WO2024051724A1 - 流致振动试验装置、方法、计算机设备、存储介质和产品 - Google Patents

流致振动试验装置、方法、计算机设备、存储介质和产品 Download PDF

Info

Publication number
WO2024051724A1
WO2024051724A1 PCT/CN2023/117165 CN2023117165W WO2024051724A1 WO 2024051724 A1 WO2024051724 A1 WO 2024051724A1 CN 2023117165 W CN2023117165 W CN 2023117165W WO 2024051724 A1 WO2024051724 A1 WO 2024051724A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
fluid
heat transfer
test
section
Prior art date
Application number
PCT/CN2023/117165
Other languages
English (en)
French (fr)
Inventor
朱勇
何坤
任红兵
李坤
刘攀
张利
张丽强
熊光明
马文慧
金挺
姚博维
王阔
Original Assignee
深圳中广核工程设计有限公司
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中广核工程设计有限公司, 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 深圳中广核工程设计有限公司
Publication of WO2024051724A1 publication Critical patent/WO2024051724A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the technical field of flow-induced vibration analysis in the tube bundle area of heat exchangers, and in particular to a flow-induced vibration testing device, method, computer equipment, storage media and products.
  • Heat transfer tubes are installed in the tube bundle area of the large natural circulation heat exchanger.
  • the heat transfer tubes can not only be used to exchange heat between the media on both sides of the tube and shell, but can also be used as the pressure boundary of the reactor cooling system to contain radioactive materials. role. Therefore, the structural integrity of the heat transfer tube is related to the safe operation of the entire heat exchanger.
  • the shell-side fluid laterally washes away the heat transfer tubes in the heat exchanger, it will cause excessive flow-induced vibration in the heat transfer tubes and cause damage to the heat transfer tubes. Therefore, it is necessary to design a flow-induced vibration test device to verify the safety margin of the heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs.
  • the heat transfer tube and its support structure are usually simplified, and a flow-induced vibration test device is designed based on the simplified heat transfer tube and support structure.
  • a flow-induced vibration test device is designed based on the simplified heat transfer tube and support structure.
  • the heat transfer tubes and their supporting structures used in large natural circulation heat exchangers are relatively complex.
  • the flow-induced vibration test device in traditional technology uses simplified heat transfer tubes and support structures to simulate flow-induced vibration, it is impossible to accurately simulate the flow-induced vibration behavior of heat transfer tubes in actual production.
  • this application provides a flow-induced vibration test device.
  • the device includes: flow channel tank, test simulation body and collection equipment;
  • the flow channel groove includes a fluid inlet section, a fluid mixing section, a test section and a fluid outlet section connected in sequence; the fluid mixing section is used to mix the fluid flowing in from the fluid inlet section to generate a mixed fluid; The mixed fluid flows through the test section and flows out from the fluid outlet section;
  • the test simulation body includes a plurality of non-linear heat transfer tubes and a support assembly.
  • the support assembly is used to fixedly install the multiple non-linear heat transfer tubes in the test section;
  • the collection equipment is arranged on the plurality of non-linear heat transfer tubes and is used to collect the flow-induced vibration of the plurality of non-linear heat transfer tubes when the mixed fluid flows into the test section. Test Data.
  • the support assembly includes a base plate
  • the bottom plate is connected to the shell of the test section; a first through hole is opened on the bottom plate, and a heat transfer tube fixing assembly is provided on the bottom plate; the mixed fluid passes from the fluid mixing section through the first The through hole flows into the test section; both ends of the plurality of non-linear heat transfer tubes are connected to the base plate through the heat transfer tube fixing assembly.
  • the support assembly further includes a support plate
  • the support plate is connected to the outer shell of the test section, and the support plate is located between the bottom plate and the fluid outlet section.
  • the support plate is arranged on the straight pipe section of the non-linear heat transfer tube; a second through hole is opened on the support plate, and the mixed fluid flows into the fluid outlet section through the second through hole, And the plurality of non-linear heat transfer tubes pass through the second through holes and are gap-fitted with the second through holes on the support plate.
  • the support component further includes an anti-vibration component and a fixing component
  • the anti-vibration component is arranged in a V-shape on the elbow section of the non-linear heat transfer tube; third through holes are respectively provided at both ends of the anti-vibration component; the number of the anti-vibration components is at least five groups. And each set of anti-vibration components includes at least six layers of anti-vibration strips;
  • the fixing assembly includes at least five pairs of anti-vibration strip pull rods, and each pair of the anti-vibration strip pull rods passes through a third through hole on a set of anti-vibration components and is connected to the outer shell of the test section.
  • the support assembly further includes a collar
  • the collar is set on the anti-vibration bar pull rod, and the collar is used to determine the distance between the anti-vibration bars of different layers in each group of the anti-vibration components.
  • the collection device includes:
  • Acceleration sensors are arranged on the inner walls of the plurality of non-linear heat transfer tubes, on the shell of the flow channel groove and on the test bench; the acceleration sensor is used to measure the plurality of non-linear heat transfer tubes and Acceleration data of the test device;
  • Pressure sensors are arranged on the outer walls of the target heat transfer tubes among the multiple non-linear heat transfer tubes and on pressure measuring points outside the multiple non-linear heat transfer tubes, and are used to measure the multiple non-linear heat transfer tubes.
  • a temperature sensor arranged on the external outlet pipe connected to the fluid outlet section, used to measure the temperature data of the entire test loop;
  • a flow detection sensor is provided in the fluid inlet section and the fluid mixing section, and is used to detect the flow rate of the fluid input into the fluid inlet section and the flow rate of the fluid input into the fluid mixing section.
  • the fluid mixing section includes a first mixing section and a second mixing section connected in sequence; the first fluid flows into the first mixing section through the fluid inlet section; the first mixing section includes a second mixing section. a fluid inlet pipe, the second fluid flows into the first mixing section through the second fluid inlet pipe, and is mixed with the first fluid in the first mixing section to generate an intermediate mixed fluid;
  • the second mixing section is provided with a filler layer, and the intermediate mixed fluid flows from the first mixing section into the second mixing section, and is mixed through the filler layer to generate the mixed fluid.
  • the fluid inlet section includes a first fluid inlet pipe, a fourth through hole and a water baffle;
  • the first fluid flows into the test device through the first fluid inlet pipe; the fourth through hole is opened at one end of the first fluid inlet pipe, and the first fluid flows into the first through the fourth through hole.
  • Mixing section; the water baffle is provided on one side of the fourth through hole to evenly distribute the flow of the first fluid.
  • test simulation body further includes an observation window
  • the observation window is provided on the test device shell of the fluid mixing section and the test section, and is used to observe the mixing situation of the first fluid and the second fluid.
  • the support plate includes a first support plate and a second support plate
  • the first support plate and the second support plate are arranged sequentially in the test section, and the first support plate and the second support plate are both arranged in the straight pipe sections of the plurality of non-linear heat transfer tubes. .
  • the non-linear heat transfer tube includes any one of a U-shaped heat transfer tube and a spiral heat transfer tube.
  • this application also provides a flow-induced vibration test simulation method.
  • the method is applied to the flow-induced vibration test device in any embodiment of the first aspect, and the method includes:
  • the preset fluid flow parameters include fluid flow rate parameters and fluid cavitation share parameters
  • test data when the mixed fluid flows into the test section, the test data when the flow-induced vibration occurs in the flow-induced vibration test device is collected through the acquisition equipment; the test data includes acceleration data, strain data, pressure data, temperature data and flow data. at least one of;
  • the preset fluid flow parameters and the test data corresponding to the preset fluid flow parameters are analyzed to determine the vibration characteristics of the plurality of non-linear heat transfer tubes when flow-induced vibration occurs.
  • this application also provides a flow-induced vibration test simulation device.
  • the device includes:
  • a mixed fluid inflow module is used to control the mixed fluid to flow into the test section according to preset fluid flow parameters;
  • the preset fluid flow parameters include fluid flow rate parameters and fluid cavitation share parameters;
  • test data acquisition module used to collect test data when flow-induced vibration occurs in a flow-induced vibration test device through an acquisition device when the mixed fluid flows into the test section;
  • the test data includes acceleration data, strain data, and pressure data. , at least one of temperature data and flow data;
  • a test data analysis module is used to analyze the preset fluid flow parameters and test data corresponding to the preset fluid flow parameters, and determine the vibration characteristics of multiple non-linear heat transfer tubes when flow-induced vibration occurs.
  • this application also provides a design method for a flow-induced vibration test device.
  • the method is applied to the flow-induced vibration test device in any embodiment of the first aspect, and the method includes:
  • the initial model includes an initial flow channel groove and an initial test simulation body, and the initial test simulation body includes multiple non-linear heat transfer tubes and support components;
  • the first initial parameters are the initial model When the preset envelope requirements are met when flow-induced vibration occurs, and the flow field of the initial model meets the preset flow field requirements, the parameters of the initial flow channel groove and the plurality of non-linear heat transfer tubes;
  • the initial flow channels and the plurality of non-linear heat transfer tubes in the initial model are respectively assigned the first initial parameters to generate a first intermediate model, and a stress analysis is performed on the first intermediate model to determine Second initial parameters of the support component in the first intermediate model that meet the preset stress conditions;
  • the second initial parameters are assigned to the support components in the first intermediate model to obtain a second intermediate model.
  • a fluid mixing experiment is performed on the second intermediate model to determine that the second intermediate model satisfies the preset fluid mixing experiment conditions.
  • the flow is generated based on the first initial parameters of the initial flow channel and the plurality of non-linear heat transfer tubes, the second initial parameter of the support assembly, and the third initial parameter of the initial flow channel. Vibration test equipment.
  • this application also provides a computer device.
  • the computer device includes a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the operations of the method described in the second aspect are implemented.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the operations of the method described in the second aspect are implemented.
  • this application also provides a computer program product.
  • the computer program product includes a computer program that, when executed by a processor, implements the operations of the method described in the second aspect.
  • Figure 1 is a schematic structural diagram of a flow-induced vibration test device in one embodiment
  • Figure 2 is a schematic structural diagram of the base plate of the flow-induced vibration test device in one embodiment
  • Figure 3 is a schematic structural diagram of the support plate of the flow-induced vibration test device in one embodiment
  • Figure 4 is a schematic structural diagram of the anti-vibration component and fixed component of the flow-induced vibration test device in one embodiment
  • Figure 5 is a schematic diagram of the installation of the first acceleration sensor on the heat transfer tube in another embodiment
  • Figure 6 is a schematic diagram of the wiring of the first acceleration sensor on the heat transfer tube in another embodiment
  • Figure 7 is a schematic diagram of the installation of the second acceleration sensor on the test device in another embodiment
  • Figure 8 is a schematic diagram of the installation of the second acceleration sensor on the support stand in another embodiment
  • Figure 9 is a schematic diagram of the installation of the first pressure sensor on the heat transfer tube in another embodiment
  • Figure 10 is a schematic diagram of the wiring of the first pressure sensor on the heat transfer tube in another embodiment
  • Figure 11 is a schematic diagram of the installation position of the first acceleration sensor and the first pressure sensor in another embodiment
  • Figure 12 is a schematic diagram of the installation of the second pressure sensor on the heat transfer tube in another embodiment
  • Figure 13 is a schematic structural diagram of the fluid mixing section of the flow-induced vibration test device in one embodiment
  • Figure 14 is a schematic structural diagram of the fourth through hole in the fluid inlet section in one embodiment
  • Figure 15 is an application environment diagram of the flow-induced vibration test simulation method in one embodiment
  • Figure 16 is a schematic flow chart of a flow-induced vibration test simulation method in one embodiment
  • Figure 17 is a schematic flow chart of the design method of the flow-induced vibration test device in one embodiment
  • Figure 18 is a schematic diagram of the scale of the tube array in flow field pre-analysis in one embodiment
  • Figure 19 is a schematic diagram of the inter-tube flow velocity distribution of the heat transfer tubes in the test section in one embodiment
  • Figure 20 is a schematic diagram of the position of the heat transfer tube that needs to be measured in the high flow rate area in one embodiment
  • Figure 21 is a comparison diagram of the inter-tube flow rate between certain test conditions and the steady-state operation of the actual product on a certain heat transfer tube in one embodiment
  • Figure 22 is a comparison diagram of the fluid dynamic pressure between certain test conditions and the steady-state operation of the actual product on a certain heat transfer tube in one embodiment
  • Figure 23 is a schematic structural diagram of the fluid mixing module performance test simulation body in one embodiment
  • Figure 24 is a schematic diagram of the installation of the fluid mixing module performance test simulation body in one embodiment
  • Figure 25 is a structural block diagram of a flow-induced vibration test simulation device in one embodiment
  • Figure 26 is an internal structural diagram of a computer device in one embodiment.
  • Heat transfer tubes are installed in the tube bundle area of the large natural circulation heat exchanger.
  • the heat transfer tubes can not only be used to exchange heat between the media on both sides of the tube and shell, but can also be used as the pressure boundary of the reactor cooling system to contain radioactive materials. role. Therefore, the structural integrity of the heat transfer tube is related to the safe operation of the entire heat exchanger.
  • the shell-side fluid laterally washes away the heat transfer tubes in the heat exchanger, it will cause excessive flow-induced vibration in the heat transfer tubes and cause damage to the heat transfer tubes. Therefore, it is necessary to design a flow-induced vibration test device to verify the safety margin of the heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs.
  • the heat transfer tube and its support structure are usually simplified, and a flow-induced vibration test device is designed based on the simplified heat transfer tube and support structure.
  • a flow-induced vibration test device is designed based on the simplified heat transfer tube and support structure.
  • the heat transfer tubes and their supporting structures used in large natural circulation heat exchangers are relatively complex.
  • the flow-induced vibration test device in traditional technology uses simplified heat transfer tubes and support structures to simulate flow-induced vibration, the flow-induced vibration test device in traditional technology cannot accurately simulate the non-linear heat transfer tubes in actual production.
  • the flow-induced vibration behavior of the structure (such as the bent section of the inverted U-shaped heat transfer tube), and the inverted U-shaped heat transfer tube is a commonly used structural form of large natural circulation heat exchangers, and the inverted U-shaped heat transfer tube undergoes flow-induced vibration
  • the high-risk areas for vibration are mainly concentrated in the bent pipe sections.
  • the heat transfer tubes in the flow-induced vibration test device in traditional technology are structurally simplified from the heat transfer tubes in large-scale natural circulation heat exchangers in actual production. Therefore, the flow-induced vibration test device can only verify the heat transfer tubes.
  • the heat transfer tube of the flow-induced vibration test device in traditional technology cannot simulate the support structure of the heat transfer tube of the real product, and the heat transfer tube support structure is a key factor affecting the flow-induced vibration response of the heat transfer tube.
  • the flow-induced vibration test device in traditional technology is small in scale and cannot simulate the flow-induced vibration behavior of heat transfer tubes in tube bundles under high flow rates and large flows.
  • the gas-water mixing section of the flow-induced vibration test body in traditional technology is small in size and has large fluid resistance, which cannot meet the needs of flow-induced vibration test verification under large flow rates in actual projects. Therefore, the flow-induced vibration test device in traditional technology cannot accurately simulate the flow-induced vibration behavior of heat transfer tubes in actual production.
  • this application provides a flow-induced vibration test device that can ensure the safe operation of large-scale natural circulation heat exchangers in actual production.
