WO2024051769A1 - 一种数据传输的方法和通信装置 - Google Patents

一种数据传输的方法和通信装置 Download PDF

Info

Publication number
WO2024051769A1
WO2024051769A1 PCT/CN2023/117417 CN2023117417W WO2024051769A1 WO 2024051769 A1 WO2024051769 A1 WO 2024051769A1 CN 2023117417 W CN2023117417 W CN 2023117417W WO 2024051769 A1 WO2024051769 A1 WO 2024051769A1
Authority
WO
WIPO (PCT)
Prior art keywords
spread spectrum
information
pusch
occupied
size
Prior art date
Application number
PCT/CN2023/117417
Other languages
English (en)
French (fr)
Inventor
韩成成
郭志恒
谢信乾
宣一荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024051769A1 publication Critical patent/WO2024051769A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of communications, and more specifically, to a data transmission method and a communications device.
  • uplink pathloss uplink pathloss
  • uplink interference uplink interference
  • the so-called limited uplink coverage refers to the user equipment (user equipment).
  • UE reaches the maximum transmit power and still cannot communicate with the network. Poor uplink coverage will affect the execution of UE services. For example, the number of UE call establishment failures will increase or the number of dropped calls will increase. For example, the UE's uplink voice quality will decrease.
  • Embodiments of the present application provide a data transmission method and communication device, which can improve the coverage capability of uplink transmission.
  • the first aspect provides a data transmission method, which can be executed by a terminal device, where the terminal device may refer to a chip or circuit configured in the terminal device, which is not limited in this application.
  • the following description takes execution by the terminal device as an example.
  • the method includes: receiving spectrum extension ratio indication information from a network device; determining, according to the spectrum extension ratio indication information, physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or PUSCH resources occupied by the non-spread spectrum; Uplink data is sent to the network device on the occupied PUSCH resources, and copied data of the uplink data is sent to the network device on the PUSCH resources occupied by the spread spectrum.
  • the network device can indicate the spectrum extension ratio indication information to the terminal device, and the terminal device can determine the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum according to the spectrum extension ratio indication information.
  • the uplink data can be transmitted on the PUSCH resources occupied by the non-spread spectrum, and the copied data of the uplink data can be transmitted on the PUSCH resources occupied by the spread spectrum.
  • the terminal equipment can use a larger transmission bandwidth for uplink transmission. , which reduces the peak to average power ratio (PAPR) of the waveform, has greater uplink transmit power, and thus can obtain a greater maximum tolerable power attenuation corresponding to the transmission rate target. Therefore, it can improve the uplink Transmission coverage capability.
  • PAPR peak to average power ratio
  • determining the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum according to the spectrum extension ratio indication information includes: according to the first aspect The first information, the second information and the spectrum extension ratio indication information determine the location and size of the PUSCH resources occupied by the spread spectrum. The first information is used to indicate the relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network equipment to the terminal equipment. Positional relationships include:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources;
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the method further includes: receiving first information and/or second information from the network device.
  • the spectrum spreading ratio indication information is used to indicate a ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the method further includes at least one of the following:
  • Power headroom which represents the difference between the maximum transmit power configured by the network device to the terminal device and the first power.
  • the first power includes the estimated uplink transmit power for transmitting uplink data and the uplink transmit power for transmitting duplicate data. estimated value.
  • the terminal equipment can adjust the uplink behavior according to the spectrum extension ratio indication information, thereby enabling the uplink coverage enhancement scheme of spectrum extension and frequency spectrum shaping to improve the coverage capability of uplink transmission.
  • determining the estimated value of the uplink transmit power for transmitting the uplink data includes: determining the estimated value of the uplink transmit power for transmitting the uplink data based on the size of the PUSCH resources occupied by the non-spread spectrum, or determining the estimated value of the uplink transmit power for transmitting the uplink data based on the total resources. Transmit power estimate, where the total resources are composed of PUSCH resources occupied by non-spread spectrum and PUSCH resources occupied by spread spectrum.
  • the method further includes: sending power headroom PH information to the network device, where the PH information is used to indicate the maximum transmit power and the first power configured by the network device to the terminal device.
  • the first power includes the estimated uplink transmit power for transmitting uplink data and the estimated uplink transmit power for transmitting duplicate data.
  • PH information can assist network equipment in adjusting uplink power and allocating uplink resources, thereby enabling network equipment to allocate more appropriate power and resources to terminal equipment, helping to improve uplink transmission coverage.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the method further includes: sending third information to the network device, the third information being used to indicate the power occupied by the filter of the terminal device in the transition band, the filter The power occupied in the transition zone is used by the network device to determine the size of the PUSCH transmission resources configured by the network device to the terminal device.
  • the third information can assist network equipment to allocate uplink resources more reasonably and help improve resource utilization.
  • the power occupied by the filter in the transition band is carried in the capability information of the terminal device.
  • the spectrum spreading ratio indication information is carried in the downlink control information DCI.
  • the method further includes: receiving fourth information from the network device, where the fourth information is used to indicate the origin of the uplink data on the PUSCH resources occupied by the non-spread spectrum. starting position; map the uplink data to the PUSCH resources occupied by the non-spread spectrum according to the fourth information.
  • the terminal device can perform resource mapping according to the instructions of the network device, which facilitates information synchronization between the terminal device and the network device, and also facilitates the network device to demodulate data.
  • a data transmission method is provided, which method can be executed by a network device, where the network device can refer to a chip or circuit configured in the network device, which is not limited in this application.
  • the following description takes execution by a network device as an example.
  • the method includes: sending spectrum extension ratio indication information to a terminal device, the spectrum extension ratio indication information being used to determine the size of physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum; in the non-spread spectrum Uplink data from the terminal device is received on the PUSCH resources occupied by the spectrum, and copied data of the uplink data is received on the PUSCH resources occupied by the spread spectrum.
  • the method further includes: sending first information and/or second information to the terminal device, where the first information, the second information and the spectrum spreading ratio indication information are used to The terminal equipment determines the location and size of the PUSCH resources occupied by the spread spectrum,
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network device to the terminal device.
  • the location relationship includes:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources;
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the spectrum spreading ratio indication information is used to indicate the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the method further includes: receiving power headroom PH information from the terminal device, where the PH information is used to indicate that the maximum transmit power configured by the network device to the terminal device is consistent with the first The difference between the powers, the first power includes the estimated uplink transmit power for transmitting uplink data and the estimated uplink transmit power for transmitting duplicate data.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the method further includes: receiving third information from the terminal device, the third information being used to indicate the power occupied by the filter of the terminal device in the transition band; according to The power occupied by the filter in the transition band determines the size of the PUSCH transmission resources configured for the terminal equipment.
  • the power occupied by the filter in the transition band is carried in the capability information of the terminal device.
  • the spectrum spreading ratio indication information is carried in downlink control information DCI.
  • the method further includes: sending fourth information to the terminal device, where the fourth information is used to indicate the start of the uplink data on the PUSCH resource occupied by the non-spread spectrum. Location.
  • a data transmission method is provided, which method can be executed by a terminal device, where the terminal device may refer to a chip or circuit configured in the terminal device, which is not limited in this application.
  • the following description takes execution by the terminal device as an example.
  • the method includes: receiving spectrum extension ratio indication information from a network device; determining, according to the spectrum extension ratio indication information, physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or PUSCH resources occupied by the non-spread spectrum; Part of the uplink data is sent on the occupied PUSCH resources, and the remaining data of the uplink data is sent on the PUSCH resources occupied by the spread spectrum. The transmission power of the remaining data meets the in-band transmission requirements.
  • the network device can indicate the spectrum extension ratio indication information to the terminal device, so that the terminal device can determine the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum according to the spectrum extension ratio indication information. , and then can transmit part of the uplink data on the PUSCH resources occupied by the non-spread spectrum, and transmit the remaining data of the uplink data on the PUSCH resources occupied by the spread spectrum, and the transmission power of the remaining data meets the in-band transmission requirements.
  • This method reduces the bandwidth occupied by the terminal device when sending uplink data.
  • the terminal device can use higher spectral efficiency for uplink transmission, thereby achieving a greater maximum tolerable power attenuation corresponding to the transmission rate target under the same bandwidth resource. , Therefore, the coverage capability of uplink transmission can be improved.
  • determining the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum according to the spectrum extension ratio indication information includes:
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network device to the terminal device.
  • the location relationship includes:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources.
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the method further includes: receiving first information and/or second information from the network device.
  • the spectrum spreading ratio indication information is used to indicate the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the method further includes at least one of the following:
  • the terminal equipment can adjust the uplink behavior according to the spectrum expansion ratio indication information, thereby enabling the uplink coverage enhancement scheme of frequency spectrum shaping and improving the coverage capability of uplink transmission.
  • determining the estimated value of the uplink transmit power for transmitting the partial data includes: determining the estimated value of the uplink transmit power for transmitting the partial data based on the size of the PUSCH resources occupied by the non-spread spectrum, or determining the estimated value of the uplink transmit power for transmitting the partial data based on the total resources. Transmit power estimate, where the total resources are composed of PUSCH resources occupied by non-spread spectrum and PUSCH resources occupied by spread spectrum.
  • the method further includes: sending power headroom PH information to the network device, where the PH information is used to indicate the maximum transmit power and the first power configured by the network device to the terminal device.
  • the first power includes the estimated uplink transmit power for transmitting part of the data and the estimated uplink transmit power for transmitting the remaining data.
  • PH information can assist network equipment in adjusting uplink power and allocating uplink resources, thereby enabling network equipment to allocate more appropriate power and resources to terminal equipment, helping to improve uplink transmission coverage.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the method further includes: sending third information to the network device, the third information being used to indicate the power occupied by the filter of the terminal device in the transition zone, the filter The power occupied in the transition zone is used by the network device to determine the size of the PUSCH transmission resources configured by the network device to the terminal device.
  • the third information can assist network equipment to allocate uplink resources more reasonably and help improve resource utilization.
  • the power occupied by the filter in the transition band is carried in the capability information of the terminal device.
  • the spectrum spreading ratio indication information is carried in the downlink control information DCI.
  • the method further includes: receiving fifth information from the network device, the fifth information being used to indicate the filter amplitude of the terminal device; adjusting according to the filter amplitude Transmit power for remaining data.
  • the terminal device can adjust the transmission power of the remaining data according to the filter amplitude indicated by the network device, so that the transmission power of the remaining data can meet the in-band transmission requirements.
  • the uplink data is modulated through PI/2 binary phase shift keying.
  • a data transmission method is provided, which method can be executed by a network device, where the network device can refer to a chip or circuit configured in the network device, which is not limited in this application.
  • the following description takes execution by a network device as an example.
  • the method includes: sending spectrum extension ratio indication information to a terminal device, the spectrum extension ratio indication information being used to determine the size of physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum; in the non-spread spectrum Part of the uplink data from the terminal equipment is received on the PUSCH resource occupied by the spectrum; the uplink data is determined based on this part of the data.
  • the method further includes: sending first information and/or second information to the terminal device, where the first information, the second information and the spectrum spreading ratio indication information are used to The terminal equipment determines the location and size of the PUSCH resources occupied by the spread spectrum,
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network device to the terminal device.
  • the location relationship includes:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources.
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • One resource is a resource located on one side of the PUSCH resources occupied by non-spread spectrum among the PUSCH resources occupied by the spread spectrum.
  • the spectrum spreading ratio indication information is used to indicate a ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the method further includes: receiving power headroom PH information from the terminal device, where the PH information is used to indicate that the maximum transmit power configured by the network device to the terminal device is consistent with the first The difference between the powers, the first power includes the estimated value of the uplink transmit power for transmitting part of the data and the estimated value of the uplink transmit power for transmitting the remaining data of the uplink data.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the method further includes: receiving third information from the terminal device, the third information being used to indicate the power occupied by the filter of the terminal device in the transition band; according to The power occupied by the filter in the transition band determines the size of the PUSCH transmission resources configured for the terminal equipment.
  • the power occupied by the filter in the transition band is carried in the capability information of the terminal device.
  • the spectrum spreading ratio indication information is carried in downlink control information DCI.
  • the method further includes: sending fifth information to the terminal device, the fifth information is used to indicate the filter amplitude of the terminal device, and the filter amplitude is used for the terminal device.
  • the device adjusts the transmission power of the remaining data in the uplink data.
  • the uplink data is modulated through PI/2 binary phase shift keying.
  • a communication device may be a terminal device, including: a transceiver unit, configured to receive spectrum extension ratio indication information from a network device; and a processing unit, configured to determine the spread spectrum according to the spectrum extension ratio indication information.
  • the occupied physical uplink shared channel PUSCH resources and/or the PUSCH resources occupied by the non-spread spectrum; the transceiver unit is also used to: send uplink data to the network device on the PUSCH resources occupied by the non-spread spectrum, and on the PUSCH resources occupied by the spread spectrum. Send the copied data of the uplink data to the network device on the PUSCH resource.
  • the processing unit is specifically configured to: determine the location and size of the PUSCH resources occupied by the spread spectrum according to the first information, the second information and the spectrum extension ratio indication information.
  • a piece of information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network equipment to the communication device.
  • the location relationship includes:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources;
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the transceiver unit is further configured to: receive the first information and/or the second information from the network device.
  • the spectrum spreading ratio indication information is used to indicate a ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the processing unit is further configured to perform at least one of the following:
  • the processing unit is specifically configured to: determine an estimated uplink transmit power for transmitting uplink data based on the size of the PUSCH resources occupied by the non-spread spectrum, or determine an estimated uplink transmit power for transmitting uplink data based on the total resources.
  • the transceiver unit is further configured to: send power headroom PH information to the network device, where the PH information is used to indicate that the maximum transmit power configured by the network device to the communication device is consistent with the first The difference between the powers, the first power includes the estimated uplink transmit power for transmitting uplink data and the estimated uplink transmit power for transmitting duplicate data.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the transceiver unit is also used to: send third information to the network device, the third information is used to indicate the power occupied by the filter of the communication device in the transition zone, filter The power occupied by the transmitter in the transition zone is used by the network device to determine the size of the PUSCH transmission resources configured by the network device to the communication device.
  • the power occupied by the filter in the transition band is carried in the capability information of the communication device.
  • the spectrum spreading ratio indication information is carried in the downlink control information DCI.
  • the transceiver unit is further configured to: receive fourth information from the network device, where the fourth information is used to indicate the uplink data on the PUSCH resources occupied by the non-spread spectrum.
  • the starting position; the processing unit is also configured to: map the uplink data to the PUSCH resources occupied by the non-spread spectrum according to the fourth information.
  • a sixth aspect provides a communication device.
  • the communication device may be a network device, including: a transceiver unit configured to send spectrum extension ratio indication information to a terminal device.
  • the spectrum extension ratio indication information is used to determine the physical uplink occupied by the spread spectrum.
  • the size of the shared channel PUSCH resources and/or the PUSCH resources occupied by the non-spread spectrum; the transceiver unit is also used to: receive uplink data from the terminal equipment on the PUSCH resources occupied by the non-spread spectrum, and on the PUSCH resources occupied by the spread spectrum Receive the replicated data of the upstream data.
  • the transceiver unit is further configured to: send the first information and/or the second information to the terminal device, and the first information, the second information and the spectrum spreading ratio indication information are used
  • the terminal equipment determines the location and size of the PUSCH resources occupied by the spread spectrum
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the communication device to the terminal equipment.
  • the location relationships include:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources;
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the spectrum spreading ratio indication information is used to indicate a ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the transceiver unit is further configured to: receive power headroom PH information from the terminal device, where the PH information is used to indicate that the maximum transmit power configured by the communication device to the terminal device is the same as the maximum transmit power configured by the communication device to the terminal device.
  • the difference between a power, the first power includes an estimated uplink transmit power for transmitting uplink data and an estimated uplink transmit power for transmitting duplicate data.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the transceiver unit is further configured to: receive third information from the terminal device, where the third information is used to indicate the power occupied by the filter of the terminal device in the transition band;
  • the communication device further includes: a processing unit configured to determine the size of the PUSCH transmission resources configured for the terminal equipment according to the power occupied by the filter in the transition band.
  • the power occupied by the filter in the transition band is carried in the capability information of the terminal device.
  • the spectrum spreading ratio indication information is carried in downlink control information DCI.
  • the transceiver unit is further configured to: send fourth information to the terminal device, where the fourth information is used to indicate the origin of the uplink data on the PUSCH resource occupied by the non-spread spectrum. starting position.
  • a communication device configured to be a terminal device, including: a transceiver unit, configured to receive spectrum extension ratio indication information from a network device; and a processing unit, configured to determine the spread spectrum according to the spectrum extension ratio indication information.
  • the occupied physical uplink shared channel PUSCH resources and/or the PUSCH resources occupied by the non-spread spectrum; the transceiver unit is also used to: send part of the uplink data on the PUSCH resources occupied by the non-spread spectrum, and on the PUSCH resources occupied by the spread spectrum.
  • the remaining data of the uplink data is sent on the PUSCH resource, and the transmission power of the remaining data meets the in-band transmission requirements.
  • the processing unit is specifically configured to: determine the location and size of the PUSCH resources occupied by the spread spectrum based on the first information, the second information and the spectrum extension ratio indication information,
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network equipment to the communication device.
  • the location relationships include:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources.
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the transceiver unit is further configured to: receive the first information and/or the second information from the network device.
  • the spectrum spreading ratio indication information is used to indicate a ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the processing unit is further configured to perform at least one of the following:
  • the processing unit is specifically configured to: determine the uplink transmit power estimate of the transmission part of the data based on the size of the PUSCH resources occupied by the non-spread spectrum, or determine the uplink transmit power estimate of the transmission part of the data based on the total resources.
  • the transceiver unit is further configured to: send power headroom PH information to the network device, where the PH information is used to indicate that the maximum transmit power configured by the network device to the communication device is consistent with the first The difference between the powers, the first power includes the estimated uplink transmit power for transmitting part of the data and the estimated uplink transmit power for transmitting the remaining data.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the transceiver unit is also used to: send third information to the network device, the third information is used to indicate the power occupied by the filter of the communication device in the transition zone, filter The power occupied by the transmitter in the transition zone is used by the network device to determine the size of the PUSCH transmission resources configured by the network device to the communication device.
  • the power occupied by the filter in the transition band is carried in the capability information of the communication device.
  • the spectrum spreading ratio indication information is carried in the downlink control information DCI.
  • the transceiver unit is further configured to: receive fifth information from the network device, where the fifth information is used to indicate the filter amplitude of the communication device; the processing unit is further configured to: : Adjust the transmit power of the remaining data according to the filter amplitude.
  • the uplink data is modulated through PI/2 binary phase shift keying.
  • the communication device may be a network device, including: a transceiver unit configured to send spectrum extension ratio indication information to a terminal device.
  • the spectrum extension ratio indication information is used to determine the physical uplink occupied by the spread spectrum.
  • the size of the shared channel PUSCH resources and/or the PUSCH resources occupied by the non-spread spectrum; the transceiver unit is also used to: receive part of the uplink data from the terminal equipment on the PUSCH resources occupied by the non-spread spectrum; the processing unit is used to Uplink data is determined based on partial data and symmetry.
  • the transceiver unit is further configured to: send the first information and/or the second information to the terminal device, and the first information, the second information and the spectrum extension ratio indication information are used
  • the terminal equipment determines the location and size of the PUSCH resources occupied by the spread spectrum
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the communication device to the terminal equipment.
  • the location relationships include:
  • the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources; or,
  • the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources.
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the spectrum spreading ratio indication information is used to indicate a ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the transceiver unit is further configured to: receive power headroom PH information from the terminal device, where the PH information is used to indicate that the maximum transmit power configured by the communication device to the terminal device is equal to the maximum transmit power configured by the communication device to the terminal device.
  • the difference between a power, the first power includes an estimated value of the uplink transmit power for transmitting part of the data and an estimated value of the uplink transmit power for transmitting the remaining data of the uplink data.
  • the PH information is carried in the media access control unit MAC CE.
  • the MAC CE is a power headroom reporting PHR MAC CE.
  • the transceiver unit is further configured to: receive third information from the terminal device, where the third information is used to indicate the power occupied by the filter of the terminal device in the transition band;
  • the processing unit is also configured to: determine the size of the PUSCH transmission resources configured for the terminal equipment according to the power occupied by the filter in the transition band.
  • the power occupied by the filter in the transition band is carried in the capability information of the terminal device.
  • the spectrum spreading ratio indication information is carried in downlink control information DCI.
  • the transceiver unit is further configured to: send fifth information to the terminal device, the fifth information is used to indicate the filter amplitude of the terminal device, and the filter amplitude is used to The terminal device adjusts the transmission power of the remaining data of the uplink data.
  • the uplink data is modulated through PI/2 binary phase shift keying.
  • a communication device including a processor.
  • the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to call and run the computer program stored in the memory, so that the communication device performs any of the first to fourth aspects.
  • the communication device may also include a transceiver and/or memory.
  • a chip including a processor, the processor is used to execute a computer program, the computer program is used to execute any one of the first to fourth aspects, or any possibility of these aspects. method in the implementation.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the computer instructions are run on a computer, as in any one of the first to fourth aspects, or methods in any possible implementation of these aspects are executed.
  • a computer program product includes computer program code.
  • the computer program product includes computer program code.
  • a thirteenth aspect provides a communication system, including the communication devices of the fifth and sixth aspects, or the communication devices of the seventh and eighth aspects.
  • Figure 1 is a schematic diagram of a communication system suitable for embodiments of the present application.
  • Figure 2 shows the input characteristic curves of the two power amplifiers.
  • Figure 3 shows a schematic flow diagram of DFT-s-OFDM.
  • Figure 4 is a schematic diagram of spectrum spreading.
  • Figure 5 is a schematic diagram of frequency domain spectrum shaping.
  • FIG. 6 is a schematic diagram of a data transmission method 200 provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of PUSCH resources provided by this embodiment of the present application.
  • FIG. 8 is an example of the data transmission method 200 provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of a PHR MAC CE in the standard.
  • Figure 10 is a schematic diagram of the MAC CE provided by the embodiment of the present application.
  • Figure 11 is a schematic diagram of the PHR MAC CE provided by the embodiment of the present application.
  • Figure 12 is another schematic diagram of MAC CE provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of a data transmission method 300 provided by an embodiment of the present application.
  • Figure 14 is an example of the data transmission method 300 provided by the embodiment of the present application.
  • Figure 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX fifth generation
  • 5G mobile communication system can be non-standalone (NSA) or independent (standalone, SA).
  • the technical solution provided by this application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), and device-to-device (D2D).
  • MTC machine type communication
  • LTE-M long term evolution-machine
  • D2D device-to-device
  • MTC machine type communication
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called vehicle to other devices (vehicle to X, V2X, X can represent anything).
  • the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication.
  • the terminal equipment may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • some examples of terminals can be: mobile phones, tablets, computers with wireless transceiver functions (such as laptops, handheld computers, etc.), mobile Internet devices (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical Terminals, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes (for example, televisions and other home appliances, smart boxes, game consoles), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs) ), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function. It needs to be used in conjunction with other devices such as smartphones, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be a terminal device in an Internet of things (IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-computer interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • NB narrowband
  • the terminal device can also be a vehicle or a complete vehicle, and communication can be achieved through the Internet of Vehicles, or it can be a component located in the vehicle (for example, placed or installed in the vehicle), that is, a vehicle-mounted terminal device , vehicle-mounted module or vehicle-mounted unit (on-board unit, OBU).
  • a vehicle-mounted terminal device for example, placed or installed in the vehicle
  • vehicle-mounted module for example, placed or installed in the vehicle
  • OBU on-board unit
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations. Its main functions include collecting data (some terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • the network device may be any device with wireless transceiver functions.
  • the equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) , base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BBU base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • WiFi wireless fidelity
  • AP wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • 5G such as NR
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the wireless link control (radio link control, RLC) layer, the media access control (medium access control, MAC) layer and the physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, macro eNB or macro gNB, etc.) , or it can belong to the base station corresponding to a small cell.
  • the small cell here can include: metro cell, micro cell, pico cell, femto cell, etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for the communication method according to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the network device 110 and the terminal device 120 may communicate through wireless links.
  • Each communication device, such as the network device 110 or the terminal device 120 can be configured with multiple antennas.
  • the configured plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals. Therefore, communication between various communication devices in the communication system, and between the network device 110 and the terminal device 120, can be accomplished through multi-antenna technology.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • Subcarrier In orthogonal frequency division multiplexing (OFDM) technology, frequency domain resources are divided into several sub-resources. Each sub-resource in the frequency domain can be called a sub-carrier. Subcarrier can also be understood as the smallest granularity of frequency domain resources.
  • OFDM orthogonal frequency division multiplexing
  • Subcarrier space In OFDM technology, the interval between the center positions or peak positions of two adjacent subcarriers in the frequency domain is called the subcarrier spacing.
  • the subcarrier spacing in the LTE system is 15kHz
  • the subcarrier spacing in the 5G system can be 15kHz, or 30kHz, or 60kHz, or 120kHz, etc.
  • Resource block (RB) N consecutive subcarriers in the frequency domain can be called a resource block or a physical resource block (PRB).
  • resource block N consecutive subcarriers in the frequency domain can be called a resource block or a physical resource block (PRB).
  • one resource block in the LTE system includes 12 subcarriers
  • one resource block in the 5G system also includes 12 subcarriers.
  • the number of subcarriers included in a resource block can also be other values.
  • one resource block includes 12 subcarriers as an example.
  • Time slot A time slot in the 5G system includes 14 OFDM symbols.
  • the time slot length corresponding to the 15kHz subcarrier spacing is 1ms, and the time slot length corresponding to the 30kHz subcarrier spacing is 0.5ms.
  • Subframe The duration of a subframe in the 5G system is 1ms.
  • OFDM symbol is referred to as symbol, which is the smallest time unit in the time domain in OFDM technology.
  • Power amplifier (power amplifier, PA): The power amplifier is used to amplify the low-power radio frequency signal generated by the modulation oscillation circuit to support the transmission of the radio frequency signal in the wireless channel.
  • the output power no longer increases with the increase of the input power.
  • the output power at this time is called the saturated output power of the power amplifier.
  • a low-capacity power amplifier has a low saturated output power and therefore cannot support high-power transmission, while a high-capacity terminal device has a high saturated output power and can support high-power transmission.
  • Figure 2 shows the input characteristic curves of the above two power amplifiers.
  • Cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) waveform The well-known OFDM is a multi-carrier waveform. In the time domain, N modulation symbols are transmitted simultaneously. Orthogonal frequency division multiple access (OFDMA) will overlap multiple orthogonal subcarriers in a narrow band. Although these subcarriers are orthogonal to each other, the superposition of these subcarriers in the time domain will produce peaks. Value average power ratio (peak to average power ratio, PAPR). The linear response range of electronic component amplifiers is limited, and high PAPR will cause nonlinear distortion of the signal.
  • OFDM Orthogonal frequency division multiple access
  • DFT-s-OFDM Discrete fourier transform spread orthogonal frequency division multiplexing
  • NR supports the DFT-s-OFDM waveform.
  • DFT-s-OFDM waveforms can effectively reduce the PAPR of signals, thereby improving coverage.
  • the physical layer processing flow of DFT-s-OFDM adds a discrete fourier transform (DFT) precoding process, which sequentially performs serial-parallel transformation on the data to become Parallel data is then subjected to DFT in sequence, and subsequent operations are the same as CP-OFDM.
  • DFT precoding makes DFT-s-OFDM have single carrier characteristics, so PAPR is low.
  • FIG. 3 shows a schematic flow diagram of DFT-s-OFDM.
  • Quadrature phase shift keying (QPSK) modulation uses four different phases to represent different information, so one QPSK modulation symbol can carry 2 bits of information.
  • the four phases of QPSK can usually be ⁇ 0, ⁇ /2, ⁇ , 3 ⁇ /2 ⁇ or ⁇ /4, 3 ⁇ /4, 5 ⁇ /4, 7 ⁇ /4 ⁇ .
