WO2024052953A1 - Electronic control device - Google Patents

Electronic control device Download PDF

Info

Publication number
WO2024052953A1
WO2024052953A1 PCT/JP2022/033236 JP2022033236W WO2024052953A1 WO 2024052953 A1 WO2024052953 A1 WO 2024052953A1 JP 2022033236 W JP2022033236 W JP 2022033236W WO 2024052953 A1 WO2024052953 A1 WO 2024052953A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel pressure
drive current
injector
failure
Prior art date
Application number
PCT/JP2022/033236
Other languages
French (fr)
Japanese (ja)
Inventor
茂美 大野
芳国 倉島
貞人 堀内
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/033236 priority Critical patent/WO2024052953A1/en
Publication of WO2024052953A1 publication Critical patent/WO2024052953A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically

Definitions

  • the present disclosure relates to an electronic control device.
  • the high-pressure fuel supply device for an internal combustion engine described in Patent Document 1 below includes a high-pressure pump that pressurizes fuel transferred from a fuel tank, a fuel pressure sensor that detects the pressure of the pressurized fuel, and a high-pressure pump that pressurizes fuel transferred from a fuel tank. and an injection valve that injects and supplies fuel to the internal combustion engine (paragraph 0011, claim 1, summary, FIG. 1).
  • This conventional high-pressure fuel supply system for an internal combustion engine feeds back the pressurized fuel pressure so that the detected fuel pressure becomes a target pressure, and supplies the internal combustion engine with the fuel pressure through the injection valve according to its operating state. Supply a fixed amount of high pressure fuel.
  • This conventional high-pressure fuel supply system for an internal combustion engine is characterized by comprising a detection means, a holding means, and a control means.
  • the detection means detects an abnormality in the fuel pressure sensor.
  • the holding means forcibly holds the fuel pressure at a predetermined pressure based on detection of an abnormality in the fuel pressure sensor.
  • the control means estimates the fuel pressure and injects an amount of fuel to the internal combustion engine based on the estimated fuel pressure until the fuel pressure reaches the predetermined pressure after the abnormality of the fuel pressure sensor is detected. control.
  • the fuel injection control device described in Patent Document 2 below includes an injector that injects fuel into an internal combustion engine, a fuel pressure sensor that detects the fuel pressure supplied to the injector, and an injector that detects the operating state of the internal combustion engine. It is provided with various sensors and a fuel supply control section that calculates the fuel supply amount based on the signals from these fuel pressure sensors and the various sensors and drives and controls the injector (Paragraph 0009, Claim 1, Summary, FIG. 2).
  • the fuel supply control section includes an injector valve opening signal generation means, a first drive current supply signal generation means, a first drive current supply means, a second drive current supply means, and a fuel pressure sensor failure detection means. .
  • the injector valve opening signal generating means calculates the fuel supply amount based on the signals from the various sensors, and outputs the injector valve opening signal based on the fuel supply amount.
  • the first drive current supply signal generating means sets a first drive current supply time for supplying the first drive current at the injector opening timing based on the signal from the fuel pressure sensor, and outputs a first drive current supply signal. do.
  • the first drive current supply means provides a first drive to the injector based on an injector valve opening signal from the injector valve opening signal generation means and a first drive current supply signal from the first drive current supply signal generation means. Supply current.
  • the second drive current supply means After supplying the first drive current, the second drive current supply means supplies a second drive current lower than the first drive current to the injector based on an injector valve opening signal from the injector valve opening signal generation means. .
  • the fuel pressure sensor failure detection means detects failure of the fuel pressure sensor based on a signal from the fuel pressure sensor.
  • the first drive current supply signal generating means sets the first drive current supply time to a predetermined fixed time when the fuel pressure sensor failure detection means detects a failure of the fuel pressure sensor.
  • the fuel supply control device for an internal combustion engine described in Patent Document 3 below detects the fuel pressure in a fuel supply pipe that supplies fuel from a fuel pump to a fuel injection valve, and controls the fuel pressure so that the detected fuel pressure approaches a target fuel pressure. to control the above fuel pump.
  • This conventional fuel supply control device for an internal combustion engine includes a response characteristic calculation means, a manipulated variable calculation means, a control means, a diagnosis means, and a setting means (Paragraphs 0020 to 0028, Claim 1 ).
  • the response characteristic calculating means calculates an operational response characteristic of the fuel pump for controlling the fuel pressure to the target fuel pressure.
  • the operation amount calculation means calculates the operation amount of the fuel pump according to the operation response characteristic calculated by the response characteristic calculation means.
  • the control means controls the fuel pump based on the operation amount calculated by the operation amount calculation means.
  • the diagnostic means diagnoses a failure of a sensor that detects fuel pressure within the fuel supply pipe.
  • the setting means sets a fuel pressure corresponding to the operating state of the internal combustion engine to the target fuel pressure when the diagnostic means diagnoses that no failure has occurred in the sensor, and sets the fuel pressure detected by the sensor to the target fuel pressure. Set the fuel pressure to the fuel pressure for fuel injection control.
  • the setting means sets a predetermined pressure for failure as the target fuel pressure, and sets the operation response characteristic for the fuel injection control. Set the fuel pressure to .
  • the pressure (fuel pressure) of fuel supplied to an injector that injects fuel into an engine is now required to be as high as, for example, about 35 MPa. Therefore, it is necessary to control the injector to drive the injector with a drive current that increases in accordance with the increased fuel pressure.
  • the fuel pressure sensor that detects fuel pressure malfunctions or an abnormality occurs in the detected fuel pressure value, an insufficient injector driving power is calculated based on the abnormal fuel pressure, and as a result, the internal combustion engine due to the injector valve opening failure There is a risk that the engine may stop or the rotation speed may decrease.
  • the present disclosure makes it possible to prevent an injector from opening incorrectly when a fuel pressure sensor that detects the pressure of fuel supplied to an injector malfunctions or a detected value abnormality occurs, thereby preventing an engine from stopping or a decrease in rotational speed.
  • a fuel pressure sensor that detects the pressure of fuel supplied to an injector malfunctions or a detected value abnormality occurs, thereby preventing an engine from stopping or a decrease in rotational speed.
  • One aspect of the present disclosure is an electronic control device that controls an engine system including an injector that injects fuel into a combustion chamber of an engine, and a fuel pressure sensor that detects the fuel pressure of the fuel supplied to the injector, a target fuel pressure calculation unit that calculates a target fuel pressure of the fuel to be supplied to the injector; a fuel pressure acquisition unit that acquires a fuel pressure detection value of the fuel pressure sensor; a failure detection unit that detects a failure of the sensor; a failure determination unit that determines a failure of the fuel pressure sensor when detection of the fuel pressure sensor failure continues beyond a first period; and the target fuel pressure and the detected fuel pressure value.
  • an abnormality detection unit that detects an abnormality in the detected fuel pressure value based on a difference between the detected fuel pressure value and the amount of change per unit time in the detected fuel pressure value, and an abnormality in the detected fuel pressure value that continues beyond a second period.
  • an abnormality determination unit that determines whether the fuel pressure detection value is abnormal when the fuel pressure detection value is detected; and a drive current setting unit that sets a drive current of the injector, and the drive current setting unit is configured to detect a failure of the fuel pressure sensor or During the period from the detection of the detected value abnormality to the determination of the fuel pressure sensor failure or the determination of the detected value abnormality, the drive current of the injector is set to a value at a time before the fuel pressure sensor failure and the detected value abnormality are detected.
  • the electronic control device is characterized in that it sets a provisional drive current according to the detected fuel pressure value.
  • FIG. 1 is a schematic configuration diagram of an engine system showing an embodiment of an electronic control device of the present disclosure.
  • 2 is a schematic configuration diagram of a fuel supply system of the engine system in FIG. 1.
  • FIG. 2 is a block diagram showing a schematic configuration of the electronic control device in FIG. 1.
  • FIG. 2 is a functional block diagram of the electronic control device in FIG. 1.
  • FIG. 5 is a flow diagram illustrating a control process of the engine system by the electronic control device of FIG. 4.
  • FIG. 5 is a timing chart when the electronic control device of FIG. 4 controls the engine system.
  • FIG. 6 is a flowchart showing details of the process (P08) when a failure is detected in FIG. 5; 6 is a flowchart showing details of the failure determination process (P09) of FIG. 5.
  • FIG. 6 is a flowchart showing details of the process (P10) when a failure is confirmed in FIG. 5;
  • FIG. 8 is a flowchart showing a first modification of the processing upon detecting a failure, etc. (P08) in FIG. 7;
  • FIG. 8 is a flowchart showing a second modification of the process (P08) at the time of detection of a failure, etc. in FIG. 7;
  • FIG. 5 is a functional block diagram showing modification example 1 of the electronic control device shown in FIG. 4;
  • 13 is a flow diagram illustrating the operation of the electronic control device of Modification 1 shown in FIG. 12.
  • FIG. 13 is a timing chart illustrating the operation of the electronic control device of Modification 1 shown in FIG. 12.
  • FIG. 12 is a functional block diagram showing modification example 1 of the electronic control device shown in FIG. 4;
  • 13 is a flow diagram illustrating the operation of the electronic control device of Modification 1 shown in FIG. 12.
  • FIG. 13 is a timing chart illustrating the operation of the electronic
  • FIG. 5 is a functional block diagram showing a second modification of the electronic control device shown in FIG. 4.
  • FIG. FIG. 16 is a flowchart illustrating the operation of the electronic control device of modification 2 shown in FIG. 15; 16 is a timing chart illustrating the operation of the electronic control device of modification 2 shown in FIG. 15.
  • FIG. 5 is a functional block diagram showing a third modification of the electronic control device shown in FIG. 4.
  • FIG. 19 is a flowchart illustrating the operation of the electronic control device of modification 3 shown in FIG. 18; 19 is a timing chart illustrating the operation of the electronic control device of modification 3 shown in FIG. 18.
  • FIG. 16 is a flowchart illustrating the operation of the electronic control device of modification 2 shown in FIG. 15
  • 16 is a timing chart illustrating the operation of the electronic control device of modification 2 shown in FIG. 15.
  • FIG. 5 is a functional block diagram showing a third modification of the electronic control device shown in FIG. 4.
  • FIG. 19 is a flowchart illustrating the operation of the electronic control
  • FIG. 1 is a schematic configuration diagram of an engine system ES showing an embodiment of the electronic control device of the present disclosure.
  • the engine system ES is mounted on a vehicle, for example, and generates power for driving the vehicle.
  • the engine system ES includes, for example, an intake system 1, a fuel supply system 2, an engine 3, an exhaust system 4, an electronic control device 5, and an accelerator opening sensor 6.
  • the electronic control unit 5 will be abbreviated as "ECU5" as appropriate.
  • the intake system 1 includes, for example, an intake sensor 11, a throttle valve 12, a collector 13, and an intake manifold 14.
  • the intake air sensor 11 detects physical quantities such as the flow rate, temperature, humidity, and pressure of air taken into the intake system 1.
  • the intake sensor 11 is connected to the ECU 5 via wiring, and outputs the detected physical quantity to the ECU 5.
  • the throttle valve 12 includes a valve body, an opening sensor that detects the opening degree of the valve body, and a motor that drives the valve body.
  • the throttle valve 12 is connected to the ECU 5 via wiring, and its opening degree is controlled by the ECU 5.
  • the collector 13 distributes the air flowing in through the throttle valve 12 to each branch of the intake manifold 14.
  • the intake manifold 14 supplies the air distributed by the collector 13 to the combustion chamber 31 of the engine 3.
  • an intake pipe pressure sensor (not shown) is installed in the intake manifold 14 and outputs a detection result of intake air pressure to the ECU 5.
  • FIG. 2 is a schematic configuration diagram of the fuel supply system 2 of the engine system ES of FIG. 1.
  • the fuel supply system 2 includes, for example, a fuel tank 21, a low pressure fuel pump 22, a regulator 23, a low pressure fuel supply pipe 24 (low pressure fuel supply passage), a high pressure fuel pump 25, a high pressure fuel supply pipe 26, and a common rail. 27, a fuel pressure sensor 28, and an injector 29.
  • the fuel tank 21 stores fuel such as gasoline, for example.
  • the low pressure fuel pump 22 supplies low pressure fuel to the high pressure fuel pump 25 or the common rail 27 via the low pressure fuel supply pipe 24, for example.
  • the regulator 23 keeps the fuel in the low-pressure fuel supply pipe 24 constant by returning the fuel in the low-pressure fuel supply pipe 24 to the fuel tank 21 when the pressure of the fuel in the low-pressure fuel supply pipe 24 exceeds a predetermined pressure. Adjust the pressure to .
  • the high-pressure fuel pump 25 is driven, for example, by power transmitted from the camshaft of an exhaust cam that drives the exhaust valve 34 of the engine 3.
  • the high-pressure fuel pump 25 increases the pressure of the fuel supplied from the low-pressure fuel pump 22 and supplies high-pressure fuel to the common rail 27 via the high-pressure fuel supply pipe 26 .
  • the common rail 27 supplies high-pressure fuel supplied from the high-pressure fuel pump 25 via the high-pressure fuel supply pipe 26 to the plurality of injectors 29.
  • the fuel pressure sensor 28 detects, for example, the pressure of fuel supplied to the common rail 27 (fuel pressure).
  • the fuel pressure sensor 28 is connected to the ECU 5 via wiring, for example, and outputs a detection result of fuel pressure to the ECU 5.
  • Injector 29 is provided in each cylinder of engine 3, for example, and is connected to ECU 5 via wiring. The injector 29 is controlled by the ECU 5 and injects the fuel supplied from the common rail 27 into the combustion chamber 31 of each cylinder of the engine 3.
  • the engine 3 is, for example, a four-cylinder engine having four cylinders.
  • the engine 3 is not limited to an in-cylinder injection type, and may be, for example, a port injection type or a dual injection spark ignition internal combustion engine that uses both in-cylinder injection and port injection.
  • the engine 3 includes, for example, a combustion chamber 31, a piston 32, an intake valve 33, an exhaust valve 34, an ignition coil 35, a spark plug 36, a crank angle sensor 37, and a water temperature sensor 38. .
  • the combustion chamber 31 is a space in which a mixture of fuel injected by the injector 29 and air supplied from the intake manifold 14 via the intake valve 33 is combusted.
  • the piston 32 is pushed down by the combustion of the air-fuel mixture in the combustion chamber 31 and rotates the crankshaft.
  • the actuators of the intake valve 33 and the exhaust valve 34 are connected to the ECU 5 via wiring, for example.
  • the actuators for the intake valve 33 and the exhaust valve 34 open and close the intake valve 33 and the exhaust valve 34, respectively, under the control of the ECU 5, for example.
  • the ignition coil 35 is connected to the ECU 5 via wiring, for example.
  • the ignition coil 35 generates high voltage under the control of the ECU 5.
  • the spark plug 36 ignites the air-fuel mixture in the combustion chamber 31 by being discharged by the high voltage generated by the ignition coil 35.
  • the crank angle sensor 37 detects the angle of the crankshaft of the engine 3.
  • the crank angle sensor 37 is connected to the ECU 5 via wiring, for example, and outputs an angle detection result to the ECU 5.
  • Water temperature sensor 38 detects the temperature of the cooling water of engine 3.
  • the water temperature sensor 38 is connected to the ECU 5 via wiring, for example, and outputs a temperature detection result to the ECU 5.
  • the exhaust system 4 includes, for example, an exhaust manifold 41, an oxygen sensor 42, and a three-way catalyst 43.
  • the exhaust manifold 41 collects exhaust gas discharged from the combustion chamber 31 of each cylinder via the exhaust valve 34.
  • the oxygen sensor 42 detects the oxygen concentration of the exhaust gas that has passed through the exhaust manifold 41.
  • the oxygen sensor 42 is connected to the ECU 5 via wiring, for example, and outputs the detected oxygen concentration to the ECU 5.
  • the three-way catalyst 43 purifies harmful components in exhaust gas by oxidation and reduction.
  • the ECU 5 is, for example, an engine control unit that controls overall control of the engine system ES, including fuel injection by the injector 29. For example, the ECU 5 calculates the amount of fuel injected by the injector 29 based on engine state quantities including the crank rotation angle, throttle opening, engine speed, fuel pressure, etc. obtained from various sensors of the engine system ES, and calculates the amount of fuel injected by the injector 29. Controls the fuel pump 25, injector 29, etc.
  • FIG. 3 is a block diagram showing a schematic configuration of the ECU 5 in FIG. 1.
  • the ECU 5 is configured by a computer including, for example, an input circuit 51, an A/D conversion section 52, a central processing unit (CPU) 53, a ROM 54, a RAM 55, and an output circuit 56.
  • the ECU 5 may be configured with an FPGA (Field Programmable Gate Array), which is a rewritable logic circuit, an ASIC (Application Specific Integrated Circuit), which is a rewritable logic circuit, or a combination of ROM, RAM, and FPGA. It is possible.
  • FPGA Field Programmable Gate Array
  • the input circuit 51 receives outputs from various sensors such as the intake sensor 11, the throttle valve 12 opening sensor, the fuel pressure sensor 28, the crank angle sensor 37, the water temperature sensor 38, the oxygen sensor 42, and the accelerator opening sensor 6. Signals SS1, SS2, SS3, . . . are input. For example, when the input signal is an analog signal, the input circuit 51 removes noise from the analog signal and outputs the noise-removed analog signal to the A/D converter 52. Further, for example, when the input signal is a digital signal, the input circuit 51 outputs the digital signal as it is to the CPU 53. The A/D converter 52 converts the analog signal input from the input circuit 51 into a digital signal and outputs the digital signal to the CPU 53.
  • the CPU 53 performs various calculations using the detection results of each sensor input as a digital signal from the input circuit 51 or the A/D converter 52. Perform diagnosis and control.
  • the CPU 53 causes the RAM 55 to temporarily hold detection results, calculation results, diagnosis results, etc. of each sensor.
  • the CPU 53 outputs control signals CS1, CS2, CS3, ... including the drive current of the injector 29 to each part of the engine system ES including the injector 29 via the output circuit 56 based on the calculation result and the diagnosis result. do.
  • FIG. 4 is a functional block diagram showing details of the function of outputting the drive current I of the injector 29 in the ECU 5 of FIG. 1.
  • the ECU 5 includes, for example, a target fuel pressure calculation section 501, a fuel pressure acquisition section 502, a failure detection section 503, a failure determination section 504, an abnormality detection section 505, an abnormality determination section 506, and a drive current setting section 507. have.
  • the ECU 5 includes, for example, a fail-safe processing section 508, a high-pressure fuel pump control section 509, a drive current calculation section 510, and a drive current output section 511. Note that each part of the ECU 5 shown in FIG. 4 represents each function of the ECU 5 that is realized by, for example, executing a program stored in the ROM 54 by the CPU 53 shown in FIG. 3.
  • FIG. 5 is a flow diagram illustrating the control process P of the engine system ES by the ECU 5 of FIG. 4.
  • FIG. 6 is a timing chart when the ECU 5 shown in FIG. 4 controls the engine system ES.
  • each chart in FIG. 6 is time, and the vertical axis of the top chart is the presence (Y)/absence of detection of a failure of the fuel pressure sensor 28 (fuel pressure sensor failure) or an abnormality in the detected value. (N).
  • the vertical axis of the second chart from the top of FIG. 6 is the fuel pressure of the fuel supplied to the injector 29, the solid line indicates the actual fuel pressure FPr, and the dashed line indicates the fuel pressure detected value FPs by the fuel pressure sensor 28.
  • the vertical axis of the second chart from the bottom in FIG. 6 is the drive current input to the injector 29, the solid line shows the drive current by the ECU 5 of this embodiment, and the broken line shows the drive current by the conventional device. ing.
  • the vertical axis of the bottom chart in FIG. 6 is the rotation speed of the engine 3, the solid line indicates the rotation speed of the engine 3 under control of the ECU 5 of this embodiment, and the broken line indicates the rotation speed of the engine under control of the conventional device. It shows the number.
  • the ECU 5 starts the control process P shown in FIG. 5, it executes, for example, a process P01 for calculating the target fuel pressure FPt.
  • the target fuel pressure calculation unit 501 calculates, for example, the intake air amount Qa input from the intake sensor 11 to the ECU 5, the rotation speed Ne of the engine 3 based on the rotation angle input from the crank angle sensor 37 to the ECU 5, etc. Based on this, the target fuel pressure FPt of the fuel supplied to the injector 29 is calculated.
  • the ECU 5 executes, for example, a process P02 to obtain fuel pressure.
  • the fuel pressure acquisition unit 502 acquires, for example, the fuel pressure detection value FPs input from the fuel pressure sensor 28 to the ECU 5.
  • the ECU 5 executes, for example, a process P03 for controlling the high-pressure fuel pump 25.
  • the high-pressure fuel pump control unit 509 controls whether the high-pressure fuel pump 25 supplies fuel based on the signal SS input from the accelerator opening sensor 6, the throttle valve 12 opening sensor, the crank angle sensor 37, etc., for example. Controls the discharge amount. Thereby, the pressure of the fuel supplied to the injector 29, that is, the fuel pressure, is controlled to a desired pressure.
  • the high-pressure fuel pump control unit 509 may perform feedback control on the discharge amount of the high-pressure fuel pump 25, for example, so that the fuel pressure detection value FPs of the fuel pressure sensor 28 and the target fuel pressure FPt match.
  • the ECU 5 executes, for example, a process P04 for calculating the drive current of the injector 29.
  • the drive current calculation unit 510 calculates the drive current of the injector 29 based on the fuel pressure detection value FPs of the fuel pressure sensor 28 acquired by the fuel pressure acquisition unit 502, for example. Further, the drive current calculation unit 510 calculates the drive current of the injector 29 based on, for example, the target fuel pressure FPt calculated by the target fuel pressure calculation unit 501 and the detected fuel pressure value FPs. More specifically, the drive current calculation unit 510 calculates the drive current of the injector 29 based on, for example, the difference between the target fuel pressure FPt and the detected fuel pressure value FPs.
  • the ECU 5 executes, for example, a process P05 that determines whether or not a fuel pressure sensor failure or detected value abnormality is detected.
  • the failure detection unit 503 detects a fuel pressure sensor failure, which is a failure of the fuel pressure sensor 28, based on the fuel pressure detection value FPs of the fuel pressure sensor 28 acquired by the fuel pressure acquisition unit 502.
  • the fuel pressure sensor failure detected by the failure detection unit 503 includes, for example, a ground fault or disconnection of the fuel pressure sensor 28.
  • the abnormality detection unit 505 detects the fuel pressure based on the fuel pressure detection value FPs of the fuel pressure sensor 28 acquired by the fuel pressure acquisition unit 502 and the target fuel pressure FPt calculated by the target fuel pressure calculation unit 501.
  • An abnormality in the value FPs is detected.
  • an abnormality in the fuel pressure detection value FPs of the fuel pressure sensor 28 detected by the abnormality detection unit 505, that is, a detection value abnormality is, for example, the difference between the target fuel pressure FPt and the fuel pressure detection value FPs and the difference in the fuel pressure detection value FPs per unit time. This is a state in which the amount of change exceeds a preset threshold value.
  • a detected value abnormality may be caused by, for example, a microcontroller abnormality or an input abnormality.
  • the failure detection unit 503 determines whether the fuel pressure sensor has failed or detected the detected value in process P05 before time t1. It is determined that no abnormality has been detected (NO).
  • the ECU 5 executes a process P06 for setting the drive current of the injector 29.
  • the drive current setting section 507 sets the drive current of the injector 29 based on the detected fuel pressure value FPs. More specifically, the drive current setting unit 507 sets the drive current based on the fuel pressure detection value FPs calculated by the drive current calculation unit 510 until, for example, a fuel pressure sensor failure or a detection value abnormality is detected in process P05. Next, it is set as the drive current to be output to the injector 29.
  • the ECU 5 executes, for example, a process P07 of outputting a drive current.
  • the drive current output section 511 outputs, for example, the drive current set by the drive current setting section 507 to the injector 29.
  • the injector 29 opens in response to the drive current input from the ECU 5.
  • high-pressure fuel is supplied from the fuel tank 21 to the high-pressure fuel pump 25 by the low-pressure fuel pump 22, and is further pressurized by the high-pressure fuel pump 25 and discharged to the common rail 27. , is injected from the injector 29 into the combustion chamber 31 of the engine 3.
  • the injector 29 is, for example, an in-cylinder direct injection type injector that injects fuel multiple times during one cycle of the engine 3.
  • the injector 29 injects fuel into the combustion chamber 31 by opening for a period specified by a drive current input from the ECU 5.
  • the total fuel injection amount which is the total amount of fuel injected by the injector 29 during one cycle, can be set in advance, and the injection amount for each fuel injection performed multiple times can also be set in advance. .
  • the ECU 5 repeatedly executes the above-described processes P01 to P07 at a predetermined cycle until, for example, time t1 shown in FIG. 6.
  • time t1 a failure of the fuel pressure sensor 28 or an abnormality in the detected fuel pressure value FPs occurs, and as shown in the second chart from the top of FIG. Suppose that the value decreases to .
  • the difference between this detected fuel pressure value FPs and the actual fuel pressure FPr of the fuel supplied to the injector 29, indicated by a solid line increases.
  • the failure detection unit 503 determines that a fuel pressure sensor failure has been detected (YES), or the failure detection unit 505 detects a detected value abnormality. Determine whether you have done so (YES).
  • the ECU 5 executes, for example, a failure detection process P08, a failure confirmation process P09, and a failure confirmation process P10, as shown in FIG. 5, for example.
  • FIG. 7 is a flow diagram showing details of the failure etc. detection process P08 in FIG. 5.
  • the ECU 5 starts this process P08, it first executes a process P081 in which it is determined whether or not a definite determination of fuel pressure sensor failure is being executed.
  • the failure determination unit 504 executes a determination of the fuel pressure sensor failure, for example, when the failure detection unit 503 has not detected a fuel pressure sensor failure, or when the fuel pressure sensor failure has already been determined. Determine if it has not been done (NO).
  • the ECU 5 executes, for example, a process P082 that determines whether or not the determination of the detection value abnormality is being executed.
  • the abnormality determining unit 506 executes the determination of the detected value abnormality, for example, when the detected value abnormality is not detected by the abnormality detecting unit 505, or when the detected value abnormality has already been determined. Determine if it has not been done (NO).
  • the ECU 5 ends the process P08 shown in FIG. 7 and executes the next failure determination process P09.
