WO2024051583A1 - 信息确定方法、低功耗信号接收功率测量方法、装置及终端 - Google Patents

信息确定方法、低功耗信号接收功率测量方法、装置及终端 Download PDF

Info

Publication number
WO2024051583A1
WO2024051583A1 PCT/CN2023/116393 CN2023116393W WO2024051583A1 WO 2024051583 A1 WO2024051583 A1 WO 2024051583A1 CN 2023116393 W CN2023116393 W CN 2023116393W WO 2024051583 A1 WO2024051583 A1 WO 2024051583A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
sequence
time domain
low
signal
Prior art date
Application number
PCT/CN2023/116393
Other languages
English (en)
French (fr)
Inventor
曲鑫
吴凯
沈晓冬
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211098073.XA external-priority patent/CN117675146A/zh
Priority claimed from CN202211154176.3A external-priority patent/CN117793860A/zh
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024051583A1 publication Critical patent/WO2024051583A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • This application belongs to the field of communication technology, and specifically relates to an information determination method, a low-power signal receiving power measurement method, a device and a terminal.
  • New Radio introduces low-power signals to reduce terminal power consumption.
  • the low-power signal includes a low-power wake-up signal.
  • the main communication module/receiver can be turned off or set to a deep sleep state, and the low-power wake-up signal is only monitored through the low-power wake-up module. This achieves the purpose of reducing terminal power consumption.
  • the terminal receives the low-power signal sent by the network-side device through asynchronous communication with the network-side device. The terminal's accuracy in detecting the low-power signal under asynchronous communication is low.
  • Embodiments of the present application provide an information determination method, a low-power signal received power measurement method, a device, and a terminal, which can solve the problem of low accuracy in detecting low-power signals by the terminal.
  • the first aspect provides a method for determining information, including:
  • the terminal obtains the first information
  • the terminal determines the time domain resource mapping information of the first sequence in the low-power signal based on the first information
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources.
  • each symbol resource among the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • an information determining device including:
  • the acquisition module is used to obtain the first information
  • a determination module configured to determine the time domain resource mapping information of the first sequence in the low-power signal based on the first information
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources.
  • each symbol resource among the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: stated on the one hand Method steps.
  • a terminal including a processor and a communication interface, wherein the processor is used to obtain first information;
  • the processor is further configured to: determine time domain resource mapping information of the first sequence in the low-power signal based on the first information;
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources.
  • each symbol resource among the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • an information determination system including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the information determination method described in the first aspect.
  • the sixth aspect provides a low-power signal receiving power measurement method, including:
  • the terminal receives the reference signal within the time unit set
  • the terminal determines the first received power according to the power of the reference signal on each time unit in the time unit set;
  • the time unit set includes at least one time unit carrying the reference signal.
  • a low-power signal receiving power measurement device including:
  • the receiving module is used to receive the reference signal within the time unit set
  • a first determination module configured to determine the first received power according to the power of the reference signal on each time unit in the time unit set, where the first received power represents the received power obtained by performing one measurement based on the time unit set;
  • the time unit set includes at least one time unit carrying the reference signal.
  • a terminal in an eighth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive a reference signal within a time unit set; the processor is used to determine the power of the reference signal on each time unit in the time unit set. , determine the first received power; wherein the time unit set includes at least one time unit carrying the reference signal.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first or sixth aspect are implemented. .
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect or the sixth aspect. methods described in this regard.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect.
  • the terminal obtains the first information; the terminal determines the time domain resource mapping information of the first sequence in the low power consumption signal based on the first information; wherein the time domain resource mapping information is used to indicate : the first sequence A mapping method that maps on the time domain resources of the low-power signal, where the time-domain resources of the low-power signal include a plurality of symbol resources, and each of the plurality of symbol resources includes an additional time resource and at least A first symbol.
  • sequence autocorrelation can be performed based on the determined time-domain mapping method. inspection, thereby improving the accuracy of the terminal in detecting low-power signals.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of OFDM signal time slots in related technologies
  • Figure 3 is a schematic diagram of the PPDU format of the 802.11ba wake-up signal in related technologies
  • Figure 4 is a schematic flow chart of 802.11ba 2us OOK symbol acquisition in related technologies
  • Figure 5 is a schematic flow chart of 802.11ba 4us OOK symbol acquisition in related technologies
  • Figure 6 is a flow chart of an information determination method provided by an embodiment of the present application.
  • Figure 7 is one of the schematic diagrams of a time domain resource mapping provided by an embodiment of the present application.
  • Figure 8 is a second schematic diagram of time domain resource mapping provided by an embodiment of the present application.
  • Figure 9 is a structural diagram of an information determination device provided by an embodiment of the present application.
  • Figure 10 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 12 is a flow chart of the low-power signal receiving power measurement method provided by this application.
  • Figure 13 is an example of a measurement scenario in the low-power signal received power measurement method provided by this application.
  • Figure 14 is an example of a measurement scenario in the low-power signal received power measurement method provided by this application.
  • Figure 15 is a structural diagram of a low-power signal receiving power measurement device provided by this application.
  • FIG 16 is a structural diagram of another communication device provided by this application.
  • Figure 17 is a structural diagram of another terminal provided by this application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmitting Receiving Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only TRP in the NR system is used. The base station is taken as an example for introduction, and the specific type of base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Hair Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized Network Configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy and
  • Orthogonal frequency division multiplex (OFDM) signal frame structure OFDM
  • the minimum time unit in the time domain is an OFDM symbol, and one time slot contains 14 OFDM symbols.
  • Each OFDM symbol begins with a cyclic prefix (CP), where the cyclic prefix is obtained by intercepting and copying the length at the end of an OFDM symbol.
  • the length of each OFDM symbol is different depending on the subcarrier spacing (SCS), for example When the subcarrier spacing is 15kHz, the length of an OFDM symbol except CP is 2048Ts.
