WO2024043075A1 - Work machine, system including work machine, and method for controlling work machine - Google Patents

Work machine, system including work machine, and method for controlling work machine Download PDF

Info

Publication number
WO2024043075A1
WO2024043075A1 PCT/JP2023/028887 JP2023028887W WO2024043075A1 WO 2024043075 A1 WO2024043075 A1 WO 2024043075A1 JP 2023028887 W JP2023028887 W JP 2023028887W WO 2024043075 A1 WO2024043075 A1 WO 2024043075A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
work machine
boom
work
wheel loader
Prior art date
Application number
PCT/JP2023/028887
Other languages
French (fr)
Japanese (ja)
Inventor
高史 松山
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024043075A1 publication Critical patent/WO2024043075A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations

Definitions

  • the present disclosure relates to a work machine, a system including the work machine, and a method of controlling the work machine.
  • Patent Document 1 discloses that when the wheel loader is in an unloaded backward state where the bucket is not loaded and the wheel loader is in an unloaded reverse state, the distance is calculated according to the travel distance of the wheel loader.
  • a control for moving a boom and bucket to a target position is disclosed.
  • a wheel loader that repeatedly performs excavation work and loading work is required to reliably discharge the load loaded into the bucket from the bucket during the loading work.
  • the present disclosure proposes a working machine, a system including the working machine, and a method for controlling the working machine, which can reliably discharge loads loaded into a bucket during loading work.
  • Each of a work machine and a system including a work machine includes a main body of the work machine, a work machine, a work machine actuator, a traveling sensor, a work machine attitude sensor, an object sensor, and a controller.
  • the main body of the working machine has a running body.
  • the work machine is attached to the front of the main body of the work machine.
  • the work machine has a bucket at the tip.
  • the work implement actuator drives the work implement relative to the main body of the work machine.
  • the traveling sensor detects the traveling state of the traveling object.
  • the work machine attitude sensor detects the attitude of the work machine.
  • the object sensor detects objects around the main body of the work machine.
  • the controller instructs the drive of the work implement actuator based on the detected values of the travel sensor, the work implement attitude sensor, and the object sensor.
  • the controller recognizes a loading target for loading the load in the bucket based on the detection of the object.
  • the controller controls the work implement actuator and the traveling body so that the bucket is placed in a full dump state when the feature point of the bucket is located above the loading target, and the traveling body is caused to travel backward while maintaining the full dump state.
  • a method for controlling a work machine includes recognizing a loading target for loading a load in a bucket from an object detection signal, and moving a feature point of the bucket above the loading target.
  • the bucket is brought into a full dump state in a state where the feature point is located above the loading target, and the traveling body is made to travel backward while maintaining the full dump state.
  • the load loaded in the bucket can be reliably discharged during loading work.
  • FIG. 1 is a side view of a wheel loader as an example of a working machine.
  • FIG. 1 is a block diagram showing a schematic configuration of a control system for a wheel loader.
  • FIG. 2 is a plan view of a wheel loader that performs excavation and loading work.
  • FIG. 1 is a block diagram showing the configuration of an automatic control system for a wheel loader. It is a flowchart which shows the flow of the operation
  • FIG. 3 is a diagram schematically showing the arrangement of a vessel and a wheel loader at the start of a dump approach.
  • FIG. 3 is a diagram schematically showing the attitude of the wheel loader when stopping the dumping operation of the bucket.
  • FIG. 3 is a diagram schematically showing the attitude of the wheel loader when starting a bucket tilting operation. It is a figure which shows typically the attitude
  • FIG. 2 is a diagram schematically showing a wheel loader separated from a dump truck. It is a graph showing changes in cylinder length during loading work.
  • FIG. 1 is a side view of a wheel loader 1 as an example of a working machine.
  • the wheel loader 1 includes a vehicle body frame 2, a working machine 3, a traveling device 4, and a cab 5.
  • the vehicle body of the wheel loader 1 is composed of a vehicle body frame 2, a cab 5, and the like.
  • a working machine 3 and a traveling device 4 are attached to the vehicle body of the wheel loader 1.
  • the main body of the wheel loader 1 includes a vehicle body and a traveling device 4.
  • the traveling device 4 causes the vehicle body of the wheel loader 1 to travel, and includes running wheels 4a and 4b.
  • the wheel loader 1 is a wheeled vehicle that includes running wheels 4a and 4b as rotating bodies for running on both sides of the vehicle body in the left-right direction.
  • the wheel loader 1 is self-propelled by rotationally driving running wheels 4a and 4b, and can perform desired work using the working machine 3.
  • the traveling device 4 corresponds to an example of a "traveling body.”
  • the direction in which the wheel loader 1 travels straight is referred to as the front-rear direction of the wheel loader 1.
  • the front direction the side on which the working machine 3 is arranged with respect to the vehicle body frame 2
  • the side opposite to the front direction is defined as the rear direction.
  • the left-right direction of the wheel loader 1 is a direction perpendicular to the front-rear direction when the wheel loader 1 on a flat ground is viewed from above. Looking forward, the right and left sides in the left and right direction are the right direction and left direction, respectively.
  • the vertical direction of the wheel loader 1 is a direction perpendicular to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the bottom, and the side with the sky is the top.
  • the vehicle body frame 2 includes a front frame 2a and a rear frame 2b.
  • the front frame 2a is arranged in front of the rear frame 2b.
  • the front frame 2a and the rear frame 2b are attached to each other so as to be swingable in the left-right direction.
  • a pair of steering cylinders 11 are attached across the front frame 2a and the rear frame 2b.
  • Steering cylinder 11 is a hydraulic cylinder.
  • the front frame 2a and the rear frame 2b constitute a vehicle body frame 2 having an articulated structure.
  • the wheel loader 1 is an articulated working machine in which a front frame 2a and a rear frame 2b are connected for bending movement.
  • a working machine 3 and a pair of running wheels (front wheels) 4a are attached to the front frame 2a.
  • the work machine 3 is attached to the front of the main body of the wheel loader 1.
  • the work machine 3 is supported by the vehicle body of the wheel loader 1.
  • the work machine 3 includes a boom 14 and a bucket 6.
  • the bucket 6 is arranged at the tip of the working machine 3.
  • the bucket 6 is a working tool for digging and loading.
  • the cutting edge 6a is the tip of the bucket 6.
  • the back surface 6b is part of the outer surface of the bucket 6.
  • the back surface 6b is formed of a flat surface.
  • the back surface 6b extends rearward from the cutting edge 6a.
  • the base end of the boom 14 is rotatably attached to the front frame 2a by a boom pin 9.
  • the bucket 6 is rotatably attached to the boom 14 by a bucket pin 17 located at the tip of the boom 14.
  • the boom pin 9 and the bucket pin 17 correspond to "a plurality of joints" of the working machine 3.
  • the work machine 3 further includes a bell crank 18 and a link 15.
  • the bell crank 18 is rotatably supported by the boom 14 by a support pin 18a located approximately at the center of the boom 14.
  • the link 15 is connected to a connecting pin 18c provided at the tip of the bell crank 18.
  • Link 15 connects bell crank 18 and bucket 6.
  • Boom cylinder 16 is a hydraulic cylinder.
  • the boom cylinder 16 rotates the boom 14 up and down about the boom pin 9 .
  • a base end of the boom cylinder 16 is attached to the front frame 2a.
  • the tip of the boom cylinder 16 is attached to the boom 14.
  • the boom cylinder 16 is a hydraulic actuator that moves the boom 14 up and down with respect to the front frame 2a. As the boom 14 moves up and down, the bucket 6 attached to the tip of the boom 14 also moves up and down.
  • the bucket cylinder 19 connects the bell crank 18 and the front frame 2a.
  • the base end of the bucket cylinder 19 is attached to the front frame 2a.
  • the tip of the bucket cylinder 19 is attached to a connecting pin 18b provided at the base end of the bell crank 18.
  • the bucket cylinder 19 is a hydraulic actuator that rotates the bucket 6 up and down with respect to the boom 14.
  • Bucket cylinder 19 is a work tool cylinder that drives bucket 6 .
  • Bucket cylinder 19 rotates bucket 6 around bucket pin 17 .
  • Bucket 6 is configured to be movable relative to boom 14 .
  • the bucket 6 is configured to be movable relative to the front frame 2a.
  • the boom cylinder 16 and the bucket cylinder 19 correspond to an example of a "work machine actuator" that drives the work machine 3.
  • a cab 5 on which an operator rides and a pair of running wheels (rear wheels) 4b are attached to the rear frame 2b.
  • a box-shaped cab 5 is arranged behind the boom 14.
  • the cab 5 is placed on the vehicle body frame 2. Inside the cab 5, a seat on which an operator of the wheel loader 1 sits, an operating device 8, which will be described later, and the like are arranged.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the wheel loader 1. As shown in FIG.
  • the engine 21 is a drive source that generates driving force for driving the working machine 3 and the traveling device 4, and is, for example, a diesel engine.
  • a motor driven by an electrical storage body may be used instead of the engine 21, or both the engine and the motor may be used.
  • the output of the engine 21 is controlled by adjusting the amount of fuel injected into the cylinders of the engine 21.
  • the driving force generated by the engine 21 is transmitted to the transmission 23.
  • the transmission 23 changes the driving force to appropriate torque and rotational speed.
  • An axle 25 is connected to the output shaft of the transmission 23.
  • the driving force shifted by the transmission 23 is transmitted to the axle 25.
  • Driving force is transmitted from the axle 25 to the running wheels 4a, 4b (FIG. 1).
  • the wheel loader 1 travels.
  • both the running wheels 4a and 4b constitute driving wheels that receive driving force and cause the wheel loader 1 to travel.
  • the work machine pump 13 is a hydraulic pump that is driven by the engine 21 and operates the work machine 3 with the hydraulic fluid it discharges.
  • the work machine 3 is driven by hydraulic oil from a work machine pump 13.
  • Hydraulic oil discharged from the work equipment pump 13 is supplied to the boom cylinder 16 and the bucket cylinder 19 via the main valve 32.
  • the boom 14 moves up and down as the boom cylinder 16 expands and contracts in response to the supply of hydraulic oil.
  • the bucket cylinder 19 is supplied with hydraulic oil and expands and contracts, the bucket 6 rotates up and down.
  • the wheel loader 1 includes a vehicle body controller 50.
  • Vehicle controller 50 includes an engine controller 60, a transmission controller 70, and a work equipment controller 80.
  • the vehicle body controller 50 is generally realized by reading various programs using a CPU (Central Processing Unit).
  • the vehicle body controller 50 has a memory (not shown).
  • the memory functions as a work memory and stores various programs for realizing the functions of the wheel loader 1.
  • the operating device 8 is provided in the cab 5.
  • the operating device 8 is operated by an operator.
  • the operating device 8 includes a plurality of types of operating members that are operated by an operator to operate the wheel loader 1.
  • the operating device 8 includes an accelerator pedal 41 and a work implement operating lever 42.
  • the operating device 8 may include a steering handle, a shift lever, etc. (not shown).
  • the accelerator pedal 41 is operated to set the target rotation speed of the engine 21.
  • Engine controller 60 controls the output of engine 21 based on the amount of operation of accelerator pedal 41 .
  • the operation amount (depression amount) of the accelerator pedal 41 is increased, the output of the engine 21 is increased.
  • the amount of operation of the accelerator pedal 41 is decreased, the output of the engine 21 is decreased.
  • Transmission controller 70 controls transmission 23 based on the amount of operation of accelerator pedal 41 .
  • the work equipment operating lever 42 is operated to operate the work equipment 3.
  • the work machine controller 80 controls the electromagnetic proportional control valves 35 and 36 based on the amount of operation of the work machine operating lever 42.
  • the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is retracted and the bucket 6 moves in the dumping direction (the direction in which the cutting edge of the bucket 6 is lowered). Further, the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is extended and the bucket 6 is moved in the tilt direction (the direction in which the cutting edge of the bucket 6 is raised).
  • the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is retracted and the boom 14 is lowered. Further, the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is extended and the boom 14 is raised.
  • the machine monitor 51 receives command signals from the vehicle controller 50 and displays various information.
  • the various information displayed on the machine monitor 51 includes, for example, information regarding the work performed by the wheel loader 1, vehicle body information such as remaining fuel level, cooling water temperature, and hydraulic oil temperature, and surrounding images of the surroundings of the wheel loader 1. etc.
  • the machine monitor 51 may be a touch panel, and in this case, a signal generated when the operator touches a part of the machine monitor 51 is output from the machine monitor 51 to the vehicle controller 50.
  • the wheel loader 1 of this embodiment performs an excavation and loading operation in which an excavated object such as earth and sand is scooped up and the excavated object is loaded onto a loading object such as a dump truck.
  • FIG. 3 is a plan view of the wheel loader 1 that performs excavation and loading work.
  • FIG. 3 shows a wheel loader 1 that performs a so-called V-shape operation.
  • FIG. 3(A) shows a wheel loader 1 that moves forward with a so-called empty load.
  • the wheel loader 1 travels forward along an excavation route R1 toward an excavation target 310 such as earth and sand.
  • the wheel loader 1 thrusts the bucket 6 into the excavated object 310 and stops moving forward.
  • an excavation operation in which the excavated object 310 is scooped into the bucket 6 is executed.
  • FIG. 3(B) shows a wheel loader 1 that performs so-called backward movement with a loaded load.
  • An excavated object 310 is loaded into the bucket 6 .
  • the wheel loader 1 travels backward along the excavation route R1 to the position where forward travel is started in FIG. 3(A).
  • FIG. 3(C) shows a wheel loader 1 that advances a load.
  • the wheel loader 1 moves forward toward the vessel 301 of the dump truck 300.
  • the wheel loader 1 moves forward from the position where it starts moving forward in FIG. 3(A) toward the dump truck 300 along the loading route R2.
  • the wheel loader 1 loads the excavated object 310 in the bucket 6 into the vessel 301.
  • the vessel 301 corresponds to an example of a "loading target" for loading the cargo in the bucket 6.
  • FIG. 3(D) shows a wheel loader 1 that moves backward with no load.
  • the wheel loader 1 loads the object to the position where it starts moving forward in FIG. 3(C). Travel backwards along route R2.
  • the wheel loader 1 can repeatedly perform a series of operations such as excavation, retreat, dump approach, earth removal, and retreat.
  • FIG. 4 is a block diagram showing the configuration of the automatic control system of the wheel loader 1.
  • the automation controller 100 is configured to be able to send and receive signals to and from the vehicle body controller 50 described with reference to FIG.
  • the automation controller 100 is also configured to be able to send and receive signals to and from the external world information acquisition section 110.
  • the external world information acquisition unit 110 includes a perception device 111 and a position information acquisition device 112.
  • the perception device 111 and the position information acquisition device 112 are mounted on the wheel loader 1.
  • the perception device 111 acquires information around the wheel loader 1.
  • the sensing device 111 is attached to the upper front surface of the cab 5, for example.
  • the sensing device 111 corresponds to an example of an "object sensor" that detects objects around the main body of the wheel loader 1.
  • the sensing device 111 detects the direction of an object outside the wheel loader 1 and the distance to the object in a non-contact manner.
  • the perception device 111 is, for example, a LiDAR (Light Detection and Ranging) that emits a laser beam to obtain information about an object.
  • Perceptual device 111 may be a visual sensor including a camera.
  • the perception device 111 may be a Radar (Radio Detection and Ranging) that acquires information about an object by emitting radio waves.
  • the sensing device 111 may be an infrared sensor.
  • the position information acquisition device 112 acquires information on the current position of the wheel loader 1.
  • the position information acquisition device 112 uses, for example, a satellite positioning system to acquire position information of the wheel loader 1 in a global coordinate system based on the earth.
  • the position information acquisition device 112 uses, for example, GNSS (Global Navigation Satellite Systems) and has a GNSS receiver.
  • the satellite positioning system calculates the position of the wheel loader 1 by calculating the position of the antenna of the GNSS receiver based on the positioning signal that the GNSS receiver receives from the satellite.
  • the external world information of the wheel loader 1 obtained by the sensing device 111 and the position information of the wheel loader 1 obtained by the position information acquisition device 112 are input to the automation controller 100.
  • the vehicle body controller 50 is configured to be able to send and receive signals to and from the vehicle information acquisition section 120, and receives input of information about the wheel loader 1 that the vehicle information acquisition section 120 acquires.
  • the vehicle information acquisition unit 120 is composed of various sensors mounted on the wheel loader 1.
  • the vehicle information acquisition unit 120 includes an articulate angle sensor 121, a vehicle speed sensor 122, a boom angle sensor 123, a bucket angle sensor 124, and a boom cylinder pressure sensor 125.
  • the articulate angle sensor 121 detects an articulate angle, which is the angle formed by the front frame 2a and the rear frame 2b, and generates a signal of the detected articulate angle.
  • the articulate angle sensor 121 outputs an articulate angle signal to the vehicle body controller 50.
  • the vehicle speed sensor 122 detects the moving speed of the wheel loader 1 by the traveling device 4 by detecting, for example, the rotational speed of the output shaft of the transmission 23, and generates a signal of the detected vehicle speed. Vehicle speed sensor 122 outputs a vehicle speed signal to vehicle controller 50.
  • the vehicle speed sensor 122 corresponds to an example of a "traveling sensor" that detects the progress of the traveling device 4 (traveling object).
  • the boom angle sensor 123 is composed of, for example, a rotary encoder provided on the boom pin 9, which is the attachment portion of the boom 14 to the vehicle body frame 2.
  • the boom angle sensor 123 detects the angle of the boom 14 with respect to the horizontal direction and generates a signal of the detected angle of the boom 14.
  • Boom angle sensor 123 outputs a signal indicating the angle of boom 14 to vehicle controller 50 .
  • the bucket angle sensor 124 is composed of, for example, a rotary encoder provided on the support pin 18a, which is the rotation axis of the bell crank 18. Bucket angle sensor 124 detects the angle of bucket 6 with respect to boom 14 and generates a signal of the detected angle of bucket 6. Bucket angle sensor 124 outputs a signal indicating the angle of bucket 6 to vehicle controller 50 .
  • the boom angle sensor 123 and the bucket angle sensor 124 correspond to an example of a "work machine attitude sensor” that detects the attitude of the work machine 3.
  • the boom cylinder pressure sensor 125 detects the pressure on the bottom side of the boom cylinder 16 (boom bottom pressure) and generates a signal of the detected boom bottom pressure.
  • the boom bottom pressure is high when the bucket 6 is loaded and low when it is empty.
  • Boom cylinder pressure sensor 125 outputs a boom bottom pressure signal to vehicle body controller 50.
  • the vehicle body controller 50 outputs the information input from the vehicle information acquisition unit 120 to the automation controller 100.
  • the automation controller 100 receives detected values from the vehicle speed sensor 122, boom angle sensor 123, and bucket angle sensor 124 via the vehicle body controller 50.
  • the actuator 140 is configured to be able to transmit and receive signals to and from the vehicle body controller 50. In response to a command signal from the vehicle body controller 50, the actuator 140 is driven.
  • the actuator 140 includes a brake EPC (electromagnetic proportional control valve) 141 for operating the brake of the traveling device 4, a steering EPC 142 for adjusting the running direction of the wheel loader 1, and a working machine for operating the working machine 3. It includes an EPC 143 and an HMT (Hydraulic Mechanical Transmission) 144.
  • the electromagnetic proportional control valves 35 and 36 shown in FIG. 2 constitute a working machine EPC 143.
  • the transmission 23 shown in FIG. 2 is realized as an HMT 144 that utilizes electronic control.
  • the transmission 23 may be an HST (Hydro-Static Transmission).
  • the power transmission device that transmits power from the engine 21 to the running wheels 4a, 4b may include an electric drive device such as a diesel electric system, or may include any combination of HMT, HST, and electric drive device. .
  • the transmission controller 70 has a brake control section 71 and an accelerator control section 72.
  • the brake control unit 71 outputs a command signal to the brake EPC 141 to control the operation of the brake.
  • the accelerator control unit 72 outputs a command signal to the HMT 144 to control the vehicle speed.
  • the work machine controller 80 has a steering control section 81 and a work machine control section 82.
  • the steering control unit 81 outputs a command signal for controlling the running direction of the wheel loader 1 to the steering EPC 142.
  • the work machine control unit 82 outputs a command signal for controlling the operation of the work machine 3 to the work machine EPC 143.
  • the automation controller 100 includes a position estimation section 101, a path planning section 102, and a route following control section 103.
  • the position estimation unit 101 estimates the self-position of the wheel loader 1 based on the position information acquired by the position information acquisition device 112. Further, the position estimating unit 101 recognizes the target position based on the external world information acquired by the sensing device 111.
  • the target position is, for example, the position of the excavated object 310 or the dump truck 300 shown in FIG. 3 .
  • the sensing device 111 may recognize the target position and input it to the automation controller 100, or the position estimation unit 101 may recognize the target position based on the detection result detected by the sensing device 111.
  • the path planning unit 102 generates an optimal route connecting the self-position of the wheel loader 1 and the target position.
  • the optimal route includes a traveling route by the traveling device 4 and an operation route of the working machine 3.
  • the route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the optimal route generated by the path planning unit 102.
  • a command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81.
  • the path following control section 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 operates along the optimal path generated by the path planning section 102.
  • a command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82.
  • the interface 130 is configured to be able to send and receive signals to and from the vehicle body controller 50.
  • the interface 130 has an automation changeover switch 131, an engine emergency stop switch 132, and a mode lamp 133.
  • the automation changeover switch 131 is operated by an operator. By operating the automation changeover switch 131, the operator switches between manually operating the wheel loader 1 and automatically controlling the wheel loader 1.
  • Engine emergency stop switch 132 is operated by an operator. When an event occurs that requires an emergency stop of the engine 21, the operator operates the engine emergency stop switch 132. Signals for operating the automation changeover switch 131 and the engine emergency stop switch 132 are input to the vehicle body controller 50.
  • the mode lamp 133 indicates whether the wheel loader 1 is currently in a manual operation mode by an operator or an automatically controlled mode.
  • a command signal for controlling lighting of the lamp is output from the vehicle body controller 50 to the mode lamp 133.
  • FIG. 5 is a flowchart showing the flow of the operation of automatically controlling the wheel loader 1 to load the load loaded into the bucket 6 onto the loading target.
  • the shape of the vessel 301 of the dump truck 300 is recognized.
  • the shape of the dump truck 300 is acquired using LiDAR, which is the sensing device 111.
  • LiDAR irradiates the dump truck 300 with laser light to obtain point cloud data indicating three-dimensional coordinate values of measurement points on the dump truck 300.
  • the dump truck 300 can be detected from the front, rear, right, and left sides, and the shape of the vessel 301 can be recognized from the point cloud information.
  • the recognized shape of the vessel 301 is input to the automation controller 100.
  • step S101 the perception device 111 recognizes the reference point P of the dump truck 300.
  • LiDAR which is the sensing device 111, detects the dump truck 300.
  • the automation controller 100 recognizes the position of the vessel 301 by comparing the point cloud detected by the perception device 111 with a master point cloud indicating the shape of the vessel 301.
  • the automation controller 100 sets the upper end of the side surface of the vessel 301 of the dump truck 300 recognized by LiDAR, which is the sensing device 111, as a reference point P.
  • step S102 the automation controller 100 sets the coordinates of the target positions c, d, f, and g of the cutting edge 6a of the bucket 6, which is moved under automatic control, with respect to the reference point P.
  • the cutting edge 6a of the bucket 6 corresponds to an example of a "feature point" set on the work machine 3. Note that the feature point is not limited to the cutting edge 6a of the bucket 6, and other points on the work machine 3 may be set as the feature point.
  • FIG. 6 is a diagram schematically showing the arrangement of the vessel 301 and the wheel loader 1 at the start of the dump approach. 6 and subsequent FIGS. 7 to 11, the vessel 301 is schematically shown as seen from the front and rear directions of the dump truck 300, and the wheel loader 1 approaching the vessel 301 from the left or right side of the dump truck 300 is shown schematically. A part of the front side is shown schematically.
  • the target position c is set as the position through which the cutting edge 6a of the bucket 6 passes while the wheel loader 1 is traveling forward toward the dump truck 300. While the wheel loader 1 is traveling forward, the working machine 3 moves the bucket 6 in the dumping direction in order to load the load in the bucket 6 into the vessel 301.
  • the position where the movement of the bucket 6 in the dumping direction is stopped is the target position c.
  • the cutting edge 6a of the bucket 6 is at the target position c
  • the bucket 6 is in a full dump state.
  • the length of the bucket cylinder 19 is the minimum.
  • the target position c is above the vessel 301.
  • the target position d is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position c.
  • the wheel loader 1 which is traveling forward toward the dump truck 300, is raising the boom 14.
  • the raising operation of the boom 14 continues from when the wheel loader 1 starts the dump approach until the cutting edge 6a of the bucket 6 reaches the target position d.
  • the target position d is the position at which the operation of raising the boom 14 is stopped.
  • the boom 14 is at the uppermost position.
  • the length of the boom cylinder 16 is at its maximum.
  • the target position d is above the vessel 301.
  • the target position d is set closer to the reference point P than the target position c.
  • the target position f is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position d.
  • the bucket 6 maintains the full dump state from when the cutting edge 6a of the bucket 6 passes through the target position c until it reaches the target position f.
  • the target position f is the position at which the movement of the bucket 6 in the tilt direction is started.
  • the target position f is above the vessel 301.
  • the target position f is set closer to the reference point P than the target position d.
  • the boom 14 is maintained at the uppermost position from when the cutting edge 6a of the bucket 6 passes through the target position d until it reaches the target position f.
  • the target position g is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position f.
  • the target position g is the position at which the movement of the bucket 6 in the tilt direction is stopped. The movement of the bucket 6 in the tilt direction is continued from when the cutting edge 6a of the bucket 6 passes through the target position f until it reaches the target position g.
  • the target position g is above the reference point P.
  • the boom 14 is maintained at the uppermost position from when the cutting edge 6a of the bucket 6 passes through the target position d until it reaches the target position g.
  • an xy coordinate system is set with the reference point P as the origin.
  • the x-axis is the left-right direction of the dump truck 300 passing through the reference point P.
  • the direction away from the vessel 301 with respect to the reference point P is the +x direction.
  • the y-axis is the vertical direction passing through the reference point P.
  • the upward direction from the reference point P is the +y direction.
  • the bucket angle ⁇ shown in FIG. 6 is the angle between the ground and the back surface 6b of the bucket 6.
  • the bucket angle ⁇ may be an angle between the back surface 6b of the bucket 6 and a horizontal plane based on the vehicle body.
  • the target positions c, d, f, and g are determined by giving the horizontal and vertical positions of the cutting edge 6a of the bucket 6 with respect to the reference point P, that is, the x and y coordinates.
  • the target position c is set as the position where the height position of the cutting edge 6a becomes the lowest (the y coordinate becomes the minimum value) while the load in the bucket 6 is being unloaded.
  • the target position c is set to a position where the y-coordinate is on the negative side.
  • the target positions d, f, and g are set to positions with positive y coordinates.
  • the target positions c, d, and f are set to positions where the x coordinate is on the negative side.
  • the target position g is set to a position where the x coordinate is zero.
  • the bucket angle ⁇ when the cutting edge 6a of the bucket 6 is at each target position is also set.
  • the attitude of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position is determined from the x and y coordinates of each target position and the bucket angle ⁇ at each target position.
  • the automation controller 100 stores the postures (target postures) of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position. Based on the target posture when the cutting edge 6a of the bucket 6 is at each target position, the length of the boom cylinder 16 and the length of the bucket cylinder 19 when the cutting edge 6a of the bucket 6 is at each target position are determined.
  • the x-coordinate and y-coordinate of each target position and the bucket angle ⁇ at each target position are determined by analyzing the locus of the cutting edge 6a when a skilled operator performs loading work and extracting the characteristic position. It can be determined by extracting the attitude of the working machine 3 at the position.
  • FIG. 7 is a diagram schematically showing the attitude of the wheel loader 1 when stopping the dumping operation of the bucket 6.
  • FIG. 8 is a diagram schematically showing the attitude of the wheel loader 1 when the raising operation of the boom 14 is stopped.
  • FIG. 9 is a diagram schematically showing the attitude of the wheel loader 1 when starting the tilting operation of the bucket 6.
  • FIG. 10 is a diagram schematically showing the attitude of the wheel loader 1 when the tilting operation of the bucket 6 is stopped.
  • FIG. 11 is a diagram schematically showing the wheel loader 1 separated from the dump truck 300.
  • the cutting edge 6a of the bucket 6 is at the target position c.
  • the cutting edge 6a is at the target position d.
  • the cutting edge 6a is at the target position f.
  • the cutting edge 6a is at the target position g.
  • FIG. 12 is a graph showing changes in cylinder length during loading work.
  • the horizontal axis in FIG. 12 shows the passage of time, and auxiliary lines are drawn at the times when the cutting edge 6a passes through the target positions c, d, f, and g.
  • the vertical axis in FIG. 12 indicates the lengths of the boom cylinder 16 and the bucket cylinder 19.
  • the wheel loader 1 is traveling forward before the cutting edge 6a reaches the target position c.
  • the length of the boom cylinder 16 is increasing and therefore the boom 14 is rising.
  • the bucket cylinder 19 is decreasing in length during a period of time until it reaches the target position c, so that during that period the bucket 6 is moving in the dumping direction.
  • the cutting edge 6a reaches the target position c
  • the bucket 6 assumes the full dumping position, and the dumping operation of the bucket 6 stops.
  • the length of the bucket cylinder 19 is at its minimum.
  • the boom 14 continues to rise. While the bucket 6 is being unloaded, the boom 14 continues to rise. While loading the dump truck 300, the boom 14 continues to rise. During the dumping operation of the bucket 6, the wheel loader 1 moves toward the vessel 301 of the dump truck 300, and therefore continues to travel forward.
  • the wheel loader 1 is traveling forward at the time when the cutting edge 6a passes the target position c, and the wheel loader 1 is moving forward at the time when the cutting edge 6a passes the target position d. I am driving backwards. While the cutting edge 6a is moving between the target position c and the target position d, the running direction of the wheel loader 1 is switched from forward to reverse. Boom cylinder 16 continues to increase in length and thus boom 14 continues to rise. The length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant.
  • the target position c is a position where the movement of the bucket 6 in the dump direction is stopped, and the bucket 6 maintains the full dump attitude while the cutting edge 6a moves from the target position c to the target position d.
  • the wheel loader 1 continues to travel backwards until the cutting edge 6a reaches the target position f after passing through the target position d.
  • the length of the boom cylinder 16 is constant, so the attitude of the boom 14 with respect to the vehicle body is constant. At this time, the height position of the boom 14 is at its highest.
  • the length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant. While the cutting edge 6a is moving from the target position d to the target position f, the wheel loader 1 is traveling backwards while maintaining the full dump state of the bucket 6.
  • the wheel loader 1 continues to travel backwards until the cutting edge 6a reaches the target position g after passing through the target position f.
  • the length of the boom cylinder 16 is constant, so the attitude of the boom 14 with respect to the vehicle body is constant.
  • the movement of the bucket 6 in the tilt direction is started when the cutting edge 6a reaches the target position f, and the bucket 6 continues to move in the tilt direction until it reaches the target position g.
  • the length of bucket cylinder 19 continues to increase.
  • the target position f is the position at which the tilting operation of the bucket 6 is started.
  • the target position g is the position at which the tilting operation of the bucket 6 is stopped. While the cutting edge 6a is moving from the target position f to the target position g, the wheel loader 1 is running backward while tilting the bucket 6. After loading the dump truck 300, the wheel loader 1 tilts the bucket 6 while moving backward to leave the dump truck 300.
  • the attitude of the boom 14 remains constant. After the load is completely discharged from the bucket 6, the boom 14 is held and the bucket 6 is tilted. During this tilting operation of the bucket 6, the wheel loader 1 continues to travel backwards and is traveling in a direction away from the vessel 301 of the dump truck 300.
  • the wheel loader 1 continues to travel backwards.
  • the length of boom cylinder 16 is decreasing and therefore boom 14 is lowering.
  • the length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant.
  • the load inside the bucket 6 can be removed without causing the bucket 6 and the vehicle body to come into contact with the vessel 301. can be loaded into the vessel 301.
  • step S103 the automation controller 100 recognizes the current positions of the wheel loader 1 and the work machine 3.
  • the wheel loader 1 and the work implement in the global coordinate system are 3's current position can be recognized.
  • the relative position of the cutting edge 6a of the bucket 6 with respect to the vessel 301 of the dump truck 300 can be calculated.
  • the sensing device 111 by using the sensing device 111 to obtain the direction and distance of the reference point P of the vessel 301 of the dump truck 300 with respect to the arrangement position of the sensing device 111, the current relative position of the cutting edge 6a of the bucket 6 with respect to the reference point P can be determined. may be calculated.
  • the cutting edge 6a of the bucket 6 is with respect to each target position c, d, f, g.
  • the cutting edge 6a has not yet reached the target position c
  • the cutting edge 6a has passed the target position c and is between the target positions c and d
  • the cutting edge 6a has passed the target position d and is at the target position. d and the target position f.
  • the target position to which the cutting edge 6a will go next is recognized. For example, if the cutting edge 6a has not yet reached the target position c, the next destination is the target position c, and if the cutting edge 6a is between the target positions c and d, the next destination is the target position. It is recognized as being at position d, etc.
  • step S104 the automation controller 100 recognizes the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position.
  • a boom angle sensor 123 detects the angle of the boom 14 .
  • a bucket angle sensor 124 detects the angle of the bucket 6.
  • the attitude of the working machine 3 is determined from the angle of the boom 14 and the angle of the bucket 6. Based on the attitude of the working machine, the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position are recognized.
  • an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 may be provided.
  • the boom cylinder 16 and the bucket cylinder 19 may be provided with stroke sensors that detect cylinder stroke lengths.
  • step S105 the automation controller 100 determines the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position recognized in step S104, and the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the target position where the cutting edge 6a will go next. (hereinafter referred to as target cylinder length).
  • target cylinder length The automation controller 100 calculates how far the cylinder should be moved until the cutting edge 6a reaches the next target position.
  • step S106 the automation controller 100 refers to the current vehicle speed and determines a target cylinder stroke speed that will result in the target cylinder length when the cutting edge 6a reaches the next target position.
  • the automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that when the cutting edge 6a reaches the next target position, the working machine 3 assumes a target attitude corresponding to the target position.
  • the current vehicle speed is acquired by vehicle speed sensor 122.
  • the time required to reach the next target position can be calculated from the current position of the cutting edge 6a and the current vehicle speed.
  • the target cylinder stroke speed can be determined by dividing the difference in cylinder length calculated in step S105 by the time required to reach the next target position.
  • the cylinder stroke amount during which the wheel loader 1 travels a unit distance may be determined. Whether the wheel loader 1 has traveled a unit distance may be determined from the vehicle speed, or may be detected by the sensing device 111.
  • step S107 the automation controller 100 outputs a command current corresponding to the target cylinder stroke speed to the vehicle body controller 50.
  • the automation controller 100 outputs a command to the work machine control unit 82 of the work machine controller 80 to extend and contract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
  • a command is output from the work equipment control unit 82 to the work equipment EPC 143 to extend and retract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
  • step S108 the working machine EPC 143 that has received the command signal adjusts the opening degree, so that appropriate hydraulic oil is supplied to the boom cylinder 16 and the bucket cylinder 19. This causes the boom cylinder 16 and bucket cylinder 19 to operate.
  • step S109 the automation controller 100 recognizes the current lengths of the boom cylinder 16 and bucket cylinder 19 similarly to step S104. The automation controller 100 determines whether the current lengths of the boom cylinder 16 and bucket cylinder 19 have reached the target cylinder length.
  • step S109 If it is determined in step S109 that the target cylinder length has been reached (YES in step S109), the process proceeds to step S110, and the automation controller 100 determines whether there is a next target position.
  • step S109 If it is determined in step S109 that the target cylinder length has not been reached (NO in step S109), and if it is determined in step S110 that there is a next target position (YES in step S110) , the process returns to step S103, and the process of expanding and contracting the boom cylinder 16 and the bucket cylinder 19 based on the current position of the working machine 3 is repeated.
  • the cylinder speed is sequentially changed according to the current position of the cutting edge 6a of the bucket 6. If the current position of the cutting edge 6a deviates from the position based on the cylinder speed set in the previous process, the cylinder speed is adjusted.
  • step S110 If it is determined in step S110 that there is no next target position (NO in step S110), the loading operation is ended. In this embodiment, this corresponds to the fact that the next target position is not set after the end of the target position g.
  • the wheel loader 1 moves backward while maintaining the full dump state of the bucket 6, and the cutting edge 6a reaches the target position f where the horizontal distance from the reference point P is less than a predetermined value.
  • the movement of the bucket 6 in the tilt direction is started.
  • the bucket 6 approaches the side surface of the vessel 301 to a predetermined position in the full dump attitude, the bucket 6 is tilted and moved to avoid the vessel 301.
  • the bucket 6 is tilted before the blade edge 6a of the bucket 6 straddles the side surface of the vessel 301, so that the blade edge 6a and the back surface 6b of the bucket 6 come into contact with the vessel 301. This can be prevented.
  • the backward movement of the wheel loader 1 to move away from the dump truck 300 and the tilting operation of the bucket 6 are performed simultaneously, and a plurality of operations are performed temporally overlapping each other.
  • the wheel loader 1 can move away from the dump truck 300 more quickly than when starting the backward movement after the bucket 6 is tilted. Therefore, the cycle time of loading work can be shortened and work efficiency can be improved.
  • the wheel loader 1 maintains the attitude of the boom 14 and the full dump state of the bucket 6. , driving in reverse. Thereby, the load loaded on the bucket 6 can be reliably discharged from the bucket 6.
  • the timing for switching the running direction of the wheel loader 1 from forward to reverse is not limited to when the cutting edge 6a of the bucket 6 is between the target position c and the target position d.
  • the traveling direction of the wheel loader 1 may be switched from forward to reverse using the bucket 6 being brought into the full dump state when the cutting edge 6a of the bucket 6 is located at the target position c as a trigger.
  • the timing of switching the running direction is not strict, and as long as the load is in a substantially full dump state where the load can be discharged from the bucket 6, it is permissible for the timing of switching the running direction to be delayed to some extent.
  • the wheel loader 1 tilts the bucket 6 while maintaining the attitude of the boom 14. Thereby, it is possible to reliably prevent the bucket 6 from coming into contact with the vessel 301.
  • the boom 14 continues to rise from the start of the dumping operation of the bucket 6 to the full dumping position. After the bucket 6 is brought into the full dump state, the raising operation of the boom 14 is stopped. If the boom 14 is raised to its highest position and then stopped with a load loaded in the bucket 6, the vehicle body may swing back and forth due to the influence of inertia and become unstable. . By bringing the bucket 6 into a full dump state and discharging the load in the bucket 6, and then allowing the boom 14 to reach the highest position and stop, it is possible to suppress the rocking of the vehicle due to inertia.
  • the automation controller 100 stores the target postures of the working machine 3 when the cutting edge 6a of the bucket 6 is at the target positions c, d, f, and g.
  • the automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 assumes the target posture when the cutting edge 6a reaches the target positions c, d, f, and g.
  • the automation controller 100 that constitutes the automatic control system for the wheel loader 1 described in the above embodiment does not necessarily have to be installed in the wheel loader 1.
  • the controller installed in the wheel loader 1 performs a process of transmitting information acquired by the external world information acquisition unit 110, the vehicle information acquisition unit 120, etc. to an external controller, and the external controller that receives the signal transmits the information to the wheel loader 1.
  • a system may be configured to automatically control the
  • the external controller may be located at the work site of the wheel loader 1 or may be located at a remote location away from the work site of the wheel loader 1.
  • the wheel loader 1 is a manned vehicle that includes a cab 5 and an operator rides in the cab 5.
  • the wheel loader 1 may be an unmanned vehicle.
  • the wheel loader 1 does not need to include a cab 5 for an operator to board and operate.
  • the wheel loader 1 does not need to be equipped with a control function by an operator on board.
  • the wheel loader 1 may be a working machine exclusively for remote control.
  • the wheel loader 1 may be controlled by radio signals from a remote control device.
  • the controller sets the upper end of the side surface of the loading target recognized by the object sensor as a reference point, and when the horizontal distance between the reference point and the feature point becomes equal to or less than a predetermined value, tilts the bucket.
  • the working machine according to supplementary note 1, wherein the working machine starts driving the working machine actuator to operate the working machine.
  • the work machine has a boom connected to the main body, The working machine according to any one of Supplementary notes 1 to 3, wherein the controller causes the traveling body to travel backward while maintaining the full dump state while maintaining the attitude of the boom with respect to the main body.
  • the work machine has a boom connected to the main body, The working machine according to any one of appendix 2, appendix 3, or appendix 4 citing appendix 2, wherein the controller operates the bucket in the tilt direction while maintaining the attitude of the boom with respect to the main body. .
  • the work machine has a boom connected to the main body, The controller starts driving the work equipment actuator that lowers the boom when the characteristic point exceeds the reference point. or the working machine described in one of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