  • a flow-induced vibration test device which includes: a flow channel, a test simulation body, and a collection device;
  • the flow channel groove includes a fluid inlet section 120, a fluid mixing section 140, a test section 160 and a fluid outlet section 180 that are connected in sequence; the fluid mixing section 140 is used to mix the fluid flowing in from the fluid inlet section 120 to generate a mixed fluid; the mixed fluid Flows through the test section 160 and flows out from the fluid outlet section;
  • the test simulation body includes multiple non-linear heat transfer tubes 220 and a support assembly 240.
  • the support assembly 240 is used to fixedly install the multiple non-linear heat transfer tubes in the test section 160;
  • the collection equipment is installed on the plurality of non-linear heat transfer tubes, and is used to collect test data when the mixed fluid flows into the test section 160 and the flow-induced vibration occurs in the plurality of non-linear heat transfer tubes.
  • the support component 240 includes a bottom plate 242, a support plate 244, an anti-vibration component 246, a fixing component 248 and a collar.
  • the shell of the flow-induced vibration test device includes an observation window 131, reinforcing ribs 132, and flange 133.
  • the observation window 131 is used for workers to observe the mixing of the first fluid and the second fluid.
  • the reinforcing ribs 132 are used to support the shell and prevent the device from Deformation occurs during the flow-induced vibration, and the fluid inlet section 120, the fluid mixing section 140, the test section 160 and the fluid outlet section 180 are connected through the flange 133.
  • a flow-induced vibration test device including a flow channel groove, a test simulation body and a collection device;
  • the flow channel groove includes a fluid inlet section 120, a fluid mixing section 140, a test section 160 and a fluid The outlet section 180;
  • the fluid mixing section 140 is used to mix the fluid flowing in from the fluid inlet section 120 to generate a mixed fluid;
  • the mixed fluid flows through the test section 160 and flows out from the fluid outlet section 180;
  • the test simulation body includes multiple non-linear lines type heat transfer tubes and support components 240.
  • the support components 240 are used to fixedly install multiple non-linear heat transfer tubes in the test section 160; the collection equipment is provided on the multiple non-linear heat transfer tubes and is used to collect data in the mixing Test data when fluid flows into the test section 160 and flow-induced vibration occurs in multiple non-linear heat transfer tubes.
  • the flow-induced vibration test device in this application is designed using multiple non-linear heat transfer tubes with a similar complexity to the actual one.
  • the multiple non-linear heat transfer tubes can more accurately simulate the large natural circulation heat exchanger tube bundles in actual production.
  • the non-linear heat transfer tube structure of the area can more accurately simulate the flow-induced vibration of the fluid in actual production; in addition, the support component 240 strengthens the support structure of multiple non-linear heat transfer tubes, the flow channel groove and the support component
  • the combined use of 240 medium through holes makes the transmission of mixed fluids more convenient, thereby more accurately simulating the flow-induced vibration behavior of the heat transfer tubes in the tube bundle area of large natural circulation heat exchangers in actual production.
  • the flow-induced vibration test device is large-scale and equipped with a fluid mixing section 140, which can achieve uniform mixing of fluids in the test section 160, thereby verifying the flow-induced vibration behavior under large flow conditions, and thereby more accurately verifying large-scale natural circulation heat transfer.
  • the support assembly 240 includes a bottom plate 242; the bottom plate 242 is connected to the outer shell of the test section 160; a first through hole is opened on the bottom plate 242, and the heat transfer tube fixing assembly 202 is provided on the bottom plate 242; the mixed fluid is mixed from the fluid
  • the section 140 flows into the test section 160 through the first through hole; both ends of the plurality of non-linear heat transfer tubes are connected to the base plate 242 through the heat transfer tube fixing assembly 202 .
  • FIG. 2 it is a schematic structural diagram of the bottom plate 242 in the support assembly 240 of the flow-induced vibration test device in one embodiment.
  • the support assembly 240 of the flow-induced vibration test device also includes the bottom plate 242;
  • the bottom plate 242 includes a first through hole 201 , a heat transfer tube fixing component 202 and a bolt hole 203 .
  • a plurality of first through holes 201 are provided on the bottom plate 242 for flowing the mixed fluid from the fluid mixing section 140 into the test section 160 through the first through holes 201;
  • a heat transfer tube fixing assembly 202 is provided on the bottom plate 242 for connecting multiple non-conducting heat transfer tubes. Both ends of the linear heat transfer tube are welded to the base plate 242 through the heat transfer tube fixing assembly 202; bolt holes 203 are provided on the base plate 242, and the bolt holes 203 are used to connect the flange, so that the base plate 242 is connected to the test section 160 through the flange. on the shell.
  • the support assembly 240 includes a bottom plate 242.
  • a plurality of first through holes 201 are opened on the bottom plate 242 for flowing the mixed fluid from the fluid mixing section 140 through the first through holes 201 into the test section 160, so that the mixed fluid
  • the transmission is more convenient;
  • a heat transfer tube fixing assembly 202 is provided on the base plate 242 for fixing the two ends of multiple non-linear heat transfer tubes through the heat transfer tube fixing assembly 202 Welded to the bottom plate 242, the support structure of the multiple non-linear heat transfer tubes is strengthened;
  • the bottom plate 242 is provided with bolt holes 203, and the bolt holes 203 are used to connect the flange, so that the bottom plate 242 is connected to the test section 160 through the flange.
  • the stability of the flow-induced vibration test device is enhanced.
  • the mutual cooperation of the first through hole 201, the heat transfer tube fixing assembly 202 and the bolt hole 203 on the bottom plate 242 enables the flow-induced vibration test device to more accurately simulate the flow of the heat transfer tubes in the tube bundle area of large natural circulation heat exchangers in actual production. It can more accurately verify the safety margin of heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the support assembly 240 further includes a support plate 244; the support plate 244 is connected to the outer shell of the test section 160, and the support plate 244 is located between the bottom plate 242 and the fluid outlet section 180.
  • the support plate 244 is disposed in a non-linear A straight section of the heat transfer tube; a second through hole is opened on the support plate 244, and the mixed fluid flows into the fluid outlet section 180 through the second through hole, and multiple non-linear heat transfer tubes pass through the second through hole and connect with the support plate 244. clearance fit on the second via hole.
  • FIG. 3 it is a schematic structural diagram of the support plate 244 of the flow-induced vibration test device in one embodiment.
  • the support assembly 240 of the flow-induced vibration test device also includes a support plate 244;
  • the support plate 244 includes a second through hole 301 and a bolt hole 302 .
  • a second through hole 301 is opened in the support plate 244.
  • the mixed fluid flows into the fluid outlet section 180 through the second through hole 301, and the straight pipe sections of the multiple non-linear heat transfer tubes pass through the second through hole 301 and connect with the support plate 244.
  • the second through hole 301 has a clearance fit; the support plate 244 is provided with a bolt hole 302, which is used to connect the flange, so that the support plate 244 is connected to the shell of the test section 160 through the flange, and the support plate 244 is located on the bottom plate 242 and the fluid outlet section 180, the support plate 244 is provided on the straight section of the non-linear heat transfer tube.
  • the support assembly 240 includes a support plate 244.
  • a second through hole 301 is opened on the support plate 244, and the mixed fluid flows into the fluid outlet section 180 through the second through hole 301, making the transmission of the mixed fluid more convenient;
  • multiple The straight section of the non-linear heat transfer tube passes through the second through hole 301 and fits with the second through hole 301 on the support plate 244, thereby strengthening the support structure of the multiple straight section of the non-linear heat transfer tube;
  • Bolt holes 302 are provided on the upper body, and the bolt holes 302 are used to connect the flange, so that the support plate 244 is connected to the shell of the test section 160 through the flange, which enhances the stability of the flow-induced vibration test device.
  • the mutual cooperation of the second through hole 301 and the bolt hole 302 on the support plate 244 enables the flow-induced vibration test device to more accurately simulate the flow-induced vibration behavior of the heat transfer tubes in the tube bundle area of a large natural circulation heat exchanger in actual production, thereby It can more accurately verify the safety margin of heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the support component 240 also includes an anti-vibration component 246 and a fixing component 248;
  • the anti-vibration component 246 is arranged in a V-shape at the elbow section of the non-linear heat transfer tube; third through holes are respectively opened at both ends of the anti-vibration component 246; the number of the anti-vibration component 246 is at least five groups, and each group is anti-vibration. Assembly 246 includes at least six layers of anti-vibration strips;
  • the fixing assembly 248 includes at least five pairs of anti-vibration strip tie rods, and each pair of anti-vibration strip tie rods passes through a set of third through holes on the anti-vibration assembly 246 and is connected to the outer shell of the test section 160 .
  • FIG. 4 it is a schematic structural diagram of the anti-vibration component 246 and the fixing component 248 of the flow-induced vibration test device in one embodiment.
  • the support component 240 of the flow-induced vibration test device also includes an anti-vibration component 246 and a fixing component 248;
  • the anti-vibration component 246 is arranged in a V-shape at the elbow section of the non-linear heat transfer tube; third through holes 401 are respectively opened at both ends of the anti-vibration component 246; the number of the anti-vibration component 246 is at least five groups, and each group is anti-vibration.
  • the vibration assembly 246 includes at least six layers of anti-vibration strips 402. In the bent section of the heat transfer pipe, the anti-vibration strips 402 are spaced apart from the non-linear heat transfer pipes. The anti-vibration strips 402 are used to fix the bent section of the non-linear heat transfer pipe. .
  • the fixing assembly 248 includes at least five pairs of anti-vibration strip tie rods 403.
  • Each pair of anti-vibration strip tie rods 403 is connected to the shell of the test section 160 through a third through hole 401 on a set of anti-vibration assemblies 246, and each pair is connected through a nut. The two ends of the anti-vibration bar tie rod 403 are fixed.
  • the support component 240 also includes an anti-vibration component 246 and a fixing component 248.
  • the anti-vibration strips 402 in the anti-vibration component 246 are spaced apart from the non-linear heat transfer tubes.
  • the anti-vibration strips 402 is used to fix the elbow section of the non-linear heat transfer tube;
  • the fixing assembly 248 includes at least five pairs of anti-vibration strips and tie rods 403, and the anti-vibration strip tie rods 403 are used to fix the anti-vibration assembly 246.
  • the anti-vibration component 246 and the fixing component 248 strengthen the support structure of the multiple non-linear heat transfer tube bend sections, thereby enhancing the stability of the flow-induced vibration test device and enabling the flow-induced vibration test device to more accurately Simulate actual production of large-scale automatic
  • the flow-induced vibration behavior of the heat transfer tubes in the tube bundle area of the natural circulation heat exchanger can be more accurately verified, so that the safety margin of the heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration can be more accurately verified. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the support assembly 240 further includes a collar; the collar is sleeved on the anti-vibration bar tie rod, and the collar is used to determine the distance between the anti-vibration bars of different layers in each group of anti-vibration components 246 .
  • the support assembly 240 of the flow-induced vibration test device also includes a collar 404;
  • the collar 404 is set on the anti-vibration bar tie rod 403, and the collar 404 is used to determine the distance between the anti-vibration bars 402 of different layers in each group of anti-vibration components 246.
  • the support assembly 240 further includes a collar 404 , which is used to distance the anti-vibration bars 402 of different layers in each group of anti-vibration assemblies 246 .
  • the collar 404 is used in conjunction with the anti-vibration component 246 and the fixing component 248 to strengthen the support structure of the multiple non-linear heat transfer tube elbow sections, thereby enhancing the stability of the flow-induced vibration test device and enabling the flow-induced vibration test device to
  • the vibration test device can more accurately simulate the flow-induced vibration behavior of the heat transfer tubes in the tube bundle area of large natural circulation heat exchangers in actual production, and thus can more accurately verify the flow-induced vibration of the heat transfer tubes in large natural circulation heat exchangers. safety margin. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the collection equipment of the flow-induced vibration test device includes:
  • Acceleration sensors are installed on the inner walls of multiple non-linear heat transfer tubes, on the shell of the flow channel and on the test bench; the acceleration sensor is used to measure the acceleration data of multiple non-linear heat transfer tubes and test devices;
  • the pressure sensor is installed on the outer wall of the target heat transfer tube among the multiple non-linear heat transfer tubes and on the pressure measuring points outside the multiple non-linear heat transfer tubes. It is used to measure the multiple non-linear heat transfer tubes and the multiple non-linear heat transfer tubes. Pressure data of the fluid outside the non-linear heat transfer tube; the distance between the target heat transfer tube and the support component meets the preset distance conditions;
  • Temperature sensor set on the external outlet pipe connected to the fluid outlet section, used to measure the temperature data of the entire test loop
  • the flow detection sensor is provided in the fluid inlet section and the fluid mixing section, and is used to detect the flow rate of the fluid input into the fluid inlet section and the flow rate of the fluid input into the fluid mixing section.
  • the acceleration sensor includes a first acceleration sensor and a second acceleration sensor.
  • the first acceleration sensor is disposed on the inner walls of the plurality of non-linear heat transfer tubes and is used to measure acceleration data of the plurality of non-linear heat transfer tubes.
  • the first acceleration sensor can be a three-axis accelerometer, that is, a three-axis accelerometer can be installed on the three-axis acceleration measuring point as the first acceleration sensor to measure the occurrence of mixed fluid under different preset fluid flow parameters. Acceleration value during flow-induced vibration. As shown in FIG. 5 , it is a schematic diagram of the installation of the first acceleration sensor on the heat transfer tube in another embodiment.
  • the accelerometer 501 is installed in the non-linear heat transfer tube 504 through screws 502 and rubber rings 503 .
  • Figure 6 it is a schematic diagram of the wiring of the first acceleration sensor on the heat transfer tube in another embodiment. After the three-axis accelerometer is successfully installed, connect the wiring on the three-axis accelerometer through the small hole on the bottom plate 242. out of the test section 160, and then run the wires along the inner wall of the flow channel of the fluid mixing section 140, and connect the wiring on the three-axis accelerometer out of the flow-induced vibration test device through the opening in the shell, and connect it to the test analysis equipment.
  • the second acceleration sensor is arranged on the shell of the flow channel and the test bench, and is used to measure the acceleration data of the test device.
  • Figure 7 it is a schematic diagram of the installation of the second acceleration sensor on the test device in another embodiment.
  • FIG. 8 it is a schematic diagram of the installation of the second acceleration sensor on the support stand in another embodiment.
  • the second acceleration sensor may be an accelerometer.
  • the accelerometer 702 is installed on the test bench and the test device body, and a total of 10 second acceleration sensors are used for measurement.
  • the second acceleration sensors on the test bench and the test device are used to monitor the vibration process of the test bench and the test device itself. acceleration in .
  • the pressure sensor includes a first pressure sensor and a second pressure sensor.
  • the first pressure sensor is arranged on the outer wall of the target heat transfer tube among the multiple non-linear heat transfer tubes, and is used to measure the strain data of the multiple non-linear heat transfer tubes; the distance between the target heat transfer tube and the support assembly satisfies Default distance conditions.
  • the first pressure sensor on the heat transfer tube is used to measure the vibration stress of the heat transfer tube when flow-induced vibration occurs under different preset fluid flow parameters.