  • the length of CP contained in other OFDM symbols except the first OFDM symbol is 144Ts.
  • ⁇ f ref is the subcarrier spacing
  • N f,ref is the length of one OFDM symbol excluding CP.
  • the length of one OFDM symbol and the normal CP length under different subcarrier spacing are shown in Table 1.
  • the description of an OFDM signal slot, OFDM symbol, and cyclic prefix is shown in Figure 2.
  • the physical layer protocol data unit (PPDU) of the wake-up signal is shown in Figure 3.
  • the first five fields are used to achieve coexistence with existing 802.11 users and do not have a low-power wake-up function.
  • 802.11 The ba receiver does not decode it.
  • the latter two fields are the synchronization field and data field of the low-power wake-up signal.
  • the synchronization field contains sequences of two lengths: 64us and 128us, which respectively indicate two data rates of the data field: 62.5 kbs and 250kbs.
  • the low rate of the synchronization domain and the data domain are sent using OOK symbols with a length of 2us
  • the high rate of the data domain is sent with an OOK symbol of a length of 4us.
  • Both 2us and 4us OOK symbols are generated by multiplexing the generation structure of the 802.11OFDM signal, as shown in Figure 4 and Figure 5.
  • the inverse discrete Fourier transform is performed (Inverse Discrete Fourier Transform, IDFT), a 3.2us time domain symbol is obtained, and only the first half of 1.6us is retained. After the symbol is randomized, the last 0.4us signal is intercepted as a cyclic prefix, and a 2us on-off keying (On-Off) is obtained. Keying,OOK) symbol.
  • IDFT Inverse Discrete Fourier Transform
  • a 3.2us time domain symbol is obtained, and only the first half of 1.6us is retained. After the symbol is randomized, the last 0.4us signal is intercepted as a cyclic prefix, and a 2us on-off keying (On-Off) is obtained. Keying,OOK) symbol.
  • OOK Keying
  • the 0.8us signal at the end is intercepted as a cyclic prefix to obtain a 2us OOK symbol.
  • the 802.11OFDM symbol length is 4us, so the 4us OFDM signal generation structure can be directly multiplexed to obtain 2us and 4us OOK symbols.
  • Figure 6 is a flow chart of an information determination method provided by an embodiment of the present application. As shown in Figure 6, the information determination method includes the following steps:
  • Step 101 The terminal obtains the first information
  • Step 102 The terminal determines the time domain resource mapping information of the first sequence in the low-power signal based on the first information
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources.
  • each symbol resource among the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • the time domain resource mapping information may be used to indicate: a mapping manner in which the first sequence is mapped on the time domain resource of the low power consumption signal.
  • the time domain resource of the low-power signal may include a plurality of symbol resources, each of the plurality of symbol resources including an additional time resource and at least one first symbol.
  • the first information may be used to indicate the time domain resource mapping information; the first sequence; the time domain resource length of the low power consumption signal; the length of the additional time resource; the length of the symbol resource; at least one of the lengths of the first symbols.
  • the time domain resource mapping information may be used to indicate the time domain resource mapping method of the first sequence.
  • the time domain resource mapping method may include the resource mapping format being a first format, or the resource mapping format being a second format.
  • the resource mapping format is the first format
  • the first sequence does not map useful information on the additional time resources
  • the resource mapping format is the second format
  • the first sequence maps useful information on the additional time resources.
  • the low-power signal can be generated by an OFDM signal generation structure.
  • the signal frame structure of the signal generated by the OFDM signal generation structure is characterized by: in the time domain, one time slot contains multiple OFDM symbols, and each OFDM The beginning of the symbol contains a cyclic prefix, which is obtained by copying the length of the end part of an OFDM symbol.
  • one OFDM symbol includes multiple low-power signal symbols.
  • the low-power signal symbol can be an OOK symbol or an encoded OOK symbol.
  • the symbol resource may be an OFDM symbol
  • the first symbol may be a low-power signal symbol.
  • the low-power signal includes a cyclic prefix, which is obtained by intercepting a part of the length at the end of the last first symbol contained in a symbol resource, and the additional time resource is the time domain of the cyclic prefix. resource.
  • the first sequence of time domain resource mapping information may be used to detect low power consumption signals.
  • the terminal can generate a local sequence for sequence autocorrelation testing, perform sequence autocorrelation testing through this local sequence, and can detect sequences with a sequence autocorrelation degree higher than the preset threshold with the local sequence, and with the local sequence
  • the sequence whose sequence autocorrelation degree is higher than the preset threshold is the first sequence, so that the low power consumption signal can be detected based on the first sequence.
  • the preset threshold can be set according to actual needs.
  • the terminal can obtain the first sequence, the time domain resource length of the low-power signal, the length of the additional time resource, the length of the symbol resource, and the length of the first symbol. Generated by the time domain resource mapping information, the first sequence, the time domain resource length of the low power consumption signal, the length of the additional time resource, the length of the symbol resource and the length of the first symbol A local sequence used for sequence autocorrelation testing, through which sequence autocorrelation testing is performed to detect low-power signals.
  • one or more of the first sequence, the time domain resource length of the low power consumption signal, the length of the additional time resource, the length of the symbol resource, and the length of the first symbol may be Indicated by the first information, it may be pre-configured by the network or pre-defined by the protocol. This embodiment does not limit the method of obtaining the first sequence, the time domain resource length of the low-power signal, the length of the additional time resource, the length of the symbol resource, and the length of the first symbol. .
  • the time domain resource length of the low-power signal can be the length of L symbol resources.
  • the difference between the length of the symbol resource and the length of the additional time resource can be the length of M first symbols. L and M are both positive integers. .
  • the time domain resource mapping information may be used to indicate that the first sequence does not map useful information on additional time resources.