Provided is a work machine that can reliably discharge a load loaded into a bucket. A travel sensor detects a forward-traveling state of a traveling body. A work machine posture sensor detects the posture of the work machine. An object sensor detects an object located around the work machine body. A controller commands the driving of a work machine actuator on the basis of the detection values of the travel sensor, the work machine posture sensor, and the object sensor. On the basis of the object detection, the controller recognizes a loading target into which a load in the bucket is to be loaded. The controller controls the work machine actuator and the traveling body such that: the bucket is placed in a full-dump state when a feature point of the bucket is located above a loading target; and the traveling body is caused to travel backward while maintaining the full-dump state.

Description

作業機械、作業機械を含むシステム、および作業機械の制御方法Work machines, systems including work machines, and control methods for work machines
 本開示は、作業機械、作業機械を含むシステム、および作業機械の制御方法に関する。 The present disclosure relates to a work machine, a system including the work machine, and a method of controlling the work machine.
 国際公開第2016/152994号(特許文献1)には、ホイールローダが、バケットに荷が積まれていない状態で後進する空荷後進状態である場合に、ホイールローダの移動距離に応じて求められた目標位置にブームおよびバケットを移動させる制御が開示されている。 International Publication No. 2016/152994 (Patent Document 1) discloses that when the wheel loader is in an unloaded backward state where the bucket is not loaded and the wheel loader is in an unloaded reverse state, the distance is calculated according to the travel distance of the wheel loader. A control for moving a boom and bucket to a target position is disclosed.
国際公開第2016/152994号International Publication No. 2016/152994
 掘削作業と積込作業とを繰り返し行うホイールローダでは、積込作業時に、バケットに積まれた荷を確実にバケットから排出することが求められている。 A wheel loader that repeatedly performs excavation work and loading work is required to reliably discharge the load loaded into the bucket from the bucket during the loading work.
 本開示では、積込作業時にバケットに積まれた荷を確実に排出できる、作業機械、作業機械を含むシステム、および作業機械の制御方法が提案される。 The present disclosure proposes a working machine, a system including the working machine, and a method for controlling the working machine, which can reliably discharge loads loaded into a bucket during loading work.
 本開示のある局面に係る作業機械および作業機械を含むシステムの各々は、作業機械の本体と、作業機と、作業機アクチュエータと、走行センサと、作業機姿勢センサと、物体センサと、コントローラと、を備えている。作業機械の本体は、走行体を有している。作業機は、作業機械の本体の前方に取り付けられている。作業機は、先端にバケットを有している。作業機アクチュエータは、作業機械の本体に対し作業機を駆動する。走行センサは、走行体の進行状態を検出する。作業機姿勢センサは、作業機の姿勢を検出する。物体センサは、作業機械の本体の周辺の物体を検出する。コントローラは、走行センサ、作業機姿勢センサおよび物体センサの検出値に基づき、作業機アクチュエータの駆動を指令する。コントローラは、物体の検出に基づきバケット内の荷を積み込むための積込目標を認識する。コントローラは、バケットの特徴点が積込目標の上方に位置するときにバケットをフルダンプ状態にし、フルダンプ状態を維持したまま走行体を後進走行させるように、作業機アクチュエータと走行体とを制御する。 Each of a work machine and a system including a work machine according to an aspect of the present disclosure includes a main body of the work machine, a work machine, a work machine actuator, a traveling sensor, a work machine attitude sensor, an object sensor, and a controller. , is equipped with. The main body of the working machine has a running body. The work machine is attached to the front of the main body of the work machine. The work machine has a bucket at the tip. The work implement actuator drives the work implement relative to the main body of the work machine. The traveling sensor detects the traveling state of the traveling object. The work machine attitude sensor detects the attitude of the work machine. The object sensor detects objects around the main body of the work machine. The controller instructs the drive of the work implement actuator based on the detected values of the travel sensor, the work implement attitude sensor, and the object sensor. The controller recognizes a loading target for loading the load in the bucket based on the detection of the object. The controller controls the work implement actuator and the traveling body so that the bucket is placed in a full dump state when the feature point of the bucket is located above the loading target, and the traveling body is caused to travel backward while maintaining the full dump state.
 本開示のある局面に係る作業機械の制御方法は、物体の検出信号よりバケット内の荷を積み込むための積込目標を認識することと、バケットの特徴点を積込目標の上方に移動させることと、特徴点が積込目標の上方に位置する状態でバケットをフルダンプ状態にすることと、フルダンプ状態を維持したまま走行体を後進走行させることと、を備えている。 A method for controlling a work machine according to an aspect of the present disclosure includes recognizing a loading target for loading a load in a bucket from an object detection signal, and moving a feature point of the bucket above the loading target. The bucket is brought into a full dump state in a state where the feature point is located above the loading target, and the traveling body is made to travel backward while maintaining the full dump state.
 本開示の作業機械、作業機械を含むシステム、および作業機械の制御方法によると、積込作業時に、バケットに積まれた荷を確実に排出することができる。 According to the work machine, the system including the work machine, and the control method for the work machine of the present disclosure, the load loaded in the bucket can be reliably discharged during loading work.
作業機械の一例としてのホイールローダの側面図である。FIG. 1 is a side view of a wheel loader as an example of a working machine. ホイールローダの制御システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a control system for a wheel loader. 掘削積込作業を行うホイールローダの平面図である。FIG. 2 is a plan view of a wheel loader that performs excavation and loading work. ホイールローダの自動制御システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an automatic control system for a wheel loader. 自動制御によりバケットに積載した荷を積込目標に積み込む動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the operation|movement which loads the load loaded into the bucket to the loading target by automatic control. ダンプアプローチ開始時のベッセルとホイールローダとの配置を模式的に示す図である。FIG. 3 is a diagram schematically showing the arrangement of a vessel and a wheel loader at the start of a dump approach. バケットのダンプ動作を停止するときのホイールローダの姿勢を模式的に示す図である。FIG. 3 is a diagram schematically showing the attitude of the wheel loader when stopping the dumping operation of the bucket. ブームの上げ動作を停止するときのホイールローダの姿勢を模式的に示す図である。It is a figure which shows typically the attitude|position of a wheel loader when stopping the raising operation|movement of a boom. バケットのチルト動作を開始するときのホイールローダの姿勢を模式的に示す図である。FIG. 3 is a diagram schematically showing the attitude of the wheel loader when starting a bucket tilting operation. バケットのチルト動作を停止するときのホイールローダの姿勢を模式的に示す図である。It is a figure which shows typically the attitude|position of a wheel loader when stopping the tilting operation of a bucket. ダンプトラックから離れたホイールローダを模式的に示す図である。FIG. 2 is a diagram schematically showing a wheel loader separated from a dump truck. 積込作業中のシリンダ長さの変化を示すグラフである。It is a graph showing changes in cylinder length during loading work.
 以下、実施形態について図に基づいて説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。実施形態から任意の構成が抽出され、それらが任意に組み合わされることも、当初から予定されている。 Hereinafter, embodiments will be described based on the drawings. In the following description, the same parts and components are given the same reference numerals. Their names and functions are also the same. Therefore, detailed explanations thereof will not be repeated. It is also planned from the beginning that arbitrary configurations will be extracted from the embodiments and that they will be combined arbitrarily.
 <ホイールローダ1の全体構成>
 実施形態においては、作業機械の一例としてホイールローダ1について説明する。図1は、作業機械の一例としてのホイールローダ1の側面図である。
<Overall configuration of wheel loader 1>
In the embodiment, a wheel loader 1 will be described as an example of a working machine. FIG. 1 is a side view of a wheel loader 1 as an example of a working machine.
 図1に示されるように、ホイールローダ1は、車体フレーム2と、作業機3と、走行装置4と、キャブ5とを備えている。車体フレーム2、キャブ5などからホイールローダ1の車体が構成されている。ホイールローダ1の車体には、作業機3および走行装置4が取り付けられている。ホイールローダ1の本体は、車体と、走行装置4とを有している。 As shown in FIG. 1, the wheel loader 1 includes a vehicle body frame 2, a working machine 3, a traveling device 4, and a cab 5. The vehicle body of the wheel loader 1 is composed of a vehicle body frame 2, a cab 5, and the like. A working machine 3 and a traveling device 4 are attached to the vehicle body of the wheel loader 1. The main body of the wheel loader 1 includes a vehicle body and a traveling device 4.
 走行装置4は、ホイールローダ1の車体を走行させるものであり、走行輪4a,4bを含んでいる。ホイールローダ1は、車体の左右方向の両側に走行用回転体として走行輪4a,4bを備える装輪車両である。ホイールローダ1は、走行輪4a,4bが回転駆動されることにより自走可能であり、作業機3を用いて所望の作業を行うことができる。走行装置4は、「走行体」の一例に対応する。 The traveling device 4 causes the vehicle body of the wheel loader 1 to travel, and includes running wheels 4a and 4b. The wheel loader 1 is a wheeled vehicle that includes running wheels 4a and 4b as rotating bodies for running on both sides of the vehicle body in the left-right direction. The wheel loader 1 is self-propelled by rotationally driving running wheels 4a and 4b, and can perform desired work using the working machine 3. The traveling device 4 corresponds to an example of a "traveling body."
 本明細書中において、ホイールローダ1が直進走行する方向を、ホイールローダ1の前後方向という。ホイールローダ1の前後方向において、車体フレーム2に対して作業機3が配置されている側を前方向とし、前方向と反対側を後方向とする。ホイールローダ1の左右方向とは、平坦な地面上にあるホイールローダ1を平面視したときに前後方向と直交する方向である。前方向を見て左右方向の右側、左側が、それぞれ右方向、左方向である。ホイールローダ1の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向である。上下方向において地面のある側が下側、空のある側が上側である。 In this specification, the direction in which the wheel loader 1 travels straight is referred to as the front-rear direction of the wheel loader 1. In the front-rear direction of the wheel loader 1, the side on which the working machine 3 is arranged with respect to the vehicle body frame 2 is defined as the front direction, and the side opposite to the front direction is defined as the rear direction. The left-right direction of the wheel loader 1 is a direction perpendicular to the front-rear direction when the wheel loader 1 on a flat ground is viewed from above. Looking forward, the right and left sides in the left and right direction are the right direction and left direction, respectively. The vertical direction of the wheel loader 1 is a direction perpendicular to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the bottom, and the side with the sky is the top.
 車体フレーム2は、前フレーム2aと後フレーム2bとを含んでいる。前フレーム2aは、後フレーム2bの前方に配置されている。前フレーム2aと後フレーム2bとは、互いに左右方向に揺動可能に取り付けられている。 The vehicle body frame 2 includes a front frame 2a and a rear frame 2b. The front frame 2a is arranged in front of the rear frame 2b. The front frame 2a and the rear frame 2b are attached to each other so as to be swingable in the left-right direction.
 前フレーム2aと後フレーム2bとに亘って、一対のステアリングシリンダ11が取り付けられている。ステアリングシリンダ11は、油圧シリンダである。ステアリングシリンダ11がステアリングポンプからの作動油によって伸縮することによって、ホイールローダ1の進行方向が左右に変更される。前フレーム2aと後フレーム2bとにより、アーティキュレート構造の車体フレーム2が構成されている。ホイールローダ1は、前フレーム2aと後フレーム2bとが屈曲動作可能に連結されたアーティキュレート式の作業機械である。 A pair of steering cylinders 11 are attached across the front frame 2a and the rear frame 2b. Steering cylinder 11 is a hydraulic cylinder. As the steering cylinder 11 expands and contracts with the hydraulic oil from the steering pump, the direction of movement of the wheel loader 1 is changed from side to side. The front frame 2a and the rear frame 2b constitute a vehicle body frame 2 having an articulated structure. The wheel loader 1 is an articulated working machine in which a front frame 2a and a rear frame 2b are connected for bending movement.
 前フレーム2aには、作業機3および一対の走行輪(前輪)4aが取り付けられている。作業機3は、ホイールローダ1の本体の前方に取り付けられている。作業機3は、ホイールローダ1の車体によって支持されている。作業機3は、ブーム14と、バケット6とを含んでいる。バケット6は、作業機3の先端に配置されている。バケット6は、掘削・積込用の作業具である。刃先6aは、バケット6の先端部である。背面6bは、バケット6の外面の一部である。背面6bは、平面で形成されている。背面6bは、刃先6aから後方に延びている。 A working machine 3 and a pair of running wheels (front wheels) 4a are attached to the front frame 2a. The work machine 3 is attached to the front of the main body of the wheel loader 1. The work machine 3 is supported by the vehicle body of the wheel loader 1. The work machine 3 includes a boom 14 and a bucket 6. The bucket 6 is arranged at the tip of the working machine 3. The bucket 6 is a working tool for digging and loading. The cutting edge 6a is the tip of the bucket 6. The back surface 6b is part of the outer surface of the bucket 6. The back surface 6b is formed of a flat surface. The back surface 6b extends rearward from the cutting edge 6a.
 ブーム14の基端部は、ブームピン9によって前フレーム2aに回転自在に取付けられている。バケット6は、ブーム14の先端に位置するバケットピン17によって、回転自在にブーム14に取付けられている。ブームピン9およびバケットピン17は、作業機3の「複数の関節」に対応する。 The base end of the boom 14 is rotatably attached to the front frame 2a by a boom pin 9. The bucket 6 is rotatably attached to the boom 14 by a bucket pin 17 located at the tip of the boom 14. The boom pin 9 and the bucket pin 17 correspond to "a plurality of joints" of the working machine 3.
 作業機3は、ベルクランク18と、リンク15とをさらに含んでいる。ベルクランク18は、ブーム14のほぼ中央に位置する支持ピン18aによって、ブーム14に回転自在に支持されている。リンク15は、ベルクランク18の先端部に設けられた連結ピン18cに連結されている。リンク15は、ベルクランク18とバケット6とを連結している。 The work machine 3 further includes a bell crank 18 and a link 15. The bell crank 18 is rotatably supported by the boom 14 by a support pin 18a located approximately at the center of the boom 14. The link 15 is connected to a connecting pin 18c provided at the tip of the bell crank 18. Link 15 connects bell crank 18 and bucket 6.
 前フレーム2aとブーム14とは、一対のブームシリンダ16により連結されている。ブームシリンダ16は、油圧シリンダである。ブームシリンダ16は、ブーム14を、ブームピン9を中心として上下に回転駆動する。ブームシリンダ16の基端は、前フレーム2aに取り付けられている。ブームシリンダ16の先端は、ブーム14に取り付けられている。ブームシリンダ16は、ブーム14を前フレーム2aに対し上下に動作させる油圧アクチュエータである。ブーム14の昇降に伴って、ブーム14の先端に取り付けられたバケット6も昇降する。 The front frame 2a and the boom 14 are connected by a pair of boom cylinders 16. Boom cylinder 16 is a hydraulic cylinder. The boom cylinder 16 rotates the boom 14 up and down about the boom pin 9 . A base end of the boom cylinder 16 is attached to the front frame 2a. The tip of the boom cylinder 16 is attached to the boom 14. The boom cylinder 16 is a hydraulic actuator that moves the boom 14 up and down with respect to the front frame 2a. As the boom 14 moves up and down, the bucket 6 attached to the tip of the boom 14 also moves up and down.
 バケットシリンダ19は、ベルクランク18と前フレーム2aとを連結している。バケットシリンダ19の基端は、前フレーム2aに取り付けられている。バケットシリンダ19の先端は、ベルクランク18の基端部に設けられた連結ピン18bに取り付けられている。バケットシリンダ19は、バケット6をブーム14に対し上下に回動させる油圧アクチュエータである。バケットシリンダ19は、バケット6を駆動する作業具シリンダである。バケットシリンダ19は、バケット6を、バケットピン17を中心として回転駆動する。バケット6は、ブーム14に対し動作可能に構成されている。バケット6は、前フレーム2aに対し動作可能に構成されている。 The bucket cylinder 19 connects the bell crank 18 and the front frame 2a. The base end of the bucket cylinder 19 is attached to the front frame 2a. The tip of the bucket cylinder 19 is attached to a connecting pin 18b provided at the base end of the bell crank 18. The bucket cylinder 19 is a hydraulic actuator that rotates the bucket 6 up and down with respect to the boom 14. Bucket cylinder 19 is a work tool cylinder that drives bucket 6 . Bucket cylinder 19 rotates bucket 6 around bucket pin 17 . Bucket 6 is configured to be movable relative to boom 14 . The bucket 6 is configured to be movable relative to the front frame 2a.
 ブームシリンダ16と、バケットシリンダ19とは、作業機3を駆動する「作業機アクチュエータ」の一例に対応する。 The boom cylinder 16 and the bucket cylinder 19 correspond to an example of a "work machine actuator" that drives the work machine 3.
 後フレーム2bには、オペレータが搭乗するキャブ5、および一対の走行輪(後輪)4bが取り付けられている。箱状のキャブ5は、ブーム14の後方に配置されている。キャブ5は、車体フレーム2上に載置されている。キャブ5内には、ホイールローダ1のオペレータが着座するシート、および後述する操作装置8などが配置されている。 A cab 5 on which an operator rides and a pair of running wheels (rear wheels) 4b are attached to the rear frame 2b. A box-shaped cab 5 is arranged behind the boom 14. The cab 5 is placed on the vehicle body frame 2. Inside the cab 5, a seat on which an operator of the wheel loader 1 sits, an operating device 8, which will be described later, and the like are arranged.
 <システム構成>
 図2は、ホイールローダ1を制御する制御システムの概略構成を示すブロック図である。
<System configuration>
FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the wheel loader 1. As shown in FIG.
 エンジン21は、作業機3および走行装置4を駆動するための駆動力を発生する駆動源であり、たとえばディーゼルエンジンである。駆動源として、エンジン21に代えて、蓄電体により駆動するモータが用いられてもよく、またエンジンとモータとの双方が用いられてもよい。エンジン21の出力は、エンジン21のシリンダ内に噴射する燃料量を調整することにより制御される。 The engine 21 is a drive source that generates driving force for driving the working machine 3 and the traveling device 4, and is, for example, a diesel engine. As the drive source, a motor driven by an electrical storage body may be used instead of the engine 21, or both the engine and the motor may be used. The output of the engine 21 is controlled by adjusting the amount of fuel injected into the cylinders of the engine 21.
 エンジン21の発生する駆動力は、トランスミッション23へ伝達される。トランスミッション23は、駆動力を適切なトルクおよび回転速度に変速する。トランスミッション23の出力軸に、アクスル25が接続されている。トランスミッション23で変速された駆動力は、アクスル25に伝達される。アクスル25から走行輪4a,4b(図1)に、駆動力が伝達される。これにより、ホイールローダ1が走行する。実施形態のホイールローダ1においては、走行輪4aと走行輪4bとの両方が、駆動力を受けてホイールローダ1を走行させる駆動輪を構成している。 The driving force generated by the engine 21 is transmitted to the transmission 23. The transmission 23 changes the driving force to appropriate torque and rotational speed. An axle 25 is connected to the output shaft of the transmission 23. The driving force shifted by the transmission 23 is transmitted to the axle 25. Driving force is transmitted from the axle 25 to the running wheels 4a, 4b (FIG. 1). Thereby, the wheel loader 1 travels. In the wheel loader 1 of the embodiment, both the running wheels 4a and 4b constitute driving wheels that receive driving force and cause the wheel loader 1 to travel.
