in FIG. 2 is realized as an HMT 144 that utilizes electronic control.
  • the transmission 23 may be an HST (Hydro-Static Transmission).
  • the power transmission device that transmits power from the engine 21 to the running wheels 4a, 4b may include an electric drive device such as a diesel electric system, or may include any combination of HMT, HST, and electric drive device. .
  • the vehicle body controller 50 includes a transmission controller 70 and a work equipment controller 80.
  • the transmission controller 70 includes a brake control section 71 and an accelerator control section 72.
  • the brake control unit 71 outputs a command signal to the brake EPC 141 to control the operation of the brake.
  • the accelerator control unit 72 outputs a command signal to the HMT 144 to control the vehicle speed.
  • the work machine controller 80 has a steering control section 81 and a work machine control section 82.
  • the steering control unit 81 outputs a command signal for controlling the running direction of the wheel loader 1 to the steering EPC 142.
  • the work machine control unit 82 outputs a command signal for controlling the operation of the work machine 3 to the work machine EPC 143.
  • the automation controller 100 includes a position estimation section 101, a path planning section 102, a route following control section 103, and a load determining section 104.
  • the position estimation unit 101 estimates the self-position of the wheel loader 1 based on the position information acquired by the position information acquisition device 112. Further, the position estimating unit 101 recognizes the target position based on the external world information acquired by the sensing device 111.
  • the target position is, for example, the position of the excavated object 310 or the dump truck 300 shown in FIG. 3 .
  • the sensing device 111 may recognize the target position and input it to the automation controller 100, or the position estimation unit 101 may recognize the target position based on the detection result detected by the sensing device 111.
  • the path planning unit 102 generates an optimal route connecting the self-position of the wheel loader 1 and the target position.
  • the optimal route includes a traveling route by the traveling device 4 and an operation route of the working machine 3.
  • the route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the optimal route generated by the path planning unit 102.
  • a command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81.
  • the path following control section 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 operates along the optimal path generated by the path planning section 102.
  • a command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82.
  • the interface 130 is configured to be able to send and receive signals to and from the vehicle body controller 50.
  • the interface 130 has an automation changeover switch 131, an engine emergency stop switch 132, and a mode lamp 133.
  • the automation changeover switch 131 is operated by an operator. By operating the automation changeover switch 131, the operator switches between manually operating the wheel loader 1 and automatically controlling the wheel loader 1.
  • Engine emergency stop switch 132 is operated by an operator. When an event occurs that requires an emergency stop of the engine 21, the operator operates the engine emergency stop switch 132. Signals for operating the automation changeover switch 131 and the engine emergency stop switch 132 are input to the vehicle body controller 50.
  • the mode lamp 133 indicates whether the wheel loader 1 is currently in a manual operation mode by an operator or an automatically controlled mode.
  • a command signal for controlling lighting of the lamp is output from the vehicle body controller 50 to the mode lamp 133.
  • the automatic control system of the wheel loader 1 acquires information regarding the loading status of the load (for example, the shape of the load) in the vessel 301 when automating the load pushing in the loading operation.
  • the automatic control system of the wheel loader 1 also detects information regarding the loading status of the load in the vessel 301. Further, the automatic control system of the wheel loader 1 moves the load in the vessel 301 (pushes the load) by operating the wheel loader 1 based on the detected information. For this reason, the automatic control system of the wheel loader 1 includes a "load sensor" that detects information regarding the loading status of the load in the vessel 301.
  • the above-mentioned “load sensor” detects information regarding the loading status of the load 310 in the vessel 301.
  • the load sensor may include, for example, at least one of the above-mentioned “object sensor” and "work implement attitude sensor.” That is, the load sensor may be a single “object sensor”, a single “work implement attitude sensor”, or may include both an “object sensor” and a “work implement attitude sensor”.
  • the cargo sensor is an object sensor
  • a signal indicating the loading status of the cargo 310 in the vessel 301 detected by the object sensor becomes information regarding the loading status of the cargo 310 in the vessel 301.
  • the loading status of the cargo 310 in the vessel 301 is detected by the sensing device 111, which is an example of an object sensor.
  • the loading status of the cargo 310 in the vessel 301 is detected by one or any combination of LiDAR, visual sensor, Radar, infrared sensor, etc. which are examples of the sensing device 111.
  • a signal indicating the attitude of the work equipment 3 detected by the work equipment attitude sensor becomes information regarding the loading status of the load 310 in the vessel 301.
  • a signal indicating the attitude of the work machine 3 is detected by one or any combination of a rotary encoder, a stroke sensor, an IMU, a potentiometer, a visual sensor, etc., which are examples of work machine attitude sensors.
  • the automatic control system for the wheel loader 1 includes a load pushing determination unit 104 that determines whether it is necessary to push the load 310 within the vessel 301 based on information regarding the loading status of the load 310 within the vessel 301. are doing.
  • Load pushing determination section 104 is included in automation controller 100.
  • the load pushing determination unit 104 determines whether it is necessary to push the load 310 in the vessel 301 based on the information detected by the load sensor. When information regarding the loading status is detected by the object sensor alone, the load pushing determination unit 104 determines whether the load 310 in the vessel 301 is detected based on the information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111, for example. Determine whether or not it is necessary to push the load.
  • the automation controller 100 stores relational data indicating, for example, the relationship between the loading status of the cargo 310 in the vessel 301 and the necessity of pushing the cargo.
  • the load pushing determination unit 104 compares this relational data with the information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111 to determine whether or not the load 310 in the vessel 301 needs to be moved. Determine whether
  • the load pushing determination unit 104 determines whether the work machine 3 is moving to the vessel 301 from a signal indicating the attitude of the work machine 3 acquired by the work machine attitude sensor, for example. The number of times the cargo 310 is loaded is calculated. If the calculated number of times of loading is equal to or greater than a predetermined number of times (for example, two times), the load pushing determination unit 104 determines that the load 310 in the vessel 301 needs to be pushed. In this case, the signal indicating the number of times of loading corresponds to information regarding the loading status of the cargo 310 in the vessel 301.
  • information regarding the loading situation may be detected by both the object sensor and the work machine posture sensor. In this case, it is necessary to push the load 310 in the vessel 301 based on both the information regarding the loading status detected by the object sensor and the information regarding the loading status detected by the work machine attitude sensor. It is determined whether or not there is.
  • the automation controller 100 operates the wheel loader 1 to push the load 310 toward the center CL of the vessel 301.
  • the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. is generated by the path planning unit 102.
  • the route following control unit 103 controls the accelerator, brake, steering, boom cylinder 16 and bucket cylinder 19 so that the wheel loader 1 travels and the work equipment 3 operates following the route generated by the path planning unit 102. control.
  • FIG. 5 is a flowchart showing the flow of the operation of automatically controlling the wheel loader 1 to load the load loaded into the bucket 6 onto the loading target.
  • the shape of the vessel 301 of the dump truck 300 that is the target of loading is recognized.
  • the shape of the dump truck 300 is acquired using LiDAR, which is the sensing device 111.
  • LiDAR irradiates the dump truck 300 with laser light to obtain point cloud data indicating three-dimensional coordinate values of measurement points on the dump truck 300.
  • the dump truck 300 can be detected from the front, rear, right, and left sides, and the shape of the vessel 301 can be recognized from the point cloud information.
  • the recognized shape of the vessel 301 is input to the automation controller 100.
  • the perception device 111 recognizes the reference point P (FIG. 7) of the dump truck 300.
  • LiDAR which is the sensing device 111
  • the automation controller 100 recognizes the position of the vessel 301 by comparing the point cloud detected by the perception device 111 with a master point cloud indicating the shape of the vessel 301.
  • the automation controller 100 sets the upper end of the side surface of the vessel 301 of the dump truck 300 recognized by LiDAR, which is the sensing device 111, as a reference point P.
  • step S102 the automation controller 100 sets the coordinates of the target positions c, d, and e (FIG. 7) of the cutting edge 6a of the bucket 6 that moves under automatic control with respect to the reference point P.
  • the cutting edge 6a of the bucket 6 corresponds to an example of a "feature point" set on the work machine 3. Note that the feature point is not limited to the cutting edge 6a of the bucket 6, and other points on the work machine 3 may be set as the feature point.
  • FIG. 7 is a diagram schematically showing the arrangement of the vessel 301 and the wheel loader 1 at the start of the dump approach. 7 and subsequent FIGS. 8 to 10, the vessel 301 is schematically shown as seen from the front and rear directions of the dump truck 300, and the wheel loader 1 approaching the vessel 301 from the left or right side of the dump truck 300 is shown schematically. A part of the front side is shown schematically.
  • the target position c is set as the position through which the cutting edge 6a of the bucket 6 passes while the wheel loader 1 is traveling forward toward the dump truck 300. While the wheel loader 1 is traveling forward, the working machine 3 moves the bucket 6 in the dumping direction in order to load the load 310 in the bucket 6 into the vessel 301.
  • the target position c is the position when the cutting edge 6a of the dumped bucket 6 is located at the lowest position during the loading operation.
  • the target position d is set as the position through which the cutting edge 6a of the bucket 6 passes after passing the target position c.
  • the target position d is set closer to the reference point P than the target position c.
  • the target position d is the position at which the movement of the bucket 6 in the dumping direction is stopped.
  • the cutting edge 6a of the bucket 6 is at the target position d, the bucket 6 is in a full dump state, for example.
  • the length of the bucket cylinder 19 is the minimum.
  • the target position d is above the vessel 301.
  • the target position d becomes the position at which the load pushing starts.
  • the target position d is a position where the operation of the working machine 3 is stopped while the bucket 6 is maintained in the full dump state, for example.
  • the target position e is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position d.
  • the target position e is set farther from the reference point P than the target position d. From the target position d to the target position e, the bucket 6 is maintained in, for example, a full dump state and the operation of the work implement 3 is stopped, and the wheel loader 1 continues to travel forward.
  • the target position e is above the vessel 301.
  • an xy coordinate system is set with the reference point P as the origin.
  • the x-axis is the left-right direction of the dump truck 300 passing through the reference point P.
  • the direction away from the vessel 301 with respect to the reference point P is the +x direction.
  • the y-axis is the vertical direction passing through the reference point P.
  • the upward direction from the reference point P is the +y direction.
  • the bucket angle ⁇ shown in FIG. 7 is the angle between the ground and the back surface 6b of the bucket 6.
  • the bucket angle ⁇ may be an angle between the back surface 6b of the bucket 6 and a horizontal plane based on the vehicle body.
  • the target positions c, d, and e are determined by providing the horizontal and vertical positions of the cutting edge 6a of the bucket 6 with respect to the reference point P, that is, the x and y coordinates.
  • the target position c is set as the position where the height position of the cutting edge 6a becomes the lowest (the y coordinate becomes the minimum value) while the load 310 in the bucket 6 is being unloaded.
  • the target position c is set to a position where the y-coordinate is on the negative side.
  • the target positions d and e are set to positions where the y coordinate is on the plus side.
  • the target positions c, d, and e are set to positions where the x coordinate is on the negative side.
  • the target positions d and e are set to the same y coordinate, for example.
  • the bucket 6 does not need to be in a full dump state at the target positions d and e, but may be in a dump state that allows the load 310 in the bucket 6 to be loaded into the vessel 301.
  • the target positions d and e do not have to have the same y coordinate, and the target position e may be lower than the target position d (a position in the ⁇ y direction).
  • the bucket angle ⁇ when the cutting edge 6a of the bucket 6 is at each target position is also set.
  • the attitude of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position is determined from the x and y coordinates of each target position and the bucket angle ⁇ at each target position.
  • the automation controller 100 stores the postures (target postures) of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position. Based on the target posture when the cutting edge 6a of the bucket 6 is at each target position, the length of the boom cylinder 16 and the length of the bucket cylinder 19 when the cutting edge 6a of the bucket 6 is at each target position are determined.
  • the x-coordinate and y-coordinate of each target position and the bucket angle ⁇ at each target position are determined by analyzing the locus of the cutting edge 6a when a skilled operator performs loading work and extracting the characteristic position. It can be determined by extracting the attitude of the working machine 3 at the position.
  • FIG. 8 is a diagram schematically showing the attitude of the wheel loader when the blade edge of the bucket is located at the lowest position during the loading operation.
  • FIG. 9 is a diagram schematically showing the attitude of the wheel loader at the time of starting load pushing.
  • FIG. 10 is a diagram schematically showing the attitude of the wheel loader at the end of loading.
  • the cutting edge 6a of the bucket 6 is at the target position c.
  • the cutting edge 6a is at the target position d.
  • the cutting edge 6a is at the target position e.
  • FIG. 11 is a graph showing changes in cylinder length during loading work.
  • the horizontal axis in FIG. 11 shows the passage of time, and auxiliary lines are drawn at the times when the cutting edge 6a passes through the target positions c, d, and e.
  • the vertical axis in FIG. 11 indicates the lengths of the boom cylinder 16 and the bucket cylinder 19.
  • the wheel loader 1 is traveling forward before the cutting edge 6a reaches the target position c.
  • the length of the boom cylinder 16 is increasing and therefore the boom 14 is rising.
  • the length of the bucket cylinder 19 continues to decrease, so the bucket 6 continues to move in the dumping direction.
  • the cutting edge 6a is positioned at the lowest position during the loading operation.
  • the wheel loader 1 continues to travel forward during the movement of the cutting edge 6a from the target position c to the target position d.
  • the length of boom cylinder 16 continues to increase and boom 14 continues to rise.
  • the length of the bucket cylinder 19 continues to decrease, so the bucket 6 continues to move in the dumping direction.
  • the cutting edge 6a reaches the target position d
  • the bucket 6 assumes the full dumping position.
  • the length of the bucket cylinder 19 is at its minimum.
  • the wheel loader 1 continues to travel forward during the movement of the cutting edge 6a from the target position d to the target position e.
  • the operation of the working machine 3 is stopped. Therefore, the lengths of the boom cylinder 16 and the bucket cylinder 19 are the same as the lengths of the boom cylinder 16 and the bucket cylinder 19 at the target position d. Therefore, when the cutting edge 6a reaches the target position e, the bucket 6 maintains the full dump posture, and the length of the bucket cylinder 19 is at its minimum.
  • the wheel loader 1 is switched from forward travel to reverse travel.
  • the operation of the working machine 3 may be stopped for a predetermined period of time.
  • the lengths of each of the boom cylinder 16 and the bucket cylinder 19 are the same as the lengths of each of the boom cylinder 16 and the bucket cylinder 19 at the target position e.
  • the wheel loader 1 continues to travel backwards, the length of the boom cylinder 16 decreases (the boom 14 descends), and the length of the bucket cylinder 19 increases (the bucket 6 may be operated in the tilt direction).
  • the load 310 in the bucket 6 can be discharged into the vessel 301 by moving the cutting edge 6a of the bucket 6 so as to pass through the target positions c and d in sequence as described above. Further, by moving the cutting edge 6a of the bucket 6 so as to pass through the target positions d and e in order, the load 310 in the vessel 301 can be pushed by the bucket 6. For example, the load 310 in the vessel 301 can be pushed toward the center CL of the vessel 301 by the bucket 6.
  • step S103 the automation controller 100 recognizes the current positions of the wheel loader 1 and the work machine 3.
  • the wheel loader 1 and the work implement in the global coordinate system are 3's current position can be recognized.
  • the relative position of the cutting edge 6a of the bucket 6 with respect to the vessel 301 of the dump truck 300 can be calculated.
  • the sensing device 111 by using the sensing device 111 to obtain the direction and distance of the reference point P of the vessel 301 of the dump truck 300 with respect to the arrangement position of the sensing device 111, the current relative position of the cutting edge 6a of the bucket 6 with respect to the reference point P can be determined. may be calculated.
  • the cutting edge 6a of the bucket 6 is in relation to each of the target positions c to e. For example, the cutting edge 6a has not yet reached the target position c, the cutting edge 6a has passed the target position c and is between the target positions c and d, the cutting edge 6a has passed the target position d and is at the target position. d and the target position e, etc., is recognized. Furthermore, the target position to which the cutting edge 6a will go next is recognized. For example, if the cutting edge 6a has not yet reached the target position c, the next destination is the target position c, and if the cutting edge 6a is between the target positions c and d, the next destination is the target position. It is recognized that if the cutting edge 6a is located between the target position d and the target position e, the next target position is the target position e.
  • step S104 the automation controller 100 recognizes the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position.
  • a boom angle sensor 123 detects the angle of the boom 14 .
  • a bucket angle sensor 124 detects the angle of the bucket 6.
  • the attitude of the working machine 3 is determined from the angle of the boom 14 and the angle of the bucket 6. Based on the attitude of the working machine 3, the lengths of the boom cylinder 16 and the bucket cylinder 19 at the current position are recognized.
  • an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 may be provided.
  • the posture of the working machine 3 may be detected by a stroke sensor, an IMU, a potentiometer, a visual sensor, etc. instead of or in addition to the angle sensor.
  • step S105 the automation controller 100 determines the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position recognized in step S104, and the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the target position where the cutting edge 6a will go next. (hereinafter referred to as target cylinder length).
  • target cylinder length The automation controller 100 calculates how much the cylinders 16 and 19 should be moved until the cutting edge 6a reaches the next target position.
  • step S106 the automation controller 100 refers to the current vehicle speed and determines a target cylinder stroke speed that will result in the target cylinder length when the cutting edge 6a reaches the next target position.
  • the automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that when the cutting edge 6a reaches the next target position, the working machine 3 assumes a target attitude corresponding to the target position.
  • the current vehicle speed is acquired by vehicle speed sensor 122.
  • the time required to reach the next target position is calculated from the current position of the cutting edge 6a and the current vehicle speed.
  • the target cylinder stroke speed is determined by dividing the difference in cylinder length calculated in step S105 by the time required to reach the next target position.
  • the cylinder stroke amount during which the wheel loader 1 travels a unit distance may be determined.
  • the fact that the wheel loader 1 has traveled a unit distance may be determined from the vehicle speed, or may be detected by the sensing device 111.
  • step S107 the automation controller 100 outputs a command current corresponding to the target cylinder stroke speed to the vehicle body controller 50.
  • the automation controller 100 outputs a command to the work machine control unit 82 of the work machine controller 80 to extend and contract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
  • a command is output from the work equipment control unit 82 to the work equipment EPC 143 to extend and retract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
  • step S108 the working machine EPC 143 that has received the command signal adjusts the opening degree, so that appropriate hydraulic oil is supplied to the boom cylinder 16 and the bucket cylinder 19. This causes the boom cylinder 16 and bucket cylinder 19 to operate.
  • step S109 the automation controller 100 recognizes the current lengths of the boom cylinder 16 and bucket cylinder 19 similarly to step S104. The automation controller 100 determines whether the current lengths of the boom cylinder 16 and bucket cylinder 19 have reached the target cylinder length.
  • step S109 If it is determined in step S109 that the target cylinder length has been reached (YES in step S109), the process proceeds to step S110, and the automation controller 100 determines whether there is a next target position.
  • step S109 If it is determined in step S109 that the target cylinder length has not been reached (NO in step S109), and if it is determined in step S110 that there is a next target position (YES in step S110) , the process returns to step S103, and the process of expanding and contracting the boom cylinder 16 and the bucket cylinder 19 based on the current position of the working machine 3 is repeated.
  • the cylinder speed is sequentially changed according to the current position of the cutting edge 6a of the bucket 6. If the current position of the cutting edge 6a deviates from the position based on the cylinder speed set in the previous process, the cylinder speed is adjusted.
  • step S110 If it is determined in step S110 that there is no next target position (NO in step S110), the loading operation is ended. In this embodiment, this corresponds to the fact that the next target position is not set after the end of the target position d.
  • FIG. 6 is a flowchart showing automatic control of load pushing.
  • the cutting edge 6a of the bucket 6 reaches the target position d as shown in FIG. Whether the cutting edge 6a has reached the target position d is determined by the automation controller 100 depending on whether the lengths of the boom cylinder 16 and the bucket cylinder 19 have reached the target length of the target position d in the automatic control flow shown in FIG. will judge.
  • the bucket 6 is in a full dump state. Therefore, the loading operation of the load 310 in the bucket 6 into the vessel 301 is completed (step S201: FIG. 6).
  • the automation controller 100 has acquired information regarding the loading status of the cargo 310 in the vessel 301.
  • the automation controller 100 determines whether to push the load 310 in the vessel 301 (step S202: FIG. 6).
  • the above-mentioned acquisition of information regarding the loading status and determination of whether loading is necessary are performed by the loading determination unit 104 of the automation controller 100.
  • the load pushing determination unit 104 determines whether it is necessary to push the load 310 within the vessel 301 based on information regarding the loading status of the load 310 within the vessel 301.
  • the load pushing determination unit 104 determines whether it is necessary to push the load 310 in the vessel 301 based on information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111, for example.
  • the automation controller 100 stores relational data indicating the relationship between the loading status of the cargo 310 in the vessel 301 and the necessity of pushing the cargo.
  • the load pushing determination unit 104 determines whether it is necessary to push the load 310 in the vessel 301 by comparing this relational data with the information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111. .
  • the load pushing determination unit 104 calculates the number of times the load 310 is loaded into the vessel 301 by the work machine 3 from a signal indicating the attitude of the work machine 3 acquired by the work machine attitude sensor, for example. If the calculated number of times of loading is equal to or greater than a predetermined number of times (for example, two times), the load pushing determination unit 104 determines that the load 310 in the vessel 301 needs to be pushed.
  • a predetermined number of times for example, two times
  • the load pushing determination unit 104 determines in step S202 that it is necessary to push the load 310 inside the vessel 301, it determines a path for operating the wheel loader 1 so that the cutting edge 6a moves from the target position d to the target position e.
  • the path planning unit 102 generates it.
  • the route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the route generated by the path planning unit 102.
  • a command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81.
  • the wheel loader 1 is controlled by the path following control unit 103 to travel forward from the target position d to the target position e.
  • the route following control unit 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the work machine 3 operates along the optimal route generated by the path planning unit 102.
  • a command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82.
  • the work machine 3 is controlled by the path following control unit 103 to stop its operation from the target position d to the target position e.
  • the wheel loader 1 moves forward until it reaches the target position e from the target position d, and the work implement 3 is controlled by the path following control unit 103 to stop its operation (step S203: FIG. 6). As a result, the wheel loader 1 is operated to push the load 310 in the vessel 301 toward the center CL of the vessel 301. When the cutting edge 6a reaches the target position e, the load pushing control ends.
  • step S202 if the load pushing determination unit 104 determines that pushing the load 310 in the vessel 301 is not necessary, the load pushing control ends.
  • a cargo 310A is loaded into the vessel 301 in the first loading, and a cargo 310B is loaded in the second loading.
  • the cargo 310 may be loaded unevenly in the vessel 301.
  • the bucket 6 moves the load 310 in the vessel 301 toward the center CL of the vessel 301.
  • the load pushing control using the bucket 6 is performed, for example, after the second loading of the load 310B is completed.
  • the load is pushed by moving the cutting edge 6a of the bucket 6 from the end of the vessel 301 toward the center CL.
  • the load 310 in the vessel 301 is pushed by the bucket 6 and moved to the center CL of the vessel 301.
  • the wheel loader 1 moves backward. As a result, the bucket 6 moves backward and leaves the dump truck 300 while forming the apex 310.
  • center CL of the vessel 301 is the viewpoint (shown in FIGS. 12A to 12C) of the cross section of the vessel 301 along the direction in which the wheel loader 1 moves forward toward the vessel 301 during the loading operation. In cross-sectional view), it means the center of the vessel 301 in the width direction.
  • the automation controller 100 (load determining unit 104) shown in FIG. 4 acquires information regarding the loading status of the load 310 in the vessel 301. Further, the automation controller 100 (load pushing determination unit 104) determines whether it is necessary to push the load 310 within the vessel 301 based on information regarding the loading status of the load 310 within the vessel 301. Further, the automation controller 100 (load pushing determination unit 104) operates the wheel loader 1 to move the load 310 toward the center CL of the vessel 301 when it is determined that the load 310 needs to be moved within the vessel 301. let
  • the load 310 is pushed toward the center CL of the vessel 301 based on the loading status of the load 310 in the vessel 301. Therefore, the unevenness of the load 310 within the vessel 301 is improved. This prevents the load 310 from spilling from the vessel 301 while the dump truck 300 is running.
  • the automation controller 100 (load pushing determination unit 104) shown in FIG.
  • the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301.
  • the load 310 in the vessel 301 that is held by the bucket 6 can be pushed toward the center CL of the vessel 301.
  • the automation controller 100 (load pushing determination unit 104) shown in FIG.
  • the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. This eliminates the need to control the operation of the work implement actuator during load pushing, making it possible to simplify the operation control.
  • the automation controller 100 (load pushing determination unit 104) shown in FIG.
  • the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. This eliminates the need to control the height of the bucket 6 when pushing a load, making it possible to simplify operation control.
  • the automation controller 100 (load pushing determination unit 104) shown in FIG. Based on the calculated number of loadings, it is determined whether it is necessary to move the load 310 within the vessel 301. This makes it possible to easily determine whether loading is necessary based on the number of times of loading.
  • the automation controller 100 (load pushing determination unit 104) shown in FIG. 4 determines whether it is necessary to move the load 310 within the vessel 301 based on the loading status of the load 310 detected by the object sensor. Determine whether or not. Thereby, it is possible to determine whether it is necessary to push the load depending on the actual loading situation of the load 310 in the vessel 301. Therefore, it is possible to more accurately prevent the load 310 from spilling from the vessel 301 while the dump truck 300 is running.
  • a working machine The main body and a working machine that is attached to the main body and loads a load into a loading container; a work implement actuator that drives the work implement with respect to the main body; a controller that commands driving of the work implement actuator based on a detected value of the position of the work implement and a detected value of the position of the loading container with respect to the work machine; The controller acquires information regarding the loading status of the load in the loading container, and determines whether it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load. and operating the work machine to move the load toward the center of the loading container if it is determined that the load needs to be moved within the loading container.
  • the main body has a running body, Further comprising a running sensor that detects the progress state of the running body, The working machine according to supplementary note 1, wherein the controller instructs the driving of the working machine actuator based on a detected value of the travel sensor and a detected value of the position of the loading container with respect to the working machine.
  • the work machine has a bucket, When the controller determines that it is necessary to move the load within the loading container, the controller moves the traveling body forward while maintaining the height of the bucket toward the center of the loading container.
  • the working machine according to appendix 3 or 4, wherein the working machine is operated to move a load.
  • Appendix 6 Further comprising a work machine attitude sensor that detects the attitude of the work machine in order to determine the loading status of the load, The controller calculates the number of times the work machine loads the loading container based on the attitude of the work machine detected by the work machine attitude sensor, and the controller calculates the number of times the work machine loads the loading container based on the calculated number of times of loading.
  • the working machine according to any one of appendices 1 to 5, which determines whether it is necessary to move a load within the container.
  • a system including a working machine, The working machine body, a working machine that is attached to the working machine body and loads a load into a loading container; a work machine actuator that drives the work machine with respect to the work machine main body; a controller that commands driving of the work implement actuator based on a detected value of the position of the work implement and a detected value of the position of the loading container with respect to the work machine; The controller acquires information regarding the loading status of the load in the loading container, and determines whether it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load. and operating the work machine to move a load toward the center of the load container if it is determined that the load needs to be moved within the load container.
  • Appendix 9 A method for controlling a working machine, obtaining information regarding the loading status of cargo in the loading container; Determining whether it is necessary to move the load within the loading container based on the obtained information regarding the loading status of the load; controlling the work machine, comprising: operating the work machine to move the load toward the center of the loading container when it is determined that the load needs to be moved within the loading container; Method.