  • the failure determining unit 504 determines that, as shown in the top chart of FIG. 6, the failure detecting unit 503 continues to detect a fuel pressure sensor failure (Y), and If the state does not exceed the first period TP1, it is determined that the determination of fuel pressure sensor failure is being executed (YES).
  • the abnormality determining unit 506 determines that when the abnormality detecting unit 505 continues to detect a detected value abnormality (Y) and this state does not exceed the second period TP2, It is determined that the determination of the detection value abnormality is being executed (YES).
  • the ECU 5 executes the following process P083.
  • the first period TP1 for determining fuel pressure sensor failure and the second period TP2 for determining detected value abnormality can be set to any period necessary to determine each event. Therefore, the first period TP1 and the second period TP2 may be the same or different. In FIG. 6, for convenience of explanation, the first period TP1 and the second period TP2 are shown as the same period from time t1 to time t2.
  • the ECU 5 sets a provisional drive current based on the fuel pressure detection value FPs at a time before the failure or abnormality detection.
  • the drive current setting unit 507 determines, for example, as the drive current to be output next to the injector 29, a drive current based on the fuel pressure detection value FPs of the fuel pressure sensor 28 after the fuel pressure sensor failure or detection value abnormality is detected. Set a different interim drive current.
  • the drive current setting unit 507 sets the drive current to be outputted to the injector 29 next at a time point before time t1 at which the fuel pressure sensor failure or detected value abnormality is detected.
  • a provisional drive current is set based on the detected fuel pressure value FPs.
  • the drive current setting unit 507 sets the drive current set in the process immediately before time t1 at which the fuel pressure sensor failure or detected value abnormality is detected as the provisional drive current.
  • the ECU 5 Therefore, the drive current output from the injector 29 to the injector 29 does not change significantly.
  • the fuel pressure sensor 28 fails or an abnormal detected value occurs, it is possible to prevent the injector from opening incorrectly. Therefore, even after time t1 when the fuel pressure detection value FPs of the fuel pressure sensor 28 deviates from the actual fuel pressure FPr, as shown by the solid line in the bottom chart of FIG. It can be prevented.
  • FIG. 8 is a flowchart showing details of the failure determination process P09 of FIG. 5.
  • the ECU 5 starts this process P09, it first executes a process P091 to determine whether the duration of the fuel pressure sensor failure exceeds the first period TP1.
  • the failure determination unit 504 determines whether, for example, the failure detection unit 503 has not detected a fuel pressure sensor failure, if the fuel pressure sensor failure has already been determined, or if the fuel pressure sensor failure continues to be detected. If the current period does not exceed the first period TP1, a negative determination (NO) is made.
  • the ECU 5 executes a process P092 to determine whether the duration of the detected value abnormality exceeds the second period TP2.
  • the abnormality determination unit 506 determines whether, for example, the abnormality detection unit 505 has not detected a detected value abnormality, if the detected value abnormality has already been determined, or if the detection value abnormality continues to be detected. If the current period does not exceed the second period TP2, a negative determination (NO) is made. In this case, the ECU 5 ends the process P09 shown in FIG. 8 and executes the next process P10 when a failure is determined.
  • the failure determination unit 504 determines that, as shown in the top chart of FIG. 6, the failure detection unit 503 continues to detect a fuel pressure sensor failure (Y), and If the state exceeds the first period TP1, an affirmative (YES) determination is made. In this case, the failure determining unit 504 executes a process P093 to determine the fuel pressure sensor failure, and ends the process P09 shown in FIG. 8.
  • the abnormality determination unit 506 determines if the abnormality detection unit 505 continues to detect a detected value abnormality (Y) and if this state exceeds the second period TP2, (YES) is determined. In this case, the abnormality determining unit 506 executes a process P094 for determining the detected value abnormality, and ends the process P09 shown in FIG. 8. After that, the ECU 5 executes the next failure confirmation process P10.
  • FIG. 9 is a flowchart showing details of the process P10 when a failure is determined in FIG. 5.
  • the ECU 5 When the ECU 5 starts this process, it first executes process P101 to determine whether a fuel pressure sensor failure or detected value abnormality has been determined.
  • the failsafe processing unit 508 makes a negative determination (NO), for example, when the failure determination unit 504 has not determined that a fuel pressure sensor failure or detected value abnormality has occurred.
  • the failsafe processing unit 508 maintains the drive current to be output to the injector 29 next time at the drive current output to the injector 29 last time, and outputs it to the drive current setting unit 507.
  • the ECU 5 ends the process P10 shown in FIG. 9 and executes the process P06 and the process P07 shown in FIG. 5.
  • the drive current setting section 507 sets a provisional drive current as the drive current to be output to the injector 29 from the detection of the fuel pressure sensor failure or the detected value abnormality to the determination, and thereby the drive current output section 511 outputs the injector 29 to the injector 29.
  • a provisional drive current is output to.
  • the failsafe processing unit 508 makes an affirmative determination (YES), for example, when the failure determination unit 504 determines a fuel pressure sensor failure or a detected value abnormality.
  • the failsafe processing unit 508 determines whether the drive current to be output to the injector 29 next is larger than the set value at the time when the fuel pressure sensor failure is determined.
  • the fail-safe processing unit 508 performs a process of gradually decreasing the drive current and outputting it to the drive current setting unit 507. Execute P104.
  • the ECU 5 ends the process P10 shown in FIG. 9 and executes the process P06 and the process P07 shown in FIG. 5.
  • the high-pressure fuel pump control unit 509 shown in FIG. Based on the detected fuel pressure value FPs, feedback control is performed to set the amount of fuel discharged to the injector 29 by the high-pressure fuel pump 25 shown in FIGS. 1 and 2.
  • the high-pressure fuel pump control unit 509 temporarily stops the feedback control of the fuel discharge amount during the period from the detection of fuel pressure sensor failure or detected value abnormality to the determination of fuel pressure sensor failure or detected value abnormality.
  • feedforward control of the fuel discharge amount can be performed based on the target fuel pressure FPt at a point in time before the fuel pressure sensor failure or detected value abnormality is detected.
  • the high-pressure fuel pump control unit 509 controls the low-pressure fuel supply pipe 24 by the low-pressure fuel pump 22 by stopping the pressurized discharge of fuel by the high-pressure fuel pump 25 when a fuel pressure sensor failure or detected value abnormality is confirmed. Fuel is supplied to the injector 29 via the injector 29. When a fuel pressure sensor failure or detected value abnormality is confirmed, the drive current setting unit 507 sets the drive current to be output to the injector 29 next from the provisional drive current to be supplied to the injector 29 by the low-pressure fuel pump 22. The drive current corresponding to the fuel pressure is gradually reduced to the set value at the time of sensor failure, etc.
  • process P102 if the failsafe processing unit 508 determines that the drive current is less than or equal to the set value when the fuel pressure sensor failure is confirmed (NO), it executes process P103 to maintain the drive current. This prevents the drive current output from the ECU 5 to the injector 29 from becoming smaller than necessary, and prevents the injector 29 from opening incorrectly.
  • the ECU 5 of this embodiment is an engine system ES that includes an injector 29 that injects fuel into the combustion chamber 31 of the engine 3, and a fuel pressure sensor 28 that detects the fuel pressure of the fuel supplied to the injector 29.
  • This is an electronic control device that controls the
  • the ECU 5 includes a target fuel pressure calculation section 501, a fuel pressure acquisition section 502, a failure detection section 503, a failure determination section 504, an abnormality detection section 505, an abnormality determination section 506, and a drive current setting section. 507.
  • the target fuel pressure calculation unit 501 calculates a target fuel pressure FPt of fuel supplied to the injector 29.
  • the fuel pressure acquisition unit 502 acquires the fuel pressure detection value FPs of the fuel pressure sensor 28.
  • the failure detection unit 503 detects a fuel pressure sensor failure, which is a failure of the fuel pressure sensor 28, based on the detected fuel pressure value FPs.
  • the failure determining unit 504 determines the fuel pressure sensor failure when detection of the fuel pressure sensor failure continues beyond the first period TP1.
  • the abnormality detection unit 505 detects a detected value abnormality in which the difference between the target fuel pressure FPt and the detected fuel pressure value FPs and the amount of change per unit time in the detected fuel pressure value FPs each exceed a threshold value.
  • the abnormality determining unit 506 determines the detected value abnormality when the detection of the detected value abnormality continues beyond the second period TP2.
  • the drive current setting unit 507 sets the drive current of the injector 29 based on the fuel pressure detection value FPs until a fuel pressure sensor failure or an abnormality in the detection value is detected. Then, the drive current setting unit 507 sets a provisional drive current based on the fuel pressure detection value FPs before the fuel pressure sensor failure or detection value abnormality is detected as the drive current from the detection of the fuel pressure sensor failure or detection value abnormality to its determination. Set.
  • the drive current setting unit 507 gradually reduces the drive current from the provisional drive current when a fuel pressure sensor failure or detected value abnormality is determined.
  • the engine system ES controlled by the electronic control device 5 of this embodiment also includes a high-pressure fuel pump 25 that supplies fuel to the injector 29 and a low-pressure fuel pump 22 that supplies fuel from the fuel tank 21 to the high-pressure fuel pump 25.
  • the ECU 5 includes a high-pressure fuel pump control section 509 that controls the amount of fuel discharged by the high-pressure fuel pump 25 based on the target fuel pressure FPt.
  • the high-pressure fuel pump control unit 509 stops the pressurized discharge of fuel by the high-pressure fuel pump 25 when a fuel pressure sensor failure or detected value abnormality is determined, thereby causing the low-pressure fuel pump 22 to supply fuel via the low-pressure fuel supply pipe 24. to supply the fuel to the injector 29.
  • the drive current setting unit 507 changes the drive current of the injector 29 from the provisional drive current to the fuel pressure of the fuel supplied to the injector 29 by the low-pressure fuel pump 22. Gradually decrease the drive current to the corresponding value.
  • the injector drive current is set to the maximum drive current regardless of the time. Therefore, in the conventional device, the durability of the injector decreases due to the increased impact when the injector is opened and closed. Further, in the conventional device, the operation of the injector cannot correspond to the actual fuel pressure before the failure of the fuel pressure sensor is determined.
  • the electronic control device is not limited to the ECU 5 according to the above-described embodiment.
  • some modified examples of the above-mentioned ECU 5 will be described with reference to FIGS. 10 to 20.
  • FIG. 10 is a flowchart showing a first modification of the process P08 at the time of detection of failure etc. in FIG. 7.
  • the ECU 5 executes processing P084, processing P085, and processing P086 instead of processing P083 shown in FIG.
  • the ECU 5 determines whether the fuel pressure detection value FPs of the fuel pressure sensor 28 is larger than the fuel pressure detection value FPs before the detection of the fuel pressure sensor failure or detection value abnormality, while executing the definitive determination of the fuel pressure sensor failure or detection value abnormality. Determine whether or not.
  • the drive current setting unit 507 sets, for example, the most recent fuel pressure detection value FPs after the fuel pressure sensor failure or detected value abnormality is detected, and the time t1 when the fuel pressure sensor failure or detected value abnormality is detected.
  • the fuel pressure detection value FPs is compared with the past fuel pressure detection value FPs at the time of the third period.
  • the third period is, for example, equal to the execution cycle of the process flow shown in FIG. 5 by the ECU 5, or a period that is an integral multiple of the execution cycle of the process flow shown in FIG.
  • the drive current setting unit 507 determines that the past fuel pressure detection value FPs before the fuel pressure sensor failure etc. was detected is greater than or equal to the most recent fuel pressure detection value FPs after the fuel pressure sensor failure etc. was detected. If it is determined that it is true (NO), the next process P085 is executed. In this process P085, the drive current setting unit 507 provisionally outputs the drive current calculated by the drive current calculation unit 510 based on the past fuel pressure detection value FPs before the fuel pressure sensor failure etc. is detected to the injector 29. The drive current is set, and the process P08 shown in FIG. 10 is ended.
  • the drive current setting unit 507 determines that the most recent fuel pressure detection value FPs after the fuel pressure sensor failure etc. was detected is higher than the past fuel pressure detection value FPs before the fuel pressure sensor failure etc. was detected. If it is determined that the value is also large (YES), the next process P086 is executed. In this process P086, the drive current setting unit 507 provisionally outputs the drive current calculated by the drive current calculation unit 510 based on the most recent fuel pressure detection value FPs after the fuel pressure sensor failure etc. is detected to the injector 29. The drive current is set, and the process P08 shown in FIG. 10 is ended.
  • the ECU 5 of this modification can not only achieve the same effect as the ECU 5 of the above-described embodiment, but also can more reliably prevent valve opening failure of the injector 29, and improve the efficiency of the engine 3. It is possible to more reliably prevent stoppage and decrease in rotational speed.
  • FIG. 11 is a flowchart showing a second modification of the process P08 at the time of detection of failure, etc. in FIG.
  • the ECU 5 executes processing P087a, processing P087b, processing P088, processing P089a, and processing P089b instead of processing P083 shown in FIG.
  • the drive current calculation unit 510 calculates the first drive current of the injector 29 from the fuel pressure detection value FPs of the fuel pressure sensor 28 most recently after the fuel pressure sensor failure or detection value abnormality is detected.
  • the drive current calculation unit 510 calculates the second drive current of the injector 29 from the fuel pressure detection value FPs of the fuel pressure sensor 28 at a time point that is a third period back from the detection of the fuel pressure sensor failure or detection value abnormality. do.
  • the drive current setting unit 507 executes a process P088 to determine whether the first drive current calculated by the drive current calculation unit 510 is larger than the second drive current.
  • the drive current setting unit 507 sets the first drive current to a provisional drive current to be output to the injector 29 in a process P089a. is executed, and the process P08 shown in FIG. 11 is ended.
  • process P088 when the drive current setting unit 507 determines that the second drive current is larger than the first drive current (NO), the drive current setting unit 507 performs a process of setting the second drive current to the provisional drive current to be output to the injector 29. P089b is executed, and the process P08 shown in FIG. 11 is ended.
  • This modified ECU 5 can also provide the same effects as the modified ECU 5 shown in FIG. 10 .
  • FIG. 12 is a functional block diagram showing a first modification of the ECU 5 shown in FIG. 4.
  • the ECU 5 of this modification includes, for example, a fuel injection amount calculation section 512, a fuel injection amount determination section 513, an intake air amount acquisition section 514, and an intake air amount determination section shown in FIG. 515 , an engine rotation speed acquisition section 516 , an engine rotation speed determination section 517 , and a drive current correction section 518 .
  • FIG. 13 is a flow diagram illustrating the operation of the ECU 5 of Modification 1 shown in FIG. 12. Processes P08A to P08G shown in FIG. 13 are executed, for example, after the provisional drive current is set by the drive current setting unit 507 in process P085 or process P086 of the failure detection process P08 shown in FIG.
  • the fuel injection amount calculation unit 512 determines the total fuel injection amount to be injected from the injector 29 and the number of injections multiple times during one cycle, for example, based on signals input from various sensors of the engine system ES.
  • a target fuel injection amount which is the injection amount for each fuel injection to be executed, is calculated.
  • the fuel injection amount determining unit 513 determines whether the amount of change in the total fuel injection amount is within a predetermined range based on the time series data of the total fuel injection amount, and determines whether the amount of change in the total fuel injection amount is outside the predetermined range ( If the determination is NO, the process P08 is ended. On the other hand, in this process P08B, if the fuel injection amount determination section 513 determines that the amount of change in the total fuel injection amount is within the predetermined range (YES), the intake air amount acquisition section 514 acquires the A process P08C is executed to acquire time series data of the intake air amount of the engine 3 based on the input signal.
  • the intake air amount determining unit 515 determines whether the amount of change in the intake air amount is within a predetermined range, and if it is determined to be outside the predetermined range (NO), ends process P08. On the other hand, in this process P08D, if the intake air amount determination section 515 determines that the intake air amount is within the predetermined range (YES), the engine rotation speed acquisition section 516 calculates, for example, the rotation of the engine 3 based on the signal input from the crank angle sensor 37. A process P08E for acquiring the number is executed.
  • the engine rotation speed determination unit 517 determines whether the obtained rotation speed of the engine 3 continues to be lower than the threshold value for a predetermined period of time.
  • the engine rotation speed determination unit 517 determines whether the rotation speed of the engine 3 is equal to or higher than a predetermined value, or whether the duration of the state in which the rotation speed of the engine 3 is lower than the predetermined value is equal to or less than a predetermined time (NO). If it is determined, processing P08 is ended.
  • the ECU 5 performs the following process. Processing P08G is executed.
  • the drive current correction section 518 corrects the provisional drive current to be output to the injector 29 when the fuel pressure sensor failure or the detected value abnormality is confirmed, and the drive current setting section 507 , the provisional drive current corrected by the drive current correction unit 518 is set as a new provisional drive current.
  • FIG. 14 is a timing chart illustrating the operation of the ECU 5 of Modification 1 shown in FIG. 12.
  • the timing chart in FIG. 14 includes charts for intake air amount and fuel injection amount.
  • the electronic control device 5 of this modification includes a fuel injection amount calculation section 512, an intake air amount acquisition section 514, an engine rotation speed acquisition section 516, and a drive current correction section 518.
  • the fuel injection amount calculation unit 512 calculates the total fuel injection amount of the injector 29.
  • the intake air amount acquisition unit 514 acquires the intake air amount of the engine 3 when the amount of change in the total fuel injection amount is within a predetermined range.
  • the engine rotation speed acquisition unit 516 acquires the rotation speed of the engine 3.
  • the drive current correction unit 518 corrects the provisional drive current to increase when the rotational speed of the engine 3 is lower than a threshold value.
  • the drive current setting unit 507 sets the provisional drive current corrected by the drive current correction unit 518 as a new provisional drive current.
  • the rotational speed of the engine 3 decreases below the threshold value with the intake air amount unchanged and the fuel injection amount unchanged, and this state continues for a predetermined period of time.
  • the drive current correction unit 518 corrects the provisional drive current to increase.
  • the drive current for the injector set by the drive current correction unit 518 increases, thereby preventing the engine 3 from stopping or decreasing the rotational speed.
  • FIG. 15 is a functional block diagram showing a second modification of the ECU 5 shown in FIG. 4.
  • FIG. 16 is a flowchart illustrating the operation of the ECU 5 of modification 2 shown in FIG. 15. Processing P08H to processing P08J shown in FIG. 16, for example, in processing P085 or processing P086 of the failure detection processing P08 shown in FIG. This is carried out after the provisional drive current is set to the injector drive current by the drive current setting unit 507 during the period until the determination of the value abnormality.
  • the electronic control device 5 of Modification 2 includes, for example, a valve closing state detection section 521, a valve closing time calculation section 522, and a drive current correction section 523 shown in FIG. ing.
  • the valve-closed state detection unit 521 detects the valve-closed state of the injector 29 and outputs it to the valve-closed time calculation unit 522.
  • the valve closed state detection unit 521 detects the closed state of the injector 29 based on, for example, a signal output from the injector 29 when the injector 29 is closed.
  • the valve closing time calculating section 522 calculates the observed value of the valve closing time of the injector 29 based on the valve closing state of the injector 29 inputted from the valve closing state detecting section 521.
  • the valve opening time which has an exclusive relationship with the observed valve closing time value, is also obvious, so calculate the observed valve opening time value in the same way as the observed valve closing time value above. can do.
  • the drive current correction unit 523 determines whether the observed valve closing time value calculated by the valve closing time calculation unit 522 is longer than a predetermined valve closing time to be described later, and determines whether the valve closing time is If it is determined that the observed value is shorter than the predetermined valve closing time (NO), processing P08 shown in FIG. 10 is ended. On the other hand, in process P08I, if the drive current correction unit 523 determines that the observed value of the valve closing time calculated by the valve closing time calculation unit 522 is longer than the predetermined time (YES), the drive current correction unit 523 performs the failure etc. detection process shown in FIG. The provisional drive current set in process P085 or process P086 of P08 is corrected to increase.
  • the process P08I described above can also be performed based on the observed valve opening time value.
  • the drive current correction unit 523 determines whether the observed valve opening time value calculated by the valve closing time calculation unit 522 is longer than a predetermined valve opening time, and determines whether the observed valve opening time value is If it is determined that the valve opening time is longer than the predetermined valve opening time (NO), processing P08 shown in FIG. 10 is ended.
  • the drive current correction unit 523 determines that the observed valve opening time value calculated by the valve opening time calculation unit 522 is shorter than the predetermined valve opening time (YES), the drive current correction unit 523 causes a failure as shown in FIG.
  • the provisional drive current set in process P085 or process P086 of detection process P08 is corrected to increase.
  • the predetermined valve closing time and the predetermined valve opening time are, for example, the total fuel injection amount injected from the injector 29 or each fuel injection performed multiple times during one combustion cycle of the engine 3. It can be set based on the target fuel injection amount which is the injection amount.
  • FIG. 17 is a timing chart illustrating the operation of the ECU 5 of modification 2 shown in FIG. 15.
  • the timing chart of FIG. 17 has a chart of valve closing time added. Further, the broken line in the fuel injection amount chart in FIG. 14 represents the target fuel injection amount.
  • the electronic control device 5 of this modification includes the valve closing state detection section 521, the valve closing time calculation section 522, and the drive current correction section 523.
  • the valve closed state detection unit 521 detects the valve closed state of the injector 29.
  • the valve closing time calculation unit 522 calculates the valve closing time or valve opening time of the injector 29 based on the detection result of the valve closed state.
  • the drive current correction unit 523 increases the provisional drive current when the valve closing time of the injector 29 is longer than the predetermined valve closing time or when the valve opening time of the injector 29 is shorter than the predetermined valve opening time.
  • the ECU 5 of the present modification 2 uses the valve closing detection function of the injector 29 to detect that the actual fuel injection amount (valve opening time observed value) of the injector 29 is decreasing. Can be done. That is, as shown in FIG. 17, when the observed value of the valve closing time of the injector 29 is longer than the predetermined valve closing time or when the observed value of the valve opening time of the injector 29 is shorter than the predetermined valve opening time, the injector 29 By detecting that the actual fuel injection amount is decreasing, it is possible to increase the provisional drive current output to the injector 29. As a result, the decrease in the fuel injection amount is eliminated, and it is possible to prevent the engine 3 from stopping and the rotational speed from decreasing.
  • FIG. 18 is a functional block diagram showing a third modification of the ECU 5 shown in FIG. 4.
  • FIG. 19 is a flowchart illustrating the operation of the ECU 5 of modification 3 shown in FIG. 18. Processing P08K to processing P08O shown in FIG. 19, for example, in processing P085 or processing P086 of failure detection processing P08 shown in FIG. This is carried out after the provisional drive current is set by the drive current setting unit 507 during the period until the determination of the value abnormality.
  • the ECU 5 of Modification 3 includes, for example, an intake air amount acquisition section 531, an intake air amount determination section 532, a fuel injection amount calculation section 533, and a fuel injection amount determination section shown in FIG. 534 and a drive current correction section 535.
  • the intake air amount acquisition unit 531 calculates and acquires the intake air amount based on the signal input from the intake sensor 11, for example.
  • the intake air amount determining unit 532 determines whether the amount of change in the intake air amount is within a predetermined range, based on the time series data of the intake air amount, and If it is determined (NO), the process P08 is ended.
  • the fuel injection amount calculating section 533 calculates, for example, signals input from various sensors of the engine system ES. Based on this, a process P08M is executed to calculate the total amount of fuel injected from the injector 29.
  • the fuel injection amount determining unit 534 determines whether the amount of change in the total fuel injection amount is within a predetermined range based on the time series data of the fuel injection amount, and determines whether or not the amount of change in the total fuel injection amount is within a predetermined range (NO ), the process P08 is ended. On the other hand, if it is determined in this process P08N that the amount of change in the total fuel injection amount is outside the predetermined range (NO), the ECU 5 executes the next process P08O.
  • the drive current correction section 535 corrects the provisional drive current output to the injector 29 to increase it, and the drive current setting section 507 changes the provisional drive current after the correction by the drive current correction section 535 to a new value. Set to temporary drive current.
  • FIG. 20 is a timing chart illustrating the operation of the ECU 5 of the third modification shown in FIG. 18.
  • a chart of intake air amount and fuel injection amount is added in place of the engine speed chart shown in FIG. 6.
  • the electronic control device 5 of the third modification includes the intake air amount acquisition section 531, the fuel injection amount calculation section 533, and the drive current correction section 535.
  • the intake air amount acquisition unit 531 acquires the intake air amount of the engine 3.
  • the fuel injection amount calculation unit 533 calculates the fuel injection amount of the injector 29 when the amount of change in the intake air amount is within a predetermined range.
  • the drive current correction unit 535 corrects the provisional drive current to increase when the total fuel injection amount is decreasing.