 エンジン21の駆動力の一部は、作業機ポンプ13に伝達される。作業機ポンプ13は、エンジン21により駆動され、吐出する作動油によって作業機3を作動させる油圧ポンプである。作業機3は、作業機ポンプ13からの作動油によって駆動される。作業機ポンプ13から吐出された作動油は、メインバルブ32を介して、ブームシリンダ16およびバケットシリンダ19に供給される。ブームシリンダ16が作動油の供給を受けて伸縮することによって、ブーム14が昇降する。バケットシリンダ19が作動油の供給を受けて伸縮することによって、バケット6が上下に回動する。 A part of the driving force of the engine 21 is transmitted to the work equipment pump 13. The work machine pump 13 is a hydraulic pump that is driven by the engine 21 and operates the work machine 3 with the hydraulic fluid it discharges. The work machine 3 is driven by hydraulic oil from a work machine pump 13. Hydraulic oil discharged from the work equipment pump 13 is supplied to the boom cylinder 16 and the bucket cylinder 19 via the main valve 32. The boom 14 moves up and down as the boom cylinder 16 expands and contracts in response to the supply of hydraulic oil. When the bucket cylinder 19 is supplied with hydraulic oil and expands and contracts, the bucket 6 rotates up and down.
 ホイールローダ1は、車体コントローラ50を備えている。車体コントローラ50は、エンジンコントローラ60と、トランスミッションコントローラ70と、作業機コントローラ80とを含んでいる。 The wheel loader 1 includes a vehicle body controller 50. Vehicle controller 50 includes an engine controller 60, a transmission controller 70, and a work equipment controller 80.
 車体コントローラ50は、一般的にCPU(Central Processing Unit)により各種のプログラムを読み込むことにより実現される。車体コントローラ50は、図示しないメモリを有している。メモリは、ワークメモリとして機能するとともに、ホイールローダ1の機能を実現するための各種のプログラムを格納する。 The vehicle body controller 50 is generally realized by reading various programs using a CPU (Central Processing Unit). The vehicle body controller 50 has a memory (not shown). The memory functions as a work memory and stores various programs for realizing the functions of the wheel loader 1.
 操作装置8は、キャブ5に設けられている。操作装置8は、オペレータによって操作される。操作装置8は、オペレータがホイールローダ1を動作させるために操作する、複数種類の操作部材を備えている。操作装置8は、アクセルペダル41と、作業機操作レバー42とを含んでいる。操作装置8は、図示しないステアリングハンドル、シフトレバーなどを含んでいてもよい。 The operating device 8 is provided in the cab 5. The operating device 8 is operated by an operator. The operating device 8 includes a plurality of types of operating members that are operated by an operator to operate the wheel loader 1. The operating device 8 includes an accelerator pedal 41 and a work implement operating lever 42. The operating device 8 may include a steering handle, a shift lever, etc. (not shown).
 アクセルペダル41は、エンジン21の目標回転数を設定するために操作される。エンジンコントローラ60は、アクセルペダル41の操作量に基づいて、エンジン21の出力を制御する。アクセルペダル41の操作量(踏み込み量)を増大すると、エンジン21の出力が増大する。アクセルペダル41の操作量を減少すると、エンジン21の出力が減少する。トランスミッションコントローラ70は、アクセルペダル41の操作量に基づいて、トランスミッション23を制御する。 The accelerator pedal 41 is operated to set the target rotation speed of the engine 21. Engine controller 60 controls the output of engine 21 based on the amount of operation of accelerator pedal 41 . When the operation amount (depression amount) of the accelerator pedal 41 is increased, the output of the engine 21 is increased. When the amount of operation of the accelerator pedal 41 is decreased, the output of the engine 21 is decreased. Transmission controller 70 controls transmission 23 based on the amount of operation of accelerator pedal 41 .
 作業機操作レバー42は、作業機3を動作させるために操作される。作業機コントローラ80は、作業機操作レバー42の操作量に基づいて、電磁比例制御弁35,36を制御する。 The work equipment operating lever 42 is operated to operate the work equipment 3. The work machine controller 80 controls the electromagnetic proportional control valves 35 and 36 based on the amount of operation of the work machine operating lever 42.
 電磁比例制御弁35は、バケットシリンダ19を縮めて、バケット6がダンプ方向(バケット6の刃先が下がる方向)に移動するように、メインバルブ32を切り換える。また電磁比例制御弁35は、バケットシリンダ19を伸ばして、バケット6がチルト方向(バケット6の刃先が上がる方向)に移動するように、メインバルブ32を切り換える。電磁比例制御弁36は、ブームシリンダ16を縮めて、ブーム14が下がるようにメインバルブ32を切り換える。また電磁比例制御弁36は、ブームシリンダ16を伸ばして、ブーム14が上がるようにメインバルブ32を切り換える。 The electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is retracted and the bucket 6 moves in the dumping direction (the direction in which the cutting edge of the bucket 6 is lowered). Further, the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is extended and the bucket 6 is moved in the tilt direction (the direction in which the cutting edge of the bucket 6 is raised). The electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is retracted and the boom 14 is lowered. Further, the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is extended and the boom 14 is raised.
 機械モニタ51は、車体コントローラ50から指令信号の入力を受けて、各種情報を表示する。機械モニタ51に表示される各種情報は、たとえば、ホイールローダ1により実行される作業に関する情報、燃料残量、冷却水温度および作動油温度などの車体情報、ホイールローダ1の周辺を撮像した周辺画像などであってもよい。機械モニタ51はタッチパネルであってもよく、この場合、オペレータが機械モニタ51の一部に触れることにより生成される信号が、機械モニタ51から車体コントローラ50に出力される。 The machine monitor 51 receives command signals from the vehicle controller 50 and displays various information. The various information displayed on the machine monitor 51 includes, for example, information regarding the work performed by the wheel loader 1, vehicle body information such as remaining fuel level, cooling water temperature, and hydraulic oil temperature, and surrounding images of the surroundings of the wheel loader 1. etc. The machine monitor 51 may be a touch panel, and in this case, a signal generated when the operator touches a part of the machine monitor 51 is output from the machine monitor 51 to the vehicle controller 50.
 <掘削積込作業>
 本実施形態のホイールローダ1は、土砂などの掘削対象物を掬い取り、ダンプトラックなどの積込対象に掘削対象物を積み込む、掘削積込作業を実行する。図3は、掘削積込作業を行うホイールローダ1の平面図である。図3には、いわゆるVシェープ作業を行うホイールローダ1が図示されている。
<Excavation and loading work>
The wheel loader 1 of this embodiment performs an excavation and loading operation in which an excavated object such as earth and sand is scooped up and the excavated object is loaded onto a loading object such as a dump truck. FIG. 3 is a plan view of the wheel loader 1 that performs excavation and loading work. FIG. 3 shows a wheel loader 1 that performs a so-called V-shape operation.
 図3(A)には、いわゆる空荷前進をするホイールローダ1が図示されている。ホイールローダ1は、土砂などの掘削対象物310へ向かって、掘削経路R1に沿って前進走行する。ホイールローダ1がバケット6を掘削対象物310へ突っ込み、前進走行を停止する。バケット6の刃先6aを掘削対象物310に食い込ませた状態でバケット6を上昇させることにより、バケット6に掘削対象物310を掬い取る掘削作業が実行される。 FIG. 3(A) shows a wheel loader 1 that moves forward with a so-called empty load. The wheel loader 1 travels forward along an excavation route R1 toward an excavation target 310 such as earth and sand. The wheel loader 1 thrusts the bucket 6 into the excavated object 310 and stops moving forward. By raising the bucket 6 with the cutting edge 6a of the bucket 6 biting into the excavated object 310, an excavation operation in which the excavated object 310 is scooped into the bucket 6 is executed.
 図3(B)には、いわゆる積荷後進をするホイールローダ1が図示されている。バケット6内には、掘削対象物310が積み込まれている。ホイールローダ1は、図3(A)で前進走行を開始した位置まで、掘削経路R1に沿って後進走行する。 FIG. 3(B) shows a wheel loader 1 that performs so-called backward movement with a loaded load. An excavated object 310 is loaded into the bucket 6 . The wheel loader 1 travels backward along the excavation route R1 to the position where forward travel is started in FIG. 3(A).
 図3(C)には、いわゆる積荷前進をするホイールローダ1が図示されている。バケット6内に掘削対象物310が積み込まれた状態で、ホイールローダ1は、ダンプトラック300のベッセル301へ向かって前進走行する。ホイールローダ1は、図3(A)で前進走行を開始した位置から、ダンプトラック300へ向かって、積込経路R2に沿って前進走行する。ダンプトラック300に接近して所定位置に到達すると、ホイールローダ1は、バケット6内の掘削対象物310をベッセル301内に積み込む。ベッセル301は、バケット6内の荷を積み込むための「積込目標」の一例に対応する。 FIG. 3(C) shows a wheel loader 1 that advances a load. With the excavated object 310 loaded in the bucket 6, the wheel loader 1 moves forward toward the vessel 301 of the dump truck 300. The wheel loader 1 moves forward from the position where it starts moving forward in FIG. 3(A) toward the dump truck 300 along the loading route R2. When approaching the dump truck 300 and reaching a predetermined position, the wheel loader 1 loads the excavated object 310 in the bucket 6 into the vessel 301. The vessel 301 corresponds to an example of a "loading target" for loading the cargo in the bucket 6.
 図3(D)には、いわゆる空荷後進をするホイールローダ1が図示されている。バケット6内の掘削対象物310をダンプトラック300のベッセル301に全て排出してバケット6内が空の状態で、ホイールローダ1は、図3(C)で前進走行を開始した位置まで、積込経路R2に沿って後進走行する。 FIG. 3(D) shows a wheel loader 1 that moves backward with no load. When the excavated object 310 in the bucket 6 is completely discharged into the vessel 301 of the dump truck 300 and the bucket 6 is empty, the wheel loader 1 loads the object to the position where it starts moving forward in FIG. 3(C). Travel backwards along route R2.
 このように、ホイールローダ1は、掘削、後退、ダンプアプローチ、排土、後退という一連の作業を繰り返し行うことができる。 In this way, the wheel loader 1 can repeatedly perform a series of operations such as excavation, retreat, dump approach, earth removal, and retreat.
 <ホイールローダ1の自動制御システム>
 ホイールローダ1によるダンプトラック300への積込作業を自動化するにあたり、バケット6をベッセル301に接触させることなく、作業量を確保しつつ、より素早く積込作業を行うために、熟練オペレータの作業機3の操作を自動制御によって再現することが望まれている。図4は、ホイールローダ1の自動制御システムの構成を示すブロック図である。
<Automatic control system of wheel loader 1>
When automating the loading work into the dump truck 300 by the wheel loader 1, in order to ensure the amount of work without bringing the bucket 6 into contact with the vessel 301, and to perform the loading work more quickly, it is necessary to use a work machine for a skilled operator. It is desired to reproduce the operation in step 3 through automatic control. FIG. 4 is a block diagram showing the configuration of the automatic control system of the wheel loader 1.
 自動化コントローラ100は、図2を参照して説明した車体コントローラ50との間で信号の送受信が可能に構成されている。自動化コントローラ100はまた、外界情報取得部110との間で信号の送受信が可能に構成されている。外界情報取得部110は、知覚装置111と、位置情報取得装置112とを有している。知覚装置111と位置情報取得装置112とは、ホイールローダ1に搭載されている。 The automation controller 100 is configured to be able to send and receive signals to and from the vehicle body controller 50 described with reference to FIG. The automation controller 100 is also configured to be able to send and receive signals to and from the external world information acquisition section 110. The external world information acquisition unit 110 includes a perception device 111 and a position information acquisition device 112. The perception device 111 and the position information acquisition device 112 are mounted on the wheel loader 1.
 知覚装置111は、ホイールローダ1の周囲の情報を取得する。知覚装置111は、たとえばキャブ5の上部前面に取り付けられている。知覚装置111は、ホイールローダ1の本体の周辺の物体を検出する「物体センサ」の一例に対応する。 The perception device 111 acquires information around the wheel loader 1. The sensing device 111 is attached to the upper front surface of the cab 5, for example. The sensing device 111 corresponds to an example of an "object sensor" that detects objects around the main body of the wheel loader 1.
 知覚装置111は、ホイールローダ1の外部の対象物の方向および対象物までの距離を、非接触で検出する。知覚装置111はたとえば、レーザ光を射出して対象物の情報を取得するLiDAR(Light Detection and Ranging)である。知覚装置111は、カメラを含む視覚センサであってもよい。知覚装置111は、電波を射出することにより対象物の情報を取得するRadar(Radio Detection and Ranging)であってもよい。知覚装置111は、赤外線センサであってもよい。 The sensing device 111 detects the direction of an object outside the wheel loader 1 and the distance to the object in a non-contact manner. The perception device 111 is, for example, a LiDAR (Light Detection and Ranging) that emits a laser beam to obtain information about an object. Perceptual device 111 may be a visual sensor including a camera. The perception device 111 may be a Radar (Radio Detection and Ranging) that acquires information about an object by emitting radio waves. The sensing device 111 may be an infrared sensor.
 位置情報取得装置112は、ホイールローダ1の現在位置の情報を取得する。位置情報取得装置112はたとえば、衛星測位システムを利用して、地球を基準としたグローバル座標系におけるホイールローダ1の位置情報を取得する。位置情報取得装置112はたとえば、GNSS(Global Navigation Satellite Systems:全地球航法衛星システム)を用いるものであり、GNSSレシーバを有している。衛星測位システムは、GNSSレシーバが衛星から受信した測位信号により、GNSSレシーバのアンテナの位置を演算して、ホイールローダ1の位置を算出する。 The position information acquisition device 112 acquires information on the current position of the wheel loader 1. The position information acquisition device 112 uses, for example, a satellite positioning system to acquire position information of the wheel loader 1 in a global coordinate system based on the earth. The position information acquisition device 112 uses, for example, GNSS (Global Navigation Satellite Systems) and has a GNSS receiver. The satellite positioning system calculates the position of the wheel loader 1 by calculating the position of the antenna of the GNSS receiver based on the positioning signal that the GNSS receiver receives from the satellite.
 知覚装置111によるホイールローダ1の外界情報、および、位置情報取得装置112によるホイールローダ1の位置情報は、自動化コントローラ100に入力される。 The external world information of the wheel loader 1 obtained by the sensing device 111 and the position information of the wheel loader 1 obtained by the position information acquisition device 112 are input to the automation controller 100.
 車体コントローラ50は、車両情報取得部120との間で信号の送受信が可能に構成されており、車両情報取得部120が取得するホイールローダ1の情報の入力を受ける。車両情報取得部120は、ホイールローダ1に搭載されている各種のセンサにより構成されている。車両情報取得部120は、アーティキュレート角度センサ121、車両速度センサ122、ブーム角度センサ123、バケット角度センサ124、およびブームシリンダ圧力センサ125を有している。 The vehicle body controller 50 is configured to be able to send and receive signals to and from the vehicle information acquisition section 120, and receives input of information about the wheel loader 1 that the vehicle information acquisition section 120 acquires. The vehicle information acquisition unit 120 is composed of various sensors mounted on the wheel loader 1. The vehicle information acquisition unit 120 includes an articulate angle sensor 121, a vehicle speed sensor 122, a boom angle sensor 123, a bucket angle sensor 124, and a boom cylinder pressure sensor 125.
 アーティキュレート角度センサ121は、前フレーム2aと後フレーム2bとのなす角度であるアーティキュレート角度を検出し、検出したアーティキュレート角度の信号を発生する。アーティキュレート角度センサ121は、アーティキュレート角度の信号を車体コントローラ50に出力する。 The articulate angle sensor 121 detects an articulate angle, which is the angle formed by the front frame 2a and the rear frame 2b, and generates a signal of the detected articulate angle. The articulate angle sensor 121 outputs an articulate angle signal to the vehicle body controller 50.
 車両速度センサ122は、たとえば、トランスミッション23の出力軸の回転速度を検出することにより、走行装置4によるホイールローダ1の移動速度を検出し、検出した車速の信号を発生する。車両速度センサ122は、車速の信号を車体コントローラ50に出力する。車両速度センサ122は、走行装置4(走行体)の進行状況を検出する「走行センサ」の一例に対応する。 The vehicle speed sensor 122 detects the moving speed of the wheel loader 1 by the traveling device 4 by detecting, for example, the rotational speed of the output shaft of the transmission 23, and generates a signal of the detected vehicle speed. Vehicle speed sensor 122 outputs a vehicle speed signal to vehicle controller 50. The vehicle speed sensor 122 corresponds to an example of a "traveling sensor" that detects the progress of the traveling device 4 (traveling object).
 ブーム角度センサ123は、たとえば、ブーム14の車体フレーム2に対する取付部であるブームピン9に設けられたロータリーエンコーダで構成される。ブーム角度センサ123は、水平方向に対するブーム14の角度を検出し、検出したブーム14の角度の信号を発生する。ブーム角度センサ123は、ブーム14の角度の信号を車体コントローラ50に出力する。 The boom angle sensor 123 is composed of, for example, a rotary encoder provided on the boom pin 9, which is the attachment portion of the boom 14 to the vehicle body frame 2. The boom angle sensor 123 detects the angle of the boom 14 with respect to the horizontal direction and generates a signal of the detected angle of the boom 14. Boom angle sensor 123 outputs a signal indicating the angle of boom 14 to vehicle controller 50 .
 バケット角度センサ124は、たとえば、ベルクランク18の回転軸である支持ピン18aに設けられたロータリーエンコーダで構成される。バケット角度センサ124は、ブーム14に対するバケット6の角度を検出し、検出したバケット6の角度の信号を発生する。バケット角度センサ124は、バケット6の角度の信号を車体コントローラ50に出力する。 The bucket angle sensor 124 is composed of, for example, a rotary encoder provided on the support pin 18a, which is the rotation axis of the bell crank 18. Bucket angle sensor 124 detects the angle of bucket 6 with respect to boom 14 and generates a signal of the detected angle of bucket 6. Bucket angle sensor 124 outputs a signal indicating the angle of bucket 6 to vehicle controller 50 .
 ブーム角度センサ123と、バケット角度センサ124とは、作業機3の姿勢を検出する「作業機姿勢センサ」の一例に対応する。 The boom angle sensor 123 and the bucket angle sensor 124 correspond to an example of a "work machine attitude sensor" that detects the attitude of the work machine 3.
 ブームシリンダ圧力センサ125は、ブームシリンダ16のボトム側の圧力(ブームボトム圧)を検出し、検出したブームボトム圧の信号を発生する。ブームボトム圧は、バケット6に荷が積まれた場合に高くなり、空荷の場合に低くなる。ブームシリンダ圧力センサ125は、ブームボトム圧の信号を車体コントローラ50に出力する。 The boom cylinder pressure sensor 125 detects the pressure on the bottom side of the boom cylinder 16 (boom bottom pressure) and generates a signal of the detected boom bottom pressure. The boom bottom pressure is high when the bucket 6 is loaded and low when it is empty. Boom cylinder pressure sensor 125 outputs a boom bottom pressure signal to vehicle body controller 50.
 車体コントローラ50は、車両情報取得部120から入力された情報を、自動化コントローラ100へ出力する。自動化コントローラ100は、車体コントローラ50を介して、車両速度センサ122、ブーム角度センサ123およびバケット角度センサ124の検出値を入力する。 The vehicle body controller 50 outputs the information input from the vehicle information acquisition unit 120 to the automation controller 100. The automation controller 100 receives detected values from the vehicle speed sensor 122, boom angle sensor 123, and bucket angle sensor 124 via the vehicle body controller 50.
 アクチュエータ140は、車体コントローラ50との間で信号の送受信が可能に構成されている。車体コントローラ50からの指令信号を受けて、アクチュエータ140が駆動する。アクチュエータ140は、走行装置4のブレーキを作動させるためのブレーキEPC(電磁比例制御弁)141と、ホイールローダ1の走行方向を調節するためのステアリングEPC142と、作業機3を動作させるための作業機EPC143と、HMT(Hydraulic Mechanical Transmission)144とを含んでいる。 The actuator 140 is configured to be able to transmit and receive signals to and from the vehicle body controller 50. In response to a command signal from the vehicle body controller 50, the actuator 140 is driven. The actuator 140 includes a brake EPC (electromagnetic proportional control valve) 141 for operating the brake of the traveling device 4, a steering EPC 142 for adjusting the running direction of the wheel loader 1, and a working machine for operating the working machine 3. It includes an EPC 143 and an HMT (Hydraulic Mechanical Transmission) 144.
