WO2024051669A1 - 一种用于车载超导磁体线圈的石蜡固封炉 - Google Patents

一种用于车载超导磁体线圈的石蜡固封炉 Download PDF

Info

Publication number
WO2024051669A1
WO2024051669A1 PCT/CN2023/116905 CN2023116905W WO2024051669A1 WO 2024051669 A1 WO2024051669 A1 WO 2024051669A1 CN 2023116905 W CN2023116905 W CN 2023116905W WO 2024051669 A1 WO2024051669 A1 WO 2024051669A1
Authority
WO
WIPO (PCT)
Prior art keywords
paraffin
furnace
coil
paraffin wax
vehicle
Prior art date
Application number
PCT/CN2023/116905
Other languages
English (en)
French (fr)
Inventor
王云霄
高春尧
胡浩
李凯
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2024051669A1 publication Critical patent/WO2024051669A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating

Definitions

  • the invention relates to the technical field of maglev transportation, and in particular to a paraffin sealing furnace for vehicle-mounted superconducting magnet coils.
  • vehicle-mounted superconducting magnets serve on moving maglev transportation vehicles. Different from the service environment of traditional static superconducting magnets, vehicle-mounted superconducting magnets face scenarios such as acceleration and deceleration, different speeds, vibration and impact, and their internal loads have different alternating characteristics under different conditions. This is the reliability of vehicle-mounted superconducting magnets. and stability put forward higher requirements.
  • the superconducting magnet coil (coil for short) is the core component of the vehicle-mounted superconducting magnet. There are light and thin superconducting strips wound inside, and some of the superconducting strips are in a suspended state. The coil is processed using a paraffin wax sealing process so that the internal gaps of the coil are filled with paraffin to improve the reliability and stability of the coil.
  • the paraffin sealing furnace is an equipment that uses the paraffin sealing process to process superconducting magnet coils. Place the coil on the coil tray in the paraffin sealing furnace, while creating a certain temperature and pressure environment in the furnace. After the coil temperature stabilizes, pour liquid paraffin into the coil tray so that the liquid paraffin fully immerses the coil to achieve a solid sealing effect.
  • Good vacuum control is conducive to timely extraction of bubbles immersed in paraffin inside the coil, and at the same time, it is conducive to inhaling air entering the furnace from the outside through the air inlet pipe for temperature compensation. Good temperature control is helpful to ensure that the liquid paraffin has good fluidity and prevents coil components from being damaged due to excessive temperature.
  • Good pouring control is conducive to the liquid paraffin filling the coil pores smoothly and fully and discharging air bubbles.
  • a paraffin wax sealing furnace with good performance is conducive to achieving high-quality paraffin sealing effect, and has positive significance for improving the reliability and stability of the coil.
  • the overall structure of an existing paraffin wax sealing furnace can be mainly divided into a frame structure, a sealing cabin, a melting wax cabin, an air pipeline and valves, a vacuum pump, a paraffin pipeline and valves, and an electronic control device (not shown in the figure) ).
  • the frame structure supports the solid sealing cabin and the wax melting cabin located on the upper and lower floors respectively;
  • the vacuum pump evacuates the solid sealing cabin through the air pipeline, and after closing the vacuum pump, the solid sealing cabin can be inflated through the valve on the air pipeline;
  • paraffin wax The lower end of the pipeline is connected to the wax melting cabin, and the upper end extends into the solid sealing cabin.
  • the paraffin in the wax melting cabin can be sucked in through the valve on the paraffin pipeline and poured into the solid sealing cabin.
  • the main structure inside the wax melting chamber can be mainly divided into serpentine electric heating tubes, heat conduction plates, paraffin tanks, and paraffin.
  • serpentine electric heating tube When the serpentine electric heating tube is energized, the heat generated is mainly transferred to the paraffin through the heat conduction plate and the paraffin tank through thermal conduction.
  • the solid paraffin reaches the melting point and then melts and stabilizes at a certain temperature.
  • the main structure inside the solid seal cabin can be mainly divided into serpentine electric heating tubes, heat conduction plates, coil trays, and coils.
  • serpentine electric heating tube When the serpentine electric heating tube is energized, the heat generated is mainly transferred to the coil through the heat conduction plate and coil tray through thermal conduction, so that the coil can be stabilized at a certain temperature.
  • the sealing cabin is evacuated through a vacuum pump and air pipeline.
  • the absolute pressure in the cabin can usually reach at least 0.1 atmosphere.
  • Creating a vacuum environment in the solid sealing cabin is mainly to weaken the effect of air convection and heat transfer, and at the same time to facilitate the discharge of air bubbles sealed by liquid paraffin during solid sealing.
  • a pressure gauge and a valve are installed on the air extraction pipeline. After turning off the vacuum pump, the valve can be opened to inflate the sealing chamber and restore normal pressure.
  • the goals of temperature control in the wax melting chamber and the solid sealing chamber are respectively the temperature of the liquid paraffin in the paraffin tank and the temperature of the coil in the coil tray. No matter what kind of temperature is controlled, it is achieved by adjusting the input voltage of the serpentine electric heating tube. You can use automated control devices to achieve unattended operation, or you can switch to manual mode to manually adjust the input voltage to control the temperature.
  • a heating cable can be wrapped around the pipeline for heat compensation.
  • the valve opening should be slowly controlled to maintain a slow and steady paraffin flow.
  • the methods of heat transfer are divided into thermal conduction, convection and radiation.
  • the air pressure in the existing paraffin wax sealing furnace is small (not higher than 0.1 atmosphere), so convective heat transfer is greatly inhibited.
  • the main heat transfer method in the furnace is heat conduction, supplemented by a certain degree of radiation.
  • the heat transfer method mainly based on thermal conductivity will inevitably bring about an obvious temperature gradient in the heated materials, that is, the temperature of the area close to the heat conduction plate is higher, the temperature of the area far away from the heat conduction plate is lower, and the temperature distribution of the materials is uneven.
  • the main material of the thermal conductive plate and coil tray mentioned above is metal, its overall heat capacity is large, so its electrothermal conversion has large inertia and hysteresis. This brings about the difficulty in controlling the input voltage of the electric heating tube: under the same alternating input voltage, compared with the convection method, the temperature oscillation caused by the heat conduction method will be higher; at the same time, its hysteresis brings control The system has a long response time, which is not conducive to real-time and accurate temperature control.
  • Ideal pouring control should ensure stable paraffin flow and temperature, which is conducive to the smooth and gradual infiltration of the paraffin into the coil and the discharge of air bubbles.
  • the solid sealing cabin and the wax melting cabin of the existing paraffin wax solid sealing furnace are of split type.
  • the melted paraffin flows in the pipeline placed in the external environment, it will inevitably be affected by the ambient temperature and cool down.
  • the outer wall of the paraffin pipeline is wrapped with a heating cable, it is very difficult to accurately compensate for the heat loss of the paraffin during the flow process.
  • the temperature compensation is excessive, the liquid paraffin temperature is too high and may exceed the process technical requirements.
  • the temperature compensation is insufficient, liquid paraffin solidifies on the inner wall of the pipeline, the effective cross-sectional area of the pipeline becomes smaller, and the overall flow resistance increases. In extreme cases, the pipeline will be completely blocked. This is easily caused by the pressure difference between the two ends of the paraffin pipeline.
  • the pouring port of the paraffin pipeline causes the phenomenon of paraffin spraying, which causes strong disturbance to the flow pattern of liquid paraffin in the coil tray, which is very unfavorable for the smooth and gradual infiltration of paraffin into the coil. It is easy to quickly seal the bubbles below the paraffin liquid level locally. Adversely affects the sealing effect.
  • the existing paraffin wax sealing furnace does not have an internal image monitoring function, and the pouring conditions in the furnace can only be observed through a small-sized glass window.
  • the size of the glass window cannot be expanded without limit due to the large air pressure difference between the inside and outside of the furnace, which creates problems for users. bring some inconvenience.
  • the sealing cabin and wax melting cabin of the existing paraffin wax sealing furnace are located on the upper and lower floors of the frame structure. Two sets of upper and lower heating systems need to be arranged. External paraffin pipelines connect the above two cabins, and the overall structure is not very compact. Moreover, the sealing cabin is located on the upper level, which is very inconvenient for arranging and removing heavy coils.