  • the first pressure sensor may be a strain gauge. As shown in Figure 9, it is a schematic diagram of the installation of the first pressure sensor on the heat transfer tube in another embodiment.
  • the pressure sensor 902 is pasted on the designated heat transfer tube 904 40mm away from the anti-vibration strip support position or the support plate 244 position, and is pasted on the designated heat transfer tube in four directions, with the direction being the incoming flow direction and the vertical incoming flow direction;
  • the strain gauge is then wrapped with a rubber sleeve 906 to prevent fluid from directly scouring the strain gauge and causing damage to the vibration stress strain gauge. Both ends of the rubber sleeve 906 are fixed with metal rings 908 .
  • FIG. 11 it is a schematic diagram of the wiring of the first pressure sensor on the heat transfer tube in another embodiment. After all the first pressure sensors are successfully installed, according to the principle of proximity, the wiring of the first pressure sensor is along the heat transfer tube. The wiring on the outer wall exits from the flange of the first support plate 244.
  • FIG. 11 it is a schematic diagram of the installation positions of the first acceleration sensor and the first pressure sensor in another embodiment.
  • the second pressure sensor is arranged at a pressure measuring point outside the multiple non-linear heat transfer tubes, and is used to measure the pressure data of the fluid outside the multiple non-linear heat transfer tubes. Specifically, the second pressure sensor on the test device is used to measure the cavitation share of the fluid outside multiple non-linear heat transfer tubes. As shown in Figure 12, it is the second pressure sensor on the heat transfer tube in another embodiment.
  • the installation diagram shows four pressure measuring points P1, P2, P9 and P10 in the elbow section of the non-linear heat transfer pipe.
  • the straight section of the non-linear heat transfer pipe between the first support plate and the second support plate is Four pressure measuring points P3, P4, P5 and P6 are set in the pipe section, and two pressure measuring points P7 and P8 are set in the straight pipe section of the non-linear heat transfer pipe between the second support plate and the bottom plate 242.
  • the pressure data of P1, P2, P9 and P10 are averaged to obtain the pressure data of the non-linear heat transfer tube elbow section, and based on The pressure data of the elbow section of the non-linear heat transfer tube is used to calculate the cavitation share of the elbow section of multiple non-linear heat transfer tubes.
  • the pressure data of P1 and P3 or the pressure data of P2 and P4 are obtained through the second pressure sensor, thereby obtaining the pressure loss of the first support plate.
  • the pressure data of P3 and P5, or the pressure data of P4 and P6, are obtained through the second pressure sensor to obtain the pressure loss of the straight section of the non-linear heat transfer tube.
  • the pressure data of P5 and P7 or the pressure data of P6 and P8 are obtained through the second pressure sensor, thereby obtaining the pressure loss of the second support plate.
  • the temperature sensor is arranged on the external outlet pipe connected to the fluid outlet section 180 for measuring the temperature data of the entire test loop. Specifically, the temperature sensor can more accurately monitor the temperature of the fluid, and can monitor whether the temperature of the entire test device meets the preset threshold.
  • the flow detection sensor is provided in the fluid inlet section 120 and the fluid mixing section 140 for detecting the flow rate of the fluid input into the fluid inlet section and the flow rate of the fluid input into the fluid mixing section. Specifically, the flow rate of the first fluid and the flow rate of the second fluid are monitored through a flow sensor, and the pressure data measured by the second pressure sensor, the flow rate data of the first fluid, and the flow rate data of the second fluid are collected to calculate The proportion of cavitation bubbles at the specified location of the test device.
  • acceleration sensors are installed on the inner walls of multiple non-linear heat transfer tubes, on the shell of the flow channel and on the test bench; the acceleration sensor is used to measure the multiple non-linear heat transfer tubes and test Acceleration data of the device; through pressure sensors, set on the outer walls of the target heat transfer tubes among the multiple non-linear heat transfer tubes and on the pressure measuring points outside the multiple non-linear heat transfer tubes, used to measure the multiple non-linear heat transfer tubes.
  • the test data when flow-induced vibration occurs in multiple non-linear heat transfer tubes required for acquisition equipment can be obtained, so that the flow-induced vibration behavior under large flow conditions can be verified, and thus the flow-induced vibration behavior in large natural circulation heat exchangers can be more accurately verified.
  • the fluid mixing section 140 of the flow-induced vibration test device includes a first mixing section 142 and a first mixing section 142 connected in sequence.
  • second mixing section 144 the first fluid flows into the first mixing section 142 through the fluid inlet section 120;
  • the first mixing section 142 includes a second fluid inlet pipe 1422, and the second fluid flows into the first mixing section 142 through the second fluid inlet pipe, Mix with the first fluid in the first mixing section 142 to generate an intermediate mixed fluid;
  • the second mixing section includes a packing layer 1442, and the intermediate mixed fluid flows from the first mixing section 142 to the second mixing section 144, and is mixed through the packing layer 1442 to generate a mixed fluid.
  • the first mixing section 142 includes a second fluid inlet pipe, Second Fluid Inlet Tube 1422 Pack Including the main pipe 1422a, the branch pipe 1422b and the nozzle 1422c, the second fluid flows into the first mixing section 142 through the second fluid inlet pipe 1422, and is mixed with the first fluid in the first mixing section 142 to generate an intermediate mixed fluid;
  • the second mixing The section 144 is provided with a filler layer 1442.
  • the filler layer 1442 can fully cut the first fluid and the second fluid to achieve uniform mixing and achieve a bubble flow shape; the intermediate mixed fluid flows from the first mixing section 142 to the second mixing section. 144, mixing through the packing layer 1442 to generate a mixed fluid.
  • the fluid mixing section 140 includes a first mixing section 142 and a second mixing section 144 connected in sequence; the first fluid flows into the first mixing section 142 through the fluid inlet section 120; the first mixing section 142 includes a second fluid Inlet pipe 1422, the second fluid flows into the first mixing section 142 through the second fluid inlet pipe, and is mixed with the first fluid in the first mixing section 142 to generate an intermediate mixed fluid; a filler layer 1442 is provided in the second mixing section. The mixed fluid flows from the first mixing section 142 to the second mixing section 144 and is mixed through the packing layer 1442 to generate a mixed fluid.
  • the setting of the fluid mixing section 140 can achieve uniform mixing of the fluid in the test section 160, so that the flow-induced vibration behavior under large flow conditions can be verified, and thus the flow-induced vibration of the heat transfer tubes in large natural circulation heat exchangers can be verified more accurately. safety margin. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the fluid inlet section 120 includes a first fluid inlet pipe, a fourth through hole and a water baffle;
  • the first fluid flows into the test device through the first fluid inlet pipe; the fourth through hole is opened at one end of the first fluid inlet pipe, and the first fluid flows into the first mixing section through the fourth through hole; the water baffle is provided at the fourth through hole One side is used to evenly distribute the flow rate of the first fluid.
  • the fluid inlet section 120 includes a first fluid inlet pipe, a fourth through hole and a water baffle.
  • the first fluid flows into the fluid inlet section 120 through the first fluid inlet pipe.
  • Figure 14 which is a schematic structural diagram of the fourth through hole 1402 in the fluid inlet section in one embodiment, two rows of fourth through holes 1402 are provided at the top of the first fluid inlet pipe, and the first fluid passes through the fourth through hole 1402. into fluid mixing section 140.
  • the water blocking plate is arranged on the side of the first fluid inlet pipe where the fourth through hole is opened.
  • the water blocking plate includes a plurality of water blocking pieces.
  • the plurality of water blocking pieces divide the first fluid into a plurality of first fluid channels. The fluid can pass through the first fluid channel between each water blocking piece to evenly distribute the flow rate of the first fluid, and then the evenly distributed first fluid flows into the fluid mixing section 140 through the first fluid channel.
  • the fluid inlet section 120 includes a first fluid inlet pipe, a fourth through hole and a water baffle; the first fluid flows into the test device through the first fluid inlet pipe; the fourth through hole is opened in the first fluid inlet pipe. At one end of the mixing section, the first fluid flows into the first mixing section through the fourth through hole; the water baffle is arranged on one side of the fourth through hole to evenly distribute the flow of the first fluid.
  • the arrangement of the first fluid inlet pipe, the fourth through hole and the water baffle in the fluid inlet section 120 can achieve uniform distribution of the first fluid and prepare for the subsequent full mixing of the first fluid and the second fluid, thereby enabling more accurate mixing of the first fluid and the second fluid.
  • the test simulation body further includes a viewing window
  • the observation window is provided on the shell of the test device of the fluid mixing section and the test section, and is used to observe the mixing condition of the first fluid and the second fluid.
  • the observation window is provided on the shell of the test device of the fluid mixing section and the test section, and is specifically divided into a first observation window, a second observation window and a third observation window.
  • the mixing effect of the mixed fluid can be observed through the first observation window, which serves as a benchmark for observing the mixing effect of the mixed fluid in the test section.
  • the mixing effect reduces the blind area compared to the first observation window.
  • third observation windows which are evenly distributed in an arc shape on the shells of the elbow sections of the multiple non-linear heat transfer tubes. Through the third observation window, the mixed fluid can be observed in the multiple non-linear heat transfer tubes. Blending effect in the area outside the bend.
  • the observation window is provided on the housing of the test device of the fluid mixing section and the testing section for observing the mixing situation of the first fluid and the second fluid.
  • the high-speed camera outside the flow-induced vibration test device can Observing the mixing effect of the mixed fluid and the vibration of multiple non-linear heat transfer tubes can more accurately verify the flow-induced vibration behavior under large flow conditions, thereby more accurately verifying the heat transfer in large natural circulation heat exchangers.
  • Safety margin for heat pipes in the event of flow-induced vibration Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the support plate 244 of the flow-induced vibration test device includes a first support plate and a second support plate;
  • the first support plate and the second support plate are arranged sequentially in the test section 160, and the first support plate and the second support plate are both arranged in straight pipe sections of multiple non-linear heat transfer pipes.
  • the first support plate and the second support plate are arranged sequentially in the test section 160 , and the first support plate and the second support plate are both arranged in straight pipe sections of multiple non-linear heat transfer tubes.
  • the second support plate is disposed between the first support plate and the bottom plate 242 .
  • the support plate 244 includes a first support plate and a second support plate, and the first support plate and the second support plate are both disposed in straight pipe sections of multiple non-linear heat transfer tubes.
  • the first support plate and The setting of the second support plate strengthens the support structure of the straight pipe sections of the multiple non-linear heat transfer tubes, so that the flow-induced vibration test device can more accurately simulate the flow of the heat transfer tubes in the tube bundle area of large natural circulation heat exchangers in actual production. It can more accurately verify the safety margin of heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the non-linear heat transfer tube of the flow-induced vibration test device includes any one of a U-shaped heat transfer tube and a spiral heat transfer tube.
  • non-linear heat transfer tubes include straight tube sections and bent tube sections.
  • the non-linear heat transfer tubes include any one of U-shaped heat transfer tubes and spiral heat transfer tubes.
  • the non-linear heat transfer tubes used in the flow-induced vibration test device in this application are different from the actual complex ones. Multiple non-linear heat transfer tubes of similar degree can be designed. Multiple non-linear heat transfer tubes can more accurately simulate the structure of non-linear heat transfer tubes in the tube bundle area of large natural circulation heat exchangers in actual production, thus more accurately It can accurately simulate the flow-induced vibration of fluids in actual production, and can more accurately verify the safety margin of the heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • the flow-induced vibration test simulation method provided by the embodiment of the present application can be applied in the application environment as shown in Figure 15.
  • the computer device 1502 communicates with the collection device 1504 through the network.
  • Computer device 1502 may store data that collection device 1504 needs to process.
  • the mixed fluid is controlled to flow into the test section 160 according to the preset fluid flow parameters; the preset fluid flow parameters include the fluid flow velocity parameter and the fluid cavitation share parameter; when the mixed fluid flows into the test section 160, the flow generated by the flow-induced vibration test device is collected through the acquisition equipment.
  • Test data when causing vibration includes at least one of acceleration data, strain data, pressure data, temperature data and flow data; analyze the preset fluid flow parameters and the test data corresponding to the preset fluid flow parameters, Determine the vibration characteristics of multiple non-linear heat transfer tubes when flow-induced vibration occurs.
  • the computer device 1502 can be, but is not limited to, various personal computers, laptops, smart phones, tablets, Internet of Things devices, and portable wearable devices.
  • the Internet of Things devices can be smart speakers, smart TVs, smart air conditioners, and smart vehicle-mounted devices. wait.
  • Portable wearable devices can be smart watches, smart bracelets, head-mounted devices, etc.
  • the collection device 1504 can be implemented as an independent server or a server cluster composed of multiple servers.
  • a flow-induced vibration test simulation method is provided, which is applied to the above-mentioned flow-induced vibration test device.
  • the application of this method to the computer device 1502 in Figure 15 is used as an example, including The following actions:
  • the mixed fluid is controlled to flow into the test section 160 according to preset fluid flow parameters;
  • the preset fluid flow parameters include a fluid flow rate parameter and a fluid cavitation share parameter.
  • the fluid flow rate parameter is the flow rate of the fluid
  • the fluid cavitation share parameter is the cavitation share, also known as the cross-sectional gas content, which represents the percentage of gas in the gas-liquid two-phase mixture. This parameter directly affects the heat transfer of the two-phase flow. Mass transfer characteristics are important parameters that affect the operation and performance of two-phase flow systems, and their real-time measurement is of great significance.
  • the computer device 1502 controls the mixed fluid to flow into the test section 160 according to preset fluid flow parameters.
  • the preset fluid flow parameters include fluid flow velocity parameters and fluid cavitation fraction parameters. It can be divided into two kinds of test conditions. The first one is to control the fluid flow rate parameter while changing the fluid cavitation share parameter. The second one is to control the fluid cavitation share parameter to be constant while changing the fluid flow rate parameter. Condition.
  • Operation 1604 When the mixed fluid flows into the test section 160, the test data when the flow-induced vibration test device occurs is collected through the acquisition equipment; the test data includes at least one of acceleration data, strain data, pressure data, temperature data and flow data. A sort of.
  • the acquisition device 1504 includes an acceleration sensor, a pressure sensor, a temperature sensor and a flow detection sensor, specifically the vibration characteristics, damping ratio and additional mass coefficient of multiple non-linear heat transfer tubes; the same cavitation at different flow rates and the same flow rate at different cavitations Vibration acceleration and displacement response values of multiple non-linear heat transfer tube straight sections and elbow sections under the same cavitation bubble at different flow rates and vibration strains of multiple non-linear heat transfer tube elbow sections under the same flow rate and different cavitation bubbles value.
  • the preset fluid flow parameters and the test data corresponding to the preset fluid flow parameters are analyzed to determine the vibration characteristics of the multiple non-linear heat transfer tubes when flow-induced vibration occurs.
  • the computer device 1502 analyzes the preset fluid flow parameters and the test data corresponding to the preset fluid flow parameters. If no vortex shedding resonance phenomenon and rheo-elastic instability phenomenon are found within the test flow rate range, no abnormal vibration is found. situation; and the test data collected through the acquisition device 1504 when flow-induced vibration occurs in the flow-induced vibration test device, including the vibration characteristics of multiple non-linear heat transfer tubes and the vibration acceleration values, strain values and displacements under different working conditions The values meet the test data requirements for the flow-induced vibration safety margin of the flow-induced vibration test device, thereby more accurately verifying the safety margin of the heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs.