 図2に示される電磁比例制御弁35,36は、作業機EPC143を構成している。図2に示されるトランスミッション23は、電子制御を活用したHMT144として実現される。トランスミッション23は、HST(Hydro-Static Transmission)であってもよい。エンジン21から走行輪4a,4bへ動力を伝達する動力伝達装置は、ディーゼル・エレクトリック方式などの電気式駆動装置を含んでもよく、HMT、HST、電気式駆動装置のいずれかの組み合わせを含んでもよい。 The electromagnetic proportional control valves 35 and 36 shown in FIG. 2 constitute a working machine EPC 143. The transmission 23 shown in FIG. 2 is realized as an HMT 144 that utilizes electronic control. The transmission 23 may be an HST (Hydro-Static Transmission). The power transmission device that transmits power from the engine 21 to the running wheels 4a, 4b may include an electric drive device such as a diesel electric system, or may include any combination of HMT, HST, and electric drive device. .
 トランスミッションコントローラ70は、ブレーキ制御部71と、アクセル制御部72とを有している。ブレーキ制御部71は、ブレーキEPC141に対して、ブレーキの作動を制御するための指令信号を出力する。アクセル制御部72は、HMT144に対して、車速を制御するための指令信号を出力する。 The transmission controller 70 has a brake control section 71 and an accelerator control section 72. The brake control unit 71 outputs a command signal to the brake EPC 141 to control the operation of the brake. The accelerator control unit 72 outputs a command signal to the HMT 144 to control the vehicle speed.
 作業機コントローラ80は、ステアリング制御部81と、作業機制御部82とを有している。ステアリング制御部81は、ステアリングEPC142に対して、ホイールローダ1の走行方向を制御するための指令信号を出力する。作業機制御部82は、作業機EPC143に対して、作業機3の動作を制御するための指令信号を出力する。 The work machine controller 80 has a steering control section 81 and a work machine control section 82. The steering control unit 81 outputs a command signal for controlling the running direction of the wheel loader 1 to the steering EPC 142. The work machine control unit 82 outputs a command signal for controlling the operation of the work machine 3 to the work machine EPC 143.
 自動化コントローラ100は、位置推定部101と、パスプランニング部102と、経路追従制御部103とを有している。 The automation controller 100 includes a position estimation section 101, a path planning section 102, and a route following control section 103.
 位置推定部101は、位置情報取得装置112が取得した位置情報によって、ホイールローダ1の自己位置を推定する。また位置推定部101は、知覚装置111が取得した外界情報によって、目標位置を認識する。目標位置は、たとえば、図3に示される掘削対象物310またはダンプトラック300の位置である。知覚装置111が目標位置を認識して自動化コントローラ100に入力してもよく、知覚装置111が検出した検出結果に基づいて位置推定部101が目標位置を認識してもよい。 The position estimation unit 101 estimates the self-position of the wheel loader 1 based on the position information acquired by the position information acquisition device 112. Further, the position estimating unit 101 recognizes the target position based on the external world information acquired by the sensing device 111. The target position is, for example, the position of the excavated object 310 or the dump truck 300 shown in FIG. 3 . The sensing device 111 may recognize the target position and input it to the automation controller 100, or the position estimation unit 101 may recognize the target position based on the detection result detected by the sensing device 111.
 パスプランニング部102は、ホイールローダ1の自己位置と目標位置とを結ぶ最適経路を生成する。最適経路は、走行装置4による走行の経路と、作業機3の動作の経路とを含んでいる。 The path planning unit 102 generates an optimal route connecting the self-position of the wheel loader 1 and the target position. The optimal route includes a traveling route by the traveling device 4 and an operation route of the working machine 3.
 経路追従制御部103は、パスプランニング部102が生成した最適経路に追従してホイールローダ1が走行するように、アクセル、ブレーキおよびステアリングを制御する。経路追従制御部103から、ブレーキ制御部71、アクセル制御部72およびステアリング制御部81に、ホイールローダ1を最適経路に沿って走行させるための指令信号が出力される。経路追従制御部103は、パスプランニング部102が生成した最適経路に沿って作業機3が動作するように、ブームシリンダ16およびバケットシリンダ19を制御する。経路追従制御部103から、作業機制御部82に、作業機3を最適経路に沿って移動させるための指令信号が出力される。 The route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the optimal route generated by the path planning unit 102. A command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81. The path following control section 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 operates along the optimal path generated by the path planning section 102. A command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82.
 インターフェース130は、車体コントローラ50との間で信号の送受信が可能に構成されている。インターフェース130は、自動化切替スイッチ131、エンジン緊急停止スイッチ132、およびモードランプ133を有している。 The interface 130 is configured to be able to send and receive signals to and from the vehicle body controller 50. The interface 130 has an automation changeover switch 131, an engine emergency stop switch 132, and a mode lamp 133.
 自動化切替スイッチ131は、オペレータによって操作される。オペレータは、自動化切替スイッチ131を操作することにより、ホイールローダ1をマニュアルで操作するか、ホイールローダ1を自動制御するかを切り替える。エンジン緊急停止スイッチ132は、オペレータによって操作される。エンジン21を緊急停止させることが求められる事象が発生したとき、オペレータは、エンジン緊急停止スイッチ132を操作する。自動化切替スイッチ131およびエンジン緊急停止スイッチ132の操作の信号は、車体コントローラ50に入力される。 The automation changeover switch 131 is operated by an operator. By operating the automation changeover switch 131, the operator switches between manually operating the wheel loader 1 and automatically controlling the wheel loader 1. Engine emergency stop switch 132 is operated by an operator. When an event occurs that requires an emergency stop of the engine 21, the operator operates the engine emergency stop switch 132. Signals for operating the automation changeover switch 131 and the engine emergency stop switch 132 are input to the vehicle body controller 50.
 モードランプ133は、ホイールローダ1が現在、オペレータによるマニュアル操作されるモードであるか、または自動制御されるモードであるか、を表示する。車体コントローラ50からモードランプ133に、ランプの点灯を制御するための指令信号が出力される。 The mode lamp 133 indicates whether the wheel loader 1 is currently in a manual operation mode by an operator or an automatically controlled mode. A command signal for controlling lighting of the lamp is output from the vehicle body controller 50 to the mode lamp 133.
 <自動ダンプ積みフロー>
 図5は、ホイールローダ1を自動制御することによりバケット6に積載した荷を積込目標に積み込む動作の流れを示すフローチャートである。
<Automatic dump loading flow>
FIG. 5 is a flowchart showing the flow of the operation of automatically controlling the wheel loader 1 to load the load loaded into the bucket 6 onto the loading target.
 まず、事前準備として、積込作業を開始する前に、ステップS100において、積込目標であるダンプトラック300のベッセル301の形状を認識する。たとえば、知覚装置111であるLiDARで、ダンプトラック300の形状を取得する。LiDARからダンプトラック300にレーザ光を照射して、ダンプトラック300上の計測点の三次元座標値を示す点群データを取得する。ダンプトラック300を、前方、後方、右方および左方の四方から検知して、点群の情報からベッセル301の形状を認識することができる。認識されたベッセル301の形状が、自動化コントローラ100に入力される。 First, as a preliminary preparation, before starting the loading work, in step S100, the shape of the vessel 301 of the dump truck 300, which is the target of loading, is recognized. For example, the shape of the dump truck 300 is acquired using LiDAR, which is the sensing device 111. LiDAR irradiates the dump truck 300 with laser light to obtain point cloud data indicating three-dimensional coordinate values of measurement points on the dump truck 300. The dump truck 300 can be detected from the front, rear, right, and left sides, and the shape of the vessel 301 can be recognized from the point cloud information. The recognized shape of the vessel 301 is input to the automation controller 100.
 ステップS101において、知覚装置111によって、ダンプトラック300の基準点Pを認識する。知覚装置111であるLiDARで、ダンプトラック300を検知する。自動化コントローラ100は、知覚装置111が検知した点群と、ベッセル301の形状を示すマスター点群とを比較して、ベッセル301の位置を認識する。自動化コントローラ100は、知覚装置111であるLiDARが認識したダンプトラック300のベッセル301の側面上端を、基準点Pとして設定する。 In step S101, the perception device 111 recognizes the reference point P of the dump truck 300. LiDAR, which is the sensing device 111, detects the dump truck 300. The automation controller 100 recognizes the position of the vessel 301 by comparing the point cloud detected by the perception device 111 with a master point cloud indicating the shape of the vessel 301. The automation controller 100 sets the upper end of the side surface of the vessel 301 of the dump truck 300 recognized by LiDAR, which is the sensing device 111, as a reference point P.
 ステップS102において、自動化コントローラ100は、自動制御により移動するバケット6の刃先6aの目標位置c,d,f,gの、基準点Pに対する座標を設定する。バケット6の刃先6aは、作業機3に設定される「特徴点」の一例に対応する。なお特徴点はバケット6の刃先6aに限定されず、作業機3の他の点が特徴点として設定されてもよい。 In step S102, the automation controller 100 sets the coordinates of the target positions c, d, f, and g of the cutting edge 6a of the bucket 6, which is moved under automatic control, with respect to the reference point P. The cutting edge 6a of the bucket 6 corresponds to an example of a "feature point" set on the work machine 3. Note that the feature point is not limited to the cutting edge 6a of the bucket 6, and other points on the work machine 3 may be set as the feature point.
 ここで、基準点Pと目標位置c,d,f,gとについて説明する。図6は、ダンプアプローチ開始時のベッセル301とホイールローダ1との配置を模式的に示す図である。図6および後続の図7~図11では、ダンプトラック300の前後方向から見たベッセル301が模式的に示されており、またダンプトラック300の左側または右側からベッセル301に接近するホイールローダ1の前側の一部が模式的に示されている。 Here, the reference point P and target positions c, d, f, and g will be explained. FIG. 6 is a diagram schematically showing the arrangement of the vessel 301 and the wheel loader 1 at the start of the dump approach. 6 and subsequent FIGS. 7 to 11, the vessel 301 is schematically shown as seen from the front and rear directions of the dump truck 300, and the wheel loader 1 approaching the vessel 301 from the left or right side of the dump truck 300 is shown schematically. A part of the front side is shown schematically.
 目標位置cは、ホイールローダ1がダンプトラック300へ向かって前進走行中に、バケット6の刃先6aが通過する位置として設定される。ホイールローダ1の前進走行中に、バケット6内の荷をベッセル301に積み込むために、バケット6をダンプ方向へ移動させる作業機3の動作が行われる。そのバケット6のダンプ方向への動作を停止する位置が、目標位置cである。バケット6の刃先6aが目標位置cにあるとき、バケット6はフルダンプ状態である。バケット6の刃先6aが目標位置cにあるとき、バケットシリンダ19の長さは最小である。目標位置cは、ベッセル301の上方にある。 The target position c is set as the position through which the cutting edge 6a of the bucket 6 passes while the wheel loader 1 is traveling forward toward the dump truck 300. While the wheel loader 1 is traveling forward, the working machine 3 moves the bucket 6 in the dumping direction in order to load the load in the bucket 6 into the vessel 301. The position where the movement of the bucket 6 in the dumping direction is stopped is the target position c. When the cutting edge 6a of the bucket 6 is at the target position c, the bucket 6 is in a full dump state. When the cutting edge 6a of the bucket 6 is at the target position c, the length of the bucket cylinder 19 is the minimum. The target position c is above the vessel 301.
 目標位置dは、目標位置cを通過した後にバケット6の刃先6aが通過する位置として設定される。作業機3のベッセル301との干渉を避けるために、ダンプトラック300へ向かって前進走行中のホイールローダ1は、ブーム14を上げる動作をしている。ホイールローダ1がダンプアプローチを開始してから、バケット6の刃先6aが目標位置dに到達するまで、ブーム14の上げ動作が継続されている。目標位置dは、ブーム14を上げる動作を停止する位置である。バケット6の刃先6aが目標位置dにあるとき、ブーム14は最上位位置にある。バケット6の刃先6aが目標位置dにあるとき、ブームシリンダ16の長さは最大である。目標位置dは、ベッセル301の上方にある。目標位置dは、目標位置cよりも基準点Pに近く設定される。 The target position d is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position c. In order to avoid interference with the vessel 301 of the working machine 3, the wheel loader 1, which is traveling forward toward the dump truck 300, is raising the boom 14. The raising operation of the boom 14 continues from when the wheel loader 1 starts the dump approach until the cutting edge 6a of the bucket 6 reaches the target position d. The target position d is the position at which the operation of raising the boom 14 is stopped. When the cutting edge 6a of the bucket 6 is at the target position d, the boom 14 is at the uppermost position. When the cutting edge 6a of the bucket 6 is at the target position d, the length of the boom cylinder 16 is at its maximum. The target position d is above the vessel 301. The target position d is set closer to the reference point P than the target position c.
 目標位置fは、目標位置dを通過した後にバケット6の刃先6aが通過する位置として設定される。バケット6の刃先6aが目標位置cを通過してから目標位置fに到達するまで、バケット6はフルダンプ状態を維持している。目標位置fは、バケット6のチルト方向への動作を開始する位置である。目標位置fは、ベッセル301の上方にある。目標位置fは、目標位置dよりも基準点Pに近く設定される。バケット6の刃先6aが目標位置dを通過してから目標位置fに到達するまで、ブーム14は最上位位置に維持されている。 The target position f is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position d. The bucket 6 maintains the full dump state from when the cutting edge 6a of the bucket 6 passes through the target position c until it reaches the target position f. The target position f is the position at which the movement of the bucket 6 in the tilt direction is started. The target position f is above the vessel 301. The target position f is set closer to the reference point P than the target position d. The boom 14 is maintained at the uppermost position from when the cutting edge 6a of the bucket 6 passes through the target position d until it reaches the target position f.
 目標位置gは、目標位置fを通過した後にバケット6の刃先6aが通過する位置として設定される。目標位置gは、バケット6のチルト方向への動作を停止する位置である。バケット6の刃先6aが目標位置fを通過してから目標位置gに到達するまで、バケット6のチルト方向への動作が継続されている。目標位置gは、基準点Pの上方にある。バケット6の刃先6aが目標位置dを通過してから目標位置gに到達するまで、ブーム14は最上位位置に維持されている。 The target position g is set as the position through which the cutting edge 6a of the bucket 6 passes after passing through the target position f. The target position g is the position at which the movement of the bucket 6 in the tilt direction is stopped. The movement of the bucket 6 in the tilt direction is continued from when the cutting edge 6a of the bucket 6 passes through the target position f until it reaches the target position g. The target position g is above the reference point P. The boom 14 is maintained at the uppermost position from when the cutting edge 6a of the bucket 6 passes through the target position d until it reaches the target position g.
 図6に示されるように、基準点Pを原点としたxy座標系が設定される。x軸は、基準点Pを通るダンプトラック300の左右方向である。基準点Pを基準とした、ベッセル301から離れる方向が、+x方向である。y軸は、基準点Pを通る上下方向である。基準点Pからの上向き方向が、+y方向である。 As shown in FIG. 6, an xy coordinate system is set with the reference point P as the origin. The x-axis is the left-right direction of the dump truck 300 passing through the reference point P. The direction away from the vessel 301 with respect to the reference point P is the +x direction. The y-axis is the vertical direction passing through the reference point P. The upward direction from the reference point P is the +y direction.
 図6に示されるバケット角度θは、地面と、バケット6の背面6bとがなす角度である。バケット角度θは、バケット6の背面6bと車体基準の水平面とがなす角度であってもよい。 The bucket angle θ shown in FIG. 6 is the angle between the ground and the back surface 6b of the bucket 6. The bucket angle θ may be an angle between the back surface 6b of the bucket 6 and a horizontal plane based on the vehicle body.
 目標位置c,d,f,gは、バケット6の刃先6aの、基準点Pを基準とした水平方向および鉛直方向の位置、すなわちx座標およびy座標を与えることによって、決定される。目標位置cは、バケット6内の荷の排土中に刃先6aの高さ位置が最も低くなる(y座標が最小値となる)位置として設定される。目標位置cは、y座標がマイナス側の位置に設定される。目標位置d,f,gは、y座標がプラス側の位置に設定される。 The target positions c, d, f, and g are determined by giving the horizontal and vertical positions of the cutting edge 6a of the bucket 6 with respect to the reference point P, that is, the x and y coordinates. The target position c is set as the position where the height position of the cutting edge 6a becomes the lowest (the y coordinate becomes the minimum value) while the load in the bucket 6 is being unloaded. The target position c is set to a position where the y-coordinate is on the negative side. The target positions d, f, and g are set to positions with positive y coordinates.
 目標位置c,d,fは、x座標がマイナス側の位置に設定される。目標位置gは、x座標がゼロの位置に設定される。 The target positions c, d, and f are set to positions where the x coordinate is on the negative side. The target position g is set to a position where the x coordinate is zero.
 バケット6の刃先6aが各目標位置にあるときのバケット角度θも設定される。各目標位置のx座標およびy座標と、各目標位置におけるバケット角度θとから、バケット6の刃先6aが各目標位置にあるときの作業機3の姿勢が決定される。自動化コントローラ100は、バケット6の刃先6aが各目標位置にあるときの作業機3の姿勢(目標姿勢)を記憶している。バケット6の刃先6aが各目標位置にあるときの目標姿勢に基づいて、バケット6の刃先6aが各目標位置にあるときのブームシリンダ16の長さとバケットシリンダ19の長さとが決定される。 The bucket angle θ when the cutting edge 6a of the bucket 6 is at each target position is also set. The attitude of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position is determined from the x and y coordinates of each target position and the bucket angle θ at each target position. The automation controller 100 stores the postures (target postures) of the working machine 3 when the cutting edge 6a of the bucket 6 is at each target position. Based on the target posture when the cutting edge 6a of the bucket 6 is at each target position, the length of the boom cylinder 16 and the length of the bucket cylinder 19 when the cutting edge 6a of the bucket 6 is at each target position are determined.
 各目標位置のx座標およびy座標、ならびに各目標位置におけるバケット角度θは、熟練オペレータが積込作業を実行したときの刃先6aの軌跡を解析して特徴となる位置を抽出し、その特徴的位置における作業機3の姿勢を抽出することで、決定することができる。 The x-coordinate and y-coordinate of each target position and the bucket angle θ at each target position are determined by analyzing the locus of the cutting edge 6a when a skilled operator performs loading work and extracting the characteristic position. It can be determined by extracting the attitude of the working machine 3 at the position.