  • the DFT-s-OFDM signal generation process includes:
  • Step 1 2M data bits ⁇ b(0), b(1),...,b(2M-1) ⁇ , after QPSK modulation, obtain M modulation symbols ⁇ s(0), s(1),... ,s(M-1) ⁇ .
  • Step 2 After M modulation symbols undergo M-point DFT, M frequency domain signals ⁇ X(0), X(1),...,X(M-1) ⁇ are obtained.
  • Step 3 Map M frequency domain signals to M subcarriers, and perform N-point inverse fast fourier transformation (IFFT) to obtain N time domain signals ⁇ x(0), x(1), ...,x(N-1) ⁇ .
  • N is generally determined by the system bandwidth and is larger than M.
  • the frequency domain signal can also be multiplied by the precoding matrix before subcarrier mapping.
  • Step 4 Add a cyclic prefix (CP) to the time domain signal and perform digital-to-analog conversion to obtain an analog signal, which is then sent through the antenna.
  • CP cyclic prefix
  • the coverage capability of communication links is defined as: the maximum tolerable power attenuation (in dB) when electromagnetic waves propagate from the transmitter to the receiver under the premise of ensuring the transmission rate target. Therefore, increasing the maximum tolerable power attenuation is equivalent to improving coverage capabilities.
  • General power improvement indicators include PAPR and cubic metric (CM). Their decrease indicates an increase in the operating point of the power amplifier, which means an increase in the maximum transmit power and therefore indicates an increase in coverage capability. Taking PAPR as an example, PAPR is defined as the ratio of the peak power of the signal to the average power, which can also be called the peak-to-average ratio.
  • Uplink power control In uplink transmission, uplink power control technology is used to achieve better user experience and coverage performance. For example, due to the different distances between the terminal equipment and the base station, the path loss is greatly different. The closer the terminal equipment is to the base station (central user), the smaller the path loss. The farther the terminal equipment is from the base station (edge user), the smaller the path loss. The bigger. Therefore, these terminal devices that are far away from the base station usually use a larger transmit power than the central user for uplink transmission to compensate for the path loss caused by long-distance transmission, so that these terminal devices can also obtain better transmission performance, that is, better Good transmission rate, so that edge users get a good user experience.
  • the above-mentioned mechanism that the transmit power of terminal equipment that is far away from the base station is different from that of terminal equipment that is closer to the base station is achieved through uplink power control technology.
  • the power used by the terminal equipment for uplink transmission has a restriction, that is, the transmission power of the terminal equipment cannot be higher than the maximum transmission power (maximum output power, MOP).
  • MOP maximum output power
  • the maximum transmit power of terminal equipment specified in the current NR standard is 23dBm.
  • uplink path loss Uplink PathLoss
  • Uplink Interference uplink interference
  • the so-called limited uplink coverage refers to the user equipment (User Equipment, UE) reaches the maximum transmit power and still cannot communicate with the network. Poor uplink coverage will affect the execution of UE services. For example, the number of UE call establishment failures will increase or the number of dropped calls will increase. For example, the UE's uplink voice quality will decrease.
  • One way to improve the coverage capability of uplink transmission is to reduce the PAPR of DFT-s-OFDM through spectrum extension (SE) and frequency-domain spectrum shaping (FDSS), thereby improving the uplink transmission Transmission coverage capability.
  • SE spectrum extension
  • FDSS frequency-domain spectrum shaping
  • Spectrum spreading refers to the cyclic expansion of frequency domain signals.
  • the frequency domain signal occupies M subcarriers, and the frequency domain signal is ⁇ X(0),X(1),...,X(M-1) ⁇ .
  • the frequency domain signal is cyclically expanded, for example, by E elements, where P elements are expanded to the left (forward) and E-P elements are expanded to the right (backward) to obtain a frequency domain signal containing M+E elements ⁇ X( M-P),X(M-P+1),...,X(M-1),X(0),X(1),...,X(M-1),X(0),X(1), ...,X(E-P-1) ⁇ .
  • the frequency domain signal before expansion is ⁇ X(0),X(1),X(2),X(3),X(4),X( 5),X(6),X(7) ⁇
  • the expanded frequency domain signal is ⁇ X(6),X(7),X(0),X(1),X(2),X(3 ),X(4),X(5),X(6),X(7),X(0),X(1) ⁇ , as shown in Figure 4.
  • the expanded frequency domain signal is mapped to the M+E subcarrier and sent.
  • Frequency domain spectrum shaping refers to window filtering of frequency domain signals.
  • the signal occupies M subcarriers
  • the frequency domain signal is ⁇ X(0),X(1),...,X(M-1) ⁇
  • the filter coefficient is ⁇ W(0) ),W(1),...,W(M-1) ⁇ .
  • Window filtering refers to multiplying the frequency domain signal and the filter coefficient bit by bit.
  • the filtered frequency domain signal is ⁇ X(0)W(0),X(1)W(1),...,X(M- 1)W(M-1) ⁇ , as shown in Figure 5.
  • the frequency domain signal is usually cyclically expanded first, and then multiplied by the filter coefficient bit by bit.
  • the signal occupies M subcarriers, and the frequency domain signal is ⁇ X(0),X(1),...,X(M-1) ⁇ .
  • cyclic expansion is performed to obtain the frequency domain signal ⁇ X(M-P),X(M-P+1),...,X(M-1),X(0),X(1),...,X(M-1), X(0)
  • the final frequency domain signal is then mapped to (M+E) subcarriers and sent.
  • SE and FDSS can be completed between step 2 and step 3 in Figure 3.
  • the network device needs to know the spectrum spreading method when demodulating in order to demodulate the data on the M subcarriers occupied by the original DFT-s-OFDM signal. Therefore, the network device needs to indicate to the terminal device how to use the allocated uplink resources, for example, whether the allocated uplink resources include resources used for spectrum spread copy data, and for example, the number of spectrum spread resources, etc.
  • the terminal equipment needs to perform spectrum expansion on part of the uplink resources, and all RBs on the expanded spectrum only carry duplicate data and cannot send independent modulation symbols, therefore, the uplink (UL) behavior of the terminal equipment will change.
  • the size of the data block sent by the terminal device in the uplink, the mapping relationship of the modulation symbols, and the amount of the uplink transmission power will all change, which will be different from the non-enhanced coverage scenario in which all uplink resources are used to carry independent modulation symbols.
  • the following is a brief introduction to the uplink behavior in non-enhanced coverage scenarios. It should be understood that the non-enhanced coverage scenario in this application refers to neither spectrum expansion nor spectrum spectrum expansion. plastic surgery.
  • N RE min(156,N' RE ) ⁇ n PRB (1)
  • N RE represents the size of the RE used to calculate the transport block size within a scheduling period
  • n PRB is the size of the RB used by the terminal to calculate the transport block size.
  • the value of n PRB is consistent with the network equipment.
  • the number of RBs of the uplink resources allocated to the terminal equipment is the same.
  • N RE can be used to determine the size of the transport block, in other words, n PRB is also a parameter used to determine the size of the transport block.
  • N' RE is the number of subcarriers used to transmit data in a physical resource block (PRB) in the frequency domain, that is, the number of REs.
  • N' RE can be expressed by OK, where, is the number of subcarriers included in one RB; The number of symbols allocated for uplink transmission within a scheduling duration (slot, time slot); It is the number of subcarriers (number of REs) used by each PRB to carry the demodulation reference signal (DMRS) within the scheduling duration, which includes the overhead of the DM-RS CDM group without data; It is the number of subcarriers occupied by the overhead configured by high-layer parameters in each PRB within the scheduling duration.
  • DMRS demodulation reference signal
  • a code After performing cyclic redundancy check (CRC) insertion, code block segmentation, inserting CRC for each code block, channel coding, and rate matching for a TB sent on a TTI, a code called The data code stream of codeword.
  • Each codeword corresponds to a TB, and the codeword can be regarded as a TB with error protection.
  • the codeword is scrambled and modulated to obtain a complex symbol (modulation symbol), and then layer mapping and VRB mapping are performed.
  • the modulation symbols obtained by encoding and modulating the data blocks sent in the uplink will be mapped to the VRB in turn.
  • the PUSCH transmit power of the terminal device at PUSCH transmission moment i is:
  • P PUSCH, b, f, c (i, j, q d , l) is called the PUSCH transmission power, or it refers to the actual value of the uplink transmission power of the terminal equipment transmitting PUSCH.
  • the calculation result can be understood as the estimated value of the uplink transmit power of the terminal device transmitting PUSCH.
  • the meaning of the letters in formula (2) is:
  • P CMAX,f,c (i) is the maximum transmit power configured by the network device to the terminal device (the configured UE maximum output power).
  • Network equipment usually configures a maximum transmit power value range for terminal devices, and terminal devices can take values within this value range. In NR, terminal equipment generally takes the highest transmit power, which is 23dBm.
  • P O_PUSCH,b,f,c (j) is the power level of the received signal expected by the network device
  • P O_PUSCH,b,f,c (j) is the parameter P O_NOMINAL_PUSCH,f,c (j)
  • P O_UE_PUSC The sum of Hb, f, c (j), where j ⁇ 0,1,...,J-1 ⁇ , is calculated by the terminal device.
  • P O_NOMINAL_PUSCH, f, c (j) are cell-level parameters, which are delivered to the terminal equipment in a system information block (SIB).
  • SIB system information block
  • P O_UE_PUSC, Hb, f, c (j) are user-level parameters, which are sent to the terminal device in the RRC message.
  • PDCCH Physical Downlink Control Channel
  • PL b, f, c (q d ) is the path loss estimate, which is calculated by the terminal device based on the downlink reference signal receiving power (RSRP). Specifically, the terminal device compares the RSRP received on the downlink channel with the downlink reference signal power broadcast by the network device, and filters to obtain an estimate of the path loss, which is PL b, f, c (q d ). The estimated survival time of path loss is one reporting period, and there is an error in the reporting threshold.
  • q d is the reference signal (RS) index (index), which is the subscript of the reference signal used to estimate path loss. It indicates which reference signal is used for path loss estimation.
  • the terminal device can determine it according to the signaling instructions. The reference signal needs to be used.
  • ⁇ b, f, c (j) is the path loss compensation factor.
  • ⁇ TF, b, f, c (i) is the power offset value of different modulation and coding scheme (MCS) formats relative to the reference MCS format, which can be calculated by the formula Sure.
  • C is the number of code blocks transferred
  • K r is the code block size
  • N RE is the number of resource elements
  • DMRS demodulation reference signal
  • the value of parameter K s is indicated by signaling delta MCS.
  • f b, f, c (i, l) are the adjustment amounts of the PUSCH transmit power of the terminal equipment, which are obtained by mapping the transmit power control (TPC) information in the PDCCH.
  • TPC transmit power control
  • ⁇ P rampuprequested,b,f,c is provided by the higher layer, corresponding to the total power ramp required by the higher layer from the first random access preamble to the last random access preamble of carrier f in serving cell c
  • ⁇ msg2,b , f, c are the values indicated by transmit power control (TPC) signaling, and the meanings of other parameters are the same as equation (2).
  • PHR is mainly used by terminal equipment to periodically report power headroom to network equipment, so that network equipment can adjust the transmit power of terminal equipment and allocate uplink resources to terminal equipment.
  • the power headroom refers to the difference between the estimated uplink transmit power for transmitting PUSCH and the maximum transmit power configured by the network device to the terminal device.
  • the difference between the estimated uplink transmit power of the terminal device when transmitting PUSCH and the maximum transmit power configured by the network device to the terminal device is:
  • the result of equation (3) is positive. If the maximum transmit power configured by the network device to the terminal device is less than the estimated value of the uplink transmit power of the terminal device transmitting PUSCH, The estimated value of the uplink transmit power, then the result of equation (3) is negative.
  • the meaning of the parameters in formula (3) is the same as that in formula (2).
  • n PRB is used to determine the transport block size
  • n PRB is used to determine the actual value of the uplink transmit power of the terminal equipment for transmitting PUSCH.
  • Both are the number of RBs of uplink resources allocated by the network equipment to the terminal equipment, that is, the size of the uplink transmission resources of the terminal equipment.
  • the uplink transmission resources of the terminal equipment include the physical uplink shared channel occupied by the spread spectrum. PUSCH resources and PUSCH resources occupied by non-spread spectrum, which will have an impact on the size of the resources used when the terminal equipment determines the uplink behavior. If the terminal device uses inappropriate resources to determine uplink behavior, uplink transmission will be affected. performance, affecting uplink coverage capabilities.
  • the present application provides a data transmission method and communication device.
  • the network equipment can indicate the spectrum extension ratio indication information to the terminal equipment, so that the terminal equipment can determine the physical uplink shared channel occupied by the spread spectrum based on the spectrum extension ratio indication information.
  • the PUSCH resources and/or the PUSCH resources occupied by the non-spread spectrum can then perform uplink transmission on the PUSCH resources occupied by the non-spread spectrum and the PUSCH resources occupied by the spread spectrum. In this way, the terminal equipment can obtain the corresponding transmission rate target.
  • the larger maximum tolerable power attenuation can improve the coverage capability of uplink transmission.
  • Figure 6 is a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • the method 200 shown in Figure 6 reference may be made to the descriptions in Figures 1 to 5 above.
  • S210 The network device sends spectrum extension ratio indication information to the terminal device.
  • the spectrum spreading ratio indication information is used to determine the PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum.
  • the spectrum extension ratio indication information may also be called resource extension indication information.
  • the spectrum extension ratio indication information is used to indicate a ratio, which may be called a resource size ratio, spectrum extension ratio, or the like.
  • the ratio can be understood as a determining factor or parameter for determining the PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum.
  • the terminal equipment can learn that the uplink transmission resources include PUSCH resources occupied by the spread spectrum and/or PUSCH resources occupied by the non-spread spectrum. The terminal equipment will distinguish the spread spectrum when transmitting data.
  • the occupied PUSCH resources and the PUSCH resources occupied by the non-spread spectrum can improve the coverage capability of uplink transmission.
  • this article will record the proportion indicated by the spectrum spreading ratio indication information as ⁇ , the size of the PUSCH resources occupied by the spread spectrum as S SE , and the size of the PUSCH resources occupied by the non-spread spectrum as S D .
  • the resource composed of the PUSCH resources occupied by the non-spread spectrum and the PUSCH resources occupied by the spread spectrum is called the total resource, and the size of the total resource is recorded as S T .
  • the size of the resource may refer to the number of REs or the number of RBs included in the resource.
  • the spectrum spreading ratio indication information is used to indicate the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the spectrum extension ratio indication information may directly indicate the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum, or may indirectly indicate the ratio, for example, the spectrum extension ratio indication information It is used to indicate the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the total resources.
  • the spectrum extension ratio indication information is used to indicate the ratio between the size of the PUSCH resources occupied by the non-spread spectrum and the size of the total resources. According to the ratio indicated by the spectrum spreading ratio indication information, the terminal device can determine the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the terminal equipment can directly use the ratio to determine the PUSCH resources occupied by the spread spectrum and/or The PUSCH resources occupied by the non-spread spectrum, in other words, the terminal equipment does not need to determine the ratio between the size of the PUSCH resources occupied by the spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • can be a ratio, for example, ⁇ is 0.25 or 25%.
  • can also be a ratio, for example, ⁇ is 1:4 or 1/4.
  • the spectrum spreading ratio indication information is carried in the downlink control information DCI.
  • the network device transmits the PDCCH to the terminal device, the network device sends spectrum spreading ratio indication information to the terminal device through the DCI in the PDCCH.
  • the field length of the spectrum spreading ratio indication information depends on the total number of values of ⁇ , that is, the number of possible values of ⁇ or the type of ⁇ . If the possible number of predefined ⁇ is M, the field length of the spectrum spreading ratio indication information is Q bits (bit), where Q is greater than The smallest integer of log 2 (M).
  • the possible number of ⁇ is 8, and the field length of the spectrum spreading ratio indication information is Table 1 to Table 2 show several situations of the value of ⁇ .
  • takes the value in the (0,1) interval, according to the interval value method.
  • the network equipment predefines the maximum value of spectrum extension (SE) for the terminal equipment, which is recorded as SE max .
  • SE spectrum extension
  • can take a value in the interval of (0, SE max ).
  • the ratio ⁇ indicated by the spectrum spreading ratio indication information may be a ratio relative to SE max .
  • the spectrum expansion ratio ⁇ is closely related to the FDSS implementation and MCS. Different spectrum expansion ratios ⁇ will provide different uplink coverage capabilities of the terminal equipment and will also affect the system bandwidth resource utilization. Therefore, network equipment can measure multiple factors (for example, terminal equipment capabilities, spectrum resource margin, terminal equipment uplink coverage requirements, etc.) to determine the spectrum expansion ratio of different terminal equipment.
  • the terminal device determines the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum according to the spectrum spreading ratio indication information.
  • S220 includes at least one of the following: determining the location and size of the PUSCH resources occupied by the spread spectrum according to the first information, the second information and the spectrum extension ratio indication information; or, according to the first information, the second information and the spectrum extension ratio
  • the indication information determines the location and size of the PUSCH resources occupied by the non-spread spectrum.
  • the first information is used to indicate the location relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network device to the terminal device.
  • the location relationship includes: the PUSCH resources occupied by the spread spectrum are located in the PUSCH resources configured by the network device to the terminal device. Inside the PUSCH transmission resources; or, the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources configured by the network equipment to the terminal equipment.
  • the first information can also be called spectrum expansion mode indication information. "The positional relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network device to the terminal device" can be understood as the spectrum expansion mode.
  • the PUSCH occupied by the spread spectrum can be understood as in-band extension, and "the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources configured by the network equipment to the terminal equipment” can be understood as out-of-band extension .
  • the first information may be used to indicate a spectrum extension method, which includes in-band extension and out-of-band extension.
  • the PUSCH transmission resources configured by the network device to the terminal device may be the total resources, the PUSCH resources occupied by the spread spectrum, part of the PUSCH resources occupied by the spread spectrum, or the resources occupied by the non-spread spectrum. PUSCH resources. If the PUSCH resources occupied by the spread spectrum are located in the PUSCH transmission resources configured by the network equipment to the terminal equipment, Internally, the PUSCH transmission resources configured by the network device to the terminal device are total resources. If the PUSCH resources occupied by the spread spectrum are located outside the PUSCH transmission resources configured by the network device to the terminal device, the PUSCH transmission resources configured by the network device to the terminal device may be PUSCH resources occupied by the spread spectrum or may be occupied by non-spread spectrum. The PUSCH resources may also be resources located on one side of the PUSCH resources occupied by the non-spread spectrum among the PUSCH resources occupied by the spread spectrum, that is, the first resource below.
  • the sum of the PUSCH resources occupied by the spread spectrum and the PUSCH resources occupied by the non-spread spectrum is a continuous resource in the frequency domain.
  • the second information is used to indicate the ratio between the size of the first resource and the size of the PUSCH resource occupied by the spread spectrum.
  • the first resource is the PUSCH resource occupied by the spread spectrum and is located at the PUSCH resource occupied by the non-spread spectrum. resources on one side.
  • the PUSCH resources occupied by the spread spectrum may be discontinuous in the frequency domain, that is, the PUSCH resources occupied by the spread spectrum are composed of two parts, and the two parts are respectively located on both sides of the PUSCH resources occupied by the non-spread spectrum.
  • the first resource refers to part of the PUSCH resources occupied by the spread spectrum.
  • the PUSCH resources occupied by the spread spectrum can also be continuous in the frequency domain, that is, the PUSCH resources occupied by the spread spectrum are composed of one part, that is, the PUSCH resources occupied by the spread spectrum are located on one side of the PUSCH resources occupied by the non-spread spectrum.
  • the first resource may refer to all the PUSCH resources occupied by the spread spectrum.
  • the side can be understood as the side with lower frequency or the side with higher frequency.
  • the “two sides” can be understood as the side with lower frequency and the side with higher frequency.
  • the location of the first resource can be pre-configured or specified in a protocol, which is not limited by this application.
  • this article refers to the proportion indicated by the second information as ⁇ 1 .
  • FIG. 7 is a schematic diagram of PUSCH resources provided by this embodiment of the present application.
  • the PUSCH resources occupied by non-spread spectrum are composed of SE_right and SE_left.
  • SE_right is the resource on the right side of the PUSCH resources occupied by non-spread spectrum among the PUSCH resources occupied by spread spectrum.
  • SE_left It is the resource on the left side of the PUSCH resources occupied by the non-spread spectrum among the PUSCH resources occupied by the spread spectrum.
  • the data (Data) part is the PUSCH resources occupied by the non-spread spectrum.
  • the function length(x) measures the bandwidth size of x. It can be characterized by the number of occupied RBs or the number of REs. Among them, the right side is the side with higher frequency, and the left side is the side with lower frequency.
  • the PUSCH resources occupied by the spread spectrum are located on the left and right sides of the PUSCH resources occupied by the non-spread spectrum.
  • length(SE_right) is 1 RB
  • length(SE_left) is 1 RB
  • length (Data) is 8 RBs
  • 1- ⁇ 1 0.5.
  • the PUSCH resources occupied by the spread spectrum are located on the left side of the PUSCH resources occupied by the non-spread spectrum.
  • length(SE_right) is 0 RBs
  • length(SE_left) is 2 RBs
  • length( Data) is 8 RBs
  • SE_left is taken as an example of the first resource.
  • the first resource may also be SE_right.
  • the PUSCH transmission resource configured by the network device to the terminal device may refer to the data (Data) part, the sum of SE_right and SE_left, or it may refer to the data (Data) part, or it may refer to SE_right or SE_left, It can also refer to SE_right+SE_left. specifically:
  • the terminal device can determine S SE and S D respectively according to ⁇ and S T , and according to ⁇ 1 and S SE can determine the size of SE_left and SE_right. Furthermore, the position of the data part, SE_left, and SE_right on the entire resource can be determined based on the size of each part and the location of the PUSCH transmission resource.
  • the terminal device can determine S SE respectively based on ⁇ and S D , and can determine the sizes of SE_left and SE_right based on ⁇ 1 and S SE . Further, according to the size of each part and the position of the data (Data) part, the positions of SE_left and SE_right can be determined.
  • the terminal device determines S SE according to ⁇ 1 , and can determine S D according to ⁇ and S SE . Further, according to the size of each part and SE_right Or the position of SE_left can determine the position of the data part.
  • the terminal device can determine S D respectively according to ⁇ and S SE , and can determine the sizes of SE_left and SE_right according to ⁇ 1 and S SE . Further, According to the size of each part and the position of SE_right+SE_left, the positions of SE_left, SE_right, and data parts can be determined.
  • the terminal device sends uplink data to the network device on the PUSCH resources occupied by the non-spread spectrum, and sends duplicate data of the uplink data to the network device on the PUSCH resources occupied by the spread spectrum.
  • the network device receives uplink data on the PUSCH resources occupied by the non-spread spectrum, and receives duplicate data of the uplink data on the PUSCH resources occupied by the spread spectrum.
  • the uplink data refers to the data corresponding to the transport block.
  • the data in the transport block undergoes modulation coding and DFT precoding to become the frequency domain symbols to be mapped, which is the uplink data.
  • the terminal equipment can map the uplink data to the non-spread spectrum
  • the occupied PUSCH resources are sent to the network device.
  • the terminal device can also map the copied data of the uplink data to the PUSCH resources occupied by the spread spectrum and send them to the network device.
  • the uplink data may be composed of multiple data packets, and the copied data refers to part or all of the multiple data packets that make up the uplink data.
  • the uplink data may also be called core data, and the replicated data may also be called extended data.
  • FIG. 8 is an example of the data transmission method 200 provided by the embodiment of the present application. As shown in Figure 8, the abscissa represents frequency.
  • the PUSCH resources occupied by non-spread spectrum are composed of SE_right and SE_left.
  • SE_right is the resource on the right side of the PUSCH resources occupied by non-spread spectrum among the PUSCH resources occupied by spread spectrum.
  • SE_left is a resource located on the left side of the PUSCH resources occupied by non-spread spectrum among the PUSCH resources occupied by the spread spectrum. Among them, the right side is the side with higher frequency, and the left side is the side with lower frequency.
  • the data part is the PUSCH resources occupied by the non-spread spectrum.
  • the PUSCH resources occupied by the spread spectrum are located on the left and right sides of the PUSCH resources occupied by the non-spread spectrum.
  • the upstream data is carried in the data part, and the copied data of the upstream data is carried in SE_right and SE_left.
  • the network device can receive uplink data and replicated data respectively in the PUSCH resources occupied by the non-spread spectrum and the PUSCH resources occupied by the spread spectrum.
  • the network device can indicate the spectrum extension ratio indication information to the terminal device, so that the terminal device can determine the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the physical uplink shared channel PUSCH resources occupied by the non-spread spectrum according to the spectrum extension ratio indication information.
  • the occupied PUSCH resources can then transmit uplink data on the PUSCH resources occupied by the non-spread spectrum, and transmit the duplicate data of the uplink data on the PUSCH resources occupied by the spread spectrum.
  • the transmission bandwidth is used for uplink transmission, which reduces the PAPR of the waveform and has greater uplink transmission power, thereby achieving a greater maximum tolerable power attenuation corresponding to the transmission rate target, thus improving the coverage capability of uplink transmission.
  • transmitting the replicated data of the upstream data twice can improve the reliability of the upstream transmission.
  • the method 200 also includes: S240, the terminal device determines the uplink behavior, specifically including determining at least one of the following: the size of the transmission block of the uplink data, the sequence length of the corresponding frequency domain symbol of the copied data, the length of the transmission block of the uplink data.
  • the estimated value of the uplink transmit power and the estimated value of the uplink transmit power for transmitting copied data are below.
  • the terminal equipment can determine the size of the transport block for transmitting uplink data based on the size of the PUSCH resources occupied by the non-spread spectrum.
  • the terminal device can determine N RE according to equation (1), and then determine the size of the transport block according to N RE .
  • the value of n PRB is the size of the resources occupied by the uplink data.
  • the size of the PUSCH resources occupied by the non-spread spectrum is the size of the PUSCH resources occupied by the non-spread spectrum.
  • the size of the transport block for transmitting uplink data is determined according to the size of the PUSCH resource occupied by the non-spread spectrum. Its main meaning is that when determining the size of the transport block for uplink data, the resource size n used is PRB is the size of PUSCH resources occupied by non-spread spectrum.
  • the process of determining the size of the transport block based on the N RE includes calculating the unquantized transport block size, calculating the quantized transport block size, etc. For specific processes and methods, please refer to the standard definition.
  • the sequence length of the corresponding frequency domain symbol of the copied data is the size of the PUSCH resource occupied by the spread spectrum.
  • the uplink power includes at least one of the estimated uplink transmit power for transmitting uplink data, the estimated uplink transmit power for transmitting duplicate data, the actual value of the uplink transmit power, the first power and the power margin.
  • the power margin The quantity represents the difference between the maximum transmit power configured by the network device to the terminal device and the first power.
  • the first power is the sum of the estimated uplink transmit power for transmitting uplink data and the estimated uplink transmit power for transmitting duplicate data.
  • the first power can also be called the uplink transmit power estimate.
  • the actual value of the uplink transmit power is the actual value of the total power for transmitting uplink data and transmitting copied data.
  • the terminal device can determine the uplink power in any of the following ways.
  • Method 1 Determine the estimated uplink transmit power for transmitting uplink data based on the size of the PUSCH resource occupied by the non-spread spectrum.
  • the terminal device may determine the estimated uplink transmit power for transmitting uplink data according to the following equation (4).
  • the calculation result represents the estimated value of the uplink transmit power for transmitting uplink data.
  • the value of is the size of the resources occupied by the uplink data, that is, the size of the PUSCH resources occupied by the non-spread spectrum.
  • the value of will affect the calculation results of ⁇ TF,b,f,c (i) and f b,f,c (i,l) in equation (4).
  • formula (2) For the meanings and values of other parameters in formula (4), please refer to formula (2).
  • the terminal device determines the uplink transmit power for transmitting uplink data.
  • the terminal device determines the uplink transmit power for transmitting uplink data.
  • the terminal device may also determine at least one of an estimated uplink transmit power for transmitting duplicate data, an actual value of uplink transmit power, and a power margin based on the estimated uplink transmit power for transmitting uplink data.
  • the terminal device can determine the estimated value of the uplink transmit power, the actual value of the uplink transmit power, and the power margin for transmitting the duplicate data according to equations (5) to (7).
  • ⁇ P represents the estimated value of the uplink transmit power for transmitting duplicate data
  • ⁇ 2 is the ratio between the size of the first resource and the size of the PUSCH resource occupied by the non-spread spectrum.
  • ⁇ 2 length(SE_left )/length(Data)
  • fdss(n) is the function value of the FDSS filter on the RE with index (index) n
  • n is the index of RE, increasing from left to right, where the RE includes the spread spectrum
  • P PUSCH,b,f,c (i,j,q d ,l) represents the actual value of the uplink transmit power of the terminal equipment transmitting PUSCH.
  • P CMAX,f,c (i) means the same as formula (2), is the calculation result of equation (4),
  • the sum of ⁇ P(i,j,q d ,l) is the first power, and PH type1,b,f,c (i,j,q d ,l) represents the power margin.
  • Method 2 Determine the first power according to the size of the PUSCH resources occupied by the non-spread spectrum.
  • the calculation result of represents the first power, in equation (8)
  • the value of is the size of the resources occupied by the uplink data, that is, the size of the PUSCH resources occupied by the non-spread spectrum.
  • the value of will affect the calculation results of ⁇ TF,b,f,c (i) and f b,f,c (i,l) in equation (8).
  • Equation (2) For the meanings and values of other parameters in Equation (8), please refer to Equation (2).
  • the difference between method two and method one is that in method two, the terminal device can The calculation result is used as the estimated value of the uplink transmit power.
  • the terminal device may also determine at least one of an estimated uplink transmit power for transmitting uplink data, an estimated uplink transmit power for transmitting duplicate data, an actual value of uplink transmit power, and a power margin based on the first power.
  • the terminal device can determine the estimated uplink transmit power value for transmitting uplink data, the estimated uplink transmit power value for transmitting duplicate data, the actual value of uplink transmit power and the power margin according to equations (9) to (11).
  • Equation (8) the difference between the first power and the estimated uplink transmit power for transmitting copied data, that is The result represents the estimated value of the uplink transmit power for transmitting uplink data.
  • Method 3 Determine the first power according to the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum.
  • the terminal device may determine the first power according to the following equation (12).
  • the calculation result of represents the first power, in equation (12)
  • the value of is the sum of the size of the resources occupied by the uplink data and the size of the resources occupied by the copied data, that is, the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum.
  • the value of will affect the calculation results of ⁇ TF,b,f,c (i) and f b,f,c (i,l) in equation (12).
  • Equation (2) For the meanings and values of other parameters in Equation (12), please refer to Equation (2).
  • the difference between method three and method one is that in method three, the terminal device can
  • the calculation result is used as the uplink transmit power estimate, and when the terminal device determines the uplink transmit power estimate, the resource size used may be the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum.
  • the PUSCH transmission resources configured by the network device to the terminal device are total resources, and the size of the total resources is N, then when the terminal device determines the first power, in Equation (12) The value of is N.
  • the terminal device may also determine at least one of an estimated uplink transmit power value for transmitting uplink data, an estimated uplink transmit power value for transmitting duplicate data, an actual value of uplink transmit power, and a power margin based on the first power.
  • the terminal device can determine the estimated uplink transmit power value for transmitting uplink data, the estimated uplink transmit power value for transmitting duplicate data, the actual value of uplink transmit power and the power margin according to Equations (13) to Equation (15).
  • Equation (12) the difference between the first power and the estimated uplink transmission power for transmitting copied data, that is:
  • the result represents the estimated value of the uplink transmit power for transmitting uplink data.
  • Method 4 Determine the estimated uplink transmit power for transmitting uplink data based on the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum.
  • the terminal device may determine the estimated uplink transmit power for transmitting uplink data according to the following equation (16).
  • the calculation result represents the estimated value of the uplink transmit power for transmitting uplink data, in Equation (16)
  • the value of is the sum of the size of the resources occupied by the uplink data and the size of the resources occupied by the copied data, that is, the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum.
  • the value of will affect the calculation results of ⁇ TF,b,f,c (i) and f b,f,c (i,l) in equation (16).
  • Equation (2) For the meanings and values of other parameters in Equation (16), please refer to Equation (2).
  • Method 4 when the terminal equipment determines the uplink transmit power estimate, the size of the resources used can be the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum. The sum of the sizes.
  • the terminal device determines the uplink transmit power estimate for transmitting uplink data, in Equation (12) The value of is N.
  • the terminal equipment determines the uplink transmission of the uplink data.
  • the power estimate value is used, in equation (16) The value of is N ⁇ (1+ ⁇ ).
  • the terminal device may also determine at least one of an estimated uplink transmit power for transmitting duplicate data, an actual value of uplink transmit power, and a power margin based on the estimated uplink transmit power for transmitting uplink data.
  • the terminal device can determine the estimated value of the uplink transmit power, the actual value of the uplink transmit power, and the power margin for transmitting the duplicate data according to equations (17) to (19).
  • c (i, j, q d , l) is the same as method 1.
  • the value of is the same as in equation (16), which is the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the spread spectrum. is the calculation result of equation (16),
  • the sum of ⁇ P(i,j, qd ,l) is the first power.
  • ⁇ 2 can be a default value.
  • the protocol can define the relationship between ⁇ 2 and ⁇ 1 or ⁇ .
  • the network device and the terminal device can interact through information.