Abstract

A work machine (3) loads cargo (300) onto a vessel (301). A work machine actuator drives the work machine (3) with respect to a body. An automatic controller (100) instructs driving of the work machine actuator on the basis of a detected value of the position of the work machine (3) and a detected value of the position of the vessel (301) relative to a wheel loader (1). The automatic controller (100) acquires information relating to the loading status of cargo (310) in the vessel (301), determines whether it is necessary to move the cargo (310) in the vessel (301) on the basis of the acquired information relating to the loading status of the cargo (310), and in a case where it is determined that it is necessary to move the cargo (310) in the vessel (301), the automatic controller operates the wheel loader (1) to move the cargo (310) toward the center (CL) of the vessel (301).

Description

作業機械、作業機械を含むシステム、および作業機械の制御方法Work machines, systems including work machines, and control methods for work machines
 本開示は、作業機械、作業機械を含むシステム、および作業機械の制御方法に関する。 The present disclosure relates to a work machine, a system including the work machine, and a method of controlling the work machine.
 国際公開第2016/152994号(特許文献1)には、ホイールローダの移動距離に応じて求められた目標位置にブームおよびバケットを移動させる制御が開示されている。 International Publication No. 2016/152994 (Patent Document 1) discloses control for moving a boom and a bucket to a target position determined according to a moving distance of a wheel loader.
国際公開第2016/152994号International Publication No. 2016/152994
 ホイールローダなどの作業機械によってダンプトラックのベッセルなどの積込容器に積込みを行う場合、通常、複数回の積込作業が行われる。この複数回の積込作業によりダンプトラックに積み込まれた荷の容量がダンプトラックの積載容量に達したときに、積み込まれた荷の積込状態(荷姿)が不適切であると、ダンプトラックの走行中に荷がこぼれるおそれがある。 When loading a loading container such as a vessel of a dump truck using a working machine such as a wheel loader, the loading operation is usually performed multiple times. When the capacity of the load loaded onto the dump truck reaches the loading capacity of the dump truck after multiple loading operations, if the loading condition (packing style) of the loaded load is inappropriate, the dump truck There is a risk that the load may spill while the vehicle is running.
 本開示では、積込容器に適正に積み込むことができる作業機械、作業機械を含むシステム、および作業機械の制御方法が提案される。 The present disclosure proposes a working machine that can properly load a loading container, a system including the working machine, and a method of controlling the working machine.
 本開示のある局面に係る作業機械および作業機械を含むシステムの各々は、本体と、作業機と、作業機アクチュエータと、コントローラとを備える。作業機は、本体に取り付けられ、積込容器に荷を積み込む。作業機アクチュエータは、本体に対し作業機を駆動する。コントローラは、作業機の位置の検出値と、積込容器の作業機械に対する位置の検出値とに基づいて、作業機アクチュエータの駆動を指令する。コントローラは、積込容器内における荷の積込状況に関する情報を取得し、取得した荷の積込状況に関する情報に基づいて積込容器内で荷を移動させる必要があるか否かを判定し、積込容器内で荷を移動させる必要があると判定した場合に積込容器の中心に向けて荷を移動させるように作業機械を動作させる。 A work machine and a system including the work machine according to an aspect of the present disclosure each include a main body, a work machine, a work machine actuator, and a controller. The work machine is attached to the main body and loads the load into the loading container. The work implement actuator drives the work implement relative to the main body. The controller commands the drive of the work implement actuator based on the detected value of the position of the work implement and the detected value of the position of the loading container with respect to the work machine. The controller acquires information regarding the loading status of the load within the loading container, and determines whether or not it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load, When it is determined that the load needs to be moved within the loading container, the work machine is operated to move the load toward the center of the loading container.
 本開示のある局面に係る作業機械の制御方法は、積込容器内における荷の積込状況に関する情報を取得することと、取得した荷の積込状況に関する情報に基づいて積込容器内で荷を移動させる必要があるか否かを判定することと、積込容器内で荷を移動させる必要があると判定した場合に積込容器の中心に向けて荷を移動させるように作業機械を動作させることと、を備えている。 A method for controlling a work machine according to an aspect of the present disclosure includes acquiring information regarding the loading status of a load in a loading container, and controlling a load in the loading container based on the acquired information regarding the loading status of the load. determining whether the load needs to be moved within the loading container, and operating the work machine to move the load toward the center of the loading container if it is determined that the load needs to be moved within the loading container. It is equipped with the following:
 本開示の作業機械、作業機械を含むシステム、および作業機械の制御方法によると、積込容器に適正に積み込むことが可能となる。 According to the working machine, the system including the working machine, and the method of controlling the working machine of the present disclosure, it is possible to properly load a loading container.
作業機械の一例としてのホイールローダの側面図である。FIG. 1 is a side view of a wheel loader as an example of a working machine. ホイールローダの制御システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a control system for a wheel loader. 掘削積込作業を行うホイールローダの平面図である。FIG. 2 is a plan view of a wheel loader that performs excavation and loading work. ホイールローダの自動制御システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an automatic control system for a wheel loader. 自動制御によりバケットに積載した荷を積込目標に積み込む動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the operation|movement which loads the load loaded into the bucket to the loading target by automatic control. 荷押しの自動制御を示すフローチャートである。It is a flow chart which shows automatic control of load pushing. ダンプアプローチ開始時のベッセルとホイールローダとの配置を模式的に示す図である。FIG. 3 is a diagram schematically showing the arrangement of a vessel and a wheel loader at the start of a dump approach. 積込動作時においてバケットの刃先が最下方に位置するときのホイールローダの姿勢を模式的に示す図である。It is a figure which shows typically the attitude|position of a wheel loader when the blade edge of a bucket is located in the lowermost part at the time of loading operation|movement. 荷押し開始時のホイールローダの姿勢を模式的に示す図である。It is a figure which shows typically the attitude|position of the wheel loader at the time of starting load pushing. 荷押し終了時のホイールローダの姿勢を模式的に示す図である。It is a figure which shows typically the attitude|position of a wheel loader at the time of completion|finish of load pushing. 積込作業中のシリンダ長さの変化を示すグラフである。It is a graph showing changes in cylinder length during loading work. 荷押しによりベッセル内の荷の姿勢の変化を示す図である。It is a figure which shows the change of the attitude|position of the load in a vessel by load pushing.
 以下、実施形態について図に基づいて説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。実施形態から任意の構成が抽出され、それらが任意に組み合わされることも、当初から予定されている。 Hereinafter, embodiments will be described based on the drawings. In the following description, the same parts and components are given the same reference numerals. Their names and functions are also the same. Therefore, detailed explanations thereof will not be repeated. It is also planned from the beginning that arbitrary configurations will be extracted from the embodiments and that they will be combined arbitrarily.
 <ホイールローダ1の全体構成>
 実施形態においては、作業機械の一例としてホイールローダ1について説明する。図1は、作業機械の一例としてのホイールローダ1の側面図である。
<Overall configuration of wheel loader 1>
In the embodiment, a wheel loader 1 will be described as an example of a working machine. FIG. 1 is a side view of a wheel loader 1 as an example of a working machine.
 図1に示されるように、ホイールローダ1は、車体フレーム2と、作業機3と、走行装置4と、キャブ5とを備えている。車体フレーム2、キャブ5などからホイールローダ1の車体が構成されている。ホイールローダ1の車体には、作業機3および走行装置4が取り付けられている。ホイールローダ1の本体は、車体と、走行装置4とを有している。 As shown in FIG. 1, the wheel loader 1 includes a vehicle body frame 2, a working machine 3, a traveling device 4, and a cab 5. The vehicle body of the wheel loader 1 is composed of a vehicle body frame 2, a cab 5, and the like. A working machine 3 and a traveling device 4 are attached to the vehicle body of the wheel loader 1. The main body of the wheel loader 1 includes a vehicle body and a traveling device 4.
 走行装置4は、ホイールローダ1の車体を走行させるものであり、走行輪4a,4bを含んでいる。ホイールローダ1は、車体の左右方向の両側に走行用回転体として走行輪4a,4bを備える装輪車両である。ホイールローダ1は、走行輪4a,4bが回転駆動されることにより自走可能であり、作業機3を用いて所望の作業を行うことができる。走行装置4は、「走行体」の一例に対応する。 The traveling device 4 causes the vehicle body of the wheel loader 1 to travel, and includes running wheels 4a and 4b. The wheel loader 1 is a wheeled vehicle that includes running wheels 4a and 4b as rotating bodies for running on both sides of the vehicle body in the left-right direction. The wheel loader 1 is self-propelled by rotationally driving running wheels 4a and 4b, and can perform desired work using the working machine 3. The traveling device 4 corresponds to an example of a "traveling body."
 本明細書中において、ホイールローダ1が直進走行する方向を、ホイールローダ1の前後方向という。ホイールローダ1の前後方向において、車体フレーム2に対して作業機3が配置されている側を前方向とし、前方向と反対側を後方向とする。ホイールローダ1の左右方向とは、平坦な地面上にあるホイールローダ1を平面視したときに前後方向と直交する方向である。前方向を見て左右方向の右側、左側が、それぞれ右方向、左方向である。ホイールローダ1の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向である。上下方向において地面のある側が下側、空のある側が上側である。 In this specification, the direction in which the wheel loader 1 travels straight is referred to as the front-rear direction of the wheel loader 1. In the front-rear direction of the wheel loader 1, the side on which the working machine 3 is arranged with respect to the vehicle body frame 2 is defined as the front direction, and the side opposite to the front direction is defined as the rear direction. The left-right direction of the wheel loader 1 is a direction perpendicular to the front-rear direction when the wheel loader 1 on a flat ground is viewed from above. Looking forward, the right and left sides in the left and right direction are the right direction and left direction, respectively. The vertical direction of the wheel loader 1 is a direction perpendicular to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the bottom, and the side with the sky is the top.
 車体フレーム2は、前フレーム2aと後フレーム2bとを含んでいる。前フレーム2aは、後フレーム2bの前方に配置されている。前フレーム2aと後フレーム2bとは、互いに左右方向に揺動可能に取り付けられている。 The vehicle body frame 2 includes a front frame 2a and a rear frame 2b. The front frame 2a is arranged in front of the rear frame 2b. The front frame 2a and the rear frame 2b are attached to each other so as to be swingable in the left-right direction.
 前フレーム2aと後フレーム2bとに亘って、一対のステアリングシリンダ11が取り付けられている。ステアリングシリンダ11は、油圧シリンダである。ステアリングシリンダ11がステアリングポンプからの作動油によって伸縮することによって、ホイールローダ1の進行方向が左右に変更される。前フレーム2aと後フレーム2bとにより、アーティキュレート構造の車体フレーム2が構成されている。ホイールローダ1は、前フレーム2aと後フレーム2bとが屈曲動作可能に連結されたアーティキュレート式の作業機械である。 A pair of steering cylinders 11 are attached across the front frame 2a and the rear frame 2b. Steering cylinder 11 is a hydraulic cylinder. The direction of movement of the wheel loader 1 is changed from side to side by the steering cylinder 11 being expanded and contracted by the hydraulic oil from the steering pump. The front frame 2a and the rear frame 2b constitute a vehicle body frame 2 having an articulated structure. The wheel loader 1 is an articulated working machine in which a front frame 2a and a rear frame 2b are connected for bending movement.
 前フレーム2aには、作業機3および一対の走行輪(前輪)4aが取り付けられている。作業機3は、ホイールローダ1の本体の前方に取り付けられている。作業機3は、ホイールローダ1の車体によって支持されている。作業機3は、ブーム14と、バケット6とを含んでいる。バケット6は、作業機3の先端に配置されている。バケット6は、掘削・積込用の作業具である。刃先6aは、バケット6の先端部である。背面6bは、バケット6の外面の一部である。背面6bは、平面で形成されている。背面6bは、刃先6aから後方に延びている。 A working machine 3 and a pair of running wheels (front wheels) 4a are attached to the front frame 2a. The work machine 3 is attached to the front of the main body of the wheel loader 1. The work machine 3 is supported by the vehicle body of the wheel loader 1. The work machine 3 includes a boom 14 and a bucket 6. The bucket 6 is arranged at the tip of the working machine 3. The bucket 6 is a working tool for digging and loading. The cutting edge 6a is the tip of the bucket 6. The back surface 6b is part of the outer surface of the bucket 6. The back surface 6b is formed of a flat surface. The back surface 6b extends rearward from the cutting edge 6a.
 ブーム14の基端部は、ブームピン9によって前フレーム2aに回転自在に取付けられている。バケット6は、ブーム14の先端に位置するバケットピン17によって、回転自在にブーム14に取付けられている。ブームピン9およびバケットピン17は、作業機3の「複数の関節」に対応する。 The base end of the boom 14 is rotatably attached to the front frame 2a by a boom pin 9. The bucket 6 is rotatably attached to the boom 14 by a bucket pin 17 located at the tip of the boom 14. The boom pin 9 and the bucket pin 17 correspond to "a plurality of joints" of the working machine 3.
 作業機3は、ベルクランク18と、リンク15とをさらに含んでいる。ベルクランク18は、ブーム14のほぼ中央に位置する支持ピン18aによって、ブーム14に回転自在に支持されている。リンク15は、ベルクランク18の先端部に設けられた連結ピン18cに連結されている。リンク15は、ベルクランク18とバケット6とを連結している。 The work machine 3 further includes a bell crank 18 and a link 15. The bell crank 18 is rotatably supported by the boom 14 by a support pin 18a located approximately at the center of the boom 14. The link 15 is connected to a connecting pin 18c provided at the tip of the bell crank 18. Link 15 connects bell crank 18 and bucket 6.
 前フレーム2aとブーム14とは、一対のブームシリンダ16により連結されている。ブームシリンダ16は、油圧シリンダである。ブームシリンダ16は、ブーム14を、ブームピン9を中心として上下に回転駆動する。ブームシリンダ16の基端は、前フレーム2aに取り付けられている。ブームシリンダ16の先端は、ブーム14に取り付けられている。ブームシリンダ16は、ブーム14を前フレーム2aに対し上下に動作させる油圧アクチュエータである。ブーム14の昇降に伴って、ブーム14の先端に取り付けられたバケット6も昇降する。 The front frame 2a and the boom 14 are connected by a pair of boom cylinders 16. Boom cylinder 16 is a hydraulic cylinder. The boom cylinder 16 rotates the boom 14 up and down about the boom pin 9 . A base end of the boom cylinder 16 is attached to the front frame 2a. The tip of the boom cylinder 16 is attached to the boom 14. The boom cylinder 16 is a hydraulic actuator that moves the boom 14 up and down with respect to the front frame 2a. As the boom 14 moves up and down, the bucket 6 attached to the tip of the boom 14 also moves up and down.
 バケットシリンダ19は、ベルクランク18と前フレーム2aとを連結している。バケットシリンダ19の基端は、前フレーム2aに取り付けられている。バケットシリンダ19の先端は、ベルクランク18の基端部に設けられた連結ピン18bに取り付けられている。バケットシリンダ19は、バケット6をブーム14に対し上下に回動させる油圧アクチュエータである。バケットシリンダ19は、バケット6を駆動する作業具シリンダである。バケットシリンダ19は、バケット6を、バケットピン17を中心として回転駆動する。バケット6は、ブーム14に対し動作可能に構成されている。バケット6は、前フレーム2aに対し動作可能に構成されている。 The bucket cylinder 19 connects the bell crank 18 and the front frame 2a. The base end of the bucket cylinder 19 is attached to the front frame 2a. The tip of the bucket cylinder 19 is attached to a connecting pin 18b provided at the base end of the bell crank 18. The bucket cylinder 19 is a hydraulic actuator that rotates the bucket 6 up and down with respect to the boom 14. Bucket cylinder 19 is a work tool cylinder that drives bucket 6 . Bucket cylinder 19 rotates bucket 6 around bucket pin 17 . Bucket 6 is configured to be movable relative to boom 14 . The bucket 6 is configured to be movable relative to the front frame 2a.
 ブームシリンダ16と、バケットシリンダ19とは、作業機3を駆動する「作業機アクチュエータ」の一例に対応する。 The boom cylinder 16 and the bucket cylinder 19 correspond to an example of a "work machine actuator" that drives the work machine 3.
 後フレーム2bには、オペレータが搭乗するキャブ5、および一対の走行輪(後輪)4bが取り付けられている。箱状のキャブ5は、ブーム14の後方に配置されている。キャブ5は、車体フレーム2上に載置されている。キャブ5内には、ホイールローダ1のオペレータが着座するシート、および後述する操作装置8(図2)などが配置されている。 A cab 5 on which an operator rides and a pair of running wheels (rear wheels) 4b are attached to the rear frame 2b. A box-shaped cab 5 is arranged behind the boom 14. The cab 5 is placed on the vehicle body frame 2. Inside the cab 5, a seat on which an operator of the wheel loader 1 sits, an operating device 8 (FIG. 2), which will be described later, and the like are arranged.
 <システム構成>
 図2は、ホイールローダ1を制御する制御システムの概略構成を示すブロック図である。
<System configuration>
FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the wheel loader 1. As shown in FIG.
 図2に示されるように、エンジン21は、作業機3および走行装置4(図1)を駆動するための駆動力を発生する駆動源であり、たとえばディーゼルエンジンである。駆動源として、エンジン21に代えて、蓄電体により駆動するモータが用いられてもよく、またエンジンとモータとの双方が用いられてもよい。エンジン21の出力は、エンジン21のシリンダ内に噴射する燃料量を調整することにより制御される。 As shown in FIG. 2, the engine 21 is a drive source that generates driving force for driving the working machine 3 and the traveling device 4 (FIG. 1), and is, for example, a diesel engine. As the drive source, a motor driven by an electrical storage body may be used instead of the engine 21, or both the engine and the motor may be used. The output of the engine 21 is controlled by adjusting the amount of fuel injected into the cylinders of the engine 21.
 エンジン21の発生する駆動力は、トランスミッション23へ伝達される。トランスミッション23は、駆動力を適切なトルクおよび回転速度に変速する。トランスミッション23の出力軸に、アクスル25が接続されている。トランスミッション23で変速された駆動力は、アクスル25に伝達される。アクスル25から走行輪4a,4b(図1)に、駆動力が伝達される。これにより、ホイールローダ1が走行する。本実施形態のホイールローダ1においては、走行輪4aと走行輪4bとの両方が、駆動力を受けてホイールローダ1を走行させる駆動輪を構成している。 The driving force generated by the engine 21 is transmitted to the transmission 23. The transmission 23 changes the driving force to appropriate torque and rotational speed. An axle 25 is connected to the output shaft of the transmission 23. The driving force shifted by the transmission 23 is transmitted to the axle 25. Driving force is transmitted from the axle 25 to the running wheels 4a, 4b (FIG. 1). Thereby, the wheel loader 1 travels. In the wheel loader 1 of this embodiment, both the running wheels 4a and 4b constitute driving wheels that receive driving force and cause the wheel loader 1 to travel.
 エンジン21の駆動力の一部は、作業機ポンプ13に伝達される。作業機ポンプ13は、エンジン21により駆動され、吐出する作動油によって作業機3(図1)を作動させる油圧ポンプである。作業機3は、作業機ポンプ13からの作動油によって駆動される。作業機ポンプ13から吐出された作動油は、メインバルブ32を介して、ブームシリンダ16およびバケットシリンダ19に供給される。ブームシリンダ16が作動油の供給を受けて伸縮することによって、ブーム14が昇降する。バケットシリンダ19が作動油の供給を受けて伸縮することによって、バケット6が上下に回動する。 A part of the driving force of the engine 21 is transmitted to the work equipment pump 13. The work equipment pump 13 is a hydraulic pump that is driven by the engine 21 and operates the work equipment 3 (FIG. 1) with discharged hydraulic oil. The work machine 3 is driven by hydraulic oil from a work machine pump 13. Hydraulic oil discharged from the work equipment pump 13 is supplied to the boom cylinder 16 and the bucket cylinder 19 via the main valve 32. The boom 14 moves up and down as the boom cylinder 16 expands and contracts in response to the supply of hydraulic oil. When the bucket cylinder 19 is supplied with hydraulic oil and expands and contracts, the bucket 6 rotates up and down.
 ホイールローダ1は、車体コントローラ50を備えている。車体コントローラ50は、エンジンコントローラ60と、トランスミッションコントローラ70と、作業機コントローラ80とを含んでいる。 The wheel loader 1 includes a vehicle body controller 50. Vehicle controller 50 includes an engine controller 60, a transmission controller 70, and a work equipment controller 80.
 車体コントローラ50は、一般的にCPU(Central Processing Unit)により各種のプログラムを読み込むことにより実現される。車体コントローラ50は、図示しないメモリを有している。メモリは、ワークメモリとして機能するとともに、ホイールローダ1の機能を実現するための各種のプログラムを格納する。 The vehicle body controller 50 is generally realized by reading various programs using a CPU (Central Processing Unit). The vehicle body controller 50 has a memory (not shown). The memory functions as a work memory and stores various programs for realizing the functions of the wheel loader 1.
 操作装置8は、キャブ5に設けられている。操作装置8は、オペレータによって操作される。操作装置8は、オペレータがホイールローダ1を動作させるために操作する、複数種類の操作部材を備えている。操作装置8は、アクセルペダル41と、作業機操作レバー42とを含んでいる。操作装置8は、図示しないステアリングハンドル、シフトレバーなどを含んでいてもよい。 The operating device 8 is provided in the cab 5. The operating device 8 is operated by an operator. The operating device 8 includes a plurality of types of operating members that are operated by an operator to operate the wheel loader 1. The operating device 8 includes an accelerator pedal 41 and a work implement operating lever 42. The operating device 8 may include a steering handle, a shift lever, etc. (not shown).
 アクセルペダル41は、エンジン21の目標回転数を設定するために操作される。エンジンコントローラ60は、アクセルペダル41の操作量に基づいて、エンジン21の出力を制御する。アクセルペダル41の操作量(踏み込み量)を増大すると、エンジン21の出力が増大する。アクセルペダル41の操作量を減少すると、エンジン21の出力が減少する。トランスミッションコントローラ70は、アクセルペダル41の操作量に基づいて、トランスミッション23を制御する。 The accelerator pedal 41 is operated to set the target rotation speed of the engine 21. Engine controller 60 controls the output of engine 21 based on the amount of operation of accelerator pedal 41 . When the operation amount (depression amount) of the accelerator pedal 41 is increased, the output of the engine 21 is increased. When the amount of operation of the accelerator pedal 41 is decreased, the output of the engine 21 is decreased. Transmission controller 70 controls transmission 23 based on the amount of operation of accelerator pedal 41 .