 図7は、バケット6のダンプ動作を停止するときのホイールローダ1の姿勢を模式的に示す図である。図8は、ブーム14の上げ動作を停止するときのホイールローダ1の姿勢を模式的に示す図である。図9は、バケット6のチルト動作を開始するときのホイールローダ1の姿勢を模式的に示す図である。図10は、バケット6のチルト動作を停止するときのホイールローダ1の姿勢を模式的に示す図である。図11は、ダンプトラック300から離れたホイールローダ1を模式的に示す図である。図7においては、バケット6の刃先6aは目標位置cにある。図8においては、刃先6aは目標位置dにある。図9においては、刃先6aは目標位置fにある。図10においては、刃先6aは目標位置gにある。 FIG. 7 is a diagram schematically showing the attitude of the wheel loader 1 when stopping the dumping operation of the bucket 6. FIG. 8 is a diagram schematically showing the attitude of the wheel loader 1 when the raising operation of the boom 14 is stopped. FIG. 9 is a diagram schematically showing the attitude of the wheel loader 1 when starting the tilting operation of the bucket 6. FIG. 10 is a diagram schematically showing the attitude of the wheel loader 1 when the tilting operation of the bucket 6 is stopped. FIG. 11 is a diagram schematically showing the wheel loader 1 separated from the dump truck 300. In FIG. 7, the cutting edge 6a of the bucket 6 is at the target position c. In FIG. 8, the cutting edge 6a is at the target position d. In FIG. 9, the cutting edge 6a is at the target position f. In FIG. 10, the cutting edge 6a is at the target position g.
 図12は、積込作業中のシリンダ長さの変化を示すグラフである。図12の横軸は時間の経過を示し、刃先6aが目標位置c,d,f,gを通過する時刻に補助線が引かれている。図12の縦軸は、ブームシリンダ16およびバケットシリンダ19の長さを示す。 FIG. 12 is a graph showing changes in cylinder length during loading work. The horizontal axis in FIG. 12 shows the passage of time, and auxiliary lines are drawn at the times when the cutting edge 6a passes through the target positions c, d, f, and g. The vertical axis in FIG. 12 indicates the lengths of the boom cylinder 16 and the bucket cylinder 19.
 図12および図6,7に示されるように、刃先6aが目標位置cに到達する前に、ホイールローダ1は前進走行している。ブームシリンダ16の長さが増大しており、したがってブーム14は上昇している。バケットシリンダ19は、目標位置cに到達するまでのある期間に長さを減少しており、したがってその期間中にバケット6はダンプ方向に動作している。刃先6aが目標位置cに到達した時点で、バケット6はフルダンプの姿勢となり、バケット6のダンプ動作が停止する。刃先6aが目標位置cに到達した時点で、バケットシリンダ19の長さが最小となっている。 As shown in FIG. 12 and FIGS. 6 and 7, the wheel loader 1 is traveling forward before the cutting edge 6a reaches the target position c. The length of the boom cylinder 16 is increasing and therefore the boom 14 is rising. The bucket cylinder 19 is decreasing in length during a period of time until it reaches the target position c, so that during that period the bucket 6 is moving in the dumping direction. When the cutting edge 6a reaches the target position c, the bucket 6 assumes the full dumping position, and the dumping operation of the bucket 6 stops. When the cutting edge 6a reaches the target position c, the length of the bucket cylinder 19 is at its minimum.
 バケット6のダンプ動作中に、ブーム14は上昇を続けている。バケット6からの排土中に、ブーム14は上昇を続けている。ダンプトラック300への荷の積み込み中に、ブーム14は上昇を続けている。バケット6のダンプ動作中に、ホイールローダ1がダンプトラック300のベッセル301に向かっていくため、前進走行も継続している。 During the dumping operation of the bucket 6, the boom 14 continues to rise. While the bucket 6 is being unloaded, the boom 14 continues to rise. While loading the dump truck 300, the boom 14 continues to rise. During the dumping operation of the bucket 6, the wheel loader 1 moves toward the vessel 301 of the dump truck 300, and therefore continues to travel forward.
 図12および図7,8に示されるように、刃先6aが目標位置cを通過する時刻ではホイールローダ1は前進走行をしており、刃先6aが目標位置dを通過する時刻ではホイールローダ1は後進走行をしている。刃先6aが目標位置cと目標位置dとの間を移動している間に、ホイールローダ1の走行方向が前進から後進へと切り替わっている。ブームシリンダ16は長さを増大し続けており、したがってブーム14は上昇を続けている。バケットシリンダ19の長さは一定であり、したがって車体に対するバケット6の姿勢は一定である。目標位置cはバケット6のダンプ方向への動作を停止する位置であり、刃先6aが目標位置cから目標位置dまで移動する間、バケット6はフルダンプの姿勢を保っている。 As shown in FIG. 12 and FIGS. 7 and 8, the wheel loader 1 is traveling forward at the time when the cutting edge 6a passes the target position c, and the wheel loader 1 is moving forward at the time when the cutting edge 6a passes the target position d. I am driving backwards. While the cutting edge 6a is moving between the target position c and the target position d, the running direction of the wheel loader 1 is switched from forward to reverse. Boom cylinder 16 continues to increase in length and thus boom 14 continues to rise. The length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant. The target position c is a position where the movement of the bucket 6 in the dump direction is stopped, and the bucket 6 maintains the full dump attitude while the cutting edge 6a moves from the target position c to the target position d.
 図12および図8,9に示されるように、刃先6aが目標位置dを通過した後目標位置fに到達するまで、ホイールローダ1は後進走行を継続している。ブームシリンダ16の長さは一定であり、したがって車体に対するブーム14の姿勢は一定である。このとき、ブーム14の高さ位置が最も高くなっている。ブーム14が上昇を停止するときにはバケット6内の荷は既にベッセル301に積み込まれており、バケット6は空荷状態である。バケットシリンダ19の長さは一定であり、したがって車体に対するバケット6の姿勢は一定である。刃先6aが目標位置dから目標位置fまで移動する間、ホイールローダ1は、バケット6のフルダンプ状態を維持したまま後進走行している。 As shown in FIG. 12 and FIGS. 8 and 9, the wheel loader 1 continues to travel backwards until the cutting edge 6a reaches the target position f after passing through the target position d. The length of the boom cylinder 16 is constant, so the attitude of the boom 14 with respect to the vehicle body is constant. At this time, the height position of the boom 14 is at its highest. When the boom 14 stops rising, the load in the bucket 6 has already been loaded into the vessel 301, and the bucket 6 is in an empty state. The length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant. While the cutting edge 6a is moving from the target position d to the target position f, the wheel loader 1 is traveling backwards while maintaining the full dump state of the bucket 6.
 図12および図9,10に示されるように、刃先6aが目標位置fを通過した後目標位置gに到達するまで、ホイールローダ1は後進走行を継続している。ブームシリンダ16の長さは一定であり、したがって車体に対するブーム14の姿勢は一定である。目標位置fに刃先6aが到達した時点でバケット6のチルト方向への動作が開始され、目標位置gに到達するまで、バケット6はチルト方向への動作を継続している。バケットシリンダ19の長さは増大を続けている。目標位置gに刃先6aが到達した時点で、バケット6のチルト方向への動作が停止される。目標位置fは、バケット6のチルト動作を開始する位置である。目標位置gは、バケット6のチルト動作を停止する位置である。刃先6aが目標位置fから目標位置gまで移動する間、ホイールローダ1は、バケット6をチルト動作させながら後進走行している。ホイールローダ1は、ダンプトラック300への積込作業を行った後、ダンプトラック300から離れるための後進中に、バケット6のチルト動作を行う。 As shown in FIG. 12 and FIGS. 9 and 10, the wheel loader 1 continues to travel backwards until the cutting edge 6a reaches the target position g after passing through the target position f. The length of the boom cylinder 16 is constant, so the attitude of the boom 14 with respect to the vehicle body is constant. The movement of the bucket 6 in the tilt direction is started when the cutting edge 6a reaches the target position f, and the bucket 6 continues to move in the tilt direction until it reaches the target position g. The length of bucket cylinder 19 continues to increase. When the cutting edge 6a reaches the target position g, the movement of the bucket 6 in the tilt direction is stopped. The target position f is the position at which the tilting operation of the bucket 6 is started. The target position g is the position at which the tilting operation of the bucket 6 is stopped. While the cutting edge 6a is moving from the target position f to the target position g, the wheel loader 1 is running backward while tilting the bucket 6. After loading the dump truck 300, the wheel loader 1 tilts the bucket 6 while moving backward to leave the dump truck 300.
 バケット6のチルト動作中に、ブーム14の姿勢は一定を保っている。バケット6からの荷の排出の完了後、ブーム14を保持して,バケット6をチルト動作する。このバケット6のチルト動作中に、ホイールローダ1は後進走行を継続し、ダンプトラック300のベッセル301から離れる方向に走行している。 While the bucket 6 is tilting, the attitude of the boom 14 remains constant. After the load is completely discharged from the bucket 6, the boom 14 is held and the bucket 6 is tilted. During this tilting operation of the bucket 6, the wheel loader 1 continues to travel backwards and is traveling in a direction away from the vessel 301 of the dump truck 300.
 図12および図10,11に示されるように、刃先6aが目標位置gを通過した後、ホイールローダ1は後進走行を継続している。ブームシリンダ16の長さが減少しており、したがってブーム14は下降している。バケットシリンダ19の長さは一定であり、したがって車体に対するバケット6の姿勢は一定である。 As shown in FIG. 12 and FIGS. 10 and 11, after the cutting edge 6a passes the target position g, the wheel loader 1 continues to travel backwards. The length of boom cylinder 16 is decreasing and therefore boom 14 is lowering. The length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant.
 バケット6の刃先6aを、目標位置c、目標位置d、目標位置f、目標位置gを順に通過するように移動させることで、バケット6および車体をベッセル301に接触させることなくバケット6内の荷をベッセル301に積み込むことができる。このようにバケット6を移動させる自動制御をホイールローダ1に適用することで、熟練オペレータの操作による動作と同等の作業機3の動作を実現することができる。 By moving the cutting edge 6a of the bucket 6 so as to pass through the target position c, target position d, target position f, and target position g in order, the load inside the bucket 6 can be removed without causing the bucket 6 and the vehicle body to come into contact with the vessel 301. can be loaded into the vessel 301. By applying automatic control for moving the bucket 6 to the wheel loader 1 in this manner, it is possible to realize the operation of the working machine 3 equivalent to the operation by a skilled operator.
 図5に戻って、自動制御による積込作業の説明を続ける。ステップS103において、自動化コントローラ100は、ホイールローダ1および作業機3の現在位置を認識する。位置情報取得装置112でホイールローダ1の車体の現在位置を取得し、車体に対する作業機の姿勢をブーム角度センサ123およびバケット角度センサ124により取得することで、グローバル座標系におけるホイールローダ1および作業機3の現在位置を認識することができる。グローバル座標系における、ホイールローダ1および作業機3の現在位置と、ダンプトラック300の現在位置とに基づいて、ダンプトラック300のベッセル301に対するバケット6の刃先6aの相対位置を算出することができる。 Returning to FIG. 5, the explanation of the loading operation using automatic control will be continued. In step S103, the automation controller 100 recognizes the current positions of the wheel loader 1 and the work machine 3. By acquiring the current position of the vehicle body of the wheel loader 1 with the position information acquisition device 112 and acquiring the attitude of the work implement with respect to the vehicle body with the boom angle sensor 123 and the bucket angle sensor 124, the wheel loader 1 and the work implement in the global coordinate system are 3's current position can be recognized. Based on the current positions of the wheel loader 1 and the working machine 3 and the current position of the dump truck 300 in the global coordinate system, the relative position of the cutting edge 6a of the bucket 6 with respect to the vessel 301 of the dump truck 300 can be calculated.
 または、知覚装置111を用いて、知覚装置111の配置位置に対するダンプトラック300のベッセル301の基準点Pの方向および距離を取得することで、基準点Pに対するバケット6の刃先6aの現在の相対位置を算出してもよい。 Alternatively, by using the sensing device 111 to obtain the direction and distance of the reference point P of the vessel 301 of the dump truck 300 with respect to the arrangement position of the sensing device 111, the current relative position of the cutting edge 6a of the bucket 6 with respect to the reference point P can be determined. may be calculated.
 作業機3の現在位置から、バケット6の刃先6aが各目標位置c,d,f,gに対してどの位置にあるのかを認識する。たとえば、刃先6aが目標位置cに未だ到達していない、刃先6aが目標位置cを通過して目標位置cと目標位置dとの間にある、刃先6aが目標位置dを通過して目標位置dと目標位置fとの間にある、などと認識される。さらに、刃先6aが次に向かう目標位置が認識される。たとえば、刃先6aが目標位置cに未だ到達していないのであれば次に向かうのは目標位置cであり、刃先6aが目標位置cと目標位置dとの間にあれば次に向かうのは目標位置dである、などと認識される。 Based on the current position of the working machine 3, it is recognized where the cutting edge 6a of the bucket 6 is with respect to each target position c, d, f, g. For example, the cutting edge 6a has not yet reached the target position c, the cutting edge 6a has passed the target position c and is between the target positions c and d, the cutting edge 6a has passed the target position d and is at the target position. d and the target position f. Furthermore, the target position to which the cutting edge 6a will go next is recognized. For example, if the cutting edge 6a has not yet reached the target position c, the next destination is the target position c, and if the cutting edge 6a is between the target positions c and d, the next destination is the target position. It is recognized as being at position d, etc.
 ステップS104において、自動化コントローラ100は、現在位置におけるブームシリンダ16の長さおよびバケットシリンダ19の長さを認識する。ブーム角度センサ123により、ブーム14の角度を検出する。バケット角度センサ124により、バケット6の角度を検出する。ブーム14の角度とバケット6の角度とから、作業機3の姿勢が決定される。作業機の姿勢に基づいて、現在位置におけるブームシリンダ16の長さとバケットシリンダ19の長さとが認識される。 In step S104, the automation controller 100 recognizes the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position. A boom angle sensor 123 detects the angle of the boom 14 . A bucket angle sensor 124 detects the angle of the bucket 6. The attitude of the working machine 3 is determined from the angle of the boom 14 and the angle of the bucket 6. Based on the attitude of the working machine, the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position are recognized.
 ブーム角度センサ123およびバケット角度センサ124に替えて、またはこれらに加えて、ベルクランク18の角度を検出する角度センサおよびリンク15の角度を検出する角度センサを設けてもよい。ブームシリンダ16およびバケットシリンダ19に、シリンダストローク長さを検出するストロークセンサを設けてもよい。 Instead of or in addition to the boom angle sensor 123 and the bucket angle sensor 124, an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 may be provided. The boom cylinder 16 and the bucket cylinder 19 may be provided with stroke sensors that detect cylinder stroke lengths.
 ステップS105において、自動化コントローラ100は、ステップS104で認識された現在位置におけるブームシリンダ16の長さとバケットシリンダ19の長さと、刃先6aが次に向かう目標位置におけるブームシリンダ16の長さとバケットシリンダ19の長さ(以下、目標シリンダ長さと称する)と、の差を算出する。自動化コントローラ100は、刃先6aが次の目標位置に到達するまでにシリンダをどれだけ動かすのかを計算する。 In step S105, the automation controller 100 determines the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position recognized in step S104, and the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the target position where the cutting edge 6a will go next. (hereinafter referred to as target cylinder length). The automation controller 100 calculates how far the cylinder should be moved until the cutting edge 6a reaches the next target position.
 ステップS106において、自動化コントローラ100は、現在の車速を参照し、刃先6aが次に向かう目標位置に到達したときに目標シリンダ長さとなる、目標シリンダストローク速度を決定する。自動化コントローラ100は、刃先6aが次に向かう目標位置に到達したとき、作業機3がその目標位置に対応する目標姿勢をとるように、ブームシリンダ16およびバケットシリンダ19を制御する。現在の車速は、車両速度センサ122により取得される。刃先6aの現在位置と、現在の車速とから、次の目標位置に到達するまでの時間を計算できる。ステップS105で算出されたシリンダ長さの差を、次の目標位置に到達するまでの時間で割って、目標シリンダストローク速度を決定できる。 In step S106, the automation controller 100 refers to the current vehicle speed and determines a target cylinder stroke speed that will result in the target cylinder length when the cutting edge 6a reaches the next target position. The automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that when the cutting edge 6a reaches the next target position, the working machine 3 assumes a target attitude corresponding to the target position. The current vehicle speed is acquired by vehicle speed sensor 122. The time required to reach the next target position can be calculated from the current position of the cutting edge 6a and the current vehicle speed. The target cylinder stroke speed can be determined by dividing the difference in cylinder length calculated in step S105 by the time required to reach the next target position.
 ホイールローダ1が単位距離走行する間のシリンダストローク量を決めてもよい。ホイールローダ1が単位距離走行したことは、車速から求めてもよく、知覚装置111で検知することもできる。 The cylinder stroke amount during which the wheel loader 1 travels a unit distance may be determined. Whether the wheel loader 1 has traveled a unit distance may be determined from the vehicle speed, or may be detected by the sensing device 111.
 ステップS107において、自動化コントローラ100は、車体コントローラ50に対し、目標シリンダストローク速度に対応する指令電流を出力する。自動化コントローラ100は、作業機コントローラ80の作業機制御部82に対し、ブームシリンダ16およびバケットシリンダ19を目標シリンダストローク速度で伸縮させる指令を出力する。作業機制御部82から作業機EPC143に、ブームシリンダ16およびバケットシリンダ19を目標シリンダストローク速度で伸縮させる指令が出力される。 In step S107, the automation controller 100 outputs a command current corresponding to the target cylinder stroke speed to the vehicle body controller 50. The automation controller 100 outputs a command to the work machine control unit 82 of the work machine controller 80 to extend and contract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed. A command is output from the work equipment control unit 82 to the work equipment EPC 143 to extend and retract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
 ステップS108において、指令信号を受けた作業機EPC143が開度を調節することで、ブームシリンダ16およびバケットシリンダ19に適切な作動油が供給される。これにより、ブームシリンダ16およびバケットシリンダ19が動作する。 In step S108, the working machine EPC 143 that has received the command signal adjusts the opening degree, so that appropriate hydraulic oil is supplied to the boom cylinder 16 and the bucket cylinder 19. This causes the boom cylinder 16 and bucket cylinder 19 to operate.
 ステップS109において、自動化コントローラ100は、ステップS104と同様に現在のブームシリンダ16およびバケットシリンダ19の長さを認識する。自動化コントローラ100は、現在のブームシリンダ16およびバケットシリンダ19の長さが、目標シリンダ長さに到達したか否かを判断する。 In step S109, the automation controller 100 recognizes the current lengths of the boom cylinder 16 and bucket cylinder 19 similarly to step S104. The automation controller 100 determines whether the current lengths of the boom cylinder 16 and bucket cylinder 19 have reached the target cylinder length.
 ステップS109の判断において、目標シリンダ長さに到達したと判断されれば(ステップS109においてYES)、ステップS110に進み、自動化コントローラ100は、次の目標位置があるか否かの判断をする。 If it is determined in step S109 that the target cylinder length has been reached (YES in step S109), the process proceeds to step S110, and the automation controller 100 determines whether there is a next target position.
 ステップS109の判断において目標シリンダ長さに到達していないと判断される場合(ステップS109においてNO)、および、ステップS110の判断において次の目標位置があると判断される場合(ステップS110においてYES)、ステップS103に戻り、作業機3の現在位置に基づいてブームシリンダ16およびバケットシリンダ19を伸縮させる処理が繰り返される。バケット6の刃先6aの現在位置に応じて、シリンダ速度は逐次変更される。前回の処理で設定されたシリンダ速度に基づいた位置から刃先6aの現在位置がずれていると、シリンダ速度が調整される。 If it is determined in step S109 that the target cylinder length has not been reached (NO in step S109), and if it is determined in step S110 that there is a next target position (YES in step S110) , the process returns to step S103, and the process of expanding and contracting the boom cylinder 16 and the bucket cylinder 19 based on the current position of the working machine 3 is repeated. The cylinder speed is sequentially changed according to the current position of the cutting edge 6a of the bucket 6. If the current position of the cutting edge 6a deviates from the position based on the cylinder speed set in the previous process, the cylinder speed is adjusted.