  • the value of alignment ⁇ 2 is not limited in this application. Two examples of values for ⁇ 2 are given below.
  • ⁇ 2 ⁇ /2.
  • the center point of the filter is located at the center of the total resource.
  • the network device will also default to the center point of the pre-spread DFT symbol sequence being located at the center of the total resource. Therefore, the center point of the filter will be taken out if it is located in a non-spreading state.
  • the sequence on the PUSCH resource occupied by the spread spectrum is demodulated. If the network device adopts the maximum ratio combining (MRC) method, the network device can take out the symbols on the total resources and combine the corresponding symbols in the MRC method.
  • MRC maximum ratio combining
  • ⁇ 2 ⁇ 1 , in this implementation the center point of the filter is not located in the center of the total resource.
  • the method 200 also includes: S250, the terminal device sends power headroom (PH) information to the network device, where the PH information is used to indicate the maximum transmit power and the first power configured by the network device to the terminal device. the difference between.
  • PH power headroom
  • PH information is indicated by a field.
  • the terminal device can use the remaining power in the maximum transmit power configured by the network device to the terminal device, excluding the power used to transmit uplink data and transmit copy data, as a power margin, and report it to the network device so that the network device can allocate resources and Adjust the transmit power of the terminal device.
  • the power headroom may be the calculation result of the power headroom PH type1, b, f, c (i, j, q d , l) in any one of the above-mentioned methods 1 to 4.
  • network equipment can directly obtain the power headroom of terminal equipment, which is more concise and efficient.
  • the PH information can be carried in the media access control element (MAC control element, MAC CE).
  • the MCA CE can be a power headroom report (PHR) MAC CE or other MAC CE, which is not limited in this application.
  • PHR power headroom report
  • PH information is carried in the PHR MAC CE.
  • FIG 9 is a schematic diagram of the PHR MAC CE in the 3rd generation partnership project (3GPP) standard TS 38.321.
  • the length of the PHR MAC CE is 2 bytes, including P field, R field, PH field, MPE field and PCMAX , f, c field.
  • the P field occupies the first bit of the first byte and is used to indicate information about power backoff caused by power management.
  • the R field occupies the second bit of the first byte, which is a reserved field and is set to 0.
  • the PH field occupies bits 3 to 8 of the first byte and is used to indicate the level of the power headroom. In a non-enhanced coverage scenario, the power headroom can be the calculation result of equation (3).
  • the MPE field occupies bits 1 to 2 of the second byte and is used to indicate that the permissible exposure (MPE) requirements.
  • the PCMAX,f,c field occupies bits 3 to 8 of the second byte and indicates the PCMAX ,f,c(i) used by the terminal device to calculate the power headroom.
  • the MPE field can also be replaced by an R field, which is a reserved field.
  • the power headroom in the PH field may be the difference between the maximum transmit power configured by the network device to the terminal device and the first power, that is, equation (7), equation (11), equation (15) ) or the calculation result of equation (19).
  • the terminal device can reuse the PH field when reporting the power headroom, which has better compatibility.
  • PH information is carried in the newly defined MAC CE.
  • FIG 10 is a schematic diagram of the MAC CE provided by the embodiment of the present application.
  • the MAC CE includes 1 byte.
  • the 1st to 2nd bits of the byte can be reserved fields.
  • the 3rd to 8th bits of the byte can be the PH field.
  • the PH field carries the power headroom level.
  • the power headroom is the difference between the maximum transmit power configured by the network device to the terminal device and the first power, that is, the calculation result of Equation (7), Equation (11), Equation (15) or Equation (19).
  • the terminal device may also indicate to the network device an estimated value of the power used to transmit the copied data, that is, the estimated value ⁇ P of the uplink transmission power used to transmit the copied data.
  • the estimated value of the power used to transmit the copied data can be carried in the MAC CE.
  • the MCA CE can be a PHR MAC CE or other MAC CE, which is not limited in this application.
  • ⁇ P is carried in PHR MAC CE.
  • FIG 11 is a schematic diagram of the PHR MAC CE provided by the embodiment of the present application.
  • the MAC CE includes 3 bytes, including R field, PH field, PCMAX , f, c field and ⁇ P field. Among them, the meanings of the R field and PCMAX , f, and c fields are the same as in Figure 9.
  • the ⁇ P field carries the estimated value of the uplink transmit power for transmitting replicated data.
  • the PH field may indicate the power headroom level, or may indicate the difference between the maximum transmit power configured by the network device to the terminal device and the power for transmitting uplink data.
  • the terminal device can directly indicate the power headroom level to the network device through the PH field, or the difference between the maximum transmit power configured by the network device to the terminal device and the estimated uplink transmit power for transmitting uplink data ( Called value #1), and reports ⁇ P to the network device. Further, the network device can determine the power headroom based on the difference between value #1 and ⁇ P.
  • ⁇ P is carried in the newly defined MAC CE.
  • Figure 12 is a schematic diagram of the MAC CE provided by the embodiment of the present application.
  • the MAC CE includes 1 byte, the 1st to 2nd bits of the byte can be reserved fields, and the 3rd to 8th bits of the byte can be the ⁇ P field, where the ⁇ P field carries the transmission copy data Uplink transmit power estimate.
  • the estimated uplink transmission power ⁇ P for transmitting duplicate data can be replaced by the power level.
  • ⁇ P can be reported in proportion to PCMAX , f, c(i).
  • ⁇ P can be reported in proportion to the first P CMAX , f, c(i).
  • ⁇ P can be reported as a proportion of the actual value of the uplink transmit power P PUSCH,b,f,c (i,j,q d ,l).
  • ⁇ P can be reported as a relative proportion of Reporting in the form of a ratio of preset power values is sufficient as long as the network equipment and terminal equipment can be aligned, and is not limited by this application.
  • the ⁇ P field in Figure 11 and Figure 12 can refer to the power level.
  • the setting form of this power level can refer to Table 4.
  • the method 200 also includes: S260, the network device sends fourth information to the terminal device.
  • the terminal device receives the fourth information, and the fourth information is used to indicate that the uplink data is on the PUSCH resource occupied by the non-spread spectrum. starting position.
  • the fourth information can be used to indicate the starting position of the uplink data, or to indicate the starting position of the uplink data on the resources used for this transmission, so that the terminal device can transmit the uplink data according to the instructions of the network device.
  • the network device may indicate to the terminal device which RE the first symbol of the uplink data is mapped to in the PUSCH resources occupied by the non-spread spectrum, or may indicate the first RE in the PUSCH resources occupied by the non-spread spectrum. Which symbol of the uplink data is mapped on each RE?
  • the terminal device performs VRB mapping, it can perform mapping according to the instructions of the network device. This helps terminal equipment and network equipment, and also facilitates network equipment demodulation.
  • the mapping relationship between the uplink data and the PUSCH resources occupied by the non-spread spectrum can also be predefined.
  • the protocol stipulates that the first symbol of the uplink data is mapped to the first symbol of the PUSCH resources occupied by the non-spread spectrum. On a RE.
  • the terminal device can perform VRB mapping using Equation (20).
  • S is the frequency domain symbol sequence obtained after DFT precoding of the modulation symbols
  • is the spectrum spreading ratio.
  • ⁇ 3 is the S sequence The ratio of the number of REs before the RE occupied by the first symbol to the number of REs of the PUSCH resources occupied by the non-spread spectrum, which makes the th
  • the first symbol of the DFT sequence starts to be mapped on each RE, and then the frequency domain symbols are cyclically mapped on the remaining REs.
  • ⁇ 3 can take any value such that It is an integer value, as long as the upstream data and replicated data are mapped to the corresponding resources. Indicates the size of PUSCH resources occupied by non-spread spectrum, represented by the number of RBs. It includes 12 REs. Represents total resources. Equation (20) indicates that the modulation symbols carried on the REs within the passband of the FDSS filter are mapped sequentially.
  • the following example illustrates the mapping method of terminal devices.
  • the terminal equipment can map the modulation symbols to the VRB corresponding to the resources used in this transmission as follows:
  • the terminal equipment can map the modulation symbols to the VRB corresponding to the resources used in this transmission as follows:
  • VRB(k) S(mod((1- ⁇ 3 ) ⁇ N ⁇ 12+k,N ⁇ 12)),k ⁇ 1,2,...,N ⁇ 12 ⁇ (1+ ⁇ ) ⁇ ( twenty two)
  • the method 200 further includes: S201, the network device sends the first information and/or the second information to the terminal device, and accordingly, the terminal device receives the first information and/or the second information.
  • the first information may be 1 bit, and its two values are respectively used to indicate: the PUSCH resources occupied by the spread spectrum are located within the PUSCH transmission resources configured by the network device to the terminal device, and the PUSCH resources occupied by the spread spectrum are located within the network The device configures the PUSCH transmission resources to the outside of the terminal device.
  • the positional relationship between the PUSCH resources occupied by the spread spectrum and the PUSCH transmission resources configured by the network device to the terminal device can also be predefined in the protocol. That is, the network device does not need to send the first information to the terminal device.
  • the field length of the second information depends on the desired number of ⁇ 1 .
  • the possible number of ⁇ 1 is 8, and the field length of the second information is 3 bits, as shown in Table 3.
  • the first information and/or the second information may be carried in DCI, that is, S201 and S210 may be executed simultaneously.
  • the method 200 also includes: S202, the terminal device sends third information to the network device.
  • the network device receives the third information.
  • the third information is used to indicate the power occupied by the filter of the terminal equipment in the transition band, and the power occupied by the filter in the transition band.
  • the rate is used by the network device to determine the size of the PUSCH transmission resources configured by the network device to the terminal device.
  • a filter is a frequency-selective device that allows specific frequency components in a signal to pass while greatly attenuating other frequency components.
  • the frequency range that the filter allows to pass the signal becomes the passband of the filter, and the frequency range that the filter does not allow the signal to pass becomes the stopband of the filter.
  • the frequency range between the passband and the stopband is called the transition band.
  • the terminal equipment can send the power occupied by its filter in the transition band to the network equipment. Further, the network equipment can adjust and determine the size of the PUSCH transmission resources configured to the terminal equipment based on the power occupied by the transition band.
  • the network device can more accurately grasp the power of the terminal device, which can be used by the network device to perform resource allocation calculations, thereby enabling the terminal device to more accurately allocate resources to the terminal device.
  • the method for calculating resource allocation by network equipment can refer to existing or newly developed technologies in the future, and is not limited by this application.
  • the third information may be in a direct indication manner.
  • the third information is the power occupied by the filter in the transition band.
  • the third information can also be in the form of indirect indication.
  • the third information is the ratio of the power occupied by the filter in the transition zone to the preset power value.
  • the network device can determine the power of the filter based on the third information and the preset power value.
  • the preset power value may be configured by the network device to the terminal device in advance, or may be defined by a protocol, which is not limited in this application.
  • Table 4 shows an indication method of the third information.
  • the third information is the ratio ⁇ between the power occupied by the filter in the transition band and the preset power value. ⁇ can take a value in the (0,1) interval, and the third information can be 3 bits.
  • the power occupied by the filter in the transition band can be carried in the capability information of the terminal device.
  • the terminal device can report the power occupied by the transition zone in the process of sending capability information to the network device.
  • the network device sends UECapabilityEnairy to the terminal device, requesting the terminal device to report the power occupied by its filter in the transition band.
  • the terminal device can add the spectrum extension parameter (SE) to the capability information (UECapabilityInformantion). -Parameters), where the spectrum spread parameters include the power occupied by the filter of the terminal equipment in the transition band.
  • SE spectrum extension parameter
  • UECapabilityInformantion capability information
  • Method 200 provides a specific implementation method for terminal equipment and network equipment to use spectrum spreading and frequency domain spectrum shaping technologies to reduce PAPR.
  • the following will provide another way to improve the coverage capability of uplink transmission in conjunction with Figure 13 and Figure 14. In this method, the coverage capability of uplink transmission will be improved by improving spectrum efficiency.
  • Figure 13 is another schematic diagram of a data transmission method provided by an embodiment of the present application. For part of the method 300 shown in Figure 13, reference can be made to the description in Figure 6 above.
  • S310 The network device sends spectrum extension ratio indication information to the terminal device.
  • the terminal device determines the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the PUSCH resources occupied by the non-spread spectrum according to the spectrum spreading ratio indication information.
  • the terminal device sends part of the uplink data to the network device on the PUSCH resources occupied by the non-spread spectrum, and sends the remaining data of the uplink data to the network device on the PUSCH resources occupied by the spread spectrum.
  • the transmission power of the remaining data meets the band requirements. Internal launch requirements.
  • the network device receives part of the uplink data on the PUSCH resources occupied by the non-spread spectrum.
  • the uplink data refers to the data corresponding to the transport block.
  • the data in the transport block undergoes modulation coding and DFT precoding to become the data to be processed.
  • the mapped frequency domain symbols are the uplink data.
  • the terminal equipment can divide the uplink data into two parts according to the ratio indicated by the spectrum spreading ratio indication information, part of which is mapped on the PUSCH resources occupied by the non-spread spectrum and sent, and the data in the uplink data other than the aforementioned part of the data Called residual data, the remaining data is mapped on the PUSCH resources occupied by the spread spectrum and sent, and when sending the remaining data, the transmission power meets the in-band transmission requirements.
  • the protocol defines In-band emissions (IBE) requirements.
  • IBE In-band emissions refer to the ratio of the UE output power in non-allocated RBs to the UE output power in allocated RBs.
  • the specific meaning of the in-band emission requirements is Please refer to 6.4.2.3 of protocol 38101-2.
  • the resources occupied by the terminal equipment in the air only include the PUSCH resources occupied by the spread spectrum, but do not include the PUSCH resources occupied by the spread spectrum.
  • the terminal device can learn the PUSCH resources occupied by the spread spectrum according to S320, and compare the PUSCH resources occupied by the spread spectrum and the non-spread spectrum.
  • the PUSCH resources occupied by the spread spectrum are all mapped to uplink data.
  • the resources occupied by the terminal equipment in the air only include extended
  • the PUSCH resources occupied by the spectrum do not include the PUSCH resources occupied by the spread spectrum.
  • the uplink data may be composed of multiple data packets, and partial data and remaining data constitute the entire data packet of the uplink data.
  • the remaining data since the network device will not receive the remaining data, the remaining data may also be called filtered data, and part of the data may also be called retained data.
  • the uplink data may be data modulated by PI/2 binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • the data modulated by the PI/2BPSK modulation method has symmetry, so-called "symmetry". It refers to the symmetry of the spectrum of the PI/2BPSK modulation symbol sequence.
  • the specific symmetry is as follows: for an M-long frequency domain sequence, it can be divided into four sequences from the first frequency domain symbol to the last frequency domain symbol. , respectively recorded as the first 1/4 sequence, the second 1/4 sequence, the third 1/4 sequence and the fourth 1/4 sequence. Among them, there is symmetry between the first 1/4 sequence and the second 1/4 sequence, and there is symmetry between the third 1/4 sequence and the fourth 1/4 sequence. Therefore, network devices can determine upstream data based on partial data and symmetry.
  • the symbols on the spread spectrum can be recovered, so that the frequency domain sequences on the spread spectrum and the non-spread spectrum constitute a complete PI/2BPSK modulation.
  • the M-long frequency domain sequence obtained by DFT of the symbol sequence, the subsequent demodulation operation is the same as the non-spread PI/2BPSK+DFT-S-OFDM demodulation method.
  • Figure 14 is an example of the data transmission method 300 provided by the embodiment of the present application. As shown in Figure 14, the abscissa represents frequency.
  • the PUSCH resources occupied by non-spread spectrum are composed of DE_right and DE_left.
  • DE_right is the resource on the right side of the PUSCH resources occupied by non-spread spectrum among the PUSCH resources occupied by spread spectrum.
  • DE_left is a resource located on the left side of the PUSCH resources occupied by non-spread spectrum among the PUSCH resources occupied by the spread spectrum. Among them, the right side is the side with higher frequency, and the left side is the side with lower frequency.
  • the data part is the PUSCH resources occupied by the non-spread spectrum. Among them, DE means delete.
  • the PUSCH resources occupied by the spread spectrum are located on the left and right sides of the PUSCH resources occupied by the non-spread spectrum.
  • Part of the uplink data is carried in the data part, and the remaining data of the uplink data is carried in DE_right and DE_left.
  • the terminal device sends the remaining data, it adjusts the transmission power so that the transmission power of the remaining data meets the in-band transmission requirements.
  • the filter maintains at least a ratio of approximately constant amplitude (normalized amplitude is 1) from the center to both ends.
  • the network device can receive part of the data in the PUSCH resources occupied by the non-spread spectrum, but cannot receive the remaining data in the PUSCH resources occupied by the spread spectrum.
  • the network device can obtain uplink data based on symmetry and demodulation of the received partial data.
  • the filter maintains at least an approximately constant amplitude (normalized amplitude of 1) from the center to both ends in proportion to the expanded bandwidth and the non-expanded bandwidth. More than half of the sum of the extended bandwidth, that is to say, the proportion of the passband of the filter occupies at least more than half of the sum of the extended bandwidth and the non-expanded bandwidth.
  • the reason is: using symmetry to recover the complete frequency domain sequence requires at least a second The first 1/4 sequence and the third 1/4 sequence, this requires that the reception quality of at least the middle 1/2 sequence should be high, so the reception power should be high.
  • the filter coefficient By keeping the filter coefficient at an approximately constant value of 1, it can be The data sent has higher power.
  • the network device can indicate the spectrum extension ratio indication information to the terminal device, so that the terminal device can determine the physical uplink shared channel PUSCH resources occupied by the spread spectrum and/or the physical uplink shared channel PUSCH resources occupied by the non-spread spectrum according to the spectrum extension ratio indication information.
  • the occupied PUSCH resources can then transmit part of the uplink data on the PUSCH resources occupied by the non-spread spectrum, and transmit the remaining data of the uplink data on the PUSCH resources occupied by the spread spectrum, and the transmission power of the remaining data meets the in-band Transmission requirements.
  • the bandwidth occupied by the terminal device for sending uplink data is reduced.
  • the terminal device can use higher spectrum efficiency for uplink transmission, thereby obtaining a larger maximum corresponding transmission rate target under the same bandwidth resource. Power attenuation can be tolerated, therefore, the coverage capability of uplink transmission can be improved.
  • the network device can allocate the PUSCH resources occupied by the spread spectrum to other terminal devices, thereby improving resource utilization.
  • the method 200 also includes: S340, the terminal device determines at least one of the following: the size of the transmission block of the uplink data, the sequence length of the corresponding frequency domain symbols of the remaining data, and the uplink transmission power estimate of the transmission part of the uplink data. , the estimated value of the uplink transmit power for transmitting the remaining data. Details below.
  • the terminal equipment can determine the size of the transport block for transmitting uplink data based on the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the terminal device can determine N RE according to equation (1), and then determine the size of the transmission block for transmitting uplink data according to N RE .
  • the value of n PRB is the size of the resources occupied by the uplink data. In this embodiment, it is the sum of the size of the PUSCH resources occupied by the non-spread spectrum and the size of the PUSCH resources occupied by the non-spread spectrum.
  • the PUSCH transmission resources configured by the network device to the terminal device are total resources, and the size of the total resources is N, then when the terminal device determines the size of the transport block for transmitting uplink data, the value of n PRB in equation (1) is N.
  • the PUSCH transmission resources configured by the network device to the terminal device are PUSCH resources occupied by the non-spread spectrum, and the size of the PUSCH resources occupied by the non-spread spectrum is N, then the size of the PUSCH resources occupied by the non-spread spectrum and The total size of PUSCH resources occupied by non-spectrum extension is N(1+ ⁇ ), then when the terminal equipment determines the size of the transport block for transmitting uplink data, the value of n PRB in equation (1) is N(1+ ⁇ ).
  • the size of the transport block for transmitting uplink data is determined according to the size of the total resources. Its main meaning is that when determining the size of the transport block for uplink data, the resource size n PRB used is the size of the total resources. .
  • the process of determining the size of the transport block based on the N RE includes calculating the unquantized transport block size, calculating the quantized transport block size, etc. For specific processes and methods, please refer to the standard definition.
  • the sequence length of the corresponding frequency domain symbols of the remaining data is the size of the PUSCH resource occupied by the spread spectrum.
  • the uplink power includes at least one of the estimated uplink transmit power for transmitting part of the data, the estimated uplink transmit power for transmitting the remaining data, the actual value of the uplink transmit power, the first power and the power margin.
  • the power margin is The quantity represents the difference between the maximum transmit power configured by the network device to the terminal device and the first power.
  • the first power is the sum of the estimated uplink transmit power for transmitting part of the data and the estimated uplink transmit power for transmitting the remaining data.
  • the first power can also be called the estimated value of the uplink transmit power, and the actual value of the uplink transmit power represents the actual value of the total power for transmitting uplink data and transmitting copied data.
  • the terminal device may determine the uplink power in any of the following ways.
  • Method 1 Determine the estimated uplink transmit power for transmitting part of the uplink data based on the size of the PUSCH resource occupied by the non-spread spectrum.
  • the terminal device can determine the uplink transmit power estimate for transmitting part of the uplink data according to equation (4).
  • the calculation result represents the estimated value of the uplink transmit power of the transmitted part of the data, in Equation (4)
  • the value of is the size of the resources occupied by part of the data, that is, the size of the PUSCH resources occupied by the non-spread spectrum.
  • the value of will affect the calculation results of ⁇ TF,b,f,c (i) and f b,f,c (i,l) in equation (4).
  • formula (2) For the meanings and values of other parameters in formula (4), please refer to formula (2).
  • the terminal device determines the uplink transmit power for transmitting part of the data.
  • the terminal device determines the uplink transmit power for transmitting part of the data.
  • the terminal device may also determine at least one of the estimated uplink transmit power for transmitting the remaining data, the actual value of the uplink transmit power, and the power margin based on the estimated uplink transmit power for transmitting part of the data.
  • the terminal device can determine the estimated value of the uplink transmit power, the actual value of the uplink transmit power, and the power margin for transmitting the duplicate data according to equations (5) to (7).
  • ⁇ P represents the estimated value of the uplink transmit power for transmitting the remaining data
  • ⁇ 2 ⁇ /2
  • fdss(n) is the function value of the FDSS filter on the RE with index n
  • n is the index of the RE
  • the RE here includes the sum of REs of PUSCH resources occupied by spread spectrum and PUSCH resources occupied by non-spread spectrum
  • the value of is the same as in equation (4), which is the size of the PUSCH resource occupied by the non-spread spectrum.
  • P PUSCH,b,f,c (i,j,q d ,l) represents the actual value of the uplink transmit power of the terminal equipment transmitting PUSCH.
  • P CMAX,f,c (i) means the same as formula (2), is the calculation result of equation (4), The sum of ⁇ P(i,j,q d ,l) is the first power, and PH type1,b,f,c (i,j,q d ,l) represents the power margin.
  • Methods 2 to 4 refer to method 200. You only need to replace the upstream data in method 200 with part of the data in method 300, and replace the copied data in method 200 with the remaining data in method 300.
  • the method 300 there are four ways to determine the uplink power. For details, please refer to the method 1 to the method 4 in the method 200, which will not be described again here.
  • the method 300 also includes: S350, the terminal device sends power headroom (PH) information to the network device, where the PH information is used to indicate the maximum transmit power and the first power configured by the network device to the terminal device.
  • the first power includes the estimated uplink transmit power for transmitting part of the data and the estimated uplink transmit power for transmitting the remaining data.
  • the terminal device when performing VRB mapping, may start with the first RE of the resource used for this transmission and perform mapping in sequential or reverse order until all REs carry modulation symbols.
  • the resources used in this transmission include PUSCH resources occupied by spread spectrum and PUSCH resources occupied by non-spread spectrum.
  • the modulation symbols carried on the PUSCH resources occupied by the spread spectrum are repetitions or copies of the modulation symbols carried on the PUSCH resources occupied by the non-spread spectrum.
  • both the PUSCH resources occupied by the spread spectrum and the PUSCH resources occupied by the non-spread spectrum carry a part of the modulation symbols of the uplink data.
  • the method 300 also includes: S301, the network device sends the first information and/or the second information to the terminal device.
  • the method 300 also includes: S302, the terminal device sends third information to the network device.
  • the network device receives the third information.
  • the third information is used to indicate the power occupied by the filter of the terminal device in the transition band.
  • the power occupied by the filter in the transition band is used by the network device to determine the size of the PUSCH transmission resources configured by the network device to the terminal device.
  • the method 300 also includes: S303, the network device sends fifth information to the terminal device, and accordingly, the terminal device receives the fifth information.
  • the fifth information is used to indicate the filter amplitude of the terminal device.
  • the fifth information can also be understood as indicating the restriction condition of the filter amplitude.
  • the terminal device can adjust the transmission power of the remaining data according to the filter amplitude indicated by the network device, so that the transmission power of the remaining data meets the in-band transmission requirements.
  • the filter amplitude of the remaining data is smaller than the filter amplitude indicated by the fifth information.
  • the fifth information may be the filter spectrum shape, or the ratio of the filter amplitude to a preset value, etc., which is not limited in this application.
  • the terminal device adjusts the transmission power of the remaining data according to the filter amplitude indicated by the network device. This can be achieved in the following ways:
  • the maximum filter amplitude corresponding to some data is 1, the filter amplitude indicated by the network device is a, and a is less than 1, then the maximum filter amplitude corresponding to the remaining data is a. Assuming that the transmission power of part of the data is P, then the transmission power of the remaining data does not exceed a 2 ⁇ P.
  • FIG 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 600 may include a transceiver unit 610 and/or a processing unit 620.
  • the transceiver unit 610 can communicate with the outside, and the processing unit 620 is used to process data/information.
  • the transceiver unit 610 may also be called a communication interface or a communication unit.
  • the device 600 may be the terminal device in the above method 200, or may be a chip used to implement the functions of the terminal device in the above method 200. Specifically, the device 600 can implement a process corresponding to the execution of the terminal device in the above method 200, wherein the transceiver unit 610 is used to perform operations related to the transceiver of the terminal device in the above method 200.
  • the processing unit 620 is configured to perform operations related to processing of the terminal device in the above method 200.
  • the device 600 may be the network device in the above method 200, or may be a chip used to implement the functions of the network device in the above method 200. Specifically, the device 600 can implement a process corresponding to the execution of the network device in the above method 200, wherein the transceiver unit 610 is used to perform operations related to the transceiver of the network device in the above method 200.
  • the processing unit 620 is configured to perform operations related to processing of the network device in the above method 200.
  • the device 600 may be the terminal device in the above method 300, or may be a chip used to implement the functions of the terminal device in the above method 300. Specifically, the device 600 can implement a process corresponding to the execution of the terminal device in the above method 300, wherein the transceiver unit 610 is used to perform operations related to the transceiver of the terminal device in the above method 300.
  • the processing unit 620 is configured to perform operations related to processing of the terminal device in the above method 300.
  • the device 600 may be the network device in the above method 300, or may be a chip used to implement the functions of the network device in the above method 300. Specifically, the device 600 can implement a process corresponding to the execution of the network device in the above method 300, wherein the transceiver unit 610 is used to perform operations related to the transceiver of the network device in the above method 300.
  • the processing unit 620 is configured to perform operations related to processing of the network device in the above method 300.
  • the device 600 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to ASICs, electronic circuits, processors (such as shared processors, dedicated processors or group processors, etc.) and memories for executing one or more software or firmware programs, merged logic circuits and /or other suitable components that support the described functionality.
  • the apparatus 600 can be used to perform various processes and/or steps corresponding to the terminal device or network device in the above method 200 or 300 embodiment. To avoid duplication, they will not be described again here.
  • the above-mentioned transceiver unit 610 may include a receiving unit 611 and a sending unit 612, wherein the receiving unit 611 is used to perform the receiving function in the above-described transceiving unit 610, and the sending unit 612 is used to perform the above-described sending and receiving unit.
  • Send function in unit 610 may include a receiving unit 611 and a sending unit 612, wherein the receiving unit 611 is used to perform the receiving function in the above-described transceiving unit 610, and the sending unit 612 is used to perform the above-described sending and receiving unit.
  • Send function in unit 610 may include a receiving unit 611 and a sending unit 612, wherein the receiving unit 611 is used to perform the receiving function in the above-described transceiving unit 610, and the sending unit 612 is used to perform the above-described sending and receiving unit.
  • Send function in unit 610 may include a receiving unit 611 and a sending unit 612, wherein the receiving unit 611 is
  • the above-mentioned device 600 has the function of realizing the corresponding steps performed by the terminal device in the above-mentioned method 200 or 300, or the above-mentioned device 600 has the function of realizing the corresponding steps performed by the network device in the above-mentioned method 200 or 300.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • the above-mentioned transceiver unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device 600 in Figure 15 may be specifically a terminal device in the above method 200 or 300 embodiment, or a network device in the above method 200 or 300 embodiment.
  • the device 600 in Figure 15 can be a chip or a chip system, such as a system on chip (SoC).
  • SoC system on chip
  • the transceiver unit may be an input-output circuit or a communication interface.
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip. There is no limitation here.
  • the chip or chip system can implement the functions related to the terminal device or network device in the above method 200 or 300 embodiment.
  • Figure 16 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 700 includes: at least one processor 710 and a transceiver 720 .
  • the processor 710 is coupled to the memory and is used to execute instructions stored in the memory to control the transceiver 720 to send signals and/or receive signals.
  • the communication device 700 further includes a memory 730 for storing instructions.
  • processor 710 and the memory 730 can be combined into one processing device, and the processor 710 is used to execute the program code stored in the memory 730 to implement the above functions.
  • the memory 730 may also be integrated in the processor 710 or independent of the processor 710 .
  • the transceiver 720 may include a receiver and a transmitter.
  • the transceiver 720 may further include an antenna, and the number of antennas may be one or more.
  • the transceiver 1020 may be a communication interface or an interface circuit.
  • the chip When the communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • An embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the above method embodiment.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit , MCU), it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • Figure 17 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device 800 includes a processing circuit 810 and a transceiver circuit 820.
  • the processing circuit 810 and the transceiver circuit 820 communicate with each other through internal connection paths.
  • the processing circuit 810 is used to execute instructions to control the transceiver circuit 820 to send signals and/or receive signals.
  • the device 800 may also include a storage medium 830, which communicates with the processing circuit 810 and the transceiver circuit 820 through internal connection paths.
  • the storage medium 830 is used to store instructions, and the processing circuit 810 can execute the instructions stored in the storage medium 830 .
  • the apparatus 800 is configured to implement the process corresponding to the terminal device in the above method embodiment.
  • the apparatus 800 is configured to implement the process corresponding to the network device in the above method embodiment.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the steps in the above method embodiment. method.
  • the present application also provides a computer-readable medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the steps in the above method embodiment. method.
  • this application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the names of all nodes and messages in this application are only the names set by this application for the convenience of description.
  • the names in the actual network may be different. It should not be understood that this application limits the names of various nodes and messages. On the contrary, any names with and The names of nodes or messages with the same or similar functions used in this application are regarded as methods or equivalent replacements of this application, and are all within the protection scope of this application.
  • preset can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, terminal device).
  • this application does not limit its specific implementation, such as preset rules, preset constants, etc. in the embodiments of this application.
  • system and “network” are often used interchangeably herein.
  • network and/or in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • At least one of! or "at least one of" herein refers to all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously. "At least one” in this article means one or more. "Multiple" means two or more.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the terms “including,” “includes,” “having,” and variations thereof all mean “including but not limited to,” unless otherwise specifically emphasized.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输的方法和通信装置,该方法包括:网络设备向终端设备指示频谱扩展比例指示信息,终端设备能够根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,进而终端设备在非扩展频谱所占用的PUSCH资源上传输上行数据,在扩展频谱所占用的PUSCH资源上传输该上行数据的复制数据,通过这种方式,终端设备可以使用更大的传输带宽进行上行传输,这降低了波形的PAPR,具有更大的上行发送功率,从而能够获取对应传输速率目标的更大的最大可容忍功率衰减,因此,能够提升上行传输的覆盖能力。