Abstract

The present invention provides an electronic control device that is able to prevent valve opening failure of an injector when an abnormality occurs in a fuel pressure sensor that detects the pressure of a fuel supplied by the injector, and prevent the engine from stopping or prevent a reduction in rotation speed. This electronic control device (ECU5) comprises a target fuel pressure calculating unit (501), a fuel pressure acquiring unit (502), a failure detecting unit (503), a failure confirming unit (504), an abnormality detecting unit (505), an abnormality confirming unit (506), and a drive current setting unit (507). The failure confirming unit (504) confirms a fuel pressure sensor failure when the detection of a sensor failure has continued for longer than a first time period. The abnormality confirming unit (506) confirms a sensor value abnormality when the detection of a detection value abnormality has continued for longer than a second time period. The drive current setting unit (507) sets a provisional drive current based on a fuel pressure detection value detected before the fuel pressure sensor failure and the detection value abnormality were detected, when the drive current of the injector over a period from the detection of the fuel pressure sensor failure until the first time period has elapsed or from the detection of the detection value abnormality until the second time period has elapsed.

Description

電子制御装置electronic control unit
 本開示は、電子制御装置に関する。 The present disclosure relates to an electronic control device.
 従来から内燃機関の高圧燃料供給装置、燃料噴射制御装置、および内燃機関の燃料供給制御装置に関する発明が知られている(下記特許文献1-3を参照)。 Inventions relating to a high-pressure fuel supply device for an internal combustion engine, a fuel injection control device, and a fuel supply control device for an internal combustion engine are conventionally known (see Patent Documents 1 to 3 below).
 下記特許文献1に記載された内燃機関の高圧燃料供給装置は、燃料タンクから移送される燃料を加圧する高圧ポンプと、その加圧された燃料の圧力を検出する燃圧センサと、その加圧された燃料を内燃機関に噴射供給する噴射弁とを有している(第0011段落、請求項1、要約、図1)。この従来の内燃機関の高圧燃料供給装置は、上記検出される燃料圧力が目標圧力となるように上記加圧する燃料圧力をフィードバック制御しつつ、上記噴射弁を通じて内燃機関にその運転状態に応じた所定量の高圧燃料を供給する。 The high-pressure fuel supply device for an internal combustion engine described in Patent Document 1 below includes a high-pressure pump that pressurizes fuel transferred from a fuel tank, a fuel pressure sensor that detects the pressure of the pressurized fuel, and a high-pressure pump that pressurizes fuel transferred from a fuel tank. and an injection valve that injects and supplies fuel to the internal combustion engine (paragraph 0011, claim 1, summary, FIG. 1). This conventional high-pressure fuel supply system for an internal combustion engine feeds back the pressurized fuel pressure so that the detected fuel pressure becomes a target pressure, and supplies the internal combustion engine with the fuel pressure through the injection valve according to its operating state. Supply a fixed amount of high pressure fuel.
 この従来の内燃機関の高圧燃料供給装置は、検出手段と、保持手段と、制御手段と、を備えることを特徴とする。上記検出手段は、上記燃圧センサの異常を検出する。上記保持手段は、上記燃圧センサの異常が検出されることに基づき上記燃料圧力を強制的に所定圧力に保持する。上記制御手段は、燃圧センサの異常が検出された後、上記燃料圧力が上記所定圧力に達するまで、上記燃料圧力を推定しつつその推定される燃料圧力に基づいて内燃機関に噴射供給する燃料量を制御する。 This conventional high-pressure fuel supply system for an internal combustion engine is characterized by comprising a detection means, a holding means, and a control means. The detection means detects an abnormality in the fuel pressure sensor. The holding means forcibly holds the fuel pressure at a predetermined pressure based on detection of an abnormality in the fuel pressure sensor. The control means estimates the fuel pressure and injects an amount of fuel to the internal combustion engine based on the estimated fuel pressure until the fuel pressure reaches the predetermined pressure after the abnormality of the fuel pressure sensor is detected. control.
 下記特許文献2に記載された燃料噴射制御装置は、内燃機関に燃料を噴射するインジェクタと、そのインジェクタへ供給される燃料圧力を検出する燃圧センサと、上記内燃機関の運転状態を検出するための各種センサと、これら燃圧センサおよび各種センサからの信号に基づいて燃料供給量を演算し上記インジェクタを駆動制御する燃料供給制御部とを備える(第0009段落、請求項1、要約、図2)。上記燃料供給制御部は、インジェクタ開弁信号発生手段と、第1駆動電流供給信号発生手段と、第1駆動電流供給手段と、第2駆動電流供給手段と、燃圧センサ故障検出手段と、を有する。 The fuel injection control device described in Patent Document 2 below includes an injector that injects fuel into an internal combustion engine, a fuel pressure sensor that detects the fuel pressure supplied to the injector, and an injector that detects the operating state of the internal combustion engine. It is provided with various sensors and a fuel supply control section that calculates the fuel supply amount based on the signals from these fuel pressure sensors and the various sensors and drives and controls the injector (Paragraph 0009, Claim 1, Summary, FIG. 2). The fuel supply control section includes an injector valve opening signal generation means, a first drive current supply signal generation means, a first drive current supply means, a second drive current supply means, and a fuel pressure sensor failure detection means. .
 上記インジェクタ開弁信号発生手段は、上記各種センサからの信号に基づいて燃料供給量を演算し、上記燃料供給量に基づくインジェクタの開弁信号を出力する。上記第1駆動電流供給信号発生手段は、上記燃圧センサからの信号に基づいてインジェクタ開弁時期に第1駆動電流を供給する第1駆動電流供給時間を設定し、第1駆動電流供給信号を出力する。上記第1駆動電流供給手段は、上記インジェクタ開弁信号発生手段からのインジェクタ開弁信号と上記第1駆動電流供給信号発生手段からの第1駆動電流供給信号とに基づいて上記インジェクタに第1駆動電流を供給する。 The injector valve opening signal generating means calculates the fuel supply amount based on the signals from the various sensors, and outputs the injector valve opening signal based on the fuel supply amount. The first drive current supply signal generating means sets a first drive current supply time for supplying the first drive current at the injector opening timing based on the signal from the fuel pressure sensor, and outputs a first drive current supply signal. do. The first drive current supply means provides a first drive to the injector based on an injector valve opening signal from the injector valve opening signal generation means and a first drive current supply signal from the first drive current supply signal generation means. Supply current.
 上記第2駆動電流供給手段は、上記第1駆動電流供給後、上記インジェクタ開弁信号発生手段からのインジェクタ開弁信号に基づいて上記インジェクタに上記第1駆動電流より低い第2駆動電流を供給する。上記燃圧センサ故障検出手段は、上記燃圧センサからの信号に基づいて当該燃圧センサの故障を検出する。そして、上記第1駆動電流供給信号発生手段は、上記燃圧センサ故障検出手段が上記燃圧センサの故障を検出した場合に、上記第1駆動電流供給時間を所定の固定時間に設定する。 After supplying the first drive current, the second drive current supply means supplies a second drive current lower than the first drive current to the injector based on an injector valve opening signal from the injector valve opening signal generation means. . The fuel pressure sensor failure detection means detects failure of the fuel pressure sensor based on a signal from the fuel pressure sensor. The first drive current supply signal generating means sets the first drive current supply time to a predetermined fixed time when the fuel pressure sensor failure detection means detects a failure of the fuel pressure sensor.
 下記特許文献3に記載された内燃機関の燃料供給制御装置は、燃料ポンプから燃料噴射弁に燃料を供給する燃料供給配管中の燃料圧力を検出し、検出した燃料圧力が目標燃料圧力に近づくように上記燃料ポンプを制御する。この従来の内燃機関の燃料供給制御装置は、応答特性演算手段と、操作量演算手段と、制御手段と、診断手段と、設定手段と、を有する(第0020段落-第0028段落、請求項1)。 The fuel supply control device for an internal combustion engine described in Patent Document 3 below detects the fuel pressure in a fuel supply pipe that supplies fuel from a fuel pump to a fuel injection valve, and controls the fuel pressure so that the detected fuel pressure approaches a target fuel pressure. to control the above fuel pump. This conventional fuel supply control device for an internal combustion engine includes a response characteristic calculation means, a manipulated variable calculation means, a control means, a diagnosis means, and a setting means (Paragraphs 0020 to 0028, Claim 1 ).
 上記応答特性演算手段は、上記目標燃料圧力に制御するための上記燃料ポンプの作動応答特性を演算する。上記操作量演算手段は、上記応答特性演算手段により演算された作動応答特性に応じた前記燃料ポンプの操作量を演算する。上記制御手段は、上記操作量演算手段により演算された操作量に基いて上記燃料ポンプを制御する。上記診断手段は、上記燃料供給配管内の燃料圧力を検出するセンサの故障を診断する。 The response characteristic calculating means calculates an operational response characteristic of the fuel pump for controlling the fuel pressure to the target fuel pressure. The operation amount calculation means calculates the operation amount of the fuel pump according to the operation response characteristic calculated by the response characteristic calculation means. The control means controls the fuel pump based on the operation amount calculated by the operation amount calculation means. The diagnostic means diagnoses a failure of a sensor that detects fuel pressure within the fuel supply pipe.
 上記設定手段は、上記診断手段によりセンサに故障が発生していないと診断されたときに、内燃機関の運転状態に応じた燃料圧力を上記目標燃料圧力に設定するとともに、上記センサにより検出された燃料圧力を燃料噴射制御用の燃料圧力に設定する。一方、上記設定手段は、上記診断手段によりセンサに故障が発生したと診断されたときに、故障時用の所定圧力を上記目標燃料圧力に設定するとともに、上記作動応答特性を上記燃料噴射制御用の燃料圧力に設定する。 The setting means sets a fuel pressure corresponding to the operating state of the internal combustion engine to the target fuel pressure when the diagnostic means diagnoses that no failure has occurred in the sensor, and sets the fuel pressure detected by the sensor to the target fuel pressure. Set the fuel pressure to the fuel pressure for fuel injection control. On the other hand, when the diagnosis means diagnoses that a failure has occurred in the sensor, the setting means sets a predetermined pressure for failure as the target fuel pressure, and sets the operation response characteristic for the fuel injection control. Set the fuel pressure to .
特開平11-210532号公報Japanese Patent Application Publication No. 11-210532 特開2007-138772号公報Japanese Patent Application Publication No. 2007-138772 特開2013-064378号公報Japanese Patent Application Publication No. 2013-064378
 エンジンに燃料を噴射するインジェクタへ供給される燃料の圧力(燃圧)は、たとえば、35MPa程度の高圧化が要求されるようになっている。そのため、高圧化した燃圧に応じて増加した駆動電流でインジェクタを駆動させる制御が必要となっている。しかしながら、燃圧を検出する燃圧センサの故障、または燃圧検出値に異常が発生した場合、該異常な燃圧に基づいて過小なインジェクタの駆動電力が算出され、その結果、インジェクタの開弁不良による内燃機関の停止や回転数の低下が生じるおそれがある。 The pressure (fuel pressure) of fuel supplied to an injector that injects fuel into an engine is now required to be as high as, for example, about 35 MPa. Therefore, it is necessary to control the injector to drive the injector with a drive current that increases in accordance with the increased fuel pressure. However, if the fuel pressure sensor that detects fuel pressure malfunctions or an abnormality occurs in the detected fuel pressure value, an insufficient injector driving power is calculated based on the abnormal fuel pressure, and as a result, the internal combustion engine due to the injector valve opening failure There is a risk that the engine may stop or the rotation speed may decrease.
 本開示は、インジェクタに供給される燃料の圧力を検出する燃圧センサの故障または検出値異常の発生時にインジェクタの開弁不良を防止して、エンジンの停止や回転数の低下を防止することが可能な電子制御装置を提供する。 The present disclosure makes it possible to prevent an injector from opening incorrectly when a fuel pressure sensor that detects the pressure of fuel supplied to an injector malfunctions or a detected value abnormality occurs, thereby preventing an engine from stopping or a decrease in rotational speed. Provides electronic control equipment.
 本開示の一態様は、エンジンの燃焼室へ燃料を噴射するインジェクタと、該インジェクタへ供給される前記燃料の燃圧を検出する燃圧センサと、を含むエンジンシステムを制御する電子制御装置であって、前記インジェクタへ供給される前記燃料の目標燃圧を算出する目標燃圧算出部と、前記燃圧センサの燃圧検出値を取得する燃圧取得部と、前記燃圧検出値に基づいて前記燃圧センサの故障である燃圧センサの故障を検出する故障検出部と、前記燃圧センサ故障の検出が第1期間を超えて継続した場合に前記燃圧センサの故障判定を確定させる故障確定部と、前記目標燃圧と前記燃圧検出値との差分および前記燃圧検出値の単位時間あたりの変化量に基づいて前記燃圧検出値の検出値異常を検出する異常検出部と、前記燃圧検出値の検出値異常が第2期間を超えて継続した場合に前記燃圧検出値の検出値異常を確定させる異常確定部と、前記インジェクタの駆動電流を設定する駆動電流設定部と、を備え、前記駆動電流設定部は、前記燃圧センサ故障の検出または前記検出値異常の検出から前記燃圧センサ故障の確定または前記検出値異常の確定までの期間において、前記インジェクタの駆動電流として、前記燃圧センサ故障および前記検出値異常が検出されるより前の時点の前記燃圧検出値に応じた暫定駆動電流を設定することを特徴とする電子制御装置である。 One aspect of the present disclosure is an electronic control device that controls an engine system including an injector that injects fuel into a combustion chamber of an engine, and a fuel pressure sensor that detects the fuel pressure of the fuel supplied to the injector, a target fuel pressure calculation unit that calculates a target fuel pressure of the fuel to be supplied to the injector; a fuel pressure acquisition unit that acquires a fuel pressure detection value of the fuel pressure sensor; a failure detection unit that detects a failure of the sensor; a failure determination unit that determines a failure of the fuel pressure sensor when detection of the fuel pressure sensor failure continues beyond a first period; and the target fuel pressure and the detected fuel pressure value. an abnormality detection unit that detects an abnormality in the detected fuel pressure value based on a difference between the detected fuel pressure value and the amount of change per unit time in the detected fuel pressure value, and an abnormality in the detected fuel pressure value that continues beyond a second period. an abnormality determination unit that determines whether the fuel pressure detection value is abnormal when the fuel pressure detection value is detected; and a drive current setting unit that sets a drive current of the injector, and the drive current setting unit is configured to detect a failure of the fuel pressure sensor or During the period from the detection of the detected value abnormality to the determination of the fuel pressure sensor failure or the determination of the detected value abnormality, the drive current of the injector is set to a value at a time before the fuel pressure sensor failure and the detected value abnormality are detected. The electronic control device is characterized in that it sets a provisional drive current according to the detected fuel pressure value.
 本開示の上記一態様によれば、インジェクタに供給される燃料の燃圧を検出する燃圧センサの故障または検出値異常の発生時にインジェクタの開弁不良を防止して、エンジンの停止や回転数の低下を防止することが可能な電子制御装置を提供することができる。 According to the above-mentioned aspect of the present disclosure, when a failure or an abnormal detected value occurs in a fuel pressure sensor that detects the fuel pressure of fuel supplied to an injector, an injector valve opening failure is prevented, and the engine is stopped or the rotational speed is decreased. It is possible to provide an electronic control device that can prevent this.
本開示の電子制御装置の一実施形態を示すエンジンシステムの概略構成図。1 is a schematic configuration diagram of an engine system showing an embodiment of an electronic control device of the present disclosure. 図1のエンジンシステムの燃料供給系の概略構成図。2 is a schematic configuration diagram of a fuel supply system of the engine system in FIG. 1. FIG. 図1の電子制御装置の概略構成を示すブロック図。2 is a block diagram showing a schematic configuration of the electronic control device in FIG. 1. FIG. 図1の電子制御装置の機能ブロック図。2 is a functional block diagram of the electronic control device in FIG. 1. FIG. 図4の電子制御装置によるエンジンシステムの制御プロセスを説明するフロー図。5 is a flow diagram illustrating a control process of the engine system by the electronic control device of FIG. 4. FIG. 図4の電子制御装置によるエンジンシステムの制御時のタイミングチャート。5 is a timing chart when the electronic control device of FIG. 4 controls the engine system. 図5の故障等検出時処理(P08)の詳細を示すフロー図。FIG. 6 is a flowchart showing details of the process (P08) when a failure is detected in FIG. 5; 図5の故障等確定処理(P09)の詳細を示すフロー図。6 is a flowchart showing details of the failure determination process (P09) of FIG. 5. FIG. 図5の故障等確定時処理(P10)の詳細を示すフロー図。FIG. 6 is a flowchart showing details of the process (P10) when a failure is confirmed in FIG. 5; 図7の故障等検出時処理(P08)の変形例1を示すフロー図。FIG. 8 is a flowchart showing a first modification of the processing upon detecting a failure, etc. (P08) in FIG. 7; 図7の故障等検出時処理(P08)の変形例2を示すフロー図。FIG. 8 is a flowchart showing a second modification of the process (P08) at the time of detection of a failure, etc. in FIG. 7; 図4に示す電子制御装置の変形例1を示す機能ブロック図。FIG. 5 is a functional block diagram showing modification example 1 of the electronic control device shown in FIG. 4; 図12に示す変形例1の電子制御装置の動作を説明するフロー図。13 is a flow diagram illustrating the operation of the electronic control device of Modification 1 shown in FIG. 12. FIG. 図12に示す変形例1の電子制御装置の作用を説明するタイミングチャート。13 is a timing chart illustrating the operation of the electronic control device of Modification 1 shown in FIG. 12. FIG. 図4に示す電子制御装置の変形例2を示す機能ブロック図。5 is a functional block diagram showing a second modification of the electronic control device shown in FIG. 4. FIG. 図15に示す変形例2の電子制御装置の動作を説明するフロー図。FIG. 16 is a flowchart illustrating the operation of the electronic control device of modification 2 shown in FIG. 15; 図15に示す変形例2の電子制御装置の作用を説明するタイミングチャート。16 is a timing chart illustrating the operation of the electronic control device of modification 2 shown in FIG. 15. FIG. 図4に示す電子制御装置の変形例3を示す機能ブロック図。5 is a functional block diagram showing a third modification of the electronic control device shown in FIG. 4. FIG. 図18に示す変形例3の電子制御装置の動作を説明するフロー図。FIG. 19 is a flowchart illustrating the operation of the electronic control device of modification 3 shown in FIG. 18; 図18に示す変形例3の電子制御装置の作用を説明するタイミングチャート。19 is a timing chart illustrating the operation of the electronic control device of modification 3 shown in FIG. 18. FIG.
 図1は、本開示の電子制御装置の一実施形態を示すエンジンシステムESの概略構成図である。エンジンシステムESは、たとえば、車両に搭載され、車両を走行させる動力を発生する。エンジンシステムESは、たとえば、吸気系1と、燃料供給系2と、エンジン3と、排気系4と、電子制御装置5と、アクセル開度センサ6と、を備える。以下の説明では、電子制御装置5を、適宜、「ECU5」と略称する。 FIG. 1 is a schematic configuration diagram of an engine system ES showing an embodiment of the electronic control device of the present disclosure. The engine system ES is mounted on a vehicle, for example, and generates power for driving the vehicle. The engine system ES includes, for example, an intake system 1, a fuel supply system 2, an engine 3, an exhaust system 4, an electronic control device 5, and an accelerator opening sensor 6. In the following description, the electronic control unit 5 will be abbreviated as "ECU5" as appropriate.
 吸気系1は、たとえば、吸気センサ11と、スロットル弁12と、コレクタ13と、吸気マニホールド14と、を含む。吸気センサ11は、吸気系1に取り込まれた空気の流量、温度、湿度、圧力などの物理量を検出する。吸気センサ11は、配線を介してECU5に接続され、検出した物理量をECU5へ出力する。 The intake system 1 includes, for example, an intake sensor 11, a throttle valve 12, a collector 13, and an intake manifold 14. The intake air sensor 11 detects physical quantities such as the flow rate, temperature, humidity, and pressure of air taken into the intake system 1. The intake sensor 11 is connected to the ECU 5 via wiring, and outputs the detected physical quantity to the ECU 5.
 スロットル弁12は、弁体と、その弁体の開度を検出する開度センサと、弁体を駆動するモータとを備えている。スロットル弁12は、配線を介してECU5に接続され、ECU5によって開度が制御される。コレクタ13は、スロットル弁12を介して流入する空気を吸気マニホールド14の各ブランチに配分する。吸気マニホールド14は、コレクタ13によって配分された空気をエンジン3の燃焼室31へ供給する。吸気マニホールド14には、たとえば、図示を省略する吸気管圧力センサが設置され、吸入空気の圧力の検出結果をECU5へ出力する。 The throttle valve 12 includes a valve body, an opening sensor that detects the opening degree of the valve body, and a motor that drives the valve body. The throttle valve 12 is connected to the ECU 5 via wiring, and its opening degree is controlled by the ECU 5. The collector 13 distributes the air flowing in through the throttle valve 12 to each branch of the intake manifold 14. The intake manifold 14 supplies the air distributed by the collector 13 to the combustion chamber 31 of the engine 3. For example, an intake pipe pressure sensor (not shown) is installed in the intake manifold 14 and outputs a detection result of intake air pressure to the ECU 5.
 図2は、図1のエンジンシステムESの燃料供給系2の概略構成図である。燃料供給系2は、たとえば、燃料タンク21と、低圧燃料ポンプ22と、レギュレータ23と、低圧燃料供給管24(低圧燃料供給通路)と、高圧燃料ポンプ25と、高圧燃料供給管26と、コモンレール27と、燃圧センサ28と、インジェクタ29と、を含む。燃料タンク21は、たとえば、ガソリンなどの燃料を貯留する。低圧燃料ポンプ22は、たとえば、低圧燃料供給管24を介して高圧燃料ポンプ25またはコモンレール27へ低圧の燃料を供給する。 FIG. 2 is a schematic configuration diagram of the fuel supply system 2 of the engine system ES of FIG. 1. The fuel supply system 2 includes, for example, a fuel tank 21, a low pressure fuel pump 22, a regulator 23, a low pressure fuel supply pipe 24 (low pressure fuel supply passage), a high pressure fuel pump 25, a high pressure fuel supply pipe 26, and a common rail. 27, a fuel pressure sensor 28, and an injector 29. The fuel tank 21 stores fuel such as gasoline, for example. The low pressure fuel pump 22 supplies low pressure fuel to the high pressure fuel pump 25 or the common rail 27 via the low pressure fuel supply pipe 24, for example.
 レギュレータ23は、低圧燃料供給管24内の燃料が所定の圧力以上になったときに、低圧燃料供給管24内の燃料を燃料タンク21へ戻すことで、低圧燃料供給管24内の燃料を一定の圧力に調圧する。高圧燃料ポンプ25は、たとえば、エンジン3の排気弁34を駆動させる排気カムのカム軸から伝達される動力によって駆動される。高圧燃料ポンプ25は、低圧燃料ポンプ22から供給された燃料の圧力を上昇させ、高圧燃料供給管26を介してコモンレール27へ高圧の燃料を供給する。 The regulator 23 keeps the fuel in the low-pressure fuel supply pipe 24 constant by returning the fuel in the low-pressure fuel supply pipe 24 to the fuel tank 21 when the pressure of the fuel in the low-pressure fuel supply pipe 24 exceeds a predetermined pressure. Adjust the pressure to . The high-pressure fuel pump 25 is driven, for example, by power transmitted from the camshaft of an exhaust cam that drives the exhaust valve 34 of the engine 3. The high-pressure fuel pump 25 increases the pressure of the fuel supplied from the low-pressure fuel pump 22 and supplies high-pressure fuel to the common rail 27 via the high-pressure fuel supply pipe 26 .
 コモンレール27は、高圧燃料ポンプ25から高圧燃料供給管26を介して供給された高圧の燃料を複数のインジェクタ29へ供給する。燃圧センサ28は、たとえば、コモンレール27へ供給された燃料の圧力(燃圧)を検出する。燃圧センサ28は、たとえば、配線を介してECU5に接続され、燃料の圧力の検出結果をECU5へ出力する。インジェクタ29は、たとえば、エンジン3の各気筒に設けられ、配線を介してECU5に接続される。インジェクタ29は、ECU5によって制御され、コモンレール27から供給された燃料をエンジン3の各気筒の燃焼室31へ噴射する。 The common rail 27 supplies high-pressure fuel supplied from the high-pressure fuel pump 25 via the high-pressure fuel supply pipe 26 to the plurality of injectors 29. The fuel pressure sensor 28 detects, for example, the pressure of fuel supplied to the common rail 27 (fuel pressure). The fuel pressure sensor 28 is connected to the ECU 5 via wiring, for example, and outputs a detection result of fuel pressure to the ECU 5. Injector 29 is provided in each cylinder of engine 3, for example, and is connected to ECU 5 via wiring. The injector 29 is controlled by the ECU 5 and injects the fuel supplied from the common rail 27 into the combustion chamber 31 of each cylinder of the engine 3.
 エンジン3は、たとえば、4つの気筒を有する4気筒エンジンである。エンジン3は、筒内噴射式に限定されず、たとえば、ポート噴射式や、筒内噴射とポート噴射を併用するデュアル噴射式の火花点火内燃機関であってもよい。エンジン3は、たとえば、燃焼室31と、ピストン32と、吸気弁33と、排気弁34と、点火コイル35と、点火プラグ36と、クランク角度センサ37と、水温センサ38と、を備えている。 The engine 3 is, for example, a four-cylinder engine having four cylinders. The engine 3 is not limited to an in-cylinder injection type, and may be, for example, a port injection type or a dual injection spark ignition internal combustion engine that uses both in-cylinder injection and port injection. The engine 3 includes, for example, a combustion chamber 31, a piston 32, an intake valve 33, an exhaust valve 34, an ignition coil 35, a spark plug 36, a crank angle sensor 37, and a water temperature sensor 38. .
 燃焼室31は、インジェクタ29によって噴射された燃料と、吸気マニホールド14から吸気弁33を介して供給された空気との混合気を燃焼させる空間である。ピストン32は、燃焼室31における混合気の燃焼によって押し下げられてクランク軸を回転させる。吸気弁33と排気弁34のアクチュエータは、たとえば、配線を介してECU5に接続されている。吸気弁33と排気弁34のアクチュエータは、たとえば、ECU5の制御により、吸気弁33と排気弁34をそれぞれ開閉させる。 The combustion chamber 31 is a space in which a mixture of fuel injected by the injector 29 and air supplied from the intake manifold 14 via the intake valve 33 is combusted. The piston 32 is pushed down by the combustion of the air-fuel mixture in the combustion chamber 31 and rotates the crankshaft. The actuators of the intake valve 33 and the exhaust valve 34 are connected to the ECU 5 via wiring, for example. The actuators for the intake valve 33 and the exhaust valve 34 open and close the intake valve 33 and the exhaust valve 34, respectively, under the control of the ECU 5, for example.
 点火コイル35は、たとえば、配線を介してECU5に接続されている。点火コイル35は、ECU5の制御により、高電圧を発生させる。点火プラグ36は、点火コイル35が発生した高電圧によって放電することで、燃焼室31内の混合気を着火させる。クランク角度センサ37は、エンジン3のクランク軸の角度を検出する。クランク角度センサ37は、たとえば、配線を介してECU5に接続され、角度の検出結果をECU5へ出力する。水温センサ38は、エンジン3の冷却水の温度を検出する。水温センサ38は、たとえば、配線を介してECU5に接続され、温度の検出結果をECU5へ出力する。 The ignition coil 35 is connected to the ECU 5 via wiring, for example. The ignition coil 35 generates high voltage under the control of the ECU 5. The spark plug 36 ignites the air-fuel mixture in the combustion chamber 31 by being discharged by the high voltage generated by the ignition coil 35. The crank angle sensor 37 detects the angle of the crankshaft of the engine 3. The crank angle sensor 37 is connected to the ECU 5 via wiring, for example, and outputs an angle detection result to the ECU 5. Water temperature sensor 38 detects the temperature of the cooling water of engine 3. The water temperature sensor 38 is connected to the ECU 5 via wiring, for example, and outputs a temperature detection result to the ECU 5.