  • the mapping method of mapping the first sequence on the time domain resources of the low-power signal includes: mapping the first sequence to the low-power signal. A first part of the time domain resources of the power consumption signal, the first part of the resources including resources other than the additional time resources among all symbol resources included in the time domain resources of the low power consumption signal. Therefore, when generating a local sequence for sequence autocorrelation testing, a sequence with additional time resource length can be extended on the basis of the first sequence according to the time domain mapping method of the first sequence to generate a local sequence, so that the generated local sequence is consistent with the first sequence.
  • the characteristics of the first sequence are relatively matched, which reduces the impact of the cyclic prefix in the low-power signal on the sequence autocorrelation test, making the correlation between the local sequence and the first sequence stronger, which can improve the accuracy of the terminal in detecting the low-power signal.
  • the time domain resource mapping information indicates that the first sequence does not map useful information on additional time resources.
  • the sequence length of the first sequence is: L*M.
  • the terminal can divide the first sequence into L subgroups in order from left to right. Each subgroup contains M sequence elements. Each sequence element occupies a first symbol length to obtain L subgroups.
  • the time domain mapped by each subgroup The resource length is: (symbol resource length - additional time resource length).
  • the signal value can be different from 0.
  • a signal with an additional time resource length at the end of the kth subgroup is copied and inserted.
  • the local sequence used for the first sequence autocorrelation test is obtained, and k is an integer greater than 1 and less than or equal to L.
  • the time domain resource mapping information may be used to indicate that the first sequence is mapped on the additional time resource. Use information.
  • the mapping method of mapping the first sequence on the time domain resources of the low-power signal includes: mapping the first sequence to the low-power signal.
  • the second part of resources includes all symbol resources in the time domain resources of the low-power signal.
  • the cyclic prefix is mapped to the additional time resource as the non-redundant part of the first sequence, so that the generated local sequence matches the characteristics of the first sequence and reduces the The influence of the cyclic prefix in the low-power signal on the sequence autocorrelation test is eliminated, so that the correlation between the local sequence and the first sequence is strong, which can improve the accuracy of the terminal in detecting the low-power signal.
  • the time domain resource mapping information indicates that the first sequence maps useful information on additional time resources.
  • the additional time resource length includes N first symbol lengths, N first sequence sequence elements are mapped in the additional time resource; the additional time resource length is greater than N-1 first symbol lengths and less than N
  • N-1 or N sequence elements of the first sequence are mapped in the additional time resource.
  • the sequence length of the first sequence is: L*M+L*N or L*M+L*(N-1).
  • the terminal can divide the first sequence into L subgroups in order from left to right. Each subgroup contains M+N or M+N-1 sequence elements.
  • the first N or N-1 sequence elements in each subgroup occupy The time resource of the additional time resource length, the last M sequence elements in each subgroup, each sequence element occupies a time resource of the first symbol length, L and M are both positive integers, and N is a positive integer greater than 1.
  • the first sequence can be mapped to all symbol resources included in the time domain resources of the low-power signal except for the additional time resources; or, the first sequence can be mapped to all symbol resources included in the time-domain resource of the low-power signal. All symbol resources.
  • the starting position of the additional time resource may be the starting position of the symbol resource
  • the starting position of the first first symbol in at least one first symbol may be the end position of the additional time resource
  • at least The end position of the last first symbol in a first symbol may be the end position of the symbol resource.
  • the additional time resource may be a portion of the length of the additional time resource that each symbol resource lasts from the beginning.
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources, each of the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • the terminal can determine the local sequence for sequence autocorrelation testing, thereby By detecting the first sequence in the low-power signal through the local sequence, the low-power signal can be determined through the first sequence, thereby improving the accuracy of the terminal in detecting the low-power signal.
  • the time domain mapping method of the first sequence can be determined relatively accurately, and the sequence autocorrelation test can be performed based on the time domain mapping method. Improve the accuracy of terminal detection of low-power signals.
  • 802.11ba uses the 802.11OFDM signal generation structure to obtain 2us and 4us OOK symbols.
  • the ASK signal can also be generated based on the OFDM signal generation structure of the LTE or NR transmitter.
  • An OFDM symbol in LTE is 66.67us
  • NR contains multiple OFDM symbols of various lengths. Considering the rate of flexibly supporting low-power received signals, it is not suitable to always fix the length of one symbol of the low-power wake-up signal to the length or half the length of an OFDM symbol in LTE or NR.
  • the cyclic prefix can easily cause the symbol detection of the low-power wake-up signal to fail.
  • low-power signals can be generated by reusing the OFDM signal generation structure. After generating the signal in the frequency domain, the signal is transformed into the time domain through inverse Fourier transformation to obtain an amplitude keying (ASK) signal.
  • ASK amplitude keying
  • the advantage is that it does not additionally increase the complexity of the sending end in the mobile communication system in related technologies, and has good system compatibility.
  • CP cyclic prefix
  • the generated cyclic prefix can easily cause low-power signal detection failure.
  • the terminal receives the low-power signal sent by the network-side device through asynchronous communication, so the terminal can only detect the low-power signal through blind detection, so the terminal cannot determine the low-power signal. and the time domain position of the cyclic prefix, the cyclic prefix cannot be removed in advance.
  • the embodiment of the present application can more accurately determine the time domain mapping method of the first sequence through the time domain resource mapping information of the first sequence in the low-power signal.
  • the mapping information on additional time resources can improve the accuracy of the terminal in detecting low-power signals.
  • the terminal obtains the first information; the terminal determines the time domain resource mapping information of the first sequence in the low power consumption signal based on the first information; wherein the time domain resource mapping information is used to indicate : The mapping method in which the first sequence is mapped on the time domain resources of the low-power signal.