Description

一种数据传输的方法和通信装置
本申请要求于2022年09月07日提交中国专利局、申请号为202211088407.5、发明名称为“一种数据传输的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种数据传输的方法和通信装置。
背景技术
在上行传输的过程中,由于存在上行路损(uplink pathloss)或上行干扰(uplink interference)等,可能会导致上行覆盖受限的问题,所谓上行覆盖受限,指的是用户设备(user equipment,UE)达到最大发射功率仍然不能和网络进行通信。较差的上行覆盖会影响UE业务的执行情况,例如,UE呼叫建立失败次数增多或者掉话次数增多,又如,UE上行话音质量下降等。
如何提升上行传输的覆盖能力,对终端设备和网络设备之间的通信至关重要。
发明内容
本申请实施例提供一种数据传输的方法和通信装置,能够提升上行传输的覆盖能力。
第一方面,提供了一种数据传输的方法,该方法可以由终端设备执行,其中,终端设备可以是指配置于终端设备中的芯片或电路,本申请对此不作限定。以下以由终端设备执行为例进行说明。
该方法包括:接收来自网络设备的频谱扩展比例指示信息;根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;在非扩展频谱所占用的PUSCH资源上向网络设备发送上行数据,在扩展频谱所占用的PUSCH资源上向网络设备发送上行数据的复制数据。
根据上述方案,网络设备可以向终端设备指示频谱扩展比例指示信息,终端设备能够根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,进而能够在非扩展频谱所占用的PUSCH资源上传输上行数据,在扩展频谱所占用的PUSCH资源上传输该上行数据的复制数据,通过这种方式,终端设备可以使用更大的传输带宽进行上行传输,这降低了波形的峰值平均功率比(peak to average power ratio,PAPR),具有更大的上行发送功率,从而能够获取对应传输速率目标的更大的最大可容忍功率衰减,因此,能够提升上行传输的覆盖能力。
结合第一方面,在第一方面的某些实现方式中,根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,包括:根据第一信息、第二信息和频谱扩展比例指示信息确定扩展频谱所占用的PUSCH资源的位置和大小,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧;
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收来自网络设备的第一信息和/或第二信息。
结合第一方面,在第一方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第一方面,在第一方面的某些实现方式中,该方法还包括以下至少一项:
根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的传输块的大小;
根据扩展频谱所占用的PUSCH资源的大小确定复制数据的对应的频域符号的序列长度;
确定传输上行数据的上行发送功率估计值;
确定传输复制数据的上行发送功率估计值;
功率余量,该功率余量表示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输上行数据的上行发送功率估计值和传输复制数据的上行发送功率估计值。
基于上述方案,终端设备能够根据频谱扩展比例指示信息进行上行行为调整,从而使能频谱扩展和频率频谱整形的上行覆盖增强方案,提升上行传输的覆盖能力。
可选地,确定传输上行数据的上行发送功率估计值,包括:根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的上行发送功率估计值,或者,根据总资源确定传输上行数据的上行发送功率估计值,其中,总资源由非扩展频谱所占用的PUSCH资源和扩展频谱所占用的PUSCH资源组成。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:向网络设备发送功率余量PH信息,PH信息用于指示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输上行数据的上行发送功率估计值和传输复制数据的上行发送功率估计值。
基于上述方案,PH信息能够协助网路设备进行上行功率调整以及分配上行资源,从而使得网络设备向终端设备配置更合适的功率和资源,有助于提高上行传输的覆盖能力。
结合第一方面,在第一方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第一方面,在第一方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
基于上述方案,上报功率余量时复用PHR MAC CE,能够降低信令开销。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:向网络设备发送第三信息,第三信息用于指示终端设备的滤波器在过渡带所占用的功率,滤波器在过渡带所占用的功率用于网络设备确定网络设备向终端设备配置的PUSCH传输资源的大小。
基于上述方案,第三信息能够协助网路设备更合理地分配上行资源,有助于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,滤波器在过渡带所占用的功率携带于终端设备的能力信息中。
结合第一方面,在第一方面的某些实现方式中,频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收来自网络设备的第四信息,第四信息用于指示上行数据在非扩展频谱所占用的PUSCH资源上的起始位置;根据第四信息将上行数据映射到非扩展频谱所占用的PUSCH资源上。
基于上述方案,终端设备能够根据网络设备的指示进行资源映射,便于终端设备和网络设备信息同步,也便于网络设备解调数据。
第二方面,提供了一种数据传输的方法,该方法可以由网络设备执行,其中,网络设备可以是指配置于网络设备中的芯片或电路,本申请对此不作限定。以下以由网络设备执行为例进行说明。
该方法包括:向终端设备发送频谱扩展比例指示信息,频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;在非扩展频谱所占用的PUSCH资源上接收来自终端设备的上行数据,在扩展频谱所占用的PUSCH资源上接收上行数据的复制数据。
应理解,上述第二方面及其各种实现方式的有益效果可以参考第一方面及第一方面的各种实现方式。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向终端设备发送第一信息和/或第二信息,第一信息、第二信息和频谱扩展比例指示信息用于终端设备确定扩展频谱所占用的PUSCH资源的位置和大小,
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧;
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第二方面,在第二方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收来自终端设备的功率余量PH信息,PH信息用于指示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输上行数据的上行发送功率估计值和传输复制数据的上行发送功率估计值。
结合第二方面,在第二方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第二方面,在第二方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收来自终端设备的第三信息,第三信息用于指示终端设备的滤波器在过渡带所占用的功率;根据滤波器在过渡带所占用的功率确定向终端设备配置的PUSCH传输资源的大小。
结合第二方面,在第二方面的某些实现方式中,所述滤波器在过渡带所占用的功率携带于所述终端设备的能力信息中。
结合第二方面,在第二方面的某些实现方式中,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向终端设备发送第四信息,第四信息用于指示上行数据在非扩展频谱所占用的PUSCH资源上的起始位置。
第三方面,提供了一种数据传输的方法,该方法可以由终端设备执行,其中,终端设备可以是指配置于终端设备中的芯片或电路,本申请对此不作限定。以下以由终端设备执行为例进行说明。
该方法包括:接收来自网络设备的频谱扩展比例指示信息;根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;在非扩展频谱所占用的PUSCH资源上发送上行数据的部分数据,在扩展频谱所占用的PUSCH资源上发送上行数据的剩余数据,剩余数据的发送功率满足带内发射要求。
基于上述方案,网络设备可以向终端设备指示频谱扩展比例指示信息,从而终端设备能够根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,进而能够在非扩展频谱所占用的PUSCH资源上传输上行数据的部分数据,在扩展频谱所占用的PUSCH资源上传输该上行数据的剩余数据,且剩余数据的发送功率满足带内发射要求,通过这种方式,降低了终端设备发送上行数据占据的带宽,终端设备可以使用更高的频谱效率来进行上行传输,从而在相同带宽资源下能够获取对应传输速率目标的更大的最大可容忍功率衰减,因此,能够提升上行传输的覆盖能力。
结合第三方面,在第三方面的某些实现方式中,根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,包括:
根据第一信息、第二信息和频谱扩展比例指示信息确定扩展频谱所占用的PUSCH资源的位置和大小,
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧,
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收来自网络设备的第一信息和/或第二信息。
结合第三方面,在第三方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第三方面,在第三方面的某些实现方式中,该方法还包括以下至少一项:
根据频谱扩展所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和确定上行数据的传输块的大小;
确定传输部分数据的上行发送功率估计值;
确定传输剩余数据的上行发送功率估计值。
基于上述方案,终端设备能够根据频谱扩展比例指示信息进行上行行为调整,从而使能频率频谱整形的上行覆盖增强方案,提升上行传输的覆盖能力。
可选地,确定传输部分数据的上行发送功率估计值,包括:根据非扩展频谱所占用的PUSCH资源的大小确定传输部分数据的上行发送功率估计值,或者,根据总资源确定传输部分数据的上行发送功率估计值,其中,总资源由非扩展频谱所占用的PUSCH资源和扩展频谱所占用的PUSCH资源组成。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:向网络设备发送功率余量PH信息,PH信息用于指示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输部分数据的上行发送功率估计值和传输剩余数据的上行发送功率估计值。
基于上述方案,PH信息能够协助网路设备进行上行功率调整以及分配上行资源,从而使得网络设备向终端设备配置更合适的功率和资源,有助于提高上行传输的覆盖能力。
结合第三方面,在第三方面的某些实现方式中,该PH信息携带于媒体访问控制控制单元MAC CE中。
结合第三方面,在第三方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
基于上述方案,上报功率余量时复用PHR MAC CE,能够降低信令开销。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:向网络设备发送第三信息,第三信息用于指示终端设备的滤波器在过渡带所占用的功率,滤波器在过渡带所占用的功率用于网络设备确定网络设备向终端设备配置的PUSCH传输资源的大小。
基于上述方案,第三信息能够协助网路设备更合理地分配上行资源,有助于提高资源利用率。
结合第三方面,在第三方面的某些实现方式中,滤波器在过渡带所占用的功率携带于终端设备的能力信息中。
结合第三方面,在第三方面的某些实现方式中,频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收来自网络设备的第五信息,第五信息用于指示终端设备的滤波器幅值;根据滤波器幅值调整剩余数据的发送功率。
基于上述方案,终端设备能够根据网络设备指示的滤波器幅值调整剩余数据的发送功率,从而使得剩余数据的发送功率能够满足带内发射要求。
结合第三方面,在第三方面的某些实现方式中,上行数据通过PI/2二进制相移键控调制。
第四方面,提供了一种数据传输的方法,该方法可以由网络设备执行,其中,网络设备可以是指配置于网络设备中的芯片或电路,本申请对此不作限定。以下以由网络设备执行为例进行说明。
该方法包括:向终端设备发送频谱扩展比例指示信息,频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;在非扩展频谱所占用的PUSCH资源上接收来自终端设备的上行数据的部分数据;根据该部分数据确定上行数据。
应理解,上述第四方面及其各种实现方式的有益效果可以参考第三方面及第三方面的各种实现方式。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:向终端设备发送第一信息和/或第二信息,第一信息、第二信息和频谱扩展比例指示信息用于终端设备确定扩展频谱所占用的PUSCH资源的位置和大小,
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧,
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第 一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第四方面,在第四方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:接收来自终端设备的功率余量PH信息,PH信息用于指示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输部分数据的上行发送功率估计值和传输上行数据的剩余数据的上行发送功率估计值。
结合第四方面,在第四方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第四方面,在第四方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:接收来自终端设备的第三信息,第三信息用于指示终端设备的滤波器在过渡带所占用的功率;根据滤波器在过渡带所占用的功率确定向终端设备配置的PUSCH传输资源的大小。
结合第四方面,在第四方面的某些实现方式中,所述滤波器在过渡带所占用的功率携带于所述终端设备的能力信息中。
结合第四方面,在第四方面的某些实现方式中,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:向终端设备发送第五信息,第五信息用于指示终端设备的滤波器幅值,滤波器幅值用于终端设备调整上行数据的剩余数据的发送功率。
结合第四方面,在第四方面的某些实现方式中,该上行数据通过PI/2二进制相移键控调制。
第五方面,提供一种通信装置,该通信装置可以是终端设备,包括:收发单元,用于接收来自网络设备的频谱扩展比例指示信息;处理单元,用于根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;收发单元还用于:在非扩展频谱所占用的PUSCH资源上向网络设备发送上行数据,在扩展频谱所占用的PUSCH资源上向网络设备发送上行数据的复制数据。
结合第五方面,在第五方面的某些实现方式中,处理单元具体用于:根据第一信息、第二信息和频谱扩展比例指示信息确定扩展频谱所占用的PUSCH资源的位置和大小,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向通信装置配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧;
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于:接收来自网络设备的第一信息和/或第二信息。
结合第五方面,在第五方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第五方面,在第五方面的某些实现方式中,处理单元还用于执行以下至少一项:
根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的传输块的大小;
根据扩展频谱所占用的PUSCH资源的大小确定复制数据的对应的频域符号的序列长度;
确定传输上行数据的上行发送功率估计值;
确定传输复制数据的上行发送功率估计值。
可选地,处理单元具体用于:根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的上行发送功率估计值,或者,根据总资源确定传输上行数据的上行发送功率估计值。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于:向网络设备发送功率余量PH信息,PH信息用于指示网络设备向通信装置配置的最大发送功率与第一功率之间的差值,第一功率包括传输上行数据的上行发送功率估计值和传输复制数据的上行发送功率估计值。
结合第五方面,在第五方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第五方面,在第五方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于:向网络设备发送第三信息,第三信息用于指示通信装置的滤波器在过渡带所占用的功率,滤波器在过渡带所占用的功率用于网络设备确定网络设备向通信装置配置的PUSCH传输资源的大小。
结合第五方面,在第五方面的某些实现方式中,滤波器在过渡带所占用的功率携带于通信装置的能力信息中。
结合第五方面,在第五方面的某些实现方式中,频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于:接收来自网络设备的第四信息,第四信息用于指示上行数据在非扩展频谱所占用的PUSCH资源上的起始位置;处理单元还用于:根据第四信息将上行数据映射到非扩展频谱所占用的PUSCH资源上。
第六方面,提供一种通信装置,该通信装置可以是网络设备,包括:收发单元,用于向终端设备发送频谱扩展比例指示信息,频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;收发单元还用于:在非扩展频谱所占用的PUSCH资源上接收来自终端设备的上行数据,在扩展频谱所占用的PUSCH资源上接收上行数据的复制数据。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于:向终端设备发送第一信息和/或第二信息,第一信息、第二信息和频谱扩展比例指示信息用于终端设备确定扩展频谱所占用的PUSCH资源的位置和大小,
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与通信装置向终端设备配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧;
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第六方面,在第六方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于:接收来自终端设备的功率余量PH信息,PH信息用于指示通信装置向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输上行数据的上行发送功率估计值和传输复制数据的上行发送功率估计值。
结合第六方面,在第六方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第六方面,在第六方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于:接收来自终端设备的第三信息,第三信息用于指示终端设备的滤波器在过渡带所占用的功率;通信装置还包括:处理单元,用于根据滤波器在过渡带所占用的功率确定向终端设备配置的PUSCH传输资源的大小。
结合第六方面,在第六方面的某些实现方式中,所述滤波器在过渡带所占用的功率携带于所述终端设备的能力信息中。
结合第六方面,在第六方面的某些实现方式中,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于:向终端设备发送第四信息,第四信息用于指示上行数据在非扩展频谱所占用的PUSCH资源上的起始位置。
第七方面,提供一种通信装置,该通信装置可以是终端设备,包括:收发单元,用于接收来自网络设备的频谱扩展比例指示信息;处理单元,用于根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;收发单元还用于:在非扩展频谱所占用的PUSCH资源上发送上行数据的部分数据,在扩展频谱所占用的PUSCH资源上发送上行数据的剩余数据,剩余数据的发送功率满足带内发射要求。
结合第七方面,在第七方面的某些实现方式中,处理单元具体用于:根据第一信息、第二信息和频谱扩展比例指示信息确定扩展频谱所占用的PUSCH资源的位置和大小,
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向通信装置配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧,
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于:接收来自网络设备的第一信息和/或第二信息。
结合第七方面,在第七方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第七方面,在第七方面的某些实现方式中,处理单元还用于执行以下至少一项:
根据频谱扩展所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和确定上行数据的传输块的大小;
确定传输部分数据的上行发送功率估计值;
确定传输剩余数据的上行功率估计值。
可选地,处理单元具体用于:根据非扩展频谱所占用的PUSCH资源的大小确定传输部分数据的上行发送功率估计值,或者,根据总资源确定传输部分数据的上行发送功率估计值。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于:向网络设备发送功率余量PH信息,PH信息用于指示网络设备向通信装置配置的最大发送功率与第一功率之间的差值,第一功率包括传输部分数据的上行发送功率估计值和传输剩余数据的上行发送功率估计值。
结合第七方面,在第七方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第七方面,在第七方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于:向网络设备发送第三信息,第三信息用于指示通信装置的滤波器在过渡带所占用的功率,滤波器在过渡带所占用的功率用于网络设备确定网络设备向通信装置配置的PUSCH传输资源的大小。
结合第七方面,在第七方面的某些实现方式中,滤波器在过渡带所占用的功率携带于通信装置的能力信息中。
结合第七方面,在第七方面的某些实现方式中,频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于:接收来自网络设备的第五信息,第五信息用于指示通信装置的滤波器幅值;处理单元还用于:根据滤波器幅值调整剩余数据的发送功率。
结合第七方面,在第七方面的某些实现方式中,上行数据通过PI/2二进制相移键控调制。
第八方面,提供一种通信装置,该通信装置可以是网络设备,包括:收发单元,用于向终端设备发送频谱扩展比例指示信息,频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;收发单元还用于:在非扩展频谱所占用的PUSCH资源上接收来自终端设备的上行数据的部分数据;处理单元,用于根据部分数据和对称性确定上行数据。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于:向终端设备发送第一信息和/或第二信息,第一信息、第二信息和频谱扩展比例指示信息用于终端设备确定扩展频谱所占用的PUSCH资源的位置和大小,
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与通信装置向终端设备配置的PUSCH传输资源的位置关系,位置关系包括:
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的内部;或,
扩展频谱所占用的PUSCH资源位于PUSCH传输资源的外侧,
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
结合第八方面,在第八方面的某些实现方式中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于:接收来自终端设备的功率余量PH信息,PH信息用于指示通信装置向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输部分数据的上行发送功率估计值和传输上行数据的剩余数据的上行发送功率估计值。
结合第八方面,在第八方面的某些实现方式中,PH信息携带于媒体访问控制控制单元MAC CE中。
结合第八方面,在第八方面的某些实现方式中,该MAC CE为功率余量报告PHR MAC CE。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于:接收来自终端设备的第三信息,第三信息用于指示终端设备的滤波器在过渡带所占用的功率;处理单元还用于:根据滤波器在过渡带所占用的功率确定向终端设备配置的PUSCH传输资源的大小。
结合第八方面,在第八方面的某些实现方式中,所述滤波器在过渡带所占用的功率携带于所述终端设备的能力信息中。
结合第八方面,在第八方面的某些实现方式中,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于:向终端设备发送第五信息,第五信息用于指示终端设备的滤波器幅值,滤波器幅值用于终端设备调整上行数据的剩余数据的发送功率。
结合第八方面,在第八方面的某些实现方式中,上行数据通过PI/2二进制相移键控调制。
第九方面,提供一种通信装置,包括处理器。所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于调用并运行存储器中存储的计算机程序,以使通信装置执行如第一方面至第四方面中的任一方面,或这些方面的任一可能的实现方式中的方法。可选地,该通信装置还可以包括收发器和/或存储器。
第十方面,提供一种芯片,包括处理器,所述处理器用于执行计算机程序,所述计算机程序用于执行如第一方面至第四方面中的任一方面,或这些方面的任一可能的实现方式中的方法。
第十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面至第四方面的任一方面,或这些方面的任一可能的实现方式中的方法被执行。
第十二方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面至第四方面的任一方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十三方面,提供一种通信系统,包括第五方面和第六方面通信装置,或者包括第七方面和第八方面的通信装置。
附图说明
图1是适用于本申请实施例的一种通信系统的示意图。
图2示出了两种功率放大器的输入特性曲线。
图3示出了DFT-s-OFDM的流程示意图。
图4是频谱扩展的示意图。
图5是频域频谱整形的示意图。
图6是本申请实施例提供的一种数据传输的方法200的示意图。
图7是本申请实施例提供的PUSCH资源的示意图。
图8是本申请实施例提供的数据传输的方法200的一种示例。
图9是标准中的一种PHR MAC CE的一种示意图。
图10是本申请实施例提供的MAC CE的一种示意图。
图11是本申请实施例提供的PHR MAC CE的一种示意图。
图12是本申请实施例提供的MAC CE的又一种示意图。
图13是本申请实施例提供的一种数据传输的方法300的示意图。
图14是本申请实施例提供的数据传输的方法300的一种示例。
图15是本申请实施例提供的一种通信装置的示意性框图。
图16是本申请实施例提供的通信装置的又一示意性结构图。
图17是本申请实施例提供的通信装置的又一示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)移动通信系统或新空口(new radio,NR)。其中,5G移动通信系统可以是非独立组网(non-standalone,NSA)或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th Generation,6G)移动通信系统等。本申请对此不作限定。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如,电视机等家电、智慧盒子、游戏机)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能, 需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
在本申请实施例中,该终端设备还可以是车辆或整车,通过车联网可以实现通信,也可以是位于车辆内(例如放置在车辆内或安装在车辆内)的部件,即车载终端设备、车载模块或者车载单元(on-board unit,OBU)。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和CU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1是适用于本申请实施例的通信方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发送天线和至少一个用于接收信号的接收天线。因此,该通信系统中的各通信设备之间,网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例的方案,对相关概念做一解释。
1、子载波(subcarrier):正交频分复用(orthogonal frequency division multiplexing,OFDM)技术中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度。
2、子载波间隔(subcarrier space,SCS):OFDM技术中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔称为子载波间隔。例如,LTE系统中的子载波间隔为15kHz,5G系统中的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
3、资源块(resource block,RB):频域上连续的N个子载波可称为一个资源块,也可以称为物理资源块(physical recourse block,PRB)。例如,LTE系统中的一个资源块包括12个子载波,5G系统中的一个资源块也包括12子载波。随着通信系统的演进,一个资源块包括的子载波个数也可以是其他值。本申请中,以一个资源块包括12个子载波为例。
4、时隙(slot):5G系统中的一个时隙包括14个OFDM符号,15kHz子载波间隔对应的时隙长度为1ms,30kHz子载波间隔对应的时隙长度为0.5ms。
5、子帧(subframe):5G系统中一个子帧的时间长度为1ms。
6、OFDM符号:OFDM符号简称符号,其为OFDM技术中时域上最小的时间单元。
7、功率放大器(power amplifier,PA):功率放大器用于将调制震荡电路所产生的低功率射频信号进行功率放大,以支持在射频信号在无线信道中的传输。当功率放大器的输入功率加大到一定值后,输出功率不再随输入功率的增加而增加,这时的输出功率称为功率放大器的饱和输出功率。低能力的功率放大器,其饱和输出功率较低,因而只能不能支持高功率的传输,而高能力的终端设备其饱和输出功率较高,可以支持高功率的传输。图2示出了上述两种功率放大器的输入特性曲线。
8、循环前缀-正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形:熟知的OFDM,即多载波波形,在时域上,N个调制符号同时传输。正交频分多址(orthogonal frequency division multiple access,OFDMA)会把多个正交的子载波重叠在一个窄带里,虽然这些子载波彼此正交,但时域上这些子载波叠加后会产生高峰值平均功率比(peak to average power ratio,PAPR)。而电子元件放大器的线性响应范围是有限的,高PAPR会导致信号产生非线性失真。
