WO2024052956A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2024052956A1
WO2024052956A1 PCT/JP2022/033265 JP2022033265W WO2024052956A1 WO 2024052956 A1 WO2024052956 A1 WO 2024052956A1 JP 2022033265 W JP2022033265 W JP 2022033265W WO 2024052956 A1 WO2024052956 A1 WO 2024052956A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
electric machine
rotating electric
coil cover
end portion
Prior art date
Application number
PCT/JP2022/033265
Other languages
French (fr)
Japanese (ja)
Inventor
豪成 奥山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/033265 priority Critical patent/WO2024052956A1/en
Publication of WO2024052956A1 publication Critical patent/WO2024052956A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the present invention relates to a rotating electrical machine.
  • JP4586542B2 discloses a rotating electrical machine in which a coil is fixed to a stator core with molded resin.
  • an annular oil passage is formed in the coil end portion using molded resin and a cover, and a large flow of cooling oil is allowed to flow through the oil passage to cool the motor coil.
  • JP4586542B2 fixes the coil with molded resin, there is a risk that a part of the coil's conducting wire may be hidden from the oil path (cooling channel). For this reason, there is still a possibility that the motor coil may not be sufficiently cooled.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a rotating electric machine with improved cooling efficiency of a motor coil.
  • the rotor includes a rotor having a rotating shaft, a stator core that is arranged radially outside the rotor, and in which a plurality of coils are arranged, and a coil end portion extending from an end of the stator core in the axial direction of the rotating shaft.
  • a rotating electric machine is provided, which includes a stator from which a coil end portion is cooled by a refrigerant.
  • This rotating electrical machine includes a first coil cover that is disposed at both ends of the stator in the axial direction and covers the outer diameter side and the axial end of the coil of the coil end portion, and a cylindrical second coil cover that covers the inner diameter side of the stator.
  • a refrigerant flow path formed by a first coil cover, a second coil cover, and a stator core, and a coil end portion is located within the refrigerant flow path.
  • FIG. 1 is a schematic configuration diagram showing the main configuration of a rotating electric machine according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view of the rotating electrical machine.
  • FIG. 3 is an enlarged view of portions C and D in FIG. 1.
  • FIG. 4 is an enlarged view of the vicinity of the coil end portion on one side.
  • FIG. 1 is a schematic configuration diagram of a motor 100 as a rotating electric machine according to an embodiment of the present invention, and is a sectional view of the motor 100.
  • the motor 100 will be described as a drive motor for a vehicle, but the motor 100 may be used as a drive source for a system other than a vehicle.
  • the motor 100 includes a rotor 10 having a rotating shaft 12, a stator 20 including a stator core 21 and a coil end portion 22, a first coil cover 30, a second coil cover 40, and the like.
  • the motor 100 is housed in a housing 60 made of aluminum, for example.
  • the rotor 10 includes a cylindrical rotor core 11 equipped with a permanent magnet, and a rotating shaft 12 fixed within the insertion hole 11A of the rotor core 11.
  • the rotor 10 is arranged inside the stator 20 so as to be rotatable with respect to the stator 20.
  • the rotating shaft 12 is configured as a shaft member protruding from both end surfaces of the rotor core 11.
  • the stator 20 includes a stator core 21 that is arranged radially outward of the rotor 10 (rotor core 11) and in which a plurality of coils (hereinafter also referred to as motor coils or stator coils) are arranged. Further, in the stator 20, a coil end portion 22 protrudes from the end of the stator core 21 in the axial direction of the rotating shaft 12 (hereinafter also referred to as the axial direction).
  • the stator core 21 is a cylindrical member formed by laminating a plurality of electromagnetic steel plates, and a coil is wound around teeth (not shown) formed inside the stator core 21.
  • coil end portions 22 that constitute part of the coil protrude in the axial direction.
  • the coil end portion 22 includes a coil end portion 22A that projects in the axial direction from one end of the stator core 21 in the axial direction, and a coil end portion 22B that projects in the axial direction from the other end.
  • the first coil cover 30 is a member that covers the outer diameter side and the axial end of the coil of the coil end portion 22, and has a generally annular outer shape.
  • the first coil cover 30 is made of an insulating resin or the like and is molded by injection molding or the like, but the material and molding method of the first coil cover 3 are not necessarily limited to this.
  • the first coil cover 30 includes a first coil cover 30A disposed at one axial end of the stator 20 (coil end 22A side), and a first coil cover 30A disposed at the other axial end of the stator 20 (coil end 22B). side) of the first coil cover 30B.
  • the first coil cover 30A covers the outer diameter side and the axial end of the coil end portion 22A, and the inner diameter side end surface is in contact with a second coil cover 40, which will be described later. Further, on the outer diameter side of the motor 100, a space between the first coil cover 30A and the stator core 21 is sealed by a housing 60. On the upper side of the motor 100 inside the first coil cover 30A, there is provided a high-voltage terminal section 33 that connects the power line of the stator core 21 (motor 100) to an electric component such as an inverter outside the motor 100. Note that in this embodiment, the space between the first coil cover 30A and the stator core 21 is sealed by the aluminum casing, but the invention is not limited to this. They may be in contact with each other.
  • the first coil cover 30A also has an injection port 31A for injecting cooling oil (refrigerant) into a portion located above the motor 100, and discharges cooling oil (refrigerant) into a portion located below the motor 100. It has a discharge port 32A.
  • the first coil cover 30B covers the outer diameter side and the axial end of the coil end portion 22B, and the inner diameter end surface is in contact with a second coil cover 40, which will be described later. Further, the first coil cover 30B is in contact with the side surface of the stator core 21 via a seal member or the like on the outer diameter side.
  • the first coil cover 30B also has an injection port 31B for injecting cooling oil (refrigerant) into a portion located at the bottom of the motor 100, and discharges cooling oil (refrigerant) into a portion located at the top of the motor 100. It has a notch 32B as a discharge port.
  • the second coil cover 40 is a member that covers the inner diameter side of the stator 20, and has a cylindrical shape.
  • the second coil cover 40 is made of a non-magnetic material such as stainless steel or carbon fiber reinforced plastic (CFRP), and is molded by injection molding or the like.
  • CFRP carbon fiber reinforced plastic
  • the second coil cover 40 extends to the outside of the coil end portions 22 that protrude from both ends of the stator core 21 in the axial direction, and partitions the rotor 10 and the stator 20.
  • a first coil cover 30 covers the outer shape and axial end of the coil of the coil end portion 22
  • a second coil cover 40 covers the inner diameter side of the stator 20, and a stator core disposed on the radially outer side of the rotor core 11.
  • 21 forms a closed space that covers the coil end portion 22.
  • the closed space constitutes a cooling channel (refrigerant channel) 50 through which cooling oil flows. That is, a cooling channel 50A is formed at one end of the stator 20 in the axial direction by the first coil cover 30A, the second coil cover 40, and the stator core 21, and a first coil cover 30B is formed at the other end. , the second coil cover 40 and the stator core 21 form a cooling flow path 50B.
  • Cooling oil is injected into the cooling channel 50A from the injection port 31A of the first coil cover 30A, thereby cooling the coil end portion 22A.
  • the cooling oil that has cooled the coil end portion 22A is discharged from the discharge port 32A.
  • cooling oil is injected into the cooling channel 50B from the injection port 31B of the first coil cover 30B, thereby cooling the coil end portion 22B.
  • the cooling oil that has cooled the coil end portion 22B is discharged from the notch (discharge port) 32B.
  • a first coil cover 30 covers the outer shape and axial end of the coil of the coil end portion 22
  • a second coil cover 40 covers the inner diameter side of the stator 20, and a radial direction of the rotor core 11.
  • a closed space that covers the coil end portion 22 is formed with the stator core 21 disposed on the outside, and the closed space is used as a cooling flow path 50.
  • the closed space covering the coil end portion 22 is used as the cooling channel 50, it is possible to flow a large amount of cooling oil, and the flow rate of the cooling oil flowing through the cooling channel 50 can be increased. . Further, the coil end portion 22 can be exposed to the cooling oil. Therefore, the cooling efficiency of the coil is improved.
  • FIG. 2 is a cross-sectional perspective view of the motor (rotating electric machine) 100, with the rotor 10 and the casing 60 removed.
  • a coil end portion 22A that projects from one axial end of the stator core 21 in the axial direction is formed by a first coil cover 30A, a second coil cover 40, and the stator core 21. It is located within the cooling channel 50A, which is a closed space. Further, on the upper side of the motor 100 inside the cooling channel 50A, a high-voltage terminal part 33 is arranged to electrically connect the power line of the stator core 21 (motor 100) to an electric component such as an inverter outside the motor 100. There is.
  • the coil end portion 22B that protrudes in the axial direction from the other end of the stator core 21 in the axial direction is a closed space formed by the first coil cover 30B, the second coil cover 40, and the stator core 21. It is located within the flow path 50B.
  • the first coil cover 30A disposed at one end of the stator 20 in the axial direction has the injection port 31A at the upper part of the motor 100 and the inlet 31A at the lower part of the motor 100. , and has a discharge port 32A.
  • the first coil cover 30B disposed at the other end of the stator 20 in the axial direction has an injection port 31B at a portion located at the bottom of the motor 100, and a cutout at a portion located at the top of the motor 100. It has a notch (exhaust port) 32B. Note that the injection port 31A and the injection port 31B are connected to an oil pump (not shown) for pumping cooling oil.
  • the cooling oil When the cooling oil is pumped from the oil pump, the cooling oil is injected into the cooling channel 50A from the injection port 31A and into the cooling channel 50B from the injection port 31B.
  • the cooling oil injected from the injection port 31A located at the top of the motor 100 flows into two parts in the left and right radial directions of the cooling passage 50A, passes through the cooling passage 50A along the coil end portion 22A, and flows into the cooling passage 50A. It is discharged from the discharge port 32A located at the bottom. Thereby, the coil end portion 22A is cooled, and the stator coil is cooled. Furthermore, the high-voltage terminal portion 33 disposed on the upper side of the motor 100 inside the cooling flow path 50A is also cooled by the cooling oil injected from the injection port 31A. Cooling oil discharged from the discharge port 32A passes through a passage inside the motor 100 and is collected in an oil pan (not shown).
  • the cooling oil injected from the injection port 31B located at the bottom of the motor 100 is divided into two parts in the left and right directions in the radial direction of the cooling passage 50B by the projection pressure of the oil pump, and is cooled along the coil end portion 22B.