  • the mixed fluid is controlled to flow into the test section 160 according to the preset fluid flow parameters;
  • the preset fluid flow parameters include the fluid flow velocity parameter and the fluid cavitation share parameter; when the mixed fluid flows into the test section 160, by collecting The equipment collects test data when flow-induced vibration occurs in the flow-induced vibration test device;
  • the test data includes at least one of acceleration data, strain data, pressure data, temperature data and flow data;
  • the experimental data corresponding to the fluid flow parameters are analyzed to determine the vibration characteristics of multiple non-linear heat transfer tubes when flow-induced vibration occurs.
  • the flow-induced vibration test simulation method in this application collects the test data when flow-induced vibration occurs in the flow-induced vibration test device through the acquisition equipment, and conducts the obtained test data on Analysis, this process can more accurately simulate the flow-induced vibration behavior of the heat transfer tubes in the tube bundle area of large natural circulation heat exchangers in actual production, and thus can more accurately verify the flow-induced vibration of the heat transfer tubes in large natural circulation heat exchangers. time safety margin. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • a design method for a flow-induced vibration test device is provided, which is applied to the above-mentioned flow-induced vibration test device and includes the following operations:
  • Operation 1702 Obtain an initial model of the flow-induced vibration test device; the initial model includes an initial flow channel and an initial test simulation body, and the initial test simulation body includes multiple non-linear heat transfer tubes and support components.
  • the modal analysis of the heat transfer tube in the flow-induced vibration test device is carried out to keep the vibration characteristics of the bend section of the heat transfer tube in the flow-induced vibration test device similar to the vibration characteristics of the bend section of the heat transfer tube in the actual product, specifically as follows
  • the vibration frequency and mode shape of the test device and the product's bent pipe section remain similar.
  • the decoupling criterion of the bend section and the straight section of the heat transfer tube is determined. That is, taking two spans of the straight section of the heat transfer tube can eliminate the influence of the entire straight section on the dynamic characteristics of the bent section, and then determine the scale of the heat transfer tube of the test device. It is a two-span straight pipe section and all bent pipe sections, and thus determines the size of the heat transfer tube in the flow-induced vibration test device, and obtains the initial model of the flow-induced vibration test device.
  • Operation 1704 Perform flow-induced vibration analysis and flow field analysis on the initial model to determine first initial parameters of the initial flow channel groove and multiple non-linear heat transfer tubes; the first initial parameters are those that the initial model satisfies when flow-induced vibration occurs.
  • the envelope requirements are preset and the flow field of the initial model meets the preset flow field requirements, the parameters of the initial flow channel groove and multiple non-linear heat transfer tubes are used.
  • a rheo-elastic instability analysis was carried out on the heat transfer tube in the preset flow-induced vibration test device, and the rheo-elastic instability rate of the heat transfer tube with the maximum bend radius of the preset flow-induced vibration test device was obtained. Based on the principle of the maximum fluid elastic instability rate of the heat transfer tube with the largest bend radius of the enveloping product, the requirements for the test conditions are determined.
  • turbulent buffeting analysis was carried out on the heat transfer tube in the preset flow-induced vibration test device, and the root mean square effective value of the turbulent buffeting response of the heat transfer tube was obtained, and compared with the turbulent buffeting response in the actual product.
  • the principles for meeting the requirements of the turbulent buffeting experiment for the flow-induced vibration test conditions are obtained.
  • the tube array scale and test section flow channel thickness selected in the design of the preset flow-induced vibration test device are determined through flow field pre-analysis.
  • Figure 18 is a schematic diagram of the tube array scale in the flow field pre-analysis. The pre-analysis of the flow field determined that the tube array size to eliminate the influence of boundary conditions is five rows of heat transfer tubes, and the thickness of the test section of the flow-induced vibration test device was determined to be 112mm.
  • the flow-induced vibration test conditions were obtained.
  • the pressure loss of the preset flow-induced vibration test device is calculated to obtain the working pressure of the preset flow-induced vibration test device. Based on the matching design of the working pressure and the test circuit, the segmented pressure drop of each section of the test device is determined.
  • FIG. 19 it is a schematic diagram of the inter-tube flow velocity distribution of the heat transfer tubes in the test section.
  • the tube flow velocity distribution of the target heat transfer tube is obtained based on flow conservation and conversion.
  • the interflow velocity provides input for the subsequent flow-induced vibration analysis of the heat transfer tube.
  • Figure 20 it is a schematic diagram of the position of the heat transfer tube that needs to be measured in the high flow velocity area. The position of the heat transfer tube that needs to be measured in the high flow velocity area is preliminarily determined through the flow velocity distribution.
  • the heat transfer tubes at key positions were selected from the preset flow-induced vibration test device and the inter-tube flow velocity distribution of the heat transfer tubes at the same position in the actual product was compared. As shown in Figure 21, it is a certain heat transfer tube on a certain heat transfer tube. Comparison of the inter-tube flow rate between several test conditions and the steady-state operation of the actual product; as shown in Figure 22, it is a comparison of the fluid dynamic pressure between certain test conditions and the steady-state operation of the actual product on a certain heat transfer tube.
  • flow-induced vibration analysis is performed on the initial model.
  • the vibration response of the heat transfer tube of the preset flow-induced vibration test device was compared with the actual product heat transfer tube, it can be seen that the flow-induced vibration response of the heat transfer tube of the preset flow-induced vibration test device under typical working conditions can well envelope the actual product. Vibration response of heat transfer tubes at the same position.
  • the measuring point location is selected based on the results of the flow field analysis and flow-induced vibration analysis of the preset flow-induced vibration test device and the structural characteristics of the heat transfer tube in the preset flow-induced vibration test device.
  • the measuring point location needs to follow the following principles: 1 ) is located in a high transverse inter-tube flow velocity area and a high fluid dynamic pressure area; 2) is located at a location with a large effective value of the turbulent excitation vibration response; 3) is located at a location with large vibration stress; 4) is located at a critical position of the anti-vibration strip support: Maximum unsupported span position; 5) Consider symmetry; 6) Consider a certain degree of redundancy; 7) Consider the installability of strain gauges and accelerometers.
  • first initial parameters are assigned to the initial flow channel slot and the plurality of non-linear heat transfer tubes in the initial model to generate a first intermediate model, and a stress analysis is performed on the first intermediate model to determine whether the first intermediate model satisfies the preset stress conditions.
  • Second initial parameters of the support component in an intermediate model are assigned to the initial flow channel slot and the plurality of non-linear heat transfer tubes in the initial model to generate a first intermediate model, and a stress analysis is performed on the first intermediate model to determine whether the first intermediate model satisfies the preset stress conditions.
  • the initial flow channel groove and the multiple non-linear heat transfer tubes in the initial model are respectively assigned first initial parameters to generate the first intermediate model.
  • the first intermediate model is The model is divided into three parts to conduct stress analysis on the first intermediate model.
  • the first part is the fluid inlet section and the fluid mixing section;
  • the second part is the straight pipe section test section;
  • the third part is the bent pipe section test section and fluid outlet. part.
  • Operation 1708 Assign second initial parameters to the support component in the first intermediate model to obtain a second intermediate model.
  • the second intermediate model performs a fluid mixing experiment to determine the third initial parameters of the initial flow channel groove in the second intermediate model that meet the preset fluid mixing experimental conditions.
  • second initial parameters are assigned to the support components in the first intermediate model to obtain the second intermediate model.
  • first fluid and the second fluid before the test section, and ensure that the shape of the mixed fluid in the entire test section is approximately bubble flow during the test, it is necessary to develop a structural interface that meets the preset requirements and has a preset flow-induced vibration test.
  • a fluid mixing device that is compatible with the device body, and conducts fluid mixing experiments on the second intermediate model.
  • the flow rate at the inlet of the fluid mixing section is calculated based on the working condition flow rate of the test section of the test device and the structural size of the inlet position of the fluid mixing section, thereby ensuring that the fluid mixing module meets the performance requirements of fluid mixing within the flow range of the inlet flow rate of the fluid mixing section.
  • the overall pressure loss of the fluid mixing module is calculated, including the pressure loss of the nozzle, the pressure loss of the spray head, and the pressure loss of the packing layer in the mixing section.
  • the second fluid inlet pipe 1422 includes a main pipe 1422a, a branch pipe 1422b and a nozzle 1422c.
  • the end interface of the branch pipe can be connected to the nozzle to achieve preliminary mixing of air and water under low cavitation conditions, and the end of the branch pipe can also be connected to a spray head to achieve high cavitation conditions. The air and water are initially mixed.
  • the first fluid inlet under low cavitation conditions, is connected to the water circuit of the test circuit, and the second fluid inlet is connected to the gas circuit; under high cavitation conditions, the first fluid inlet is connected to the gas circuit, and the second fluid inlet is connected to the water circuit;
  • the second mixing section is connected to the first mixing section through a flange, and a corrugated plate packing layer is provided inside the second mixing section to achieve full mixing of the mixed fluid.
  • the design principles of the fluid mixing module performance test device are as follows: 1) The flow rate flowing through the mixing device performance test simulation body is consistent with the flow-induced vibration test device; 2) The perforation flow rate of the nozzle is consistent with the flow-induced vibration test device; 3) The maximum and minimum values of the cavitation fraction cover the working condition parameter range of the flow-induced vibration test device; 4) The layout is consistent with the test device.
  • Figure 23 it is a schematic structural diagram of the fluid mixing module performance test simulation body designed according to the above design principles.
  • Figure 24 it is a schematic diagram of the installation of the fluid mixing module performance test simulation body in the test circuit.
  • a fluid mixing experiment is carried out to determine the test working conditions of the performance test. .
  • a high-speed camera was used to capture the mixing effect of the transparent section downstream of the mixing unit.
  • An electromagnetic flow meter and an air flow meter were used to measure the water flow and air flow respectively, and the pressure and pressure difference of the test simulation body and the test loop were measured.
  • test results obtained are mainly the gas-water mixing video data captured by the high-speed camera and the pressure difference of the simulated body measured by the pressure difference measuring point.
  • the following conclusions are drawn: 1) Under low flow and low cavitation rate conditions, bubbles easily aggregate into large bubbles, but are basically broken into small bubbles again at the end of the transparent section; 2) Large flow Under working conditions, there is no obvious difference in the mixing effect produced by air pipes with different openings; 3) Under small flow conditions, the mixing effect of 80-hole air pipes is slightly better than that of 400-hole air pipes; 4) Under small air flow conditions, not all 400-hole air pipes There is air flow in all the openings, only the top two rows of openings have air flow; 5) At high air volume, the air resistance of the 80-hole trachea is greater than that of the 400-hole trachea.
  • the designed fluid mixing module has the characteristics of good mixing effect and low resistance, which can meet the test requirements.
  • the number of openings of the nozzle on the flow-induced vibration test device was determined to ensure that the preset fluid mixing is satisfied.
  • a flow-induced vibration test device is generated based on the first initial parameters of the initial flow channel and the plurality of non-linear heat transfer tubes, the second initial parameters of the support assembly, and the third initial parameter of the initial flow channel.
  • the first initial parameters of the initial flow channel groove and multiple non-linear heat transfer tubes, the second initial parameters of the support assembly and The third initial parameter of the initial flow channel groove is used to generate a flow-induced vibration test device, thereby completing the design of the flow-induced vibration test device.
  • an initial model of the flow-induced vibration test device is obtained;
  • the initial model includes an initial flow channel groove and an initial test simulation body, and the initial test simulation body includes multiple non-linear heat transfer tubes and support components;
  • Conduct flow-induced vibration analysis and flow field analysis on the initial model to determine the first initial parameters of the initial flow channel groove and multiple non-linear heat transfer tubes;
  • the first initial parameter is the parameters of the initial flow channel groove and multiple non-linear heat transfer tubes when the initial model meets the preset envelope requirements when flow-induced vibration occurs, and the flow field of the initial model meets the preset flow field requirements. ;
  • Second initial parameters of the support component in the model assign second initial parameters to the support component in the first intermediate model to obtain a second intermediate model, conduct a fluid mixing experiment on the second intermediate model, and determine that the preset fluid mixing experimental conditions are met
  • the third initial parameter of the initial flow channel in the second intermediate model the first initial parameter based on the initial flow channel and multiple non-linear heat transfer tubes, the second initial parameter of the support component and the third initial parameter of the initial flow channel Initial parameters are used to generate a flow-induced vibration test device.
  • the flow-induced vibration test device in this application is obtained, and then the designed flow-induced vibration test device can more accurately simulate large-scale natural circulation in actual production.
  • the flow-induced vibration behavior of the heat transfer tubes in the tube bundle area of the heat exchanger can more accurately verify the safety margin of the heat transfer tubes in large natural circulation heat exchangers when flow-induced vibration occurs. Furthermore, it can be ensured that large natural circulation heat exchangers can operate safely in actual production.
  • embodiments of the present application also provide a flow-induced vibration test simulation device for implementing the above-mentioned flow-induced vibration test simulation method.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, the specific limitations in the embodiments of one or more flow-induced vibration test simulation devices provided below can be found in the above article on flow-induced vibration. The limitations of the test simulation method will not be repeated here.
  • a flow-induced vibration test simulation device 2500 including: a mixed fluid inflow module 2502, a test data acquisition module 2504, and a test data analysis module 2506, wherein:
  • the mixed fluid inflow module 2502 is used to control the mixed fluid to flow into the test section 160 according to preset fluid flow parameters;
  • the preset fluid flow parameters include fluid flow velocity parameters and fluid cavitation share parameters;
  • the test data acquisition module 2504 is used to collect test data when flow-induced vibration occurs in the flow-induced vibration test device through the acquisition equipment when the mixed fluid flows into the test section 160; the test data includes acceleration data, strain data, pressure data, temperature data and At least one of the traffic data;
  • the test data analysis module 2506 is used to analyze the preset fluid flow parameters and the test data corresponding to the preset fluid flow parameters, and determine the vibration characteristics of the multiple non-linear heat transfer tubes when flow-induced vibration occurs.
  • Each module in the above-mentioned flow-induced vibration test device can be realized in whole or in part by software, hardware and their combination.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a server or a terminal, and its internal structure diagram may be as shown in Figure 26.
  • the computer device includes a processor, memory, and network interfaces connected through a system bus. Wherein, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the database of the computer equipment is used to store flow-induced vibration test data.
  • the network interface of the computer device is used to communicate with external terminals through a network connection.
  • the computer program is executed by a processor to implement a flow-induced vibration test simulation method.
  • FIG. 26 is only part of the structure related to the solution of the present application.
  • the block diagram does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • a specific computer equipment may include more or fewer components than shown in the figure, or may combine certain components, or have different component arrangements. .
  • a computer device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the following operations:
  • the mixed fluid is controlled to flow into the test section 160 according to preset fluid flow parameters;
  • the preset fluid flow parameters include fluid flow velocity parameters and fluid cavitation share parameters;
  • test data when the mixed fluid flows into the test section 160, the test data when the flow-induced vibration occurs in the flow-induced vibration test device is collected through the acquisition equipment; the test data includes at least one of acceleration data, strain data, pressure data, temperature data and flow data;
  • a computer-readable storage medium is provided with a computer program stored thereon.