 作業機操作レバー42は、作業機3を動作させるために操作される。作業機コントローラ80は、作業機操作レバー42の操作量に基づいて、電磁比例制御弁35,36を制御する。 The work equipment operating lever 42 is operated to operate the work equipment 3. The work machine controller 80 controls the electromagnetic proportional control valves 35 and 36 based on the amount of operation of the work machine operating lever 42.
 電磁比例制御弁35は、バケットシリンダ19を縮めて、バケット6がダンプ方向(バケット6の刃先が下がる方向)に移動するように、メインバルブ32を切り換える。また電磁比例制御弁35は、バケットシリンダ19を伸ばして、バケット6がチルト方向(バケット6の刃先が上がる方向)に移動するように、メインバルブ32を切り換える。電磁比例制御弁36は、ブームシリンダ16を縮めて、ブーム14が下がるようにメインバルブ32を切り換える。また電磁比例制御弁36は、ブームシリンダ16を伸ばして、ブーム14が上がるようにメインバルブ32を切り換える。 The electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is retracted and the bucket 6 moves in the dumping direction (the direction in which the cutting edge of the bucket 6 is lowered). Further, the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is extended and the bucket 6 is moved in the tilt direction (the direction in which the cutting edge of the bucket 6 is raised). The electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is retracted and the boom 14 is lowered. Further, the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is extended and the boom 14 is raised.
 機械モニタ51は、車体コントローラ50から指令信号の入力を受けて、各種情報を表示する。機械モニタ51に表示される各種情報は、たとえば、ホイールローダ1により実行される作業に関する情報、燃料残量、冷却水温度および作動油温度などの車体情報、ホイールローダ1の周辺を撮像した周辺画像などであってもよい。機械モニタ51はタッチパネルであってもよく、この場合、オペレータが機械モニタ51の一部に触れることにより生成される信号が、機械モニタ51から車体コントローラ50に出力される。 The machine monitor 51 receives command signals from the vehicle controller 50 and displays various information. The various information displayed on the machine monitor 51 includes, for example, information regarding the work performed by the wheel loader 1, vehicle body information such as remaining fuel level, cooling water temperature, and hydraulic oil temperature, and surrounding images of the surroundings of the wheel loader 1. etc. The machine monitor 51 may be a touch panel, and in this case, a signal generated when the operator touches a part of the machine monitor 51 is output from the machine monitor 51 to the vehicle controller 50.
 <掘削積込作業>
 本実施形態のホイールローダ1は、土砂などの掘削対象物を掬い取り、ダンプトラックなどの積込対象に掘削対象物を積み込む、掘削積込作業を実行する。図3は、掘削積込作業を行うホイールローダ1の平面図である。図3には、いわゆるVシェープ作業を行うホイールローダ1が示されている。
<Excavation and loading work>
The wheel loader 1 of this embodiment performs an excavation and loading operation in which an excavated object such as earth and sand is scooped up and the excavated object is loaded onto a loading object such as a dump truck. FIG. 3 is a plan view of the wheel loader 1 that performs excavation and loading work. FIG. 3 shows a wheel loader 1 that performs so-called V-shape work.
 図3(A)には、いわゆる空荷前進をするホイールローダ1が図示されている。ホイールローダ1は、土砂などの掘削対象物310へ向かって、掘削経路R1に沿って前進走行する。ホイールローダ1がバケット6を掘削対象物310へ突っ込み、前進走行を停止する。バケット6の刃先6a(図1)を掘削対象物310に食い込ませた状態でバケット6を上昇させることにより、バケット6に掘削対象物310の少なくとも一部を掬い取る掘削作業が実行される。 FIG. 3(A) shows a wheel loader 1 that moves forward with a so-called empty load. The wheel loader 1 travels forward along an excavation route R1 toward an excavation target 310 such as earth and sand. The wheel loader 1 thrusts the bucket 6 into the excavated object 310 and stops moving forward. By raising the bucket 6 with the cutting edge 6a (FIG. 1) of the bucket 6 biting into the object 310 to be excavated, an excavation operation in which at least a portion of the object 310 to be excavated is scooped into the bucket 6 is performed.
 図3(B)には、いわゆる積荷後進をするホイールローダ1が図示されている。バケット6内には、掘削対象物310が荷として積み込まれている。ホイールローダ1は、図3(A)で前進走行を開始した位置まで、掘削経路R1に沿って後進走行する。 FIG. 3(B) shows a wheel loader 1 that performs so-called backward movement with a loaded load. An excavated object 310 is loaded into the bucket 6 as a load. The wheel loader 1 travels backward along the excavation route R1 to the position where forward travel is started in FIG. 3(A).
 図3(C)には、いわゆる積荷前進をするホイールローダ1が図示されている。バケット6内に荷(掘削対象物310)が積み込まれた状態で、ホイールローダ1は、ダンプトラック300のベッセル301へ向かって前進走行する。ホイールローダ1は、図3(A)で前進走行を開始した位置から、ダンプトラック300へ向かって、積込経路R2に沿って前進走行する。ダンプトラック300に接近して所定位置に到達すると、ホイールローダ1は、バケット6内の荷310をベッセル301内に積み込む。ベッセル301は、バケット6内の荷310を積み込むための「積込容器」の一例に対応する。 FIG. 3(C) shows a wheel loader 1 that advances a load. With the load (excavated object 310) loaded in the bucket 6, the wheel loader 1 travels forward toward the vessel 301 of the dump truck 300. The wheel loader 1 moves forward from the position where it starts moving forward in FIG. 3(A) toward the dump truck 300 along the loading route R2. When approaching the dump truck 300 and reaching a predetermined position, the wheel loader 1 loads the load 310 in the bucket 6 into the vessel 301. The vessel 301 corresponds to an example of a "loading container" for loading the cargo 310 in the bucket 6.
 図3(D)には、いわゆる空荷後進をするホイールローダ1が図示されている。バケット6内の荷310をダンプトラック300のベッセル301に全て排出してバケット6内が空の状態で、ホイールローダ1は、図3(C)で前進走行を開始した位置まで、積込経路R2に沿って後進走行する。 FIG. 3(D) shows a wheel loader 1 that moves backward with no load. When the load 310 in the bucket 6 is completely discharged into the vessel 301 of the dump truck 300 and the bucket 6 is empty, the wheel loader 1 moves along the loading route R2 to the position where it started moving forward in FIG. 3(C). Drive backwards along the
 このように、ホイールローダ1は、掘削、後退、ダンプアプローチ、排土、後退という一連の作業を繰り返し行うことができる。 In this way, the wheel loader 1 can repeatedly perform a series of operations such as excavation, retreat, dump approach, earth removal, and retreat.
 <ホイールローダ1の自動制御システム>
 ホイールローダ1によるダンプトラック300への積込作業を自動化するにあたり、ベッセル301に積み込まれた荷310がベッセル301からこぼれることを抑制するために、積込作業における熟練オペレータの作業機3の操作を自動制御によって再現することが望まれている。図4は、ホイールローダ1の自動制御システムの構成を示すブロック図である。
<Automatic control system of wheel loader 1>
When automating the loading work of the wheel loader 1 onto the dump truck 300, in order to prevent the load 310 loaded into the vessel 301 from spilling from the vessel 301, the operation of the working machine 3 by a skilled operator during the loading work is controlled. It is hoped that this can be reproduced through automatic control. FIG. 4 is a block diagram showing the configuration of the automatic control system of the wheel loader 1.
 自動化コントローラ100は、図2を用いて説明した車体コントローラ50との間で信号の送受信が可能に構成されている。自動化コントローラ100はまた、外界情報取得部110との間で信号の送受信が可能に構成されている。外界情報取得部110は、知覚装置111と、位置情報取得装置112とを有している。知覚装置111と位置情報取得装置112とは、ホイールローダ1に搭載されている。 The automation controller 100 is configured to be able to send and receive signals to and from the vehicle body controller 50 described using FIG. 2. The automation controller 100 is also configured to be able to send and receive signals to and from the external world information acquisition section 110. The external world information acquisition unit 110 includes a perception device 111 and a position information acquisition device 112. The perception device 111 and the position information acquisition device 112 are mounted on the wheel loader 1.
 知覚装置111は、ホイールローダ1の周囲の情報を取得する。知覚装置111は、図1に示されるように、たとえばキャブ5の上部前面に取り付けられている。知覚装置111は、ホイールローダ1の本体の周辺の物体を検出する「物体センサ」の一例に対応する。 The perception device 111 acquires information around the wheel loader 1. The sensing device 111 is attached, for example, to the upper front surface of the cab 5, as shown in FIG. The sensing device 111 corresponds to an example of an "object sensor" that detects objects around the main body of the wheel loader 1.
 知覚装置111は、ホイールローダ1の外部の対象物の方向および対象物までの距離を、非接触で検出する。知覚装置111はたとえば、レーザ光を射出して対象物の情報を取得するLiDAR(Light Detection and Ranging)である。知覚装置111は、カメラを含む視覚センサであってもよい。知覚装置111は、電波を射出することにより対象物の情報を取得するRadar(Radio Detection and Ranging)であってもよい。知覚装置111は、赤外線センサであってもよい。 The sensing device 111 detects the direction of an object outside the wheel loader 1 and the distance to the object in a non-contact manner. The perception device 111 is, for example, a LiDAR (Light Detection and Ranging) that emits a laser beam to obtain information about an object. Perceptual device 111 may be a visual sensor including a camera. The perception device 111 may be a Radar (Radio Detection and Ranging) that acquires information about an object by emitting radio waves. The sensing device 111 may be an infrared sensor.
 位置情報取得装置112は、ホイールローダ1の現在位置の情報を取得する。位置情報取得装置112はたとえば、衛星測位システムを利用して、地球を基準としたグローバル座標系におけるホイールローダ1の位置情報を取得する。位置情報取得装置112はたとえば、GNSS(Global Navigation Satellite Systems:全地球航法衛星システム)を用いるものであり、GNSSレシーバを有している。衛星測位システムは、GNSSレシーバが衛星から受信した測位信号により、GNSSレシーバのアンテナの位置を演算して、ホイールローダ1の位置を算出する。 The position information acquisition device 112 acquires information on the current position of the wheel loader 1. The position information acquisition device 112 uses, for example, a satellite positioning system to acquire position information of the wheel loader 1 in a global coordinate system based on the earth. The position information acquisition device 112 uses, for example, GNSS (Global Navigation Satellite Systems) and has a GNSS receiver. The satellite positioning system calculates the position of the wheel loader 1 by calculating the position of the antenna of the GNSS receiver based on the positioning signal that the GNSS receiver receives from the satellite.
 知覚装置111によるホイールローダ1の外界情報、および、位置情報取得装置112によるホイールローダ1の位置情報は、自動化コントローラ100に入力される。 The external world information of the wheel loader 1 obtained by the sensing device 111 and the position information of the wheel loader 1 obtained by the position information acquisition device 112 are input to the automation controller 100.
 車体コントローラ50は、車両情報取得部120との間で信号の送受信が可能に構成されており、車両情報取得部120が取得するホイールローダ1の情報の入力を受ける。車両情報取得部120は、ホイールローダ1に搭載されている各種のセンサにより構成されている。車両情報取得部120は、アーティキュレート角度センサ121、車両速度センサ122、ブーム角度センサ123、バケット角度センサ124、およびブームシリンダ圧力センサ125を有している。 The vehicle body controller 50 is configured to be able to send and receive signals to and from the vehicle information acquisition section 120, and receives input of information about the wheel loader 1 that the vehicle information acquisition section 120 acquires. The vehicle information acquisition unit 120 is composed of various sensors mounted on the wheel loader 1. The vehicle information acquisition unit 120 includes an articulate angle sensor 121, a vehicle speed sensor 122, a boom angle sensor 123, a bucket angle sensor 124, and a boom cylinder pressure sensor 125.
 アーティキュレート角度センサ121は、前フレーム2aと後フレーム2bとのなす角度であるアーティキュレート角度を検出し、検出したアーティキュレート角度の信号を発生する。アーティキュレート角度センサ121は、アーティキュレート角度の信号を車体コントローラ50に出力する。 The articulate angle sensor 121 detects an articulate angle, which is the angle formed by the front frame 2a and the rear frame 2b, and generates a signal of the detected articulate angle. The articulate angle sensor 121 outputs an articulate angle signal to the vehicle body controller 50.
 車両速度センサ122は、たとえば、トランスミッション23(図2)の出力軸の回転速度を検出することにより、走行装置4(図1)によるホイールローダ1の移動速度を検出し、検出した車速の信号を発生する。車両速度センサ122は、車速の信号を車体コントローラ50に出力する。車両速度センサ122は、走行装置4(走行体)の進行状況を検出する「走行センサ」の一例に対応する。 The vehicle speed sensor 122 detects the moving speed of the wheel loader 1 by the traveling device 4 (FIG. 1) by, for example, detecting the rotational speed of the output shaft of the transmission 23 (FIG. 2), and sends a signal of the detected vehicle speed. Occur. Vehicle speed sensor 122 outputs a vehicle speed signal to vehicle controller 50. The vehicle speed sensor 122 corresponds to an example of a "traveling sensor" that detects the progress of the traveling device 4 (traveling object).
 ブーム角度センサ123は、たとえば、ブーム14の車体フレーム2に対する取付部であるブームピン9に設けられたロータリーエンコーダで構成される。ブーム角度センサ123は、水平方向に対するブーム14の角度を検出し、検出したブーム14の角度の信号を発生する。ブーム角度センサ123は、ブーム14の角度の信号を車体コントローラ50に出力する。 The boom angle sensor 123 is composed of, for example, a rotary encoder provided on the boom pin 9, which is the attachment portion of the boom 14 to the vehicle body frame 2. The boom angle sensor 123 detects the angle of the boom 14 with respect to the horizontal direction and generates a signal of the detected angle of the boom 14. Boom angle sensor 123 outputs a signal indicating the angle of boom 14 to vehicle controller 50 .
 バケット角度センサ124は、たとえば、ベルクランク18の回転軸である支持ピン18aに設けられたロータリーエンコーダで構成される。バケット角度センサ124は、ブーム14に対するバケット6の角度を検出し、検出したバケット6の角度の信号を発生する。バケット角度センサ124は、バケット6の角度の信号を車体コントローラ50に出力する。 The bucket angle sensor 124 is composed of, for example, a rotary encoder provided on the support pin 18a, which is the rotation axis of the bell crank 18. Bucket angle sensor 124 detects the angle of bucket 6 with respect to boom 14 and generates a signal of the detected angle of bucket 6. Bucket angle sensor 124 outputs a signal indicating the angle of bucket 6 to vehicle controller 50 .
 ブーム角度センサ123と、バケット角度センサ124とは、作業機3の姿勢を検出する「作業機姿勢センサ」の一例に対応する。作業機姿勢センサは、ブーム角度センサ123およびバケット角度センサ124に代えて、またはこれらに加えて、ベルクランク18の角度を検出する角度センサおよびリンク15の角度を検出する角度センサであってもよい。また作業機姿勢センサは、上記のロータリーエンコーダに限定されず、ストロークセンサ、IMU(Inertial Measurement Unit)、ポテンショメータ、視覚センサなどであってもよい。 The boom angle sensor 123 and the bucket angle sensor 124 correspond to an example of a "work machine attitude sensor" that detects the attitude of the work machine 3. The work equipment attitude sensor may be an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 instead of or in addition to the boom angle sensor 123 and the bucket angle sensor 124. . Further, the work machine attitude sensor is not limited to the above rotary encoder, but may be a stroke sensor, an IMU (Inertial Measurement Unit), a potentiometer, a visual sensor, or the like.
 作業機姿勢センサとしてストロークセンサが用いられる場合、たとえばブームシリンダ16およびバケットシリンダ19の各々にストロークセンサが取り付けられる。ストロークセンサにより各シリンダ16、19のストローク量を検出することができる。このストローク量によりブーム14およびバケット6の各々の姿勢を検出することができる。 When a stroke sensor is used as the work machine attitude sensor, a stroke sensor is attached to each of the boom cylinder 16 and the bucket cylinder 19, for example. The stroke amount of each cylinder 16, 19 can be detected by the stroke sensor. The respective postures of the boom 14 and the bucket 6 can be detected based on this stroke amount.
 作業機姿勢センサとしてIMUが用いられる場合、たとえばブーム14およびバケット6の各々にIMUが取り付けられる。各IMUは、3軸の角度(または角速度)と加速度とを検出する。IMUにより検出された3軸の角度(または角速度)と加速度とによりブーム14およびバケット6の各々の姿勢を検出することができる。 When an IMU is used as a work machine attitude sensor, the IMU is attached to each of the boom 14 and the bucket 6, for example. Each IMU detects angles (or angular velocities) and accelerations in three axes. The postures of the boom 14 and the bucket 6 can be detected based on the three-axis angles (or angular velocities) and accelerations detected by the IMU.
 作業機姿勢センサとしてポテンショメータが用いられる場合、たとえばブームシリンダ16のブーム14側端部付近、バケットシリンダ19のベルクランク18側端部付近にポテンショメータが取り付けられる。各ポテンショメータにより、ホイールローダ1の本体に対するブーム14の回転角度、ブーム14に対するバケット6の回転角度の各々を検出することができる。これらの回転角度から作業機3の姿勢を検出することができる。 When a potentiometer is used as the work machine attitude sensor, the potentiometer is attached, for example, near the end of the boom cylinder 16 on the boom 14 side and near the end of the bucket cylinder 19 on the bell crank 18 side. Each potentiometer can detect the rotation angle of the boom 14 with respect to the main body of the wheel loader 1 and the rotation angle of the bucket 6 with respect to the boom 14. The attitude of the working machine 3 can be detected from these rotation angles.
 作業機姿勢センサとして視覚センサが用いられる場合、視覚センサによりブーム14およびバケット6の状態が撮像される。視覚センサにより撮像された撮像情報から、ブーム14およびバケット6の各々の姿勢を検出することができる。視覚センサは、たとえばカメラなどの撮像装置である。 When a visual sensor is used as the work equipment attitude sensor, the state of the boom 14 and bucket 6 is captured by the visual sensor. The postures of the boom 14 and the bucket 6 can be detected from the image information captured by the visual sensor. The visual sensor is, for example, an imaging device such as a camera.
 ブームシリンダ圧力センサ125は、ブームシリンダ16のボトム側の圧力(ブームボトム圧)を検出し、検出したブームボトム圧の信号を発生する。ブームボトム圧は、バケット6に荷が積まれた場合に高くなり、空荷の場合に低くなる。ブームシリンダ圧力センサ125は、ブームボトム圧の信号を車体コントローラ50に出力する。 The boom cylinder pressure sensor 125 detects the pressure on the bottom side of the boom cylinder 16 (boom bottom pressure) and generates a signal of the detected boom bottom pressure. The boom bottom pressure is high when the bucket 6 is loaded and low when it is empty. Boom cylinder pressure sensor 125 outputs a boom bottom pressure signal to vehicle body controller 50.
 車体コントローラ50は、車両情報取得部120から入力された情報を、自動化コントローラ100へ出力する。自動化コントローラ100は、車体コントローラ50を介して、車両速度センサ122、ブーム角度センサ123およびバケット角度センサ124の検出値を入力される。 The vehicle body controller 50 outputs the information input from the vehicle information acquisition unit 120 to the automation controller 100. The automation controller 100 receives detected values from the vehicle speed sensor 122, boom angle sensor 123, and bucket angle sensor 124 via the vehicle body controller 50.
 アクチュエータ140は、車体コントローラ50との間で信号の送受信が可能に構成されている。車体コントローラ50からの指令信号を受けて、アクチュエータ140が駆動する。アクチュエータ140は、走行装置4のブレーキを作動させるためのブレーキEPC(電磁比例制御弁)141と、ホイールローダ1の走行方向を調節するためのステアリングEPC142と、作業機3を動作させるための作業機EPC143と、HMT(Hydraulic Mechanical Transmission)144とを含んでいる。 The actuator 140 is configured to be able to transmit and receive signals to and from the vehicle body controller 50. In response to a command signal from the vehicle body controller 50, the actuator 140 is driven. The actuator 140 includes a brake EPC (electromagnetic proportional control valve) 141 for operating the brake of the traveling device 4, a steering EPC 142 for adjusting the running direction of the wheel loader 1, and a working machine for operating the working machine 3. It includes an EPC 143 and an HMT (Hydraulic Mechanical Transmission) 144.
 図2に示される電磁比例制御弁35,36は、作業機EPC143を構成している。図2に示されるトランスミッション23は、電子制御を活用したHMT144として実現される。トランスミッション23は、HST(Hydro-Static Transmission)であってもよい。エンジン21から走行輪4a,4bへ動力を伝達する動力伝達装置は、ディーゼル・エレクトリック方式などの電気式駆動装置を含んでもよく、HMT、HST、電気式駆動装置のいずれかの組み合わせを含んでもよい。 The electromagnetic proportional control valves 35 and 36 shown in FIG. 2 constitute a working machine EPC 143. The transmission 23 shown in FIG. 2 is realized as an HMT 144 that utilizes electronic control. The transmission 23 may be an HST (Hydro-Static Transmission). The power transmission device that transmits power from the engine 21 to the running wheels 4a, 4b may include an electric drive device such as a diesel electric system, or may include any combination of HMT, HST, and electric drive device. .
 車体コントローラ50は、トランスミッションコントローラ70と作業機コントローラ80とを有している。トランスミッションコントローラ70は、ブレーキ制御部71と、アクセル制御部72とを有している。ブレーキ制御部71は、ブレーキEPC141に対して、ブレーキの作動を制御するための指令信号を出力する。アクセル制御部72は、HMT144に対して、車速を制御するための指令信号を出力する。 The vehicle body controller 50 includes a transmission controller 70 and a work equipment controller 80. The transmission controller 70 includes a brake control section 71 and an accelerator control section 72. The brake control unit 71 outputs a command signal to the brake EPC 141 to control the operation of the brake. The accelerator control unit 72 outputs a command signal to the HMT 144 to control the vehicle speed.
 作業機コントローラ80は、ステアリング制御部81と、作業機制御部82とを有している。ステアリング制御部81は、ステアリングEPC142に対して、ホイールローダ1の走行方向を制御するための指令信号を出力する。作業機制御部82は、作業機EPC143に対して、作業機3の動作を制御するための指令信号を出力する。 The work machine controller 80 has a steering control section 81 and a work machine control section 82. The steering control unit 81 outputs a command signal for controlling the running direction of the wheel loader 1 to the steering EPC 142. The work machine control unit 82 outputs a command signal for controlling the operation of the work machine 3 to the work machine EPC 143.
 自動化コントローラ100は、位置推定部101と、パスプランニング部102と、経路追従制御部103と、荷押し判定部104とを有している。 The automation controller 100 includes a position estimation section 101, a path planning section 102, a route following control section 103, and a load determining section 104.