  • the flow path 50B is filled with cooling oil.
  • the coil end portion 22B is cooled, and the stator coil is cooled.
  • the cooling oil in the cooling channel 50B reaches the notch 32B located at the top of the motor 100, the cooling oil is discharged from the notch 32B. Cooling oil discharged from the notch 32B flows down from the outside of the first coil cover 30B and is collected in the oil pan.
  • the cooling oil in the cooling channel 50A or the cooling channel 50B may flow into the open slot portion (between the teeth) of the stator core 21. Get into it. As a result, the open slot portion comes into contact with the cooling oil, and not only the stator coil but also the stator core 21 is cooled.
  • cooling oil flows from the upper part of the motor 100 to the lower part, and the cooling oil flows to the other axial end.
  • cooling oil flows from the lower part of the motor 100 to the upper part. Therefore, the motor coil can be cooled uniformly and evenly.
  • the cooling flow path 50A formed at one end in the axial direction of the motor 100 in order to flow the cooling oil from the part located at the upper part of the motor 100, the high-voltage terminal part 33 arranged at the upper part of the motor 100 is also used. Can be effectively cooled.
  • the cooling passage 50B formed at the other end in the axial direction of the motor 100 cooling oil is supplied from a portion located at the lower part of the motor 100, so that the cooling oil is supplied from the lower side to the upper side in the cooling passage 50B. Cooling oil is then filled, and air in the cooling channel 50B is discharged. That is, air is prevented from being trapped in the cooling flow path 50B.
  • the cooling oil evenly contacts the coil surface, allowing the motor coil to be efficiently cooled. That is, at one end in the axial direction of the motor 100, priority is given to the layout of the high-voltage terminal section 33 that connects to electric components such as an inverter, and cooling of the high-voltage terminal section 33, and at the other end in the axial direction where the high-voltage terminal section 33 is not arranged. At the ends, the motor coils are efficiently cooled.
  • the inlet 31A and the inlet 31B are arranged at positions such that the amount of cooling oil divided in the counterclockwise direction in the radial direction is equal to the amount of the cooling oil divided in the clockwise direction. .
  • the coil end portions 22A, 22B are cooled more efficiently and evenly.
  • the positions of the injection ports 31A and 31B so that the divided flow rates are the same can be determined in advance through experiments or the like.
  • the first coil cover 30, the second coil cover 40, and the stator core 21 form a closed space (cooling channel 50) that covers the coil end portion 22, and
  • the motor coil is cooled by cooling oil flowing through the flow path 50).
  • the closed space covering the coil end portion 22 is used as the cooling channel 50, it is possible to flow a large amount of cooling oil into the cooling channel 50, and the flow rate of the cooling oil flowing through the cooling channel 50 can be increased. can be made faster. Further, the coil end portion 22 can be exposed to the cooling oil.
  • the cooling efficiency of the coil increases as the flow rate increases and as the contact area between the coil and the refrigerant increases.
  • the motor 100 of this embodiment is superior to the conventional method of dropping cooling oil to the coil end portion, the method of injecting refrigerant, or the method of forming an annular cooling channel at the coil end portion with molded resin and a cover. , the flow velocity of the cooling oil and the contact area of the coil can be increased, and the cooling efficiency of the coil can be improved.
  • FIG. 3 is a partially enlarged view of the motor 100, in which (a) is an enlarged view of portion C in FIG. 1, and (b) is an enlarged view of portion D in FIG. Note that FIG. 3 is a diagram with the rotor 10 and the housing 60 removed.
  • the second coil cover 40 that covers the inner diameter side of the stator 20 extends to the outside of the coil end portions 22 that protrude from both ends of the stator core 21 in the axial direction. 30 in the radial direction.
  • the second coil cover 40 has a thick wall portion 41 that is thicker in the radial direction than other portions at one end in the axial direction (coil end portion 22A side). 41 is in contact with the first coil cover 30A in the radial direction via a sealing member 42A such as an O-ring. Further, the second coil cover 40 is in contact with the first coil cover 30B in the radial direction at the other end in the axial direction (coil end portion 22B side) via a sealing member 42B such as an O-ring. .
  • both ends of the second coil cover 40 in the axial direction extend to the outside of the coil end portion 22, and at both ends of the second coil cover 40, the first coil cover 30 and the second coil cover 40 are connected in the radial direction.
  • the cooling oil is prevented from leaking from the cooling channels 50A and 50B. Therefore, the cooling oil is prevented from entering the rotor 10 side, and oil stirring loss is prevented from occurring.
  • the second coil cover 40 and the first coil covers 30A, 30B are in contact with each other via the seal members 42A, 42B, leakage of cooling oil from the cooling channels 50A, 50B is further prevented. Ru.
  • the second coil cover 40 has a thick wall portion 41 at one end in the axial direction that contacts the first coil cover 30 in the radial direction, the rigidity of the second coil cover 40 is increased, and the first coil cover The sealing pressure of the sealing member 42A between the coil cover 30A and the second coil cover 40 is increased, and the sealing performance is improved.
  • sealing members 42A and 42B are not limited to O-rings, and the space between the first coil cover 30 and the second coil cover 40 may be sealed using an adhesive or the like without using a sealing member.
  • an insulator 34 is interposed between the outer diameter side of the coil end portion 22A and the stator core 21 inside the first coil cover 30A at one end in the axial direction. Further, the second coil cover 40 and the coil end portion 22 are in contact with each other with an insulator 43 in between.
  • the insulator 34 is provided between the outer diameter side of the coil end portion 22A and the stator core 21, the bundle of coils (copper wires) of the coil end portion 22A is separated from the stator core 21 by an insulation distance. It can be placed without consideration. Furthermore, since the insulator 43 is provided between the second coil cover 40 and the coil end portion 22, insulation between the second coil cover 40 and the coil end portion 22 is ensured.
  • the second coil cover 40 is made of a non-magnetic material. This prevents the second coil cover 40 from affecting the magnetic field between the rotor 10 and the stator 20. Further, preferably, the second coil cover 40 is made of a non-magnetic and non-conductive material such as glass fiber reinforced plastic (GFRP). By using a non-conductive material, induced electromotive force is prevented from being generated within the second coil cover 40 due to interlinkage magnetic flux generated between the rotor 10 and the stator 20, and the second coil cover is prevented from generating heat. suppressed. When a non-conductive material is used for the second coil cover 40, the insulation between the second coil cover 40 and the coil end portion 22 is ensured, so it is not necessary to provide the insulator 43.
  • GFRP glass fiber reinforced plastic
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the coil end portion 22A on one side.
  • the first coil cover 30A and the stator core 21 are sealed at the top of the motor 100 by a housing 60 that houses the motor 100. Further, an insulator 43 is interposed between the coil end portion 22A and the second coil cover 40, and an insulator 34 is interposed between the outer diameter side of the coil end portion 22A and the stator core 21. . Note that, as described above, the first coil cover 30A and the stator core 21 may be in direct contact with each other without interposing the housing 60.
  • the insulator 34 extends from the middle of one end surface of the stator core 21 to the outer diameter side along the outer shape of the stator core 21, and further extends to the outer diameter side of the coil end portion 22A. Further, the insulator 34 is sealed with a liquid gasket or the like on the outer diameter side of the coil end portion 22A in a fitted state between the first coil cover 30A and the coil end portion 22A.
  • the power wire of the motor 100 (stator core 21) is routed through the coil end portion 22A, but as the area where the coil of the coil end portion 22A is covered with the power wire increases, the cooling effect of the cooling oil is reduced. There is a risk that it will decline.
  • the insulator 34 is provided between the outer diameter side of the coil end portion 22A and the stator core 21, the bundle of coils (copper wire) of the coil end portion 22A is connected to the stator core 21.
  • the bundle of coils (copper wires) in the coil end portion 22A can be bent toward the outer diameter side and further toward the stator core 21, and the power wires can be gathered on the outer diameter side of the coil end portion 22A. Therefore, the exposed area of the surface of the coil (copper wire) of the coil end portion 22A can be increased, thereby further improving the cooling effect of the cooling oil.
  • the motor (rotating electric machine) 100 includes a first coil cover 30 that covers the outer diameter side and axial end of the coil of the coil end portion 22, a cylindrical second coil cover 40 that covers the inner diameter side of the stator 20, and a stator core. 21 and a cooling flow path (refrigerant flow path) 50 which is a closed space.
  • the coil end portion 22 is located within the cooling channel (refrigerant channel) 50. In this way, since the closed space covering the coil end portion 22 is used as the cooling flow path (refrigerant flow path) 50 for cooling the coil end portion 22, a large flow rate is applied to the cooling flow path (refrigerant flow path) 50. It becomes possible to flow the cooling oil, and the flow rate of the cooling oil flowing through the cooling channel 50 can be increased. Further, the exposed area of the coil end portion 22 to the cooling oil can be increased. Therefore, the cooling efficiency of the motor coil is improved.
  • a first coil cover 30A disposed at one end of the stator 20 in the axial direction injects cooling oil (refrigerant) into an upper portion of the motor (rotating electric machine) 100. It has an injection port 31A, and a discharge port 32A for discharging cooling oil (refrigerant) at a lower portion.
  • a first coil cover 30B disposed at the other axial end of the stator 20 has an injection port 31B for injecting cooling oil (refrigerant) into a portion located at the bottom of the motor (rotating electric machine) 100.
  • the cooling oil flows from the top to the bottom in the cooling passage 50A formed at one end in the axial direction of the motor (rotating electric machine) 100, and in the cooling passage 50B formed at the other end in the axial direction. , cooling oil flows from the bottom to the top. Therefore, the motor coil can be uniformly cooled. That is, the cooling efficiency of the motor coil is improved.
  • the motor (rotating electric machine) 100 has a power supply line for the motor (rotating electric machine) 100 on the upper side of the motor (rotating electric machine) 100 inside the first coil cover 30A disposed at one axial end of the stator 20.
  • a high-voltage terminal portion 33 is provided to connect to the inverter and the inverter. That is, the high-voltage terminal portion 33 is provided near the injection port 31A through which cooling oil (refrigerant) is injected. Therefore, the high-voltage terminal portion 33 can also be efficiently cooled by the cooling oil (refrigerant) that cools the motor coil.