  • the computer program When the computer program is executed by a processor, the following operations are implemented:
  • the mixed fluid is controlled to flow into the test section 160 according to preset fluid flow parameters;
  • the preset fluid flow parameters include fluid flow velocity parameters and fluid cavitation share parameters;
  • test data when the mixed fluid flows into the test section 160, the test data when the flow-induced vibration occurs in the flow-induced vibration test device is collected through the acquisition equipment; the test data includes at least one of acceleration data, strain data, pressure data, temperature data and flow data;
  • a computer program product including a computer program that, when executed by a processor, implements the following operations:
  • the mixed fluid is controlled to flow into the test section 160 according to preset fluid flow parameters;
  • the preset fluid flow parameters include fluid flow velocity parameters and fluid cavitation share parameters;
  • test data when the mixed fluid flows into the test section 160, the test data when the flow-induced vibration occurs in the flow-induced vibration test device is collected through the acquisition equipment; the test data includes at least one of acceleration data, strain data, pressure data, temperature data and flow data;
  • the user information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • the computer program can be stored in a non-volatile computer-readable storage medium. , when executed, the computer program may include the processes of the above method embodiments. Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory (FRAM)), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM can be in many forms, such as static random access memory (Static Random Access Memory). Random Access Memory, SRAM) or Dynamic Random Access Memory (Dynamic Random Access Memory, DRAM), etc.
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请涉及一种流致振动试验装置、方法、计算机设备、存储介质和产品。装置包括:流道槽、试验模拟体及采集设备;流道槽包括依次连接的流体入口段(120)、流体混合段(140)、试验段(160)及流体出口段(180);流体混合段(140)用于对从流体入口段(120)流入的流体进行混合,生成混合流体;混合流体流经试验段(160),并从流体出口段(180)流出;试验模拟体包括多根非直线型传热管(220)及支撑组件(240),支撑组件(240)用于将多根非直线型传热管(220)固定安装在试验段(160);采集设备,设置在多根非直线型传热管(220)上,用于采集在混合流体流入试验段(160)时,多根非直线型传热管(220)发生流致振动时的试验数据。

Description

流致振动试验装置、方法、计算机设备、存储介质和产品
本申请要求于2022年09月08日提交中国专利局,申请号为202211096730.7,发明名称为“流致振动试验装置、方法、计算机设备、存储介质和产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及换热器管束区的流致振动分析技术领域,特别是涉及一种流致振动试验装置、方法、计算机设备、存储介质和产品。
背景技术
大型自然循环换热器是将热流体的部分热量传递给冷流体的大型设备,主要功能是保证换热器在运行过程中对温度的要求。大型自然循环换热器的管束区中设置了传热管,传热管不仅能够用于将管、壳两侧的介质进行热量交换,还能够作为反应堆冷却系统的压力边界,起到包容放射物的作用。因此,传热管的结构完整性关系到整个换热器的安全运行。在大型自然循环换热器稳态运行时,若壳侧流体横向冲刷换热器中的传热管,则将会引发传热管出现过量流致振动进而导致传热管出现损伤。因此,需要设计一种流致振动试验装置,用于验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。
传统技术中,通常是将传热管以及其支撑结构进行简化,并基于简化后的传热管以及支撑结构进行设计得到流致振动试验装置。然而,在实际生产中,大型自然循环换热器所采用的传热管以及其支撑结构较为复杂。那么,由于传统技术中的流致振动试验装置采用简化后的传热管以及支撑结构来模拟流致振动,因此,就无法准确模拟实际生产中传热管的流致振动行为。
所以,采用传统技术中的流致振动试验装置,就无法准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,无法保证在实际生产中,大型自然循环换热器能够安全运行。
发明内容
基于此,有必要针对上述技术问题,提供一种能够保证大型自然循环换热器在实际生产中安全运行的流致振动试验装置、方法、计算机设备、存储介质和产品。
第一方面,本申请提供了一种流致振动试验装置。所述装置包括:流道槽、试验模拟体及采集设备;
所述流道槽包括依次连接的流体入口段、流体混合段、试验段及流体出口段;所述流体混合段用于对从所述流体入口段流入的流体进行混合,生成混合流体;所述混合流体流经所述试验段,并从所述流体出口段流出;
所述试验模拟体包括多根非直线型传热管及支撑组件,所述支撑组件用于将所述多根非直线型传热管固定安装在所述试验段;
所述采集设备,设置在所述多根非直线型传热管上,用于采集在所述混合流体流入所述试验段时,所述多根非直线型传热管发生流致振动时的试验数据。
在其中一个实施例中,所述支撑组件包括底板;
所述底板连接至所述试验段的外壳上;所述底板上开设第一通孔,且所述底板上设置传热管固定组件;所述混合流体从所述流体混合段通过所述第一通孔流入所述试验段;所述多根非直线型传热管的两端通过所述传热管固定组件连接至所述底板上。
在其中一个实施例中,所述支撑组件还包括支撑板;
所述支撑板连接至所述试验段的外壳上,且所述支撑板位于所述底板与所述流体出口段 之间,所述支撑板设置于所述非直线型传热管的直管段;所述支撑板上开设第二通孔,所述混合流体通过所述第二通孔流入所述流体出口段,且所述多根非直线型传热管穿过所述第二通孔,与所述支撑板上的所述第二通孔间隙配合。
在其中一个实施例中,所述支撑组件还包括防振组件及固定组件;
所述防振组件呈V型设置于所述非直线型传热管的弯管段;所述防振组件的两端分别开设第三通孔;所述防振组件的数目为至少五组,且每组防振组件包括至少六层防振条;
所述固定组件包括至少五对防振条拉杆,每对所述防振条拉杆穿过一组防振组件上的第三通孔连接至试验段的外壳上。
在其中一个实施例中,所述支撑组件还包括套环;
所述套环套设在所述防振条拉杆上,每组所述防振组件中不同层的防振条之间采用所述套环进行定距。
在其中一个实施例中,所述采集设备包括:
加速度传感器,设置在所述多根非直线型传热管的内壁、所述流道槽的外壳上以及试验台架上;所述加速度传感器用于测量所述多根非直线型传热管以及试验装置的加速度数据;
压力传感器,设置在所述多根非直线型传热管中目标传热管的外壁以及多根非直线型传热管外的压力测点上,用于测量所述多根非直线型传热管以及所述多根非直线型传热管外流体的压力数据;所述目标传热管与所述支撑组件之间的距离满足预设距离条件;
温度传感器,设置在与所述流体出口段连接的外部出口管道上,用于测量整个试验回路的温度数据;
流量检测传感器,设置在所述流体入口段及所述流体混合段,用于检测输入所述流体入口段的流体的流量及输入所述流体混合段的流体的流量。
在其中一个实施例中,所述流体混合段包括依次连接的第一混合段及第二混合段;第一流体经过流体入口段流入所述第一混合段;所述第一混合段包括第二流体入口管,第二流体经过所述第二流体入口管流入第一混合段,在第一混合段与第一流体进行混合,生成中间混合流体;
所述第二混合段内设置包括填料层,所述中间混合流体从所述第一混合段流入所述第二混合段,通过填料层进行混合,生成所述混合流体。
在其中一个实施例中,所述流体入口段包括第一流体进水管、第四通孔及挡水板;
所述第一流体通过所述第一流体进水管流入试验装置;所述第四通孔开设在第一流体进水管的一端,所述第一流体通过所述第四通孔流入所述第一混合段;所述挡水板设置在所述第四通孔的一侧,用于使所述第一流体的流量均匀分布。
在其中一个实施例中,所述试验模拟体还包括观察窗;
所述观察窗设置在所述流体混合段与所述试验段的试验装置外壳上,用于观察所述第一流体与所述第二流体的混合情况。
在其中一个实施例中,所述支撑板包括第一支撑板及第二支撑板;
所述第一支撑板及第二支撑板在所述试验段内依次排布设置,且所述第一支撑板及第二支撑板均设置在所述多根非直线型传热管的直管段。
在其中一个实施例中,所述非直线型传热管包括U型传热管、螺旋形传热管中的任意一种。
第二方面,本申请还提供了一种流致振动试验模拟方法。所述方法应用于上述第一方面中任一项实施例中的流致振动试验装置,所述方法包括:
控制所述混合流体按照预设流体流动参数流入所述试验段;所述预设流体流动参数包括流体流速参数及流体空泡份额参数;
在所述混合流体流入所述试验段时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;所述试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
对所述预设流体流动参数及与所述预设流体流动参数对应的试验数据进行分析,确定所述多根非直线型传热管在发生流致振动时的振动特征。
第三方面,本申请还提供了一种流致振动试验模拟装置。所述装置包括:
混合流体流入模块,用于控制所述混合流体按照预设流体流动参数流入所述试验段;所述预设流体流动参数包括流体流速参数及流体空泡份额参数;
试验数据采集模块,用于在所述混合流体流入所述试验段时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;所述试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
试验数据分析模块,用于对所述预设流体流动参数及与所述预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
第四方面,本申请还提供了一种流致振动试验装置的设计方法。所述方法应用于上述第一方面中任一项实施例中的流致振动试验装置,所述方法包括:
获取流致振动试验装置的初始模型;所述初始模型包括初始流道槽、初始试验模拟体,所述初始试验模拟体包括多根非直线型传热管及支撑组件;
对所述初始模型进行流致振动分析及流场分析,确定所述初始流道槽及所述多根非直线型传热管的第一初始参数;所述第一初始参数为所述初始模型在发生流致振动时满足预设包络性要求、且所述初始模型的流场满足预设流场要求时,所述初始流道槽及所述多根非直线型传热管的参数;
对所述初始模型中的所述初始流道槽及所述多根非直线型传热管分别赋予所述第一初始参数生成第一中间模型,对所述第一中间模型进行应力分析,确定满足预设应力条件下所述第一中间模型中支撑组件的第二初始参数;
对所述第一中间模型中的支撑组件赋予所述第二初始参数,得到第二中间模型,对所述第二中间模型进行流体混合实验,确定满足预设流体混合实验条件下所述第二中间模型中初始流道槽的第三初始参数;
基于所述初始流道槽及所述多根非直线型传热管的第一初始参数、所述支撑组件的第二初始参数及所述初始流道槽的第三初始参数,生成所述流致振动试验装置。
第五方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述第二方面中所述的方法的操作。
第六方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第二方面中所述的方法的操作。
第七方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述第二方面中所述的方法的操作。
附图说明
图1为一个实施例中流致振动试验装置的结构示意图;
图2为一个实施例中流致振动试验装置的底板的结构示意图;
图3为一个实施例中流致振动试验装置的支撑板的结构示意图;
图4为一个实施例中流致振动试验装置防振组件及固定组件的结构示意图;
图5为另一个实施例中传热管上的第一加速度传感器的安装示意图;
图6为另一个实施例中传热管上的第一加速度传感器的走线示意图;
图7为另一个实施例中试验装置上的第二加速度传感器的安装示意图;
图8为另一个实施例中支撑台架上的第二加速度传感器的安装示意图;
图9为另一个实施例中传热管上的第一压力传感器的安装示意图;
图10为另一个实施例中传热管上的第一压力传感器的走线示意图;
图11为另一个实施例中第一加速度传感器以及第一压力传感器的安装位置示意图;
图12为另一个实施例中传热管上的第二压力传感器的安装示意图;
图13为一个实施例中流致振动试验装置的流体混合段的结构示意图;
图14为一个实施例中流体入口段中第四通孔的结构示意图;
图15为一个实施例中流致振动试验模拟方法的应用环境图;
图16为一个实施例中流致振动试验模拟方法的流程示意图;
图17为一个实施例中流致振动试验装置的设计方法的流程示意图;
图18为一个实施例中流场预分析中管阵规模的示意图;
图19为一个实施例中试验段中传热管的管间流速分布示意图;
图20为一个实施例中高流速区需要测量的传热管位置的示意图;
图21为一个实施例中某一根传热管上某几个试验工况与实际产品稳态运行的管间流速的对比图;
图22为一个实施例中某一根传热管上某几个试验工况与实际产品稳态运行的流体动压的对比图;
图23为一个实施例中流体混合模块性能试验模拟体的结构示意图;
图24为一个实施例中流体混合模块性能试验模拟体的安装示意图;
图25为一个实施例中流致振动试验模拟装置的结构框图;
图26为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
大型自然循环换热器是将热流体的部分热量传递给冷流体的大型设备,主要功能是保证换热器在运行过程中对温度的要求。大型自然循环换热器的管束区中设置了传热管,传热管不仅能够用于将管、壳两侧的介质进行热量交换,还能够作为反应堆冷却系统的压力边界,起到包容放射物的作用。因此,传热管的结构完整性关系到整个换热器的安全运行。在大型自然循环换热器稳态运行时,若壳侧流体横向冲刷换热器中的传热管,则将会引发传热管出现过量流致振动进而导致传热管出现损伤。因此,需要设计一种流致振动试验装置,用于验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。
传统技术中,通常是将传热管以及其支撑结构进行简化,并基于简化后的传热管以及支撑结构进行设计得到流致振动试验装置。然而,在实际生产中,大型自然循环换热器所采用的传热管以及其支撑结构较为复杂。那么,由于传统技术中的流致振动试验装置采用简化后的传热管以及支撑结构来模拟流致振动,传统技术中的流致振动试验装置就无法准确模拟实际生产中非直线型传热管结构(例如倒U型传热管弯管段)的流致振动行为,而倒U型传热管是大型自然循环换热器普遍采用的结构形式,且该倒U型传热管发生流致振动的高风险区主要集中在弯管段。
传统技术中的流致振动试验装置中的传热管,是对实际生产中大型自然循环换热器中的传热管进行结构简化得到的,因此,流致振动试验装置仅能够验证传热管在发生流致振动行为时的一阶振动特性,而无法验证传热管在发生流致振动行为时的高阶振动特性。其一,传统技术中的流致振动试验装置传热管无法模拟真实产品传热管的支撑结构,而传热管支撑结构是影响传热管流致振动响应的关键因素。其二,传统技术中的流致振动试验装置规模小,无法模拟高流速大流量下管束中传热管的流致振动行为。其三,传统技术中的流致振动试验体气水混合段体积小、流体阻力大,无法满足实际工程大流量下的流致振动试验验证需求。因此,传统技术中的流致振动试验装置就无法准确模拟实际生产中传热管的流致振动行为。
所以,采用传统技术中的流致振动试验装置,就无法准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,无法保证在实际生产中,大型自然循环换热器 能够安全运行。