 排気系4は、たとえば、排気マニホールド41と、酸素センサ42と、三元触媒43とを含む。排気マニホールド41は、各気筒の燃焼室31から排気弁34を介して排出される排気ガスを集合させる。酸素センサ42は、排気マニホールド41を通過した排気ガスの酸素濃度を検出する。酸素センサ42は、たとえば、配線を介してECU5に接続され、検出した酸素濃度をECU5へ出力する。三元触媒43は、排気ガス中の有害成分を、酸化および還元によって浄化する。 The exhaust system 4 includes, for example, an exhaust manifold 41, an oxygen sensor 42, and a three-way catalyst 43. The exhaust manifold 41 collects exhaust gas discharged from the combustion chamber 31 of each cylinder via the exhaust valve 34. The oxygen sensor 42 detects the oxygen concentration of the exhaust gas that has passed through the exhaust manifold 41. The oxygen sensor 42 is connected to the ECU 5 via wiring, for example, and outputs the detected oxygen concentration to the ECU 5. The three-way catalyst 43 purifies harmful components in exhaust gas by oxidation and reduction.
 ECU5は、たとえば、インジェクタ29による燃料噴射を含むエンジンシステムESの制御全般を司るエンジンコントロールユニットである。ECU5は、たとえば、エンジンシステムESの各種のセンサから得られるクランク回転角、スロットル開度、エンジン回転数、燃圧などを含むエンジン状態量に基づいて、インジェクタ29の噴射燃料量などを演算し、高圧燃料ポンプ25やインジェクタ29などを制御する。 The ECU 5 is, for example, an engine control unit that controls overall control of the engine system ES, including fuel injection by the injector 29. For example, the ECU 5 calculates the amount of fuel injected by the injector 29 based on engine state quantities including the crank rotation angle, throttle opening, engine speed, fuel pressure, etc. obtained from various sensors of the engine system ES, and calculates the amount of fuel injected by the injector 29. Controls the fuel pump 25, injector 29, etc.
 図3は、図1のECU5の概略構成を示すブロック図である。ECU5は、たとえば、入力回路51、A/D変換部52、中央処理装置(CPU)53、ROM54、RAM55、および、出力回路56を含むコンピュータによって構成されている。なお、ECU5は、書き換え可能な論理回路であるFPGA(Field Programmable Gate Array)、特定用途向け集積回路であるASIC(Application Specific Integrated Circuit)、または、ROM、RAM、およびFPGAの組合せによって構成することも可能である。 FIG. 3 is a block diagram showing a schematic configuration of the ECU 5 in FIG. 1. The ECU 5 is configured by a computer including, for example, an input circuit 51, an A/D conversion section 52, a central processing unit (CPU) 53, a ROM 54, a RAM 55, and an output circuit 56. Note that the ECU 5 may be configured with an FPGA (Field Programmable Gate Array), which is a rewritable logic circuit, an ASIC (Application Specific Integrated Circuit), which is a rewritable logic circuit, or a combination of ROM, RAM, and FPGA. It is possible.
 入力回路51は、たとえば、吸気センサ11、スロットル弁12の開度センサ、燃圧センサ28、クランク角度センサ37、水温センサ38、酸素センサ42、およびアクセル開度センサ6などの各種のセンサから出力された信号SS1,SS2,SS3,…が入力される。入力回路51は、たとえば、入力された信号がアナログ信号である場合、そのアナログ信号のノイズを除去し、ノイズが除去されたアナログ信号をA/D変換部52へ出力する。また、入力回路51は、たとえば、入力された信号がデジタル信号である場合、そのデジタル信号をそのままCPU53へ出力する。A/D変換部52は、入力回路51から入力されたアナログ信号をデジタル信号に変換してCPU53へ出力する。 The input circuit 51 receives outputs from various sensors such as the intake sensor 11, the throttle valve 12 opening sensor, the fuel pressure sensor 28, the crank angle sensor 37, the water temperature sensor 38, the oxygen sensor 42, and the accelerator opening sensor 6. Signals SS1, SS2, SS3, . . . are input. For example, when the input signal is an analog signal, the input circuit 51 removes noise from the analog signal and outputs the noise-removed analog signal to the A/D converter 52. Further, for example, when the input signal is a digital signal, the input circuit 51 outputs the digital signal as it is to the CPU 53. The A/D converter 52 converts the analog signal input from the input circuit 51 into a digital signal and outputs the digital signal to the CPU 53.
 CPU53は、たとえば、ROM54に記憶されたプログラムなどの制御ロジックを実行することで、入力回路51またはA/D変換部52からデジタル信号として入力された各センサの検出結果を用いて各種の演算、診断、および制御を行う。CPU53は、たとえば、各センサの検出結果、演算結果、および診断結果などをRAM55に一時的に保持させる。CPU53は、たとえば、演算結果および診断結果に基づいて、インジェクタ29の駆動電流を含む制御信号CS1,CS2,CS3,…を、出力回路56を介して、インジェクタ29を含むエンジンシステムESの各部へ出力する。 For example, by executing control logic such as a program stored in the ROM 54, the CPU 53 performs various calculations using the detection results of each sensor input as a digital signal from the input circuit 51 or the A/D converter 52. Perform diagnosis and control. For example, the CPU 53 causes the RAM 55 to temporarily hold detection results, calculation results, diagnosis results, etc. of each sensor. For example, the CPU 53 outputs control signals CS1, CS2, CS3, ... including the drive current of the injector 29 to each part of the engine system ES including the injector 29 via the output circuit 56 based on the calculation result and the diagnosis result. do.
 図4は、図1のECU5において、インジェクタ29の駆動電流Iを出力する機能の詳細を示す機能ブロック図である。ECU5は、たとえば、目標燃圧算出部501と、燃圧取得部502と、故障検出部503と、故障確定部504と、異常検出部505と、異常確定部506と、駆動電流設定部507と、を有している。また、図4に示す例において、ECU5は、たとえば、フェイルセーフ処理部508と、高圧燃料ポンプ制御部509と、駆動電流算出部510と、駆動電流出力部511と、を有している。なお、図4に示すECU5の各部は、たとえば、図3に示すCPU53によってROM54に記憶されたプログラムを実行することによって実現されるECU5の各機能を表している。 FIG. 4 is a functional block diagram showing details of the function of outputting the drive current I of the injector 29 in the ECU 5 of FIG. 1. The ECU 5 includes, for example, a target fuel pressure calculation section 501, a fuel pressure acquisition section 502, a failure detection section 503, a failure determination section 504, an abnormality detection section 505, an abnormality determination section 506, and a drive current setting section 507. have. Further, in the example shown in FIG. 4, the ECU 5 includes, for example, a fail-safe processing section 508, a high-pressure fuel pump control section 509, a drive current calculation section 510, and a drive current output section 511. Note that each part of the ECU 5 shown in FIG. 4 represents each function of the ECU 5 that is realized by, for example, executing a program stored in the ROM 54 by the CPU 53 shown in FIG. 3.
 図5は、図4のECU5によるエンジンシステムESの制御プロセスPを説明するフロー図である。図6は、図4に示すECU5によるエンジンシステムESの制御時のタイミングチャートである。 FIG. 5 is a flow diagram illustrating the control process P of the engine system ES by the ECU 5 of FIG. 4. FIG. 6 is a timing chart when the ECU 5 shown in FIG. 4 controls the engine system ES.
 より詳細には、図6の各チャートの横軸は時間であり、一番上のチャートの縦軸は燃圧センサ28の故障(燃圧センサ故障)または検出値異常の検出の有(Y)/無(N)である。図6の上から二番目のチャートの縦軸はインジェクタ29に供給される燃料の燃圧であり、実線は実際の燃圧FPrを示し、一点鎖線は燃圧センサ28による燃圧検出値FPsを示している。 More specifically, the horizontal axis of each chart in FIG. 6 is time, and the vertical axis of the top chart is the presence (Y)/absence of detection of a failure of the fuel pressure sensor 28 (fuel pressure sensor failure) or an abnormality in the detected value. (N). The vertical axis of the second chart from the top of FIG. 6 is the fuel pressure of the fuel supplied to the injector 29, the solid line indicates the actual fuel pressure FPr, and the dashed line indicates the fuel pressure detected value FPs by the fuel pressure sensor 28.
 図6の下から二番目のチャートの縦軸は、インジェクタ29へ入力される駆動電流であり、実線は、本実施形態のECU5による駆動電流を示し、破線は、従来の装置による駆動電流を示している。図6の一番下のチャートの縦軸は、エンジン3の回転数であり、実線は本実施形態のECU5の制御によるエンジン3の回転数を示し、破線は従来の装置の制御によるエンジンの回転数を示している。 The vertical axis of the second chart from the bottom in FIG. 6 is the drive current input to the injector 29, the solid line shows the drive current by the ECU 5 of this embodiment, and the broken line shows the drive current by the conventional device. ing. The vertical axis of the bottom chart in FIG. 6 is the rotation speed of the engine 3, the solid line indicates the rotation speed of the engine 3 under control of the ECU 5 of this embodiment, and the broken line indicates the rotation speed of the engine under control of the conventional device. It shows the number.
 以下、図5に示す制御プロセスの各処理を説明しつつ、図4に示すECU5の各部の作用を説明する。ECU5は、図5に示す制御プロセスPを開始すると、たとえば、目標燃圧FPtを演算する処理P01を実行する。この処理P01において、目標燃圧算出部501は、たとえば、吸気センサ11からECU5へ入力された吸入空気量Qaや、クランク角度センサ37からECU5へ入力された回転角度に基づくエンジン3の回転数Neなどに基づいて、インジェクタ29へ供給される燃料の目標燃圧FPtを算出する。 Hereinafter, while explaining each process of the control process shown in FIG. 5, the operation of each part of the ECU 5 shown in FIG. 4 will be explained. When the ECU 5 starts the control process P shown in FIG. 5, it executes, for example, a process P01 for calculating the target fuel pressure FPt. In this process P01, the target fuel pressure calculation unit 501 calculates, for example, the intake air amount Qa input from the intake sensor 11 to the ECU 5, the rotation speed Ne of the engine 3 based on the rotation angle input from the crank angle sensor 37 to the ECU 5, etc. Based on this, the target fuel pressure FPt of the fuel supplied to the injector 29 is calculated.
 次に、ECU5は、たとえば、燃圧を取得する処理P02を実行する。この処理P02において、燃圧取得部502は、たとえば、燃圧センサ28からECU5へ入力された燃圧検出値FPsを取得する。次に、ECU5は、たとえば、高圧燃料ポンプ25を制御する処理P03を実行する。 Next, the ECU 5 executes, for example, a process P02 to obtain fuel pressure. In this process P02, the fuel pressure acquisition unit 502 acquires, for example, the fuel pressure detection value FPs input from the fuel pressure sensor 28 to the ECU 5. Next, the ECU 5 executes, for example, a process P03 for controlling the high-pressure fuel pump 25.
 この処理P03において、高圧燃料ポンプ制御部509は、たとえば、アクセル開度センサ6、スロットル弁12の開度センサ、クランク角度センサ37などから入力される信号SSに基づいて、高圧燃料ポンプ25による燃料の吐出量を制御する。これにより、インジェクタ29に供給される燃料の圧力すなわち燃圧が所望の圧力に制御される。ここで、高圧燃料ポンプ制御部509は、たとえば、燃圧センサ28の燃圧検出値FPsと目標燃圧FPtとが一致するように、高圧燃料ポンプ25の吐出量をフィードバック制御してもよい。 In this process P03, the high-pressure fuel pump control unit 509 controls whether the high-pressure fuel pump 25 supplies fuel based on the signal SS input from the accelerator opening sensor 6, the throttle valve 12 opening sensor, the crank angle sensor 37, etc., for example. Controls the discharge amount. Thereby, the pressure of the fuel supplied to the injector 29, that is, the fuel pressure, is controlled to a desired pressure. Here, the high-pressure fuel pump control unit 509 may perform feedback control on the discharge amount of the high-pressure fuel pump 25, for example, so that the fuel pressure detection value FPs of the fuel pressure sensor 28 and the target fuel pressure FPt match.
 次に、ECU5は、たとえば、インジェクタ29の駆動電流を演算する処理P04を実行する。この処理P04において、駆動電流算出部510は、たとえば、燃圧取得部502によって取得された燃圧センサ28の燃圧検出値FPsに基づくインジェクタ29の駆動電流を算出する。また、駆動電流算出部510は、たとえば、目標燃圧算出部501によって算出された目標燃圧FPtと燃圧検出値FPsとに基づいて、インジェクタ29の駆動電流を算出する。より具体的には、駆動電流算出部510は、たとえば、目標燃圧FPtと燃圧検出値FPsの差分に基づいて、インジェクタ29の駆動電流を算出する。 Next, the ECU 5 executes, for example, a process P04 for calculating the drive current of the injector 29. In this process P04, the drive current calculation unit 510 calculates the drive current of the injector 29 based on the fuel pressure detection value FPs of the fuel pressure sensor 28 acquired by the fuel pressure acquisition unit 502, for example. Further, the drive current calculation unit 510 calculates the drive current of the injector 29 based on, for example, the target fuel pressure FPt calculated by the target fuel pressure calculation unit 501 and the detected fuel pressure value FPs. More specifically, the drive current calculation unit 510 calculates the drive current of the injector 29 based on, for example, the difference between the target fuel pressure FPt and the detected fuel pressure value FPs.
 次に、ECU5は、たとえば、燃圧センサ故障または検出値異常の検出の有無を判定する処理P05を実行する。この処理P05において、故障検出部503は、燃圧取得部502によって取得された燃圧センサ28の燃圧検出値FPsに基づいて、燃圧センサ28の故障である燃圧センサ故障を検出する。ここで、故障検出部503が検出する燃圧センサ故障は、たとえば、燃圧センサ28の地絡や断線などを含む。 Next, the ECU 5 executes, for example, a process P05 that determines whether or not a fuel pressure sensor failure or detected value abnormality is detected. In this process P05, the failure detection unit 503 detects a fuel pressure sensor failure, which is a failure of the fuel pressure sensor 28, based on the fuel pressure detection value FPs of the fuel pressure sensor 28 acquired by the fuel pressure acquisition unit 502. Here, the fuel pressure sensor failure detected by the failure detection unit 503 includes, for example, a ground fault or disconnection of the fuel pressure sensor 28.
 また、この処理P05において、異常検出部505は、燃圧取得部502によって取得された燃圧センサ28の燃圧検出値FPsと、目標燃圧算出部501によって算出された目標燃圧FPtとに基づいて、燃圧検出値FPsの異常を検出する。ここで、異常検出部505が検出する燃圧センサ28の燃圧検出値FPsの異常、すなわち検出値異常は、たとえば、目標燃圧FPtと燃圧検出値FPsとの差分および燃圧検出値FPsの単位時間あたりの変化量が、それぞれ、あらかじめ設定された閾値を超える状態である。このような検出値異常は、たとえば、マイクロコントローラの異常や、入力の異常などによって生じ得る。 In addition, in this process P05, the abnormality detection unit 505 detects the fuel pressure based on the fuel pressure detection value FPs of the fuel pressure sensor 28 acquired by the fuel pressure acquisition unit 502 and the target fuel pressure FPt calculated by the target fuel pressure calculation unit 501. An abnormality in the value FPs is detected. Here, an abnormality in the fuel pressure detection value FPs of the fuel pressure sensor 28 detected by the abnormality detection unit 505, that is, a detection value abnormality is, for example, the difference between the target fuel pressure FPt and the fuel pressure detection value FPs and the difference in the fuel pressure detection value FPs per unit time. This is a state in which the amount of change exceeds a preset threshold value. Such a detected value abnormality may be caused by, for example, a microcontroller abnormality or an input abnormality.
 たとえば、図6に示すように、時刻t1まで燃圧センサ28に故障または燃圧検出値FPsの異常が発生しない場合、故障検出部503は、時刻t1より前の処理P05において、燃圧センサ故障または検出値異常を検出していないこと(NO)を判定する。 For example, as shown in FIG. 6, if a failure or an abnormality in the detected fuel pressure value FPs does not occur in the fuel pressure sensor 28 until time t1, the failure detection unit 503 determines whether the fuel pressure sensor has failed or detected the detected value in process P05 before time t1. It is determined that no abnormality has been detected (NO).
 この場合、ECU5は、インジェクタ29の駆動電流を設定する処理P06を実行する。この処理P06において、駆動電流設定部507は、燃圧検出値FPsに基づくインジェクタ29の駆動電流を設定する。より具体的には、駆動電流設定部507は、たとえば、処理P05において燃圧センサ故障または検出値異常が検出されるまで、駆動電流算出部510によって算出された燃圧検出値FPsに基づく駆動電流を、次にインジェクタ29へ出力する駆動電流として設定する。 In this case, the ECU 5 executes a process P06 for setting the drive current of the injector 29. In this process P06, the drive current setting section 507 sets the drive current of the injector 29 based on the detected fuel pressure value FPs. More specifically, the drive current setting unit 507 sets the drive current based on the fuel pressure detection value FPs calculated by the drive current calculation unit 510 until, for example, a fuel pressure sensor failure or a detection value abnormality is detected in process P05. Next, it is set as the drive current to be output to the injector 29.
 次に、ECU5は、たとえば、駆動電流を出力する処理P07を実行する。この処理P07において、駆動電流出力部511は、たとえば、駆動電流設定部507によって設定された駆動電流を、インジェクタ29へ出力する。その結果、インジェクタ29がECU5から入力された駆動電流に応じて開弁する。これにより、図1および図2に示すように、低圧燃料ポンプ22によって燃料タンク21から高圧燃料ポンプ25へ供給され、さらに高圧燃料ポンプ25で加圧されてコモンレール27へ吐出された高圧の燃料が、インジェクタ29からエンジン3の燃焼室31へ噴射される。 Next, the ECU 5 executes, for example, a process P07 of outputting a drive current. In this process P07, the drive current output section 511 outputs, for example, the drive current set by the drive current setting section 507 to the injector 29. As a result, the injector 29 opens in response to the drive current input from the ECU 5. As a result, as shown in FIGS. 1 and 2, high-pressure fuel is supplied from the fuel tank 21 to the high-pressure fuel pump 25 by the low-pressure fuel pump 22, and is further pressurized by the high-pressure fuel pump 25 and discharged to the common rail 27. , is injected from the injector 29 into the combustion chamber 31 of the engine 3.
 インジェクタ29は、たとえば、エンジン3の1サイクル中に複数回に分けて燃料を噴射する筒内直接噴射式のインジェクタである。インジェクタ29は、ECU5から入力された駆動電流によって指定された時間だけ開弁することで燃料を燃焼室31へ噴射する。インジェクタ29が1サイクル中に噴射する燃料の総量である総燃料噴射量は、あらかじめ設定することが可能であり、複数回実行される燃料噴射の各回の噴射量もあらかじめ設定することが可能である。 The injector 29 is, for example, an in-cylinder direct injection type injector that injects fuel multiple times during one cycle of the engine 3. The injector 29 injects fuel into the combustion chamber 31 by opening for a period specified by a drive current input from the ECU 5. The total fuel injection amount, which is the total amount of fuel injected by the injector 29 during one cycle, can be set in advance, and the injection amount for each fuel injection performed multiple times can also be set in advance. .
 その後、ECU5は、たとえば、図6に示す時刻t1まで、所定の周期で前述の処理P01から処理P07までを繰り返し実行する。その後、時刻t1において、燃圧センサ28の故障または燃圧検出値FPsの異常が発生し、図6の上から二番目のチャートに示すように、一点鎖線で示す燃圧センサ28の燃圧検出値FPsが急激に低下したとする。すると、この燃圧検出値FPsと、実線で示すインジェクタ29に供給される燃料の実際の燃圧FPrとの差分が増加する。 Thereafter, the ECU 5 repeatedly executes the above-described processes P01 to P07 at a predetermined cycle until, for example, time t1 shown in FIG. 6. After that, at time t1, a failure of the fuel pressure sensor 28 or an abnormality in the detected fuel pressure value FPs occurs, and as shown in the second chart from the top of FIG. Suppose that the value decreases to . Then, the difference between this detected fuel pressure value FPs and the actual fuel pressure FPr of the fuel supplied to the injector 29, indicated by a solid line, increases.
 この場合、たとえば、時刻t1の直後の図5に示す処理P05において、故障検出部503が燃圧センサ故障を検出したこと(YES)を判定するか、または、異常検出部505が検出値異常を検出したこと(YES)を判定する。この場合、ECU5は、たとえば、図5に示すように、故障等検出時処理P08、故障等確定処理P09、および、故障等確定時処理P10を実行する。 In this case, for example, in process P05 shown in FIG. 5 immediately after time t1, the failure detection unit 503 determines that a fuel pressure sensor failure has been detected (YES), or the failure detection unit 505 detects a detected value abnormality. Determine whether you have done so (YES). In this case, the ECU 5 executes, for example, a failure detection process P08, a failure confirmation process P09, and a failure confirmation process P10, as shown in FIG. 5, for example.
 図7は、図5の故障等検出時処理P08の詳細を示すフロー図である。ECU5は、この処理P08を開始すると、まず、燃圧センサ故障の確定判定を実行中か否かを判定する処理P081を実行する。この処理P081において、故障確定部504は、たとえば、故障検出部503によって燃圧センサ故障が検出されていない場合、または、すでに燃圧センサ故障が確定している場合に、燃圧センサ故障の確定判定を実行していないこと(NO)を判定する。 FIG. 7 is a flow diagram showing details of the failure etc. detection process P08 in FIG. 5. When the ECU 5 starts this process P08, it first executes a process P081 in which it is determined whether or not a definite determination of fuel pressure sensor failure is being executed. In this process P081, the failure determination unit 504 executes a determination of the fuel pressure sensor failure, for example, when the failure detection unit 503 has not detected a fuel pressure sensor failure, or when the fuel pressure sensor failure has already been determined. Determine if it has not been done (NO).
 この場合、ECU5は、たとえば、検出値異常の確定判定を実行中か否かを判定する処理P082を実行する。この処理P082において、異常確定部506は、たとえば、異常検出部505によって検出値異常が検出されていない場合、または、すでに検出値異常が確定している場合に、検出値異常の確定判定を実行していないこと(NO)を判定する。この場合、ECU5は、図7に示す処理P08を終了させて、次の故障等確定処理P09を実行する。 In this case, the ECU 5 executes, for example, a process P082 that determines whether or not the determination of the detection value abnormality is being executed. In this process P082, the abnormality determining unit 506 executes the determination of the detected value abnormality, for example, when the detected value abnormality is not detected by the abnormality detecting unit 505, or when the detected value abnormality has already been determined. Determine if it has not been done (NO). In this case, the ECU 5 ends the process P08 shown in FIG. 7 and executes the next failure determination process P09.
 一方、処理P081において、故障確定部504は、たとえば、図6の一番上のチャートに示すように、故障検出部503によって燃圧センサ故障が検出されている状態(Y)が継続し、かつ、その状態が第1期間TP1を超えていない場合に、燃圧センサ故障の確定判定を実行中であること(YES)を判定する。同様に、処理P082において、異常確定部506は、異常検出部505によって検出値異常が検出されている状態(Y)が継続し、かつ、その状態が第2期間TP2を超えていない場合に、検出値異常の確定判定を実行中であること(YES)を判定する。 On the other hand, in process P081, the failure determining unit 504 determines that, as shown in the top chart of FIG. 6, the failure detecting unit 503 continues to detect a fuel pressure sensor failure (Y), and If the state does not exceed the first period TP1, it is determined that the determination of fuel pressure sensor failure is being executed (YES). Similarly, in process P082, the abnormality determining unit 506 determines that when the abnormality detecting unit 505 continues to detect a detected value abnormality (Y) and this state does not exceed the second period TP2, It is determined that the determination of the detection value abnormality is being executed (YES).
 これらの場合、ECU5は、次の処理P083を実行する。なお、燃圧センサ故障を確定するための第1期間TP1と、検出値異常を確定するための第2期間TP2は、それぞれの事象を確定するのに必要な任意の期間に設定することができる。したがって、第1期間TP1と第2期間TP2は、同一でもよく、異なっていてもよい。図6では、説明の便宜上、第1期間TP1と第2期間TP2を時刻t1から時刻t2までの同一の期間として表している。 In these cases, the ECU 5 executes the following process P083. Note that the first period TP1 for determining fuel pressure sensor failure and the second period TP2 for determining detected value abnormality can be set to any period necessary to determine each event. Therefore, the first period TP1 and the second period TP2 may be the same or different. In FIG. 6, for convenience of explanation, the first period TP1 and the second period TP2 are shown as the same period from time t1 to time t2.
 処理P083において、ECU5は、故障または異常検出よりも前の時点の燃圧検出値FPsに基づく暫定駆動電流を設定する。この処理P083において、駆動電流設定部507は、たとえば、次にインジェクタ29へ出力する駆動電流として、燃圧センサ故障または検出値異常の検出後の燃圧センサ28の燃圧検出値FPsに基づく駆動電流とは異なる暫定駆動電流を設定する。 In process P083, the ECU 5 sets a provisional drive current based on the fuel pressure detection value FPs at a time before the failure or abnormality detection. In this process P083, the drive current setting unit 507 determines, for example, as the drive current to be output next to the injector 29, a drive current based on the fuel pressure detection value FPs of the fuel pressure sensor 28 after the fuel pressure sensor failure or detection value abnormality is detected. Set a different interim drive current.
 より具体的には、この処理P083において、駆動電流設定部507は、たとえば、次にインジェクタ29へ出力する駆動電流として、燃圧センサ故障または検出値異常が検出される時刻t1よりも前の時点の燃圧検出値FPsに基づく暫定駆動電流を設定する。たとえば、駆動電流設定部507は、燃圧センサ故障または検出値異常が検出される時刻t1の直前の処理で設定した駆動電流を暫定駆動電流に設定する。 More specifically, in this process P083, the drive current setting unit 507 sets the drive current to be outputted to the injector 29 next at a time point before time t1 at which the fuel pressure sensor failure or detected value abnormality is detected. A provisional drive current is set based on the detected fuel pressure value FPs. For example, the drive current setting unit 507 sets the drive current set in the process immediately before time t1 at which the fuel pressure sensor failure or detected value abnormality is detected as the provisional drive current.
 これにより、図6の下から二番目のチャートに実線で示すように、燃圧センサ故障または検出値異常が検出されて燃圧検出値FPsと実際の燃圧FPrとが乖離する時刻t1以降においても、ECU5からインジェクタ29へ出力される駆動電流が大きく変化することがなくなる。その結果、燃圧センサ28の故障または検出値異常の発生時に、インジェクタの開弁不良を防止することができる。したがって、燃圧センサ28の燃圧検出値FPsと実際の燃圧FPrとが乖離する時刻t1以降においても、図6の一番下のチャートに実線で示すように、エンジン3の停止や回転数の低下を防止することができる。 As a result, as shown by the solid line in the second chart from the bottom of FIG. 6, the ECU 5 Therefore, the drive current output from the injector 29 to the injector 29 does not change significantly. As a result, when the fuel pressure sensor 28 fails or an abnormal detected value occurs, it is possible to prevent the injector from opening incorrectly. Therefore, even after time t1 when the fuel pressure detection value FPs of the fuel pressure sensor 28 deviates from the actual fuel pressure FPr, as shown by the solid line in the bottom chart of FIG. It can be prevented.
 これに対し、従来の装置によるインジェクタの駆動電流は、図6の下から二番目のチャートに破線で示すように、燃圧センサの故障または検出値異常の発生後に、燃圧センサの燃圧検出値の急激な低下に伴って急激に低下する。その結果、従来の装置では、燃圧センサの燃圧検出値に応じた駆動電流と、インジェクタに供給される燃料の実際の燃圧に応じた駆動電流とが乖離する。したがって、従来の装置では、駆動電流の不足によるインジェクタの開弁不良が発生し、その場合、図6の一番下のチャートに破線で示すように、エンジンの停止や回転数の低下が生じるおそれがある。 On the other hand, as shown by the broken line in the second chart from the bottom of FIG. It decreases rapidly as the value decreases. As a result, in the conventional device, the drive current that corresponds to the fuel pressure detection value of the fuel pressure sensor and the drive current that corresponds to the actual fuel pressure of the fuel supplied to the injector diverge. Therefore, with conventional devices, injector valve opening failure occurs due to insufficient drive current, and in that case, as shown by the broken line in the bottom chart of Figure 6, there is a risk that the engine will stop or the rotation speed will drop. There is.
 その後、ECU5は、図7に示す処理P08を終了させて、次の故障等確定処理P09を実行する。図8は、図5の故障等確定処理P09の詳細を示すフロー図である。ECU5は、この処理P09を開始すると、まず、燃圧センサ故障の継続期間が第1期間TP1を超えているか否かを判定する処理P091を実行する。この処理P091において、故障確定部504は、たとえば、故障検出部503によって燃圧センサ故障が検出されていない場合、すでに燃圧センサ故障が確定している場合、または、燃圧センサ故障の検出が継続している期間が第1期間TP1を超えていない場合に、否定(NO)を判定する。 After that, the ECU 5 ends the process P08 shown in FIG. 7 and executes the next failure determination process P09. FIG. 8 is a flowchart showing details of the failure determination process P09 of FIG. 5. When the ECU 5 starts this process P09, it first executes a process P091 to determine whether the duration of the fuel pressure sensor failure exceeds the first period TP1. In this process P091, the failure determination unit 504 determines whether, for example, the failure detection unit 503 has not detected a fuel pressure sensor failure, if the fuel pressure sensor failure has already been determined, or if the fuel pressure sensor failure continues to be detected. If the current period does not exceed the first period TP1, a negative determination (NO) is made.