  • the motor (rotating electric machine) 100 includes an insulator 34 between the outer diameter side of the coil end portion 22A and the stator core 21.
  • the bundle of coils (copper wire) in the coil end portion 22A can be arranged without considering the insulation distance from the stator core 21, and the exposed area of the surface of the coil (copper wire) in the coil end portion 22A can be reduced. Can be made larger. Therefore, the cooling effect of the cooling oil (refrigerant) is further improved.
  • both ends of the second coil cover 40 in the axial direction extend to the outside of the coil end portion 22, and the first coil cover 30 and the second coil cover 40 are radially connected to a sealing member. Abutting via 42A and 42B. This prevents the cooling oil (refrigerant) from leaking from the cooling channel (refrigerant channel) 50 formed by the first coil cover 30, the second coil cover 40, and the stator core 21. Therefore, the cooling oil (refrigerant) is prevented from entering the rotor 10 side, and the occurrence of stirring loss is prevented.
  • the second coil cover 40 has a thick wall portion 41 at one end in the axial direction where the second coil cover 40 contacts the first coil cover 30 in the radial direction. This increases the rigidity of the second coil cover 40, increases the sealing pressure resistance of the seal member 42A between the first coil cover 30A and the second coil cover 40, and improves sealing performance.
  • the second coil cover 40 and the coil end portion 22 are in contact with each other with an insulator 43 in between. This ensures insulation between the second coil cover 40 and the coil end portion 22.
  • the second coil cover 40 is made of a non-magnetic material. This prevents the second coil cover 40 from affecting the magnetic field between the rotor 10 and the stator 20.
  • cooling oil is used as a refrigerant to cool the motor coil, but the refrigerant is not limited to this as long as it can cool the coil.
  • the second coil cover 40 is preferably made of a non-magnetic material (and a non-conductive material), but is not necessarily limited to this. Further, in this embodiment, the second coil cover 40 is molded by injection molding, but the method of molding the second coil cover 40 is not limited to this.
  • the outlet of the cooling flow path 50B formed at the other end in the axial direction of the motor 100 is formed into the notch 32B, but this is not necessarily the case. It may be a configuration.
  • the present invention is not necessarily limited to this, and the high-voltage terminal portion 33 may be provided at another location.
  • insulators 34 and 43 between the outer diameter side of the coil end portion 22A and the stator core 21 and between the second coil cover 40 and the coil end portion 22. , but not necessarily limited to this. Even with a configuration that does not include the insulators 34 and 43, it is possible to obtain the effect of improving the cooling efficiency of the motor coil.
  • the second coil cover 40 has the thick portion 41 at one end in the axial direction, but the present invention is not necessarily limited to this.
  • the thick portion 41 may be provided at the other end of the second coil cover 40, or may be provided at both ends in the axial direction.
  • a configuration without the thick portion 41 may be used. Even in this case, the effect of improving the cooling efficiency of the motor coil can be obtained.
  • first coil cover 30 and the second coil cover 40 contact each other in the radial direction via the seal members 42A, 42B, but the seal members 42A, 42B are essential. It's not the composition.

Abstract

Provided is a rotating electric machine comprising a rotor having a rotating shaft and a stator disposed radially outward of the rotor and equipped with a stator core on which a plurality of coils are disposed and from an end of which a coil end portion projects in the axial direction of the rotating shaft, wherein said coil end portion is cooled by a refrigerant. The rotating electric machine comprises: first coil covers disposed at both ends of the stator in the axial direction and covering the outer diameter side and axial direction end portions of the coil of the coil end portion; a cylindrical second coil cover covering the inner diameter side of the stator; and a refrigerant flow path formed by the first coil covers, the second coil cover, and the stator core. The coil end portion is positioned within the refrigerant flow path.

Description

回転電機rotating electric machine
 本発明は、回転電機に関する。 The present invention relates to a rotating electrical machine.
 従来、モータコイルの冷却方法として、コイルエンド部へ冷却オイルを滴下する方法が知られている。しかしながら、この方法では、大流量の冷却オイルを流すことができないという問題がある。 Conventionally, as a method of cooling a motor coil, a method of dropping cooling oil onto the coil end portion is known. However, this method has a problem in that it is not possible to flow a large amount of cooling oil.
 JP4586542B2には、コイルをモールド樹脂によってステータコアに固定した回転電機が開示されている。この回転電機では、コイルエンド部にモールド樹脂とカバーとで環状の油路を形成し、当該油路に大流量の冷却オイルを流すことでモータコイルを冷却している。 JP4586542B2 discloses a rotating electrical machine in which a coil is fixed to a stator core with molded resin. In this rotating electric machine, an annular oil passage is formed in the coil end portion using molded resin and a cover, and a large flow of cooling oil is allowed to flow through the oil passage to cool the motor coil.
 JP4586542B2に記載の方法は、モールド樹脂によってコイルを固定しているため、油路(冷却流路)に対し、コイルの導線の一部が隠れてしまう虞がある。このため、依然としてモータコイルを十分に冷却できない虞がある。 Since the method described in JP4586542B2 fixes the coil with molded resin, there is a risk that a part of the coil's conducting wire may be hidden from the oil path (cooling channel). For this reason, there is still a possibility that the motor coil may not be sufficiently cooled.
 本発明は上記課題に鑑みたものであり、モータコイルの冷却効率が向上した回転電機を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a rotating electric machine with improved cooling efficiency of a motor coil.
 本発明の一態様によれば、回転軸を有するロータと、ロータの径方向外側に配置され、複数のコイルが配置されるステータコアを備えるとともにステータコアの端部から回転軸の軸方向にコイルエンド部が突出するステータと、を備え、コイルエンド部が冷媒により冷却される回転電機が提供される。この回転電機は、ステータの軸方向両端に配置され、コイルエンド部のコイルの外径側及び軸方向端部を覆う第1コイルカバーと、ステータの内径側を覆う円筒状の第2コイルカバーと、第1コイルカバー、第2コイルカバー及びステータコアとで形成された冷媒流路と、を備え、コイルエンド部は、冷媒流路内に位置する。 According to one aspect of the present invention, the rotor includes a rotor having a rotating shaft, a stator core that is arranged radially outside the rotor, and in which a plurality of coils are arranged, and a coil end portion extending from an end of the stator core in the axial direction of the rotating shaft. A rotating electric machine is provided, which includes a stator from which a coil end portion is cooled by a refrigerant. This rotating electrical machine includes a first coil cover that is disposed at both ends of the stator in the axial direction and covers the outer diameter side and the axial end of the coil of the coil end portion, and a cylindrical second coil cover that covers the inner diameter side of the stator. , a refrigerant flow path formed by a first coil cover, a second coil cover, and a stator core, and a coil end portion is located within the refrigerant flow path.
図1は、本発明の実施形態による回転電機の主要構成を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing the main configuration of a rotating electric machine according to an embodiment of the present invention. 図2は、回転電機の断面斜視図である。FIG. 2 is a cross-sectional perspective view of the rotating electrical machine. 図3は、図1のC及びD部分の拡大図である。FIG. 3 is an enlarged view of portions C and D in FIG. 1. 図4は、一方側のコイルエンド部付近の拡大図である。FIG. 4 is an enlarged view of the vicinity of the coil end portion on one side.
 以下、図面等を参照しながら、本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings and the like.
 図1は、本発明の実施形態に係る回転電機としてのモータ100の概略構成図であり、モータ100の断面図である。本実施形態では、モータ100は、車両用の駆動モータとして説明するが、モータ100は、車両以外のシステムの駆動源として用いられてもよい。 FIG. 1 is a schematic configuration diagram of a motor 100 as a rotating electric machine according to an embodiment of the present invention, and is a sectional view of the motor 100. In this embodiment, the motor 100 will be described as a drive motor for a vehicle, but the motor 100 may be used as a drive source for a system other than a vehicle.
 図1に示すように、モータ100は、回転軸12を有するロータ10、ステータコア21及びコイルエンド部22を含むステータ20、第1コイルカバー30、第2コイルカバー40等から構成される。なお、モータ100は、例えばアルミからなる筐体60に収容されている。 As shown in FIG. 1, the motor 100 includes a rotor 10 having a rotating shaft 12, a stator 20 including a stator core 21 and a coil end portion 22, a first coil cover 30, a second coil cover 40, and the like. Note that the motor 100 is housed in a housing 60 made of aluminum, for example.
 ロータ10は、永久磁石を備えた円筒状のロータコア11と、ロータコア11の挿入孔11A内に固定される回転軸12と、を備える。ロータ10は、ステータ20の内部に、当該ステータ20に対して回転可能に配置されている。回転軸12は、ロータコア11の両端面から突出する軸部材として構成されている。 The rotor 10 includes a cylindrical rotor core 11 equipped with a permanent magnet, and a rotating shaft 12 fixed within the insertion hole 11A of the rotor core 11. The rotor 10 is arranged inside the stator 20 so as to be rotatable with respect to the stator 20. The rotating shaft 12 is configured as a shaft member protruding from both end surfaces of the rotor core 11.
 ステータ20は、ロータ10(ロータコア11)の径方向外側に配置され、複数のコイル(以下、モータコイルまたはステータコイルとも言う)が配置されるステータコア21を備える。また、ステータ20は、ステータコア21の端部から回転軸12の軸方向(以下、軸方向とも言う)に、コイルエンド部22が突出している。 The stator 20 includes a stator core 21 that is arranged radially outward of the rotor 10 (rotor core 11) and in which a plurality of coils (hereinafter also referred to as motor coils or stator coils) are arranged. Further, in the stator 20, a coil end portion 22 protrudes from the end of the stator core 21 in the axial direction of the rotating shaft 12 (hereinafter also referred to as the axial direction).
 ステータコア21は、複数枚の電磁鋼板を積層して形成された円筒状部材であり、ステータコア21の内側に形成されたティース(不図示)には、コイルが巻き回されている。ステータコア21の軸方向の両端には、コイルの一部を構成するコイルエンド部22が軸方向に突出している。コイルエンド部22は、ステータコア21の軸方向の一方側端部から軸方向に突出するコイルエンド部22Aと、他方側端部から軸方向に突出するコイルエンド部22Bを含む。ステータ20のコイルに電流が流れると、ロータコア11に備えられた永久磁石との作用により、ロータ10が回転する。 The stator core 21 is a cylindrical member formed by laminating a plurality of electromagnetic steel plates, and a coil is wound around teeth (not shown) formed inside the stator core 21. At both ends of the stator core 21 in the axial direction, coil end portions 22 that constitute part of the coil protrude in the axial direction. The coil end portion 22 includes a coil end portion 22A that projects in the axial direction from one end of the stator core 21 in the axial direction, and a coil end portion 22B that projects in the axial direction from the other end. When current flows through the coils of the stator 20, the rotor 10 rotates due to the action with the permanent magnets provided in the rotor core 11.