  • the present invention provides a paraffin sealing furnace for vehicle-mounted superconducting magnet coils, which has improved performance and is conducive to achieving high-quality paraffin sealing effects.
  • a paraffin sealing furnace for vehicle-mounted superconducting magnet coils including: a furnace body, a paraffin tank, a coil tray and a heating system;
  • the paraffin tank and the coil tray are arranged in the furnace body;
  • the heating system includes: a main heating system;
  • the main heating system includes: a turbulence fan arranged on the inner wall of the furnace body and a first electric heating pipe.
  • a plurality of first electric heating tubes are evenly arranged on the inner wall of the furnace body, and the spoiler fan is arranged between the first electric heating tubes and the inner wall of the furnace body.
  • the furnace body has a furnace bottom surface and a furnace wall surface
  • the coil tray is arranged on the bottom surface of the furnace body, the paraffin tank is arranged above the coil tray, the bottom of the paraffin tank is provided with a pouring pipeline, the spoiler fan and the first electric heating tube set up placed on the wall of the furnace body.
  • the heating system further includes: a paraffin tank auxiliary heating system;
  • the paraffin tank auxiliary heating system includes: a second electric heating tube arranged at the bottom of the paraffin tank.
  • the heating system further includes: a coil tray auxiliary heating system;
  • the coil tray auxiliary heating system includes: a third electric heating tube arranged at the bottom of the coil tray.
  • it also includes: a vacuum system;
  • the vacuum system includes: a vacuum pump, an air extraction pipeline and an air intake pipeline;
  • the vacuum pump is connected to the furnace body through the air extraction pipeline;
  • the air inlet pipeline is provided in the furnace body.
  • it also includes: a vibration system
  • the vibration system includes: a vibrator arranged below the coil tray.
  • the coil tray is provided on the bottom surface of the furnace body through a coil tray support, and the exciter is provided on the coil tray support.
  • it also includes: a front door opening observation window provided on the furnace body.
  • it also includes: lighting facilities and a monitoring system provided in the furnace body.
  • the present invention combines the wax melting cabin and the solid sealing cabin into one, with a compact structure. Place the coil tray underneath the sealing oven to facilitate placement and removal of heavier coils.
  • Vacuum control Compared with the existing paraffin wax sealing furnace, the present invention only needs to maintain a slight negative pressure in the furnace (for example, the absolute pressure is 0.9 atmospheres), which greatly reduces the performance of the vacuum pump and the sealing requirements of the furnace body, as well as the manufacturing difficulty and cost. lower.
  • the present invention mainly uses air convection for heat transfer, coupled with scientifically arranged electric heating tubes and spoiler fans, effectively eliminating the temperature gradient inside the coil and paraffin, improving its Uniformity of temperature distribution.
  • pouring control Compared with the existing paraffin wax sealing furnace, arranging the paraffin tank inside the sealing furnace can eliminate the original paraffin pipelines exposed to the environment and avoid cooling, solidification, clogging and other problems caused by the flow of paraffin in the above pipelines.
  • the wax injection port is sprayed, which makes the pouring process smooth and controllable, which is conducive to the smooth and gradual infiltration of the paraffin into the coil and the discharge of air bubbles to achieve a good sealing effect.
  • the exciter arranged under the superconducting coil tray can effectively accelerate the discharge of bubbles inside the coil, which is beneficial to improving the sealing effect.
  • Figure 1 is a schematic diagram of the external overall structure of a paraffin wax sealing furnace provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the internal structure of a paraffin wax sealing furnace provided by an embodiment of the present invention
  • Figure 3 is a partial structural schematic diagram of the wall surface of the paraffin wax sealing furnace provided by the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the inverted structure of the paraffin tank of the paraffin sealing furnace provided by the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the inverted structure of the coil tray of the paraffin sealing furnace provided by the embodiment of the present invention.
  • 1 is the furnace body
  • 2 is the front door observation window
  • 3 is the control panel
  • 4 is the vacuum pump
  • 5 is the exhaust pipeline
  • 6 is the air intake pipeline
  • 7 is the bottom surface of the furnace body
  • 8 is the wall surface of the furnace body
  • 9 is paraffin.
  • slot 10 is the coil tray
  • 11 is the spoiler fan
  • 12 is the electric heating tube
  • 13 is the electric heating tube
  • 14 is the pouring pipe
  • 15 is the electric heating tube
  • 16 is the coil tray support
  • 17 is the exciter.
  • Vehicle-mounted superconducting magnet a type of superconducting coil and its ancillary structures that can provide stability for vehicle operation. All the hardware of the device that stabilizes the static magnetic field is hung on a movable maglev vehicle, and is subject to dynamic changes in the external environment.
  • Vehicle-mounted superconducting magnet coil The core component of the vehicle-mounted superconducting magnet, which is wound with superconducting tape and is used to generate a magnetic field.
  • Paraffin wax sealing process A process that uses paraffin as a medium and uses the physical principle of paraffin to achieve liquid-to-solid transition through temperature changes to achieve gap filling and encapsulation of objects to be sealed using paraffin wax.
  • Embodiments of the present invention provide a paraffin sealing furnace for vehicle-mounted superconducting magnet coils, which provides an equipment basis for processing superconducting magnet coils using a paraffin sealing process.
  • the basic components of the invention are: mechanical system, vacuum system, heating system, vibration system and auxiliary electric control system.
  • the mechanical system mainly includes the furnace enclosure structure, coil tray and support structure, paraffin container and support structure, liquid paraffin injection pipeline and valves, etc.
  • the vacuum system consists of a vacuum pump, pressure instrument, air extraction pipeline, air intake pipeline and valves. During operation, a vacuum pump is used to evacuate the furnace, and a certain negative pressure is maintained inside the solid-sealing furnace by adjusting the valve in the air inlet pipe.
  • the heating system is divided into three parts: the main heating system, the paraffin tank auxiliary heating system and the coil tray auxiliary heating system.
  • the main heating system consists of an electric heating tube arranged on the inner wall of the sealing furnace and its attached turbulence fan. It mainly transfers the heat generated by the electric heating tube to the paraffin tank and coil tray through flowing air.
  • the paraffin tank auxiliary heating system consists of an electric heating tube arranged at the bottom of the paraffin container, which is used for preheating paraffin or auxiliary heating when necessary.
  • the coil tray auxiliary heating system consists of an electric heating tube arranged at the bottom of the coil tray, which is used to preheat the coil or auxiliary heating when necessary.
  • the vibration system consists of an exciter arranged under the coil tray. When the exciter is working, the vibration is transmitted to the coil through the bottom wall of the coil tray.
  • the attached electronic control system is used to provide power to the sealing furnace and provide related control functions.
  • the paraffin sealing furnace for vehicle-mounted superconducting magnet coils provided by the embodiment of the present invention includes: a furnace body 1, a paraffin tank 9, a coil tray 10 and a heating system.
  • the structure can be referred to as shown in Figures 1 and 2;
  • the paraffin tank 9 and the coil tray 10 are arranged in the furnace body 1;
  • the heating system includes: main heating system;
  • the main heating system includes: a turbulence fan 11 arranged on the inner wall of the furnace body 1 and a first electric heating pipe 12 .
  • the embodiment of the present invention combines the wax melting chamber (paraffin tank 9) and the sealing chamber (coil tray 10) into one, with a compact structure.
  • the embodiment of the present invention mainly uses air convection for heat transfer.
  • scientifically arranged electric heating tubes and spoiler fans effectively eliminate the temperature gradient inside the coil and paraffin, and improve ensures the uniformity of its temperature distribution.
  • Vacuum control Compared with the existing paraffin wax sealing furnace, the embodiment of the present invention only needs to maintain a slight negative pressure in the furnace (for example, the absolute pressure is 0.9 atmospheres), which greatly reduces the performance of the vacuum pump and the sealing requirements of the furnace body, and the manufacturing difficulty and lower cost.
  • the flow pattern of the air in the furnace has an important influence on the temperature uniformity. Therefore, the fans should be arranged reasonably to achieve the goal of sufficient heat exchange between paraffin and coils and uniform temperature.