 ステップS110の判断において、次の目標位置がないと判断されれば(ステップS110においてNO)、積込作業を終了する。本実施形態において、目標位置gの終了後、次の目標位置が設定されていない、ことに対応する。 If it is determined in step S110 that there is no next target position (NO in step S110), the loading operation is ended. In this embodiment, this corresponds to the fact that the next target position is not set after the end of the target position g.
 <作用および効果>
 上述した説明と一部重複する記載もあるが、本実施形態の特徴的な構成および作用効果についてまとめて記載すると、以下の通りである。
<Action and effect>
Although some descriptions overlap with the above description, the characteristic configuration and effects of this embodiment are summarized as follows.
 図7~9,12に示されるように、バケット6の刃先6aがベッセル301の上方の目標位置cに位置するときに、バケット6がフルダンプ状態にされる。目標位置cと目標位置dとの間で、ホイールローダ1の走行方向が前進から後進に切り替えられる。ホイールローダ1が後進走行を開始してから、バケット6の刃先6aが目標位置fに到達するまで、バケット6のフルダンプ状態を維持したままホイールローダ1は後進走行を継続する。 As shown in FIGS. 7 to 9 and 12, when the cutting edge 6a of the bucket 6 is located at the target position c above the vessel 301, the bucket 6 is brought into the full dump state. Between the target position c and the target position d, the running direction of the wheel loader 1 is switched from forward to reverse. After the wheel loader 1 starts traveling backwards, the wheel loader 1 continues traveling backwards while maintaining the full dump state of the bucket 6 until the cutting edge 6a of the bucket 6 reaches the target position f.
 バケット6がフルダンプの姿勢になることで、バケット6内の荷がバケット6から落下しやすくなり、荷がバケット6から排出されやすい状況になる。バケット6をフルダンプ状態にしたまま後進することで、バケット6内に荷が残存している場合に、その残存している荷に対して慣性力が作用する。これにより、バケット6内に残存している荷の、バケット6からの排出を促進できる。バケット6に積まれた荷を確実にバケット6から排出できるので、積込作業を確実に終わらせることができる。 With the bucket 6 in the full dump position, the load in the bucket 6 will easily fall from the bucket 6, creating a situation where the load will be more likely to be discharged from the bucket 6. By moving backward with the bucket 6 in the full dump state, if there is any load remaining in the bucket 6, inertia force acts on the remaining load. Thereby, the load remaining in the bucket 6 can be expelled from the bucket 6. Since the load loaded on the bucket 6 can be reliably discharged from the bucket 6, the loading work can be completed reliably.
 図7~9,12に示されるように、バケット6のフルダンプ状態を維持したままホイールローダ1が後進走行して、基準点Pとの水平距離が所定値以下の目標位置fに刃先6aが到達した時点で、バケット6のチルト方向への動作が開始される。バケット6がフルダンプ姿勢でベッセル301の側面に所定位置まで接近すると、バケット6をチルト動作させて、バケット6はベッセル301をかわすように移動する。ダンプトラック300への積込作業を行った後、バケット6の刃先6aがベッセル301の側面を跨ぐ前にバケット6をチルト動作させることによって、バケット6の刃先6aおよび背面6bがベッセル301に接触することを防ぐことができる。 As shown in FIGS. 7 to 9 and 12, the wheel loader 1 moves backward while maintaining the full dump state of the bucket 6, and the cutting edge 6a reaches the target position f where the horizontal distance from the reference point P is less than a predetermined value. At this point, the movement of the bucket 6 in the tilt direction is started. When the bucket 6 approaches the side surface of the vessel 301 to a predetermined position in the full dump attitude, the bucket 6 is tilted and moved to avoid the vessel 301. After loading the dump truck 300, the bucket 6 is tilted before the blade edge 6a of the bucket 6 straddles the side surface of the vessel 301, so that the blade edge 6a and the back surface 6b of the bucket 6 come into contact with the vessel 301. This can be prevented.
 ホイールローダ1がダンプトラック300から離れるための後進走行と、バケット6のチルト動作とが同時に行われ、複数の動作が時間的に重なって実行されている。後進中にバケット6のチルト動作を行うことにより、バケット6のチルト動作後に後進走行を開始する場合と比べて、ホイールローダ1がダンプトラック300から素早く離れることができる。したがって、積込作業のサイクルタイムを短縮でき、作業性を向上することができる。 The backward movement of the wheel loader 1 to move away from the dump truck 300 and the tilting operation of the bucket 6 are performed simultaneously, and a plurality of operations are performed temporally overlapping each other. By tilting the bucket 6 while moving backward, the wheel loader 1 can move away from the dump truck 300 more quickly than when starting the backward movement after the bucket 6 is tilted. Therefore, the cycle time of loading work can be shortened and work efficiency can be improved.
 図10,12に示されるように、バケット6の刃先6aが基準点Pの真上の目標位置gに到達し、刃先6aが基準点Pを越えた時点で、バケット6のチルト動作が停止される。これにより、バケット6がベッセル301に接触することを確実に回避することができる。バケット6を必要以上にチルト動作させずに、バケット6が確実にベッセル301をかわして移動できるだけのチルト動作をさせて、その後はバケット6の姿勢を保持するようにできる。このようにすれば、バケット6を、次の掘削作業のための姿勢に迅速に移動させることができる。 As shown in FIGS. 10 and 12, when the cutting edge 6a of the bucket 6 reaches the target position g directly above the reference point P and the cutting edge 6a crosses the reference point P, the tilting operation of the bucket 6 is stopped. Ru. Thereby, it is possible to reliably prevent the bucket 6 from coming into contact with the vessel 301. The bucket 6 can be tilted enough to reliably move around the vessel 301 without tilting the bucket 6 more than necessary, and the posture of the bucket 6 can be maintained thereafter. In this way, the bucket 6 can be quickly moved to a position for the next excavation operation.
 図8~9,12に示されるように、刃先6aが目標位置dから目標位置fまで移動する間、ホイールローダ1は、ブーム14の姿勢を維持し、かつバケット6のフルダンプ状態を維持しながら、後進走行している。これにより、バケット6に積まれた荷を、確実にバケット6から排出することができる。 As shown in FIGS. 8 to 9 and 12, while the cutting edge 6a moves from the target position d to the target position f, the wheel loader 1 maintains the attitude of the boom 14 and the full dump state of the bucket 6. , driving in reverse. Thereby, the load loaded on the bucket 6 can be reliably discharged from the bucket 6.
 ホイールローダ1の走行方向を前進から後進に切り替えるタイミングは、バケット6の刃先6aが目標位置cと目標位置dとの間にあるときに限られない。たとえば、バケット6の刃先6aが目標位置cに位置するときにバケット6がフルダンプ状態にされることをトリガーとして、ホイールローダ1の走行方向を前進から後進に切り替えてもよい。但し、走行方向を切り替えるタイミングは厳密ではなく、バケット6から荷が排出され得る略フルダンプの状態であれば、走行方向を切り替えるタイミングがある程度前後することは許容される。 The timing for switching the running direction of the wheel loader 1 from forward to reverse is not limited to when the cutting edge 6a of the bucket 6 is between the target position c and the target position d. For example, the traveling direction of the wheel loader 1 may be switched from forward to reverse using the bucket 6 being brought into the full dump state when the cutting edge 6a of the bucket 6 is located at the target position c as a trigger. However, the timing of switching the running direction is not strict, and as long as the load is in a substantially full dump state where the load can be discharged from the bucket 6, it is permissible for the timing of switching the running direction to be delayed to some extent.
 図9~10,12に示されるように、刃先6aが目標位置fから目標位置gまで移動する間、ホイールローダ1は、ブーム14の姿勢を維持しながらバケット6をチルト動作させている。これにより、バケット6がベッセル301に接触することを確実に回避することができる。 As shown in FIGS. 9 to 10 and 12, while the cutting edge 6a moves from the target position f to the target position g, the wheel loader 1 tilts the bucket 6 while maintaining the attitude of the boom 14. Thereby, it is possible to reliably prevent the bucket 6 from coming into contact with the vessel 301.
 図10~12に示されるように、バケット6の刃先6aが、基準点Pに設定されるベッセル301の側面上端を越えた時点で、ブーム14を下げる動作が開始される。このようにすれば、ブーム14を、次の掘削作業のための姿勢に迅速に移動させることができる。ホイールローダ1の後進走行とブーム14を下げる動作とが同時に行われ、複数の動作が時間的に重なって実行されるので、作業のサイクルタイムを短縮でき、作業性を向上することができる。 As shown in FIGS. 10 to 12, when the cutting edge 6a of the bucket 6 passes the upper end of the side surface of the vessel 301 set at the reference point P, the operation of lowering the boom 14 is started. In this way, the boom 14 can be quickly moved to a position for the next excavation operation. The backward travel of the wheel loader 1 and the operation of lowering the boom 14 are performed at the same time, and a plurality of operations are performed overlapping in time, so that the cycle time of the work can be shortened and the work efficiency can be improved.
 図7~8,12に示されるように、バケット6のダンプ動作を開始してからフルダンプの姿勢にするまで、ブーム14は上昇を続けている。バケット6をフルダンプ状態にした後に、ブーム14の上げ動作が停止する。バケット6内に荷が積み込まれた状態でブーム14を最高位まで上昇させてブーム14の上昇を停止させると、慣性の影響を受けて車体が前後に揺動して不安定になることがある。バケット6をフルダンプ状態にしてバケット6内の荷を排出した後にブーム14を最高位に到達させて停止させることで、慣性による車両の揺動を抑制することができる。 As shown in FIGS. 7 to 8 and 12, the boom 14 continues to rise from the start of the dumping operation of the bucket 6 to the full dumping position. After the bucket 6 is brought into the full dump state, the raising operation of the boom 14 is stopped. If the boom 14 is raised to its highest position and then stopped with a load loaded in the bucket 6, the vehicle body may swing back and forth due to the influence of inertia and become unstable. . By bringing the bucket 6 into a full dump state and discharging the load in the bucket 6, and then allowing the boom 14 to reach the highest position and stop, it is possible to suppress the rocking of the vehicle due to inertia.
 図7~10に示されるように、自動化コントローラ100は、バケット6の刃先6aが目標位置c,d,f,gにあるときの作業機3の目標姿勢を記憶している。自動化コントローラ100は、刃先6aが目標位置c,d,f,gに到達したときに作業機3が目標姿勢をとるように、ブームシリンダ16およびバケットシリンダ19を制御する。このように動作することで、バケット6に積まれた荷を確実にバケット6から排出することができ、かつ、作業機3とベッセル301との接触を確実に回避することができる。 As shown in FIGS. 7 to 10, the automation controller 100 stores the target postures of the working machine 3 when the cutting edge 6a of the bucket 6 is at the target positions c, d, f, and g. The automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 assumes the target posture when the cutting edge 6a reaches the target positions c, d, f, and g. By operating in this way, the load loaded on the bucket 6 can be reliably discharged from the bucket 6, and contact between the working machine 3 and the vessel 301 can be reliably avoided.
 上記の実施形態で説明した、ホイールローダ1の自動制御システムを構成する自動化コントローラ100は、必ずしもホイールローダ1に搭載されていなくてもよい。ホイールローダ1に搭載されたコントローラが、外界情報取得部110および車両情報取得部120などによって取得された情報を、外部のコントローラへ送信する処理を行い、信号を受信した外部のコントローラがホイールローダ1を自動制御するシステムを構成してもよい。外部のコントローラは、ホイールローダ1の作業現場に配置されてもよく、ホイールローダ1の作業現場から離れた遠隔地に配置されてもよい。 The automation controller 100 that constitutes the automatic control system for the wheel loader 1 described in the above embodiment does not necessarily have to be installed in the wheel loader 1. The controller installed in the wheel loader 1 performs a process of transmitting information acquired by the external world information acquisition unit 110, the vehicle information acquisition unit 120, etc. to an external controller, and the external controller that receives the signal transmits the information to the wheel loader 1. A system may be configured to automatically control the The external controller may be located at the work site of the wheel loader 1 or may be located at a remote location away from the work site of the wheel loader 1.
 実施形態では、ホイールローダ1はキャブ5を備えており、オペレータがキャブ5に搭乗する有人車両である例について説明した。ホイールローダ1は、無人車両であってもよい。ホイールローダ1は、オペレータが搭乗して操作するためのキャブ5を備えていなくてもよい。ホイールローダ1は、搭乗したオペレータによる操縦機能を搭載していなくてもよい。ホイールローダ1は、遠隔操縦専用の作業機械であってもよい。ホイールローダ1の操縦は、遠隔操縦装置からの無線信号により行われてもよい。 In the embodiment, an example has been described in which the wheel loader 1 is a manned vehicle that includes a cab 5 and an operator rides in the cab 5. The wheel loader 1 may be an unmanned vehicle. The wheel loader 1 does not need to include a cab 5 for an operator to board and operate. The wheel loader 1 does not need to be equipped with a control function by an operator on board. The wheel loader 1 may be a working machine exclusively for remote control. The wheel loader 1 may be controlled by radio signals from a remote control device.
 <付記>
 以上の説明は、以下に付記する特徴を含む。
<Additional notes>
The above description includes the features noted below.
 (付記1)
 走行体を有する本体と、
 前記本体の前方に取り付けられ、先端にバケットを有する、作業機と、
 前記本体に対し前記作業機を駆動する作業機アクチュエータと、
 前記走行体の進行状態を検出する走行センサと、
 前記作業機の姿勢を検出する作業機姿勢センサと、
 前記本体の周辺の物体を検出する物体センサと、
 前記走行センサ、前記作業機姿勢センサおよび前記物体センサの検出値に基づき、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
 前記コントローラは、物体の検出に基づき前記バケット内の荷を積み込むための積込目標を認識し、前記バケットの特徴点が前記積込目標の上方に位置するときに前記バケットをフルダンプ状態にし、前記フルダンプ状態を維持したまま前記走行体を後進走行させるように、前記作業機アクチュエータと前記走行体とを制御する、作業機械。
(Additional note 1)
A main body having a running body;
a working machine attached to the front of the main body and having a bucket at the tip;
a work implement actuator that drives the work implement with respect to the main body;
a traveling sensor that detects the progress state of the traveling body;
a work machine attitude sensor that detects the attitude of the work machine;
an object sensor that detects objects around the main body;
a controller that commands driving of the work implement actuator based on detected values of the travel sensor, the work implement attitude sensor, and the object sensor;
The controller recognizes a loading target for loading a load in the bucket based on object detection, puts the bucket in a full dump state when a feature point of the bucket is located above the loading target, and A work machine that controls the work implement actuator and the traveling body so that the traveling body travels backward while maintaining a full dump state.
 (付記2)
 前記コントローラは、前記物体センサが認識した前記積込目標の側面上端を基準点として設定し、前記基準点と前記特徴点との水平距離が所定値以下になった時点で、前記バケットをチルト方向へ動作させる前記作業機アクチュエータの駆動を開始する、付記1に記載の作業機械。
(Additional note 2)
The controller sets the upper end of the side surface of the loading target recognized by the object sensor as a reference point, and when the horizontal distance between the reference point and the feature point becomes equal to or less than a predetermined value, tilts the bucket. The working machine according to supplementary note 1, wherein the working machine starts driving the working machine actuator to operate the working machine.
 (付記3)
 前記コントローラは、前記特徴点が前記基準点を超えた時点で、前記バケットを前記チルト方向へ動作させる前記作業機アクチュエータの駆動を停止する、付記2に記載の作業機械。
(Additional note 3)
The work machine according to appendix 2, wherein the controller stops driving the work machine actuator that moves the bucket in the tilt direction when the feature point exceeds the reference point.
 (付記4)
 前記作業機は、前記本体に連結されたブームを有し、
 前記コントローラは、前記本体に対する前記ブームの姿勢を保持しながら、前記フルダンプ状態を維持したまま前記走行体を後進走行させる、付記1から付記3のいずれか1つに記載の作業機械。
(Additional note 4)
The work machine has a boom connected to the main body,
The working machine according to any one of Supplementary notes 1 to 3, wherein the controller causes the traveling body to travel backward while maintaining the full dump state while maintaining the attitude of the boom with respect to the main body.
 (付記5)
 前記作業機は、前記本体に連結されたブームを有し、
 前記コントローラは、前記本体に対する前記ブームの姿勢を保持しながら、前記バケットを前記チルト方向へ動作させる、付記2、付記3、または付記2を引用する付記4のいずれか1つに記載の作業機械。
(Appendix 5)
The work machine has a boom connected to the main body,
The working machine according to any one of appendix 2, appendix 3, or appendix 4 citing appendix 2, wherein the controller operates the bucket in the tilt direction while maintaining the attitude of the boom with respect to the main body. .
 (付記6)
 前記作業機は、前記本体に連結されたブームを有し、
 前記コントローラは、前記特徴点が前記基準点を超えた時点で、前記ブームを下げる前記作業機アクチュエータの駆動を開始する、付記2、付記3、付記2を引用する付記4、または付記5のいずれか1つに記載の作業機械。
(Appendix 6)
The work machine has a boom connected to the main body,
The controller starts driving the work equipment actuator that lowers the boom when the characteristic point exceeds the reference point. or the working machine described in one of the above.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated not by the above description but by the claims, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1 ホイールローダ、2 車体フレーム、2a 前フレーム、2b 後フレーム、3 作業機、4 走行装置、4a,4b 走行輪、5 キャブ、6 バケット、8 操作装置、9 ブームピン、11 ステアリングシリンダ、13 作業機ポンプ、14 ブーム、15 リンク、16 ブームシリンダ、17 バケットピン、18 ベルクランク、18a 支持ピン、18b,18c 連結ピン、19 バケットシリンダ、21 エンジン、23 トランスミッション、25 アクスル、32 メインバルブ、35,36 電磁比例制御弁、41 アクセルペダル、42 作業機操作レバー、50 車体コントローラ、51 機械モニタ、60 エンジンコントローラ、70 トランスミッションコントローラ、71 ブレーキ制御部、72 アクセル制御部、80 作業機コントローラ、81 ステアリング制御部、82 作業機制御部、100 自動化コントローラ、101 位置推定部、102 パスプランニング部、103 経路追従制御部、110 外界情報取得部、111 知覚装置、112 位置情報取得装置、120 車体情報取得部、121 アーティキュレート角度センサ、122 車両速度センサ、123 ブーム角度センサ、124 バケット角度センサ、125 ブームシリンダ圧力センサ、130 インターフェース、131 自動化切替スイッチ、132 エンジン緊急停止スイッチ、133 モードランプ、140 アクチュエータ、141 ブレーキEPC、142 ステアリングEPC、143 作業機EPC、144 HMT。 1 Wheel loader, 2 Body frame, 2a Front frame, 2b Rear frame, 3 Work equipment, 4 Travel device, 4a, 4b Travel wheels, 5 Cab, 6 Bucket, 8 Operating device, 9 Boom pin, 11 Steering cylinder, 13 Work equipment Pump, 14 Boom, 15 Link, 16 Boom cylinder, 17 Bucket pin, 18 Bell crank, 18a Support pin, 18b, 18c Connection pin, 19 Bucket cylinder, 21 Engine, 23 Transmission, 25 Axle, 32 Main valve, 35, 36 Electromagnetic proportional control valve, 41 accelerator pedal, 42 work equipment operating lever, 50 vehicle controller, 51 machine monitor, 60 engine controller, 70 transmission controller, 71 brake control unit, 72 accelerator control unit, 80 work equipment controller, 81 steering control unit , 82 Work equipment control section, 100 Automation controller, 101 Position estimation section, 102 Path planning section, 103 Route following control section, 110 External world information acquisition section, 111 Perception device, 112 Position information acquisition device, 120 Vehicle body information acquisition section, 121 Articulated angle sensor, 122 Vehicle speed sensor, 123 Boom angle sensor, 124 Bucket angle sensor, 125 Boom cylinder pressure sensor, 130 Interface, 131 Automation changeover switch, 132 Engine emergency stop switch, 133 Mode lamp, 140 Actuator, 141 Brake EPC , 142 Steering EPC, 143 Work equipment EPC, 144 HMT.