9、离散傅里叶变换扩频的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)波形:NR中为了提高上行的覆盖,支持了DFT-s-OFDM波形。相对于OFDM波形,DFT-s-OFDM波形可以有效降低信号的PAPR,从而提高覆盖。具体来说,DFT-s-OFDM的物理层处理流程相较于CP-OFDM增加了离散傅里叶变换(discrete fourier transform,DFT)预编码的过程,其将数据依次做串并变换,变成并行的数据,再依次进行DFT,后续操作和CP-OFDM相同。DFT预编码让DFT-s-OFDM具有单载波(single carrier)特性,因此PAPR较低。
图3示出了DFT-s-OFDM的流程示意图。四相相移键控(quadrature phase shift keying,QPSK)调制使用4种不同相位来表示不同的信息,因此一个QPSK调制符号可以承载2比特信息。QPSK的4个相位通常可以为{0,π/2,π,3π/2}或{π/4,3π/4,5π/4,7π/4}。以相位为{π/4,3π/4,5π/4,7π/4}为例,QPSK的调制符号可以表示为c_k=1/√2(a_k+jb_k),a_k和b_k为两个数据比特。以QPSK调制,子载波个数为M为例,如图3所示,DFT-s-OFDM信号的生成流程包括:
步骤1,2M个数据比特{b(0),b(1),…,b(2M-1)},经过QPSK调制后,得到M个调制符号{s(0),s(1),…,s(M-1)}。
步骤2,M个调制符号经过M点的DFT后得到M个频域信号{X(0),X(1),…,X(M-1)}。
步骤3,将M个频域信号映射到M个子载波上,并进行N点的快速傅立叶反变换(inverse fast fourier transformation,IFFT)得到N个时域信号{x(0),x(1),…,x(N-1)}。N一般由系统带宽决定,且大于M。在存在发射多天线时,频域信号还可以乘以预编码矩阵后再进行子载波映射。
步骤4,对时域信号加循环前缀(cyclic prefix,CP)后进行数模转换得到模拟信号,并通过天线发送。
10、通信链路的覆盖能力:通信链路的覆盖能力定义为:在保证传输速率目标的前提下,电磁波从发射机传播到接收机时的最大可容忍功率衰减(以dB为单位)。因此,提升最大可容忍功率衰减即是提升覆盖能力。一般功率提升指标可是PAPR和立方度量(cubic metric,CM),它们的降低量表征功率放大器工作点抬升,这意味着最大发送功率的提升,因此可表征覆盖能力的增强。以PAPR为例,PAPR的定义为信号的峰值功率与平均功率的比值,又可以称为峰均比。由于功率放大器的动态范围是有限的,当PAPR过高会导致功率放大器进入非线性区,导致信号经过功放后产生非线性失真,造成频谱扩展和带内信号畸变,降低系统性能。为了避免进入非线性区,需要功率回退,PAPR越高,需要 回退的功率也就越高,然而功率回退会导致覆盖性能下降,因此降低PAPR,需要回退的功率越小,从而有利于提高覆盖。
11、上行功率控制(uplink power control):在上行传输中,通过上行功率控制技术来实现较好的用户体验和覆盖性能。例如,由于终端设备距离基站的距离不同,其路径损耗存在极大差异,距离基站越近的终端设备(中心用户)其路径损耗越小,距离基站越远的终端设备(边缘用户)其路径损耗越大。因此,这些距离基站较远的终端设备通常会采用比中心用户较大的发射功率进行上行传输,补偿由于远距离传输造成的路径损耗,使得这些终端设备也可以获得较好的传输性能,即较好的传输速率,从而使边缘用户获得良好的用户体验。上述这种距离基站较远的终端设备和距离基站越近的终端设备的发射功率不同的机制,就是通过上行功率控制技术实现的。
应理解,终端设备用于上行传输的功率具有一个限制条件,即终端设备的发射功率不能高于最高发送功率(maximum output power,MOP)。为了进行标准化,目前NR标准中规定的终端设备的最高发送功率为23dBm。
在上行传输的过程中,由于存在上行路损(Uplink PathLoss)或上行干扰(Uplink Interference)等,可能会导致上行覆盖受限的问题,所谓上行覆盖受限,指的是用户设备(User Equipment,UE)达到最大发射功率仍然不能和网络进行通信。较差的上行覆盖会影响UE业务的执行情况,例如,UE呼叫建立失败次数增多或者掉话次数增多,又如,UE上行话音质量下降等。
如何提升上行传输的覆盖能力,对终端设备和网络设备之间的通信至关重要。
提升上行传输的覆盖能力的一种方式是,通过频谱扩展(spectral extension,SE)和频域频谱整形(frequency-domain spectral shaping,FDSS)的方式来降低DFT-s-OFDM的PAPR,从而提高上行传输的覆盖能力。下面对这两种技术进行简单介绍。
频谱扩展是指对频域信号进行循环扩展。例如,原始的DFT-s-OFDM中,频域信号占M个子载波,频域信号为{X(0),X(1),…,X(M-1)}。将频域信号进行循环扩展,例如扩展E个元素,其中向左(向前)扩展P个元素,向右(向后)扩展E-P个元素,得到包含M+E个元素频域信号{X(M-P),X(M-P+1),…,X(M-1),X(0),X(1),…,X(M-1),X(0),X(1),…,X(E-P-1)}。以M=8,E=4,P=2为例,扩展前的频域信号为{X(0),X(1),X(2),X(3),X(4),X(5),X(6),X(7)},扩展后的频域信号为{X(6),X(7),X(0),X(1),X(2),X(3),X(4),X(5),X(6),X(7),X(0),X(1)},如图4所示。扩展后的频域信号映射到M+E个子载波上并发送。
频域频谱整形是指对频域信号进行加窗滤波。例如,原始的DFT-s-OFDM中,信号占M个子载波,频域信号为{X(0),X(1),…,X(M-1)},滤波器系数为{W(0),W(1),…,W(M-1)}。加窗滤波就是指将频域信号与滤波器系数逐位相乘,滤波后的频域信号为{X(0)W(0),X(1)W(1),…,X(M-1)W(M-1)},如图5所示。
SE和FDSS同时使用时,通常是先将频域信号进行循环扩展,然后再逐位乘以滤波器系数。例如,原始的DFT-s-OFDM中,信号占M个子载波,频域信号为{X(0),X(1),…,X(M-1)}。先循环扩展得到频域信号{X(M-P),X(M-P+1),…,X(M-1),X(0),X(1),…,X(M-1),X(0),X(1),…,X(E-P-1)},然后和滤波器系数{W(0),W(1),…,W(M+E)}逐位相乘得到最终的频域信号,再映射到(M+E)个子载波上并发送。换言之,SE和FDSS可以在图3的步骤2和步骤3之间完成。
然而,在频谱扩展和频域频谱整形的覆盖增强场景中,终端设备和网络设备之间如何进行通信,是一个值得关心的问题。
具体来说,若终端设备使用频谱扩展进行上行传输,则网络设备在解调时,需要获知频谱扩展方式,才能解调原始的DFT-s-OFDM信号占的M个子载波上的数据。因此,网络设备需要向终端设备指示如何使用分配的上行资源,例如,分配的上行资源是否包括频谱扩展的复制数据所使用的资源,又如,频谱扩展的资源的数量,等等。
此外,由于终端设备需要在部分上行资源上进行频谱扩展,且扩展的频谱上的所有RB只承载复制数据,不能发送独立调制符号,因此,终端设备的上行(uplink,UL)行为将会发生改变,例如,终端设备上行发送的数据块大小、调制符号的映射关系、以及上行发送功率的大小都会发生改变,将和利用所有上行资源承载独立调制符号的非增强覆盖场景不同。下面对非增强覆盖场景中的上行行为进行简单介绍。应理解,本申请中的非增强覆盖场景指的是,既不进行频谱扩展,也不进行频谱频谱 整形。
1、传输块(transfer block,TB)大小计算
从MAC层发往物理层的数据是以传输块形式组织的。一个传输块对应包括一个MAC协议数据单元(protocol data unit,PDU)的数据块,这个数据块会在一个传输时间间隔(transmission time interval,TTI)内发送。一个调度时长内用于计算传输块大小的RE的大小NRE可以通过式(1)确定:
NRE=min(156,N'RE)·nPRB         (1)
其中,NRE表示一个调度时长内用于计算传输块大小的RE的大小,nPRB为终端计算传输块大小时使用的RB的大小,在非增强覆盖场景中,nPRB的取值与网络设备向终端设备分配的上行资源的RB数相同。NRE可以用于确定传输块的大小,换言之,nPRB也是用于确定传输块的大小的参数。具体如何确定传输块的大小,可以参考标准定义,本申请不做限定。N'RE为频域上一个物理资源块(physical recourse block,PRB)中用于传输数据的子载波数,即RE个数。具体地,N'RE可以通过式确定,其中,为一个RB包括的子载波(subcarrier)数目;为一个调度时长(slot,时隙)内分配用于上行传输的符号数;为调度时长内每个PRB用于承载解调参考信号(demodulation reference signal,DMRS)的子载波个数(RE数),其包括无数据的DM-RS CDM组的开销;为调度时长内的每个PRB中被高层参数配置的开销占据的子载波个数。
2、调制符号和虚拟资源块(virtual resource block,VRB)映射顺序
对在一个TTI上发送的一个TB进行循环冗余校验(cyclic redundancy check,CRC)插入、码块分割、并为每个码块插入CRC、信道编码、速率匹配之后,得到一个被称为码字(codeword)的数据码流。每个码字与一个TB相对应,码字可以看作是带出错保护的TB。对码字进行加扰(scrambling)和调制(modulation)得到的复数符号(调制符号),之后进行层映射和VRB映射。
总的来说,上行发送的数据块经编码调制等操作得到的调制符号,会依次映射到VRB上。
3、上行功率计算
如果终端设备在服务小区c的载波f的激活带宽部分(bandwidth part,BWP)b上、使用索引j的参数集配置和索引l的物理上行共享信道(physical uplink shared channel,PUSCH)功控调整状态传输PUSCH,那么终端设备在PUSCH传输时刻i的PUSCH发射功率为:
其中,PPUSCH,b,f,c(i,j,qd,l)称为PUSCH发射功率,或者说,其指的是终端设备传输PUSCH的上行发射功率实际值。
的计算结果可以理解为终端设备传输PUSCH的上行发送功率估计值,式(2)中的字母含义为:
1)PCMAX,f,c(i)为网络设备向终端设备配置的最大发射功率(the configured UE maximum output power)。网络设备通常会给终端设备配置最大发送功率的取值区间,终端设备可以在这个取值区间内取值。在NR中,终端设备一般取最高发送功率,即为23dBm。
2)PO_PUSCH,b,f,c(j)为网络设备期望的接收信号的功率水平,PO_PUSCH,b,f,c(j)是参数PO_NOMINAL_PUSCH,f,c(j)和PO_UE_PUSC,Hb,f,c(j)的和,其中j∈{0,1,...,J-1},由终端设备计算。其中,PO_NOMINAL_PUSCH,f,c(j)为小区级参数,在系统信息块(system information block,SIB)中下发给终端设备。PO_UE_PUSC,Hb,f,c(j)为用户级参数,在RRC消息中下发给终端设备。
3)是在服务小区c的载波f的激活BWP b上,分配给终端设备的第i个上行传输的PUSCH传输带宽,以RB资源个数计算,其包括12个RE,也就是终端设备传输PUSCH所使用的资源的大小,在非增强覆盖场景中,其取值与网络设备向终端设备分配的上行资源的RB数相同。为用户级参数,其在物理下行控制信道(Physical Downlink Control Channel,PDCCH) 上行授权(UL Grant)中下发。
4)PLb,f,c(qd)是路损估计,由终端设备根据下行参考信号接收功率(reference signal receiving power,RSRP)计算估计。具体来说,终端设备将下行信道接收到的RSRP和网络设备广播的下行参考信号功率进行比较,滤波得到路径损耗的估计值,即为PLb,f,c(qd)。路损估计的存活时间为一个上报周期,存在着上报门限的误差。qd为参考信号(reference signal,RS)索引(index),是用于估计路损的参考信号的下角标,指明了是根据哪个参考信号进行路损估计,终端设备可以根据信令指示来确定需要使用的参考信号。
5)αb,f,c(j)是路径损耗补偿因子。
6)ΔTF,b,f,c(i)是不同的调制与编码策略(modulation and coding scheme,MCS)格式相对于参考MCS格式的功率偏置值,可通过公式确定。C是传输的代码块的数量,Kr是代码块的大小,NRE是资源元素的数量,为服务小区c的载波f的激活BWP b上的PUSCH传输时机i的符号数,是PUSCH符号中不包括解调参考信号(demodulation reference signal,DMRS)子载波和相位跟踪参考信号样本的子载波的数量,参数Ks的值为由信令delta MCS指示。
7)fb,f,c(i,l)是终端设备的PUSCH发射功率的调整量,由PDCCH中的发射功率控制(transmit power control,TPC)信息映射获得。当终端设备传输消息3(Msg3)或消息A(MsgA)时,有:
fb,f,c(0,l)=ΔPrampup,b,f,cmsg2,b,f,c
其中,ΔPrampuprequested,b,f,c由高层提供,对应于高层要求的从服务小区c中载波f的第一个随机接入前导到最后一个随机接入前导的总功率爬升,δmsg2,b,f,c为传输功率控制(transmit power control,TPC)信令指示的数值,其他参数的含义同式(2)。
4、功率余量报告(power headroom report,PHR)
PHR主要用于终端设备周期地向网络设备报告功率余量,便于网络设备调整终端设备的发射功率以及给终端设备分配上行资源。在非增强覆盖场景中,功率余量指的是传输PUSCH的上行发送功率估计值和网络设备向终端设备配置的最大发射功率之间的差值,
具体地,终端设备传输PUSCH的上行发送功率估计值和网络设备向终端设备配置的最大发射功率之间的差值为:
若网络设备向终端设备配置的最大发射功率大于终端设备传输PUSCH的上行发送功率估计值,则式(3)的结果为正值,若网络设备向终端设备配置的最大发射功率小于终端设备传输PUSCH的上行发送功率估计值,则式(3)的结果为负值。式(3)中的参数的含义与式(2)中相同。
在上述非增强覆盖场景中,用于确定传输块大小的nPRB、用于确定终端设备传输PUSCH的上行发射功率实际值的均为网络设备向终端设备分配的上行资源的RB数,也就是终端设备的上行传输资源的大小,然而,在增强覆盖场景中,终端设备上行传输的资源包括扩展频谱所占用的物理上行共享信道PUSCH资源和非扩展频谱所占用的PUSCH资源,这会对终端设备确定上行行为时产生所使用的资源的大小产生影响。若终端设备使用不合适的资源确定上行行为,将会影响上行传输 性能,影响上行覆盖能力。
有鉴于此,本申请提供一种数据传输的方法和通信装置,网络设备可以向终端设备指示频谱扩展比例指示信息,从而终端设备能够根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,进而能够在非扩展频谱所占用的PUSCH资源和扩展频谱所占用的PUSCH资源进行上行传输,通过这种方式,终端设备能够获取对应传输速率目标的更大的最大可容忍功率衰减,因此,能够提升上行传输的覆盖能力。
图6是本申请实施例提供的一种数据传输的方法的示意图。图6所示的方法200可以参考上述图1至图5中的描述。
S210,网络设备向终端设备发送频谱扩展比例指示信息。
其中,频谱扩展比例指示信息用于确定扩展频谱所占用的PUSCH资源和/或非扩展频谱所占用的PUSCH资源。
具体地,本申请中,频谱扩展比例指示信息也可以称为资源扩展指示信息,频谱扩展比例指示信息用于指示一个比例,该比例可以称为资源大小比例,或者频谱扩展比例等。其中,该比例可以理解为确定扩展频谱所占用的PUSCH资源和/或非扩展频谱所占用的PUSCH资源的一个确定因素或参数。换言之,根据频谱扩展比例指示信息,终端设备可以获知上行传输的资源包括扩展频谱所占用的PUSCH资源和/或非扩展频谱所占用的PUSCH资源,终端设备在进行数据传输时,将会区分扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源,从而能够提升上行传输的覆盖能力。
为了便于说明,本文将频谱扩展比例指示信息所指示的比例记为λ,将扩展频谱所占用的PUSCH资源的大小记为SSE,将非扩展频谱所占用的PUSCH资源的大小记为SD,将非扩展频谱所占用的PUSCH资源和扩展频谱所占用的PUSCH资源组成的资源称为总资源,总资源的大小记为ST。其中,本申请中,资源的大小可以是指资源所包括的RE的数量或RB的数量。
其中,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
具体地,频谱扩展比例指示信息可以直接指示扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例,也可以间接指示该比例,例如,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与总资源的大小之间的比例,又如,频谱扩展比例指示信息用于指示非扩展频谱所占用的PUSCH资源的大小与总资源的大小之间的比例,根据频谱扩展比例指示信息所指示的比例,终端设备可以确定扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
可选地,无论频谱扩展比例指示信息指示的是SD、SSE、ST之中的哪两个参数的比例,终端设备都可以直接使用该比例确定扩展频谱所占用的PUSCH资源和/或非扩展频谱所占用的PUSCH资源,换言之,终端设备可以无需确定扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例。
在一种实现方式中,频谱扩展比例指示信息所指示的比例就是扩展频谱所占用的PUSCH资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例,即λ=SSE/SD,或λ=SD/SSE
在另一种实现方式中,频谱扩展指示信息所指示的比例为扩展频谱所占用的PUSCH资源的大小与总资源的大小之间的比例,即λ=SSE/ST,或λ=ST/SSE。也可以说,频谱扩展比例指示信息用于指示扩展频谱所占用的PUSCH资源的大小与总资源的大小之间的比例。
在又一种实现方式中,频谱扩展指示信息所指示的比例为非扩展频谱所占用的PUSCH资源的大小与总资源的大小之间的比例,即λ=SD/ST,或λ=ST/SD。也可以说,频谱扩展比例指示信息用于指示非扩展频谱所占用的PUSCH资源的大小与总资源的大小之间的比例。
可选地,在本申请后文的举例中,如无特殊说明,则λ=SSE/SD
其中,λ可以为比值,例如,λ为0.25或25%。λ也可以是比(ratio),例如,λ为1:4或1/4。
可选地,频谱扩展比例指示信息携带于下行控制信息DCI中。例如,网络设备在向终端设备传输PDCCH时,通过PDCCH中的DCI向终端设备发送频谱扩展比例指示信息。
其中,频谱扩展比例指示信息的字段长度取决于λ的取值共多少个,即λ可取的数量或λ的种类。若预定义的λ可取的数量为M,则频谱扩展比例指示信息的字段长度为Q比特(bit),其中Q为大于 log2(M)的最小整数。
例如,λ可取的数量为8,频谱扩展比例指示信息的字段长度为表1至表2示出了λ的取值的几种情况。
如表1所示,λ在(0,1)区间内取值,按照间隔取值的方法。
表1
如表2所示,网络设备向终端设备预定义了频谱扩展(spectral extension,SE)最大值,记为SEmax,λ可以在(0,SEmax)区间内取值。这种情况下,频谱扩展比例指示信息所指示的比例λ可以是相对于SEmax的比例。
表2
应理解,频谱扩展比例λ和FDSS实现以及MCS密切相关,不同频谱扩展比例λ会提供终端设备不同的上行覆盖能力,也会影响系统带宽资源利用率。因此,网络设备可以衡量多种因素(例如,终端设备的能力、频谱资源余量、终端设备上行覆盖需求等)来确定不同终端设备的频谱扩展比例。
S220,终端设备根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源。
具体地,S220包括以下至少一个:根据第一信息、第二信息和频谱扩展比例指示信息确定扩展频谱所占用的PUSCH资源的位置和大小;或者,根据第一信息、第二信息和频谱扩展比例指示信息确定非扩展频谱所占用的PUSCH资源的位置和大小。
其中,第一信息用于指示扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系,该位置关系包括:扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的内部;或,扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的外侧。第一信息也可以称为频谱扩展方式指示信息,“扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系”可以理解为频谱扩展方式,“扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的内部”可以理解为带内扩展,“扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的外侧”可以理解为带外扩展。换言之,第一信息可以用于指示频谱扩展方式,该频谱扩展方式包括带内扩展和带外扩展。
其中,网络设备向终端设备配置的PUSCH传输资源可以是总资源,也可以是扩展频谱所占用的PUSCH资源,也可以是扩展频谱所占用的PUSCH资源中的部分资源,还可以是非扩展频谱所占用的PUSCH资源。若扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的 内部,则网络设备向终端设备配置的PUSCH传输资源为总资源。若扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的外侧,则网络设备向终端设备配置的PUSCH传输资源可以是扩展频谱所占用的PUSCH资源,也可以是非扩展频谱所占用的PUSCH资源,也可以是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源,即下文中的第一资源。
在本申请中,扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源总和在频域上是连续的资源。
其中,第二信息用于指示第一资源的大小与扩展频谱所占用的PUSCH资源的大小之间的比例,第一资源为扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的一侧的资源。
应理解,扩展频谱所占用的PUSCH资源在频域上可以是不连续的,即扩展频谱所占用的PUSCH资源由两部分组成,两部分分别位于非扩展频谱所占用的PUSCH资源的两侧。这种情况下,第一资源指的是扩展频谱所占用的PUSCH资源中的部分资源。扩展频谱所占用的PUSCH资源在频域上也可以是连续的,即扩展频谱所占用的PUSCH资源由一部分组成,即扩展频谱所占用的PUSCH资源位于非扩展频谱所占用的PUSCH资源的一侧。这种情况下,第一资源可以是指扩展频谱所占用的PUSCH资源中的全部资源。
应理解,本申请中,所述“一侧”,可以理解为频率较低的一侧或频率较高的一侧。所述“两侧”,可以理解为频率较低的一侧和频率较高的一侧。
可选地,第一资源的位置可以通过预配置的方式,也可以是协议规定的方式,本申请不作限制。
为了便于说明,本文将第二信息所指示的比例记为λ1
图7是本申请实施例提供的PUSCH资源的示意图。在图7中,横坐标表示频率,非扩展频谱所占用的PUSCH资源由SE_right和SE_left组成,SE_right是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的右侧的资源,SE_left是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的左侧的资源,数据(Data)部分为非扩展频谱所占用的PUSCH资源,函数length(x)衡量x的带宽大小,可以使用所占用的RB个数或RE个数表征。其中,右侧即为频率较高的一侧,左侧即为频率较低的一侧。
如图7的(a)所示,扩展频谱所占用的PUSCH资源位于非扩展频谱所占用的PUSCH资源的左右两侧,length(SE_right)为1个RB,length(SE_left)为1个RB,length(Data)为8个RB,则λ=SSE/SD=(length(SE_right)+length(SE_left))/length(Data)=0.5,λ1=length(SE_left)/(length(SE_right)+length(SE_left))=0.5,1-λ1=0.5。
如图7的(b)所示,扩展频谱所占用的PUSCH资源位于非扩展频谱所占用的PUSCH资源的左侧,length(SE_right)为0个RB,length(SE_left)为2个RB,length(Data)为8个RB,则λ=SSE/SD=(length(SE_right)+length(SE_left))/length(Data)=0.5,λ1=length(SE_left)/(length(SE_right)+length(SE_left))=1,1-λ1=0。
应理解,在图7中,将SE_left作为第一资源的一例,然而,图7仅为示例,并不作为本申请的限定。例如,在实际应用中,第一资源也可以是SE_right。此外,在图7中,网络设备向终端设备配置的PUSCH传输资源可以是指数据(Data)部分、SE_right和SE_left之和,也可以是指数据(Data)部分,也可以是指SE_right或SE_left,也可以是指SE_right+SE_left。具体地:
(1)若网络设备向终端设备配置的PUSCH传输资源为数据(Data)部分、SE_right和SE_left之和,则终端设备根据λ和ST可以分别确定SSE和SD,并根据λ1和SSE可以确定SE_left和SE_right的大小,进一步,根据各部分的大小和PUSCH传输资源的位置可以确定数据部分、SE_left、SE_right在整个资源上的位置。
(2)若网络设备向终端设备配置的PUSCH传输资源为数据(Data)部分,则终端设备根据λ和SD可以分别确定SSE,并根据λ1和SSE可以确定SE_left和SE_right的大小,进一步,根据各部分的大小以及数据(Data)部分的位置,可以确定SE_left、SE_right的位置。
(3)若网络设备向终端设备配置的PUSCH传输资源为SE_right或SE_left,则终端设备根据λ1确定SSE,并根据λ和SSE可以分别确定SD,进一步,根据各部分的大小以及SE_right或SE_left的位置,可以确定数据部分的位置。
(4)若网络设备向终端设备配置的PUSCH传输资源为SE_right+SE_left,则终端设备根据λ和SSE可以分别确定SD,并根据λ1和SSE可以确定SE_left和SE_right的大小,进一步,根据各部分的大小以及SE_right+SE_left的位置,可以确定SE_left、SE_right、数据部分的位置。
S230,终端设备在非扩展频谱所占用的PUSCH资源上向网络设备发送上行数据,在扩展频谱所占用的PUSCH资源上向网络设备发送上行数据的复制数据。
相应地,网络设备在非扩展频谱所占用的PUSCH资源上接收上行数据,在扩展频谱所占用的PUSCH资源上接收上行数据的复制数据。
其中,上行数据指的是传输块对应的数据,传输块中的数据经过调制编码以及DFT预编码成为待映射的频域符号,即为上行数据,终端设备可以将该上行数据映射到非扩展频谱所占用的PUSCH资源并发送给网络设备,此外,终端设备还可以将上行数据的复制数据映射到扩展频谱所占用的PUSCH资源并发送给网络设备。具体过程可以参考图4和图5所示的描述,在此不予赘述。
应理解,上行数据可以由多个数据包组成,复制数据指的组成上行数据的多个数据包中的部分或全部数据包。此外,本申请实施例中,上行数据也可以称为核心数据,复制数据也可以称为扩展数据。
图8是本申请实施例提供的数据传输的方法200的一种示例。如图8所示,横坐标表示频率,非扩展频谱所占用的PUSCH资源由SE_right和SE_left组成,SE_right是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的右侧的资源,SE_left是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的左侧的资源。其中,右侧即为频率较高的一侧,左侧即为频率较低的一侧。数据(Data)部分为非扩展频谱所占用的PUSCH资源。
在图8中,扩展频谱所占用的PUSCH资源位于非扩展频谱所占用的PUSCH资源的左右两侧。上行数据承载于数据部分,上行数据的复制数据承载于SE_right和SE_left。进而,网络设备可以在非扩展频谱所占用的PUSCH资源和扩展频谱所占用的PUSCH资源分别接收上行数据和复制数据。
基于上述实施例提供的方案,网络设备可以向终端设备指示频谱扩展比例指示信息,从而终端设备能够根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,进而能够在非扩展频谱所占用的PUSCH资源上传输上行数据,在扩展频谱所占用的PUSCH资源上传输该上行数据的复制数据,通过这种方式,终端设备可以使用更大的传输带宽进行上行传输,这降低了波形的PAPR,具有更大的上行发送功率,从而能够获取对应传输速率目标的更大的最大可容忍功率衰减,因此,能够提升上行传输的覆盖能力。
另一方面,将上行数据的复制数据传输两次,能够提升上行传输的可靠性。
可选地,该方法200还包括:S240,终端设备确定上行行为,具体包括确定以下至少一项:上行数据的传输块的大小、复制数据的对应的频域符号的序列长度、传输上行数据的上行发送功率估计值、传输复制数据的上行发送功率估计值。以下详细说明。
(1)终端设备可以根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的传输块的大小。
具体地,终端设备可以根据式(1)确定NRE,进而根据NRE确定传输块的大小,式(1)中nPRB的取值为上行数据所占用的资源的大小,在该实施例中,即为非扩展频谱所占用的PUSCH资源的大小。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小为N/(1+λ)。那么终端设备在确定传输上行数据的传输块的大小时,式(1)中nPRB的取值为N/(1+λ)。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,则终端设备在确定传输上行数据的传输块的大小时,式(1)中nPRB的取值为N。
应理解,在方法200中,根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的传输块的大小,其主要含义为,在确定上行数据的传输块大小时,所使用的资源大小nPRB为非扩展频谱所占用的PUSCH资源的大小。在根据nPRB确定NRE之后,根据NRE确定传输块的大小的过程包括计算未量化传输块大小、计算量化后的传输块大小等,具体的过程和方法可以参考标准定义。
(2)根据扩展频谱所占用的PUSCH资源的大小确定复制数据的对应的频域符号的序列长度。
具体地,复制数据的对应的频域符号的序列长度即为扩展频谱所占用的PUSCH资源的大小。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则扩展频谱所占用的PUSCH资源的大小为Nλ/(1+λ)。那么复制数据的对应的频域符号的序列长度为Nλ/(1+λ)。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,频谱扩展比例为λ=SSE/SD,则扩展频谱所占用的PUSCH资源的大小为Nλ,那么复制数据的对应的频域符号的序列长度为Nλ。
(3)确定上行功率,上行功率包括传输上行数据的上行发送功率估计值、传输复制数据的上行发送功率估计值、上行发射功率实际值、第一功率和功率余量中至少一项,功率余量表示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率为传输上行数据的上行发送功率估计值和传输复制数据的上行发送功率估计值之和,第一功率又可以称为上行发射功率估计值。上行发射功率实际值也就是传输上行数据和传输复制数据的总功率的实际值。
具体地,终端设备可以通过以下任一种方式确定上行功率。
方式一、根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据的上行发送功率估计值。
具体地,终端设备可以根据以下式(4)确定传输上行数据的上行发送功率估计值。
其中,的计算结果表示传输上行数据的上行发送功率估计值,式(4)中的取值为上行数据所占用的资源的大小,即为非扩展频谱所占用的PUSCH资源的大小。的取值会影响式(4)中的ΔTF,b,f,c(i)、fb,f,c(i,l)的计算结果。式(4)的其他参数的含义和取值参考式(2)。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小为N/(1+λ)。那么终端设备在确定传输上行数据的上行发送功率估计值时,式(4)中的取值为N/(1+λ)。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,则终端设备在确定传输上行数据的上行发送功率估计值时,式(4)中的取值为N。
可选地,在方式一中,终端设备还可以根据传输上行数据的上行发送功率估计值确定传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量至少一个。
具体地,终端设备可以根据式(5)-式(7)确定传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量。