 また、ECU5は、検出値異常の継続期間が第2期間TP2を超えているか否かを判定する処理P092を実行する。この処理P092において、異常確定部506は、たとえば、異常検出部505によって検出値異常が検出されていない場合、すでに検出値異常が確定している場合、または、検出値異常の検出が継続している期間が第2期間TP2を超えていない場合に、否定(NO)を判定する。この場合、ECU5は、図8に示す処理P09を終了させて、次の故障等確定時処理P10を実行する。 Additionally, the ECU 5 executes a process P092 to determine whether the duration of the detected value abnormality exceeds the second period TP2. In this process P092, the abnormality determination unit 506 determines whether, for example, the abnormality detection unit 505 has not detected a detected value abnormality, if the detected value abnormality has already been determined, or if the detection value abnormality continues to be detected. If the current period does not exceed the second period TP2, a negative determination (NO) is made. In this case, the ECU 5 ends the process P09 shown in FIG. 8 and executes the next process P10 when a failure is determined.
 一方、処理P091において、故障確定部504は、たとえば、図6の一番上のチャートに示すように、故障検出部503によって燃圧センサ故障が検出されている状態(Y)が継続し、かつ、その状態が第1期間TP1を超えた場合に、肯定(YES)を判定する。この場合、故障確定部504は、燃圧センサ故障を確定させる処理P093を実行し、図8に示す処理P09を終了する。 On the other hand, in process P091, the failure determination unit 504 determines that, as shown in the top chart of FIG. 6, the failure detection unit 503 continues to detect a fuel pressure sensor failure (Y), and If the state exceeds the first period TP1, an affirmative (YES) determination is made. In this case, the failure determining unit 504 executes a process P093 to determine the fuel pressure sensor failure, and ends the process P09 shown in FIG. 8.
 同様に、処理P092において、異常確定部506は、異常検出部505によって検出値異常が検出されている状態(Y)が継続し、かつ、その状態が第2期間TP2を超えた場合に、肯定(YES)を判定する。この場合、異常確定部506は、検出値異常を確定させる処理P094を実行し、図8に示す処理P09を終了する。その後、ECU5は、次の故障等確定時処理P10を実行する。 Similarly, in process P092, the abnormality determination unit 506 determines if the abnormality detection unit 505 continues to detect a detected value abnormality (Y) and if this state exceeds the second period TP2, (YES) is determined. In this case, the abnormality determining unit 506 executes a process P094 for determining the detected value abnormality, and ends the process P09 shown in FIG. 8. After that, the ECU 5 executes the next failure confirmation process P10.
 図9は、図5の故障等確定時処理P10の詳細を示すフロー図である。ECU5は、この処理を開始すると、まず、燃圧センサ故障または検出値異常が確定されたか否かを判定する処理P101を実行する。この処理P101において、フェイルセーフ処理部508は、たとえば、故障確定部504によって燃圧センサ故障または検出値異常が確定されていない場合に、否定(NO)を判定する。 FIG. 9 is a flowchart showing details of the process P10 when a failure is determined in FIG. 5. When the ECU 5 starts this process, it first executes process P101 to determine whether a fuel pressure sensor failure or detected value abnormality has been determined. In this process P101, the failsafe processing unit 508 makes a negative determination (NO), for example, when the failure determination unit 504 has not determined that a fuel pressure sensor failure or detected value abnormality has occurred.
 この場合、次の処理P103において、フェイルセーフ処理部508は、次にインジェクタ29へ出力する駆動電流を、前回インジェクタ29へ出力した駆動電流に維持して、駆動電流設定部507へ出力する。その後、ECU5は図9に示す処理P10を終了させ、図5に示す処理P06および処理P07を実行する。その結果、駆動電流設定部507は、燃圧センサ故障または検出値異常の検出から確定までの間、インジェクタ29へ出力する駆動電流として暫定駆動電流を設定し、これにより駆動電流出力部511からインジェクタ29へ暫定駆動電流が出力される。 In this case, in the next process P103, the failsafe processing unit 508 maintains the drive current to be output to the injector 29 next time at the drive current output to the injector 29 last time, and outputs it to the drive current setting unit 507. After that, the ECU 5 ends the process P10 shown in FIG. 9 and executes the process P06 and the process P07 shown in FIG. 5. As a result, the drive current setting section 507 sets a provisional drive current as the drive current to be output to the injector 29 from the detection of the fuel pressure sensor failure or the detected value abnormality to the determination, and thereby the drive current output section 511 outputs the injector 29 to the injector 29. A provisional drive current is output to.
 一方、処理P101において、フェイルセーフ処理部508は、たとえば、故障確定部504によって燃圧センサ故障または検出値異常が確定された場合に、肯定(YES)を判定する。この場合、フェイルセーフ処理部508は、次の処理P102において、次にインジェクタ29へ出力する駆動電流が、燃圧センサ故障確定時の設定値より大か否かを判定する。この処理P102において、フェイルセーフ処理部508は、駆動電流が燃圧センサ故障確定時の設定値よりも大きいこと(YES)を判定すると、その駆動電流を漸減させて駆動電流設定部507へ出力する処理P104を実行する。 On the other hand, in process P101, the failsafe processing unit 508 makes an affirmative determination (YES), for example, when the failure determination unit 504 determines a fuel pressure sensor failure or a detected value abnormality. In this case, in the next process P102, the failsafe processing unit 508 determines whether the drive current to be output to the injector 29 next is larger than the set value at the time when the fuel pressure sensor failure is determined. In this process P102, when the fail-safe processing unit 508 determines that the drive current is larger than the set value at the time when the fuel pressure sensor failure is confirmed (YES), the fail-safe processing unit 508 performs a process of gradually decreasing the drive current and outputting it to the drive current setting unit 507. Execute P104.
 その後、ECU5は、図9に示す処理P10を終了させ、図5に示す処理P06および処理P07を実行する。 After that, the ECU 5 ends the process P10 shown in FIG. 9 and executes the process P06 and the process P07 shown in FIG. 5.
 より具体的には、図4に示す高圧燃料ポンプ制御部509は、たとえば、燃圧センサ故障または検出値異常が検出されるまでは、目標燃圧算出部501によって算出された目標燃圧FPtおよび燃圧センサ28の燃圧検出値FPsとに基づいて、図1および図2に示す高圧燃料ポンプ25によるインジェクタ29への燃料の吐出量を設定するフィードバック制御を実施する。また、高圧燃料ポンプ制御部509は、燃圧センサ故障の検出または検出値異常の検出から燃圧センサ故障の確定または検出値異常の確定までの期間において、燃料吐出量のフィードバック制御を一時的に停止し、その際たとえば、燃圧センサ故障または検出値異常が検出されるよりも前の時点の目標燃圧FPtに基づく燃料吐出量のフィードフォワード制御を実行することができる。また、高圧燃料ポンプ制御部509は、燃圧センサ故障または検出値異常が確定された場合に、高圧燃料ポンプ25による燃料の加圧吐出を停止させることで、低圧燃料ポンプ22によって低圧燃料供給管24を介してインジェクタ29へ燃料を供給させる。そして、駆動電流設定部507は、燃圧センサ故障または検出値異常が確定された場合に、次にインジェクタ29へ出力する駆動電流を、暫定駆動電流から、低圧燃料ポンプ22によってインジェクタ29へ供給される燃料の燃圧に対応する駆動電流であるセンサ故障等の確定時の設定値まで漸減させる。 More specifically, the high-pressure fuel pump control unit 509 shown in FIG. Based on the detected fuel pressure value FPs, feedback control is performed to set the amount of fuel discharged to the injector 29 by the high-pressure fuel pump 25 shown in FIGS. 1 and 2. In addition, the high-pressure fuel pump control unit 509 temporarily stops the feedback control of the fuel discharge amount during the period from the detection of fuel pressure sensor failure or detected value abnormality to the determination of fuel pressure sensor failure or detected value abnormality. In this case, for example, feedforward control of the fuel discharge amount can be performed based on the target fuel pressure FPt at a point in time before the fuel pressure sensor failure or detected value abnormality is detected. In addition, the high-pressure fuel pump control unit 509 controls the low-pressure fuel supply pipe 24 by the low-pressure fuel pump 22 by stopping the pressurized discharge of fuel by the high-pressure fuel pump 25 when a fuel pressure sensor failure or detected value abnormality is confirmed. Fuel is supplied to the injector 29 via the injector 29. When a fuel pressure sensor failure or detected value abnormality is confirmed, the drive current setting unit 507 sets the drive current to be output to the injector 29 next from the provisional drive current to be supplied to the injector 29 by the low-pressure fuel pump 22. The drive current corresponding to the fuel pressure is gradually reduced to the set value at the time of sensor failure, etc.
 一方、処理P102において、フェイルセーフ処理部508は、駆動電流が燃圧センサ故障確定時の設定値以下であること(NO)を判定すると、その駆動電流を維持する処理P103を実行する。これにより、ECU5からインジェクタ29へ出力される駆動電流が必要以上に小さくなることが防止され、インジェクタ29の開弁不良が防止される。 On the other hand, in process P102, if the failsafe processing unit 508 determines that the drive current is less than or equal to the set value when the fuel pressure sensor failure is confirmed (NO), it executes process P103 to maintain the drive current. This prevents the drive current output from the ECU 5 to the injector 29 from becoming smaller than necessary, and prevents the injector 29 from opening incorrectly.
 以下、本実施形態のECU5の作用を従来の装置との対比に基づいて説明する。 Hereinafter, the operation of the ECU 5 of this embodiment will be explained based on comparison with a conventional device.
 以上のように、本実施形態のECU5は、エンジン3の燃焼室31へ燃料を噴射するインジェクタ29と、そのインジェクタ29へ供給される燃料の燃圧を検出する燃圧センサ28と、を含むエンジンシステムESを制御する電子制御装置である。ECU5は、図5に示すように、目標燃圧算出部501と、燃圧取得部502と、故障検出部503と、故障確定部504と、異常検出部505と、異常確定部506と、駆動電流設定部507と、を有している。目標燃圧算出部501は、インジェクタ29へ供給される燃料の目標燃圧FPtを算出する。燃圧取得部502は、燃圧センサ28の燃圧検出値FPsを取得する。故障検出部503は、燃圧検出値FPsに基づいて燃圧センサ28の故障である燃圧センサ故障を検出する。故障確定部504は、燃圧センサ故障の検出が第1期間TP1を超えて継続した場合に燃圧センサ故障を確定させる。異常検出部505は、目標燃圧FPtと燃圧検出値FPsとの差分および燃圧検出値FPsの単位時間あたりの変化量がそれぞれ閾値を超える検出値異常を検出する。異常確定部506は、検出値異常の検出が第2期間TP2を超えて継続した場合に検出値異常を確定させる。駆動電流設定部507は、燃圧センサ故障または検出値異常が検出されるまでは燃圧検出値FPsに基づいてインジェクタ29の駆動電流を設定する。そして、駆動電流設定部507は、燃圧センサ故障また検出値異常の検出から確定までの間、駆動電流として、燃圧センサ故障および検出値異常が検出される前の燃圧検出値FPsに基づく暫定駆動電流を設定する。 As described above, the ECU 5 of this embodiment is an engine system ES that includes an injector 29 that injects fuel into the combustion chamber 31 of the engine 3, and a fuel pressure sensor 28 that detects the fuel pressure of the fuel supplied to the injector 29. This is an electronic control device that controls the As shown in FIG. 5, the ECU 5 includes a target fuel pressure calculation section 501, a fuel pressure acquisition section 502, a failure detection section 503, a failure determination section 504, an abnormality detection section 505, an abnormality determination section 506, and a drive current setting section. 507. The target fuel pressure calculation unit 501 calculates a target fuel pressure FPt of fuel supplied to the injector 29. The fuel pressure acquisition unit 502 acquires the fuel pressure detection value FPs of the fuel pressure sensor 28. The failure detection unit 503 detects a fuel pressure sensor failure, which is a failure of the fuel pressure sensor 28, based on the detected fuel pressure value FPs. The failure determining unit 504 determines the fuel pressure sensor failure when detection of the fuel pressure sensor failure continues beyond the first period TP1. The abnormality detection unit 505 detects a detected value abnormality in which the difference between the target fuel pressure FPt and the detected fuel pressure value FPs and the amount of change per unit time in the detected fuel pressure value FPs each exceed a threshold value. The abnormality determining unit 506 determines the detected value abnormality when the detection of the detected value abnormality continues beyond the second period TP2. The drive current setting unit 507 sets the drive current of the injector 29 based on the fuel pressure detection value FPs until a fuel pressure sensor failure or an abnormality in the detection value is detected. Then, the drive current setting unit 507 sets a provisional drive current based on the fuel pressure detection value FPs before the fuel pressure sensor failure or detection value abnormality is detected as the drive current from the detection of the fuel pressure sensor failure or detection value abnormality to its determination. Set.
 このような構成により、図6のタイムチャートに示すように、燃圧センサ故障または検出値異常が発生して、燃圧センサ28による燃圧検出値FPsと実際の燃圧FPrが乖離しても、次にインジェクタ29へ出力される駆動電流が低下することが防止される。したがって、本実施形態のECU5によれば、インジェクタ29に供給される燃料の燃圧を検出する燃圧センサ28の故障または検出値異常の発生時に、インジェクタ29の開弁不良を防止して、エンジン3の停止や回転数の低下を防止することができる。 With such a configuration, as shown in the time chart of FIG. 6, even if a fuel pressure sensor failure or detected value abnormality occurs and the fuel pressure detected value FPs by the fuel pressure sensor 28 deviates from the actual fuel pressure FPr, the next injector This prevents the drive current output to 29 from decreasing. Therefore, according to the ECU 5 of this embodiment, when the fuel pressure sensor 28 that detects the fuel pressure of the fuel supplied to the injector 29 has a failure or an abnormal detected value occurs, the valve opening failure of the injector 29 is prevented and the engine 3 is It is possible to prevent stoppage and decrease in rotational speed.
 また、本実施形態の電子制御装置5において、駆動電流設定部507は、燃圧センサ故障または検出値異常が確定された場合に、駆動電流を暫定駆動電流から漸減させる。 Furthermore, in the electronic control device 5 of this embodiment, the drive current setting unit 507 gradually reduces the drive current from the provisional drive current when a fuel pressure sensor failure or detected value abnormality is determined.
 このような構成により、図6の下から二番目のチャートに実線で示すように、燃圧センサ故障または検出値異常が確定した時刻t2以降、インジェクタ29へ出力される駆動電流を、たとえば、燃圧センサ故障または検出値異常の確定時の所定の設定値まで漸減させることができる。したがって、本実施形態のECU5によれば、図6に破線で示す従来の装置のように燃圧センサ故障の確定後にインジェクタの駆動電流を最大駆動電流などの比較的に大きい値に設定する場合と比較して、インジェクタ29の開閉時の衝撃を低減させ、インジェクタ29の耐久性を向上させることが可能になる。 With such a configuration, as shown by the solid line in the second chart from the bottom of FIG. It can be gradually reduced to a predetermined set value when a failure or detected value abnormality is determined. Therefore, according to the ECU 5 of this embodiment, compared to the case where the injector drive current is set to a relatively large value such as the maximum drive current after the fuel pressure sensor failure is determined as in the conventional device shown by the broken line in FIG. As a result, it is possible to reduce the impact when opening and closing the injector 29 and improve the durability of the injector 29.
 また、本実施形態の電子制御装置5によって制御されるエンジンシステムESは、インジェクタ29へ燃料を供給する高圧燃料ポンプ25と、燃料タンク21から高圧燃料ポンプ25へ燃料を供給する低圧燃料ポンプ22とを含む。そして、ECU5は、目標燃圧FPtに基づいて高圧燃料ポンプ25による燃料の吐出量を制御する高圧燃料ポンプ制御部509を有している。高圧燃料ポンプ制御部509は、燃圧センサ故障または検出値異常が確定された場合に、高圧燃料ポンプ25による燃料の加圧吐出を停止させることで、低圧燃料ポンプ22によって低圧燃料供給管24を介してインジェクタ29へ前記燃料を供給させる。また、駆動電流設定部507は、燃圧センサ故障または検出値異常が確定された場合に、インジェクタ29の駆動電流を、暫定駆動電流から、低圧燃料ポンプ22によってインジェクタ29へ供給される燃料の燃圧に対応する駆動電流まで、漸減させる。 The engine system ES controlled by the electronic control device 5 of this embodiment also includes a high-pressure fuel pump 25 that supplies fuel to the injector 29 and a low-pressure fuel pump 22 that supplies fuel from the fuel tank 21 to the high-pressure fuel pump 25. including. The ECU 5 includes a high-pressure fuel pump control section 509 that controls the amount of fuel discharged by the high-pressure fuel pump 25 based on the target fuel pressure FPt. The high-pressure fuel pump control unit 509 stops the pressurized discharge of fuel by the high-pressure fuel pump 25 when a fuel pressure sensor failure or detected value abnormality is determined, thereby causing the low-pressure fuel pump 22 to supply fuel via the low-pressure fuel supply pipe 24. to supply the fuel to the injector 29. Further, when a fuel pressure sensor failure or abnormality in detected value is confirmed, the drive current setting unit 507 changes the drive current of the injector 29 from the provisional drive current to the fuel pressure of the fuel supplied to the injector 29 by the low-pressure fuel pump 22. Gradually decrease the drive current to the corresponding value.
 このような構成により、図6の下から二番目のチャートに実線で示すように、燃圧センサ故障または検出値異常が確定した時刻t2以降、インジェクタ29へ出力される駆動電流を低圧燃料ポンプ22によってインジェクタ29へ供給される燃料の圧力に応じて漸減させることができる。したがって、本実施形態のECU5によれば、図6に破線で示す従来の装置のように燃圧センサ故障の確定後にインジェクタの駆動電流を最大駆動電流などの比較的に大きい値に設定する場合と比較して、インジェクタ29の開閉時の衝撃をより確実に低減させ、インジェクタ29の耐久性をより確実に向上させることが可能になる。 With this configuration, as shown by the solid line in the second chart from the bottom of FIG. It can be gradually decreased depending on the pressure of the fuel supplied to the injector 29. Therefore, according to the ECU 5 of this embodiment, compared to the case where the injector drive current is set to a relatively large value such as the maximum drive current after the fuel pressure sensor failure is determined as in the conventional device shown by the broken line in FIG. As a result, it is possible to more reliably reduce the impact when the injector 29 is opened and closed, and to improve the durability of the injector 29 more reliably.
 以上説明したように、本実施形態によれば、インジェクタ29に供給される燃料の圧力を検出するインジェクタ29の異常発生時にインジェクタ29の開弁不良を防止して、エンジン3の停止や回転数の低下を防止するとともに、インジェクタ29の耐久性を向上させることが可能な電子制御装置5を提供することができる。 As described above, according to the present embodiment, when an abnormality occurs in the injector 29 that detects the pressure of fuel supplied to the injector 29, a valve opening failure of the injector 29 is prevented, and the engine 3 is stopped or the rotation speed is reduced. It is possible to provide an electronic control device 5 that can prevent deterioration and improve the durability of the injector 29.
 これに対し、従来の装置では、図6のタイムチャートに破線で示すように、燃圧センサの異常を判定した場合に、時間に関係なくインジェクタの駆動電流を最大駆動電流に設定する。そのため、従来の装置では、インジェクタの開閉時の衝撃が大きくなることでインジェクタの耐久性が低下する。また、従来の装置では、燃圧センサの故障が確定する前のインジェクタの動作が、実際の燃料圧力に対応できない。 On the other hand, in the conventional device, as shown by the broken line in the time chart of FIG. 6, when it is determined that the fuel pressure sensor is abnormal, the injector drive current is set to the maximum drive current regardless of the time. Therefore, in the conventional device, the durability of the injector decreases due to the increased impact when the injector is opened and closed. Further, in the conventional device, the operation of the injector cannot correspond to the actual fuel pressure before the failure of the fuel pressure sensor is determined.
 なお、本開示に係る電子制御装置は、前述の実施形態に係るECU5に限定されない。以下、図10から図20までを参照して、前述のECU5のいくつかの変形例を説明する。 Note that the electronic control device according to the present disclosure is not limited to the ECU 5 according to the above-described embodiment. Hereinafter, some modified examples of the above-mentioned ECU 5 will be described with reference to FIGS. 10 to 20.
 図10は、図7の故障等検出時処理P08の変形例1を示すフロー図である。本変形例において、ECU5は、図7に示す処理P083に代えて、処理P084、処理P085、および処理P086を実行する。処理P084において、ECU5は、燃圧センサ故障または検出値異常の確定判定の実行中に、燃圧センサ28の燃圧検出値FPsが燃圧センサ故障または検出値異常の検出前の燃圧検出値FPsよりも大きいか否かを判定する。 FIG. 10 is a flowchart showing a first modification of the process P08 at the time of detection of failure etc. in FIG. 7. In this modification, the ECU 5 executes processing P084, processing P085, and processing P086 instead of processing P083 shown in FIG. In process P084, the ECU 5 determines whether the fuel pressure detection value FPs of the fuel pressure sensor 28 is larger than the fuel pressure detection value FPs before the detection of the fuel pressure sensor failure or detection value abnormality, while executing the definitive determination of the fuel pressure sensor failure or detection value abnormality. Determine whether or not.
 この処理P084において、駆動電流設定部507は、たとえば、燃圧センサ故障または検出値異常が検出された後の直近の燃圧検出値FPsと、燃圧センサ故障または検出値異常が検出された時刻t1の時点から第3期間だけ遡った時点の過去の燃圧検出値FPsとを比較する。ここで、第3期間は、たとえば、ECU5による図5に示す処理フローの実行周期と等しいか、または、その図5に示す処理フローの実行周期の整数倍の期間である。 In this process P084, the drive current setting unit 507 sets, for example, the most recent fuel pressure detection value FPs after the fuel pressure sensor failure or detected value abnormality is detected, and the time t1 when the fuel pressure sensor failure or detected value abnormality is detected. The fuel pressure detection value FPs is compared with the past fuel pressure detection value FPs at the time of the third period. Here, the third period is, for example, equal to the execution cycle of the process flow shown in FIG. 5 by the ECU 5, or a period that is an integral multiple of the execution cycle of the process flow shown in FIG.
 この処理P084において、駆動電流設定部507は、上記燃圧センサ故障等が検出される前の過去の燃圧検出値FPsが、上記燃圧センサ故障等が検出された後の直近の燃圧検出値FPs以上であること(NO)を判定すると、次の処理P085を実行する。この処理P085において、駆動電流設定部507は、上記燃圧センサ故障等が検出される前の過去の燃圧検出値FPsに基づいて駆動電流算出部510が算出した駆動電流を、インジェクタ29へ出力する暫定駆動電流に設定し、図10に示す処理P08を終了する。 In this process P084, the drive current setting unit 507 determines that the past fuel pressure detection value FPs before the fuel pressure sensor failure etc. was detected is greater than or equal to the most recent fuel pressure detection value FPs after the fuel pressure sensor failure etc. was detected. If it is determined that it is true (NO), the next process P085 is executed. In this process P085, the drive current setting unit 507 provisionally outputs the drive current calculated by the drive current calculation unit 510 based on the past fuel pressure detection value FPs before the fuel pressure sensor failure etc. is detected to the injector 29. The drive current is set, and the process P08 shown in FIG. 10 is ended.
 一方、処理P084において、駆動電流設定部507は、上記燃圧センサ故障等が検出された後の直近の燃圧検出値FPsが、上記燃圧センサ故障等が検出される前の過去の燃圧検出値FPsよりも大きいこと(YES)を判定すると、次の処理P086を実行する。この処理P086において、駆動電流設定部507は、上記燃圧センサ故障等が検出された後の直近の燃圧検出値FPsに基づいて駆動電流算出部510が算出した駆動電流を、インジェクタ29へ出力する暫定駆動電流に設定し、図10に示す処理P08を終了する。 On the other hand, in process P084, the drive current setting unit 507 determines that the most recent fuel pressure detection value FPs after the fuel pressure sensor failure etc. was detected is higher than the past fuel pressure detection value FPs before the fuel pressure sensor failure etc. was detected. If it is determined that the value is also large (YES), the next process P086 is executed. In this process P086, the drive current setting unit 507 provisionally outputs the drive current calculated by the drive current calculation unit 510 based on the most recent fuel pressure detection value FPs after the fuel pressure sensor failure etc. is detected to the injector 29. The drive current is set, and the process P08 shown in FIG. 10 is ended.
 以上のように、図10に示す変形例に係る電子制御装置5において、駆動電流設定部507は、直近の燃圧検出値FPsと、燃圧センサ故障または検出値異常が検出された時点から第3期間だけ遡った時点の燃圧検出値FPsとのうち、より高い方の前記燃圧検出値に基づいて算出された駆動電流を暫定駆動電流に設定する。このような構成により、本変形例のECU5は、前述の実施形態のECU5と同様の効果を奏することができるだけでなく、より確実にインジェクタ29の開弁不良を防止することができ、エンジン3の停止や回転数の低下をより確実に防止することができる。 As described above, in the electronic control device 5 according to the modified example shown in FIG. The drive current calculated based on the higher fuel pressure detection value among the fuel pressure detection values FPs at a point in time that is earlier than the previous fuel pressure detection value is set as the provisional drive current. With such a configuration, the ECU 5 of this modification can not only achieve the same effect as the ECU 5 of the above-described embodiment, but also can more reliably prevent valve opening failure of the injector 29, and improve the efficiency of the engine 3. It is possible to more reliably prevent stoppage and decrease in rotational speed.
 図11は、図7の故障等検出時処理P08の変形例2を示すフロー図である。本変形例において、ECU5は、図7に示す処理P083に代えて、処理P087a、処理P087b、処理P088、処理P089a、および処理P089bを実行する。処理P087aにおいて、駆動電流算出部510は、燃圧センサ故障または検出値異常の検出後の直近の燃圧センサ28の燃圧検出値FPsから、インジェクタ29の第1駆動電流を算出する。また、処理P87bにおいて、駆動電流算出部510は、燃圧センサ故障または検出値異常の検出から第3期間だけ遡った時点の燃圧センサ28の燃圧検出値FPsから、インジェクタ29の第2駆動電流を算出する。 FIG. 11 is a flowchart showing a second modification of the process P08 at the time of detection of failure, etc. in FIG. In this modification, the ECU 5 executes processing P087a, processing P087b, processing P088, processing P089a, and processing P089b instead of processing P083 shown in FIG. In process P087a, the drive current calculation unit 510 calculates the first drive current of the injector 29 from the fuel pressure detection value FPs of the fuel pressure sensor 28 most recently after the fuel pressure sensor failure or detection value abnormality is detected. In addition, in process P87b, the drive current calculation unit 510 calculates the second drive current of the injector 29 from the fuel pressure detection value FPs of the fuel pressure sensor 28 at a time point that is a third period back from the detection of the fuel pressure sensor failure or detection value abnormality. do.
 その後、駆動電流設定部507は、駆動電流算出部510によって算出された第1駆動電流が第2駆動電流よりも大きいか否かを判定する処理P088を実行する。この処理P088において、駆動電流設定部507は、第1駆動電流が第2駆動電流よりも大きいこと(YES)を判定すると、第1駆動電流をインジェクタ29へ出力する暫定駆動電流に設定する処理P089aを実行し、図11に示す処理P08を終了する。一方、処理P088において、駆動電流設定部507は、第2駆動電流が第1駆動電流よりも大きいこと(NO)を判定すると、第2駆動電流をインジェクタ29へ出力する暫定駆動電流に設定する処理P089bを実行し、図11に示す処理P08を終了する。 After that, the drive current setting unit 507 executes a process P088 to determine whether the first drive current calculated by the drive current calculation unit 510 is larger than the second drive current. In this process P088, when the drive current setting unit 507 determines that the first drive current is larger than the second drive current (YES), the drive current setting unit 507 sets the first drive current to a provisional drive current to be output to the injector 29 in a process P089a. is executed, and the process P08 shown in FIG. 11 is ended. On the other hand, in process P088, when the drive current setting unit 507 determines that the second drive current is larger than the first drive current (NO), the drive current setting unit 507 performs a process of setting the second drive current to the provisional drive current to be output to the injector 29. P089b is executed, and the process P08 shown in FIG. 11 is ended.