Claims (8)

  1.  走行体を有する本体と、
     前記本体の前方に取り付けられ、先端にバケットを有する、作業機と、
     前記本体に対し前記作業機を駆動する作業機アクチュエータと、
     前記走行体の進行状態を検出する走行センサと、
     前記作業機の姿勢を検出する作業機姿勢センサと、
     前記本体の周辺の物体を検出する物体センサと、
     前記走行センサ、前記作業機姿勢センサおよび前記物体センサの検出値に基づき、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
     前記コントローラは、物体の検出に基づき前記バケット内の荷を積み込むための積込目標を認識し、前記バケットの特徴点が前記積込目標の上方に位置するときに前記バケットをフルダンプ状態にし、前記フルダンプ状態を維持したまま前記走行体を後進走行させるように、前記作業機アクチュエータと前記走行体とを制御する、作業機械。
    A main body having a running body;
    a working machine attached to the front of the main body and having a bucket at the tip;
    a work implement actuator that drives the work implement with respect to the main body;
    a traveling sensor that detects the progress state of the traveling body;
    a work machine attitude sensor that detects the attitude of the work machine;
    an object sensor that detects objects around the main body;
    a controller that commands driving of the work implement actuator based on detected values of the travel sensor, the work implement attitude sensor, and the object sensor;
    The controller recognizes a loading target for loading a load in the bucket based on object detection, puts the bucket in a full dump state when a feature point of the bucket is located above the loading target, and A work machine that controls the work implement actuator and the traveling body so that the traveling body travels backward while maintaining a full dump state.
  2.  前記コントローラは、前記物体センサが認識した前記積込目標の側面上端を基準点として設定し、前記基準点と前記特徴点との水平距離が所定値以下になった時点で、前記バケットをチルト方向へ動作させる前記作業機アクチュエータの駆動を開始する、請求項1に記載の作業機械。 The controller sets the upper end of the side surface of the loading target recognized by the object sensor as a reference point, and when the horizontal distance between the reference point and the feature point becomes equal to or less than a predetermined value, tilts the bucket. The working machine according to claim 1, wherein the working machine starts driving the working machine actuator to operate the working machine.
  3.  前記コントローラは、前記特徴点が前記基準点を超えた時点で、前記バケットを前記チルト方向へ動作させる前記作業機アクチュエータの駆動を停止する、請求項2に記載の作業機械。 The work machine according to claim 2, wherein the controller stops driving the work machine actuator that moves the bucket in the tilt direction when the characteristic point exceeds the reference point.
  4.  前記作業機は、前記本体に連結されたブームを有し、
     前記コントローラは、前記本体に対する前記ブームの姿勢を保持しながら、前記フルダンプ状態を維持したまま前記走行体を後進走行させる、請求項1から請求項3のいずれか1項に記載の作業機械。
    The work machine has a boom connected to the main body,
    The working machine according to any one of claims 1 to 3, wherein the controller causes the traveling body to travel backward while maintaining the full dump state while maintaining the attitude of the boom with respect to the main body.
  5.  前記作業機は、前記本体に連結されたブームを有し、
     前記コントローラは、前記本体に対する前記ブームの姿勢を保持しながら、前記バケットを前記チルト方向へ動作させる、請求項2または請求項3に記載の作業機械。
    The work machine has a boom connected to the main body,
    The working machine according to claim 2 or 3, wherein the controller operates the bucket in the tilt direction while maintaining the attitude of the boom with respect to the main body.
  6.  前記作業機は、前記本体に連結されたブームを有し、
     前記コントローラは、前記特徴点が前記基準点を超えた時点で、前記ブームを下げる前記作業機アクチュエータの駆動を開始する、請求項3に記載の作業機械。
    The work machine has a boom connected to the main body,
    The work machine according to claim 3, wherein the controller starts driving the work machine actuator that lowers the boom when the characteristic point exceeds the reference point.
  7.  作業機械を含むシステムであって、
     走行体を有する作業機械本体と、
     前記作業機械本体の前方に取り付けられ、先端にバケットを有する、作業機と、
     前記作業機械本体に対し前記作業機を駆動する作業機アクチュエータと、
     前記走行体の進行状態を検出する走行センサと、
     前記作業機の姿勢を検出する作業機姿勢センサと、
     前記作業機械本体の周辺の物体を検出する物体センサと、
     前記走行センサ、前記作業機姿勢センサおよび前記物体センサの検出値に基づき、前記作業機アクチュエータの駆動を指令するコントローラと、を備え、
     前記コントローラは、物体の検出に基づき前記バケット内の荷を積み込むための積込目標を認識し、前記バケットの特徴点が前記積込目標の上方に位置するときに前記バケットをフルダンプ状態にし、前記フルダンプ状態を維持したまま前記走行体を後進走行させるように、前記作業機アクチュエータと前記走行体とを制御する、システム。
    A system including a working machine,
    A working machine body having a running body;
    A working machine that is attached to the front of the working machine main body and has a bucket at the tip;
    a work machine actuator that drives the work machine with respect to the work machine main body;
    a traveling sensor that detects the progress state of the traveling body;
    a work machine attitude sensor that detects the attitude of the work machine;
    an object sensor that detects objects around the work machine main body;
    a controller that commands driving of the work implement actuator based on detected values of the travel sensor, the work implement attitude sensor, and the object sensor;
    The controller recognizes a loading target for loading a load in the bucket based on object detection, puts the bucket in a full dump state when a feature point of the bucket is located above the loading target, and A system that controls the work implement actuator and the traveling body so as to cause the traveling body to travel backward while maintaining a full dump state.
  8.  物体の検出信号よりバケット内の荷を積み込むための積込目標を認識することと、
     前記バケットの特徴点を前記積込目標の上方に移動させることと、
     前記特徴点が前記積込目標の上方に位置する状態で前記バケットをフルダンプ状態にすることと、
     前記フルダンプ状態を維持したまま走行体を後進走行させることと、を備える、作業機械の制御方法。
    Recognizing the loading target for loading the load in the bucket from the detection signal of the object;
    moving a feature point of the bucket above the loading target;
    bringing the bucket into a full dump state with the feature point located above the loading target;
    A method for controlling a working machine, comprising: causing a traveling body to travel backward while maintaining the full dump state.
PCT/JP2023/028887 2022-08-24 2023-08-08 Work machine, system including work machine, and method for controlling work machine WO2024043075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133548 2022-08-24
JP2022133548A JP2024030582A (en) 2022-08-24 2022-08-24 Work machine, system including work machine, and work machine control method