 位置推定部101は、位置情報取得装置112が取得した位置情報によって、ホイールローダ1の自己位置を推定する。また位置推定部101は、知覚装置111が取得した外界情報によって、目標位置を認識する。目標位置は、たとえば、図3に示される掘削対象物310またはダンプトラック300の位置である。知覚装置111が目標位置を認識して自動化コントローラ100に入力してもよく、知覚装置111が検出した検出結果に基づいて位置推定部101が目標位置を認識してもよい。 The position estimation unit 101 estimates the self-position of the wheel loader 1 based on the position information acquired by the position information acquisition device 112. Further, the position estimating unit 101 recognizes the target position based on the external world information acquired by the sensing device 111. The target position is, for example, the position of the excavated object 310 or the dump truck 300 shown in FIG. 3 . The sensing device 111 may recognize the target position and input it to the automation controller 100, or the position estimation unit 101 may recognize the target position based on the detection result detected by the sensing device 111.
 パスプランニング部102は、ホイールローダ1の自己位置と目標位置とを結ぶ最適経路を生成する。最適経路は、走行装置4による走行の経路と、作業機3の動作の経路とを含んでいる。 The path planning unit 102 generates an optimal route connecting the self-position of the wheel loader 1 and the target position. The optimal route includes a traveling route by the traveling device 4 and an operation route of the working machine 3.
 経路追従制御部103は、パスプランニング部102が生成した最適経路に追従してホイールローダ1が走行するように、アクセル、ブレーキおよびステアリングを制御する。経路追従制御部103から、ブレーキ制御部71、アクセル制御部72およびステアリング制御部81に、ホイールローダ1を最適経路に沿って走行させるための指令信号が出力される。経路追従制御部103は、パスプランニング部102が生成した最適経路に沿って作業機3が動作するように、ブームシリンダ16およびバケットシリンダ19を制御する。経路追従制御部103から、作業機制御部82に、作業機3を最適経路に沿って移動させるための指令信号が出力される。 The route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the optimal route generated by the path planning unit 102. A command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81. The path following control section 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 operates along the optimal path generated by the path planning section 102. A command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82.
 インターフェース130は、車体コントローラ50との間で信号の送受信が可能に構成されている。インターフェース130は、自動化切替スイッチ131、エンジン緊急停止スイッチ132、およびモードランプ133を有している。 The interface 130 is configured to be able to send and receive signals to and from the vehicle body controller 50. The interface 130 has an automation changeover switch 131, an engine emergency stop switch 132, and a mode lamp 133.
 自動化切替スイッチ131は、オペレータによって操作される。オペレータは、自動化切替スイッチ131を操作することにより、ホイールローダ1をマニュアルで操作するか、ホイールローダ1を自動制御するかを切り替える。エンジン緊急停止スイッチ132は、オペレータによって操作される。エンジン21を緊急停止させることが求められる事象が発生したとき、オペレータは、エンジン緊急停止スイッチ132を操作する。自動化切替スイッチ131およびエンジン緊急停止スイッチ132の操作の信号は、車体コントローラ50に入力される。 The automation changeover switch 131 is operated by an operator. By operating the automation changeover switch 131, the operator switches between manually operating the wheel loader 1 and automatically controlling the wheel loader 1. Engine emergency stop switch 132 is operated by an operator. When an event occurs that requires an emergency stop of the engine 21, the operator operates the engine emergency stop switch 132. Signals for operating the automation changeover switch 131 and the engine emergency stop switch 132 are input to the vehicle body controller 50.
 モードランプ133は、ホイールローダ1が現在、オペレータによるマニュアル操作されるモードであるか、または自動制御されるモードであるか、を表示する。車体コントローラ50からモードランプ133に、ランプの点灯を制御するための指令信号が出力される。 The mode lamp 133 indicates whether the wheel loader 1 is currently in a manual operation mode by an operator or an automatically controlled mode. A command signal for controlling lighting of the lamp is output from the vehicle body controller 50 to the mode lamp 133.
 ホイールローダ1の自動制御システムは、積込作業における荷押しを自動化するにあたり、ベッセル301内における荷の積込状況(たとえば荷姿)に関する情報を取得する。またホイールローダ1の自動制御システムは、ベッセル301内における荷の積込状況に関する情報を検出する。またホイールローダ1の自動制御システムは、その検出した情報に基づいてホイールローダ1を動作させることによりベッセル301内の荷を移動させる(荷押しする)。このためホイールローダ1の自動制御システムは、ベッセル301内における荷の積込状況に関する情報を検出する「積荷センサ」を有している。 The automatic control system of the wheel loader 1 acquires information regarding the loading status of the load (for example, the shape of the load) in the vessel 301 when automating the load pushing in the loading operation. The automatic control system of the wheel loader 1 also detects information regarding the loading status of the load in the vessel 301. Further, the automatic control system of the wheel loader 1 moves the load in the vessel 301 (pushes the load) by operating the wheel loader 1 based on the detected information. For this reason, the automatic control system of the wheel loader 1 includes a "load sensor" that detects information regarding the loading status of the load in the vessel 301.
 上記「積荷センサ」は、ベッセル301内における荷310の積込状況に関する情報を検出する。積荷センサは、たとえば上記「物体センサ」および「作業機姿勢センサ」の少なくとも1つを含んでもよい。つまり積荷センサは、「物体センサ」単体であってもよく、「作業機姿勢センサ」単体であってもよく、「物体センサ」および「作業機姿勢センサ」の双方を含んでもよい。 The above-mentioned "load sensor" detects information regarding the loading status of the load 310 in the vessel 301. The load sensor may include, for example, at least one of the above-mentioned "object sensor" and "work implement attitude sensor." That is, the load sensor may be a single "object sensor", a single "work implement attitude sensor", or may include both an "object sensor" and a "work implement attitude sensor".
 積荷センサが物体センサである場合、物体センサにより検出されたベッセル301内の荷310の積込状況を示す信号が、ベッセル301内における荷310の積込状況に関する情報となる。この場合、物体センサの一例である知覚装置111によりベッセル301内における荷310の積込状況が検出される。具体的には知覚装置111の一例であるLiDAR、視覚センサ、Radar、赤外線センサなどのいずれかまたは任意の組み合わせにより、ベッセル301内の荷310の積込状況が検出される。 When the cargo sensor is an object sensor, a signal indicating the loading status of the cargo 310 in the vessel 301 detected by the object sensor becomes information regarding the loading status of the cargo 310 in the vessel 301. In this case, the loading status of the cargo 310 in the vessel 301 is detected by the sensing device 111, which is an example of an object sensor. Specifically, the loading status of the cargo 310 in the vessel 301 is detected by one or any combination of LiDAR, visual sensor, Radar, infrared sensor, etc. which are examples of the sensing device 111.
 積荷センサが作業機姿勢センサである場合、作業機姿勢センサにより検出された作業機3の姿勢を示す信号が、ベッセル301内における荷310の積込状況に関する情報となる。この場合、作業機姿勢センサの一例であるロータリーエンコーダ、ストロークセンサ、IMU、ポテンショメータ、視覚センサなどのいずれかまたは任意の組み合わせにより、作業機3の姿勢を示す信号が検出される。 When the load sensor is a work equipment attitude sensor, a signal indicating the attitude of the work equipment 3 detected by the work equipment attitude sensor becomes information regarding the loading status of the load 310 in the vessel 301. In this case, a signal indicating the attitude of the work machine 3 is detected by one or any combination of a rotary encoder, a stroke sensor, an IMU, a potentiometer, a visual sensor, etc., which are examples of work machine attitude sensors.
 ホイールローダ1の自動制御システムは、ベッセル301内における荷310の積込状況に関する情報に基づいてベッセル301内で荷310を荷押しする必要があるか否かを判定する荷押し判定部104を有している。荷押し判定部104は、自動化コントローラ100に含まれている。 The automatic control system for the wheel loader 1 includes a load pushing determination unit 104 that determines whether it is necessary to push the load 310 within the vessel 301 based on information regarding the loading status of the load 310 within the vessel 301. are doing. Load pushing determination section 104 is included in automation controller 100.
 荷押し判定部104は、積荷センサにより検出された情報に基づいてベッセル301内の荷310を荷押しする必要があるか否かを判定する。物体センサ単体で積込状況に関する情報が検出される場合、荷押し判定部104は、たとえば知覚装置111が取得したベッセル301内における荷310の積込状況に関する情報に基づいてベッセル301内の荷310を荷押しする必要があるか否かを判定する。 The load pushing determination unit 104 determines whether it is necessary to push the load 310 in the vessel 301 based on the information detected by the load sensor. When information regarding the loading status is detected by the object sensor alone, the load pushing determination unit 104 determines whether the load 310 in the vessel 301 is detected based on the information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111, for example. Determine whether or not it is necessary to push the load.
 この場合、自動化コントローラ100は、たとえばベッセル301内における荷310の積込状況と荷押しの要否との関係を示す関係データを記憶している。荷押し判定部104は、この関係データと知覚装置111が取得したベッセル301内における荷310の積込状況に関する情報とを対比することにより、ベッセル301内の荷310を移動させる必要があるか否かを判定する。 In this case, the automation controller 100 stores relational data indicating, for example, the relationship between the loading status of the cargo 310 in the vessel 301 and the necessity of pushing the cargo. The load pushing determination unit 104 compares this relational data with the information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111 to determine whether or not the load 310 in the vessel 301 needs to be moved. Determine whether
 また作業機姿勢センサ単体で積込状況に関する情報が検出される場合、荷押し判定部104は、たとえば作業機姿勢センサが取得した作業機3の姿勢を示す信号から、作業機3によるベッセル301への荷310の積込回数を算出する。荷押し判定部104は、算出した積込回数が所定の回数(たとえば2回)以上の場合、ベッセル301内の荷310を荷押しする必要があると判定する。この場合、積込み回数を示す信号が、ベッセル301内における荷310の積込状況に関する情報に対応する。 In addition, when information related to the loading situation is detected by the work machine attitude sensor alone, the load pushing determination unit 104 determines whether the work machine 3 is moving to the vessel 301 from a signal indicating the attitude of the work machine 3 acquired by the work machine attitude sensor, for example. The number of times the cargo 310 is loaded is calculated. If the calculated number of times of loading is equal to or greater than a predetermined number of times (for example, two times), the load pushing determination unit 104 determines that the load 310 in the vessel 301 needs to be pushed. In this case, the signal indicating the number of times of loading corresponds to information regarding the loading status of the cargo 310 in the vessel 301.
 なお物体センサと作業機姿勢センサとの双方により積込状況に関する情報が検出されてもよい。この場合には、物体センサにより検出された積込状況に関する情報と、作業機姿勢センサにより検出された積込状況に関する情報との双方に基づいて、ベッセル301内の荷310を荷押しする必要があるか否かが判定される。 Note that information regarding the loading situation may be detected by both the object sensor and the work machine posture sensor. In this case, it is necessary to push the load 310 in the vessel 301 based on both the information regarding the loading status detected by the object sensor and the information regarding the loading status detected by the work machine attitude sensor. It is determined whether or not there is.
 荷押し判定部104がベッセル301内の荷310を荷押しする必要があると判定した場合、自動化コントローラ100は、ベッセル301の中心CLに向けて荷310を荷押しするようにホイールローダ1を動作させる。 When the load pushing determination unit 104 determines that it is necessary to push the load 310 in the vessel 301, the automation controller 100 operates the wheel loader 1 to push the load 310 toward the center CL of the vessel 301. let
 具体的には荷押し判定部104がベッセル301内の荷310を荷押しする必要があると判定した場合、ベッセル301の中心CLに向けて荷310を移動させるようにホイールローダ1を動作させる経路をパスプランニング部102が生成する。そして経路追従制御部103は、パスプランニング部102が生成した経路に追従してホイールローダ1が走行し、かつ作業機3が動作するように、アクセル、ブレーキ、ステアリング、ブームシリンダ16およびバケットシリンダ19を制御する。 Specifically, when the load pushing determination unit 104 determines that it is necessary to push the load 310 in the vessel 301, the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. is generated by the path planning unit 102. The route following control unit 103 controls the accelerator, brake, steering, boom cylinder 16 and bucket cylinder 19 so that the wheel loader 1 travels and the work equipment 3 operates following the route generated by the path planning unit 102. control.
 <自動ダンプ積みフロー>
 図5は、ホイールローダ1を自動制御することによりバケット6に積載した荷を積込目標に積み込む動作の流れを示すフローチャートである。
<Automatic dump loading flow>
FIG. 5 is a flowchart showing the flow of the operation of automatically controlling the wheel loader 1 to load the load loaded into the bucket 6 onto the loading target.
 図5に示されるように、まず事前準備として、積込作業を開始する前に、ステップS100において、積込目標であるダンプトラック300のベッセル301の形状を認識する。たとえば、知覚装置111であるLiDARで、ダンプトラック300の形状を取得する。LiDARからダンプトラック300にレーザ光を照射して、ダンプトラック300上の計測点の三次元座標値を示す点群データを取得する。ダンプトラック300を、前方、後方、右方および左方の四方から検知して、点群の情報からベッセル301の形状を認識することができる。認識されたベッセル301の形状が、自動化コントローラ100に入力される。 As shown in FIG. 5, as a preliminary preparation, before starting the loading operation, in step S100, the shape of the vessel 301 of the dump truck 300 that is the target of loading is recognized. For example, the shape of the dump truck 300 is acquired using LiDAR, which is the sensing device 111. LiDAR irradiates the dump truck 300 with laser light to obtain point cloud data indicating three-dimensional coordinate values of measurement points on the dump truck 300. The dump truck 300 can be detected from the front, rear, right, and left sides, and the shape of the vessel 301 can be recognized from the point cloud information. The recognized shape of the vessel 301 is input to the automation controller 100.
 ステップS101において、知覚装置111は、ダンプトラック300の基準点P(図7)を認識する。たとえば知覚装置111であるLiDARは、ダンプトラック300を検知する。自動化コントローラ100は、知覚装置111が検知した点群と、ベッセル301の形状を示すマスター点群とを比較して、ベッセル301の位置を認識する。自動化コントローラ100は、知覚装置111であるLiDARが認識したダンプトラック300のベッセル301の側面上端を、基準点Pとして設定する。 In step S101, the perception device 111 recognizes the reference point P (FIG. 7) of the dump truck 300. For example, LiDAR, which is the sensing device 111, detects the dump truck 300. The automation controller 100 recognizes the position of the vessel 301 by comparing the point cloud detected by the perception device 111 with a master point cloud indicating the shape of the vessel 301. The automation controller 100 sets the upper end of the side surface of the vessel 301 of the dump truck 300 recognized by LiDAR, which is the sensing device 111, as a reference point P.
 ステップS102において、自動化コントローラ100は、自動制御により移動するバケット6の刃先6aの目標位置c、d、e(図7)の、基準点Pに対する座標を設定する。バケット6の刃先6aは、作業機3に設定される「特徴点」の一例に対応する。なお特徴点はバケット6の刃先6aに限定されず、作業機3の他の点が特徴点として設定されてもよい。 In step S102, the automation controller 100 sets the coordinates of the target positions c, d, and e (FIG. 7) of the cutting edge 6a of the bucket 6 that moves under automatic control with respect to the reference point P. The cutting edge 6a of the bucket 6 corresponds to an example of a "feature point" set on the work machine 3. Note that the feature point is not limited to the cutting edge 6a of the bucket 6, and other points on the work machine 3 may be set as the feature point.
 ここで、基準点Pと目標位置c、d、eとについて説明する。図7は、ダンプアプローチ開始時のベッセル301とホイールローダ1との配置を模式的に示す図である。図7および後続の図8~図10では、ダンプトラック300の前後方向から見たベッセル301が模式的に示されており、またダンプトラック300の左側または右側からベッセル301に接近するホイールローダ1の前側の一部が模式的に示されている。 Here, the reference point P and target positions c, d, and e will be explained. FIG. 7 is a diagram schematically showing the arrangement of the vessel 301 and the wheel loader 1 at the start of the dump approach. 7 and subsequent FIGS. 8 to 10, the vessel 301 is schematically shown as seen from the front and rear directions of the dump truck 300, and the wheel loader 1 approaching the vessel 301 from the left or right side of the dump truck 300 is shown schematically. A part of the front side is shown schematically.
 目標位置cは、ホイールローダ1がダンプトラック300へ向かって前進走行中に、バケット6の刃先6aが通過する位置として設定される。ホイールローダ1の前進走行中に、バケット6内の荷310をベッセル301に積み込むために、バケット6をダンプ方向へ移動させる作業機3の動作が行われる。積込動作時においてダンプさせたバケット6の刃先6aが最下方に位置するときの位置が、目標位置cである。 The target position c is set as the position through which the cutting edge 6a of the bucket 6 passes while the wheel loader 1 is traveling forward toward the dump truck 300. While the wheel loader 1 is traveling forward, the working machine 3 moves the bucket 6 in the dumping direction in order to load the load 310 in the bucket 6 into the vessel 301. The target position c is the position when the cutting edge 6a of the dumped bucket 6 is located at the lowest position during the loading operation.
 目標位置dは、目標位置cを通過した後にバケット6の刃先6aが通過する位置として設定される。目標位置dは、目標位置cよりも基準点Pの近くに設定される。目標位置dは、バケット6のダンプ方向への動作を停止する位置である。バケット6の刃先6aが目標位置dにあるとき、バケット6はたとえばフルダンプ状態である。バケット6の刃先6aが目標位置dにあるとき、バケットシリンダ19の長さは最小である。目標位置dは、ベッセル301の上方にある。 The target position d is set as the position through which the cutting edge 6a of the bucket 6 passes after passing the target position c. The target position d is set closer to the reference point P than the target position c. The target position d is the position at which the movement of the bucket 6 in the dumping direction is stopped. When the cutting edge 6a of the bucket 6 is at the target position d, the bucket 6 is in a full dump state, for example. When the cutting edge 6a of the bucket 6 is at the target position d, the length of the bucket cylinder 19 is the minimum. The target position d is above the vessel 301.
 ベッセル301内に積み込まれた荷310の荷押しが必要であると荷押し判定部104が判定した場合、目標位置dは、荷押しを開始する位置となる。目標位置dは、バケット6がたとえばフルダンプ状態で維持されたまま作業機3の動作を停止する位置となる。 If the load pushing determination unit 104 determines that it is necessary to push the load 310 loaded into the vessel 301, the target position d becomes the position at which the load pushing starts. The target position d is a position where the operation of the working machine 3 is stopped while the bucket 6 is maintained in the full dump state, for example.
 目標位置eは、目標位置dを通過した後にバケット6の刃先6aが通過する位置として設定される。目標位置eは、目標位置dよりも基準点Pの遠くに設定される。目標位置dから目標位置eまでは、バケット6がたとえばフルダンプ状態で作業機3の動作が停止された状態が維持され、ホイールローダ1の前進走行が継続される。目標位置eは、ベッセル301の上方にある。 The target position e is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position d. The target position e is set farther from the reference point P than the target position d. From the target position d to the target position e, the bucket 6 is maintained in, for example, a full dump state and the operation of the work implement 3 is stopped, and the wheel loader 1 continues to travel forward. The target position e is above the vessel 301.
 図7に示されるように、基準点Pを原点としたxy座標系が設定される。x軸は、基準点Pを通るダンプトラック300の左右方向である。基準点Pを基準とした、ベッセル301から離れる方向が、+x方向である。y軸は、基準点Pを通る上下方向である。基準点Pからの上向き方向が、+y方向である。 As shown in FIG. 7, an xy coordinate system is set with the reference point P as the origin. The x-axis is the left-right direction of the dump truck 300 passing through the reference point P. The direction away from the vessel 301 with respect to the reference point P is the +x direction. The y-axis is the vertical direction passing through the reference point P. The upward direction from the reference point P is the +y direction.
 図7に示されるバケット角度θは、地面と、バケット6の背面6bとがなす角度である。バケット角度θは、バケット6の背面6bと車体基準の水平面とがなす角度であってもよい。 The bucket angle θ shown in FIG. 7 is the angle between the ground and the back surface 6b of the bucket 6. The bucket angle θ may be an angle between the back surface 6b of the bucket 6 and a horizontal plane based on the vehicle body.
 目標位置c、d、eは、バケット6の刃先6aの、基準点Pを基準とした水平方向および鉛直方向の位置、すなわちx座標およびy座標を与えることによって、決定される。目標位置cは、バケット6内の荷310の排土中に刃先6aの高さ位置が最も低くなる(y座標が最小値となる)位置として設定される。目標位置cは、y座標がマイナス側の位置に設定される。目標位置d、eは、y座標がプラス側の位置に設定される。 The target positions c, d, and e are determined by providing the horizontal and vertical positions of the cutting edge 6a of the bucket 6 with respect to the reference point P, that is, the x and y coordinates. The target position c is set as the position where the height position of the cutting edge 6a becomes the lowest (the y coordinate becomes the minimum value) while the load 310 in the bucket 6 is being unloaded. The target position c is set to a position where the y-coordinate is on the negative side. The target positions d and e are set to positions where the y coordinate is on the plus side.
 目標位置c、d、eは、x座標がマイナス側の位置に設定される。目標位置d、eは、たとえば互いに同じy座標に設定される。なお目標位置d、eにおいてバケット6は、フルダンプ状態でなくてもよく、バケット6内の荷310をベッセル301に積み込めるようなダンプ状態であればよい。また目標位置d、eが互いに同じy座標でなくてもよく、目標位置eは目標位置dよりも低い位置(-y方向の位置)であってもよい。 The target positions c, d, and e are set to positions where the x coordinate is on the negative side. The target positions d and e are set to the same y coordinate, for example. Note that the bucket 6 does not need to be in a full dump state at the target positions d and e, but may be in a dump state that allows the load 310 in the bucket 6 to be loaded into the vessel 301. Further, the target positions d and e do not have to have the same y coordinate, and the target position e may be lower than the target position d (a position in the −y direction).
 バケット6の刃先6aが各目標位置にあるときのバケット角度θも設定される。各目標位置のx座標およびy座標と、各目標位置におけるバケット角度θとから、バケット6の刃先6aが各目標位置にあるときの作業機3の姿勢が決定される。自動化コントローラ100は、バケット6の刃先6aが各目標位置にあるときの作業機3の姿勢(目標姿勢)を記憶している。バケット6の刃先6aが各目標位置にあるときの目標姿勢に基づいて、バケット6の刃先6aが各目標位置にあるときのブームシリンダ16の長さとバケットシリンダ19の長さとが決定される。 The bucket angle θ when the cutting edge 6a of the bucket 6 is at each target position is also set. The attitude of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position is determined from the x and y coordinates of each target position and the bucket angle θ at each target position. The automation controller 100 stores the postures (target postures) of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position. Based on the target posture when the cutting edge 6a of the bucket 6 is at each target position, the length of the boom cylinder 16 and the length of the bucket cylinder 19 when the cutting edge 6a of the bucket 6 is at each target position are determined.