 第1コイルカバー30は、コイルエンド部22のコイルの外径側及び軸方向端部を覆う部材であり、概ね円環状の外形を有している。第1コイルカバー30は、絶縁性の樹脂等により構成され、射出成型等により成型されるが、第1コイルカバー3の材料、成型方法は必ずしもこれに限られない。第1コイルカバー30は、ステータ20の軸方向の一方側端部(コイルエンド部22A側)に配置された第1コイルカバー30Aと、ステータ20の軸方向の他方側端部(コイルエンド部22B側)に配置された第1コイルカバー30Bとを含む。 The first coil cover 30 is a member that covers the outer diameter side and the axial end of the coil of the coil end portion 22, and has a generally annular outer shape. The first coil cover 30 is made of an insulating resin or the like and is molded by injection molding or the like, but the material and molding method of the first coil cover 3 are not necessarily limited to this. The first coil cover 30 includes a first coil cover 30A disposed at one axial end of the stator 20 (coil end 22A side), and a first coil cover 30A disposed at the other axial end of the stator 20 (coil end 22B). side) of the first coil cover 30B.
 第1コイルカバー30Aは、コイルエンド部22Aの外径側及び軸方向端部を覆い、内径側の端面が後述の第2コイルカバー40と当接している。また、モータ100の外径側において、第1コイルカバー30Aとステータコア21との間は、筐体60によりシールされている。第1コイルカバー30Aの内部におけるモータ100の上部側には、ステータコア21(モータ100)の電源線とモータ100外部のインバータ等の電気部品とを接続する強電端子部33が設けられている。なお、本実施形態では、第1コイルカバー30Aとステータコア21との間がアルミ筐体によりシールされているが、これに限られず、第1コイルカバー30Aとステータコア21とがシール部材等を介して当接していてもよい。 The first coil cover 30A covers the outer diameter side and the axial end of the coil end portion 22A, and the inner diameter side end surface is in contact with a second coil cover 40, which will be described later. Further, on the outer diameter side of the motor 100, a space between the first coil cover 30A and the stator core 21 is sealed by a housing 60. On the upper side of the motor 100 inside the first coil cover 30A, there is provided a high-voltage terminal section 33 that connects the power line of the stator core 21 (motor 100) to an electric component such as an inverter outside the motor 100. Note that in this embodiment, the space between the first coil cover 30A and the stator core 21 is sealed by the aluminum casing, but the invention is not limited to this. They may be in contact with each other.
 また、第1コイルカバー30Aは、モータ100の上部に位置する部位に冷却オイル(冷媒)を注入する注入口31Aを有し、モータ100の下部に位置する部位に、冷却オイル(冷媒)を排出する排出口32Aを有している。 The first coil cover 30A also has an injection port 31A for injecting cooling oil (refrigerant) into a portion located above the motor 100, and discharges cooling oil (refrigerant) into a portion located below the motor 100. It has a discharge port 32A.
 第1コイルカバー30Bは、コイルエンド部22Bの外径側及び軸方向端部を覆い、内径側の端面が後述の第2コイルカバー40と当接している。また、第1コイルカバー30Bは、外径側において、ステータコア21の側面とシール部材等を介して当接している。 The first coil cover 30B covers the outer diameter side and the axial end of the coil end portion 22B, and the inner diameter end surface is in contact with a second coil cover 40, which will be described later. Further, the first coil cover 30B is in contact with the side surface of the stator core 21 via a seal member or the like on the outer diameter side.
 また、第1コイルカバー30Bは、モータ100の下部に位置する部位に冷却オイル(冷媒)を注入する注入口31Bを有し、モータ100の上部に位置する部位に、冷却オイル(冷媒)を排出する排出口としての切欠き32Bを有している。 The first coil cover 30B also has an injection port 31B for injecting cooling oil (refrigerant) into a portion located at the bottom of the motor 100, and discharges cooling oil (refrigerant) into a portion located at the top of the motor 100. It has a notch 32B as a discharge port.
 第2コイルカバー40は、ステータ20の内径側を覆う部材であり、円筒状に構成される。第2コイルカバー40は、ステンレスまたは炭素繊維強化プラスチック(CFRP)などの非磁性材料により構成され、射出成型等により成型される。第2コイルカバー40は、ステータコア21の軸方向の両端から突出するコイルエンド部22よりも外側まで延設されており、ロータ10とステータ20とを区画する。 The second coil cover 40 is a member that covers the inner diameter side of the stator 20, and has a cylindrical shape. The second coil cover 40 is made of a non-magnetic material such as stainless steel or carbon fiber reinforced plastic (CFRP), and is molded by injection molding or the like. The second coil cover 40 extends to the outside of the coil end portions 22 that protrude from both ends of the stator core 21 in the axial direction, and partitions the rotor 10 and the stator 20.
 ここで、コイルエンド部22のコイルの外形及び軸方向端部を覆う第1コイルカバー30と、ステータ20の内径側を覆う第2コイルカバー40と、ロータコア11の径方向外側に配置されたステータコア21とは、コイルエンド部22を覆う閉空間を形成する。そして、当該閉空間は、冷却オイルが流れる冷却流路(冷媒流路)50を構成する。即ち、ステータ20の軸方向の一方側端部には、第1コイルカバー30A、第2コイルカバー40及びステータコア21により冷却流路50Aが形成され、他方側端部には、第1コイルカバー30B、第2コイルカバー40及びステータコア21により冷却流路50Bが形成されている。 Here, a first coil cover 30 covers the outer shape and axial end of the coil of the coil end portion 22, a second coil cover 40 covers the inner diameter side of the stator 20, and a stator core disposed on the radially outer side of the rotor core 11. 21 forms a closed space that covers the coil end portion 22. The closed space constitutes a cooling channel (refrigerant channel) 50 through which cooling oil flows. That is, a cooling channel 50A is formed at one end of the stator 20 in the axial direction by the first coil cover 30A, the second coil cover 40, and the stator core 21, and a first coil cover 30B is formed at the other end. , the second coil cover 40 and the stator core 21 form a cooling flow path 50B.
 冷却流路50Aには、第1コイルカバー30Aの注入口31Aから冷却オイルが注入され、これにより、コイルエンド部22Aが冷却される。コイルエンド部22Aを冷却した冷却オイルは、排出口32Aから排出される。一方、冷却流路50Bには、第1コイルカバー30Bの注入口31Bから冷却オイルが注入され、これにより、コイルエンド部22Bが冷却される。コイルエンド部22Bを冷却した冷却オイルは、切欠き(排出口)32Bから排出される。 Cooling oil is injected into the cooling channel 50A from the injection port 31A of the first coil cover 30A, thereby cooling the coil end portion 22A. The cooling oil that has cooled the coil end portion 22A is discharged from the discharge port 32A. On the other hand, cooling oil is injected into the cooling channel 50B from the injection port 31B of the first coil cover 30B, thereby cooling the coil end portion 22B. The cooling oil that has cooled the coil end portion 22B is discharged from the notch (discharge port) 32B.
 ところで、モータコイルの冷却方法として、コイルエンド部へ冷却オイルを滴下する方法が知られているが、この方法では、大流量の冷却オイルを流すことができず、コイルを十分に冷却できない虞がある。 By the way, as a method of cooling the motor coil, there is a known method of dropping cooling oil onto the coil end, but with this method, it is not possible to flow a large amount of cooling oil, and there is a risk that the coil may not be sufficiently cooled. be.
 また、JP4586542B2に記載のように、コイルエンド部にモールド樹脂とカバーとで環状の油路を形成した場合、モールド樹脂によって、油路(冷却流路)に対し、コイルの導線の一部が隠れてしまうため、やはり、コイルを十分に冷却できない虞がある。また、モールド樹脂を用いて油路を形成するため、モータを軽量化できず、また、コストが高くなる虞がある。 Furthermore, as described in JP4586542B2, when an annular oil passage is formed at the coil end using a molded resin and a cover, a part of the coil conductor is hidden by the molded resin from the oil passage (cooling channel). As a result, there is a risk that the coil may not be sufficiently cooled. Furthermore, since the oil passage is formed using molded resin, the weight of the motor cannot be reduced, and there is a possibility that the cost may increase.
 これに対し、本実施形態では、コイルエンド部22のコイルの外形及び軸方向端部を覆う第1コイルカバー30と、ステータ20の内径側を覆う第2コイルカバー40と、ロータコア11の径方向外側に配置されたステータコア21とでコイルエンド部22を覆う閉空間を形成し、当該閉空間を冷却流路50として用いている。このように、コイルエンド部22を覆う閉空間を冷却流路50にしているため、大流量の冷却オイルを流すことが可能となり、冷却流路50を流れる冷却オイルの流速を速くすることができる。また、冷却オイルに対しコイルエンド部22を露出させることができる。従って、コイルの冷却効率が向上する。 In contrast, in the present embodiment, a first coil cover 30 covers the outer shape and axial end of the coil of the coil end portion 22, a second coil cover 40 covers the inner diameter side of the stator 20, and a radial direction of the rotor core 11. A closed space that covers the coil end portion 22 is formed with the stator core 21 disposed on the outside, and the closed space is used as a cooling flow path 50. In this way, since the closed space covering the coil end portion 22 is used as the cooling channel 50, it is possible to flow a large amount of cooling oil, and the flow rate of the cooling oil flowing through the cooling channel 50 can be increased. . Further, the coil end portion 22 can be exposed to the cooling oil. Therefore, the cooling efficiency of the coil is improved.
 以下、モータ100の冷却構造の詳細を説明する。 Hereinafter, the details of the cooling structure of the motor 100 will be explained.
 図2は、モータ(回転電機)100の断面斜視図であり、ロータ10及び筐体60を取り外した状態の図である。 FIG. 2 is a cross-sectional perspective view of the motor (rotating electric machine) 100, with the rotor 10 and the casing 60 removed.