  • the time-domain resources of the low-power signal include multiple symbol resources. Each symbol resource in the multiple symbol resources Includes additional time resources and at least one first symbol. In this way, through the time domain resource mapping information of the first sequence in the low-power signal, the time-domain mapping method of the first sequence can be determined.
  • sequence autocorrelation can be performed based on the determined time-domain mapping method. inspection, thereby improving the accuracy of terminal detection of low-power signals
  • the first information includes at least one of the following:
  • the first information may be used to indicate time domain resource mapping information.
  • the first information may explicitly indicate time domain resource mapping information, or the first information may indicate time domain resource mapping information implicitly.
  • the first information may be used to indicate the first sequence.
  • the first information may explicitly indicate the first sequence, or the first information may indicate the first sequence implicitly.
  • the first information may include time domain resource mapping information.
  • the first information may include a first sequence.
  • the length of the additional time resource can be referred to as the additional time resource length
  • the length of the symbol resource can be referred to as is the symbol resource length
  • the length of the first symbol may be referred to as the first symbol length for short.
  • the unit of the time domain resource length of the low-power signal can be any one of OFDM symbols, time slots, subframes, microseconds, milliseconds, and seconds.
  • the unit of the length of the additional time resource can be any one of OFDM symbols, time slots, subframes, microseconds, milliseconds, and seconds.
  • the length unit of the symbol resource can be any one of OFDM symbols, time slots, subframes, microseconds, milliseconds, and seconds.
  • the unit of the length of the first symbol can be any one of OFDM symbols, time slots, subframes, microseconds, milliseconds, and seconds.
  • the mapping manner in which the first sequence is mapped on the time domain resource of the low power consumption signal includes: mapping the first sequence to a first part of the time domain resource of the low power consumption signal, so The first part of resources includes at least two first symbols in the time domain resources of the low-power signal.
  • the time domain resource mapping information is used to indicate that the first sequence is mapped to a first part of resources, and the first part of resources includes at least two of the time domain resources of the low power signal. Describe the first symbol.
  • the time domain resource mapping information may explicitly indicate or implicitly indicate that the first sequence is mapped to a first part of resources, and the first part of resources includes at least two of the time domain resources of the low power consumption signal. the first symbol.
  • the time domain resource mapping information may indicate that the resource mapping format is the first format. In the case where the resource mapping format is the first format, the first sequence is mapped to the first part of the resource, and the first part of the resource includes the low At least two of the first symbols in the time domain resource of the power consumption signal.
  • the time domain resource mapping information may be used to indicate that the first sequence is mapped to a first part of resources, and the first part of resources includes all first resources in the time domain resources of the low power signal. symbol. Therefore, the low-power signal can be detected based on the time domain resource mapping information of the entire sequence of the low-power signal, which can further improve the accuracy of the terminal in detecting the low-power signal.
  • the time domain resource mapping method of the first sequence when the time domain resource mapping information indicates that the resource mapping format is the first format, includes: the time domain resources mapped to the low power consumption signal in the first sequence include All symbol resources except the additional time resources.
  • the time domain resource mapping information is used to indicate that the first sequence is mapped to a first part of resources, and the first part of resources includes at least two of the time domain resources of the low power consumption signal.
  • the first symbol in this way, the mapping information of the first sequence to the additional time resource is redundant information, so that when performing the sequence correlation test for low-power signal detection, this part of the redundant information can be removed and the sequence can be improved.
  • the accuracy of the correlation test can improve the accuracy of the terminal in detecting low-power signals.
  • the first part of resources includes: resources other than the additional time resources among all symbol resources included in the time domain resources of the low-power signal.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low power consumption signal includes: mapping the first sequence to the second part of the time domain resource of the low power consumption signal,
  • the second part of resources includes at least one of the symbol resources in the time domain resources of the low-power signal.
  • the time domain resource mapping information is used to indicate that the first sequence is mapped to a second part of resources, and the second part of resources includes at least one of the time domain resources of the low power consumption signal.
  • the symbol resource is used to indicate that the first sequence is mapped to a second part of resources, and the second part of resources includes at least one of the time domain resources of the low power consumption signal.
  • the time domain resource mapping information may explicitly indicate or implicitly indicate that the first sequence is mapped to a second part of resources, and the second part of resources includes at least one of the time domain resources of the low power consumption signal.
  • the time domain resource mapping information may indicate that the resource mapping format is the second format. In the case where the resource mapping format is the second format, the first sequence is mapped to a second part of the resource, and the second part of the resource includes the at least one of the symbol resources in the time domain resources of the low-power signal.
  • the time domain resource mapping information is used to indicate that the first sequence is mapped to a second part of resources, and the second part of resources includes all symbols in the time domain resources of the low power signal. resource. Therefore, the low-power signal can be detected based on the time domain resource mapping information of the entire sequence of the low-power signal, which can further improve the accuracy of the terminal in detecting the low-power signal.
  • the time domain resource mapping method of the first sequence when the time domain resource mapping information indicates that the resource mapping format is the second format, the time domain resource mapping method of the first sequence includes: the time domain resources mapped to the low power consumption signal in the first sequence include All symbol resources.
  • the time domain resource mapping information is used to indicate that the first sequence is mapped to a second part of resources, and the second part of resources includes at least one of the time domain resources of the low power signal.
  • the mapping information of the first sequence to the additional time resource is useful information, so that when performing the sequence correlation test for low-power signal detection, this part of useful information can be retained and the sequence correlation can be improved. The accuracy of the test can be improved, thereby improving the accuracy of the terminal in detecting low-power signals.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies one of the first sequence elements. Symbol length time domain resource.
  • the time domain resource mapping information may explicitly indicate or implicitly indicate that the first sequence includes at least one sequence element, and each of the sequence elements occupies one time domain resource of the length of the first symbol.
  • the time domain resource mapping information may indicate that the resource mapping format is the first format.