  • a plurality of first electric heating tubes 12 are evenly arranged on the inner wall of the furnace body 1, and the spoiler fan 11 is arranged between the first electric heating pipe 12 and the inner wall of the furnace body 1. Its structure can be referred to as shown in Figure 2.
  • the furnace body 1 has a furnace bottom surface 7 and a furnace wall surface 8, and its structure can be referred to as shown in Figure 2;
  • the coil tray 10 is arranged on the bottom surface 7 of the furnace body, the paraffin tank 9 is arranged above the coil tray 10 (preferably located in the middle of the furnace body 1), and the pouring pipeline 14 is arranged at the bottom of the paraffin tank 9 (as shown inverted in Figure 4) , the spoiler fan 11 and the first electric heating tube 12 are arranged on the wall surface 8 of the furnace body, that is, side heating is adopted.
  • a pouring pipe 14 with a valve may be disposed at the center of the bottom of the paraffin tank 9 , and a plurality of first electric heating tubes 12 are evenly distributed around the pouring pipe 14 .
  • the heating system also includes: a paraffin tank auxiliary heating system;
  • the paraffin tank auxiliary heating system includes: a second electric heating tube 13 arranged at the bottom of the paraffin tank 9.
  • the structure of the paraffin tank auxiliary heating system can be referred to the inverted diagram in Figure 4.
  • the heat of the second electric heating tube 13 can be transferred to the bottom surface of the paraffin tank 9 through three methods: thermal conduction, convection and radiation, and can be used for preheating and rapid melting of solid paraffin, and can also be used for local heat when the temperature of the paraffin is slightly lower. compensate.
  • the heating system also includes: coil tray auxiliary heating system;
  • the coil tray auxiliary heating system includes: a third electric heating tube 15 arranged at the bottom of the coil tray 10, and its structure can be referred to the inverted diagram in Figure 5.
  • the heat generated by the third electric heating tube 15 can be transferred to the bottom surface of the coil tray 10 through three methods: thermal conduction, convection and radiation, and can be used for preheating the coil, and can also be used for local heat compensation when the coil temperature is slightly lower.
  • the paraffin sealing furnace for vehicle-mounted superconducting magnet coils also includes: a vacuum system, the structure of which can be referred to as shown in Figure 1;
  • the vacuum system includes: vacuum pump 4, air extraction pipeline 5 and air intake pipeline 6;
  • the vacuum pump 4 is connected to the furnace body 1 through the air extraction pipeline 5; this solution uses convection heating and does not require high vacuum levels. It only needs to maintain a slight negative pressure in the furnace (for example, the absolute pressure is 0.9 atmospheres), so a small-power vacuum pump is used. However, the performance requirements for the vacuum pump are reduced and the cost is lower;
  • the air inlet pipe 6 is provided in the furnace body 1 .
  • the paraffin sealing furnace for vehicle-mounted superconducting magnet coils provided by an embodiment of the present invention also includes: a vibration system, the structure of which can be seen in Figure 5;
  • the vibration system includes: an exciter 17 arranged below the coil tray 10.
  • the vibration is transmitted to the coil through the bottom wall of the coil tray 10, which can effectively accelerate the discharge of bubbles inside the coil and help improve the solid state. sealing effect.
  • the coil tray 10 is arranged on the bottom surface 7 of the furnace body through the coil tray support 16 , and the exciter 17 is arranged on the coil tray support 16 .
  • the structure can be shown in FIG. 5 , which specifically uses five tray supports 16 and exciters 17 , respectively located around and in the center of the bottom of the coil tray 10 , with a plurality of third electric heating tubes 15 evenly distributed therebetween.
  • the paraffin sealing furnace for vehicle-mounted superconducting magnet coils provided by the embodiment of the present invention also includes: a front door observation window 2 provided on the furnace body 1 .
  • the structure can be seen in Figure 1.
  • This solution uses convection heating and does not require high vacuum levels.
  • the size of the glass window will not be limited by the excessive air pressure difference between the inside and outside of the furnace like the existing technology, so that it is convenient for the user. observe.
  • the paraffin sealing furnace for vehicle-mounted superconducting magnet coils provided by the embodiment of the present invention also includes: lighting facilities and a monitoring system arranged in the furnace body 1 to output video signals inside the paraffin tank and coil tray to the sealing furnace External display for user observation. Temperature sensors are placed at key locations in the furnace to gain detailed knowledge of the temperature distribution everywhere, allowing users to decide when to pour.
  • the paraffin sealing furnace of the present invention has a box-type structure. As shown in Figures 1 and 2, it can be mainly divided into a furnace body 1, a front door observation window 2, a control panel 3, a vacuum pump 4, an air extraction pipeline 5 and a valve and an air inlet pipe. Road 6 and valve, furnace bottom surface 7, furnace wall surface 8, paraffin tank 9, coil tray 10.
  • the technical solution of the present invention will be described in detail in the following three aspects: vacuum control, temperature control and pouring control.
  • the paraffin sealing furnace of the present invention does not require high vacuum levels, so a small-power vacuum pump is sufficient. At the same time, the front door opening and each pipeline interface of the furnace body only need to be sealed to a normal degree. Maintain a certain degree of negative pressure in the furnace during operation, which can be adjusted through the pressure gauge and air inlet valve.
  • the heating system of the paraffin wax sealing furnace of the present invention is divided into three parts: the main heating system, the paraffin tank auxiliary heating system and the coil tray auxiliary heating system.
  • the main heating system consists of an electric heating tube arranged on the inner wall of the sealing furnace and its attached turbulence fan, as shown in Figure 3.
  • the turbulence fan rotates at high speed, driving the air to absorb the heat generated by the electric heating tube, and finally transfers the heat to the paraffin in the paraffin tank and the coil in the coil tray.
  • the flow pattern of the air in the furnace has an important influence on the temperature uniformity. Therefore, the fans should be arranged reasonably to achieve the goal of sufficient heat exchange between paraffin and coils and uniform temperature.
  • the paraffin tank auxiliary heating system consists of an electric heating tube arranged at the bottom of the paraffin container, as shown in Figure 4.
  • the heat generated by the electric heating tube can be transferred to the bottom of the paraffin tank through three methods: thermal conduction, convection and radiation. It can be used for preheating and rapid melting of solid paraffin, and can also be used for local heat compensation when the temperature of the paraffin is slightly lower.
  • the coil tray auxiliary heating system consists of electric heating tubes arranged at the bottom of the coil tray, as shown in Figure 5. During operation, the heat generated by the electric heating tube can be transferred to the bottom surface of the coil tray through three methods: thermal conduction, convection and radiation. It can be used to preheat the coil and can also be used for local heat compensation when the coil temperature is slightly lower.
  • the above-mentioned heating systems all have the function of stepless adjustment of heating power to ensure good temperature control.
  • the present invention combines the wax melting cabin and the solid sealing cabin into one 1. Compact structure. Place the coil tray underneath the sealing oven to facilitate placement and removal of heavier coils.
  • Vacuum control Compared with the existing paraffin wax sealing furnace, the present invention only needs to maintain a slight negative pressure in the furnace (for example, the absolute pressure is 0.9 atmospheres), which greatly reduces the performance of the vacuum pump and the sealing requirements of the furnace body, as well as the manufacturing difficulty and cost. lower.
  • the present invention mainly uses air convection for heat transfer.
  • the scientifically arranged electric heating tube and spoiler fan effectively eliminate the temperature gradient inside the coil and paraffin, and improve its efficiency. Uniformity of temperature distribution.
  • pouring control Compared with the existing paraffin sealing furnace, arranging the paraffin tank inside the sealing furnace can eliminate the original paraffin pipelines exposed to the environment, and can avoid cooling, solidification, clogging and other problems caused by the flow of paraffin in the above pipelines.
  • the wax injection port is sprayed, which makes the pouring process smooth and controllable, which is conducive to the smooth and gradual infiltration of the paraffin into the coil and the discharge of air bubbles to achieve a good sealing effect.
  • the exciter arranged under the superconducting coil tray can effectively accelerate the discharge of bubbles inside the coil, which is beneficial to improving the sealing effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Induction Heating (AREA)
  • Furnace Details (AREA)