 各目標位置のx座標およびy座標、ならびに各目標位置におけるバケット角度θは、熟練オペレータが積込作業を実行したときの刃先6aの軌跡を解析して特徴となる位置を抽出し、その特徴的位置における作業機3の姿勢を抽出することで、決定することができる。 The x-coordinate and y-coordinate of each target position and the bucket angle θ at each target position are determined by analyzing the locus of the cutting edge 6a when a skilled operator performs loading work and extracting the characteristic position. It can be determined by extracting the attitude of the working machine 3 at the position.
 図8は、積込動作時においてバケットの刃先が最下方に位置するときのホイールローダの姿勢を模式的に示す図である。図9は、荷押し開始時のホイールローダの姿勢を模式的に示す図である。図10は、荷押し終了時のホイールローダの姿勢を模式的に示す図である。図8においては、バケット6の刃先6aは目標位置cにある。図9においては、刃先6aは目標位置dにある。図10においては、刃先6aは目標位置eにある。 FIG. 8 is a diagram schematically showing the attitude of the wheel loader when the blade edge of the bucket is located at the lowest position during the loading operation. FIG. 9 is a diagram schematically showing the attitude of the wheel loader at the time of starting load pushing. FIG. 10 is a diagram schematically showing the attitude of the wheel loader at the end of loading. In FIG. 8, the cutting edge 6a of the bucket 6 is at the target position c. In FIG. 9, the cutting edge 6a is at the target position d. In FIG. 10, the cutting edge 6a is at the target position e.
 図11は、積込作業中のシリンダ長さの変化を示すグラフである。図11の横軸は時間の経過を示し、刃先6aが目標位置c、d、eを通過する時刻に補助線が引かれている。図11の縦軸は、ブームシリンダ16およびバケットシリンダ19の長さを示す。 FIG. 11 is a graph showing changes in cylinder length during loading work. The horizontal axis in FIG. 11 shows the passage of time, and auxiliary lines are drawn at the times when the cutting edge 6a passes through the target positions c, d, and e. The vertical axis in FIG. 11 indicates the lengths of the boom cylinder 16 and the bucket cylinder 19.
 図11および図7、8に示されるように、刃先6aが目標位置cに到達する前に、ホイールローダ1は前進走行している。ブームシリンダ16の長さが増大しており、したがってブーム14は上昇している。バケットシリンダ19の長さが減少し続けており、したがってバケット6はダンプ方向への動作を継続している。刃先6aが目標位置cに到達した時点で、積込動作時において刃先6aが最下方に位置する。 As shown in FIG. 11 and FIGS. 7 and 8, the wheel loader 1 is traveling forward before the cutting edge 6a reaches the target position c. The length of the boom cylinder 16 is increasing and therefore the boom 14 is rising. The length of the bucket cylinder 19 continues to decrease, so the bucket 6 continues to move in the dumping direction. When the cutting edge 6a reaches the target position c, the cutting edge 6a is positioned at the lowest position during the loading operation.
 図11および図8、9に示されるように、目標位置cから目標位置dまでの刃先6aの移動においては、ホイールローダ1は前進走行を継続している。ブームシリンダ16の長さが引き続き増大し、ブーム14は引き続き上昇する。バケットシリンダ19の長さは、引き続き減少し、したがってバケット6はダンプ方向への動作を継続している。刃先6aが目標位置dに到達した時点で、バケット6はフルダンプの姿勢となる。刃先6aが目標位置dに到達した時点で、バケットシリンダ19の長さが最小となっている。 As shown in FIG. 11 and FIGS. 8 and 9, the wheel loader 1 continues to travel forward during the movement of the cutting edge 6a from the target position c to the target position d. The length of boom cylinder 16 continues to increase and boom 14 continues to rise. The length of the bucket cylinder 19 continues to decrease, so the bucket 6 continues to move in the dumping direction. When the cutting edge 6a reaches the target position d, the bucket 6 assumes the full dumping position. When the cutting edge 6a reaches the target position d, the length of the bucket cylinder 19 is at its minimum.
 図11および図9、10に示されるように、目標位置dから目標位置eまでの刃先6aの移動においては、ホイールローダ1は前進走行を継続している。目標位置dから目標位置eまでの刃先6aの移動においては、作業機3の動作は停止している。このためブームシリンダ16およびバケットシリンダ19の各々の長さは、目標位置dにおけるブームシリンダ16およびバケットシリンダ19の各々の長さと同じである。したがって刃先6aが目標位置eに到達した時点で、バケット6はフルダンプの姿勢を維持し、バケットシリンダ19の長さが最小となっている。 As shown in FIG. 11 and FIGS. 9 and 10, the wheel loader 1 continues to travel forward during the movement of the cutting edge 6a from the target position d to the target position e. During the movement of the cutting edge 6a from the target position d to the target position e, the operation of the working machine 3 is stopped. Therefore, the lengths of the boom cylinder 16 and the bucket cylinder 19 are the same as the lengths of the boom cylinder 16 and the bucket cylinder 19 at the target position d. Therefore, when the cutting edge 6a reaches the target position e, the bucket 6 maintains the full dump posture, and the length of the bucket cylinder 19 is at its minimum.
 図11に示されるように、目標位置eに刃先6aが到達した時点で、ホイールローダ1は前進走行から後進走行に切り換えられる。目標位置eに到達した後の刃先6aの移動においては、所定時間の間、作業機3の動作は停止していてもよい。この場合、目標位置eに到達した後の所定時間の間、ブームシリンダ16およびバケットシリンダ19の各々の長さは、目標位置eにおけるブームシリンダ16およびバケットシリンダ19の各々の長さと同じである。 As shown in FIG. 11, when the cutting edge 6a reaches the target position e, the wheel loader 1 is switched from forward travel to reverse travel. In the movement of the cutting edge 6a after reaching the target position e, the operation of the working machine 3 may be stopped for a predetermined period of time. In this case, for a predetermined period of time after reaching the target position e, the lengths of each of the boom cylinder 16 and the bucket cylinder 19 are the same as the lengths of each of the boom cylinder 16 and the bucket cylinder 19 at the target position e.
 また目標位置eに到達してから所定時間経過後に、ホイールローダ1は後進走行を継続し、ブームシリンダ16の長さが減少(ブーム14は下降)し、バケットシリンダ19の長さが増大(バケット6はチルト方向へ動作)してもよい。 Furthermore, after a predetermined period of time has elapsed after reaching the target position e, the wheel loader 1 continues to travel backwards, the length of the boom cylinder 16 decreases (the boom 14 descends), and the length of the bucket cylinder 19 increases (the bucket 6 may be operated in the tilt direction).
 上記のようにバケット6の刃先6aを、目標位置c、dを順に通過するように移動させることで、バケット6内の荷310をベッセル301内に排土することができる。またバケット6の刃先6aを、目標位置d、eを順に通過するように移動させることで、ベッセル301内の荷310をバケット6により荷押しすることができる。たとえばベッセル301内の荷310をバケット6によりベッセル301の中心CLに向けて荷押しすることができる。このようにバケット6を移動させる自動制御をホイールローダ1に適用することで、熟練オペレータの操作による動作と同等の排土動作および荷押し動作を含むホイールローダ1の動作を実現することができる。 The load 310 in the bucket 6 can be discharged into the vessel 301 by moving the cutting edge 6a of the bucket 6 so as to pass through the target positions c and d in sequence as described above. Further, by moving the cutting edge 6a of the bucket 6 so as to pass through the target positions d and e in order, the load 310 in the vessel 301 can be pushed by the bucket 6. For example, the load 310 in the vessel 301 can be pushed toward the center CL of the vessel 301 by the bucket 6. By applying automatic control for moving the bucket 6 to the wheel loader 1 in this manner, it is possible to realize operations of the wheel loader 1 including an earth unloading operation and a load pushing operation that are equivalent to operations performed by a skilled operator.
 図5に戻って、自動制御による積込作業の説明を続ける。ステップS103において、自動化コントローラ100は、ホイールローダ1および作業機3の現在位置を認識する。位置情報取得装置112でホイールローダ1の車体の現在位置を取得し、車体に対する作業機の姿勢をブーム角度センサ123およびバケット角度センサ124により取得することで、グローバル座標系におけるホイールローダ1および作業機3の現在位置を認識することができる。グローバル座標系における、ホイールローダ1および作業機3の現在位置と、ダンプトラック300の現在位置とに基づいて、ダンプトラック300のベッセル301に対するバケット6の刃先6aの相対位置を算出することができる。 Returning to FIG. 5, the explanation of the loading operation using automatic control will be continued. In step S103, the automation controller 100 recognizes the current positions of the wheel loader 1 and the work machine 3. By acquiring the current position of the vehicle body of the wheel loader 1 with the position information acquisition device 112 and acquiring the attitude of the work implement with respect to the vehicle body with the boom angle sensor 123 and the bucket angle sensor 124, the wheel loader 1 and the work implement in the global coordinate system are 3's current position can be recognized. Based on the current positions of the wheel loader 1 and the working machine 3 and the current position of the dump truck 300 in the global coordinate system, the relative position of the cutting edge 6a of the bucket 6 with respect to the vessel 301 of the dump truck 300 can be calculated.
 または、知覚装置111を用いて、知覚装置111の配置位置に対するダンプトラック300のベッセル301の基準点Pの方向および距離を取得することで、基準点Pに対するバケット6の刃先6aの現在の相対位置を算出してもよい。 Alternatively, by using the sensing device 111 to obtain the direction and distance of the reference point P of the vessel 301 of the dump truck 300 with respect to the arrangement position of the sensing device 111, the current relative position of the cutting edge 6a of the bucket 6 with respect to the reference point P can be determined. may be calculated.
 作業機3の現在位置から、バケット6の刃先6aが各目標位置c~eに対してどの位置にあるのかを認識する。たとえば、刃先6aが目標位置cに未だ到達していない、刃先6aが目標位置cを通過して目標位置cと目標位置dとの間にある、刃先6aが目標位置dを通過して目標位置dと目標位置eとの間にある、などが認識される。さらに、刃先6aが次に向かう目標位置が認識される。たとえば、刃先6aが目標位置cに未だ到達していないのであれば次に向かうのは目標位置cであり、刃先6aが目標位置cと目標位置dとの間にあれば次に向かうのは目標位置dであり、刃先6aが目標位置dと目標位置eとの間にあれば次に向かうのは目標位置eである、などが認識される。 Based on the current position of the working machine 3, it is recognized where the cutting edge 6a of the bucket 6 is in relation to each of the target positions c to e. For example, the cutting edge 6a has not yet reached the target position c, the cutting edge 6a has passed the target position c and is between the target positions c and d, the cutting edge 6a has passed the target position d and is at the target position. d and the target position e, etc., is recognized. Furthermore, the target position to which the cutting edge 6a will go next is recognized. For example, if the cutting edge 6a has not yet reached the target position c, the next destination is the target position c, and if the cutting edge 6a is between the target positions c and d, the next destination is the target position. It is recognized that if the cutting edge 6a is located between the target position d and the target position e, the next target position is the target position e.
 ステップS104において、自動化コントローラ100は、現在位置におけるブームシリンダ16の長さおよびバケットシリンダ19の長さを認識する。ブーム角度センサ123により、ブーム14の角度を検出する。バケット角度センサ124により、バケット6の角度を検出する。ブーム14の角度とバケット6の角度とから、作業機3の姿勢が決定される。作業機3の姿勢に基づいて、現在位置におけるブームシリンダ16の長さとバケットシリンダ19の長さとが認識される。 In step S104, the automation controller 100 recognizes the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position. A boom angle sensor 123 detects the angle of the boom 14 . A bucket angle sensor 124 detects the angle of the bucket 6. The attitude of the working machine 3 is determined from the angle of the boom 14 and the angle of the bucket 6. Based on the attitude of the working machine 3, the lengths of the boom cylinder 16 and the bucket cylinder 19 at the current position are recognized.
 ブーム角度センサ123およびバケット角度センサ124に替えて、またはこれらに加えて、ベルクランク18の角度を検出する角度センサおよびリンク15の角度を検出する角度センサを設けてもよい。また作業機3の姿勢は、上記角度センサに代えて、またはこれらに加えて、ストロークセンサ、IMU、ポテンショメータ、視覚センサなどにより検出されてもよい。 Instead of or in addition to the boom angle sensor 123 and the bucket angle sensor 124, an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 may be provided. Further, the posture of the working machine 3 may be detected by a stroke sensor, an IMU, a potentiometer, a visual sensor, etc. instead of or in addition to the angle sensor.
 ステップS105において、自動化コントローラ100は、ステップS104で認識された現在位置におけるブームシリンダ16の長さとバケットシリンダ19の長さと、刃先6aが次に向かう目標位置におけるブームシリンダ16の長さとバケットシリンダ19の長さ(以下、目標シリンダ長さと称する)と、の差を算出する。自動化コントローラ100は、刃先6aが次の目標位置に到達するまでにシリンダ16、19をどれだけ動かすのかを計算する。 In step S105, the automation controller 100 determines the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position recognized in step S104, and the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the target position where the cutting edge 6a will go next. (hereinafter referred to as target cylinder length). The automation controller 100 calculates how much the cylinders 16 and 19 should be moved until the cutting edge 6a reaches the next target position.
 ステップS106において、自動化コントローラ100は、現在の車速を参照し、刃先6aが次に向かう目標位置に到達したときに目標シリンダ長さとなる、目標シリンダストローク速度を決定する。自動化コントローラ100は、刃先6aが次に向かう目標位置に到達したとき、作業機3がその目標位置に対応する目標姿勢をとるように、ブームシリンダ16およびバケットシリンダ19を制御する。現在の車速は、車両速度センサ122により取得される。刃先6aの現在位置と、現在の車速とから、次の目標位置に到達するまでの時間が計算される。ステップS105で算出されたシリンダ長さの差を、次の目標位置に到達するまでの時間で割ることによって、目標シリンダストローク速度が決定される。 In step S106, the automation controller 100 refers to the current vehicle speed and determines a target cylinder stroke speed that will result in the target cylinder length when the cutting edge 6a reaches the next target position. The automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that when the cutting edge 6a reaches the next target position, the working machine 3 assumes a target attitude corresponding to the target position. The current vehicle speed is acquired by vehicle speed sensor 122. The time required to reach the next target position is calculated from the current position of the cutting edge 6a and the current vehicle speed. The target cylinder stroke speed is determined by dividing the difference in cylinder length calculated in step S105 by the time required to reach the next target position.
 ホイールローダ1が単位距離走行する間のシリンダストローク量が決定されてもよい。ホイールローダ1が単位距離走行したことは、車速から求められてもよく、知覚装置111で検知されてもよい。 The cylinder stroke amount during which the wheel loader 1 travels a unit distance may be determined. The fact that the wheel loader 1 has traveled a unit distance may be determined from the vehicle speed, or may be detected by the sensing device 111.
 ステップS107において、自動化コントローラ100は、車体コントローラ50に対し、目標シリンダストローク速度に対応する指令電流を出力する。自動化コントローラ100は、作業機コントローラ80の作業機制御部82に対し、ブームシリンダ16およびバケットシリンダ19を目標シリンダストローク速度で伸縮させる指令を出力する。作業機制御部82から作業機EPC143に、ブームシリンダ16およびバケットシリンダ19を目標シリンダストローク速度で伸縮させる指令が出力される。 In step S107, the automation controller 100 outputs a command current corresponding to the target cylinder stroke speed to the vehicle body controller 50. The automation controller 100 outputs a command to the work machine control unit 82 of the work machine controller 80 to extend and contract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed. A command is output from the work equipment control unit 82 to the work equipment EPC 143 to extend and retract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
 ステップS108において、指令信号を受けた作業機EPC143が開度を調節することで、ブームシリンダ16およびバケットシリンダ19に適切な作動油が供給される。これにより、ブームシリンダ16およびバケットシリンダ19が動作する。 In step S108, the working machine EPC 143 that has received the command signal adjusts the opening degree, so that appropriate hydraulic oil is supplied to the boom cylinder 16 and the bucket cylinder 19. This causes the boom cylinder 16 and bucket cylinder 19 to operate.
 ステップS109において、自動化コントローラ100は、ステップS104と同様に現在のブームシリンダ16およびバケットシリンダ19の長さを認識する。自動化コントローラ100は、現在のブームシリンダ16およびバケットシリンダ19の長さが、目標シリンダ長さに到達したか否かを判断する。 In step S109, the automation controller 100 recognizes the current lengths of the boom cylinder 16 and bucket cylinder 19 similarly to step S104. The automation controller 100 determines whether the current lengths of the boom cylinder 16 and bucket cylinder 19 have reached the target cylinder length.
 ステップS109の判断において、目標シリンダ長さに到達したと判断されれば(ステップS109においてYES)、ステップS110に進み、自動化コントローラ100は、次の目標位置があるか否かの判断をする。 If it is determined in step S109 that the target cylinder length has been reached (YES in step S109), the process proceeds to step S110, and the automation controller 100 determines whether there is a next target position.
 ステップS109の判断において目標シリンダ長さに到達していないと判断される場合(ステップS109においてNO)、および、ステップS110の判断において次の目標位置があると判断される場合(ステップS110においてYES)、ステップS103に戻り、作業機3の現在位置に基づいてブームシリンダ16およびバケットシリンダ19を伸縮させる処理が繰り返される。バケット6の刃先6aの現在位置に応じて、シリンダ速度は逐次変更される。前回の処理で設定されたシリンダ速度に基づいた位置から刃先6aの現在位置がずれていると、シリンダ速度が調整される。 If it is determined in step S109 that the target cylinder length has not been reached (NO in step S109), and if it is determined in step S110 that there is a next target position (YES in step S110) , the process returns to step S103, and the process of expanding and contracting the boom cylinder 16 and the bucket cylinder 19 based on the current position of the working machine 3 is repeated. The cylinder speed is sequentially changed according to the current position of the cutting edge 6a of the bucket 6. If the current position of the cutting edge 6a deviates from the position based on the cylinder speed set in the previous process, the cylinder speed is adjusted.
 ステップS110の判断において、次の目標位置がないと判断されれば(ステップS110においてNO)、積込作業を終了する。本実施形態において、目標位置dの終了後、次の目標位置が設定されていない、ことに対応する。 If it is determined in step S110 that there is no next target position (NO in step S110), the loading operation is ended. In this embodiment, this corresponds to the fact that the next target position is not set after the end of the target position d.
 <荷押しの自動制御フロー>
 次に、荷押しの自動制御フローについて図6などを用いて説明する。
<Automatic control flow of load pushing>
Next, the automatic control flow of load pushing will be explained using FIG. 6 and the like.
 図6は、荷押しの自動制御を示すフローチャートである。図5に示される自動ダンプ積みの自動制御により、図9に示されるようにバケット6の刃先6aが目標位置dに到達する。刃先6aが目標位置dに到達したか否かについては、図5の自動制御フローにおいてブームシリンダ16およびバケットシリンダ19の長さが目標位置dの目標長さに到達したか否かにより自動化コントローラ100が判断する。この目標位置dに到達した時点でバケット6はフルダンプ状態となっている。このため、バケット6内の荷310のベッセル301への積込操作は終了する(ステップS201:図6)。 FIG. 6 is a flowchart showing automatic control of load pushing. By the automatic control of automatic dump loading shown in FIG. 5, the cutting edge 6a of the bucket 6 reaches the target position d as shown in FIG. Whether the cutting edge 6a has reached the target position d is determined by the automation controller 100 depending on whether the lengths of the boom cylinder 16 and the bucket cylinder 19 have reached the target length of the target position d in the automatic control flow shown in FIG. will judge. When reaching this target position d, the bucket 6 is in a full dump state. Therefore, the loading operation of the load 310 in the bucket 6 into the vessel 301 is completed (step S201: FIG. 6).
 自動化コントローラ100は、ベッセル301内における荷310の積込状況に関する情報を取得している。そして自動化コントローラ100は、バケット6の刃先6aが目標位置dに到達すると、ベッセル301内の荷310を荷押しするか否かを判定する(ステップS202:図6)。上記の積込状況に関する情報の取得および荷押し要否の判定は、自動化コントローラ100の荷押し判定部104により行われる。 The automation controller 100 has acquired information regarding the loading status of the cargo 310 in the vessel 301. When the cutting edge 6a of the bucket 6 reaches the target position d, the automation controller 100 determines whether to push the load 310 in the vessel 301 (step S202: FIG. 6). The above-mentioned acquisition of information regarding the loading status and determination of whether loading is necessary are performed by the loading determination unit 104 of the automation controller 100.
 荷押し判定部104は、ベッセル301内における荷310の積込状況に関する情報に基づいてベッセル301内で荷310を荷押しする必要があるか否かを判定する。荷押し判定部104は、たとえば知覚装置111が取得したベッセル301内における荷310の積込状況に関する情報に基づいてベッセル301内の荷310を荷押しする必要があるか否かを判定する。 The load pushing determination unit 104 determines whether it is necessary to push the load 310 within the vessel 301 based on information regarding the loading status of the load 310 within the vessel 301. The load pushing determination unit 104 determines whether it is necessary to push the load 310 in the vessel 301 based on information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111, for example.
 この場合、自動化コントローラ100は、ベッセル301内における荷310の積込状況と荷押しの要否との関係を示す関係データを記憶している。荷押し判定部104は、この関係データと知覚装置111が取得したベッセル301内における荷310の積込状況に関する情報とを対比することにより、ベッセル301内における荷310の荷押し要否を判定する。 In this case, the automation controller 100 stores relational data indicating the relationship between the loading status of the cargo 310 in the vessel 301 and the necessity of pushing the cargo. The load pushing determination unit 104 determines whether it is necessary to push the load 310 in the vessel 301 by comparing this relational data with the information regarding the loading status of the load 310 in the vessel 301 acquired by the sensing device 111. .