  • the resource mapping format is the first format
  • the first sequence includes at least one sequence element, and each sequence element occupies one of the sequence elements.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each of the sequence elements occupies one of the first sequence elements. A time domain resource with a length of one symbol. In this way, through the length of the time domain resource occupied by the sequence element of the first sequence, the terminal can more accurately determine the local sequence used for sequence autocorrelation testing, thereby improving terminal detection and low power consumption. Signal accuracy.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: within each of the symbol resources, the first sequence starts from the end position of the additional time resource. Start mapping.
  • the time domain resource mapping information may explicitly indicate or implicitly indicate that within each of the symbol resources, the first sequence is mapped starting from the end position of the additional time resource.
  • the time domain resource mapping information may indicate that the resource mapping format is the first format.
  • the resource mapping format is the first format
  • the first sequence is obtained from the additional time resource. Start mapping from the end position.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: within each of the symbol resources, the first sequence starts from the end of the additional time resource. The position starts mapping. In this way, through the mapping starting position of the first sequence, the terminal can more accurately determine the time domain position of the low-power signal, thereby detecting the low-power signal more accurately.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies no more than the first sequence element.
  • a one-symbol length time domain resource includes: the mapping method for mapping the first sequence on the time domain resource of the low-power signal.
  • the additional time resource length when the additional time resource length includes N first symbol lengths, N first sequence sequence elements are mapped in the additional time resource; the additional time resource length is greater than N-1 first symbol lengths, and less than When the length of the first symbol is N, N-1 or N sequence elements of the first sequence are mapped in the additional time resource; in the part of the symbol resource except the additional time resource, each sequence element of the first sequence occupies one first symbol length of time resources.
  • time domain resource mapping information may explicitly indicate or implicitly indicate that the first sequence includes at least one sequence element, and each of the sequence elements occupies time domain resources that are no greater than the length of the first symbol.
  • the time domain resource mapping information may indicate that the resource mapping format is the second format. In the case where the resource mapping format is the second format, the first sequence includes at least one sequence element, and each sequence element occupies no more than The time domain resource of the length of the first symbol.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies no more than the In this way, through the length of the time domain resources occupied by the sequence elements of the first sequence, the terminal can more accurately determine the local sequence used for sequence autocorrelation testing, thereby improving the low power of terminal detection. signal consumption accuracy.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: within each of the symbol resources, the first sequence starts from the starting position of the symbol resource. Start mapping.
  • the time domain resource mapping information may explicitly indicate or implicitly indicate that within each symbol resource, the first sequence is mapped starting from the starting position of the symbol resource.
  • the time domain resource mapping information may indicate that the resource mapping format is the second format. In the case where the resource mapping format is the second format, within each of the symbol resources, the first sequence is from the symbol resource. Start mapping from the starting position.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: in each of the symbol resources, the first sequence starts from the beginning of the symbol resource. The position starts mapping. In this way, through the mapping starting position of the first sequence, the terminal can more accurately determine the time domain position of the low-power signal, thereby detecting the low-power signal more accurately.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence is sequentially mapped from the sequence start position to the sequence end position according to the sequence of the low-power signal. Time sequence mapping of time domain resources; or,
  • the mapping method in which the first sequence is mapped on the time domain resource of the low power consumption signal includes: the first sequence is sequentially mapped from the end position of the sequence to the start position of the sequence according to the time domain resource of the low power consumption signal. Chronological mapping.
  • the first sequence is mapped from the sequence starting position to the sequence end position in order according to the time sequence of the time domain resources of the low-power signal, which may mean that the first sequence is mapped in sequence from left to right according to the time sequence of the time domain resources of the low-power signal.
  • the time sequence of the time domain resources of the low power consumption signal is mapped; the first sequence is mapped in the time sequence of the time domain resources of the low power consumption signal from the sequence end position to the sequence start position, which may refer to the first
  • the sequence is mapped from right to left in chronological order of the time domain resources of the low-power signal.
  • the time domain resource mapping information is used to determine the order in which the first sequence is mapped according to the time sequence of the time domain resources of the low-power signal.
  • the terminal can more accurately determine the local sequence for sequence autocorrelation testing. , thereby improving the accuracy of the terminal in detecting low-power signals.
  • the time domain resource length of the low-power signal is an integer multiple of the symbol resource length.
  • the additional time resource is a continuous time domain resource of a preset length starting from the starting position of the symbol resource.
  • the preset length may be the length of additional time resources.
  • the low-power signal includes a sequence part and a data part, and the sequence part includes the first sequence.
  • the first information is obtained through at least one of the following:
  • the terminal obtains the first information and determines that the resource mapping format indicated by the time domain resource mapping information is the first format
  • the terminal obtains the first sequence, the sequence is represented as S, and the sequence length is: L*M;
  • the terminal obtains additional time resource length: 2.35us;
  • the length of symbol resources obtained by the terminal is: 33.33us+2.35us;
  • the length of the first symbol obtained by the terminal is: 33.33us/M
  • the terminal obtains a first time domain resource that is L symbol resource length, and the first time domain resource is part or all of the time domain resource of the low power signal, and the time domain resource of the low power signal includes multiple symbol resources, Each of the plurality of symbol resources includes an additional time resource and at least one first symbol;
  • the symbol resource length can be obtained explicitly or implicitly.
  • the implicit acquisition method is that the symbol resource length is uniquely related to the additional time resource length.
  • the terminal can determine the symbol resource length through the obtained additional time resource length.
  • the symbol resource length is related to the additional time resource length.
  • Table 2 An example of the relationship between time resource lengths is shown in Table 2:
  • the symbol resource may be an OFDM symbol resource; the first symbol may be an OOK symbol, or an encoded OOK symbol, and an example encoding method is Manchester encoding.