其中,ΔP表示传输复制数据的上行发送功率估计值,λ2为第一资源的大小与非扩展频谱所占用的PUSCH资源的大小之间的比例,以图7为例,λ2=length(SE_left)/length(Data),fdss(n)是FDSS滤波器在索引(index)为n的RE上的函数值,n是RE的索引,从左到右依次递增,这里的RE包括为扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源的RE之和,的取值与式(4)中相同,为上行数据所占用的资源的大小。PPUSCH,b,f,c(i,j,qd,l)表示终端设备传输PUSCH的上行发射功率实际值。PCMAX,f,c(i)含义同式(2),是式(4)的计算结果, 与ΔP(i,j,qd,l)之和为第一功率,PHtype1,b,f,c(i,j,qd,l)表示功率余量。
方式二、根据非扩展频谱所占用的PUSCH资源的大小确定第一功率。
其中,的计算结果表示第一功率,式(8)中的取值为上行数据所占用的资源的大小,即为非扩展频谱所占用的PUSCH资源的大小。的取值会影响式(8)中的ΔTF,b,f,c(i)、fb,f,c(i,l)的计算结果。式(8)的其他参数的含义和取值参考式(2)。
换言之,方式二与方式一的区别在于,在方式二中,终端设备可以将的计算结果作为上行发射功率估计值。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小为N/(1+λ)。那么终端设备在确定第一功率时,式(8)中的取值为N/(1+λ)。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,则终端设备在确定第一功率时,式(8)中的取值为N。
可选地,在方式二中,终端设备还可以根据第一功率确定传输上行数据的上行发送功率估计值、传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量至少一个。
具体地,终端设备可以根据式(9)-式(11)确定传输上行数据的上行发送功率估计值、传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量。


其中,ΔP、λ2、fdss(n)、n、PCMAX,f,c(i)、PHtype1,b,f,c(i,j,qd,l)、PPUSCH,b,f,c(i,j,qd,l)的含义与方式一相同。的取值与式(8)中相同,为非扩展频谱所占用的PUSCH资源的大小。是式(8)的计算结果,第一功率与传输复制数据的上行发送功率估计值之差,即的结果表示传输上行数据的上行发送功率估计值。
方式三、根据非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和确定第一功率。
具体地,终端设备可以根据以下式(12)确定第一功率。
其中,的计算结果表示第一功率,式(12)中的取值为上行数据所占用的资源的大小和复制数据所占用的资源的大小之和,即为非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和。的取值会影响式(12)中的ΔTF,b,f,c(i)、fb,f,c(i,l)的计算结果。式(12)的其他参数的含义和取值参考式(2)。
换言之,方式三与方式一的区别在于,在方式三中,终端设备可以将的计算结果作为上行发射功率估计值,并且终端设备在确定上行发射功率估计值时,使用的资源大小可以是非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,则终端设备在确定第一功率时,式(12)中的取值为N。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和为N·(1+λ),那么终端设备在确定第一功率时,式(12)中的取值为N·(1+λ)。
可选地,在方式三中,终端设备还可以根据第一功率确定传输上行数据的上行发送功率估计值、传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量至少一个。
具体地,终端设备可以根据式(13)-式(15)确定传输上行数据的上行发送功率估计值、传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量。


其中,ΔP、λ2、fdss(n)、n、PCMAX,f,c(i)、PHtype1,b,f,c(i,j,qd,l)、PPUSCH,b,f,c(i,j,qd,l)的含义与方式一相同。的取值与式(13)中相同,为非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和。是式(12)的计算结果,第一功率与传输复制数据的上行发送功率估计值之差,即:
的结果表示传输上行数据的上行发送功率估计值。
方式四、根据非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和确定传输上行数据的上行发送功率估计值。
具体地,终端设备可以根据以下式(16)确定传输上行数据的上行发送功率估计值。
其中,的计算结果表示传输上行数据的上行发送功率估计值,式(16)中的取值为上行数据所占用的资源的大小和复制数据所占用的资源的大小之和,即为非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和。的取值会影响式(16)中的ΔTF,b,f,c(i)、fb,f,c(i,l)的计算结果。式(16)的其他参数的含义和取值参考式(2)。
换言之,方式四与方式一的区别在于,在方式四中,终端设备在确定上行发射功率估计值时,使用的资源大小可以是非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,则终端设备在确定传输上行数据的上行发送功率估计值时,式(12)中的取值为N。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和为N·(1+λ),那么终端设备在确定传输上行数据的上行发送 功率估计值时,式(16)中的取值为N·(1+λ)。
可选地,在方式四中,终端设备还可以根据传输上行数据的上行发送功率估计值确定传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量至少一个。
具体地,终端设备可以根据式(17)-式(19)确定传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量。