 また荷押し判定部104は、たとえば作業機姿勢センサが取得した作業機3の姿勢を示す信号から、作業機3によるベッセル301への荷310の積込回数を算出する。荷押し判定部104は、算出した積込回数が所定回数(たとえば2回)以上の場合、ベッセル301内における荷310の荷押しが必要であると判定する。 Further, the load pushing determination unit 104 calculates the number of times the load 310 is loaded into the vessel 301 by the work machine 3 from a signal indicating the attitude of the work machine 3 acquired by the work machine attitude sensor, for example. If the calculated number of times of loading is equal to or greater than a predetermined number of times (for example, two times), the load pushing determination unit 104 determines that the load 310 in the vessel 301 needs to be pushed.
 ステップS202において荷押し判定部104がベッセル301内における荷310の荷押しが必要であると判定した場合、目標位置dから目標位置eへ刃先6aが移動するようにホイールローダ1を動作させる経路をパスプランニング部102が生成する。 If the load pushing determination unit 104 determines in step S202 that it is necessary to push the load 310 inside the vessel 301, it determines a path for operating the wheel loader 1 so that the cutting edge 6a moves from the target position d to the target position e. The path planning unit 102 generates it.
 経路追従制御部103は、パスプランニング部102が生成した経路に追従してホイールローダ1が走行するように、アクセル、ブレーキおよびステアリングを制御する。経路追従制御部103から、ブレーキ制御部71、アクセル制御部72およびステアリング制御部81に、ホイールローダ1を最適経路に沿って走行させるための指令信号が出力される。これによりホイールローダ1は、経路追従制御部103により目標位置dから目標位置eまで前進走行するように制御される。 The route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the route generated by the path planning unit 102. A command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81. Thereby, the wheel loader 1 is controlled by the path following control unit 103 to travel forward from the target position d to the target position e.
 また経路追従制御部103は、パスプランニング部102が生成した最適経路に沿って作業機3が動作するように、ブームシリンダ16およびバケットシリンダ19を制御する。経路追従制御部103から、作業機制御部82に、作業機3を最適経路に沿って移動させるための指令信号が出力される。これにより作業機3は、経路追従制御部103により目標位置dから目標位置eまで動作を停止するように制御される。 Further, the route following control unit 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the work machine 3 operates along the optimal route generated by the path planning unit 102. A command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82. As a result, the work machine 3 is controlled by the path following control unit 103 to stop its operation from the target position d to the target position e.
 以上により、目標位置dから目標位置eに到達するまでホイールローダ1が前進走行し、作業機3が動作を停止するように経路追従制御部103により制御される(ステップS203:図6)。これによりベッセル301内における荷310をベッセル301の中心CLに向けて荷押しするようにホイールローダ1が動作される。そして刃先6aが目標位置eに到達すると、荷押し制御は終了する。 As described above, the wheel loader 1 moves forward until it reaches the target position e from the target position d, and the work implement 3 is controlled by the path following control unit 103 to stop its operation (step S203: FIG. 6). As a result, the wheel loader 1 is operated to push the load 310 in the vessel 301 toward the center CL of the vessel 301. When the cutting edge 6a reaches the target position e, the load pushing control ends.
 またステップS202において荷押し判定部104がベッセル301内における荷310の荷押しが必要でないと判定した場合、荷押し制御は終了する。 Further, in step S202, if the load pushing determination unit 104 determines that pushing the load 310 in the vessel 301 is not necessary, the load pushing control ends.
 <荷押しによるベッセル301内の荷の移動>
 次に、上記荷押しによるベッセル301内の荷の移動について図12(A)~図12(C)を用いて説明する。
<Movement of cargo within vessel 301 by pushing cargo>
Next, the movement of the load in the vessel 301 by the load pushing described above will be explained using FIGS. 12(A) to 12(C).
 図12(A)に示されるように、ベッセル301内に1回目の積込みで荷310Aが積み込まれ、2回目の積込みで荷310Bが積み込まれる。たとえば2回目の積込みが終了した時点で、荷310がベッセル301内にて偏って積み込まれる場合がある。 As shown in FIG. 12(A), a cargo 310A is loaded into the vessel 301 in the first loading, and a cargo 310B is loaded in the second loading. For example, when the second loading is completed, the cargo 310 may be loaded unevenly in the vessel 301.
 このようにベッセル301内の荷310の積込状況(荷姿)が不適切であると、ダンプトラック300の走行中に荷310がベッセル301からこぼれるおそれがある。荷310がベッセル301からこぼれることを抑制するために、本実施形態においてはバケット6が、ベッセル301内の荷310をベッセル301の中心CLに向けて移動させる。このように本実施形態では、たとえば2回目の荷310Bの積込みが終了した後にバケット6による荷押し制御が実施される。 If the loading condition (packing style) of the load 310 in the vessel 301 is inappropriate as described above, there is a risk that the load 310 may spill from the vessel 301 while the dump truck 300 is traveling. In order to prevent the load 310 from spilling from the vessel 301, in this embodiment, the bucket 6 moves the load 310 in the vessel 301 toward the center CL of the vessel 301. As described above, in this embodiment, the load pushing control using the bucket 6 is performed, for example, after the second loading of the load 310B is completed.
 図12(B)に示されるように、荷押しは、バケット6の刃先6aをベッセル301の端部から中心CLに向かって移動させることにより行われる。これによりベッセル301内の荷310は、バケット6に押されてベッセル301の中心CLに移動させられる。 As shown in FIG. 12(B), the load is pushed by moving the cutting edge 6a of the bucket 6 from the end of the vessel 301 toward the center CL. As a result, the load 310 in the vessel 301 is pushed by the bucket 6 and moved to the center CL of the vessel 301.
 図12(C)に示されるように、刃先6aが目標位置eに到達した時点で、ベッセル301内における荷310の偏りは改善される。これによりダンプトラック300の走行中に荷310がベッセル301からこぼれることが抑制される。 As shown in FIG. 12(C), when the cutting edge 6a reaches the target position e, the imbalance of the load 310 in the vessel 301 is improved. This prevents the load 310 from spilling from the vessel 301 while the dump truck 300 is running.
 刃先6aが目標位置eに到達した後には、ホイールローダ1が後進走行する。これによりバケット6はに310の頂点を作りながら後方へ移動してダンプトラック300から離れる。 After the cutting edge 6a reaches the target position e, the wheel loader 1 moves backward. As a result, the bucket 6 moves backward and leaves the dump truck 300 while forming the apex 310.
 なおベッセル301の中心CLとは、積込動作時においてホイールローダ1がベッセル301に向かって前進走行する方向に沿ってベッセル301の断面を見た視点(図12(A)~(C)に示す断面視)において、ベッセル301幅方向の中心を意味する。 Note that the center CL of the vessel 301 is the viewpoint (shown in FIGS. 12A to 12C) of the cross section of the vessel 301 along the direction in which the wheel loader 1 moves forward toward the vessel 301 during the loading operation. In cross-sectional view), it means the center of the vessel 301 in the width direction.
 <作用および効果>
 上述した説明と一部重複する記載もあるが、本実施形態の特徴的な構成および作用効果についてまとめて記載すると、以下の通りである。
<Action and effect>
Although some descriptions overlap with the above description, the characteristic configuration and effects of this embodiment are summarized as follows.
 本実施形態においては図4に示される自動化コントローラ100(荷押し判定部104)は、ベッセル301内における荷310の積込状況に関する情報を取得する。また自動化コントローラ100(荷押し判定部104)は、ベッセル301内における荷310の積込状況に関する情報に基づいてベッセル301内で荷310を荷押しする必要があるか否かを判定する。また自動化コントローラ100(荷押し判定部104)は、ベッセル301内で荷310を移動させる必要があると判定した場合にベッセル301の中心CLに向けて荷310を移動させるようにホイールローダ1を動作させる。 In this embodiment, the automation controller 100 (load determining unit 104) shown in FIG. 4 acquires information regarding the loading status of the load 310 in the vessel 301. Further, the automation controller 100 (load pushing determination unit 104) determines whether it is necessary to push the load 310 within the vessel 301 based on information regarding the loading status of the load 310 within the vessel 301. Further, the automation controller 100 (load pushing determination unit 104) operates the wheel loader 1 to move the load 310 toward the center CL of the vessel 301 when it is determined that the load 310 needs to be moved within the vessel 301. let
 このようにベッセル301内の荷310の積込状況に基づいて荷310をベッセル301の中心CLに向けて荷押しする。このためベッセル301内における荷310の偏りは改善される。これによりダンプトラック300の走行中に荷310がベッセル301からこぼれることが抑制される。 In this way, the load 310 is pushed toward the center CL of the vessel 301 based on the loading status of the load 310 in the vessel 301. Therefore, the unevenness of the load 310 within the vessel 301 is improved. This prevents the load 310 from spilling from the vessel 301 while the dump truck 300 is running.
 本実施形態においては図4に示される自動化コントローラ100(荷押し判定部104)は、ベッセル301内で荷310を移動させる必要があると判定した場合に、走行装置4を前進走行させることにより、ベッセル301の中心CLに向けて荷310を移動させるようにホイールローダ1を動作させる。これによりバケット6によりベスる301内における荷310をベッセル301の中心CLに向けて荷押しすることができる。 In this embodiment, when it is determined that the load 310 needs to be moved within the vessel 301, the automation controller 100 (load pushing determination unit 104) shown in FIG. The wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. As a result, the load 310 in the vessel 301 that is held by the bucket 6 can be pushed toward the center CL of the vessel 301.
 本実施形態においては図4に示される自動化コントローラ100(荷押し判定部104)は、ベッセル301内で荷310を移動させる必要があると判定した場合に、作業機アクチュエータの駆動を停止させながら走行装置4を前進走行させることにより、ベッセル301の中心CLに向けて荷310を移動させるようにホイールローダ1を動作させる。これにより荷押し時における作業機アクチュエータの動作制御が不要となり、動作制御の簡略化を図ることが可能となる。 In this embodiment, when it is determined that the load 310 needs to be moved within the vessel 301, the automation controller 100 (load pushing determination unit 104) shown in FIG. By moving the device 4 forward, the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. This eliminates the need to control the operation of the work implement actuator during load pushing, making it possible to simplify the operation control.
 本実施形態においては図4に示される自動化コントローラ100(荷押し判定部104)は、ベッセル301内で荷310を移動させる必要があると判定した場合に、バケット6の高さを維持しながら走行装置4を前進走行させることにより、ベッセル301の中心CLに向けて荷310を移動させるようにホイールローダ1を動作させる。これにより荷押し時におけるバケット6の高さ制御が不要となり、動作制御の簡略化を図ることが可能となる。 In this embodiment, when it is determined that it is necessary to move the load 310 within the vessel 301, the automation controller 100 (load pushing determination unit 104) shown in FIG. By moving the device 4 forward, the wheel loader 1 is operated to move the load 310 toward the center CL of the vessel 301. This eliminates the need to control the height of the bucket 6 when pushing a load, making it possible to simplify operation control.
 本実施形態においては図4に示される自動化コントローラ100(荷押し判定部104)は、作業機姿勢センサにより検出された作業機3の姿勢に基づいて作業機3によるベッセル301への積込回数を算出し、算出した積込回数に基づいてベッセル301内で荷310を移動させる必要があるか否かを判定する。これにより積込回数に基づいて簡易に荷押し要否を判定することが可能となる。 In this embodiment, the automation controller 100 (load pushing determination unit 104) shown in FIG. Based on the calculated number of loadings, it is determined whether it is necessary to move the load 310 within the vessel 301. This makes it possible to easily determine whether loading is necessary based on the number of times of loading.
 本実施形態においては図4に示される自動化コントローラ100(荷押し判定部104)は、物体センサにより検出された荷310の積込状況に基づいてベッセル301内で荷310を移動させる必要があるか否かを判定する。これによりベッセル301内における荷310の実際の積込状況に応じて荷押し要否を判定できる。このためダンプトラック300の走行中に荷310がベッセル301からこぼれることをより正確に抑制することができる。 In this embodiment, the automation controller 100 (load pushing determination unit 104) shown in FIG. 4 determines whether it is necessary to move the load 310 within the vessel 301 based on the loading status of the load 310 detected by the object sensor. Determine whether or not. Thereby, it is possible to determine whether it is necessary to push the load depending on the actual loading situation of the load 310 in the vessel 301. Therefore, it is possible to more accurately prevent the load 310 from spilling from the vessel 301 while the dump truck 300 is running.
 <付記>
 以上の説明は、以下に付記する特徴を含む。
<Additional notes>
The above description includes the features noted below.
 (付記1)
 作業機械であって、
 本体と、
 前記本体に取り付けられ、積込容器に荷を積み込む作業機と、
 前記本体に対し前記作業機を駆動する作業機アクチュエータと、
 前記作業機の位置の検出値と、前記積込容器の前記作業機械に対する位置の検出値とに基づいて、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
 前記コントローラは、前記積込容器内における荷の積込状況に関する情報を取得し、取得した荷の積込状況に関する情報に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定し、前記積込容器内で荷を移動させる必要があると判定した場合に前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、作業機械。
(Additional note 1)
A working machine,
The main body and
a working machine that is attached to the main body and loads a load into a loading container;
a work implement actuator that drives the work implement with respect to the main body;
a controller that commands driving of the work implement actuator based on a detected value of the position of the work implement and a detected value of the position of the loading container with respect to the work machine;
The controller acquires information regarding the loading status of the load in the loading container, and determines whether it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load. and operating the work machine to move the load toward the center of the loading container if it is determined that the load needs to be moved within the loading container.
 (付記2)
 前記本体は走行体を有し、
 前記走行体の進行状態を検出する走行センサをさらに備え、
 前記コントローラは、前記走行センサの検出値と、前記積込容器の前記作業機械に対する位置の検出値とに基づいて、前記作業機アクチュエータの駆動を指令する、付記1に記載の作業機械。
(Additional note 2)
The main body has a running body,
Further comprising a running sensor that detects the progress state of the running body,
The working machine according to supplementary note 1, wherein the controller instructs the driving of the working machine actuator based on a detected value of the travel sensor and a detected value of the position of the loading container with respect to the working machine.
 (付記3)
 前記コントローラは、前記積込容器内で荷を移動させる必要があると判定した場合に、前記走行体を前進走行させることにより、前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、付記2に記載の作業機械。
(Appendix 3)
When the controller determines that it is necessary to move the load within the loading container, the controller moves the load toward the center of the loading container by moving the traveling body forward. The working machine described in Appendix 2 that operates the machine.
 (付記4)
 前記コントローラは、前記積込容器内で荷を移動させる必要があると判定した場合に、前記作業機アクチュエータの駆動を停止させながら前記走行体を前進走行させることにより、前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、付記3に記載の作業機械。
(Additional note 4)
When the controller determines that it is necessary to move the load within the loading container, the controller moves the traveling body forward while stopping the driving of the work implement actuator, thereby moving the load to the center of the loading container. The working machine according to appendix 3, wherein the working machine is operated to move the load toward the target.
 (付記5)
 前記作業機はバケットを有し、
 前記コントローラは、前記積込容器内で荷を移動させる必要があると判定した場合に、前記バケットの高さを維持しながら前記走行体を前進走行させることにより、前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、付記3または付記4に記載の作業機械。
(Appendix 5)
The work machine has a bucket,
When the controller determines that it is necessary to move the load within the loading container, the controller moves the traveling body forward while maintaining the height of the bucket toward the center of the loading container. The working machine according to appendix 3 or 4, wherein the working machine is operated to move a load.
 (付記6)
 荷の積込状況を判断するために、前記作業機の姿勢を検出する作業機姿勢センサをさらに備え、
 前記コントローラは、前記作業機姿勢センサにより検出された前記作業機の姿勢に基づいて前記作業機による前記積込容器への積込回数を算出し、算出した前記積込回数に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定する、付記1から付記5のいずれか1つに記載の作業機械。
(Appendix 6)
Further comprising a work machine attitude sensor that detects the attitude of the work machine in order to determine the loading status of the load,
The controller calculates the number of times the work machine loads the loading container based on the attitude of the work machine detected by the work machine attitude sensor, and the controller calculates the number of times the work machine loads the loading container based on the calculated number of times of loading. The working machine according to any one of appendices 1 to 5, which determines whether it is necessary to move a load within the container.
 (付記7)
 荷の積込状況を判断するために、前記積込容器に積み込まれた荷の積込状況を検出する物体センサをさらに備え、
 前記コントローラは、前記物体センサにより検出された荷の積込状況に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定する、付記1から付記5のいずれか1つに記載の作業機械。
(Appendix 7)
Further comprising an object sensor that detects the loading status of the load loaded into the loading container in order to determine the loading status of the load,
The controller determines whether or not it is necessary to move a load within the loading container based on the loading status of the load detected by the object sensor. The working machine described.
 (付記8)
 作業機械を含むシステムであって、
 作業機械本体と、
 前記作業機械本体に取り付けられ、積込容器に荷を積み込む作業機と、
 前記作業機械本体に対し前記作業機を駆動する作業機アクチュエータと、
 前記作業機の位置の検出値と、前記積込容器の前記作業機械に対する位置の検出値とに基づいて、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
 前記コントローラは、前記積込容器内における荷の積込状況に関する情報を取得し、取得した荷の積込状況に関する情報に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定し、前記積込容器内で荷を移動させる必要があると判定した場合に前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、システム。
(Appendix 8)
A system including a working machine,
The working machine body,
a working machine that is attached to the working machine body and loads a load into a loading container;
a work machine actuator that drives the work machine with respect to the work machine main body;
a controller that commands driving of the work implement actuator based on a detected value of the position of the work implement and a detected value of the position of the loading container with respect to the work machine;
The controller acquires information regarding the loading status of the load in the loading container, and determines whether it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load. and operating the work machine to move a load toward the center of the load container if it is determined that the load needs to be moved within the load container.
 (付記9)
 作業機械の制御方法であって、
 前記積込容器内における荷の積込状況に関する情報を取得することと、
 取得した荷の積込状況に関する情報に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定することと、
 前記積込容器内で荷を移動させる必要があると判定した場合に前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させることと、を備えた、作業機械の制御方法。
(Appendix 9)
A method for controlling a working machine,
obtaining information regarding the loading status of cargo in the loading container;
Determining whether it is necessary to move the load within the loading container based on the obtained information regarding the loading status of the load;
controlling the work machine, comprising: operating the work machine to move the load toward the center of the loading container when it is determined that the load needs to be moved within the loading container; Method.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated not by the above description but by the claims, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
1 ホイールローダ、2 車体フレーム、2a 前フレーム、2b 後フレーム、3 作業機、4 走行装置、4a,4b 走行輪、5 キャブ、6 バケット、6a 刃先、6b 背面、8 操作装置、9 ブームピン、11 ステアリングシリンダ、13 作業機ポンプ、14 ブーム、15 リンク、16 ブームシリンダ、17 バケットピン、18 ベルクランク、18a 支持ピン、18b,18c 連結ピン、19 バケットシリンダ、21 エンジン、23 トランスミッション、25 アクスル、32 メインバルブ、35,36 電磁比例制御弁、41 アクセルペダル、42 作業機操作レバー、50 車体コントローラ、51 機械モニタ、60 エンジンコントローラ、70 トランスミッションコントローラ、71 ブレーキ制御部、72 アクセル制御部、80 作業機コントローラ、81 ステアリング制御部、82 作業機制御部、100 自動化コントローラ、101 位置推定部、102 パスプランニング部、103 経路追従制御部、104 判定部、110 外界情報取得部、111 知覚装置、112 位置情報取得装置、120 車両情報取得部、121 アーティキュレート角度センサ、122 車両速度センサ、123 ブーム角度センサ、124 バケット角度センサ、125 ブームシリンダ圧力センサ、130 インターフェース、131 自動化切替スイッチ、132 エンジン緊急停止スイッチ、133 モードランプ、140 アクチュエータ、141 ブレーキEPC、142 ステアリングEPC、143 作業機EPC、144 HMT、300 ダンプトラック、301 ベッセル、310 荷(掘削対象物)。 1 Wheel loader, 2 Body frame, 2a Front frame, 2b Rear frame, 3 Work equipment, 4 Traveling device, 4a, 4b Running wheels, 5 Cab, 6 Bucket, 6a Cutting edge, 6b Back side, 8 Operating device, 9 Boom pin, 11 Steering cylinder, 13 Work equipment pump, 14 Boom, 15 Link, 16 Boom cylinder, 17 Bucket pin, 18 Bell crank, 18a Support pin, 18b, 18c Connection pin, 19 Bucket cylinder, 21 Engine, 23 Transmission, 25 Axle, 32 Main valve, 35, 36 Electromagnetic proportional control valve, 41 Accelerator pedal, 42 Work equipment operating lever, 50 Vehicle controller, 51 Machine monitor, 60 Engine controller, 70 Transmission controller, 71 Brake control unit, 72 Accelerator control unit, 80 Work equipment Controller, 81 Steering control unit, 82 Work equipment control unit, 100 Automation controller, 101 Position estimation unit, 102 Path planning unit, 103 Route following control unit, 104 Judgment unit, 110 External world information acquisition unit, 111 Perception device, 112 Position information Acquisition device, 120 Vehicle information acquisition unit, 121 Articulated angle sensor, 122 Vehicle speed sensor, 123 Boom angle sensor, 124 Bucket angle sensor, 125 Boom cylinder pressure sensor, 130 Interface, 131 Automation changeover switch, 132 Engine emergency stop switch, 133 Mode lamp, 140 Actuator, 141 Brake EPC, 142 Steering EPC, 143 Work equipment EPC, 144 HMT, 300 Dump truck, 301 Vessel, 310 Load (object to be excavated).