  • the time domain resource mapping method of the first sequence can be as shown in Figure 7, where,
  • the first sequence is mapped to all symbol resources included in the first time domain resource except for the additional time resources;
  • the first sequence is mapped from left to right in the time order of the first time domain resources, or the first sequence is mapped in the time order of the first time domain resources from right to left;
  • each sequence element of the first sequence is mapped from the end position of the additional time resource, and each sequence element occupies a time resource of the length of the first symbol.
  • the method for the terminal to detect the first sequence in the low-power signal is as follows:
  • the terminal generates a first sub-sequence signal and performs sequence autocorrelation on the first sub-sequence signal with the received signal in the time domain.
  • the first sub-sequence signal is generated according to the first sequence and the first information.
  • the first sub-sequence signal is a sequence whose sequence autocorrelation degree with the first sequence is higher than a preset threshold.
  • the preset threshold can be set according to actual needs.
  • the first sub-sequence signal is a signal corresponding to the local sequence.
  • Each subgroup contains M sequence elements. Each sequence element occupies a first symbol length, and L subgroup signals are obtained. The length of each subgroup is (symbol resource Length - additional time resource length);
  • a signal with an additional time resource length is inserted between each two adjacent subgroups, and the signal value is 0 to obtain the first sub-sequence signal.
  • a signal with an additional time resource length is inserted between each two adjacent subgroups, and the signal value is not 0.
  • the kth At the end of the subgroup, a signal with an additional time resource length is copied and inserted between the k-th subgroup and the k-1th subgroup to obtain the first sub-sequence signal.
  • the terminal can determine the additional time resource length, and determine through the time domain resource mapping information that the first sequence does not map useful information in the additional time resource length, that is, the first sequence in each OFDM symbol
  • the mapping information of the cyclic prefix is redundant information.
  • the terminal When the terminal generates the first sub-sequence signal, it inserts 0 or cyclic prefix into the corresponding part of each additional time resource to ensure the correlation between the first sub-sequence and the first sequence, thereby enabling Eliminate the impact of OFDM symbol cyclic prefix.
  • the terminal obtains the first information and determines that the resource mapping format indicated by the time domain resource mapping information is the second format
  • the terminal obtains the first sequence, the sequence is represented as S, and the sequence length is: L*M+L*N or L*M+L*(N-1);
  • the length of the additional time resource obtained by the terminal is 2.35us
  • the length of the symbol resource obtained by the terminal is 33.33us+2.35us
  • the length of the first symbol obtained by the terminal is: 33.33us/M
  • the terminal obtains a first time domain resource with a length of L symbol resources, and the first time domain resource is part or all of the time domain resource of the low power consumption signal.
  • the time domain resource of the low power consumption signal includes multiple symbol resources.
  • Each of the plurality of symbol resources includes an additional time resource and at least one first symbol;
  • the symbol resource length can be obtained explicitly or implicitly.
  • the implicit acquisition method is that the symbol resource length is uniquely related to the additional time resource length.
  • the terminal can determine the symbol resource length through the obtained additional time resource length.
  • the symbol resource length is related to the additional time resource length.
  • Table 3 An example of the relationship between time resource lengths is shown in Table 3:
  • the symbol resource may be an OFDM symbol resource
  • the first symbol may be an OOK symbol, or an encoded OOK symbol.
  • An example encoding method is Manchester encoding.
  • the time domain resource mapping method of the first sequence is as shown in Figure 8, where,
  • the first sequence is mapped to all symbol resources included in the first time domain resource
  • the first sequence is mapped from left to right in the time order of the first time domain resource, or the first sequence is mapped from right to left in the time order of the first time domain resource.
  • the additional time resource length when the additional time resource length includes N first symbol lengths, N first sequence sequence elements are mapped in the additional time resource; the additional time resource length is greater than N-1 first symbol lengths and less than N When the first symbol length is used, N-1 or N sequence elements of the first sequence are mapped in the additional time resource;
  • each sequence element of the first sequence occupies a time resource of the length of the first symbol.
  • the method for the terminal to detect the first sequence in the low-power signal is as follows:
  • the terminal generates a first sub-sequence signal and performs sequence autocorrelation on the first sub-sequence signal with the received signal in the time domain.
  • the first sub-sequence signal is generated based on the first sequence signal and the first information.
  • the first sub-sequence signal is a sequence whose sequence autocorrelation degree with the first sequence is higher than a preset threshold. The preset threshold can be set according to actual needs.
  • the first sub-sequence signal is a signal corresponding to the local sequence.
  • Each subgroup contains M+N or M+N-1 sequence elements.
  • the first N or N-1 sequence elements in each subgroup occupy additional time.
  • Resource length, last M sequence elements, Each sequence element occupies a time resource of the first symbol length to obtain the first sub-sequence signal.
  • the terminal can determine the additional time resource length, and use the time domain resource mapping information to determine the useful information for mapping the first sequence to the additional time resource length, that is, the first sequence is used in each OFDM symbol cycle.
  • the mapping information of the prefix is useful information.
  • the terminal When the terminal generates the first sub-sequence signal, it divides the first sequence signal into L sub-groups in order from left to right. Each sub-group contains M+N or M+N-1 sequences. elements, the first N or N-1 sequence elements in each subgroup occupy an additional time resource length, and the last M elements, each sequence element occupies a time resource of the first symbol length, thereby ensuring that the first sub-sequence signal is consistent with the first symbol length.
  • a sequence of correlations that eliminates the impact of the cyclic prefix of OFDM symbols.
  • two time-domain resource mapping indication methods for low-power signal sequences are provided.
  • the terminal can determine the mapping information of the low-power signal sequence in the OFDM cyclic prefix based on the obtained time-domain resource mapping information, and generate and By sending the local sequence signal corresponding to the sequence, the low-power signal can be detected through sequence autocorrelation, thereby eliminating the impact of the cyclic prefix on low-power signal detection, and effectively improving the reliability of low-power signal detection.