基于此,本申请提供一种能够保证大型自然循环换热器在实际生产中安全运行的流致振动试验装置。
在一个实施例中,如图1所示,提供了一种流致振动试验装置,该装置包括:流道槽、试验模拟体及采集设备;
流道槽包括依次连接的流体入口段120、流体混合段140、试验段160及流体出口段180;流体混合段140用于对从流体入口段120流入的流体进行混合,生成混合流体;混合流体流经试验段160,并从流体出口段流出;
试验模拟体包括多根非直线型传热管220及支撑组件240,支撑组件240用于将多根非直线型传热管固定安装在试验段160;
采集设备,设置在多根非直线型传热管上,用于采集在混合流体流入试验段160时,多根非直线型传热管发生流致振动时的试验数据。
其中,支撑组件240包括底板242、支撑板244、防振组件246、固定组件248及套环。流致振动试验装置的外壳包括观察窗131、加强筋132及法兰133,观察窗131用于工作人员观察第一流体与第二流体的混合情况,加强筋132用于支撑外壳,防止装置在流致振动的过程中发生形变,通过法兰133将流体入口段120、流体混合段140、试验段160及流体出口段180进行连接。
本申请实施例中,提供了一种流致振动试验装置,包括流道槽、试验模拟体及采集设备;流道槽包括依次连接的流体入口段120、流体混合段140、试验段160及流体出口段180;流体混合段140用于对从流体入口段120流入的流体进行混合,生成混合流体;混合流体流经试验段160,并从流体出口段180流出;试验模拟体包括多根非直线型传热管及支撑组件240,支撑组件240用于将多根非直线型传热管固定安装在试验段160;采集设备,设置在多根非直线型传热管上,用于采集在混合流体流入试验段160时,多根非直线型传热管发生流致振动时的试验数据。本申请中的流致振动试验装置使用与实际复杂程度类似的多根非直线型传热管进行设计,多根非直线型传热管能够较准确地模拟实际生产中大型自然循环换热器管束区的非直线型传热管结构,从而较准确地模拟实际生产中流体的流致振动情况;另外,支撑组件240加强了多根非直线型传热管的支撑结构,流道槽与支撑组件240中通孔的配合使用使混合流体的传输更为便捷,从而较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为。且该流致振动试验装置规模较大,具备流体混合段140,能够实现试验段160流体均匀混合,从而能够验证大流量条件下的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,支撑组件240包括底板242;底板242连接至试验段160的外壳上;底板242上开设第一通孔,且底板242上设置传热管固定组件202;混合流体从流体混合段140通过第一通孔流入试验段160;多根非直线型传热管的两端通过传热管固定组件202连接至底板242上。
如图2所示,为一个实施例中流致振动试验装置的支撑组件240中的底板242的结构示意图,流致振动试验装置的支撑组件240还包括底板242;
底板242包括第一通孔201、传热管固定组件202及螺栓孔203。底板242上开设多个第一通孔201,用于将混合流体从流体混合段140通过第一通孔201流入试验段160;底板242上设置传热管固定组件202,用于将多根非直线型传热管的两端通过传热管固定组件202焊接至底板242上;底板242上设置螺栓孔203,螺栓孔203用于连接法兰,以使底板242通过法兰连接至试验段160的外壳上。
本申请实施例中,支撑组件240包括底板242,底板242上开设多个第一通孔201,用于将混合流体从流体混合段140通过第一通孔201流入试验段160,使混合流体的传输较为便捷;底板242上设置传热管固定组件202,用于将多根非直线型传热管的两端通过传热管固定组件202 焊接至底板242上,加强了多根非直线型传热管的支撑结构;底板242上设置螺栓孔203,螺栓孔203用于连接法兰,以使底板242通过法兰连接至试验段160的外壳上,加强了该流致振动试验装置的稳定性。底板242上第一通孔201、传热管固定组件202及螺栓孔203的相互配合使该流致振动试验装置能够较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,支撑组件240还包括支撑板244;支撑板244连接至试验段160的外壳上,且支撑板244位于底板242与流体出口段180之间,支撑板244设置于非直线型传热管的直管段;支撑板244上开设第二通孔,混合流体通过第二通孔流入流体出口段180,且多根非直线型传热管穿过第二通孔,与支撑板244上的第二通孔间隙配合。
如图3所示,为一个实施例中流致振动试验装置的支撑板244的结构示意图。流致振动试验装置的支撑组件240还包括支撑板244;
支撑板244包括第二通孔301及螺栓孔302。支撑板244上开设第二通孔301,混合流体通过第二通孔301流入流体出口段180,且多根非直线型传热管的直管段穿过第二通孔301,与支撑板244上的第二通孔301间隙配合;支撑板244上设置螺栓孔302,螺栓孔302用于连接法兰,以使支撑板244通过法兰连接至试验段160的外壳上,且支撑板244位于底板242与流体出口段180之间,支撑板244设置于非直线型传热管的直管段。
本申请实施例中,支撑组件240包括支撑板244,支撑板244上开设第二通孔301,混合流体通过第二通孔301流入流体出口段180,使混合流体的传输更为便捷;多根非直线型传热管的直管段穿过第二通孔301,与支撑板244上的第二通孔301间隙配合,加强了多根非直线型传热管直管段的支撑结构;支撑板244上设置螺栓孔302,螺栓孔302用于连接法兰,以使支撑板244通过法兰连接至试验段160的外壳上,加强了该流致振动试验装置的稳定性。支撑板244上第二通孔301及螺栓孔302的相互配合能够使该流致振动试验装置能够较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,支撑组件240还包括防振组件246及固定组件248;
防振组件246呈V型设置于非直线型传热管的弯管段;防振组件246的两端分别开设第三通孔;防振组件246的数目为至少五组,且每组防振组件246包括至少六层防振条;
固定组件248包括至少五对防振条拉杆,每对防振条拉杆穿过一组防振组件246上的第三通孔连接至试验段160的外壳上。
如图4所示,为一个实施例中流致振动试验装置防振组件246及固定组件248的结构示意图。流致振动试验装置的支撑组件240还包括防振组件246及固定组件248;
防振组件246呈V型设置于非直线型传热管的弯管段;防振组件246的两端分别开设第三通孔401;防振组件246的数目为至少五组,且每组防振组件246包括至少六层防振条402,在传热管的弯管段,防震条402与非直线型传热管间隔设置,防震条402用于固定非直线型传热管的弯管段。
固定组件248包括至少五对防振条拉杆403,每对防振条拉杆403穿过一组防振组件246上的第三通孔401连接至试验段160的外壳上,并通过螺母将每对防振条拉杆403的两端进行固定。
本申请实施例中,支撑组件240还包括防振组件246及固定组件248,在传热管的弯管段,防振组件246中的防震条402与非直线型传热管间隔设置,防震条402用于固定非直线型传热管的弯管段;固定组件248包括至少五对防振条拉杆403,防振条拉杆403用于固定防振组件246。防振组件246及固定组件248加强了多根非直线型传热管弯管段的支撑结构,从而加强了该流致振动试验装置的稳定性,能够使该流致振动试验装置能够较准确地模拟实际生产中大型自 然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,支撑组件240还包括套环;套环套设在防振条拉杆上,每组防振组件246中不同层的防振条之间采用套环进行定距。
如图4所示,流致振动试验装置的支撑组件240还包括套环404;
套环404套设在防振条拉杆403上,每组防振组件246中不同层的防振条402之间采用套环404进行定距。
本申请实施例中,支撑组件240还包括套环404,套环404用于对每组防振组件246中不同层的防振条402进行定距。套环404与防振组件246及固定组件248的配合使用加强了多根非直线型传热管弯管段的支撑结构,从而加强了该流致振动试验装置的稳定性,能够使该流致振动试验装置能够较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,流致振动试验装置的采集设备包括:
加速度传感器,设置在多根非直线型传热管的内壁、流道槽的外壳上以及试验台架上;加速度传感器用于测量多根非直线型传热管以及试验装置的加速度数据;
压力传感器,设置在多根非直线型传热管中目标传热管的外壁以及多根非直线型传热管外的压力测点上,用于测量多根非直线型传热管以及多根非直线型传热管外流体的压力数据;目标传热管与支撑组件之间的距离满足预设距离条件;
温度传感器,设置在与流体出口段连接的外部出口管道上,用于测量整个试验回路的温度数据;
流量检测传感器,设置在流体入口段及流体混合段,用于检测输入流体入口段的流体的流量及输入流体混合段的流体的流量。
其中,加速度传感器包括第一加速度传感器以及第二加速度传感器。第一加速度传感器设置在多根非直线型传热管的内壁上,用于测量多根非直线型传热管的加速度数据。可选的,第一加速度传感器可以是三轴加速度计,即可以在三轴加速度测点上安装三轴加速度计作为第一加速度传感器,用于测量混合流体在不同的预设流体流动参数下发生流致振动时的加速度值。如图5所示,为另一个实施例中传热管上的第一加速度传感器的安装示意图,加速度计501通过螺钉502及橡胶圈503安装在非直线型传热管504内。如图6所示,为另一个实施例中传热管上的第一加速度传感器的走线示意图,三轴加速度计安装成功后,通过底板242上的小孔将三轴加速度计上的接线接出试验段160,再沿着流体混合段140流道内壁走线,并通过外壳上的开孔将三轴加速度计上的接线接出流致振动试验装置,连接到试验分析设备上。
第二加速度传感器设置在流道槽的外壳上以及试验台架上,用于测量试验装置的加速度数据。具体的,如图7所示,为另一个实施例中试验装置上的第二加速度传感器的安装示意图。如图8所示,为另一个实施例中支撑台架上的第二加速度传感器的安装示意图。可选的,第二加速度传感器可以是加速度计。加速度计702设置于试验台架以及试验装置本体上,共使用10个第二加速度传感器进行测量,试验台架以及试验装置上的第二加速度传感器用于监测试验台架及试验装置自身在振动过程中的加速度。
压力传感器包括第一压力传感器以及第二压力传感器。第一压力传感器设置在多根非直线型传热管中目标传热管的外壁上,用于测量多根非直线型传热管的应变数据;目标传热管与支撑组件之间的距离满足预设距离条件。具体的,传热管上的第一压力传感器用于测量传热管在不同的预设流体流动参数下发生流致振动时的振动应力。可选的,第一压力传感器可以是应变片。如图9所示,为另一个实施例中传热管上的第一压力传感器的安装示意图,第一 压力传感器902粘贴在距防振条支撑位置或支撑板244位置40mm处的指定传热管904上,分别粘贴在指定传热管上的四个方位,方向为来流方向和垂直来流方向;再用橡胶套906把应变片包裹住,防止流体直接冲刷应变片导致振动应力应变片破损,橡胶套906两端使用金属环908固定。如图10所示,为另一个实施例中传热管上的第一压力传感器的走线示意图,在所有第一压力传感器安装成功之后,按就近原则,第一压力传感器的接线沿传热管外壁走线,从第一支撑板244处的法兰出线。如图11所示,为另一个实施例中第一加速度传感器以及第一压力传感器的安装位置示意图。
第二压力传感器设置在多根非直线型传热管外的压力测点上,用于测量多根非直线型传热管外流体的压力数据。具体的,试验装置上的第二压力传感器用于测量多根非直线型传热管外流体的空泡份额,如图12所示,为另一个实施例中传热管上的第二压力传感器的安装示意图,在非直线型传热管的弯管段设置4个压力测点P1、P2、P9及P10,在第一支撑板与第二支撑板之间的非直线型传热管的直管段设置4个压力测点P3、P4、P5及P6,在第二支撑板与底板242之间的非直线型传热管的直管段设置2个压力测点P7与P8。通过第二压力传感器获得P1、P2、P9及P10的压力数据之后,将P1、P2、P9及P10的压力数据求平均值,从而得到非直线型传热管弯管段的压力数据,并根据非直线型传热管弯管段的压力数据,计算出多根非直线型传热管的弯管段的空泡份额。通过第二压力传感器获得P1与P3的压力数据,或者P2与P4的压力数据,从而得到第一支撑板的压损。通过第二压力传感器获得P3与P5的压力数据,或者P4与P6的压力数据,从而得到非直线型传热管直管段的压损。通过第二压力传感器获得P5与P7的压力数据,或者P6与P8的压力数据,从而得到第二支撑板的压损。
温度传感器设置在与流体出口段180连接的外部出口管道上,用于测量整个试验回路的温度数据。具体的,温度传感器可以较精确地监测流体的温度情况,且可以监测试验装置整体的温度是否满足预设阈值。
流量检测传感器设置在流体入口段120及流体混合段140,用于检测输入流体入口段的流体的流量及输入流体混合段的流体的流量。具体的,通过流量传感器监测第一流体的流量以及第二流体的流量,从而通过采集到的第二压力传感器测量到的压力数据、第一流体的流量数据以及第二流体的流量数据,计算得到试验装置指定位置的空泡份额。
本申请实施例中,通过加速度传感器,设置在多根非直线型传热管的内壁、流道槽的外壳上以及试验台架上;加速度传感器用于测量多根非直线型传热管以及试验装置的加速度数据;通过压力传感器,设置在多根非直线型传热管中目标传热管的外壁以及多根非直线型传热管外的压力测点上,用于测量多根非直线型传热管以及多根非直线型传热管外流体的压力数据;通过温度传感器,设置在与流体出口段连接的外部出口管道上,用于测量整个试验回路的温度数据;通过流量检测传感器,设置在流体入口段及流体混合段,用于检测输入流体入口段的流体的流量及输入流体混合段的流体的流量。从而得到采集设备所需要的多根非直线型传热管发生流致振动时的试验数据,从而能够验证大流量条件下的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,如图13所示,为一个实施例中流致振动试验装置的流体混合段140的结构示意图,流致振动试验装置的流体混合段140包括依次连接的第一混合段142及第二混合段144;第一流体经过流体入口段120流入第一混合段142;第一混合段142包括第二流体入口管1422,第二流体经过第二流体入口管流入第一混合段142,在第一混合段142与第一流体进行混合,生成中间混合流体;
第二混合段内设置包括填料层1442,中间混合流体从第一混合段142流入第二混合段144,通过填料层1442进行混合,生成混合流体。
具体的,流体入口段120的进水管顶部有两排进水口,用于第一流体经过流体入口段120的进水口流入第一混合段142;第一混合段142包括第二流体入口管,第二流体入口管1422包 括母管1422a、支管1422b及喷管1422c,第二流体经过第二流体入口管1422流入第一混合段142,在第一混合段142与第一流体进行混合,生成中间混合流体;第二混合段144内设置包括填料层1442,填料层1442可以充分切割第一流体和第二流体,达到均匀混合的所用,实现泡状流流形;中间混合流体从第一混合段142流入第二混合段144,通过填料层1442进行混合生成混合流体。
本申请实施例中,流体混合段140包括依次连接的第一混合段142及第二混合段144;第一流体经过流体入口段120流入第一混合段142;第一混合段142包括第二流体入口管1422,第二流体经过第二流体入口管流入第一混合段142,在第一混合段142与第一流体进行混合,生成中间混合流体;第二混合段内设置包括填料层1442,中间混合流体从第一混合段142流入第二混合段144,通过填料层1442进行混合,生成混合流体。流体混合段140的设置能够实现试验段160流体均匀混合,从而能够验证大流量条件下的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,流体入口段120包括第一流体进水管、第四通孔及挡水板;
第一流体通过第一流体进水管流入试验装置;第四通孔开设在第一流体进水管的一端,第一流体通过第四通孔流入第一混合段;挡水板设置在第四通孔的一侧,用于使第一流体的流量均匀分布。
结合图1所示,流体入口段120包括第一流体进水管、第四通孔及挡水板。第一流体通过第一流体进水管流入流体入口段120。如图14所示,为一个实施例中流体入口段中第四通孔1402的结构示意图,第一流体进水管的顶端开设有两排第四通孔1402,第一流体通过第四通孔1402流入流体混合段140。挡水板设置在第一流体进水管开设有第四通孔的一侧,挡水板包括多个挡水片,多个挡水片将第一流体分割为多个第一流体通道,第一流体可以通过每个挡水片之间的第一流体通道,将第一流体的流量分布均匀,之后,均匀分布的第一流体通过第一流体通道流入流体混合段140。
本申请实施例中,流体入口段120包括第一流体进水管、第四通孔及挡水板;第一流体通过第一流体进水管流入试验装置;第四通孔开设在第一流体进水管的一端,第一流体通过第四通孔流入第一混合段;挡水板设置在第四通孔的一侧,用于使第一流体的流量均匀分布。流体入口段120中第一流体进水管、第四通孔及挡水板的设置能够实现第一流体均匀分布,为之后第一流体与第二流体的充分混合做好准备,从而能够更准确地验证大流量条件下的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,试验模拟体还包括观察窗;
观察窗设置在流体混合段与试验段的试验装置外壳上,用于观察第一流体与第二流体的混合情况。
结合图1所示,观察窗设置在流体混合段与试验段的试验装置外壳上,具体分为第一观察窗、第二观察窗以及第三观察窗。第一观察窗设置有3个,均匀分布于底板下方的流体混合段外壳上,通过第一观察窗可以观察混合流体的混合效果,作为试验段观察混合流体混合效果的基准。第二观察窗设置有5个,均匀分布于第二支撑板下方的试验段外壳上,通过第二观察窗可以更全面地观察混合流体在多根非直线型传热管的直管段外区域的混合效果,相较于第一观察窗减少了盲区。第三观察窗设置有5个,呈弧形均匀分布于多根非直线型传热管的弯管段的外壳上,通过第三观察窗可以观察混合流体在多根非直线型传热管的弯管段外区域的混合效果。