Claims (9)

  1.  作業機械であって、
     本体と、
     前記本体に取り付けられ、積込容器に荷を積み込む作業機と、
     前記本体に対し前記作業機を駆動する作業機アクチュエータと、
     前記作業機の位置の検出値と、前記積込容器の前記作業機械に対する位置の検出値とに基づいて、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
     前記コントローラは、前記積込容器内における荷の積込状況に関する情報を取得し、取得した荷の積込状況に関する情報に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定し、前記積込容器内で荷を移動させる必要があると判定した場合に前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、作業機械。
    A working machine,
    The main body and
    a working machine that is attached to the main body and loads a load into a loading container;
    a work implement actuator that drives the work implement with respect to the main body;
    a controller that commands driving of the work machine actuator based on a detected value of the position of the work machine and a detected value of the position of the loading container with respect to the work machine,
    The controller acquires information regarding the loading status of the load in the loading container, and determines whether it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load. and operating the work machine to move the load toward the center of the loading container if it is determined that the load needs to be moved within the loading container.
  2.  前記本体は走行体を有し、
     前記走行体の進行状態を検出する走行センサをさらに備え、
     前記コントローラは、前記走行センサの検出値と、前記積込容器の前記作業機械に対する位置の検出値とに基づいて、前記作業機アクチュエータの駆動を指令する、請求項1に記載の作業機械。
    The main body has a running body,
    Further comprising a running sensor that detects the progress state of the running body,
    The working machine according to claim 1, wherein the controller instructs the driving of the working machine actuator based on a detected value of the traveling sensor and a detected value of the position of the loading container with respect to the working machine.
  3.  前記コントローラは、前記積込容器内で荷を移動させる必要があると判定した場合に、前記走行体を前進走行させることにより、前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、請求項2に記載の作業機械。 When the controller determines that it is necessary to move the load within the loading container, the controller moves the load toward the center of the loading container by moving the traveling body forward. The work machine according to claim 2, which operates the machine.
  4.  前記コントローラは、前記積込容器内で荷を移動させる必要があると判定した場合に、前記作業機アクチュエータの駆動を停止させながら前記走行体を前進走行させることにより、前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、請求項3に記載の作業機械。 When the controller determines that it is necessary to move the load within the loading container, the controller moves the traveling body forward while stopping the driving of the work implement actuator, thereby moving the load to the center of the loading container. 4. The work machine of claim 3, wherein the work machine is operated to move a load toward a target.
  5.  前記作業機はバケットを有し、
     前記コントローラは、前記積込容器内で荷を移動させる必要があると判定した場合に、前記バケットの高さを維持しながら前記走行体を前進走行させることにより、前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、請求項3に記載の作業機械。
    The work machine has a bucket,
    When the controller determines that it is necessary to move the load within the loading container, the controller moves the traveling body forward while maintaining the height of the bucket toward the center of the loading container. 4. The work machine according to claim 3, wherein the work machine is operated to move a load.
  6.  荷の積込状況を判断するために、前記作業機の姿勢を検出する作業機姿勢センサをさらに備え、
     前記コントローラは、前記作業機姿勢センサにより検出された前記作業機の姿勢に基づいて前記作業機による前記積込容器への積込回数を算出し、算出した前記積込回数に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定する、請求項1に記載の作業機械。
    Further comprising a work machine attitude sensor that detects the attitude of the work machine in order to determine the loading status of the load,
    The controller calculates the number of times the work machine loads the loading container based on the attitude of the work machine detected by the work machine attitude sensor, and the controller calculates the number of times the work machine loads the loading container based on the calculated number of times of loading. The work machine of claim 1, wherein the work machine determines whether a load needs to be moved within a container.
  7.  荷の積込状況を判断するために、前記積込容器に積み込まれた荷の積込状況を検出する物体センサをさらに備え、
     前記コントローラは、前記物体センサにより検出された荷の積込状況に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定する、請求項1に記載の作業機械。
    Further comprising an object sensor that detects the loading status of the load loaded into the loading container in order to determine the loading status of the load,
    The working machine according to claim 1, wherein the controller determines whether it is necessary to move a load within the loading container based on the loading status of the load detected by the object sensor.
  8.  作業機械を含むシステムであって、
     作業機械本体と、
     前記作業機械本体に取り付けられ、積込容器に荷を積み込む作業機と、
     前記作業機械本体に対し前記作業機を駆動する作業機アクチュエータと、
     前記作業機の位置の検出値と、前記積込容器の前記作業機械に対する位置の検出値とに基づいて、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
     前記コントローラは、前記積込容器内における荷の積込状況に関する情報を取得し、取得した荷の積込状況に関する情報に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定し、前記積込容器内で荷を移動させる必要があると判定した場合に前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させる、システム。
    A system including a working machine,
    The working machine body,
    a working machine that is attached to the working machine body and loads a load into a loading container;
    a work machine actuator that drives the work machine with respect to the work machine main body;
    a controller that commands driving of the work implement actuator based on a detected value of the position of the work implement and a detected value of the position of the loading container with respect to the work machine;
    The controller acquires information regarding the loading status of the load in the loading container, and determines whether it is necessary to move the load within the loading container based on the acquired information regarding the loading status of the load. and operating the work machine to move a load toward the center of the load container if it is determined that the load needs to be moved within the load container.
  9.  作業機械の制御方法であって、
     積込容器内における荷の積込状況に関する情報を取得することと、
     取得した荷の積込状況に関する情報に基づいて前記積込容器内で荷を移動させる必要があるか否かを判定することと、
     前記積込容器内で荷を移動させる必要があると判定した場合に前記積込容器の中心に向けて荷を移動させるように前記作業機械を動作させることと、を備えた、作業機械の制御方法。
    A method for controlling a working machine,
    Obtaining information regarding the loading status of cargo in the loading container;
    Determining whether it is necessary to move the load within the loading container based on the obtained information regarding the loading status of the load;
    controlling the work machine, comprising: operating the work machine to move the load toward the center of the loading container when it is determined that the load needs to be moved within the loading container; Method.
PCT/JP2023/030884 2022-09-06 2023-08-28 Work machine, system including work machine, and method for controlling work machine WO2024053443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-141480 2022-09-06
JP2022141480A JP2024036922A (en) 2022-09-06 2022-09-06 Work machines, systems including work machines, and control methods for work machines