  • the execution subject may be an information determination device.
  • an information determination device performing an information determination method is used as an example to illustrate the information determination device provided by the embodiments of this application.
  • Figure 9 is a structural diagram of an information determination device provided by an embodiment of the present application.
  • the terminal includes the information determination device.
  • the information determination device 200 includes:
  • Obtaining module 201 is used to obtain the first information
  • Determining module 202 configured to determine the time domain resource mapping information of the first sequence in the low-power signal based on the first information
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources.
  • each symbol resource among the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • the first information includes at least one of the following:
  • the mapping manner in which the first sequence is mapped on the time domain resource of the low power consumption signal includes: mapping the first sequence to a first part of the time domain resource of the low power consumption signal, so The first part of resources includes at least two first symbols in the time domain resources of the low-power signal.
  • the first part of resources includes: resources other than the additional time resources among all symbol resources included in the time domain resources of the low-power signal.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: the first A sequence is mapped to a second portion of resources of the time domain resources of the low-power signal, and the second portion of resources includes at least one of the symbol resources in the time-domain resources of the low-power signal.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies one of the first sequence elements. Symbol length time domain resource.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: within each of the symbol resources, the first sequence starts from the end position of the additional time resource. Start mapping.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies no more than the first sequence element.
  • a one-symbol length time domain resource includes: the mapping method for mapping the first sequence on the time domain resource of the low-power signal.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: within each of the symbol resources, the first sequence starts from the starting position of the symbol resource. Start mapping.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence is sequentially mapped from the sequence start position to the sequence end position according to the sequence of the low-power signal. Time sequence mapping of time domain resources; or,
  • the mapping method in which the first sequence is mapped on the time domain resource of the low power consumption signal includes: the first sequence is sequentially mapped from the end position of the sequence to the start position of the sequence according to the time domain resource of the low power consumption signal. Chronological mapping.
  • the time domain resource length of the low-power signal is an integer multiple of the symbol resource length.
  • the additional time resource is a continuous time domain resource of a preset length starting from the starting position of the symbol resource.
  • the low-power signal includes a sequence part and a data part, and the sequence part includes the first sequence.
  • the first information is obtained through at least one of the following:
  • the information determination device in the embodiment of the present application includes: an acquisition module acquires the first information; and the determination module determines the time domain resource mapping information of the first sequence in the low-power signal based on the first information. In this way, through the time domain resource mapping information of the first sequence in the low-power signal, the time-domain mapping method of the first sequence can be determined relatively accurately, thereby improving the accuracy of the terminal in detecting the low-power signal.
  • the information determining device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the information determination device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 6 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 300, which includes a processor 301 and a memory 302.
  • the memory 302 stores programs or instructions that can be run on the processor 301, such as , when the communication device 300 is a terminal, when the program or instruction is executed by the processor 301, each step of the above information determination method embodiment is implemented, and the same technical effect can be achieved.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface, wherein the processor is configured to obtain first information; the processor is further configured to determine a third component in a low-power signal based on the first information.
  • a sequence of time domain resource mapping information corresponds to the above-mentioned information determination method embodiment.
  • Each implementation process and implementation manner of the above-mentioned information determination method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 400 includes but is not limited to: a radio frequency unit 401, a network module 402, an audio output unit 403, an input unit 404, a sensor 405, a display unit 406, a user input unit 407, an interface unit 408, a memory 409, a processor 410, etc. At least some parts.
  • the terminal 400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 410 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 404 may include a graphics processing unit (Graphics Processing Unit, GPU) 4041 and a microphone 4042.
  • the graphics processor 4041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 406 may include a display panel 4061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 407 includes a touch panel 4071 and at least one of other input devices 4072 .
  • Touch panel 4 071 also known as touch screen.
  • the touch panel 4071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 4072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 401 after receiving downlink data from the network side device, the radio frequency unit 401 can transmit it to the processor 410 for processing; in addition, the radio frequency unit 401 can send uplink data to the network side device.
  • the radio frequency unit 401 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 409 may be used to store software programs or instructions as well as various data.
  • the memory 409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 409 may include volatile memory or nonvolatile memory, or memory 409 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM) ), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 410 may include one or more processing units; optionally, the processor 410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 410.
  • the processor 410 is used to obtain the first information
  • the processor 410 is further configured to determine the time domain resource mapping information of the first sequence in the low-power signal based on the first information;
  • the time domain resource mapping information is used to indicate: the mapping method of the first sequence on the time domain resource of the low power consumption signal, and the time domain resource of the low power consumption signal includes multiple symbol resources.
  • each symbol resource among the plurality of symbol resources includes an additional time resource and at least one first symbol.
  • the first information includes at least one of the following:
  • the mapping manner in which the first sequence is mapped on the time domain resource of the low power consumption signal includes: mapping the first sequence to a first part of the time domain resource of the low power consumption signal, so The first part of resources includes at least two first symbols in the time domain resources of the low-power signal.
  • the first part of resources includes: resources other than the additional time resources among all symbol resources included in the time domain resources of the low-power signal.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low power consumption signal includes: mapping the first sequence to the second part of the time domain resource of the low power consumption signal,
  • the second part of resources includes at least one of the symbol resources in the time domain resources of the low-power signal.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies one The time domain resource of the length of the first symbol.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: in each Within the symbol resource, the first sequence is mapped starting from the end position of the additional time resource.
  • the mapping method for mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence includes at least one sequence element, and each sequence element occupies no more than the first sequence element.
  • a one-symbol length time domain resource includes: the mapping method for mapping the first sequence on the time domain resource of the low-power signal.
  • mapping the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: within each of the symbol resources, the first sequence starts from the starting position of the symbol resource. Start mapping.