Abstract

一种用于车载超导磁体线圈的石蜡固封炉,相比于现有石蜡固封炉,这种用于车载超导磁体线圈的石蜡固封炉将熔蜡舱和固封舱合二为一,结构紧凑;将石蜡槽(9)布置于固封炉内部可取消原有暴露于环境当中的石蜡管路,可避免石蜡在管路中因流动产生的降温、凝固、堵塞以及注蜡口喷射,这使浇注过程平缓可控,达到良好的固封效果。温度控制方面,主要使用空气对流的方式进行传热,科学布置电加热管(12、13、15)和扰流风扇(11),有效地消除线圈和石蜡内部的温度梯度,提高其温度分布的均匀性。浇注控制方面,布置在超导线圈托盘(10)下方的激振器(17)可有效加速线圈内部气泡的排出。真空控制方面,只需维持炉内轻微负压,这对真空泵(4)的性能、炉体(1)的密封要求都大为降低,制造难度和成本较低。

Description

一种用于车载超导磁体线圈的石蜡固封炉
本申请要求于2022年09月05日提交中国专利局、申请号为202211095019.X、发明名称为“一种用于车载超导磁体线圈的石蜡固封炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁浮交通技术领域,特别涉及一种用于车载超导磁体线圈的石蜡固封炉。
背景技术
作为磁浮交通车辆的关键部件之一,车载超导磁体服役于运动的磁浮交通车辆上。不同于传统静态超导磁体的服役环境,车载超导磁体面临加减速、不同速度、振动冲击等场景,其内部载荷在不同条件下具有不同的交变特性,这为车载超导磁体的可靠性和稳定性提出了更高的要求。超导磁体线圈(简称线圈)是车载超导磁体的核心组成部分,其内部绕制有轻薄的超导带材,部分超导带材处于悬空状态。采用石蜡固封的工艺对线圈进行处理,使线圈的内部空隙以石蜡填充,以此提高线圈的可靠性和稳定性。
石蜡固封炉是采用石蜡固封工艺对超导磁体线圈进行处理的装备。将线圈置于石蜡固封炉内的线圈托盘,同时在炉内营造一定的温度和压力环境。线圈温度稳定后,将液态石蜡灌入线圈托盘,使液态石蜡充分浸没线圈以此达到固封的效果。石蜡固封工艺的技术关键主要有三处:一是固封炉内的真空控制,二是石蜡和线圈温度的控制,三是石蜡的浇注控制。良好的真空控制,有利于及时抽出线圈内部被石蜡浸没的气泡,同时有利于吸入经进气管路从外界进入炉内的空气用于温度补偿。良好的温度控制,有利于保障液态石蜡具有良好的流动性,又能保障线圈部件不因温度过高而损坏。良好的浇注控制,有利于液态石蜡平缓充分地填充线圈孔隙和排出气泡。
性能良好的石蜡固封炉有利于实现高质量的石蜡固封效果,对提高线圈的可靠性和稳定性具有积极的意义。
以某现有石蜡固封炉为例,从整体结构出发、再按真空控制、温度控制和浇注控制三方面介绍该技术方案。
整体结构:
某现有石蜡固封炉的整体结构,主要可分为框架结构、固封舱、熔蜡舱、空气管路及阀门、真空泵、石蜡管路及阀门、电控装置(未在图中画出)。框架结构支撑起分别位于上下两层的固封舱和熔蜡舱;真空泵通过空气管路对固封舱进行抽气,关闭真空泵后还可以通过空气管路上的阀门对固封舱进行充气;石蜡管路的下端连接至熔蜡舱,上端伸入至固封舱,可通过石蜡管路上的阀门将熔蜡舱中的石蜡吸入并浇注至固封舱中。
熔蜡舱内部的主要结构,主要可分为蛇形电热管、导热板、石蜡槽、石蜡。对蛇形电热管通电,产生的热量主要以导热的方式、通过导热板和石蜡槽最终传递至石蜡,固态的石蜡温度达到熔点后熔化并稳定在一定温度。
固封舱内部的主要结构,主要可分为蛇形电热管、导热板、线圈托盘、线圈。对蛇形电热管通电,产生的热量主要以导热的方式、通过导热板和线圈托盘最终传递至线圈,使线圈稳定在一定温度。
真空控制:
通过真空泵和空气管路对固封舱进行抽气,根据固封舱密封程度的不同,通常舱内绝对压力至少可达到0.1个大气压以下。在固封舱内营造真空环境主要为了削弱空气对流换热的作用,同时有利于排出固封时被液态石蜡密封的气泡。同时在抽气管路上设置压力表和阀门,关闭真空泵后可通过开启阀门对固封舱充气并实现恢复常压。
温度控制:
熔蜡舱和固封舱温度控制的目标,分别是石蜡槽中液态石蜡的温度和线圈托盘中线圈的温度。不论控制何种温度,都是通过调节蛇形电热管的输入电压来实现的。既可以使用自动化控制装置实现无人值守操作,也可以切换至手动模式人工调节输入电压来控制温度。
浇注控制:
当液态石蜡和线圈的温度稳定在规定值后,打开石蜡管路的阀门,利用熔 蜡舱和固封舱之间的气压差将液态石蜡吸入并浇注在固封舱内的线圈托盘中。液态石蜡没过线圈后,关闭石蜡管路的阀门,浇注结束。
浇注过程中,为了避免液态石蜡在石蜡管路中流动时温度降低,可在管路上缠绕伴热电缆进行热量补偿。同时为了避免浇注过程中石蜡飞溅,应缓慢控制阀门开度,尽量维持缓慢平稳的石蜡流动。
从以下几个方面阐述上述现有石蜡固封炉的缺点。
温度控制:
热量传递的方式分为导热、对流和辐射。现有石蜡固封炉内气压较小(不高于0.1个大气压),因此对流传热受到很大程度的抑制,炉内主要的传热方式是导热,并辅以一定程度的辐射。
以导热方式为主的传热方式必然带来被加热料件存在明显的温度梯度,即接近导热板的区域温度较高,远离导热板的区域温度较低,料件温度分布不均匀。
由于前文所述的导热板和线圈托盘的主要材料是金属,其整体热容较大,因此其电热转换存在较大的惯性和滞后性。由此带来的是电热管输入电压在控制上的难度:在相同的交变输入电压下,相比于对流方式,导热方式引起的温度震荡会更高;同时,因其滞后性带来控制系统的响应时间长,不利于实时准确控制温度。
对于线圈的石蜡固封,温度控制的准确性和稳定性的优先级要高于传热速率。因此,现有石蜡固封炉以导热为主的传热方式,其温度控制的准确性和稳定性较差。
浇注控制:
理想的浇注控制,应保证稳定的石蜡流量和温度,这有利于石蜡平缓、渐进地浸润线圈并排出气泡。