本申请实施例中,观察窗设置在流体混合段与试验段的试验装置外壳上,用于观察第一流体与第二流体的混合情况。通过设置观察窗,可以通过流致振动试验装置外的高速摄影机 观测混合流体的混合效果,以及多根非直线型传热管的振动情况,从而能够更准确地验证大流量条件下的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,流致振动试验装置的支撑板244包括第一支撑板及第二支撑板;
第一支撑板及第二支撑板在试验段160内依次排布设置,且第一支撑板及第二支撑板均设置在多根非直线型传热管的直管段。
结合图1所示,第一支撑板及第二支撑板在试验段160内依次排布设置,且第一支撑板及第二支撑板均设置在多根非直线型传热管的直管段。其中,第二支撑板设置在第一支撑板与底板242之间。
本申请实施例中,支撑板244包括第一支撑板及第二支撑板,且第一支撑板及第二支撑板均设置在多根非直线型传热管的直管段,第一支撑板及第二支撑板的设置加强了多根非直线型传热管直管段的支撑结构,使该流致振动试验装置能够较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,流致振动试验装置的非直线型传热管包括U型传热管、螺旋形传热管中的任意一种。其中,非直线型传热管包括直管段和弯管段。
本申请实施例中,非直线型传热管包括U型传热管、螺旋形传热管中的任意一种,本申请中的流致振动试验装置使用的非直线型传热管与实际复杂程度类似的多根非直线型传热管进行设计,多根非直线型传热管能够较准确地模拟实际生产中大型自然循环换热器管束区的非直线型传热管结构,从而较准确地模拟实际生产中流体的流致振动情况,能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
本申请实施例提供的流致振动试验模拟方法,可以应用于如图15所示的应用环境中。其中,计算机设备1502通过网络与采集设备1504进行通信。计算机设备1502可以存储采集设备1504需要处理的数据。控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数;在混合流体流入试验段160时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。其中,计算机设备1502可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、物联网设备和便携式可穿戴设备,物联网设备可为智能音箱、智能电视、智能空调、智能车载设备等。便携式可穿戴设备可为智能手表、智能手环、头戴设备等。采集设备1504可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图16所示,提供了一种流致振动试验模拟方法,应用于上述流致振动试验装置,以该方法应用于图15中的计算机设备1502为例进行说明,包括以下操作:
操作1602,控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数。
其中,流体流速参数为流体的流速;流体空泡份额参数为空泡份额,也称截面含气率,表征气液两相混合物中气体所占的百分比,该参数直接影响两相流的传热传质特性,是影响涉及两相流系统运行及性能的重要参数,对其进行实时测量具有重要意义。
具体的,计算机设备1502控制混合流体按照预设流体流动参数流入试验段160。在本申请的流致振动试验模拟方法中,预设流体流动参数包括流体流速参数及流体空泡份额参数,主 要分为两种试验条件,第一种为控制流体流速参数不变的同时,改变流体空泡份额参数的情况,第二种为控制流体空泡份额参数不变的同时,改变流体流速参数的情况。
操作1604,在混合流体流入试验段160时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种。
具体的,在混合流体流入试验段160时,即在多根非直线型传热管发生流致振动时,通过采集设备1504采集多根非直线型传热管发生流致振动时的试验数据。采集设备1504包括加速度传感器、压力传感器、温度传感器以及流量检测传感器,具体为多根非直线型传热管的振动特性、阻尼比以及附加质量系数;同空泡不同流速下与同流速不同空泡下多根非直线型传热管直管段和弯管段的振动加速度和位移响应值;同空泡不同流速下与同流速不同空泡下多根非直线型传热管弯管段的振动应变值。
操作1606,对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
具体的,计算机设备1502通过对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,若在试验流速范围内未发现涡脱共振现象及流弹失稳现象,也未发现异常振动情况;且通过采集设备1504采集到的流致振动试验装置发生流致振动时的试验数据,包括多根非直线型传热管的振动特性以及不同工况下的振动加速度值、应变值及位移值,均满足流致振动试验装置的流致振动安全裕量对试验数据的需求,从而较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。
上述流致振动试验模拟方法中,控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数;在混合流体流入试验段160时,通过采集设备采集采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。本申请中的流致振动试验模拟方法在多根非直线型传热管发生流致振动时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据,并对得到的试验数据进行分析,此过程能够较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
在一个实施例中,如图17所示,提供了一种流致振动试验装置的设计方法,应用于上述流致振动试验装置,包括以下操作:
操作1702,获取流致振动试验装置的初始模型;初始模型包括初始流道槽、初始试验模拟体,初始试验模拟体包括多根非直线型传热管及支撑组件。
具体的,开展流致振动试验装置中传热管的模态分析,使流致振动试验装置中传热管的弯管段与实际产品中传热管弯管段的振动特性保持相似,具体为试验装置与产品弯管段振动频率和振型保持相似性。从而确定了传热管弯管段与直管段的解耦准则,即传热管直管段取两跨则可消除直管段整体对弯管段动态特性的影响,进而确定了试验装置传热管规模为两跨直管段和全部弯管段,并由此确定了流致振动试验装置中传热管的尺寸,得到流致振动试验装置的初始模型。
操作1704,对初始模型进行流致振动分析及流场分析,确定初始流道槽及多根非直线型传热管的第一初始参数;第一初始参数为初始模型在发生流致振动时满足预设包络性要求、且初始模型的流场满足预设流场要求时,初始流道槽及多根非直线型传热管的参数。
具体的,第一,对初始模型进行流致振动预分析。首先,根据预设需求验证实际产品稳态运行工况下管束弯管区的质量流量、空泡份额区间以及预设流致振动试验装置传热管的尺寸,计算流致振动试验装置的包络性能的工况。
其次,根据计算出的工况对预设流致振动试验装置中的传热管开展流弹失稳分析,得到预设流致振动试验装置最大弯管半径传热管的流弹失稳率。根据包络产品弯管半径最大的传热管的最大流弹失稳率的原则,确定对试验工况的要求原则。
再次,对预设流致振动试验装置中的传热管开展湍流抖振分析,得到传热管的湍流抖振响应的均方根有效值,并与实际产品中湍流抖振响应进行对比。按照预设流致振动试验装置振动响应包络产品振动响应的要求,得到满足湍流抖振实验对流致振动试验工况的要求原则。
第二,对初始模型进行流场预分析,以确定管阵规模、试验段流道尺寸以及试验装置的压力损失。首先,通过流场预分析确定预设流致振动试验装置设计中选取的管阵规模和试验段流道厚度,其中,如图18所示,为流场预分析中管阵规模的示意图,通过流场预分析确定消除边界条件影响的管阵规模为五排传热管,并确定流致振动试验装置的试验段的厚度尺寸为112mm。其次,根据流道尺寸和流致振动预分析结果,结合试验台架流量控制能力和对试验装置的性能参数要求,得到流致振动试验工况。再次,对预设流致振动试验装置进行压损计算,得到预设流致振动试验装置的工作压力,基于工作压力与试验回路进行匹配设计,并确定试验装置各段的分段压力降。
第三,对初始模型进行流场分析。首先,如图19所示,为试验段中传热管的管间流速分布示意图,通过流场分析试验段中传热管的管间流速分布,根据流量守恒并换算得到目标传热管的管间流速,为之后进行传热管流致振动分析提供输入。其次,如图20所示,为高流速区需要测量的传热管位置的示意图,通过流速分布初步确定高流速区需要测量的传热管位置。再次,从预设流致振动试验装置中选取关键位置的传热管与实际产品中相同位置传热管的管间流速分布进行对比,如图21所示,为某一根传热管上某几个试验工况与实际产品稳态运行的管间流速的对比;如图22所示,为某一根传热管上某几个试验工况与实际产品稳态运行的流体动压的对比,从图21、图22中可知,预设流致振动试验装置中传热管所受到的流体作用速度和动压力可以很好的包络产品同样位置的传热管,而传热管的流体激励与管间流速和动压成正相关,流致振动的响应又与流体激励正相关,由此验证了预设流致振动试验装置的流场在流致振动方面具有包络实际产品的能力。
第四,对初始模型进行流致振动分析。首先,基于流场分析得出的试验装置传热管管间流速,对传热管在流致振动响应方面进行对实际产品的包络性验证。通过对比预设流致振动试验装置传热管振动响应与实际产品传热管,可知预设流致振动试验装置在典型工况下的传热管流致振动响应可以很好的包络实际产品同样位置传热管的振动响应。其次,根据预设流致振动试验装置流场分析与流致振动分析的结果,结合预设流致振动试验装置中传热管的结构特点选取测点位置,测点位置需要遵循以下原则:1)位于高横向管间流速区和高流体动压区;2)位于湍流激励振动响应有效值较大的位置;3)位于振动应力较大的位置;4)位于防振条支撑的临界位置:最大无支撑跨距位置;5)考虑对称性;6)考虑一定冗余度;7)考虑应变计和加速度计可安装性。根据以上原则,确定进行流致振动试验时加速度和应变测点的位置,从而确定初始模型在发生流致振动时满足预设包络性要求、且初始模型的流场满足预设流场要求时,初始流道槽及多根非直线型传热管的第一初始参数。
操作1706,对初始模型中的初始流道槽及多根非直线型传热管分别赋予第一初始参数生成第一中间模型,对第一中间模型进行应力分析,确定满足预设应力条件下第一中间模型中支撑组件的第二初始参数。
具体的,对初始模型中的初始流道槽及多根非直线型传热管分别赋予第一初始参数生成第一中间模型,基于分段压力降并考虑1.5倍的安全系数,将第一中间模型分为三部分,以对第一中间模型进行应力分析,其中,第一部分为流体入口段与流体混合段;第二部分为直管段试验段;第三部分为弯管段试验段与流体出口段。根据应力分析,确定满足预设应力条件下第一中间模型中支撑组件的第二初始参数,确保预设流致振动试验装置的最大和变形量满足预设要求。
操作1708,对第一中间模型中的支撑组件赋予第二初始参数,得到第二中间模型,对第 二中间模型进行流体混合实验,确定满足预设流体混合实验条件下第二中间模型中初始流道槽的第三初始参数。
具体的,对第一中间模型中的支撑组件赋予第二初始参数,得到第二中间模型。为使第一流体与第二流体在试验段前充分混合,且保证整个试验段在试验时混合流体的形态为近似泡状流,需研制满足预设要求并且结构接口与预设流致振动试验装置本体相适应的流体混合装置,并对第二中间模型进行流体混合实验。首先,根据试验装置试验段的工况流量以及流体混合段入口位置的结构尺寸,计算出流体混合段入口的流量,从而确保流体混合模块在流体混合段入口流量范围内满足流体混合的性能要求。然后,结合试验台架能力,计算流体混合模块的整体压损,包括喷管压损、喷雾头压损以及搅混段填料层压损。通过计算和优化混合器压损并数次迭代确定满足试验台架压损要求的流体混合模块的结构。
其次,确定好的流体混合模块结构结合图13所示。第二流体入口管1422包括母管1422a、支管1422b及喷管1422c,其中支管末端接口可以连接喷管实现低空泡工况的气水初步混合,且支管末端也可以连接喷雾头实现高空泡工况的气水初步混合。其中,在低空泡工况下第一流体入口连接试验回路的水回路,第二流体入口连接气回路;在高空泡工况下第一流体入口连接气回路,第二流体入口连接水回路;第二混合段通过法兰与第一混合段连接,且第二混合段内部设置波纹板填料层,以实现混合流体的充分混合。
再次,由于两相流较为复杂,采用计算流体动力学等理论方法难以建立或者选取相应的两相混合流数学物理模型。因此,完成流体混合模块结构的设计之后,需要对流体混合模块进行试验以观察不同工况下流体混合的效果,且可以为之后对整个流致振动试验装置进行试验提供参考。流体混合模块性能试验装置的设计原则如下:1)流过混合装置性能试验模拟体的流速与流致振动试验装置保持一致;2)喷管的穿孔流速与流致振动试验装置保持一致;3)空泡份额最大值和最小值涵盖流致振动试验装置工况参数范围;4)布置形式与试验装置一致。如图23所示,为根据上述设计原则设计出的流体混合模块性能试验模拟体的结构示意图。如图24所示,为流体混合模块性能试验模拟体在试验回路中的安装示意图。
之后,根据流致振动试验装置的试验工况要求,按照气、水各自表观速度一致的原则,基于流体混合模块性能试验模拟体的结构特性,进行流体混合实验,确定性能试验的试验工况。进行流体混合实验时通过高速摄像机拍摄搅混单元下游透明段的混合效果,采用电磁流量计和空气流量计分别测量水流量和空气流量,并对试验模拟体和试验回路的压力及压差进行测量。
最后,获取的试验结果主要为高速摄像机拍摄的气水混合视频资料和压差测点测量的模拟体的压差。通过获得的视频对比和压差分析,得出以下结论:1)小流量和低空泡率工况下,气泡容易聚集成为大气泡,但在透明段末端基本再次破碎成小气泡;2)大流量工况下,不同开孔的气管产生的混合效果没有明显差别;3)小流量工况下,80孔的气管混合效果略优于400孔气管;4)小空气流量下,400孔气管并非所有开孔均有气流,只有顶端两排开孔有气流;5)在大气量时,80孔的气管空气阻力大于400孔气管。经过分析以上结论,得出所设计的流体混合模块具有混合效果好,阻力小的特点,可以满足试验要求,且确定了流致振动试验装置上喷管的开孔数,从而确定满足预设流体混合实验条件下第二中间模型中初始流道槽的第三初始参数。
操作1710,基于初始流道槽及多根非直线型传热管的第一初始参数、支撑组件的第二初始参数及初始流道槽的第三初始参数,生成流致振动试验装置。
具体的,通过上述流致振动分析、流场分析、应力分析以及流体混合实验,获得的初始流道槽及多根非直线型传热管的第一初始参数、支撑组件的第二初始参数及初始流道槽的第三初始参数,生成流致振动试验装置,从而完成流致振动验装置的设计。
上述流致振动的设计方法中,通过获取流致振动试验装置的初始模型;初始模型包括初始流道槽、初始试验模拟体,初始试验模拟体包括多根非直线型传热管及支撑组件;对初始模型进行流致振动分析及流场分析,确定初始流道槽及多根非直线型传热管的第一初始参数; 第一初始参数为初始模型在发生流致振动时满足预设包络性要求、且初始模型的流场满足预设流场要求时,初始流道槽及多根非直线型传热管的参数;对初始模型中的初始流道槽及多根非直线型传热管分别赋予第一初始参数生成第一中间模型,对第一中间模型进行应力分析,确定满足预设应力条件下第一中间模型中支撑组件的第二初始参数;对第一中间模型中的支撑组件赋予第二初始参数,得到第二中间模型,对第二中间模型进行流体混合实验,确定满足预设流体混合实验条件下第二中间模型中初始流道槽的第三初始参数;基于初始流道槽及多根非直线型传热管的第一初始参数、支撑组件的第二初始参数及初始流道槽的第三初始参数,生成流致振动试验装置。通过流致振动分析、流场分析、应力分析以及流体混合实验,得到本申请中的流致振动试验装置,进而使用设计好的流致振动试验装置,能够较准确地模拟实际生产中大型自然循环换热器管束区传热管的流致振动行为,从而能够较准确地验证大型自然循环换热器中传热管在发生流致振动时的安全裕量。进而,可以保证在实际生产中,大型自然循环换热器能够安全运行。
应该理解的是,虽然如上的各实施例所涉及的流程图中的各个操作按照箭头的指示依次显示,但是这些操作并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些操作的执行并没有严格的顺序限制,这些操作可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分操作可以包括多个操作或者多个阶段,这些操作或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些操作或者阶段的执行顺序也不必然是依次进行,而是可以与其它操作或者其它操作中的操作或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的流致振动试验模拟方法的流致振动试验模拟装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个流致振动试验模拟装置实施例中的具体限定可以参见上文中对于流致振动试验模拟方法的限定,在此不再赘述。
在一个实施例中,如图25所示,提供了一种流致振动试验模拟装置2500,包括:混合流体流入模块2502、试验数据采集模块2504和试验数据分析模块2506,其中:
混合流体流入模块2502,用于控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数;
试验数据采集模块2504,用于在混合流体流入试验段160时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
试验数据分析模块2506,用于对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
上述流致振动试验装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器或终端,其内部结构图可以如图26所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储流致振动试验数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种流致振动试验模拟方法。