 以上のように、図11に示す変形例に係る電子制御装置5において、駆動電流設定部507は、燃圧センサ故障または検出値異常が検出された時点から第3期間だけ遡った時点の燃圧検出値FPsに基づいて算出された駆動電流と、直近の燃圧検出値FPsに基づいて算出された駆動電流のうち、より大きい方の駆動電流を暫定駆動電流に設定する。この変形例のECU5においても、図10に示す変形例のECU5と同様の効果を奏することができる。 As described above, in the electronic control device 5 according to the modified example shown in FIG. The larger of the drive current calculated based on FPs and the drive current calculated based on the most recent detected fuel pressure value FPs is set as the provisional drive current. This modified ECU 5 can also provide the same effects as the modified ECU 5 shown in FIG. 10 .
 図12は、図4に示すECU5の変形例1を示す機能ブロック図である。本変形例のECU5は、図4に示す各部に加えて、たとえば、図12に示す燃料噴射量算出部512と、燃料噴射量判定部513と、吸入空気量取得部514と、吸入空気量判定部515と、エンジン回転数取得部516と、エンジン回転数判定部517と、駆動電流補正部518とを備えている。 FIG. 12 is a functional block diagram showing a first modification of the ECU 5 shown in FIG. 4. In addition to the parts shown in FIG. 4, the ECU 5 of this modification includes, for example, a fuel injection amount calculation section 512, a fuel injection amount determination section 513, an intake air amount acquisition section 514, and an intake air amount determination section shown in FIG. 515 , an engine rotation speed acquisition section 516 , an engine rotation speed determination section 517 , and a drive current correction section 518 .
 図13は、図12に示す変形例1のECU5の動作を説明するフロー図である。図13に示す処理P08Aから処理P08Gは、たとえば、図10に示す故障等検出時処理P08の処理P085または処理P086において、駆動電流設定部507によって暫定駆動電流が設定された後に実施される。図13に示す処理P08Aにおいて、燃料噴射量算出部512は、たとえば、エンジンシステムESの各種のセンサから入力された信号に基づいて、インジェクタ29から噴射する総燃料噴射量および1サイクル中に複数回実行される燃料噴射の各回の噴射量である目標燃料噴射量を算出する。 FIG. 13 is a flow diagram illustrating the operation of the ECU 5 of Modification 1 shown in FIG. 12. Processes P08A to P08G shown in FIG. 13 are executed, for example, after the provisional drive current is set by the drive current setting unit 507 in process P085 or process P086 of the failure detection process P08 shown in FIG. In process P08A shown in FIG. 13, the fuel injection amount calculation unit 512 determines the total fuel injection amount to be injected from the injector 29 and the number of injections multiple times during one cycle, for example, based on signals input from various sensors of the engine system ES. A target fuel injection amount, which is the injection amount for each fuel injection to be executed, is calculated.
 次に、処理P08Bにおいて、燃料噴射量判定部513は、たとえば、総燃料噴射量の時系列データに基づいて総燃料噴射量の変化量が所定範囲内か否かを判定し、所定範囲外(NO)と判定した場合は処理P08を終了させる。一方、この処理P08Bにおいて、燃料噴射量判定部513が総燃料噴射量の変化量が所定範囲内であること(YES)と判定した場合、吸入空気量取得部514は、たとえば、吸気センサ11から入力された信号に基づいてエンジン3の吸入空気量の時系列データを取得する処理P08Cを実行する。 Next, in process P08B, the fuel injection amount determining unit 513 determines whether the amount of change in the total fuel injection amount is within a predetermined range based on the time series data of the total fuel injection amount, and determines whether the amount of change in the total fuel injection amount is outside the predetermined range ( If the determination is NO, the process P08 is ended. On the other hand, in this process P08B, if the fuel injection amount determination section 513 determines that the amount of change in the total fuel injection amount is within the predetermined range (YES), the intake air amount acquisition section 514 acquires the A process P08C is executed to acquire time series data of the intake air amount of the engine 3 based on the input signal.
 次に、処理P08Dにおいて、吸入空気量判定部515は、吸入空気量の変化量が所定範囲内か否かを判定し、所定範囲外(NO)と判定した場合は処理P08を終了させる。一方、この処理P08Dにおいて、吸入空気量判定部515が所定範囲内(YES)と判定した場合、エンジン回転数取得部516は、たとえば、クランク角度センサ37から入力される信号に基づくエンジン3の回転数を取得する処理P08Eを実行する。 Next, in process P08D, the intake air amount determining unit 515 determines whether the amount of change in the intake air amount is within a predetermined range, and if it is determined to be outside the predetermined range (NO), ends process P08. On the other hand, in this process P08D, if the intake air amount determination section 515 determines that the intake air amount is within the predetermined range (YES), the engine rotation speed acquisition section 516 calculates, for example, the rotation of the engine 3 based on the signal input from the crank angle sensor 37. A process P08E for acquiring the number is executed.
 次に、処理P08Fにおいて、エンジン回転数判定部517は、取得したエンジン3の回転数が閾値よりも低下した状態が所定時間を超えて継続しているか否かを判定する。エンジン回転数判定部517は、エンジン3の回転数が所定値以上であるか、または、エンジン3の回転数が所定値よりも低下した状態の継続時間が所定時間以下であること(NO)を判定した場合は処理P08を終了させる。 Next, in process P08F, the engine rotation speed determination unit 517 determines whether the obtained rotation speed of the engine 3 continues to be lower than the threshold value for a predetermined period of time. The engine rotation speed determination unit 517 determines whether the rotation speed of the engine 3 is equal to or higher than a predetermined value, or whether the duration of the state in which the rotation speed of the engine 3 is lower than the predetermined value is equal to or less than a predetermined time (NO). If it is determined, processing P08 is ended.
 一方、この処理P08Fにおいて、エンジン3の回転数が所定値よりも低下した状態が所定時間を超えて継続していること(YES)をエンジン回転数判定部517が判定すると、ECU5は、次の処理P08Gを実行する。この処理P08Gにおいて、駆動電流補正部518は、燃圧センサ故障または前記検出値異常が確定された場合にインジェクタ29へ出力する上記の暫定駆動電流を増加させるように補正し、駆動電流設定部507は、駆動電流補正部518による補正後の暫定駆動電流を新たな暫定駆動電流に設定する。 On the other hand, in this process P08F, when the engine speed determination unit 517 determines that the state in which the rotation speed of the engine 3 is lower than the predetermined value continues for more than a predetermined time (YES), the ECU 5 performs the following process. Processing P08G is executed. In this process P08G, the drive current correction section 518 corrects the provisional drive current to be output to the injector 29 when the fuel pressure sensor failure or the detected value abnormality is confirmed, and the drive current setting section 507 , the provisional drive current corrected by the drive current correction unit 518 is set as a new provisional drive current.
 図14は、図12に示す変形例1のECU5の作用を説明するタイミングチャートである。図14のタイミングチャートは、図6に示すタイミングチャートの各項目に加えて、吸入空気量と燃料噴射量のチャートが追加されている。 FIG. 14 is a timing chart illustrating the operation of the ECU 5 of Modification 1 shown in FIG. 12. In addition to each item of the timing chart shown in FIG. 6, the timing chart in FIG. 14 includes charts for intake air amount and fuel injection amount.
 本変形例の電子制御装置5は、前述のように、燃料噴射量算出部512と、吸入空気量取得部514と、エンジン回転数取得部516と、駆動電流補正部518とを備えている。燃料噴射量算出部512は、インジェクタ29の総燃料噴射量を算出する。吸入空気量取得部514は、総燃料噴射量の変化量が所定の範囲内にある場合にエンジン3の吸入空気量を取得する。エンジン回転数取得部516は、エンジン3の回転数を取得する。駆動電流補正部518は、エンジン3の回転数が閾値よりも低下している場合に前記暫定駆動電流を増加させるように補正する。駆動電流設定部507は、駆動電流補正部518による補正後の暫定駆動電流を新たな暫定駆動電流に設定する。 As described above, the electronic control device 5 of this modification includes a fuel injection amount calculation section 512, an intake air amount acquisition section 514, an engine rotation speed acquisition section 516, and a drive current correction section 518. The fuel injection amount calculation unit 512 calculates the total fuel injection amount of the injector 29. The intake air amount acquisition unit 514 acquires the intake air amount of the engine 3 when the amount of change in the total fuel injection amount is within a predetermined range. The engine rotation speed acquisition unit 516 acquires the rotation speed of the engine 3. The drive current correction unit 518 corrects the provisional drive current to increase when the rotational speed of the engine 3 is lower than a threshold value. The drive current setting unit 507 sets the provisional drive current corrected by the drive current correction unit 518 as a new provisional drive current.
 このような構成により、図14に示すように、吸入空気量が変化せず、燃料噴射量が変化しない状態で、エンジン3の回転数が閾値よりも低下して、その状態が所定時間継続した場合、駆動電流補正部518によって暫定駆動電流が増加するように補正される。その結果、駆動電流補正部518によって設定されるインジェクタの駆動電流が増加し、これにより、エンジン3の停止や回転数の低下が防止される。 With such a configuration, as shown in FIG. 14, the rotational speed of the engine 3 decreases below the threshold value with the intake air amount unchanged and the fuel injection amount unchanged, and this state continues for a predetermined period of time. In this case, the drive current correction unit 518 corrects the provisional drive current to increase. As a result, the drive current for the injector set by the drive current correction unit 518 increases, thereby preventing the engine 3 from stopping or decreasing the rotational speed.
 図15は、図4に示すECU5の変形例2を示す機能ブロック図である。図16は、図15に示す変形例2のECU5の動作を説明するフロー図である。図16に示す処理P08Hから処理P08Jは、たとえば、図10に示す故障等検出時処理P08の処理P085または処理P086において、燃圧センサ故障の検出または検出値異常の検出から燃圧センサ故障の確定または検出値異常の確定までの期間で駆動電流設定部507によって暫定駆動電流がインジェクタの駆動電流に設定された後に実施される。 FIG. 15 is a functional block diagram showing a second modification of the ECU 5 shown in FIG. 4. FIG. 16 is a flowchart illustrating the operation of the ECU 5 of modification 2 shown in FIG. 15. Processing P08H to processing P08J shown in FIG. 16, for example, in processing P085 or processing P086 of the failure detection processing P08 shown in FIG. This is carried out after the provisional drive current is set to the injector drive current by the drive current setting unit 507 during the period until the determination of the value abnormality.
 変形例2の電子制御装置5は、図4に示す各部に加えて、たとえば、図15に示す閉弁状態検知部521と、閉弁時間算出部522と、駆動電流補正部523と、を備えている。図16に示す処理P08Hにおいて、閉弁状態検知部521は、インジェクタ29の閉弁状態を検知して閉弁時間算出部522へ出力する。閉弁状態検知部521は、たとえば、インジェクタ29の閉弁時にインジェクタ29から出力される信号に基づいて、インジェクタ29の閉弁状態を検知する。閉弁時間算出部522は、閉弁状態検知部521から入力されたインジェクタ29の閉弁状態に基づいて、インジェクタ29の閉弁時間観察値を算出する。なお、閉弁状態観察値を算出する際、閉弁時間観察値とは排他的関係となる開弁時間も自明となるため、上記閉弁時間観察値と同様にして開弁時間観察値を算出することができる。 In addition to the parts shown in FIG. 4, the electronic control device 5 of Modification 2 includes, for example, a valve closing state detection section 521, a valve closing time calculation section 522, and a drive current correction section 523 shown in FIG. ing. In process P08H shown in FIG. 16, the valve-closed state detection unit 521 detects the valve-closed state of the injector 29 and outputs it to the valve-closed time calculation unit 522. The valve closed state detection unit 521 detects the closed state of the injector 29 based on, for example, a signal output from the injector 29 when the injector 29 is closed. The valve closing time calculating section 522 calculates the observed value of the valve closing time of the injector 29 based on the valve closing state of the injector 29 inputted from the valve closing state detecting section 521. When calculating the observed valve closing state value, the valve opening time, which has an exclusive relationship with the observed valve closing time value, is also obvious, so calculate the observed valve opening time value in the same way as the observed valve closing time value above. can do.
 次に、処理P08Iにおいて、駆動電流補正部523は、閉弁時間算出部522によって算出された閉弁時間観察値が後述する所定の閉弁時間よりも長いか否かを判定し、閉弁時間観察値が所定の閉弁時間よりも短い(NO)と判定すると、図10に示す処理P08を終了する。一方、処理P08Iにおいて、駆動電流補正部523は、閉弁時間算出部522によって算出された閉弁時間観察値が所定時間よりも長い(YES)と判定すると、図10に示す故障等検出時処理P08の処理P085または処理P086において設定された暫定駆動電流を増加させるように補正する。 Next, in process P08I, the drive current correction unit 523 determines whether the observed valve closing time value calculated by the valve closing time calculation unit 522 is longer than a predetermined valve closing time to be described later, and determines whether the valve closing time is If it is determined that the observed value is shorter than the predetermined valve closing time (NO), processing P08 shown in FIG. 10 is ended. On the other hand, in process P08I, if the drive current correction unit 523 determines that the observed value of the valve closing time calculated by the valve closing time calculation unit 522 is longer than the predetermined time (YES), the drive current correction unit 523 performs the failure etc. detection process shown in FIG. The provisional drive current set in process P085 or process P086 of P08 is corrected to increase.
 なお、上記処理P08Iによる処理は、開弁時間観察値に基づいて行うこともできる。この場合、たとえば、駆動電流補正部523は、閉弁時間算出部522によって算出された開弁時間観察値が所定の開弁時間よりも長いか否かを判定し、開弁時間観察値が後述する所定の開弁時間よりも長い(NO)と判定すると、図10に示す処理P08を終了する。一方、処理P08Iにおいて、駆動電流補正部523は、開弁時間算出部522によって算出された開弁時間観察値が所定の開弁時間よりも短い(YES)と判定すると、図10に示す故障等検出時処理P08の処理P085または処理P086において設定された暫定駆動電流を増加させるように補正する。なお、上記所定の閉弁時間、および上記所定の開弁時間は、たとえば、インジェクタ29から噴射する総燃料噴射量もしくはエンジン3の1回の燃焼サイクル中に複数回実行される燃料噴射の各回の噴射量である目標燃料噴射量に基づいて設定することができる。 Note that the process P08I described above can also be performed based on the observed valve opening time value. In this case, for example, the drive current correction unit 523 determines whether the observed valve opening time value calculated by the valve closing time calculation unit 522 is longer than a predetermined valve opening time, and determines whether the observed valve opening time value is If it is determined that the valve opening time is longer than the predetermined valve opening time (NO), processing P08 shown in FIG. 10 is ended. On the other hand, in process P08I, if the drive current correction unit 523 determines that the observed valve opening time value calculated by the valve opening time calculation unit 522 is shorter than the predetermined valve opening time (YES), the drive current correction unit 523 causes a failure as shown in FIG. The provisional drive current set in process P085 or process P086 of detection process P08 is corrected to increase. Note that the predetermined valve closing time and the predetermined valve opening time are, for example, the total fuel injection amount injected from the injector 29 or each fuel injection performed multiple times during one combustion cycle of the engine 3. It can be set based on the target fuel injection amount which is the injection amount.
 図17は、図15に示す変形例2のECU5の作用を説明するタイミングチャートである。図17のタイミングチャートは、図14に示すタイミングチャートの各項目に加えて、閉弁時間のチャートが追加されている。また、図14の燃料噴射量のチャートの破線は、目標燃料噴射量を表している。 FIG. 17 is a timing chart illustrating the operation of the ECU 5 of modification 2 shown in FIG. 15. In addition to each item of the timing chart shown in FIG. 14, the timing chart of FIG. 17 has a chart of valve closing time added. Further, the broken line in the fuel injection amount chart in FIG. 14 represents the target fuel injection amount.
 本変形例の電子制御装置5は、前述のように、閉弁状態検知部521と、閉弁時間算出部522と、駆動電流補正部523と、を有している。閉弁状態検知部521は、インジェクタ29の閉弁状態を検知する。閉弁時間算出部522は、閉弁状態の検知結果に基づいてインジェクタ29の閉弁時間または開弁時間を算出する。駆動電流補正部523は、インジェクタ29の閉弁時間が所定の閉弁時間よりも長い場合、またはインジェクタ29の開弁時間が所定の開弁時間よりも短い場合に、暫定駆動電流を増加させる。 As described above, the electronic control device 5 of this modification includes the valve closing state detection section 521, the valve closing time calculation section 522, and the drive current correction section 523. The valve closed state detection unit 521 detects the valve closed state of the injector 29. The valve closing time calculation unit 522 calculates the valve closing time or valve opening time of the injector 29 based on the detection result of the valve closed state. The drive current correction unit 523 increases the provisional drive current when the valve closing time of the injector 29 is longer than the predetermined valve closing time or when the valve opening time of the injector 29 is shorter than the predetermined valve opening time.
 このような構成により、本変形例2のECU5は、インジェクタ29の閉弁検知機能を用いて、インジェクタ29の実際の燃料噴射量(開弁時間観察値)が低下していることを検知することができる。すなわち、図17に示すようにし、インジェクタ29の閉弁時間観察値が所定の閉弁時間よりも長い場合またはインジェクタ29の開弁時間観察値が所定の開弁時間よりも短い場合に、インジェクタ29の実際の燃料噴射量が低下していることを検知して、これにより、インジェクタ29へ出力する暫定駆動電流を増加させることができる。その結果、燃料噴射量の低下が解消され、エンジン3の停止や回転数の低下を防止することができる。 With such a configuration, the ECU 5 of the present modification 2 uses the valve closing detection function of the injector 29 to detect that the actual fuel injection amount (valve opening time observed value) of the injector 29 is decreasing. Can be done. That is, as shown in FIG. 17, when the observed value of the valve closing time of the injector 29 is longer than the predetermined valve closing time or when the observed value of the valve opening time of the injector 29 is shorter than the predetermined valve opening time, the injector 29 By detecting that the actual fuel injection amount is decreasing, it is possible to increase the provisional drive current output to the injector 29. As a result, the decrease in the fuel injection amount is eliminated, and it is possible to prevent the engine 3 from stopping and the rotational speed from decreasing.
 図18は、図4に示すECU5の変形例3を示す機能ブロック図である。図19は、図18に示す変形例3のECU5の動作を説明するフロー図である。図19に示す処理P08Kから処理P08Oは、たとえば、図10に示す故障等検出時処理P08の処理P085または処理P086において、燃圧センサ故障の検出または検出値異常の検出から燃圧センサ故障の確定または検出値異常の確定までの期間で駆動電流設定部507によって暫定駆動電流が設定された後に実施される。 FIG. 18 is a functional block diagram showing a third modification of the ECU 5 shown in FIG. 4. FIG. 19 is a flowchart illustrating the operation of the ECU 5 of modification 3 shown in FIG. 18. Processing P08K to processing P08O shown in FIG. 19, for example, in processing P085 or processing P086 of failure detection processing P08 shown in FIG. This is carried out after the provisional drive current is set by the drive current setting unit 507 during the period until the determination of the value abnormality.
 変形例3のECU5は、図4に示す各部に加えて、たとえば、図18に示す吸入空気量取得部531と、吸入空気量判定部532と、燃料噴射量算出部533と、燃料噴射量判定部534、駆動電流補正部535と、を備えている。図19に示す処理P08Kにおいて、吸入空気量取得部531は、たとえば、吸気センサ11から入力された信号に基づいて吸入空気量を算出して取得する。 In addition to the parts shown in FIG. 4, the ECU 5 of Modification 3 includes, for example, an intake air amount acquisition section 531, an intake air amount determination section 532, a fuel injection amount calculation section 533, and a fuel injection amount determination section shown in FIG. 534 and a drive current correction section 535. In process P08K shown in FIG. 19, the intake air amount acquisition unit 531 calculates and acquires the intake air amount based on the signal input from the intake sensor 11, for example.
 次に、処理P08Lにおいて、吸入空気量判定部532は、たとえば、吸入空気量の時系列データに基づいて、吸入空気量の変化量が所定範囲内であるか否かを判定し、所定範囲外(NO)と判定した場合は処理P08を終了させる。一方、この処理P08Lにおいて、吸入空気量判定部532が所定範囲内であること(YES)を判定した場合、燃料噴射量算出部533は、たとえば、エンジンシステムESの各種のセンサから入力された信号に基づいて、インジェクタ29から噴射する総燃料噴射量を算出する処理P08Mを実行する。 Next, in process P08L, the intake air amount determining unit 532 determines whether the amount of change in the intake air amount is within a predetermined range, based on the time series data of the intake air amount, and If it is determined (NO), the process P08 is ended. On the other hand, in this process P08L, when the intake air amount determining section 532 determines that the intake air amount is within the predetermined range (YES), the fuel injection amount calculating section 533 calculates, for example, signals input from various sensors of the engine system ES. Based on this, a process P08M is executed to calculate the total amount of fuel injected from the injector 29.
 次に、処理P08Nにおいて、燃料噴射量判定部534は、たとえば、燃料噴射量の時系列データに基づいて総燃料噴射量の変化量が所定範囲内か否かを判定し、所定範囲内(NO)と判定した場合は処理P08を終了させる。一方、この処理P08Nにおいて、総燃料噴射量の変化量が所定範囲外であること(NO)を判定した場合、ECU5は、次の処理P08Oを実行する。この処理P08Oにおいて、駆動電流補正部535は、インジェクタ29へ出力する暫定駆動電流を増加させるように補正し、駆動電流設定部507は、駆動電流補正部535による補正後の暫定駆動電流を新たな暫定駆動電流に設定する。 Next, in process P08N, the fuel injection amount determining unit 534 determines whether the amount of change in the total fuel injection amount is within a predetermined range based on the time series data of the fuel injection amount, and determines whether or not the amount of change in the total fuel injection amount is within a predetermined range (NO ), the process P08 is ended. On the other hand, if it is determined in this process P08N that the amount of change in the total fuel injection amount is outside the predetermined range (NO), the ECU 5 executes the next process P08O. In this process P08O, the drive current correction section 535 corrects the provisional drive current output to the injector 29 to increase it, and the drive current setting section 507 changes the provisional drive current after the correction by the drive current correction section 535 to a new value. Set to temporary drive current.
 図20は、図18に示す変形例3のECU5の作用を説明するタイミングチャートである。図20のタイミングチャートは、図6に示すエンジン回転数のチャートに変えて、吸入空気量と燃料噴射量のチャートが追加されている。 FIG. 20 is a timing chart illustrating the operation of the ECU 5 of the third modification shown in FIG. 18. In the timing chart of FIG. 20, a chart of intake air amount and fuel injection amount is added in place of the engine speed chart shown in FIG. 6.
 本変形例3の電子制御装置5は、前述のように、吸入空気量取得部531と、燃料噴射量算出部533と、駆動電流補正部535とを備えている。吸入空気量取得部531は、エンジン3の吸入空気量を取得する。燃料噴射量算出部533は、吸入空気量の変化量が所定の範囲内にある場合にインジェクタ29の燃料噴射量を算出する。駆動電流補正部535は、総燃料噴射量が低下している場合に暫定駆動電流を増加させるように補正する。 As described above, the electronic control device 5 of the third modification includes the intake air amount acquisition section 531, the fuel injection amount calculation section 533, and the drive current correction section 535. The intake air amount acquisition unit 531 acquires the intake air amount of the engine 3. The fuel injection amount calculation unit 533 calculates the fuel injection amount of the injector 29 when the amount of change in the intake air amount is within a predetermined range. The drive current correction unit 535 corrects the provisional drive current to increase when the total fuel injection amount is decreasing.
 たとえば総燃料噴射量が急激に減少する場合には、高圧燃料ポンプ25からインジェクタ29への燃料吐出量が吐出量がインジェクタ29から燃焼室へ噴射される燃料量を上回ることでコモンレール27内の燃圧が急激に高まることがあるが、前記燃圧センサ28の故障または前記検出値異常が検出されている状況下では、この燃圧上昇を検知することができない。しかしながら変形例3の構成によれば、図20に示すように、燃料噴射量の変化量が所定範囲外であることが検知された場合、インジェクタ29へ出力する暫定駆動電流を増加させることができる。その結果、燃圧上昇によるエンジン3の停止や回転数の低下が防止される。 For example, when the total fuel injection amount suddenly decreases, the amount of fuel discharged from the high-pressure fuel pump 25 to the injector 29 exceeds the amount of fuel injected from the injector 29 into the combustion chamber, causing the fuel pressure in the common rail 27 to increase. However, this increase in fuel pressure cannot be detected in a situation where a failure of the fuel pressure sensor 28 or an abnormality in the detected value is detected. However, according to the configuration of modification 3, as shown in FIG. 20, when it is detected that the amount of change in the fuel injection amount is outside the predetermined range, the provisional drive current output to the injector 29 can be increased. . As a result, the engine 3 is prevented from stopping or from decreasing in rotational speed due to an increase in fuel pressure.
 以上、図面を用いて本開示に係る電子制御装置の実施形態およびその変形例を詳述してきたが、具体的な構成はこれらの実施形態および変形例に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiments and modifications thereof of the electronic control device according to the present disclosure have been described above in detail using the drawings, the specific configuration is not limited to these embodiments and modifications, and the embodiments of the present disclosure are not limited to the embodiments and modifications thereof. Even if there are design changes within the scope of the invention, they are included in the present disclosure.
21   燃料タンク
22   低圧燃料ポンプ
24   低圧燃料供給通路(低圧燃料供給管)
25   高圧燃料ポンプ
28   燃圧センサ
29   インジェクタ
3    エンジン
31   燃焼室
5    ECU(電子制御装置)
501  目標燃圧算出部
502  燃圧取得部
503  故障検出部
504  故障確定部
505  異常検出部
506  異常確定部
507  駆動電流設定部
509  高圧燃料ポンプ制御部
512  燃料噴射量算出部
514  吸入空気量取得部
516  エンジン回転数取得部
518  駆動電流補正部
521  閉弁状態検知部
522  閉弁時間算出部
523  駆動電流補正部
531  吸入空気量取得部
533  燃料噴射量算出部
535  駆動電流補正部
ES   エンジンシステム
FPs  燃圧検出値
FPt  目標燃圧
TP1  第1期間
TP2  第2期間
21 Fuel tank 22 Low pressure fuel pump 24 Low pressure fuel supply passage (low pressure fuel supply pipe)
25 High pressure fuel pump 28 Fuel pressure sensor 29 Injector 3 Engine 31 Combustion chamber 5 ECU (electronic control unit)
501 Target fuel pressure calculation section 502 Fuel pressure acquisition section 503 Failure detection section 504 Failure determination section 505 Abnormality detection section 506 Abnormality determination section 507 Drive current setting section 509 High pressure fuel pump control section 512 Fuel injection amount calculation section 514 Intake air amount acquisition section 516 Engine Rotation speed acquisition section 518 Drive current correction section 521 Valve closing state detection section 522 Valve closing time calculation section 523 Drive current correction section 531 Intake air amount acquisition section 533 Fuel injection amount calculation section 535 Drive current correction section ES Engine system FPs Fuel pressure detection value FPt Target fuel pressure TP1 First period TP2 Second period