Publications (1)

Publication Number Publication Date
WO2024043075A1 true WO2024043075A1 (en) 2024-02-29

Family

ID=90013106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028887 WO2024043075A1 (en) 2022-08-24 2023-08-08 Work machine, system including work machine, and method for controlling work machine

Country Status (2)

Country Link
JP (1) JP2024030582A (en)
WO (1) WO2024043075A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088625A (en) * 1996-09-13 1998-04-07 Komatsu Ltd Automatic excavation machine and method, and automatic loading method
WO2011108550A1 (en) * 2010-03-05 2011-09-09 株式会社小松製作所 Damper operation control device for a work vehicle, and damper operation control method
WO2015129932A1 (en) * 2015-03-25 2015-09-03 株式会社小松製作所 Wheel loader
JP2019190238A (en) * 2018-04-27 2019-10-31 株式会社小松製作所 Control system of loading equipment and control method of loading equipment
JP2021009556A (en) * 2019-07-01 2021-01-28 株式会社小松製作所 System including work machine and work machine
US20210223400A1 (en) * 2020-01-20 2021-07-22 Doosan Infracore Co., Ltd. System and method of controlling wheel loader

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088625A (en) * 1996-09-13 1998-04-07 Komatsu Ltd Automatic excavation machine and method, and automatic loading method
WO2011108550A1 (en) * 2010-03-05 2011-09-09 株式会社小松製作所 Damper operation control device for a work vehicle, and damper operation control method
WO2015129932A1 (en) * 2015-03-25 2015-09-03 株式会社小松製作所 Wheel loader
JP2019190238A (en) * 2018-04-27 2019-10-31 株式会社小松製作所 Control system of loading equipment and control method of loading equipment
JP2021009556A (en) * 2019-07-01 2021-01-28 株式会社小松製作所 System including work machine and work machine
US20210223400A1 (en) * 2020-01-20 2021-07-22 Doosan Infracore Co., Ltd. System and method of controlling wheel loader

Also Published As

Publication number Publication date
JP2024030582A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US10443214B2 (en) Control system for work vehicle, control method, and work vehicle
US9487931B2 (en) Excavation system providing machine cycle training
US11268264B2 (en) Control system for work vehicle, control method, and work vehicle
US11668071B2 (en) Control system for work vehicle, control method, and work vehicle
US11105071B2 (en) Control system for work vehicle, control method, and work vehicle
US11001993B2 (en) Control system for work vehicle, control method, and work vehicle
US11408149B2 (en) Control system for work vehicle, control method, and work vehicle
EP3851590B1 (en) System and method of controlling wheel loader
US11371218B2 (en) Control system for work vehicle, control mei&#39;hod, and work vehicle
US10907325B2 (en) Control system for work vehicle, control method, and work vehicle
CN113454294B (en) Control system and control method for work machine
WO2024043075A1 (en) Work machine, system including work machine, and method for controlling work machine
KR20210105138A (en) System and method of controlling wheel loader
WO2024043074A1 (en) Work machine, system including work machine, and method for controlling work machine
WO2022209176A1 (en) Travel system for work machine and method for controlling work machine
WO2024053443A1 (en) Work machine, system including work machine, and method for controlling work machine
WO2024057961A1 (en) System including work machine, controller for work machine, and method for controlling work machine
WO2024057959A1 (en) System including work machine, controller for work machine, and method for controlling work machine
WO2024062899A1 (en) System including work machine and method for controlling work machine
WO2024127948A1 (en) System including work machine, method for controlling work machine, and controller for work machine
WO2024127946A1 (en) System comprising heavy equipment, control method for heavy equipment, and controller for heavy equipment
WO2024127947A1 (en) System including work machine, method for controlling work machine, and controller for work machine
US12006656B2 (en) Work vehicle, control device for work vehicle, and method for specifying direction of work vehicle
JP2024085104A (en) SYSTEM INCLUDING WORK MACHINE, CONTROL METHOD FOR WORK MACHINE, AND CONTROLLER FOR WORK MACHINE
JP2024085103A (en) SYSTEM INCLUDING WORK MACHINE, CONTROL METHOD FOR WORK MACHINE, AND CONTROLLER FOR WORK MACHINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857189

Country of ref document: EP

Kind code of ref document: A1