其中,ΔP、λ2、fdss(n)、n、PCMAX,f,c(i)、PHtype1,b,f,c(i,j,qd,l)、PPUSCH,b,f,c(i,j,qd,l)的含义与方式一相同。的取值与式(16)中相同,为非扩展频谱所占用的PUSCH资源的大小和扩展频谱所占用的PUSCH资源的大小之和。是式(16)的计算结果,与ΔP(i,j,qd,l)之和为第一功率。
可选地,在上述方式一至方式的任一种方式中,λ2可以为默认值,例如,协议可以定义λ2与λ1或λ的关系,又如,网络设备和终端设备可以通过信息交互对齐λ2的取值,本申请不作限定。下面给出λ2的取值的两种示例。
作为一种实现方式,λ2=λ/2。在这种实现方式中,滤波器的中心点位于总资源的中央位置,网络设备在解调时也会默认扩展前的DFT符号序列的中心点位于总资源的中央位置,因此,会取出位于非扩展频谱所占用的PUSCH资源上的序列加以解调。若网络设备采用最大比合并(maximum ratio combining,MRC)方式,那网络设备可以取出总资源上的符号,把对应符号以MRC方式合并。
通过这种实现方式,能够保证滤波器在总频谱上的对称性。
作为另一种实现方式,λ2=λ1,在这种实现方式中,滤波器的中心点不位于总资源的中央位置。
可选地,该方法200还包括:S250,终端设备向网络设备发送功率余量(power headroom,PH)信息,其中,PH信息用于指示网络设备向终端设备配置的最大发送功率与第一功率之间的差值。
在一种实现方式中,PH信息通过一个字段指示。例如,终端设备可以将网络设备向终端设备配置的最大发送功率中除了传输上行数据和传输复制数据所使用的功率之外剩余的功率作为功率余量,上报至网络设备,以便网络设备分配资源以及调整终端设备的发射功率。在该实现方式中,功率余量可以是上述方式一至方式四中任一种方式的功率余量PHtype1,b,f,c(i,j,qd,l)的计算结果。
通过这种方式,网络设备可以直接获得终端设备的功率余量,更加简洁高效。
在上述实现方式中,PH信息可以携带于媒体访问控制控制单元(MAC control element,MAC CE)中。其中,该MCA CE可以是功率余量报告(power headroom report,PHR)MAC CE,也可以是其他MAC CE,本申请不做限定。
作为一个示例,PH信息携带于PHR MAC CE。
图9是第三代合作伙伴计划(3rd generation partnership project,3GPP)标准TS 38.321中PHR MAC CE的一种示意图。如图9所示,PHR MAC CE的长度为2字节,包括P字段、R字段、PH字段、MPE字段和PCMAX,f,c字段。其中,P字段占据第一字节的第1个比特(bit),其用于指示功率管理导致的功率回退的信息。R字段占据第一字节的第二个比特(bit),其为保留(reserved)字段,被设置为0。PH字段占据第一字节的第3至8bit,用于指示功率余量的等级,在非增强覆盖场景中,该功率余量可以是式(3)的计算结果。MPE字段占据第二字节的第1至2bit,用于指示为满足最大允许暴露(maximum  permissible exposure,MPE)要求而施加的功率回退。PCMAX,f,c字段占据第二字节的第3至8bit,指示用于终端设备计算功率余量所使用的PCMAX,f,c(i)。可选地,MPE字段也可以被替换为R字段,即保留字段。
其中,在方法200中,PH字段中的功率余量可以是网络设备向终端设备配置的最大发送功率与第一功率之间的差值,即式(7)、式(11)、式(15)或式(19)的计算结果。
通过这种方式,终端设备在上报功率余量时,可以复用PH字段,具有更好的兼容性。
作为又一个示例,PH信息携带于新定义的MAC CE中。
图10是本申请实施例提供的MAC CE的一种示意图。如图10所示,该MAC CE包括1个字节,该字节的第1至2bit可以为保留字段,该字节的第3至8bit可以为PH字段,PH字段携带功率余量等级,该功率余量网络设备向终端设备配置的最大发送功率与第一功率之间的差值,即式(7)、式(11)、式(15)或式(19)的计算结果。
可选地,终端设备还可以向网络设备指示传输复制数据所使用的功率的估计值,即传输复制数据的上行发送功率估计值ΔP。
其中,传输复制数据所使用的功率的估计值可以携带于MAC CE中。其中,该MCA CE可以是PHR MAC CE,也可以是其他MAC CE,本申请不做限定。
作为一个示例,ΔP携带于PHR MAC CE。
图11是本申请实施例提供的PHR MAC CE的一种示意图。如图11所示,该MAC CE包括3个字节,包括R字段、PH字段、PCMAX,f,c字段和ΔP字段。其中,R字段和PCMAX,f,c字段的含义与图9相同。ΔP字段携带传输复制数据的上行发送功率估计值。
可选地,在图11中,PH字段可以指示功率余量等级,也可以指示网络设备向终端设备配置的最大发送功率与传输上行数据的功率之间的差值。换言之,终端设备可以直接通过PH字段向网络设备指示功率余量等级,也可以通过PH字段指示网络设备向终端设备配置的最大发送功率与传输上行数据的上行发送功率估计值之间的差值(称为值#1),并向网络设备上报ΔP,进一步,网络设备根据值#1和ΔP的差值可以确定功率余量。
作为又一个示例,ΔP携带于新定义的MAC CE中。
图12是本申请实施例提供的MAC CE的一种示意图。如图12所示,该MAC CE包括1个字节,该字节的第1至2bit可以为保留字段,该字节的第3至8bit可以为ΔP字段,其中,ΔP字段携带传输复制数据的上行发送功率估计值。
可选地,传输复制数据的上行发送功率估计值ΔP可以替换为功率等级,例如,ΔP可以按照相对PCMAX,f,c(i)的比例的方式上报,又如,ΔP可以按照相对第一功率的比例的方式上报,又如,ΔP可以按照相对上行发射功率实际值PPUSCH,b,f,c(i,j,qd,l)的比例的方式上报,再如,ΔP可以按照相对预设功率值的比例的方式上报,只要网络设备和终端设备能够对齐即可,本申请不作限定。若ΔP替换为功率等级,此时,图11和图12中ΔP字段可以指该功率等级。可选地,该功率等级的设置形式可以参考表4。
可选地,该方法200还包括:S260,网络设备向终端设备发送第四信息,相应地,终端设备接收第四信息,第四信息用于指示上行数据在非扩展频谱所占用的PUSCH资源上的起始位置。
换言之,第四信息可以用于指示上行数据的起始位置,或者说,用于指示上行数据在本次传输所使用的资源上的起始位置,从而终端设备可以按照网络设备的指示将上行数据映射到非扩展频谱所占用的PUSCH资源上。由于网络设备已知哪些是上行数据,哪些是复制数据,当网络设备接收到上行数据和复制数据时,可以解调上行数据和复制数据。
具体地,网络设备可以向终端设备指示上行数据的第一个符号映射在非扩展频谱所占用的PUSCH资源中的第几个RE上,也可以指示非扩展频谱所占用的PUSCH资源中的第一个RE上映射的是上行数据的第几个符号,终端设备在进行VRB映射时,可以根据网络设备的指示进行映射。如此有助于终端设备和网络设备,也便于网络设备解调。
可选地,上行数据与非扩展频谱所占用的PUSCH资源的映射关系也可以是预定义的,例如,协议规定上行数据的第一个符号映射在非扩展频谱所占用的PUSCH资源中的第一个RE上。
其中,终端设备可以通过以式(20)进行VRB映射。
其中,S是调制符号经过DFT预编码后得到的频域符号序列,λ是频谱扩展比例。mod(k,K)=k0,k0=k+nK,n∈{...,-2,-1,0,1,2,...},K为整数,λ3是S序列中位于第一个符号占据的RE之前的RE的个数与非扩展频谱所占用的PUSCH资源的RE个数之比,其使得总资源上的第个RE上开始映射DFT序列的第一个符号,之后在其余RE上将频域符号进行循环映射。λ3可以取任意使得为整数的值,只要使得上行数据和复制数据都映射到相应的资源上即可。表示非扩展频谱所占用的PUSCH资源的大小,以RB个数表征,它包括12个RE,表示总资源。式(20)表示FDSS滤波器的通带内的RE上承载的调制符号是依次映射的。
下面举例对终端设备的映射方式进行说明。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小的取值为N/(1+λ),终端设备可以按照如下方式把调制符号映射到本次传输所使用的资源对应的VRB上:
其中,S、λ、λ3、mod()的含义与公式(20)相同。
又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小的取值为N,总资源为N·(1+λ),则终端设备可以按照如下方式把调制符号映射到本次传输所使用的资源对应的VRB上:
VRB(k)=S(mod((1-λ3)·N·12+k,N·12)),k∈{1,2,...,N·12·(1+λ)}(22)
其中,S、λλ3、mod()的含义与公式(20)相同。
可选地,该方法200还包括:S201,网络设备向终端设备发送第一信息和/或第二信息,相应地,终端设备接收第一信息和/或第二信息。
其中,第一信息可以为1比特,其两个取值分别用于指示:扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的内部、扩展频谱所占用的PUSCH资源位于网络设备向终端设备配置的PUSCH传输资源的外侧。
可选地,扩展频谱所占用的PUSCH资源与网络设备向终端设备配置的PUSCH传输资源的位置关系也可以通过协议预定义的方式,也就是,网络设备可以不需要向终端设备发送第一信息。
其中,与频谱扩展比例指示信息类似,第二信息的字段长度取决于λ1的可取的数量。例如,λ1的可取的数量为8,第二信息的字段长度为3比特,如表3所示。
表3
可选地,第一信息和/或第二信息可以承载于DCI中,即S201和S210可以同时执行。
可选地,该方法200还包括:S202,终端设备向网络设备发送第三信息。相应地,网络设备接收第三信息。
其中,第三信息用于指示终端设备的滤波器在过渡带所占用的功率,滤波器在过渡带所占用的功 率用于网络设备确定网络设备向终端设备配置的PUSCH传输资源的大小。
滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其他频率成分。滤波器允许通过信号的频率范围成为滤波器的通带,滤波器不允许通过信号的频率范围成为滤波器的阻带,通带和阻带之间的频率范围称为过渡带。终端设备可以将其滤波器在过渡带所占用的功率发送给网络设备,进一步,网络设备可以根据过渡带所占用的功率调整确定向终端设备配置的PUSCH传输资源的大小。
应理解,通过第三信息,网络设备可以更准确地掌握终端设备的功率,这能用于网络设备进行资源分配计算,从而使得终端设备能够更准确地向终端设备分配资源。网络设备进行资源分配计算的方法可以参考现有的或未来新研发的技术,本申请不做限定。
作为示例,第三信息可以是直接指示的方式,例如,第三信息为滤波器在过渡带所占用的功率。第三信息也可以是间接指示的方式,例如,第三信息为滤波器在过渡带所占用的功率与预设功率值的比例,网络设备可以根据第三信息和预设功率值确定滤波器在过渡带所占用的功率。其中,预设功率值可以是网络设备提前向终端设备配置的,也可以是协议定义的,本申请不做限定。
表4示出了第三信息的一种指示方式。如表4所示,第三信息为滤波器在过渡带所占用的功率与预设功率值的比例γ,γ可以在(0,1)区间内取值,且第三信息可以为3比特。
表4
作为一种实现方式,滤波器在过渡带所占用的功率可以携带于终端设备的能力信息中。换言之,终端设备可以在向网络设备发送能力信息的过程中,上报过渡带所占用的功率。
例如,在初始接入的时候,网络设备向终端设备发送UECapabilityEnairy,请求终端设备上报其滤波器在过渡带所占用的功率,进一步,终端设备可以在能力信息(UECapabilityInformantion)中增加频谱扩展参数(SE-Parameters),其中频谱扩展参数包括终端设备的滤波器在过渡带所占用的功率。
上述图4和图5介绍了通过降低PAPR来提升上行传输的覆盖能力,方法200给出了终端设备和网络设备使用频谱扩展和频域频谱整形技术来降低PAPR的具体实现方式。下文将结合图13和图14,给出提升上行传输的覆盖能力的又一种方式。在该方式中,将通过提高频谱效率来提升上行传输的覆盖能力。
图13是本申请实施例提供的一种数据传输的方法的又一示意图。图13所示的方法300的部分内容可以参考上述图6中的描述。
S310,网络设备向终端设备发送频谱扩展比例指示信息。
S310的具体描述可以参考S210,在此不予赘述。
S320,终端设备根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源。
S320的具体描述可以参考S220,在此不予赘述。
S330,终端设备在非扩展频谱所占用的PUSCH资源上向网络设备发送上行数据的部分数据,在扩展频谱所占用的PUSCH资源上向网络设备发送上行数据的剩余数据,剩余数据的发送功率满足带内发射要求。
相应地,网络设备在非扩展频谱所占用的PUSCH资源上接收上行数据的部分数据。
其中,上行数据指的是传输块对应的数据,传输块中的数据经过调制编码以及DFT预编码成为待 映射的频域符号,即为上行数据。终端设备可以根据频谱扩展比例指示信息所指示的比例,将上行数据分为两部分,其中部分数据映射在非扩展频谱所占用的PUSCH资源上并发送,上行数据中除了前述部分数据之外的数据称为剩余数据,剩余数据映射在扩展频谱所占用的PUSCH资源上并发送,且在发送剩余数据时,发送功率满足带内发射要求。
具体地,协议定义了带内发射(In-band emissions,IBE)要求,带内发射是指非分配RB中的UE输出功率与分配RB中的UE输出功率的比值,带内发射要求的具体含义可以参考协议38101-2的6.4.2.3。当剩余数据的发送功率满足带内发射要求,网络设备将不会接收到剩余数据,或者说,网络设备根据扩展频谱所占用的PUSCH资源上接收到的信息无法解调出剩余数据。
也就是说,在空口上,上行数据中只有该部分数据占用了资源,而剩余数据未占用资源。例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,则终端设备在扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源均映射上行数据,然而,由于扩展频谱所占用的PUSCH资源上发送的剩余数据的发送功率满足带内发射要求,因此,该终端设备在口空中占用的资源只包括扩展频谱所占用的PUSCH资源,不包括扩展频谱所占用的PUSCH资源。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,则终端设备可以根据S320获知扩展频谱所占用的PUSCH资源,并在扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源均映射上行数据,然而,由于扩展频谱所占用的PUSCH资源上发送的剩余数据的发送功率满足带内发射要求,因此,该终端设备在口空中占用的资源只包括扩展频谱所占用的PUSCH资源,不包括扩展频谱所占用的PUSCH资源。
通过这种方式,不会对其他使用扩展频谱所占用的PUSCH资源的用户造成干扰,有助于更合理的利用资源。
应理解,上行数据可以由多个数据包组成,部分数据和剩余数据组成上行数据的全部数据包。此外,本申请实施例中,由于网络设备不会接收到剩余数据,因此,剩余数据也可以称为滤除数据,而部分数据也可以称为保留数据。
在方法300中,上行数据可以是通过PI/2二进制相移键控(binary phase shift keying,BPSK)调制的数据,PI/2BPSK这种调制方式调制的数据具有对称性,所谓“对称性”,指的是PI/2BPSK调制符号序列的频谱呈现对称性,其具体对称性表现为:对于M长的频域序列,其从第一个频域符号到最后一个频域符号可以划分为四个序列,分别记为第一个1/4序列、第二个1/4序列、第三个1/4序列和第四个1/4序列。其中,第一个1/4序列和第二个1/4序列存在对称性,第三个1/4序列和第四个1/4序列存在对称性。因此,网络设备可以根据部分数据和对称性确定上行数据。具体来说,根据非扩展频谱上的数据与整体数据的关系以及上述对称性,可以恢复出扩展频谱上的符号,这样扩展频谱和非扩展频谱上的频域序列组成了完整的PI/2BPSK调制符号序列经DFT得到的M长的频域序列,后续解调操作与非扩展方式的PI/2BPSK+DFT-S-OFDM的解调方式相同。
图14是本申请实施例提供的数据传输的方法300的一种示例。如图14所示,横坐标表示频率,非扩展频谱所占用的PUSCH资源由DE_right和DE_left组成,DE_right是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的右侧的资源,DE_left是扩展频谱所占用的PUSCH资源中位于非扩展频谱所占用的PUSCH资源的左侧的资源。其中,右侧即为频率较高的一侧,左侧即为频率较低的一侧。数据(Data)部分为非扩展频谱所占用的PUSCH资源。其中,DE表示滤除(delete)。
在图14中,扩展频谱所占用的PUSCH资源位于非扩展频谱所占用的PUSCH资源的左右两侧。上行数据的部分数据承载于数据部分,上行数据的剩余数据承载于DE_right和DE_left。且终端设备在发送剩余数据时,通过调整发射功率,使得剩余数据的发送功率满足带内发射要求。具体来说,如图14所示,终端设备在发送上行数据时,在部分数据占据的频谱上,滤波器从中心到两端至少保持近似恒定幅值(归一化幅值为1)的比例为扩展带宽和非扩展带宽之和的一半以上(称为A-B段),自A、B两点向两端延伸,滤波器幅值以双向对称或近似对称的方式衰减,在剩余数据和部分数据的交界处(称为C、D点)开始小于一定的幅度值。进而网络设备可以在非扩展频谱所占用的PUSCH资源接收部分数据,而在扩展频谱所占用的PUSCH资源无法接收剩余数据,网络设备可以根据对称性和接收到的部分数据解调获得上行数据。
应理解,滤波器从中心到两端至少保持近似恒定幅值(归一化幅值为1)的比例为扩展带宽和非扩 展带宽之和的一半以上,也就是说,滤波器的通带的比例至少占据扩展带宽和非扩展带宽之和的一半以上,原因是:利用对称性恢复出完整的频域序列至少需要第2个1/4序列和第3个1/4序列,这就要求至少中间的1/2序列的接收质量要高,因此接收功率要高,通过将滤波器系数保持近似恒定值1,可以是的发送的数据具有较高的功率。
基于上述实施例提供的方案,网络设备可以向终端设备指示频谱扩展比例指示信息,从而终端设备能够根据频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,进而能够在非扩展频谱所占用的PUSCH资源上传输上行数据的部分数据,在扩展频谱所占用的PUSCH资源上传输该上行数据的剩余数据,且剩余数据的发送功率满足带内发射要求,通过这种方式,降低了终端设备发送上行数据占据的带宽,终端设备可以使用更高的频谱效率来进行上行传输,从而在相同带宽资源下能够获取对应传输速率目标的更大的最大可容忍功率衰减,因此,能够提升上行传输的覆盖能力。
应理解,通过降低发送信号占据的频域带宽来提高发送信号的频谱效率,即提高相同带宽资源下的数据速率,这等效于在同等带宽资源下提高实现传输速率目标的覆盖范围。
另一方面,由于空口传输中只占用了非扩展频谱所占用的PUSCH资源,网络设备可以将扩展频谱所占用的PUSCH资源分配给其他终端设备,从而能够提高资源利用率。
可选地,该方法200还包括:S340,终端设备确定以下至少一项:上行数据的传输块的大小、剩余数据的对应的频域符号的序列长度、传输部分上行数据的上行发送功率估计值、传输剩余数据的上行发送功率估计值。以下详细说明。
(1)终端设备可以根据非扩展频谱所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和确定传输上行数据的传输块的大小。
具体地,终端设备可以根据式(1)确定NRE,进而根据NRE确定传输上行数据的传输块的大小,式(1)中nPRB的取值为上行数据所占用的资源的大小,在该实施例中,即为非扩展频谱所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,则终端设备在确定传输上行数据的传输块的大小时,式(1)中nPRB的取值为N。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,则非扩展频谱所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和为N(1+λ),那么终端设备在确定传输上行数据的传输块的大小时,式(1)中nPRB的取值为N(1+λ)。
应理解,在方法300中,根据总资源的大小确定传输上行数据的传输块的大小,其主要含义为,在确定上行数据的传输块大小时,所使用的资源大小nPRB为总资源的大小。在根据nPRB确定NRE之后,根据NRE确定传输块的大小的过程包括计算未量化传输块大小、计算量化后的传输块大小等,具体的过程和方法可以参考标准定义。
(2)根据扩展频谱所占用的PUSCH资源的大小确定剩余数据的对应的频域符号的序列长度。
具体地,剩余数据的对应的频域符号的序列长度即为扩展频谱所占用的PUSCH资源的大小。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则扩展频谱所占用的PUSCH资源的大小为Nλ/(1+λ)。那么剩余数据的对应的频域符号的序列长度为Nλ/(1+λ)。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,频谱扩展比例为λ=SSE/SD,则扩展频谱所占用的PUSCH资源的大小为Nλ,那么剩余数据的对应的频域符号的序列长度为Nλ。
(3)确定上行功率,上行功率包括传输部分数据的上行发送功率估计值、传输剩余数据的上行发送功率估计值、上行发射功率实际值、第一功率和功率余量中至少一项,功率余量表示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率为传输部分数据的上行发送功率估计值和传输剩余数据的上行发送功率估计值之和,第一功率又可以称为上行发射功率估计值,上行发射功率实际值表示传输上行数据和传输复制数据的总功率的实际值。
具体地,具体地,终端设备可以通过以下任一种方式确定上行功率。
方式一、根据非扩展频谱所占用的PUSCH资源的大小确定传输上行数据中的部分数据的上行发送功率估计值。
具体地,终端设备可以根据式(4)确定传输上行数据的部分数据的上行发送功率估计值。其中,的计算结果表示传输部分数据的上行发送功率估计值,式(4)中的取值为部分数据所占用的资源的大小,即为非扩展频谱所占用的PUSCH资源的大小。的取值会影响式(4)中的ΔTF,b,f,c(i)、fb,f,c(i,l)的计算结果。式(4)的其他参数的含义和取值参考式(2)。
例如,若网络设备向终端设备配置的PUSCH传输资源为总资源,且总资源的大小为N,频谱扩展比例为λ=SSE/SD,则非扩展频谱所占用的PUSCH资源的大小为N/(1+λ)。那么终端设备在确定传输部分数据的上行发送功率估计值时,式(2)中的取值为N/(1+λ)。又如,若网络设备向终端设备配置的PUSCH传输资源为非扩展频谱所占用的PUSCH资源,且非扩展频谱所占用的PUSCH资源的大小为N,则终端设备在确定传输部分数据的上行发送功率估计值时,式(2)中的取值为N。
可选地,在方式一中,终端设备还可以根据传输部分数据的上行发送功率估计值确定传输剩余数据的上行发送功率估计值、上行发射功率实际值和功率余量至少一个。
具体地,终端设备可以根据式(5)-式(7)确定传输复制数据的上行发送功率估计值、上行发射功率实际值和功率余量。
其中,ΔP表示传输剩余数据的上行发送功率估计值,λ2=λ/2,fdss(n)是FDSS滤波器在索引(index)为n的RE上的函数值,n是RE的索引,从左到右依次递增,这里的RE包括为扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源的RE之和,的取值与式(4)中相同,为非扩展频谱所占用的PUSCH资源的大小。PPUSCH,b,f,c(i,j,qd,l)表示终端设备传输PUSCH的上行发射功率实际值。PCMAX,f,c(i)含义同式(2),是式(4)的计算结果,和ΔP(i,j,qd,l)之和为第一功率,PHtype1,b,f,c(i,j,qd,l)表示功率余量。
方式二至方式四参考方法200。只需要将方法200中的上行数据替换为方法300中的部分数据,将方法200中的复制数据替换为方法300中的剩余数据即可
换言之,方法300中,确定上行功率的方式也包括四种,具体参考方法200中的方式一至方式四,在此不予赘述。
可选地,该方法300还包括:S350,终端设备向网络设备发送功率余量(power headroom,PH)信息,其中,PH信息用于指示网络设备向终端设备配置的最大发送功率与第一功率之间的差值,第一功率包括传输部分数据的上行发送功率估计值和传输剩余数据的上行发送功率估计值。
PH信息的指示方式可以参考S250及图9至图12,在此不予赘述。
可选地,在方法300中,终端设备在进行VRB映射时,可以以本次传输所使用的资源的第一个RE开始,以顺序或倒序的方式进行映射,直到所有的RE都承载调制符号。其中,本次传输所使用的资源包括扩展频谱所占用的PUSCH资源和非扩展频谱所占用的PUSCH资源。换言之,在方法300中,调制符号与VRB之间具有一一对应关系。方法300与方法200的主要区别在于,在方法200中,扩展频谱所占用的PUSCH资源上承载的调制符号为非扩展频谱所占用的PUSCH资源上承载的调制符号的重复或复制,在方法300中,扩展频谱所占用的PUSCH资源上和非扩展频谱所占用的PUSCH资源上均承载上行数据的一部分调制符号。
可选地,该方法300还包括:S301,网络设备向终端设备发送第一信息和/或第二信息。
S301的具体地描述可以参考S201,在此不予赘述。
可选地,该方法300还包括:S302,终端设备向网络设备发送第三信息。相应地,网络设备接收第三信息。
其中,第三信息用于指示终端设备的滤波器在过渡带所占用的功率,滤波器在过渡带所占用的功率用于网络设备确定网络设备向终端设备配置的PUSCH传输资源的大小。
S302的具体地描述可以参考S202,在此不予赘述。
可选地,该方法300还包括:S303,网络设备向终端设备发送第五信息,相应地,终端设备接收第五信息。
其中,第五信息用于指示终端设备的滤波器幅值。第五信息也可以理解为,用于指示滤波器幅值的限制条件。
进一步,终端设备可以根据网络设备指示的滤波器幅值调整剩余数据的发送功率,使得剩余数据的发送功率满足带内发射要求。其中,终端设备在进行上行传输的过程中,剩余数据的滤波器幅值小于第五信息用于指示的滤波器幅值。
具体地,第五信息可以是滤波器频谱形状、也可以是滤波器幅值相对于预设值的比例,等,本申请不做限定。
终端设备根据网络设备指示的滤波器幅值调整剩余数据的发送功率,具体可以通过如下方式实现:
例如,部分数据对应的滤波器幅值最大为1,网络设备指示的滤波器幅值为a,a小于1,那么剩余数据对应的滤波器幅值最大为a。假设部分数据的发射功率为P,那么剩余数据的发射功率不超过a2·λ·P。
以上结合了图1至图14详细描述了本申请实施例的数据传输的方法提供的技术方案,下面结合图15至图17介绍本申请实施例提供的通信装置。
图15是本申请实施例提供的一种通信装置的示意性框图。如图15所示,装置600可以包括收发单元610和/或处理单元620。收发单元610可以与外部进行通信,处理单元620用于进行数据/信息的处理。收发单元610还可以称为通信接口或通信单元。
在一种可能的实现方式中,该装置600可以是上文方法200中的终端设备,也可以是用于实现上文方法200中的终端设备的功能的芯片。具体地,该装置600可实现对应于上文方法200中的终端设备执行的流程,其中,收发单元610用于执行上述方法200中终端设备的收发相关的操作。处理单元620用于执行上述方法200中终端设备的处理相关的操作。
应理解,上述处理单元620和收发单元610执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在一种可能的实现方式中,该装置600可以是上文方法200中的网络设备,也可以是用于实现上文方法200中的网络设备的功能的芯片。具体地,该装置600可实现对应于上文方法200中的网络设备执行的流程,其中,收发单元610用于执行上述方法200中网络设备的收发相关的操作。处理单元620用于执行上述方法200中网络设备的处理相关的操作。
应理解,上述处理单元620和收发单元610执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在一种可能的实现方式中,该装置600可以是上文方法300中的终端设备,也可以是用于实现上文方法300中的终端设备的功能的芯片。具体地,该装置600可实现对应于上文方法300中的终端设备执行的流程,其中,收发单元610用于执行上述方法300中终端设备的收发相关的操作。处理单元620用于执行上述方法300中终端设备的处理相关的操作。
应理解,上述处理单元620和收发单元610执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在一种可能的实现方式中,该装置600可以是上文方法300中的网络设备,也可以是用于实现上文方法300中的网络设备的功能的芯片。具体地,该装置600可实现对应于上文方法300中的网络设备执行的流程,其中,收发单元610用于执行上述方法300中网络设备的收发相关的操作。处理单元620用于执行上述方法300中网络设备的处理相关的操作。
应理解,上述处理单元620和收发单元610执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,这里的装置600以功能单元的形式体现。这里的术语“单元”可以指ASIC、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。装置600可以用于执行上述方法200或300实施例中与终端设备或网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
还应理解,在一种实现方式中,上述收发单元610可以包括接收单元611和发送单元612,其中,接收单元611用于执行上述收发单元610中的接收功能,发送单元612用于执行上述收发单元610中的发送功能。
上述装置600具有实现上述方法200或300中终端设备所执行的相应步骤的功能,或者,上述装置600具有实现上述方法200或300中网络设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
在一个可选例子中,本领域技术人员可以理解,图15中的装置600可以具体为上述方法200或300实施例中的终端设备,或者为上述方法200或300实施例中的网络设备。在又一个可选的例子中,本领域技术人员可以理解,图15中的装置600可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口。处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定,该芯片或者芯片系统能够实现上述方法200或300实施例中与终端设备或网络设备相关的功能。
图16是本申请实施例提供的通信装置的又一示意性结构图。如图16所示,该通信装置700包括:至少一个处理器710和收发器720。该处理器710与存储器耦合,用于执行存储器中存储的指令,以控制收发器720发送信号和/或接收信号。可选地,该通信装置700还包括存储器730,用于存储指令。
应理解,上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
还应理解,收发器720可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器720还可以进一步包括天线,天线的数量可以为一个或多个。收发器1020有可以是通信接口或者接口电路。
当该通信装置700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图17是本申请实施例提供的通信装置的又一示意性结构图。如图17所示,该装置800包括处理电路810和收发电路820。其中,处理电路810和收发电路820通过内部连接通路互相通信,该处理电路810用于执行指令,以控制该收发电路820发送信号和/或接收信号。
可选地,该装置800还可以包括存储介质830,该存储介质830与处理电路810、收发电路820通过内部连接通路互相通信。该存储介质830用于存储指令,该处理电路810可以执行该存储介质830中存储的指令。
在一种可能的实现方式中,装置800用于实现上述方法实施例中的终端设备对应的流程。
在另一种可能的实现方式中,装置800用于实现上述方法实施例中的网络设备对应的流程。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
需要说明的是,本申请实施例中,“预先设定”、“预先配置”等可以通过在设备(例如,终端设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定,例如本申请实施例中预设的规则、预设的常数等。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。本文中的“至少一个”表示一个或者多个。“多个”表示两个或者两个以上。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并 不用来限制本申请实施例的范围。例如,区分不同的信息等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (75)