现有石蜡固封炉的固封舱和熔蜡舱属于分体式,熔化的石蜡在置于外部环境下的管道内流动时不可避免地会受到环境气温的影响而降温。虽然石蜡管道外壁缠绕有伴热电缆,若要实现精准补偿石蜡在流动过程中的热量损失具有很大的难度。当温度补偿过度时,液态石蜡温度偏高,有可能超出工艺技术要求。 当温度补偿不足时,液态石蜡在管道内壁凝固,管路有效截面积变小、整体流动阻力变大,极端情况会完全堵塞管路,这在石蜡管路两端气压差的作用下极易在石蜡管路浇注口处引起喷射石蜡的现象,对线圈托盘内液态石蜡的流动形态造成强烈扰动,非常不利于石蜡平缓、渐进地浸润线圈,易在局部快速地将气泡封闭在石蜡液位以下,对固封效果造成不利影响。
此外,现有石蜡固封炉内部无影像监视功能,只能通过一扇小尺寸玻璃窗观察炉内浇注情况,且玻璃窗尺寸因炉内外气压差过大而无法无限制扩大,这给使用者带来一定的不便。
整体结构:
现有石蜡固封炉的固封舱和熔蜡舱位于框架结构的上下两层,需要布置上下两套加热系统,外置式的石蜡管路连接上述两舱,整体结构紧凑程度不高。且固封舱位于上层,这为布置和移除重量较大的线圈来说,存在很大的不便。
发明内容
有鉴于此,本发明提供了一种用于车载超导磁体线圈的石蜡固封炉,性能提高,有利于实现高质量的石蜡固封效果。
为实现上述目的,本发明提供如下技术方案:
一种用于车载超导磁体线圈的石蜡固封炉,包括:炉体、石蜡槽、线圈托盘和加热系统;
所述石蜡槽和所述线圈托盘设置于所述炉体内;
所述加热系统包括:主加热系统;
所述主加热系统包括:布置在所述炉体内壁的扰流风扇和第一电加热管。
优选地,多个第一电加热管均匀布置在所述炉体的内壁,所述扰流风扇布置在所述第一电加热管和所述炉体内壁之间。
优选地,所述炉体具有炉体底面和炉体壁面;
所述线圈托盘设置于所述炉体底面,所述石蜡槽设置于所述线圈托盘的上方,所述石蜡槽的底部设置有浇注管路,所述扰流风扇和所述第一电加热管设 置于所述炉体壁面。
优选地,所述加热系统还包括:石蜡槽辅助加热系统;
所述石蜡槽辅助加热系统包括:布置在所述石蜡槽底部的第二电加热管。
优选地,所述加热系统还包括:线圈托盘辅助加热系统;
所述线圈托盘辅助加热系统包括:布置在所述线圈托盘底部的第三电加热管。
优选地,还包括:真空系统;
所述真空系统包括:真空泵、抽气管路和进气管路;
所述真空泵通过所述抽气管路连接于所述炉体;
所述进气管路设置于所述炉体。
优选地,还包括:振动系统;
所述振动系统包括:布置在所述线圈托盘下方的激振器。
优选地,所述线圈托盘通过线圈托盘支撑设置于所述炉体底面,所述激振器设置于所述线圈托盘支撑。
优选地,还包括:设置于所述炉体的前开门观察窗。
优选地,还包括:设置于所述炉体内的照明设施和监视系统。
从上述的技术方案可以看出,本发明提供的用于车载超导磁体线圈的石蜡固封炉,具有下列优点:
整体结构方面。相比于现有石蜡固封炉,本发明将熔蜡舱和固封舱合二为一,结构紧凑。将线圈托盘置于固封炉下方,便于布置和移除重量较大的线圈。
真空控制方面。相比于现有石蜡固封炉,本发明只需维持炉内轻微负压(例如绝对压力为0.9个大气压),这对真空泵的性能、炉体的密封要求都大为降低,制造难度和成本较低。
温度控制方面。相比于现有石蜡固封炉,本发明主要使用空气对流的方式进行传热,加之以科学布置的电加热管和扰流风扇,有效地消除了线圈和石蜡内部的温度梯度,提高了其温度分布的均匀性。
浇注控制方面。相比于现有石蜡固封炉,将石蜡槽布置于固封炉内部可取消原有暴露于环境当中的石蜡管路,可避免石蜡在上述管路中因流动产生的降温、凝固、堵塞以及注蜡口喷射,这使浇注过程平缓可控,有利于石蜡平缓、渐进地浸润线圈并排出气泡,达到良好的固封效果。此外,布置在超导线圈托盘下方的激振器可有效加速线圈内部气泡的排出,有利于提高固封效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的石蜡固封炉的外部整体结构示意图;
图2为本发明实施例提供的石蜡固封炉的内部结构示意图;
图3为本发明实施例提供的石蜡固封炉壁面的局部结构示意图;
图4为本发明实施例提供的石蜡固封炉石蜡槽的倒置结构示意图;
图5为本发明实施例提供的石蜡固封炉线圈托盘的倒置结构示意图。
其中,1为炉体,2为前开门观察窗,3为控制面板,4为真空泵,5为抽气管路,6为进气管路,7为炉体底面,8为炉体壁面,9为石蜡槽,10为线圈托盘,11为扰流风扇,12为电加热管,13为电加热管,14为浇注管路,15为电加热管,16为线圈托盘支撑,17为激振器。
具体实施方式
首先对本方案涉及到的技术名词解释如下:
车载超导磁体:一种应用超导线圈及其附属结构、能够为车辆运行提供稳 定静磁场的装置,其全部硬件挂在于可运动的磁浮车辆上,所受外部环境为动态变化。
车载超导磁体线圈:车载超导磁体的核心部件,绕制有超导带材,用于产生磁场。
石蜡固封工艺:一种采用石蜡为介质,利用石蜡通过温度变化实现液态至固态转变的物理原理,实现使用石蜡对被固封对象实现空隙填充及封装的工艺。
本发明实施例提供了一种用于车载超导磁体线圈的石蜡固封炉,为采用石蜡固封工艺对超导磁体线圈进行处理提供装备基础。
本发明的基本组成为:机械系统、真空系统、加热系统、振动系统以及附属的电控系统。
(1)机械系统主要包括炉体围护结构、线圈托盘及支撑结构、石蜡容器及支撑结构、液态石蜡灌注管路及阀门等。
(2)真空系统由真空泵、压力仪表、抽气管路、进气管路及阀门组成。工作时使用真空泵对炉内进行抽气,通过调节进气管路的阀门使固封炉内部维持一定的负压。
(3)加热系统分为主加热系统、石蜡槽辅助加热系统和线圈托盘辅助加热系统三部分。主加热系统由布置在固封炉内壁的电加热管及其附属的扰流风扇组成,主要通过流动的空气将电加热管产生的热量传递至石蜡槽和线圈托盘。石蜡槽辅助加热系统由布置在石蜡容器底部的电加热管组成,用于石蜡的预热或必要时的辅助加热。线圈托盘辅助加热系统由布置在线圈托盘底部的的电加热管组成,用于线圈的预热或必要时的辅助加热。