Publications (1)

Publication Number Publication Date
WO2024053443A1 true WO2024053443A1 (en) 2024-03-14

Family

ID=90191098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030884 WO2024053443A1 (en) 2022-09-06 2023-08-28 Work machine, system including work machine, and method for controlling work machine

Country Status (2)

Country Link
JP (1) JP2024036922A (en)
WO (1) WO2024053443A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310389A (en) * 1997-12-19 1999-11-09 Carnegie Mellon Univ Optimal position deciding method and device of loading substance in vessel
WO2021054436A1 (en) * 2019-09-18 2021-03-25 住友重機械工業株式会社 Excavator
JP2022056134A (en) * 2020-09-29 2022-04-08 コベルコ建機株式会社 Loading point determination system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310389A (en) * 1997-12-19 1999-11-09 Carnegie Mellon Univ Optimal position deciding method and device of loading substance in vessel
WO2021054436A1 (en) * 2019-09-18 2021-03-25 住友重機械工業株式会社 Excavator
JP2022056134A (en) * 2020-09-29 2022-04-08 コベルコ建機株式会社 Loading point determination system

Also Published As

Publication number Publication date
JP2024036922A (en) 2024-03-18

Similar Documents

Publication Publication Date Title
JP6062115B1 (en) Work vehicle control system, control method, and work vehicle
US11668071B2 (en) Control system for work vehicle, control method, and work vehicle
US11268264B2 (en) Control system for work vehicle, control method, and work vehicle
JP2018021348A (en) Work vehicle control system, control method, and work vehicle
US11001993B2 (en) Control system for work vehicle, control method, and work vehicle
US11105071B2 (en) Control system for work vehicle, control method, and work vehicle
JP2018021345A (en) Work vehicle control system, control method, and work vehicle
JP2018021346A (en) Work vehicle control system, control method, and work vehicle
JP2018021344A (en) Work vehicle control system, control method, and work vehicle
US11408149B2 (en) Control system for work vehicle, control method, and work vehicle
EP3851590B1 (en) System and method of controlling wheel loader
JP2018021347A (en) Work vehicle control system, control method, and work vehicle
JPWO2019187192A1 (en) Work machine control systems, methods, and work machines
US10907325B2 (en) Control system for work vehicle, control method, and work vehicle
WO2024053443A1 (en) Work machine, system including work machine, and method for controlling work machine
JP2017166308A (en) Control system and control method for working vehicle, and working vehicle
US20220365536A1 (en) Real-time surface scanning and estimation of ground characteristics for ground compacting work machines
WO2024043074A1 (en) Work machine, system including work machine, and method for controlling work machine
WO2022080334A1 (en) Work vehicle control system, work vehicle control method, and work vehicle
WO2024043075A1 (en) Work machine, system including work machine, and method for controlling work machine
WO2024057961A1 (en) System including work machine, controller for work machine, and method for controlling work machine
CN113454294B (en) Control system and control method for work machine
WO2024057959A1 (en) System including work machine, controller for work machine, and method for controlling work machine
WO2024062899A1 (en) System including work machine and method for controlling work machine
JP7416769B2 (en) Work vehicle, work vehicle control device, and work vehicle direction identification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862982

Country of ref document: EP

Kind code of ref document: A1