 図2に示すように、ステータコア21の軸方向の一方側端部から軸方向に突出するコイルエンド部22Aは、第1コイルカバー30Aと、第2コイルカバー40と、ステータコア21とで形成された閉空間である冷却流路50A内に位置する。また、冷却流路50Aの内部におけるモータ100の上部側には、ステータコア21(モータ100)の電源線をモータ100外部のインバータ等の電気部品に電気的に接続する強電端子部33が配置されている。 As shown in FIG. 2, a coil end portion 22A that projects from one axial end of the stator core 21 in the axial direction is formed by a first coil cover 30A, a second coil cover 40, and the stator core 21. It is located within the cooling channel 50A, which is a closed space. Further, on the upper side of the motor 100 inside the cooling channel 50A, a high-voltage terminal part 33 is arranged to electrically connect the power line of the stator core 21 (motor 100) to an electric component such as an inverter outside the motor 100. There is.
 一方、ステータコア21の軸方向の他方側端部から軸方向に突出するコイルエンド部22Bは、第1コイルカバー30Bと、第2コイルカバー40と、ステータコア21とで形成された閉空間である冷却流路50B内に位置する。 On the other hand, the coil end portion 22B that protrudes in the axial direction from the other end of the stator core 21 in the axial direction is a closed space formed by the first coil cover 30B, the second coil cover 40, and the stator core 21. It is located within the flow path 50B.
 前述の通り、ステータ20の軸方向の一方側端部に配置された第1コイルカバー30Aは、モータ100の上部に位置する部位に注入口31Aを有し、モータ100の下部に位置する部位に、排出口32Aを有している。一方、ステータ20の軸方向の他方側端部に配置された第1コイルカバー30Bは、モータ100の下部に位置する部位に注入口31Bを有し、モータ100の上部に位置する部位に、切欠き(排出口)32Bを有する。なお、注入口31A及び注入口31Bは、冷却オイルを圧送させるためのオイルポンプ(不図示)に接続されている。 As described above, the first coil cover 30A disposed at one end of the stator 20 in the axial direction has the injection port 31A at the upper part of the motor 100 and the inlet 31A at the lower part of the motor 100. , and has a discharge port 32A. On the other hand, the first coil cover 30B disposed at the other end of the stator 20 in the axial direction has an injection port 31B at a portion located at the bottom of the motor 100, and a cutout at a portion located at the top of the motor 100. It has a notch (exhaust port) 32B. Note that the injection port 31A and the injection port 31B are connected to an oil pump (not shown) for pumping cooling oil.
 オイルポンプから冷却オイルが圧送されると、注入口31Aから冷却流路50Aに、注入口31Bから冷却流路50Bにそれぞれ冷却オイルが注入される。 When the cooling oil is pumped from the oil pump, the cooling oil is injected into the cooling channel 50A from the injection port 31A and into the cooling channel 50B from the injection port 31B.
 モータ100の上部に位置する注入口31Aから注入された冷却オイルは、冷却流路50Aの径方向の左右回りに二分流し、コイルエンド部22Aに沿って、冷却流路50Aを通り、モータ100の下部に位置する排出口32Aから排出される。これにより、コイルエンド部22Aが冷却され、ステータコイルが冷却される。また、注入口31Aから注入された冷却オイルにより、冷却流路50Aの内部におけるモータ100の上部側に配置された強電端子部33も冷却される。排出口32Aから排出された冷却オイルは、モータ100内部の通路を通って不図示のオイルパンに集められる。 The cooling oil injected from the injection port 31A located at the top of the motor 100 flows into two parts in the left and right radial directions of the cooling passage 50A, passes through the cooling passage 50A along the coil end portion 22A, and flows into the cooling passage 50A. It is discharged from the discharge port 32A located at the bottom. Thereby, the coil end portion 22A is cooled, and the stator coil is cooled. Furthermore, the high-voltage terminal portion 33 disposed on the upper side of the motor 100 inside the cooling flow path 50A is also cooled by the cooling oil injected from the injection port 31A. Cooling oil discharged from the discharge port 32A passes through a passage inside the motor 100 and is collected in an oil pan (not shown).
 一方、モータ100の下部に位置する注入口31Bから注入された冷却オイルは、オイルポンプによる突出圧により、冷却流路50Bの径方向の左右回りに二分流し、コイルエンド部22Bに沿って、冷却流路50Bが冷却オイルで満たされる。これにより、コイルエンド部22Bが冷却され、ステータコイルが冷却される。冷却流路50B内の冷却オイルがモータ100の上部に位置する切欠き32Bに到達すると、冷却オイルは切欠き32Bから排出される。切欠き32Bから排出された冷却オイルは、第1コイルカバー30Bの外部から流れ落ち、オイルパンに集められる。 On the other hand, the cooling oil injected from the injection port 31B located at the bottom of the motor 100 is divided into two parts in the left and right directions in the radial direction of the cooling passage 50B by the projection pressure of the oil pump, and is cooled along the coil end portion 22B. The flow path 50B is filled with cooling oil. Thereby, the coil end portion 22B is cooled, and the stator coil is cooled. When the cooling oil in the cooling channel 50B reaches the notch 32B located at the top of the motor 100, the cooling oil is discharged from the notch 32B. Cooling oil discharged from the notch 32B flows down from the outside of the first coil cover 30B and is collected in the oil pan.
 また、冷却流路50Aと冷却流路50Bとの間に圧力差がある場合、冷却流路50Aまたは冷却流路50B内の冷却オイルが、ステータコア21のオープンスロット部(ティースとティースの間)に入り込む。これにより、オープンスロット部が冷却オイルに触れ、ステータコイルだけでなく、ステータコア21も冷却される。 Furthermore, if there is a pressure difference between the cooling channel 50A and the cooling channel 50B, the cooling oil in the cooling channel 50A or the cooling channel 50B may flow into the open slot portion (between the teeth) of the stator core 21. Get into it. As a result, the open slot portion comes into contact with the cooling oil, and not only the stator coil but also the stator core 21 is cooled.
 このように、モータ100の軸方向一方側端部に形成された冷却流路50Aでは、モータ100の上部に位置する部位から下部に位置する部位に冷却オイルが流れ、軸方向他方側端部に形成された冷却流路50Bでは、モータ100の下部に位置する部位から上部に位置する部位に冷却オイルが流れる。従って、モータコイルを斑なく均等に冷却することができる。 In this manner, in the cooling flow path 50A formed at one axial end of the motor 100, cooling oil flows from the upper part of the motor 100 to the lower part, and the cooling oil flows to the other axial end. In the formed cooling channel 50B, cooling oil flows from the lower part of the motor 100 to the upper part. Therefore, the motor coil can be cooled uniformly and evenly.
 また、モータ100の軸方向一方側端部に形成された冷却流路50Aでは、モータ100の上部に位置する部位から冷却オイルを流すため、モータ100の上部側に配置された強電端子部33も効果的に冷却することができる。一方、モータ100の軸方向他方側端部に形成された冷却流路50Bでは、モータ100の下部に位置する部位から冷却オイルを供給するため、冷却流路50B内の下部側から上部側に向かって冷却オイルが充填されていき、冷却流路50B内のエアが排出される。即ち、冷却流路50B内に、エアが噛み込むことが防止される。従って、冷却オイルがコイル表面に万遍なく触れ、モータコイルを効率的に冷却することができる。即ち、モータ100の軸方向一方側端部では、インバータ等電気部品と接続する強電端子部33のレイアウトと、強電端子部33の冷却とを優先させ、強電端子部33が配置されない軸方向他方側端部では、モータコイルを効率的に冷却している。 In addition, in the cooling flow path 50A formed at one end in the axial direction of the motor 100, in order to flow the cooling oil from the part located at the upper part of the motor 100, the high-voltage terminal part 33 arranged at the upper part of the motor 100 is also used. Can be effectively cooled. On the other hand, in the cooling passage 50B formed at the other end in the axial direction of the motor 100, cooling oil is supplied from a portion located at the lower part of the motor 100, so that the cooling oil is supplied from the lower side to the upper side in the cooling passage 50B. Cooling oil is then filled, and air in the cooling channel 50B is discharged. That is, air is prevented from being trapped in the cooling flow path 50B. Therefore, the cooling oil evenly contacts the coil surface, allowing the motor coil to be efficiently cooled. That is, at one end in the axial direction of the motor 100, priority is given to the layout of the high-voltage terminal section 33 that connects to electric components such as an inverter, and cooling of the high-voltage terminal section 33, and at the other end in the axial direction where the high-voltage terminal section 33 is not arranged. At the ends, the motor coils are efficiently cooled.
 なお、好ましくは、注入口31A及び注入口31Bは、径方向の左回りに分流される冷却オイルの量と右回りに分流される冷却オイルの量が同量になるような位置に配置される。これにより、コイルエンド部22A,22Bが、より効率良く均等に冷却される。分流量が同量になるような注入口31A,31Bの位置は、予め実験等により決定することができる。 Preferably, the inlet 31A and the inlet 31B are arranged at positions such that the amount of cooling oil divided in the counterclockwise direction in the radial direction is equal to the amount of the cooling oil divided in the clockwise direction. . Thereby, the coil end portions 22A, 22B are cooled more efficiently and evenly. The positions of the injection ports 31A and 31B so that the divided flow rates are the same can be determined in advance through experiments or the like.
 以上のとおり、本実施形態では、第1コイルカバー30と、第2コイルカバー40と、ステータコア21とでコイルエンド部22を覆う閉空間(冷却流路50)を形成し、当該閉空間(冷却流路50)を流れる冷却オイルにより、モータコイルを冷却している。このように、コイルエンド部22を覆う閉空間を冷却流路50にしているため、冷却流路50に大流量の冷却オイルを流すことが可能になり、冷却流路50を流れる冷却オイルの流速を速くすることができる。また、冷却オイルに対しコイルエンド部22を露出させることができる。コイルの冷却効率は、流速が大きいほど、また、コイルと冷媒の接触面積が大きいほど高くなる。本実施形態のモータ100では、従来のコイルエンド部に冷却オイルを滴下する方法や冷媒を噴射する方法、及びコイルエンド部にモールド樹脂とカバーとで環状の冷却流路を形成する方法等よりも、冷却オイルの流速及びコイルの接触面積を大きくすることができ、コイルの冷却効率が向上する。 As described above, in this embodiment, the first coil cover 30, the second coil cover 40, and the stator core 21 form a closed space (cooling channel 50) that covers the coil end portion 22, and The motor coil is cooled by cooling oil flowing through the flow path 50). In this way, since the closed space covering the coil end portion 22 is used as the cooling channel 50, it is possible to flow a large amount of cooling oil into the cooling channel 50, and the flow rate of the cooling oil flowing through the cooling channel 50 can be increased. can be made faster. Further, the coil end portion 22 can be exposed to the cooling oil. The cooling efficiency of the coil increases as the flow rate increases and as the contact area between the coil and the refrigerant increases. The motor 100 of this embodiment is superior to the conventional method of dropping cooling oil to the coil end portion, the method of injecting refrigerant, or the method of forming an annular cooling channel at the coil end portion with molded resin and a cover. , the flow velocity of the cooling oil and the contact area of the coil can be increased, and the cooling efficiency of the coil can be improved.