Claims (9)

  1.  エンジンの燃焼室へ燃料を噴射するインジェクタと、該インジェクタへ供給される前記燃料の燃圧を検出する燃圧センサと、を含むエンジンシステムを制御する電子制御装置であって、
     前記インジェクタへ供給される前記燃料の目標燃圧を算出する目標燃圧算出部と、
     前記燃圧センサの燃圧検出値を取得する燃圧取得部と、
     前記燃圧検出値に基づいて前記燃圧センサの故障である燃圧センサの故障を検出する故障検出部と、
     前記燃圧センサ故障の検出が第1期間を超えて継続した場合に前記燃圧センサの故障判定を確定させる故障確定部と、
     前記目標燃圧と前記燃圧検出値との差分および前記燃圧検出値の単位時間あたりの変化量に基づいて前記燃圧検出値の検出値異常を検出する異常検出部と、
     前記燃圧検出値の検出値異常が第2期間を超えて継続した場合に前記燃圧検出値の検出値異常を確定させる異常確定部と、
     前記燃料の燃圧に応じた前記インジェクタの駆動電流を設定する駆動電流設定部と、を備え、
     前記駆動電流設定部は、前記燃圧センサ故障の検出または前記検出値異常の検出から前記燃圧センサ故障の確定または前記検出値異常の確定までの期間において、前記インジェクタの駆動電流として、前記燃圧センサ故障および前記検出値異常が検出されるより前の時点の前記燃圧検出値に応じた暫定駆動電流を設定することを特徴とする電子制御装置。
    An electronic control device that controls an engine system including an injector that injects fuel into a combustion chamber of an engine, and a fuel pressure sensor that detects the fuel pressure of the fuel supplied to the injector,
    a target fuel pressure calculation unit that calculates a target fuel pressure of the fuel supplied to the injector;
    a fuel pressure acquisition unit that acquires a fuel pressure detection value of the fuel pressure sensor;
    a failure detection unit that detects a failure of the fuel pressure sensor, which is a failure of the fuel pressure sensor, based on the detected fuel pressure value;
    a failure determination unit that determines a failure determination of the fuel pressure sensor when detection of the fuel pressure sensor failure continues beyond a first period;
    an abnormality detection unit that detects an abnormality in the detected fuel pressure value based on the difference between the target fuel pressure and the detected fuel pressure value and the amount of change in the detected fuel pressure value per unit time;
    an abnormality determination unit that determines the detected value abnormality of the fuel pressure detected value when the detected value abnormality of the fuel pressure detected value continues beyond a second period;
    a drive current setting unit that sets a drive current for the injector according to the fuel pressure of the fuel,
    The drive current setting unit sets the fuel pressure sensor failure as a drive current for the injector during a period from detection of the fuel pressure sensor failure or detection of the detected value abnormality to determination of the fuel pressure sensor failure or determination of the detected value abnormality. and setting a provisional drive current according to the detected fuel pressure value at a time before the detected value abnormality is detected.
  2.  前記駆動電流設定部は、前記燃圧センサ故障または前記検出値異常が確定された場合に、前記インジェクタの駆動電流を前記暫定駆動電流から漸減させることを特徴とする請求項1に記載の電子制御装置。 The electronic control device according to claim 1, wherein the drive current setting unit gradually reduces the drive current of the injector from the provisional drive current when the fuel pressure sensor failure or the detected value abnormality is confirmed. .
  3.  前記エンジンシステムは、前記燃料を吸入して前記インジェクタへ加圧吐出する高圧燃料ポンプと、前記高圧燃料ポンプの吸入側と吐出側とをバイパス接続する低圧燃料供給通路と、燃料タンクから前記低圧燃料供給通路および前記高圧燃料ポンプの前記吸入側へ前記燃料を供給する低圧燃料ポンプとを含み、
     前記電子制御装置は、前記燃圧センサ故障または前記検出値異常が確定された場合に、前記高圧燃料ポンプによる前記燃料の加圧吐出を停止させることで、前記低圧燃料ポンプによって前記低圧燃料供給通路を介して前記インジェクタへ前記燃料を供給させる、高圧燃料ポンプ制御部を有し、
     前記駆動電流設定部は、前記燃圧センサ故障または前記検出値異常が確定された場合に、前記インジェクタの駆動電流を、前記暫定駆動電流から、前記低圧燃料ポンプによって前記インジェクタへ供給される前記燃料の燃圧値に対応する所定の設定値まで漸減させることを特徴とする請求項2に記載の電子制御装置。
    The engine system includes a high-pressure fuel pump that sucks the fuel and discharges the fuel under pressure to the injector, a low-pressure fuel supply passage that bypass-connects the suction side and discharge side of the high-pressure fuel pump, and supplies the low-pressure fuel from the fuel tank. a supply passage and a low-pressure fuel pump that supplies the fuel to the suction side of the high-pressure fuel pump,
    The electronic control device is configured to stop the pressurized discharge of the fuel by the high-pressure fuel pump when the fuel pressure sensor failure or the detected value abnormality is confirmed, thereby causing the low-pressure fuel pump to operate the low-pressure fuel supply passage. a high-pressure fuel pump control unit configured to supply the fuel to the injector via the injector;
    The drive current setting unit changes the drive current of the injector from the provisional drive current to the amount of fuel supplied to the injector by the low-pressure fuel pump when the fuel pressure sensor failure or the detected value abnormality is confirmed. 3. The electronic control device according to claim 2, wherein the electronic control device gradually decreases the fuel pressure to a predetermined set value corresponding to the fuel pressure value.
  4.  前記暫定駆動電流は、直近の前記燃圧検出値と、前記燃圧センサ故障が検出、または前記検出値異常が検出された時点から第3期間を遡った時点の燃圧検出値とのうち、より高い値の燃圧検出値に基づいて設定されることを特徴とする請求項1に記載の電子制御装置。 The provisional drive current is the higher value of the most recent fuel pressure detection value and the fuel pressure detection value at a time a third period has passed since the time when the fuel pressure sensor failure was detected or the detected value abnormality was detected. 2. The electronic control device according to claim 1, wherein the electronic control device is set based on a detected fuel pressure value.
  5.  前記駆動電流設定部は、前記燃圧センサ故障または前記検出値異常が検出された時点から第3期間を遡った時点の燃圧検出値に基づいて算出された前記インジェクタの駆動電流と、直近の前記燃圧検出値に基づいて算出された前記インジェクタの駆動電流とのうち、より大きい方のインジェクタの駆動電流を前記暫定駆動電流に設定することを特徴とする請求項1に記載の電子制御装置。 The drive current setting unit is configured to set a drive current for the injector calculated based on a fuel pressure detection value at a point in time after a third period from the time when the fuel pressure sensor failure or the detection value abnormality was detected, and the most recent fuel pressure. 2. The electronic control device according to claim 1, wherein the provisional drive current is set to a larger one of the injector drive currents calculated based on the detected value.
  6.  前記インジェクタの燃料噴射量を算出する燃料噴射量算出部と、
     前記燃料噴射量の変化量が所定の範囲内にある場合に前記エンジンの吸入空気量を取得する吸入空気量取得部と、
     前記エンジンの回転数を取得するエンジン回転数取得部と、
     前記燃圧センサの故障または前記検出値異常の検出から前記燃圧センサ故障の確定または前記検出値異常の確定までの期間において、前記エンジンの回転数があらかじめ定められた回転数よりも低下すると見なされる場合に、前記暫定駆動電流を増加させるように補正する暫定駆動電流補正部を備えることを特徴とする請求項1に記載の電子制御装置。
    a fuel injection amount calculation unit that calculates a fuel injection amount of the injector;
    an intake air amount acquisition unit that acquires the intake air amount of the engine when the amount of change in the fuel injection amount is within a predetermined range;
    an engine rotation speed acquisition unit that acquires the rotation speed of the engine;
    If the rotational speed of the engine is considered to be lower than a predetermined rotational speed during the period from the detection of a failure of the fuel pressure sensor or the abnormality of the detected value to the determination of the failure of the fuel pressure sensor or the determination of the abnormality of the detected value; 2. The electronic control device according to claim 1, further comprising a provisional drive current correction unit that corrects the provisional drive current so as to increase the provisional drive current.
  7. 前記エンジンの吸入空気量に応じて前記インジェクタの総燃料噴射量を算出する目標燃料噴射量算出部と、前記総燃料噴射量に応じて燃料噴射弁を開弁させる開弁時間長を規定する開弁時間長演算部と、
     前記インジェクタの閉弁状態を検知する閉弁状態検知部と、
     前記インジェクタの閉弁状態に基づいて前記インジェクタの閉弁時間観察値または開弁時間観察値を算出し、且つ、前記開弁時間長に応じて所定の閉弁時間または所定の開弁時間を設定する閉弁時間算出部とを備え、
     前記インジェクタの閉弁時間観察値が前記所定の閉弁時間よりも長い場合、または前記インジェクタの開弁時間観察値が前記所定の開弁時間よりも短い場合に前記暫定駆動電流を増加させるように補正する駆動電流補正部を備えることを特徴とする請求項1に記載の電子制御装置。
    a target fuel injection amount calculation unit that calculates a total fuel injection amount of the injector according to the intake air amount of the engine; and an opening that defines a valve opening time length for opening the fuel injection valve according to the total fuel injection amount. a valve time length calculation section;
    a valve closed state detection unit that detects a valve closed state of the injector;
    Calculate an observed valve closing time value or an observed valve opening time value of the injector based on the valve closing state of the injector, and set a predetermined valve closing time or a predetermined valve opening time according to the valve opening time length. and a valve closing time calculation section,
    The provisional drive current is increased when the observed value of the valve closing time of the injector is longer than the predetermined valve closing time, or when the observed value of the valve opening time of the injector is shorter than the predetermined valve opening time. The electronic control device according to claim 1, further comprising a drive current correction section that corrects the drive current.
  8.  前記エンジンの吸入空気量を取得する吸入空気量取得部と、
     前記吸入空気量に基づき前記インジェクタの総燃料噴射量を算出する燃料噴射量算出部と、
     前記燃圧センサの故障または前記検出値異常の検出から前記燃圧センサ故障の確定または前記検出値異常の確定までの期間において、前記燃料噴射量が所定値よりも低下している場合に前記暫定駆動電流を増加させるように補正する駆動電流補正部を備えることを特徴とする請求項1に記載の電子制御装置。
    an intake air amount acquisition unit that acquires the intake air amount of the engine;
    a fuel injection amount calculation unit that calculates a total fuel injection amount of the injector based on the intake air amount;
    If the fuel injection amount is lower than a predetermined value during the period from detection of a failure of the fuel pressure sensor or abnormality of the detected value to determination of the failure of the fuel pressure sensor or determination of the abnormality of the detected value, the provisional drive current The electronic control device according to claim 1, further comprising a drive current correction section that corrects the drive current so as to increase the drive current.
  9.  前記駆動電流補正部は、前記燃圧センサの故障または前記検出値異常の検出から前記燃圧センサ故障の確定または前記検出値異常の確定までの期間において、前記総燃料噴射量の単位時間あたりの変化量に基づいて前記暫定駆動電流を補正することを特徴とする請求項8に記載の電子制御装置。 The drive current correction unit adjusts the amount of change in the total fuel injection amount per unit time during a period from detection of a failure of the fuel pressure sensor or abnormality of the detected value to determination of the failure of the fuel pressure sensor or determination of the abnormality of the detected value. The electronic control device according to claim 8, wherein the provisional drive current is corrected based on.
PCT/JP2022/033236 2022-09-05 2022-09-05 Electronic control device WO2024052953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033236 WO2024052953A1 (en) 2022-09-05 2022-09-05 Electronic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033236 WO2024052953A1 (en) 2022-09-05 2022-09-05 Electronic control device