本领域技术人员可以理解,图26中示出的结构,仅仅是与本申请方案相关的部分结构的 框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下操作:
控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数;
在混合流体流入试验段160时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下操作:
控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数;
在混合流体流入试验段160时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下操作:
控制混合流体按照预设流体流动参数流入试验段160;预设流体流动参数包括流体流速参数及流体空泡份额参数;
在混合流体流入试验段160时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
对预设流体流动参数及与预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static  Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种流致振动试验装置,其特征在于,所述装置包括:流道槽、试验模拟体及采集设备;
    所述流道槽包括依次连接的流体入口段、流体混合段、试验段及流体出口段;所述流体混合段用于对从所述流体入口段流入的流体进行混合,生成混合流体;所述混合流体流经所述试验段,并从所述流体出口段流出;
    所述试验模拟体包括多根非直线型传热管及支撑组件,所述支撑组件用于将所述多根非直线型传热管固定安装在所述试验段;
    所述采集设备,设置在所述多根非直线型传热管上,用于采集在所述混合流体流入所述试验段时,所述多根非直线型传热管发生流致振动时的试验数据。
  2. 根据权利要求1所述的装置,其特征在于,所述支撑组件包括底板;
    所述底板连接至所述试验段的外壳上;所述底板上开设第一通孔,且所述底板上设置传热管固定组件;所述混合流体从所述流体混合段通过所述第一通孔流入所述试验段;所述多根非直线型传热管的两端通过所述传热管固定组件连接至所述底板上。
  3. 根据权利要求2所述的装置,其特征在于,所述支撑组件还包括支撑板;
    所述支撑板连接至所述试验段的外壳上,且所述支撑板位于所述底板与所述流体出口段之间,所述支撑板设置于所述非直线型传热管的直管段;所述支撑板上开设第二通孔,所述混合流体通过所述第二通孔流入所述流体出口段,且所述多根非直线型传热管穿过所述第二通孔,与所述支撑板上的所述第二通孔间隙配合。
  4. 根据权利要求3所述的装置,其特征在于,所述支撑板包括第一支撑板及第二支撑板;
    所述第一支撑板及第二支撑板在所述试验段内依次排布设置,且所述第一支撑板及第二支撑板均设置在所述多根非直线型传热管的直管段。
  5. 根据权利要求1所述的装置,其特征在于,所述支撑组件还包括防振组件及固定组件;
    所述防振组件呈V型设置于所述非直线型传热管的弯管段;所述防振组件的两端分别开设第三通孔;所述防振组件的数目为至少五组,且每组防振组件包括至少六层防振条;
    所述固定组件包括至少五对防振条拉杆,每对所述防振条拉杆穿过一组防振组件上的第三通孔连接至试验段的外壳上。
  6. 根据权利要求5所述的装置,其特征在于,所述支撑组件还包括套环;
    所述套环套设在所述防振条拉杆上,每组所述防振组件中不同层的防振条之间采用所述套环进行定距。
  7. 根据权利要求1所述的装置,其特征在于,所述采集设备包括:
    加速度传感器,设置在所述多根非直线型传热管的内壁、所述流道槽的外壳上以及试验台架上;所述加速度传感器用于测量所述多根非直线型传热管以及试验装置的加速度数据;
    压力传感器,设置在所述多根非直线型传热管中目标传热管的外壁以及多根非直线型传热管外的压力测点上,用于测量所述多根非直线型传热管以及所述多根非直线型传热管外流体的压力数据;所述目标传热管与所述支撑组件之间的距离满足预设距离条件;
    温度传感器,设置在与所述流体出口段连接的外部出口管道上,用于测量整个试验回路的温度数据;
    流量检测传感器,设置在所述流体入口段及所述流体混合段,用于检测输入所述流体入口段的流体的流量及输入所述流体混合段的流体的流量。
  8. 根据权利要求1所述的装置,其特征在于,所述流体混合段包括依次连接的第一混合段及第二混合段;第一流体经过流体入口段流入所述第一混合段;所述第一混合段包括第二流体入口管,第二流体经过所述第二流体入口管流入第一混合段,在第一混合段与第一流体进行混合,生成中间混合流体;
    所述第二混合段内设置包括填料层,所述中间混合流体从所述第一混合段流入所述第二混合段,通过填料层进行混合,生成所述混合流体。
  9. 根据权利要求8所述的装置,其特征在于,所述流体入口段包括第一流体进水管、第四通孔及挡水板;
    所述第一流体通过所述第一流体进水管流入试验装置;所述第四通孔开设在第一流体进水管的一端,所述第一流体通过所述第四通孔流入所述第一混合段;所述挡水板设置在所述第四通孔的一侧,用于使所述第一流体的流量均匀分布。
  10. 根据权利要求8所述的装置,其特征在于,所述试验模拟体还包括观察窗;
    所述观察窗设置在所述流体混合段与所述试验段的试验装置外壳上,用于观察所述第一流体与所述第二流体的混合情况。
  11. 根据权利要求1所述的装置,其特征在于,所述非直线型传热管包括U型传热管、螺旋形传热管中的任意一种。
  12. 一种流致振动模拟试验方法,其特征在于,应用于如权利要求1-11任一项所述的流致振动试验装置,所述方法包括:
    控制混合流体按照预设流体流动参数流入所述试验段;所述预设流体流动参数包括流体流速参数及流体空泡份额参数;
    在所述混合流体流入所述试验段时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;所述试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
    对所述预设流体流动参数及与所述预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
  13. 一种流致振动模拟试验装置,其特征在于,所述装置包括:
    混合流体流入模块,用于控制所述混合流体按照预设流体流动参数流入所述试验段;所述预设流体流动参数包括流体流速参数及流体空泡份额参数;
    试验数据采集模块,用于在所述混合流体流入所述试验段时,通过采集设备采集流致振动试验装置发生流致振动时的试验数据;所述试验数据包括加速度数据、应变数据、压力数据、温度数据以及流量数据中的至少一种;
    试验数据分析模块,用于对所述预设流体流动参数及与所述预设流体流动参数对应的试验数据进行分析,确定多根非直线型传热管在发生流致振动时的振动特征。
  14. 一种流致振动试验装置的设计方法,其特征在于,应用于如权利要求1-11任一项所述的流致振动试验装置,所述方法包括:
    获取流致振动试验装置的初始模型;所述初始模型包括初始流道槽、初始试验模拟体,所述初始试验模拟体包括多根非直线型传热管及支撑组件;
    对所述初始模型进行流致振动分析及流场分析,确定所述初始流道槽及所述多根非直线型传热管的第一初始参数;所述第一初始参数为所述初始模型在发生流致振动时满足预设包络性要求、且所述初始模型的流场满足预设流场要求时,所述初始流道槽及所述多根非直线型传热管的参数;
    对所述初始模型中的所述初始流道槽及所述多根非直线型传热管分别赋予所述第一初始参数生成第一中间模型,对所述第一中间模型进行应力分析,确定满足预设应力条件下所述第一中间模型中支撑组件的第二初始参数;
    对所述第一中间模型中的支撑组件赋予所述第二初始参数,得到第二中间模型,对所述第二中间模型进行流体混合实验,确定满足预设流体混合实验条件下所述第二中间模型中初始流道槽的第三初始参数;
    基于所述初始流道槽及所述多根非直线型传热管的第一初始参数、所述支撑组件的第二初始参数及所述初始流道槽的第三初始参数,生成所述流致振动试验装置。
  15. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求12所述的方法的操作。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序 被处理器执行时实现权利要求12所述的方法的操作。
  17. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求12所述的方法的操作。
PCT/CN2023/117165 2022-09-08 2023-09-06 流致振动试验装置、方法、计算机设备、存储介质和产品 WO2024051724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211096730.7A CN115560938A (zh) 2022-09-08 2022-09-08 流致振动试验装置、方法、计算机设备、存储介质和产品
CN202211096730.7 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024051724A1 true WO2024051724A1 (zh) 2024-03-14

Family

ID=84741271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117165 WO2024051724A1 (zh) 2022-09-08 2023-09-06 流致振动试验装置、方法、计算机设备、存储介质和产品

Country Status (2)

Country Link
CN (1) CN115560938A (zh)
WO (1) WO2024051724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115560938A (zh) * 2022-09-08 2023-01-03 深圳中广核工程设计有限公司 流致振动试验装置、方法、计算机设备、存储介质和产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758630A (zh) * 2016-03-30 2016-07-13 西安交通大学 一种蒸汽发生器弯管区域的实验装置及方法
CN110196145A (zh) * 2019-06-27 2019-09-03 中广核研究院有限公司 一种用于验证管束流致振动原理的试验装置及其使用方法
CN113566867A (zh) * 2021-07-27 2021-10-29 中国工程物理研究院总体工程研究所 螺旋型管束组件试验体的传感器安装工艺
CN115560938A (zh) * 2022-09-08 2023-01-03 深圳中广核工程设计有限公司 流致振动试验装置、方法、计算机设备、存储介质和产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758630A (zh) * 2016-03-30 2016-07-13 西安交通大学 一种蒸汽发生器弯管区域的实验装置及方法
CN110196145A (zh) * 2019-06-27 2019-09-03 中广核研究院有限公司 一种用于验证管束流致振动原理的试验装置及其使用方法
CN113566867A (zh) * 2021-07-27 2021-10-29 中国工程物理研究院总体工程研究所 螺旋型管束组件试验体的传感器安装工艺
CN115560938A (zh) * 2022-09-08 2023-01-03 深圳中广核工程设计有限公司 流致振动试验装置、方法、计算机设备、存储介质和产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨林 等 (YANG, LIN ET AL.): "一种可开展管束流致振动试验台架的设计 (Test Facility Design of the Flow Induced Vibration of U-tubes in the Two-phase Flow)", 中国核科学技术进展报告(第六卷)——中国核学会2019年学术年会论文集第3册(核能动力分卷) (NON-OFFICIAL TRANSLATION: PROGRESS REPORT ON NUCLEAR SCIENCE AND TECHNOLOGY IN CHINA (VOLUME 6) - PROCEEDINGS OF THE 2019 ANNUAL ACADEMIC CONFERENCE OF THE CHINESE NUCLEAR SOCIETY, VOLUME 3 (NUCLEAR POW, 30 April 2020 (2020-04-30), pages 64 - 67, ISSN: 978-7-5221-0522-2 *

Also Published As

Publication number Publication date
CN115560938A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2024051724A1 (zh) 流致振动试验装置、方法、计算机设备、存储介质和产品
Zhang et al. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels
WO2011155539A1 (ja) 数値解析装置、要素生成プログラム、及び数値解析方法
Parsani et al. High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver
CN105184395A (zh) 含余热利用系统的火电机组的初参数确定方法
Golijanek-Jędrzejczyk et al. A numerical and experimental analysis of multi-hole orifice in turbulent flow
Ault et al. Downstream decay of fully developed Dean flow
WO2024061196A1 (zh) 一种核电站蒸汽发生器的智能监测方法及系统
CN111680378A (zh) 一种基于ansys的充液状态下换热器管束模态分析方法
Sawadogo et al. Time domain simulation of the vibration of a steam generator tube subjected to fluidelastic forces induced by two-phase cross-flow
Tan et al. Fluidelastic instability research of tube bundles by a two-way fluid-structure interaction simulation
CN109033514A (zh) 一种平面管束流体弹性失稳评定方法
CN114692322A (zh) 存储器、重油换热器结垢监测方法、装置和设备
Li et al. Experimental investigation and one-way coupled fluid-structure interaction analysis of gas-liquid two-phase flow conveyed by a subsea rigid M-shaped jumper
CN114462336B (zh) 一种核反应堆主管道冷却剂平均温度计算方法
Tan et al. Investigation of the vibration behavior of fluidelastic instability in closely packed square tube arrays
Tan et al. Experiment study on fluidelastic instability of tube bundles consisting of different frequency tubes with visual image processing system
Guo et al. Numerical investigation on flow-induced vibration and heat transfer of fuel rods in a small pitch-diameter ratio (P/D) channel
US10422760B2 (en) Method for analyzing honeycomb structure, and program and analysis device for the same
Huang et al. Impact of fouling on flow-induced vibration characteristics in fluid-conveying pipelines
CN114818377A (zh) 一种换热设备寿命损耗检测方法、装置及电子设备
Liu et al. Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis
JPH07281727A (ja) 熱交換器内部状態のシミュレーション方法
CN113505544A (zh) 基于有限体积法自行车运动虚拟数值风洞系统
Ishii et al. Numerical Approach to Study Nonuniform Gas–Liquid Distribution in the Refrigerant Distributor in an Air Conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862418

Country of ref document: EP

Kind code of ref document: A1