 図3は、モータ100の一部拡大図であり、(a)は図1のC部分、(b)は図1のD部分の拡大図である。なお、図3はロータ10及び筐体60を取り外した状態の図である。 FIG. 3 is a partially enlarged view of the motor 100, in which (a) is an enlarged view of portion C in FIG. 1, and (b) is an enlarged view of portion D in FIG. Note that FIG. 3 is a diagram with the rotor 10 and the housing 60 removed.
 図3に示すように、ステータ20の内径側を覆う第2コイルカバー40は、ステータコア21の軸方向の両端から突出するコイルエンド部22よりも外側まで延設され、両端部において第1コイルカバー30と径方向に当接している。 As shown in FIG. 3, the second coil cover 40 that covers the inner diameter side of the stator 20 extends to the outside of the coil end portions 22 that protrude from both ends of the stator core 21 in the axial direction. 30 in the radial direction.
 より詳細には、第2コイルカバー40は、軸方向の一方側端部(コイルエンド部22A側)に、他の部分よりも径方向に肉厚な厚肉部41を有し、厚肉部41が、径方向に、Oリング等のシール部材42Aを介して、第1コイルカバー30Aと当接している。また、第2コイルカバー40は、軸方向の他方側端部(コイルエンド部22B側)において、径方向に、Oリング等のシール部材42Bを介して、第1コイルカバー30Bと当接している。 More specifically, the second coil cover 40 has a thick wall portion 41 that is thicker in the radial direction than other portions at one end in the axial direction (coil end portion 22A side). 41 is in contact with the first coil cover 30A in the radial direction via a sealing member 42A such as an O-ring. Further, the second coil cover 40 is in contact with the first coil cover 30B in the radial direction at the other end in the axial direction (coil end portion 22B side) via a sealing member 42B such as an O-ring. .
 このように、第2コイルカバー40の軸方向両端がコイルエンド部22よりも外側まで延設され、第2コイルカバー40の両端において、第1コイルカバー30と第2コイルカバー40とが径方向に当接しているため、冷却オイルが冷却流路50A,50Bから漏出することが防止される。従って、冷却オイルがロータ10側に侵入することが防止され、油撹拌損失の発生が防止される。また、第2コイルカバー40と第1コイルカバー30A,30Bとは、シール部材42A,42Bを介して当接しているため、冷却オイルが冷却流路50A,50Bから漏出することが、より防止される。 In this way, both ends of the second coil cover 40 in the axial direction extend to the outside of the coil end portion 22, and at both ends of the second coil cover 40, the first coil cover 30 and the second coil cover 40 are connected in the radial direction. , the cooling oil is prevented from leaking from the cooling channels 50A and 50B. Therefore, the cooling oil is prevented from entering the rotor 10 side, and oil stirring loss is prevented from occurring. Furthermore, since the second coil cover 40 and the first coil covers 30A, 30B are in contact with each other via the seal members 42A, 42B, leakage of cooling oil from the cooling channels 50A, 50B is further prevented. Ru.
 また、第2コイルカバー40は、第1コイルカバー30と径方向に当接する軸方向の一方側端部に厚肉部41を有するため、第2コイルカバー40の剛性が高まり、第1コイルカバー30Aと第2コイルカバー40間のシール部材42Aのシール耐圧が高くなり、シール性が向上する。 Further, since the second coil cover 40 has a thick wall portion 41 at one end in the axial direction that contacts the first coil cover 30 in the radial direction, the rigidity of the second coil cover 40 is increased, and the first coil cover The sealing pressure of the sealing member 42A between the coil cover 30A and the second coil cover 40 is increased, and the sealing performance is improved.
 なお、シール部材42A,42Bは、Oリングに限られず、また、シール部材を用いず、接着剤等で第1コイルカバー30と第2コイルカバー40との間をシールしてもよい。 Note that the sealing members 42A and 42B are not limited to O-rings, and the space between the first coil cover 30 and the second coil cover 40 may be sealed using an adhesive or the like without using a sealing member.
 また、図3に示すように、軸方向一方端部の第1コイルカバー30Aの内部において、コイルエンド部22Aの外径側とステータコア21との間には、絶縁体34が介在している。また、第2コイルカバー40とコイルエンド部22とは、絶縁体43を介して当接している。 Further, as shown in FIG. 3, an insulator 34 is interposed between the outer diameter side of the coil end portion 22A and the stator core 21 inside the first coil cover 30A at one end in the axial direction. Further, the second coil cover 40 and the coil end portion 22 are in contact with each other with an insulator 43 in between.
 このように、コイルエンド部22Aの外径側とステータコア21との間に絶縁体34が設けられているため、コイルエンド部22Aのコイル(銅線)の束を、ステータコア21との絶縁距離を考慮せずに配置することができる。また、第2コイルカバー40とコイルエンド部22との間に絶縁体43が設けられているため、第2コイルカバー40とコイルエンド部22との間の絶縁性が担保される。 In this way, since the insulator 34 is provided between the outer diameter side of the coil end portion 22A and the stator core 21, the bundle of coils (copper wires) of the coil end portion 22A is separated from the stator core 21 by an insulation distance. It can be placed without consideration. Furthermore, since the insulator 43 is provided between the second coil cover 40 and the coil end portion 22, insulation between the second coil cover 40 and the coil end portion 22 is ensured.
 なお、前述のとおり、第2コイルカバー40は、非磁性材料により構成される。これにより、第2コイルカバー40がロータ10とステータ20間の磁場に影響を与えることが防止される。また、好ましくは、第2コイルカバー40は、ガラス繊維強化プラスチック(GFRP)のような、非磁性且つ非導電性の材料により構成される。非導電性の材料を用いることにより、ロータ10とステータ20間に発生する鎖交磁束によって第2コイルカバー40内に誘導起電力が発生することが防止され、第2コイルカバーが発熱することが抑制される。第2コイルカバー40に非導電性の材料を用いる場合には、第2コイルカバー40とコイルエンド部22との間の絶縁性が担保されるため、絶縁体43を設けなくてもよい。 Note that, as described above, the second coil cover 40 is made of a non-magnetic material. This prevents the second coil cover 40 from affecting the magnetic field between the rotor 10 and the stator 20. Further, preferably, the second coil cover 40 is made of a non-magnetic and non-conductive material such as glass fiber reinforced plastic (GFRP). By using a non-conductive material, induced electromotive force is prevented from being generated within the second coil cover 40 due to interlinkage magnetic flux generated between the rotor 10 and the stator 20, and the second coil cover is prevented from generating heat. suppressed. When a non-conductive material is used for the second coil cover 40, the insulation between the second coil cover 40 and the coil end portion 22 is ensured, so it is not necessary to provide the insulator 43.
 図4は、一方側のコイルエンド部22A付近の拡大断面図である。 FIG. 4 is an enlarged cross-sectional view of the vicinity of the coil end portion 22A on one side.
 図4に示すように、第1コイルカバー30Aとステータコア21とは、モータ100の上部において、モータ100を収容する筐体60によりシールされている。また、コイルエンド部22Aと第2コイルカバー40との間には、絶縁体43が介在し、コイルエンド部22Aの外径側とステータコア21との間には、絶縁体34が介在している。なお、前述の通り、第1コイルカバー30Aとステータコア21とが、筐体60を介さずに直接当接する構成であってもよい。 As shown in FIG. 4, the first coil cover 30A and the stator core 21 are sealed at the top of the motor 100 by a housing 60 that houses the motor 100. Further, an insulator 43 is interposed between the coil end portion 22A and the second coil cover 40, and an insulator 34 is interposed between the outer diameter side of the coil end portion 22A and the stator core 21. . Note that, as described above, the first coil cover 30A and the stator core 21 may be in direct contact with each other without interposing the housing 60.
 絶縁体34は、ステータコア21の一方側端面の中間部からステータコア21の外形に沿って外径側に延び、さらにコイルエンド部22Aの外径側に延出している。また、絶縁体34は、コイルエンド部22Aの外径側で、第1コイルカバー30Aとコイルエンド部22Aとによる嵌め合い状態で、液体ガスケット等によりシールされている。 The insulator 34 extends from the middle of one end surface of the stator core 21 to the outer diameter side along the outer shape of the stator core 21, and further extends to the outer diameter side of the coil end portion 22A. Further, the insulator 34 is sealed with a liquid gasket or the like on the outer diameter side of the coil end portion 22A in a fitted state between the first coil cover 30A and the coil end portion 22A.
 ここで、コイルエンド部22Aには、モータ100(ステータコア21)の電源線が配策されているが、コイルエンド部22Aのコイルが電源線に覆われる面積が大きくなると、冷却オイルによる冷却効果が低下する虞がある。これに対し、本実施形態では、コイルエンド部22Aの外径側とステータコア21との間に絶縁体34が設けられているため、コイルエンド部22Aのコイル(銅線)の束を、ステータコア21との絶縁距離を考慮せずに配置することができる。例えば、コイルエンド部22Aのコイル(銅線)の束を、外径側、更にステータコア21の方向に折り曲げることができ、電源線をコイルエンド部22Aの外径側に集めることができる。従って、コイルエンド部22Aのコイル(銅線)の表面の露出面積を大きくすることができ、これにより、冷却オイルによる冷却効果がより向上する。 Here, the power wire of the motor 100 (stator core 21) is routed through the coil end portion 22A, but as the area where the coil of the coil end portion 22A is covered with the power wire increases, the cooling effect of the cooling oil is reduced. There is a risk that it will decline. On the other hand, in this embodiment, since the insulator 34 is provided between the outer diameter side of the coil end portion 22A and the stator core 21, the bundle of coils (copper wire) of the coil end portion 22A is connected to the stator core 21. It can be placed without considering the insulation distance from the For example, the bundle of coils (copper wires) in the coil end portion 22A can be bent toward the outer diameter side and further toward the stator core 21, and the power wires can be gathered on the outer diameter side of the coil end portion 22A. Therefore, the exposed area of the surface of the coil (copper wire) of the coil end portion 22A can be increased, thereby further improving the cooling effect of the cooling oil.