Publications (1)

Publication Number Publication Date
WO2024052953A1 true WO2024052953A1 (en) 2024-03-14

Family

ID=90192339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033236 WO2024052953A1 (en) 2022-09-05 2022-09-05 Electronic control device

Country Status (1)

Country Link
WO (1) WO2024052953A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210532A (en) * 1998-01-29 1999-08-03 Toyota Motor Corp High pressure fuel feeder for internal combustion engine
JP2005337182A (en) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp Fuel pressure control device for internal combustion engine
JP2013064378A (en) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd Fuel feed control device for internal combustion engine
JP2017002892A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Engine controller
JP2019218911A (en) * 2018-06-20 2019-12-26 本田技研工業株式会社 Fuel feed system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210532A (en) * 1998-01-29 1999-08-03 Toyota Motor Corp High pressure fuel feeder for internal combustion engine
JP2005337182A (en) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp Fuel pressure control device for internal combustion engine
JP2013064378A (en) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd Fuel feed control device for internal combustion engine
JP2017002892A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Engine controller
JP2019218911A (en) * 2018-06-20 2019-12-26 本田技研工業株式会社 Fuel feed system

Similar Documents

Publication Publication Date Title
JP4428405B2 (en) Fuel injection control device and engine control system
JP3680515B2 (en) Fuel system diagnostic device for internal combustion engine
US7373918B2 (en) Diesel engine control system
US7921706B2 (en) NOx sensor diagnostic device and exhaust gas purifying system using the device
JP4415912B2 (en) Engine control system
US7025050B2 (en) Fuel pressure control device for internal combination engine
JP4656198B2 (en) Fuel injection control device
US8240290B2 (en) Control apparatus for internal combustion engine
US7630824B2 (en) Fuel estimating device
JP5235739B2 (en) Fuel injection control device for internal combustion engine
JP4348805B2 (en) Accumulated fuel injection control device
JP3807270B2 (en) Accumulated fuel injection system
JP3846381B2 (en) Abnormality diagnosis device for exhaust gas recirculation system
JPH10238391A (en) Fuel injection device for internal combustion engine
JP5287673B2 (en) Abnormal site diagnosis device
WO2024052953A1 (en) Electronic control device
JP2008309077A (en) Diagnostic system and information-acquiring system for fuel-injection valve
JP2002047983A (en) Abnormality diagnostic device for high pressure fuel supply system of internal combustion engine
JP2004156558A (en) Pressure accumulating fuel injection device
JP2007332816A (en) Fuel injection control device
US9719450B2 (en) Method and apparatus for diagnosing a fuel pressure sensor
US20080300771A1 (en) Irregular detection device and fuel injection system using the same
JP4529943B2 (en) Fuel injection control device for internal combustion engine
JP2008202593A (en) Fuel injection control device
JP4484604B2 (en) Engine fuel injection amount control method and engine operating state determination method using the same