(4)振动系统由布置在线圈托盘下方的激振器组成,激振器工作时将振动通过线圈托盘底部壁面传递至线圈。
(5)附属的电控系统用于为固封炉提供电源以及提供相关的控制功能。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的用于车载超导磁体线圈的石蜡固封炉,包括:炉体1、石蜡槽9、线圈托盘10和加热系统,其结构可以参照图1和图2所示;
其中,石蜡槽9和线圈托盘10设置于炉体1内;
加热系统包括:主加热系统;
该主加热系统包括:布置在炉体1内壁的扰流风扇11和第一电加热管12。
从上述的技术方案可以看出,本发明实施例提供的用于车载超导磁体线圈的石蜡固封炉,具有下列优点:
整体结构方面。相比于现有石蜡固封炉,本发明实施例将熔蜡舱(石蜡槽9)和固封舱(线圈托盘10)合二为一,结构紧凑。
浇注控制方面。相比于现有石蜡固封炉,将石蜡槽9布置于炉体1内部可取消原有暴露于环境当中的石蜡管路,可避免石蜡在上述管路中因流动产生的降温、凝固、堵塞以及注蜡口喷射,这使浇注过程平缓可控,有利于石蜡平缓、渐进地浸润线圈并排出气泡,达到良好的固封效果。
温度控制方面。相比于现有石蜡固封炉,本发明实施例主要使用空气对流的方式进行传热,加之以科学布置的电加热管和扰流风扇,有效地消除了线圈和石蜡内部的温度梯度,提高了其温度分布的均匀性。
真空控制方面。相比于现有石蜡固封炉,本发明实施例只需维持炉内轻微负压(例如绝对压力为0.9个大气压),这对真空泵的性能、炉体的密封要求都大为降低,制造难度和成本较低。
炉内空气的流动形态对温度均匀性具有重要影响,因此应合理布置风扇,达到石蜡和线圈换热充分、温度均匀的目标。作为优选,多个第一电加热管 12均匀布置在炉体1的内壁,扰流风扇11布置在第一电加热管12和炉体1内壁之间,其结构可以参照图2所示。
具体的,炉体1具有炉体底面7和炉体壁面8,其结构可以参照图2所示;
其中,线圈托盘10设置于炉体底面7,石蜡槽9设置于线圈托盘10的上方(优选位于炉体1中部),石蜡槽9的底部设置有浇注管路14(如图4的倒置示意),扰流风扇11和第一电加热管12设置于炉体壁面8,即采用侧面加热的方式。进一步的,带阀门的浇注管路14可设置于石蜡槽9底部中央,多个第一电加热管12围绕所述浇注管路14均匀分布。
在本实施例中,加热系统还包括:石蜡槽辅助加热系统;
该石蜡槽辅助加热系统包括:布置在石蜡槽9底部的第二电加热管13,其结构可以参照图4的倒置示意。工作时,第二电加热管13的热量可通过导热、对流和辐射三种方式传递至石蜡槽9底面,可用于固态石蜡的预热和快速熔化,也可用于石蜡温度稍低时的局部热量补偿。
进一步的,加热系统还包括:线圈托盘辅助加热系统;
该线圈托盘辅助加热系统包括:布置在线圈托盘10底部的第三电加热管15,其结构可以参照图5的倒置示意。工作时,第三电加热管15产生的热量可通过导热、对流和辐射三种方式传递至线圈托盘10底面,可用于线圈的预热,也可用于线圈温度稍低时的局部热量补偿。
本发明实施例提供的用于车载超导磁体线圈的石蜡固封炉,还包括:真空系统,其结构可以参照图1所示;
其中,真空系统包括:真空泵4、抽气管路5和进气管路6;
真空泵4通过抽气管路5连接于炉体1;本方案采用对流加热,对真空程度要求不高,只需维持炉内轻微负压(例如绝对压力为0.9个大气压),因此采用小功率真空泵即可,这对真空泵的性能要求为降低,成本较低;
进气管路6设置于炉体1。
本发明实施例提供的用于车载超导磁体线圈的石蜡固封炉,还包括:振动系统,其结构可以参照图5所示;
其中,振动系统包括:布置在线圈托盘10下方的激振器17,该激振器17工作时将振动通过线圈托盘10底部壁面传递至线圈,可有效加速线圈内部气泡的排出,有利于提高固封效果。
进一步的,线圈托盘10通过线圈托盘支撑16设置于炉体底面7,激振器17设置于线圈托盘支撑16。其结构可以参照图5所示,可具体采用五个托盘支撑16和激振器17,分别位于线圈托盘10的底部四周和中央,多个第三电加热管15均匀分布于其间。
本发明实施例提供的用于车载超导磁体线圈的石蜡固封炉,还包括:设置于炉体1的前开门观察窗2。其结构可以参照图1所示,本方案采用对流加热,对真空程度要求不高,玻璃窗尺寸不会像现有技术那样受到因炉内外气压差过大而无法无限制扩大,以便于使用者观察。
本发明实施例提供的用于车载超导磁体线圈的石蜡固封炉,还包括:设置于炉体1内的照明设施和监视系统,将石蜡槽和线圈托盘内部的视频信号输出至固封炉外部的显示器,以便使用者观察。在炉内各关键位置布置温度传感器,详细掌握各处的温度分布,以便使用者决策浇注时机。
下面结合具体实施例对本方案作进一步介绍:
本发明石蜡固封炉为箱式结构,如图1和图2所示主要可分为炉体1、前开门观察窗2、控制面板3、真空泵4、抽气管路5及含阀门、进气管路6及阀门、炉体底面7、炉体壁面8、石蜡槽9、线圈托盘10。下文按真空控制、温度控制和浇注控制三个方面详细阐述本发明的技术方案。
真空控制:
本发明石蜡固封炉对真空程度要求不高,因此采用小功率真空泵即可,同时前开门和炉体的各管路接口只需按普通程度进行密封处理。工作时维持炉内一定程度的负压,可通过压力表和进气阀门进行调节。
温度控制:
如前文所述,本发明石蜡固封炉的加热系统分为主加热系统、石蜡槽辅助加热系统和线圈托盘辅助加热系统三部分。
主加热系统由布置在固封炉内壁的电加热管及其附属的扰流风扇组成,如图3所示。工作时扰流风扇高速转动,将驱动空气吸收电加热管产生的热量,并将热量最终传递至石蜡槽中的石蜡和线圈托盘中的线圈。炉内空气的流动形态对温度均匀性具有重要影响,因此应合理布置风扇,达到石蜡和线圈换热充分、温度均匀的目标。