 上記した実施形態のモータ(回転電機)100によれば、以下の効果を得ることができる。 According to the motor (rotating electric machine) 100 of the embodiment described above, the following effects can be obtained.
 モータ(回転電機)100は、コイルエンド部22のコイルの外径側及び軸方向端部を覆う第1コイルカバー30と、ステータ20の内径側を覆う円筒状の第2コイルカバー40と、ステータコア21とで形成された閉空間である冷却流路(冷媒流路)50を備える。そして、コイルエンド部22は、冷却流路(冷媒流路)50内に位置する。このように、コイルエンド部22を覆う閉空間を、コイルエンド部22を冷却するための冷却流路(冷媒流路)50にしているため、冷却流路(冷媒流路)50に大流量の冷却オイルを流すことが可能になり、冷却流路50を流れる冷却オイルの流速を速くすることができる。また、冷却オイルに対しコイルエンド部22の露出面積を大きくすることができる。従って、モータコイルの冷却効率が向上する。 The motor (rotating electric machine) 100 includes a first coil cover 30 that covers the outer diameter side and axial end of the coil of the coil end portion 22, a cylindrical second coil cover 40 that covers the inner diameter side of the stator 20, and a stator core. 21 and a cooling flow path (refrigerant flow path) 50 which is a closed space. The coil end portion 22 is located within the cooling channel (refrigerant channel) 50. In this way, since the closed space covering the coil end portion 22 is used as the cooling flow path (refrigerant flow path) 50 for cooling the coil end portion 22, a large flow rate is applied to the cooling flow path (refrigerant flow path) 50. It becomes possible to flow the cooling oil, and the flow rate of the cooling oil flowing through the cooling channel 50 can be increased. Further, the exposed area of the coil end portion 22 to the cooling oil can be increased. Therefore, the cooling efficiency of the motor coil is improved.
 モータ(回転電機)100は、ステータ20の軸方向の一方側端部に配置された第1コイルカバー30Aが、モータ(回転電機)100の上部に位置する部位に冷却オイル(冷媒)を注入する注入口31Aを有し、下部に位置する部位に冷却オイル(冷媒)を排出する排出口32Aを有している。一方、ステータ20の軸方向の他方側端部に配置された第1コイルカバー30Bが、モータ(回転電機)100の下部に位置する部位に冷却オイル(冷媒)を注入する注入口31Bを有するとともに、上部に位置する部位に冷却オイル(冷媒)を排出する切欠き(排出口)32Bを有している。これにより、モータ(回転電機)100の軸方向一方側端部に形成された冷却流路50Aでは、上部から下部に冷却オイルが流れ、軸方向他方側端部に形成された冷却流路50Bでは、下部から上部に冷却オイルが流れる。従って、モータコイルを斑なく均等に冷却することができる。即ち、モータコイルの冷却効率が向上する。 In the motor (rotating electric machine) 100, a first coil cover 30A disposed at one end of the stator 20 in the axial direction injects cooling oil (refrigerant) into an upper portion of the motor (rotating electric machine) 100. It has an injection port 31A, and a discharge port 32A for discharging cooling oil (refrigerant) at a lower portion. On the other hand, a first coil cover 30B disposed at the other axial end of the stator 20 has an injection port 31B for injecting cooling oil (refrigerant) into a portion located at the bottom of the motor (rotating electric machine) 100. , has a notch (discharge port) 32B for discharging cooling oil (refrigerant) at an upper portion. As a result, the cooling oil flows from the top to the bottom in the cooling passage 50A formed at one end in the axial direction of the motor (rotating electric machine) 100, and in the cooling passage 50B formed at the other end in the axial direction. , cooling oil flows from the bottom to the top. Therefore, the motor coil can be uniformly cooled. That is, the cooling efficiency of the motor coil is improved.
 モータ(回転電機)100は、ステータ20の軸方向一方側端部に配置された第1コイルカバー30Aの内部における、モータ(回転電機)100の上部側に、モータ(回転電機)100の電源線とインバータとに接続する強電端子部33が設けられている。即ち、強電端子部33が、冷却オイル(冷媒)を注入する注入口31Aの付近に設けられている。従って、モータコイルを冷却する冷却オイル(冷媒)により、強電端子部33も効率よく冷却することができる。 The motor (rotating electric machine) 100 has a power supply line for the motor (rotating electric machine) 100 on the upper side of the motor (rotating electric machine) 100 inside the first coil cover 30A disposed at one axial end of the stator 20. A high-voltage terminal portion 33 is provided to connect to the inverter and the inverter. That is, the high-voltage terminal portion 33 is provided near the injection port 31A through which cooling oil (refrigerant) is injected. Therefore, the high-voltage terminal portion 33 can also be efficiently cooled by the cooling oil (refrigerant) that cools the motor coil.
 モータ(回転電機)100は、コイルエンド部22Aの外径側とステータコア21との間に絶縁体34を備える。これにより、コイルエンド部22Aのコイル(銅線)の束を、ステータコア21との絶縁距離を考慮せずに配置することができ、コイルエンド部22Aのコイル(銅線)の表面の露出面積をより大きくすることができる。従って、冷却オイル(冷媒)による冷却効果がより向上する。 The motor (rotating electric machine) 100 includes an insulator 34 between the outer diameter side of the coil end portion 22A and the stator core 21. As a result, the bundle of coils (copper wire) in the coil end portion 22A can be arranged without considering the insulation distance from the stator core 21, and the exposed area of the surface of the coil (copper wire) in the coil end portion 22A can be reduced. Can be made larger. Therefore, the cooling effect of the cooling oil (refrigerant) is further improved.
 モータ(回転電機)100は、第2コイルカバー40の軸方向両端がコイルエンド部22よりも外側まで延設され、第1コイルカバー30と第2コイルカバー40とが、径方向に、シール部材42A,42Bを介して当接する。これにより、第1コイルカバー30、第2コイルカバー40及びステータコア21で形成された冷却流路(冷媒流路)50から冷却オイル(冷媒)が漏出することが防止される。従って、冷却オイル(冷媒)がロータ10側に侵入することが防止され、撹拌損失の発生が防止される。 In the motor (rotating electric machine) 100, both ends of the second coil cover 40 in the axial direction extend to the outside of the coil end portion 22, and the first coil cover 30 and the second coil cover 40 are radially connected to a sealing member. Abutting via 42A and 42B. This prevents the cooling oil (refrigerant) from leaking from the cooling channel (refrigerant channel) 50 formed by the first coil cover 30, the second coil cover 40, and the stator core 21. Therefore, the cooling oil (refrigerant) is prevented from entering the rotor 10 side, and the occurrence of stirring loss is prevented.
 モータ(回転電機)100は、第2コイルカバー40が、第1コイルカバー30と径方向に当接する軸方向の一方側端部に厚肉部41を有している。これにより、第2コイルカバー40の剛性が高まり、第1コイルカバー30Aと第2コイルカバー40間のシール部材42Aのシール耐圧が高くなり、シール性が向上する。 In the motor (rotating electric machine) 100, the second coil cover 40 has a thick wall portion 41 at one end in the axial direction where the second coil cover 40 contacts the first coil cover 30 in the radial direction. This increases the rigidity of the second coil cover 40, increases the sealing pressure resistance of the seal member 42A between the first coil cover 30A and the second coil cover 40, and improves sealing performance.
 モータ(回転電機)100は、第2コイルカバー40とコイルエンド部22とは、絶縁体43を介して当接する。これにより、第2コイルカバー40とコイルエンド部22との間の絶縁性が担保される。 In the motor (rotating electric machine) 100, the second coil cover 40 and the coil end portion 22 are in contact with each other with an insulator 43 in between. This ensures insulation between the second coil cover 40 and the coil end portion 22.
 モータ(回転電機)100は、第2コイルカバー40が、非磁性材料により構成される。これにより、第2コイルカバー40がロータ10とステータ20間の磁場に影響を与えることが防止される。 In the motor (rotating electric machine) 100, the second coil cover 40 is made of a non-magnetic material. This prevents the second coil cover 40 from affecting the magnetic field between the rotor 10 and the stator 20.
 なお、本実施形態においては、モータコイルを冷却する冷媒として冷却オイルを用いているが、コイルを冷却可能なものであれば冷媒はこれに限られない。 Note that in this embodiment, cooling oil is used as a refrigerant to cool the motor coil, but the refrigerant is not limited to this as long as it can cool the coil.
 また、本実施形態のように、第2コイルカバー40は非磁性材料(且つ非導電性材料)により構成されることが好ましいが、必ずしもこれに限られない。また、本実施形態では、第2コイルカバー40を射出成型により成型するものとしたが、第2コイルカバー40の成型方法はこれに限られない。 Furthermore, as in the present embodiment, the second coil cover 40 is preferably made of a non-magnetic material (and a non-conductive material), but is not necessarily limited to this. Further, in this embodiment, the second coil cover 40 is molded by injection molding, but the method of molding the second coil cover 40 is not limited to this.
 また、本実施形態においては、モータ100の軸方向他方側端部に形成された冷却流路50Bの排出口を切欠き32Bとしたが、必ずしもこれに限られず、冷媒を排出できれば、どのような構成であってもよい。 Furthermore, in the present embodiment, the outlet of the cooling flow path 50B formed at the other end in the axial direction of the motor 100 is formed into the notch 32B, but this is not necessarily the case. It may be a configuration.
 また、本実施形態のように、第1コイルカバー30Aの内部に強電端子部33を設けることが好ましいが、必ずしもこれに限られず、強電端子部33を別の箇所に設けてもよい。 Furthermore, as in this embodiment, it is preferable to provide the high-voltage terminal portion 33 inside the first coil cover 30A, but the present invention is not necessarily limited to this, and the high-voltage terminal portion 33 may be provided at another location.