  1. 一种数据传输的方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收来自网络设备的频谱扩展比例指示信息;
    根据所述频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;
    在所述非扩展频谱所占用的PUSCH资源上向所述网络设备发送上行数据,在所述扩展频谱所占用的PUSCH资源上向所述网络设备发送所述上行数据的复制数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,包括:
    根据第一信息、第二信息和所述频谱扩展比例指示信息确定所述扩展频谱所占用的PUSCH资源的位置和大小,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述网络设备向所述终端设备配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧;
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的所述第一信息和/或所述第二信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括以下至少一项:
    根据所述非扩展频谱所占用的PUSCH资源的大小确定传输所述上行数据的传输块的大小;
    根据所述扩展频谱所占用的PUSCH资源的大小确定所述复制数据的对应的频域符号的序列长度;
    确定传输所述上行数据的上行发送功率估计值;
    确定传输所述复制数据的上行发送功率估计值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送功率余量PH信息,所述PH信息用于指示所述网络设备向所述终端设备配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述上行数据的上行发送功率估计值和传输所述复制数据的上行发送功率估计值。
  7. 根据权利要求6所述的方法,其特征在于,所述PH信息携带于媒体访问控制控制单元MAC CE中。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第三信息,所述第三信息用于指示所述终端设备的滤波器在过渡带所占用的功率,所述滤波器在过渡带所占用的功率用于所述网络设备确定所述网络设备向所述终端设备配置的PUSCH传输资源的大小。
  9. 根据权利要求8所述的方法,其特征在于,所述滤波器在过渡带所占用的功率携带于所述终端设备的能力信息中。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四信息,所述第四信息用于指示所述上行数据在所述非扩展频谱所占用的PUSCH资源上的起始位置;
    根据所述第四信息将所述上行数据映射到所述所述非扩展频谱所占用的PUSCH资源上。
  12. 一种数据传输的方法,其特征在于,所述方法由网络设执行,所述方法包括:
    向终端设备发送频谱扩展比例指示信息,所述频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;
    在所述非扩展频谱所占用的PUSCH资源上接收来自所述终端设备的上行数据,在所述扩展频谱所占用的PUSCH资源上接收所述上行数据的复制数据。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一信息和/或第二信息,所述第一信息、所述第二信息和所述频谱扩展比例指示信息用于所述终端设备确定所述扩展频谱所占用的PUSCH资源的位置和大小,
    其中,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述网络设备向所述终端设备配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧;
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  14. 根据权利要求12或13所述的方法,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的功率余量PH信息,所述PH信息用于指示所述网络设备向所述终端设备配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述上行数据的上行发送功率估计值和传输所述复制数据的上行发送功率估计值。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第三信息,所述第三信息用于指示所述终端设备的滤波器在过渡带所占用的功率;
    根据所述滤波器在过渡带所占用的功率确定向所述终端设备配置的PUSCH传输资源的大小。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四信息,所述第四信息用于指示所述上行数据在所述非扩展频谱所占用的PUSCH资源上的起始位置。
  18. 一种数据传输的方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收来自网络设备的频谱扩展比例指示信息;
    根据所述频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;
    在所述非扩展频谱所占用的PUSCH资源上发送上行数据的部分数据,在所述扩展频谱所占用的PUSCH资源上发送所述上行数据的剩余数据,所述剩余数据的发送功率满足带内发射要求。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源,包括:
    根据第一信息、第二信息和所述频谱扩展比例指示信息确定所述扩展频谱所占用的PUSCH资源的位置和大小,
    其中,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述网络设备向所述终端设备配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧,
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的所述第一信息和/或所述第二信息。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述频谱扩展比例指示信息用于 指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述方法还包括以下至少一项:
    根据所述频谱扩展所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和确定所述上行数据的传输块的大小;
    确定传输所述部分数据的上行发送功率估计值;
    确定传输所述剩余数据的上行发送功率估计值。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送功率余量PH信息,所述PH信息用于指示所述网络设备向所述终端设备配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述部分数据的上行发送功率估计值和传输所述剩余数据的上行发送功率估计值。
  24. 根据权利要求23所述的方法,其特征在于,所述PH信息携带于媒体访问控制控制单元MAC CE中。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第三信息,所述第三信息用于指示所述终端设备的滤波器在过渡带所占用的功率,所述滤波器在过渡带所占用的功率用于所述网络设备确定所述网络设备向所述终端设备配置的PUSCH传输资源的大小。
  26. 根据权利要求25所述的方法,其特征在于,所述滤波器在过渡带所占用的功率携带于所述终端设备的能力信息中。
  27. 根据权利要求18至26中任一项所述的方法,其特征在于,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
  28. 根据权利要求18至27中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第五信息,所述第五信息用于指示所述终端设备的滤波器幅值;
    根据所述滤波器幅值调整所述剩余数据的发送功率。
  29. 根据权利要求18至28中任一项所述的方法,其特征在于,所述上行数据通过PI/2二进制相移键控调制。
  30. 一种数据传输的方法,其特征在于,所述方法由网络设执行,所述方法包括:
    向终端设备发送频谱扩展比例指示信息,所述频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;
    在所述非扩展频谱所占用的PUSCH资源上接收来自所述终端设备的上行数据的部分数据;
    根据所述部分数据确定所述上行数据。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一信息和/或第二信息,所述第一信息、所述第二信息和所述频谱扩展比例指示信息用于所述终端设备确定所述扩展频谱所占用的PUSCH资源的位置和大小,
    其中,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述网络设备向所述终端设备配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧,
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  32. 根据权利要求30或31所述的方法,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  33. 根据权利要求30至32中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的功率余量PH信息,所述PH信息用于指示所述网络设备向所述终端设备配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述部分数据的上行发送功率估计值和传输所述上行数据的剩余数据的上行发送功率估计值。
  34. 根据权利要求30至33中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第三信息,所述第三信息用于指示所述终端设备的滤波器在过渡带所占用的功率;
    根据所述滤波器在过渡带所占用的功率确定向所述终端设备配置的PUSCH传输资源的大小。
  35. 根据权利要求30至34中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第五信息,所述第五信息用于指示所述终端设备的滤波器幅值,所述滤波器幅值用于所述终端设备调整所述上行数据的剩余数据的发送功率。
  36. 根据权利要求30至35中任一项所述的方法,其特征在于,所述上行数据通过PI/2二进制相移键控调制。
  37. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的频谱扩展比例指示信息;
    处理单元,用于根据所述频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;
    所述收发单元还用于:在所述非扩展频谱所占用的PUSCH资源上向所述网络设备发送上行数据,在所述扩展频谱所占用的PUSCH资源上向所述网络设备发送所述上行数据的复制数据。
  38. 根据权利要求37所述的通信装置,其特征在于,所述处理单元具体用于:
    根据第一信息、第二信息和所述频谱扩展比例指示信息确定所述扩展频谱所占用的PUSCH资源的位置和大小,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述网络设备向所述通信装置配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧;
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  39. 根据权利要求38所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的所述第一信息和/或所述第二信息。
  40. 根据权利要求37至39中任一项所述的通信装置,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  41. 根据权利要求37至40中任一项所述的通信装置,其特征在于,所述处理单元还用于执行以下至少一项:
    根据所述非扩展频谱所占用的PUSCH资源的大小确定传输所述上行数据的传输块的大小;
    根据所述扩展频谱所占用的PUSCH资源的大小确定所述复制数据的对应的频域符号的序列长度;
    确定传输所述上行数据的上行发送功率估计值;
    确定传输所述复制数据的上行发送功率估计值。
  42. 根据权利要求37至41中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    向所述网络设备发送功率余量PH信息,所述PH信息用于指示所述网络设备向所述通信装置配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述上行数据的上行发送功率估计值和传输所述复制数据的上行发送功率估计值。
  43. 根据权利要求42所述的通信装置,其特征在于,所述PH信息携带于媒体访问控制控制单元MAC CE中。
  44. 根据权利要求37至43中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    向所述网络设备发送第三信息,所述第三信息用于指示所述通信装置的滤波器在过渡带所占用的功率,所述滤波器在过渡带所占用的功率用于所述网络设备确定所述网络设备向所述通信装置配置的PUSCH传输资源的大小。
  45. 根据权利要求44所述的通信装置,其特征在于,所述滤波器在过渡带所占用的功率携带于所述通信装置的能力信息中。
  46. 根据权利要求37至45中任一项所述的通信装置,其特征在于,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
  47. 根据权利要求37至46中任一项所述的通信装置,其特征在于,
    所述收发单元还用于:接收来自所述网络设备的第四信息,所述第四信息用于指示所述上行数据在所述非扩展频谱所占用的PUSCH资源上的起始位置;
    所述处理单元还用于:根据所述第四信息将所述上行数据映射到所述所述非扩展频谱所占用的PUSCH资源上。
  48. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送频谱扩展比例指示信息,所述频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;
    所述收发单元还用于:在所述非扩展频谱所占用的PUSCH资源上接收来自所述终端设备的上行数据,在所述扩展频谱所占用的PUSCH资源上接收所述上行数据的复制数据。
  49. 根据权利要求48所述的通信装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第一信息和/或第二信息,所述第一信息、所述第二信息和所述频谱扩展比例指示信息用于所述终端设备确定所述扩展频谱所占用的PUSCH资源的位置和大小,
    其中,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述通信装置向所述终端设备配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧;
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  50. 根据权利要求48或49所述的通信装置,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  51. 根据权利要求48至50中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述终端设备的功率余量PH信息,所述PH信息用于指示所述通信装置向所述终端设备配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述上行数据的上行发送功率估计值和传输所述复制数据的上行发送功率估计值。
  52. 根据权利要求48至51中任一项所述的通信装置,其特征在于,
    所述收发单元还用于:接收来自所述终端设备的第三信息,所述第三信息用于指示所述终端设备的滤波器在过渡带所占用的功率;
    所述通信装置还包括:处理单元,用于根据所述滤波器在过渡带所占用的功率确定向所述终端设备配置的PUSCH传输资源的大小。
  53. 根据权利要求48至52中任一项所述的通信装置,其特征在于,所述收发单元还用于:向所述终端设备发送第四信息,所述第四信息用于指示所述上行数据在所述非扩展频谱所占用的PUSCH资源上的起始位置。
  54. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的频谱扩展比例指示信息;
    处理单元,用于根据所述频谱扩展比例指示信息确定扩展频谱所占用的物理上行共享信道PUSCH资源和/或非扩展频谱所占用的PUSCH资源;
    所述收发单元还用于:在所述非扩展频谱所占用的PUSCH资源上发送上行数据的部分数据,在所述扩展频谱所占用的PUSCH资源上发送所述上行数据的剩余数据,所述剩余数据的发送功率满足带内发射要求。
  55. 根据权利要求54所述的通信装置,其特征在于,所述处理单元具体用于:
    根据第一信息、第二信息和所述频谱扩展比例指示信息确定所述扩展频谱所占用的PUSCH资源的位置和大小,
    其中,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述网络设备向所述通信装置 配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧,
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  56. 根据权利要求55所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的所述第一信息和/或所述第二信息。
  57. 根据权利要求54至56中任一项所述的通信装置,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  58. 根据权利要求54至57中任一项所述的通信装置,其特征在于,所述处理单元还用于执行以下至少一项:
    根据所述频谱扩展所占用的PUSCH资源的大小和非频谱扩展所占用的PUSCH资源的大小的总和确定所述上行数据的传输块的大小;
    确定传输所述部分数据的上行发送功率估计值;
    确定传输所述剩余数据的上行发送功率估计值。
  59. 根据权利要求54至58中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    向所述网络设备发送功率余量PH信息,所述PH信息用于指示所述网络设备向所述通信装置配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述部分数据的上行发送功率估计值和传输所述剩余数据的上行发送功率估计值。
  60. 根据权利要求59所述的通信装置,其特征在于,所述PH信息携带于媒体访问控制控制单元MAC CE中。
  61. 根据权利要求54至60中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    向所述网络设备发送第三信息,所述第三信息用于指示所述通信装置的滤波器在过渡带所占用的功率,所述滤波器在过渡带所占用的功率用于所述网络设备确定所述网络设备向所述通信装置配置的PUSCH传输资源的大小。
  62. 根据权利要求61所述的通信装置,其特征在于,所述滤波器在过渡带所占用的功率携带于所述通信装置的能力信息中。
  63. 根据权利要求54至62中任一项所述的通信装置,其特征在于,所述频谱扩展比例指示信息携带于下行控制信息DCI中。
  64. 根据权利要求54至63中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的第五信息,所述第五信息用于指示所述通信装置的滤波器幅值;
    所述处理单元还用于:根据所述滤波器幅值调整所述剩余数据的发送功率。
  65. 根据权利要求54至64中任一项所述的通信装置,其特征在于,所述上行数据通过PI/2二进制相移键控调制。
  66. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送频谱扩展比例指示信息,所述频谱扩展比例指示信息用于确定扩展频谱所占用的物理上行共享信道PUSCH资源的大小和/或非扩展频谱所占用的PUSCH资源;
    所述收发单元还用于:在所述非扩展频谱所占用的PUSCH资源上接收来自所述终端设备的上行数据的部分数据;
    处理单元,用于根据所述部分数据确定所述上行数据。
  67. 根据权利要求66所述的通信装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第一信息和/或第二信息,所述第一信息、所述第二信息和所述频谱扩展比例指示信息用于所述终端设备确定所述扩展频谱所占用的PUSCH资源的位置和大小,
    其中,所述第一信息用于指示所述扩展频谱所占用的PUSCH资源与所述通信装置向所述终端设备配置的PUSCH传输资源的位置关系,所述位置关系包括:
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的内部;或,
    所述扩展频谱所占用的PUSCH资源位于所述PUSCH传输资源的外侧,
    其中,所述第二信息用于指示第一资源的大小与所述扩展频谱所占用的PUSCH资源的大小之间的比例,所述第一资源为所述扩展频谱所占用的PUSCH资源中位于所述非扩展频谱所占用的PUSCH资源的一侧的资源。
  68. 根据权利要求66或67所述的通信装置,其特征在于,所述频谱扩展比例指示信息用于指示所述扩展频谱所占用的PUSCH资源的大小与所述非扩展频谱所占用的PUSCH资源的大小之间的比例。
  69. 根据权利要求66至68中任一项所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述终端设备的功率余量PH信息,所述PH信息用于指示所述通信装置向所述终端设备配置的最大发送功率与第一功率之间的差值,所述第一功率包括所述传输所述部分数据的上行发送功率估计值和传输所述上行数据的剩余数据的上行发送功率估计值。
  70. 根据权利要求66至69中任一项所述的通信装置,其特征在于,
    所述收发单元还用于:接收来自所述终端设备的第三信息,所述第三信息用于指示所述终端设备的滤波器在过渡带所占用的功率;
    所述处理单元还用于:根据所述滤波器在过渡带所占用的功率确定向所述终端设备配置的PUSCH传输资源的大小。
  71. 根据权利要求66至70中任一项所述的通信装置,其特征在于,
    所述收发单元还用于:向所述终端设备发送第五信息,所述第五信息用于指示所述终端设备的滤波器幅值,所述滤波器幅值用于所述终端设备调整所述上行数据的剩余数据的发送功率。
  72. 根据权利要求66至71中任一项所述的通信装置,其特征在于,所述上行数据通过PI/2二进制相移键控调制。
  73. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中的计算机程序或指令,以使得所述通信装置执行如权利要求1至11中任一项,或如权利要求12至17中任一项,或如权利要求18至29中任一项,或如权利要求30至36中任一项所述的方法。
  74. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项,或如权利要求12至17中任一项,或如权利要求18至29中任一项,或如权利要求30至36中任一项所述的方法。
  75. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至11中任一项,或如权利要求12至17中任一项,或如权利要求18至29中任一项,或如权利要求30至36中任一项所述的方法的指令。
PCT/CN2023/117417 2022-09-07 2023-09-07 一种数据传输的方法和通信装置 WO2024051769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211088407.5 2022-09-07
CN202211088407.5A CN117676857A (zh) 2022-09-07 2022-09-07 一种数据传输的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2024051769A1 true WO2024051769A1 (zh) 2024-03-14

Family

ID=90085134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117417 WO2024051769A1 (zh) 2022-09-07 2023-09-07 一种数据传输的方法和通信装置

Country Status (2)

Country Link
CN (1) CN117676857A (zh)
WO (1) WO2024051769A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526106A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 通信方法及装置
CN112398773A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 数据传输方法及其装置
CN114726695A (zh) * 2021-01-04 2022-07-08 诺基亚技术有限公司 参考信号布置
WO2022152368A1 (en) * 2021-01-13 2022-07-21 Nokia Technologies Oy Spectrum shaping for wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526106A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 通信方法及装置
CN112398773A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 数据传输方法及其装置
CN114726695A (zh) * 2021-01-04 2022-07-08 诺基亚技术有限公司 参考信号布置
WO2022152368A1 (en) * 2021-01-13 2022-07-21 Nokia Technologies Oy Spectrum shaping for wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussion on approaches and solutions for NR PUSCH coverage enhancement", 3GPP DRAFT; R1-2009792, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 14 November 2020 (2020-11-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051954435 *

Also Published As

Publication number Publication date
CN117676857A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
TWI721287B (zh) 用於管理頻寬部分中的探測參考信號(srs)傳輸的技術和裝置
US10194405B2 (en) Method and apparatus for configuring power headroom information in mobile communication system supporting carrier aggregation
CN107926069B (zh) 无线通信系统中用于通信的方法和装置
CN114845370B (zh) 功率控制方法及功率控制装置
TWI578806B (zh) 電信設備及方法
JP5809261B2 (ja) 移動通信システムにおけるアップリンクデータ送受信方法及び装置
WO2017092632A1 (zh) 无线通信的方法和装置
TW201818781A (zh) 用於高效率基本服務集操作的技術
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11212756B2 (en) Method and apparatus for supporting power backoff report while performing power headroom report in wireless communication system
CN115699693A (zh) 峰值降低频调分配技术
US20220400042A1 (en) Compressed channel aware tone reservation signaling for peak-to-average power ratio reduction
TW202031006A (zh) 使用者設備及其無線通訊方法
CN116114319A (zh) 功率自适应多子带空闲信道评估
WO2024051769A1 (zh) 一种数据传输的方法和通信装置
WO2022253006A1 (zh) 一种传输信息的方法及其装置
WO2020199983A1 (zh) 一种功率控制方法及装置
WO2020143713A9 (zh) 通信方法、装置和存储介质
WO2020156214A1 (zh) 功率控制方法及终端设备
KR20220101473A (ko) 무선 통신 시스템에서 제어 채널 전송을 위한 장치 및 방법
WO2021088069A1 (zh) 信息传输方法及相关产品
CN109417794B (zh) 终端装置、基站装置、通信方法以及集成电路
WO2024045862A1 (zh) 通信方法、装置、存储介质及系统
WO2022237509A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862463

Country of ref document: EP

Kind code of ref document: A1