石蜡槽辅助加热系统由布置在石蜡容器底部的电加热管组成,如图4所示。工作时,电加热管产生的热量可通过导热、对流和辐射三种方式传递至石蜡槽底面,可用于固态石蜡的预热和快速熔化,也可用于石蜡温度稍低时的局部热量补偿。
线圈托盘辅助加热系统由布置在线圈托盘底部的电加热管组成,如图5所示。工作时,电加热管产生的热量可通过导热、对流和辐射三种方式传递至线圈托盘底面,可用于线圈的预热,也可用于线圈温度稍低时的局部热量补偿。
上述加热系统均具备加热功率的无极调节功能,以此保证良好的温度控制。
浇注控制:
在炉内布置照明设施和监视系统,将石蜡槽和线圈托盘内部的视频信号输出至固封炉外部的显示器,以便使用者观察。在炉内各关键位置布置温度传感器,详细掌握各处的温度分布,以便使用者决策浇注时机。具备浇注条件后,调节浇注管路上的电控阀门进行浇注,浇注过程中具备调节石蜡流量的功能。浇注完毕后,启动线圈托盘下方的激振器,通过对线圈施加振动以加速其内部气泡的排出。
本发明的优点:
整体结构方面。相比于现有石蜡固封炉,本发明将熔蜡舱和固封舱合二为 一,结构紧凑。将线圈托盘置于固封炉下方,便于布置和移除重量较大的线圈。
真空控制方面。相比于现有石蜡固封炉,本发明只需维持炉内轻微负压(例如绝对压力为0.9个大气压),这对真空泵的性能、炉体的密封要求都大为降低,制造难度和成本较低。
温度控制方面。相比于现有石蜡固封炉,本发明主要使用空气对流的方式进行传热,加之以科学布置的电加热管和扰流风扇,有效地消除了线圈和石蜡内部的温度梯度,提高了其温度分布的均匀性。
浇注控制方面。相比于现有石蜡固封炉,将石蜡槽布置于固封炉内部可取消原有暴露于环境当中的石蜡管路,可避免石蜡在上述管路中因流动产生的降温、凝固、堵塞以及注蜡口喷射,这使浇注过程平缓可控,有利于石蜡平缓、渐进地浸润线圈并排出气泡,达到良好的固封效果。此外,布置在超导线圈托盘下方的激振器可有效加速线圈内部气泡的排出,有利于提高固封效果。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种用于车载超导磁体线圈的石蜡固封炉,其特征在于,包括:炉体(1)、石蜡槽(9)、线圈托盘(10)和加热系统;
    所述石蜡槽(9)和所述线圈托盘(10)设置于所述炉体(1)内;
    所述加热系统包括:主加热系统;
    所述主加热系统包括:布置在所述炉体(1)内壁的扰流风扇(11)和第一电加热管(12)。
  2. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,多个第一电加热管(12)均匀布置在所述炉体(1)的内壁,所述扰流风扇(11)布置在所述第一电加热管(12)和所述炉体(1)内壁之间。
  3. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,所述炉体(1)具有炉体底面(7)和炉体壁面(8);
    所述线圈托盘(10)设置于所述炉体底面(7),所述石蜡槽(9)设置于所述线圈托盘(10)的上方,所述石蜡槽(9)的底部设置有浇注管路(14),所述扰流风扇(11)和所述第一电加热管(12)设置于所述炉体壁面(8)。
  4. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,所述加热系统还包括:石蜡槽辅助加热系统;
    所述石蜡槽辅助加热系统包括:布置在所述石蜡槽(9)底部的第二电加热管(13)。
  5. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,所述加热系统还包括:线圈托盘辅助加热系统;
    所述线圈托盘辅助加热系统包括:布置在所述线圈托盘(10)底部的第三电加热管(15)。
  6. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征 在于,还包括:真空系统;
    所述真空系统包括:真空泵(4)、抽气管路(5)和进气管路(6);
    所述真空泵(4)通过所述抽气管路(5)连接于所述炉体(1);
    所述进气管路(6)设置于所述炉体(1)。
  7. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,还包括:振动系统;
    所述振动系统包括:布置在所述线圈托盘(10)下方的激振器(17)。
  8. 根据权利要求7所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,所述线圈托盘(10)通过线圈托盘支撑(16)设置于所述炉体底面(7),所述激振器(17)设置于所述线圈托盘支撑(16)。
  9. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,还包括:设置于所述炉体(1)的前开门观察窗(2)。
  10. 根据权利要求1所述的用于车载超导磁体线圈的石蜡固封炉,其特征在于,还包括:设置于所述炉体(1)内的照明设施和监视系统。
PCT/CN2023/116905 2022-09-05 2023-09-05 一种用于车载超导磁体线圈的石蜡固封炉 WO2024051669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211095019.XA CN115631941A (zh) 2022-09-05 2022-09-05 一种用于车载超导磁体线圈的石蜡固封炉
CN202211095019.X 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024051669A1 true WO2024051669A1 (zh) 2024-03-14