 また、本実施形態のように、コイルエンド部22Aの外径側とステータコア21との間、及び第2コイルカバー40とコイルエンド部22との間に絶縁体34,43を備えることが好ましいが、必ずしもこれに限られない。絶縁体34,43を有していない構成であっても、モータコイルの冷却効率向上と言う効果を得ることができる。 Further, as in this embodiment, it is preferable to provide insulators 34 and 43 between the outer diameter side of the coil end portion 22A and the stator core 21 and between the second coil cover 40 and the coil end portion 22. , but not necessarily limited to this. Even with a configuration that does not include the insulators 34 and 43, it is possible to obtain the effect of improving the cooling efficiency of the motor coil.
 また、本実施形態においては、第2コイルカバー40が、軸方向の一方側端部に厚肉部41を有しているものとしたが、必ずしもこれに限られない。第2コイルカバー40の他方側端部に厚肉部41を設けてもよく、また、軸方向両端部に厚肉部41を設けてもよい。また、厚肉部41を有していない構成であってもよい。この場合でも、モータコイルの冷却効率向上と言う効果を得ることができる。 Furthermore, in the present embodiment, the second coil cover 40 has the thick portion 41 at one end in the axial direction, but the present invention is not necessarily limited to this. The thick portion 41 may be provided at the other end of the second coil cover 40, or may be provided at both ends in the axial direction. Alternatively, a configuration without the thick portion 41 may be used. Even in this case, the effect of improving the cooling efficiency of the motor coil can be obtained.
 また、本実施形態のように、第1コイルカバー30と第2コイルカバー40とが、径方向に、シール部材42A,42Bを介して当接することが好ましいが、シール部材42A,42Bは必須の構成ではない。 Further, as in the present embodiment, it is preferable that the first coil cover 30 and the second coil cover 40 contact each other in the radial direction via the seal members 42A, 42B, but the seal members 42A, 42B are essential. It's not the composition.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.

Claims (9)

  1.  回転軸を有するロータと、前記ロータの径方向外側に配置され、複数のコイルが配置されるステータコアを備えるとともに前記ステータコアの端部から前記回転軸の軸方向にコイルエンド部が突出するステータと、を備え、前記コイルエンド部が冷媒により冷却される回転電機であって、
     前記ステータの前記軸方向両端に配置され、前記コイルエンド部のコイルの外径側及び前記軸方向端部を覆う第1コイルカバーと、
     前記ステータの内径側を覆う円筒状の第2コイルカバーと、
     前記第1コイルカバー、前記第2コイルカバー及び前記ステータコアで形成された冷媒流路と、を備え、
     前記コイルエンド部は、前記冷媒流路内に位置する、
     回転電機。
    a stator having a rotor having a rotating shaft; a stator core disposed radially outside the rotor and having a plurality of coils disposed thereon; and a stator having a coil end protruding from an end of the stator core in the axial direction of the rotating shaft; A rotating electric machine, wherein the coil end portion is cooled by a refrigerant,
    a first coil cover disposed at both ends of the stator in the axial direction and covering the outer diameter side of the coil of the coil end portion and the end portion in the axial direction;
    a cylindrical second coil cover that covers the inner diameter side of the stator;
    a refrigerant flow path formed by the first coil cover, the second coil cover, and the stator core,
    The coil end portion is located within the refrigerant flow path.
    Rotating electric machine.
  2.  請求項1に記載の回転電機であって、
     前記ステータの前記軸方向の一方側端部に配置された第1コイルカバーは、前記回転電機の上部に位置する部位に前記冷媒を注入する注入口を有するとともに、前記回転電機の下部に位置する部位に前記冷媒を排出する排出口を有し、
     前記ステータの前記軸方向の他方側端部に配置された第1コイルカバーは、前記回転電機の下部に位置する部位に前記冷媒を注入する注入口を有するとともに、前記回転電機の上部に位置する部位に前記冷媒を排出する排出口を有する、
     回転電機。
    The rotating electric machine according to claim 1,
    A first coil cover disposed at one end of the stator in the axial direction has an injection port for injecting the refrigerant into a portion located at an upper portion of the rotating electrical machine, and a first coil cover located at a lower portion of the rotating electrical machine. having an outlet for discharging the refrigerant at the part;
    A first coil cover disposed at the other end of the stator in the axial direction has an injection port for injecting the refrigerant into a portion located at a lower portion of the rotating electrical machine, and is located at an upper portion of the rotating electrical machine. having an outlet for discharging the refrigerant at the part;
    Rotating electric machine.
  3.  請求項2に記載の回転電機であって、
     前記一方側端部の前記第1コイルカバーの内部には、前記上部側に、前記回転電機の電源線とインバータとに接続する強電端子部が設けられている、
     回転電機。
    The rotating electric machine according to claim 2,
    Inside the first coil cover at the one end, a high-voltage terminal portion is provided on the upper side to connect to a power line of the rotating electric machine and an inverter.
    Rotating electric machine.
  4.  請求項3に記載の回転電機であって、
     前記一方側端部の前記第1コイルカバーの内部において、前記コイルエンド部の外径側と前記ステータコアとの間に絶縁体を備える、
     回転電機。
    The rotating electric machine according to claim 3,
    An insulator is provided inside the first coil cover at the one side end between the outer diameter side of the coil end portion and the stator core.
    Rotating electric machine.
  5.  請求項1または2に記載の回転電機であって、
     前記第2コイルカバーは、前記軸方向両端が前記コイルエンド部よりも外側まで延設され、
     前記第1コイルカバーと前記第2コイルカバーとは、径方向に、シール部材を介して当接する、
     回転電機。
    The rotating electric machine according to claim 1 or 2,
    The second coil cover has both ends in the axial direction extending to the outside of the coil end portion,
    The first coil cover and the second coil cover are in contact with each other in the radial direction via a sealing member.
    Rotating electric machine.
  6.  請求項5に記載の回転電機であって、
     前記第2コイルカバーは、前記軸方向の少なくとも一方側の端部に厚肉部を有し、前記厚肉部と前記第1コイルカバーとは、径方向に、シール部材を介して当接する、
     回転電機。
    The rotating electric machine according to claim 5,
    The second coil cover has a thick portion at least on one end in the axial direction, and the thick portion and the first coil cover abut in the radial direction via a sealing member.
    Rotating electric machine.
  7.  請求項1または2に記載の回転電機であって、
     前記第2コイルカバーと前記コイルエンド部とは、絶縁体を介して当接する、
     回転電機。
    The rotating electric machine according to claim 1 or 2,
    the second coil cover and the coil end portion are in contact with each other via an insulator;
    Rotating electric machine.
  8.  請求項1または2に記載の回転電機であって、
     前記第2コイルカバーは、非磁性材料により構成される、
     回転電機。
    The rotating electric machine according to claim 1 or 2,
    The second coil cover is made of a non-magnetic material.
    Rotating electric machine.
  9.  請求項8に記載の回転電機であって、
     前記第2コイルカバーは、非導電性材料により構成される、
     回転電機。
    The rotating electric machine according to claim 8,
    The second coil cover is made of a non-conductive material.
    Rotating electric machine.
PCT/JP2022/033265 2022-09-05 2022-09-05 Rotating electric machine WO2024052956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033265 WO2024052956A1 (en) 2022-09-05 2022-09-05 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033265 WO2024052956A1 (en) 2022-09-05 2022-09-05 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2024052956A1 true WO2024052956A1 (en) 2024-03-14

Family

ID=90192369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033265 WO2024052956A1 (en) 2022-09-05 2022-09-05 Rotating electric machine

Country Status (1)

Country Link
WO (1) WO2024052956A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004019468A1 (en) * 2002-08-21 2004-03-04 Toyota Jidosha Kabushiki Kaisha Vehicle motor
JP2005323416A (en) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd Cooling structure of motor generator
CN102624121A (en) * 2012-03-29 2012-08-01 中国科学院电工研究所 Cooling structure for motor winding end part
JP2013225976A (en) * 2012-04-20 2013-10-31 Toyota Central R&D Labs Inc Cooling structure of rotary electric machine
CN114204723A (en) * 2021-11-19 2022-03-18 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Liquid cooling air gap armature stator structure of high-temperature superconducting motor and assembly method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004019468A1 (en) * 2002-08-21 2004-03-04 Toyota Jidosha Kabushiki Kaisha Vehicle motor
JP2005323416A (en) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd Cooling structure of motor generator
CN102624121A (en) * 2012-03-29 2012-08-01 中国科学院电工研究所 Cooling structure for motor winding end part
JP2013225976A (en) * 2012-04-20 2013-10-31 Toyota Central R&D Labs Inc Cooling structure of rotary electric machine
CN114204723A (en) * 2021-11-19 2022-03-18 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Liquid cooling air gap armature stator structure of high-temperature superconducting motor and assembly method

Similar Documents

Publication Publication Date Title
KR101475369B1 (en) Rotary machine
US9212661B2 (en) Electric compressor with the stator coils coated with resin, the resin having openings exposing the coils to the interior of the housing
JP5656556B2 (en) Rotating electric machine
CN111200325A (en) Insulating body for an electric machine
JP2004248429A (en) Stator coil module, its manufacturing method and rotating electric machine
WO2024052956A1 (en) Rotating electric machine
JP2820531B2 (en) Fluid-cooled electric machine
JP2003143810A (en) Segment coil motor
CN111490609A (en) Stator, motor, and pump device
CN111512522A (en) Electric compressor
JP5270635B2 (en) Cooling structure of rotating electric machine
JP5330860B2 (en) Rotating electric machine
CN111247724A (en) Electric machine with cooling device comprising partially subdivided channels
JP2014240659A (en) Motor compressor
JP2003125547A (en) Dynamo-electric machine
JP2002191148A (en) Rotating electric machine
JP2003111319A (en) Rotating electric machine
KR102450770B1 (en) Vehicle drive motor assembly
US20240097525A1 (en) Rotary electrical machine
JP5270636B2 (en) Cooling structure of rotating electric machine
JP3470673B2 (en) Rotating electric machine
JP7312795B2 (en) electric motor
WO2024052957A1 (en) Rotary electric machine
JP2012244700A (en) Rotary electric machine
JP2023118454A (en) Cooling structure in rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957619

Country of ref document: EP

Kind code of ref document: A1