Family

ID=84902648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116905 WO2024051669A1 (zh) 2022-09-05 2023-09-05 一种用于车载超导磁体线圈的石蜡固封炉

Country Status (2)

Country Link
CN (1) CN115631941A (zh)
WO (1) WO2024051669A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115631941A (zh) * 2022-09-05 2023-01-20 中车长春轨道客车股份有限公司 一种用于车载超导磁体线圈的石蜡固封炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208821A (ja) * 2010-03-29 2011-10-20 Kokensha:Kk 真空炉
CN208357145U (zh) * 2018-05-03 2019-01-11 中山凯旋真空科技股份有限公司 真空封蜡设备
CN110957100A (zh) * 2019-12-10 2020-04-03 广东电网有限责任公司 一种螺线管式高温超导线圈及其固化方法
CN114664558A (zh) * 2022-04-19 2022-06-24 松山湖材料实验室 提高超导线圈真空压力浸渍质量的方法及其装置
CN115631941A (zh) * 2022-09-05 2023-01-20 中车长春轨道客车股份有限公司 一种用于车载超导磁体线圈的石蜡固封炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208821A (ja) * 2010-03-29 2011-10-20 Kokensha:Kk 真空炉
CN208357145U (zh) * 2018-05-03 2019-01-11 中山凯旋真空科技股份有限公司 真空封蜡设备
CN110957100A (zh) * 2019-12-10 2020-04-03 广东电网有限责任公司 一种螺线管式高温超导线圈及其固化方法
CN114664558A (zh) * 2022-04-19 2022-06-24 松山湖材料实验室 提高超导线圈真空压力浸渍质量的方法及其装置
CN115631941A (zh) * 2022-09-05 2023-01-20 中车长春轨道客车股份有限公司 一种用于车载超导磁体线圈的石蜡固封炉

Also Published As

Publication number Publication date
CN115631941A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2024051669A1 (zh) 一种用于车载超导磁体线圈的石蜡固封炉
US10913111B2 (en) Method for vacuum smelting and variable pressure solidification forming aluminum alloy piece with ultra-thin wall and high gas tightness
WO2021003627A1 (zh) 一种采用电磁搅拌技术的低压充型方法及装置
CN107243643B (zh) 雾化室、用于制备金属粉末的装置
CN205324701U (zh) 浸渗装置及具有其的浸渗系统
CN202224638U (zh) 一种真空-正压熔炼凝固设备
CN112828264B (zh) 一种带螺旋磁场的铸造装置和铸造方法
CN207071672U (zh) 一种真空铸造浇铸溢流控制装置
CN113564392A (zh) 一种用于半固态变温振动细化金属凝固组织的装置及方法
CN113275541A (zh) 大尺寸复杂非晶合金构件逆重力充填成形装置
CN107570687A (zh) 一种降低铝合金铸件晶粒尺寸的真空浇注装置及浇注方法
CN112689544B (zh) 铸造设备
CN102328066A (zh) 一种真空-正压熔炼凝固设备
WO2024050984A1 (zh) 一种真空浸蜡设备及其浸蜡方法
CN209798159U (zh) 一种智能真空定向凝固装置
WO2022257400A1 (zh) 微固态成型方法及装置
JP3087932B2 (ja) 樋式給湯装置
CN109530669B (zh) 一种调控水冷坩埚浇注TiAl合金熔化过热度的方法
CN113714490A (zh) 定向凝固装置及方法
CN110918963A (zh) 浇包及浇铸设备
CN109382488A (zh) 铜硅铝合金真空铸锭控制缩孔位置的装置
CN103042194B (zh) 一种用于制备空壳薄壁铸件的装置及方法
CN111014635A (zh) 一种连铸通道式感应加热中间包及其控制流场方法
CN115106500B (zh) 一种真空离心铸造设备用可移动感应加热装置
CN219890127U (zh) 电磁感应加热真空装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862363

Country of ref document: EP

Kind code of ref document: A1