  • the mapping method of mapping the first sequence on the time domain resource of the low-power signal includes: the first sequence is sequentially mapped from the sequence start position to the sequence end position according to the sequence of the low-power signal. Time sequence mapping of time domain resources; or,
  • the mapping method in which the first sequence is mapped on the time domain resource of the low power consumption signal includes: the first sequence is sequentially mapped from the end position of the sequence to the start position of the sequence according to the time domain resource of the low power consumption signal. Chronological mapping.
  • the time domain resource length of the low-power signal is an integer multiple of the symbol resource length.
  • the additional time resource is a continuous time domain resource of a preset length starting from the starting position of the symbol resource.
  • the low-power signal includes a sequence part and a data part, and the sequence part includes the first sequence.
  • the first information is obtained through at least one of the following:
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned information determination method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium may be non-volatile or non-transient.
  • Readable storage media may include computer-readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disks or optical disks.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above information determination method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above information determination method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • Embodiments of the present application also provide an information determination system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the information determination method as described above.
  • Low power consumption wake-up receiver Wake-up
  • WUR Low power consumption wake-up receiver
  • WUS Low-power wake-up signal
  • Method 1 Determine the link quality by detecting the number of hold signals sent within a period of time
  • RRM Radio resource management
  • Embodiments of the present application also provide a low-power signal received power measurement method, which can solve the problem of poor accuracy in link quality measurement of low-power links.
  • WUR beacon signals are usually sent periodically to transmit time information.
  • the WUR beacon media access control (Medium Access Control, MAC) frame (frame) Type dependent control carries a total of 12 bits of information [5:16] among the 64 bits of the AP's Time Synchronization function (TSF) clock (timer).
  • TSF Time Synchronization function
  • the user's local TSF timer is updated to achieve the purpose of synchronization with the AP.
  • the sending period of WUR beacon and the offset of the sending starting position are indicated by the operation element sent by the AP.
  • the period is the minimum number of TSF time units between two beacon sendings, and the starting position is offset relative to TSF0 Number of TSF time units.
  • carrier sense multiple access Carrier Sense Multiple Access, CSMA
  • CSMA Carrier Sense Multiple Access
  • the WUR beacon signal is also used as a link maintenance signal.
  • the STA When the WUR beacon signal is not received for a period of time, the STA must perform a WUR search or switch to the mode where the main communication module wakes up.
  • the wake-up signal is configured with a DRX cycle, that is, when it wakes up and monitors the wake-up signal according to the Discontinuous Reception (DRX) cycle, the wake-up signal is also used as a link maintenance signal.
  • the AP can send WUR beacon is used as a link maintenance signal. Among them, the time when the link hold signal is not received is determined by the user implementation.
  • SS-RSRP Search Space Reference Signal Received Power
  • SS-RSRQ Search Space Reference Signal Received Quality
  • M1 the value range of M1 is as follows: if the SMTC period is greater than 20ms and the DRX period is less than or equal to, then M1 is equal to 2, otherwise M1 is equal to 1.
  • the terminal determines whether the cell selection criterion S is satisfied based on the measurement results. When there are N consecutive DRX cycles and the terminal's measurement results in the serving cell do not satisfy the S criterion, the terminal starts measurement of adjacent cells.
  • the low-power signal received power measurement method includes:
  • Step 1201 The terminal receives the reference signal within the time unit set
  • Step 1202 The terminal determines the first received power according to the power of the reference signal on each time unit in the time unit set;
  • the time unit set includes at least one time unit carrying the reference signal.
  • the above-mentioned reference signal can be a low-power signal, or a part of the low-power signal.
  • the reference signal is part of the target low-power signal
  • the other part of the low-power signal can be Include sequences and/or data.
  • the reference signal at least includes one or more sequences of low-power signals, so that the terminal can detect the reference signal based on the sequence, thereby determining the value of the reference signal at each time unit. power.
  • the above set of time units includes at least two of the time units that are continuous in the time domain.
  • the length of the time units included in the time unit set and/or the number of time units included in the time unit set is determined by network device configuration or protocol.
  • the length of the time unit set may be configured by the network device or agreed by the protocol.
  • the unit of the time length of the time unit may be microseconds (us), milliseconds (ms), seconds (s) or orthogonal frequency division multiplex (OFDM) symbols.
  • the time unit set carrying the reference signal may be determined, or the time unit set may be obtained before the reference signal is detected. Then the power of the reference signal on each time unit in the time unit set may be detected and obtained, and the first received power may be determined based on the power of the reference signal on each of the time units.
  • the first received power determined based on one of the time unit sets can be understood as the received power obtained by measuring a reference signal. That is to say, the first received power may represent the received power obtained by performing one measurement based on one of the time unit sets. In this way, the first received power is determined based on the received power of the reference signal on at least one time unit, and the link quality is determined based on the first received power.
  • Link quality measurement can be achieved without resorting to a Fast Fourier Transform (FFT) module. That is, only a low-power receiver is needed to perform link quality measurements without waking up the main receiver.
  • FFT Fast Fourier Transform
  • the terminal can determine the low-power link quality based on the first received power of the reference signal.
  • the quality of the power consumption link does not meet the preset conditions (that is, it does not meet the requirements)
  • triggering the wake-up of the main communication receiver based on the low-power consumption link quality can effectively ensure the reliability of communication. sex.
  • the terminal can correctly detect and demodulate the low-power wake-up signal, thereby triggering the wake-up communication receiver based on the low-power wake-up signal to reduce the terminal's power consumption.
  • the terminal receives a reference signal within a time unit set; the terminal determines the first received power according to the power of the reference signal on each time unit in the time unit set; wherein the time unit set includes at least A time unit carrying the reference signal. Since there is a corresponding relationship between received power and low-power link quality, embodiments of the present application can determine the low-power link quality based on the received power of the reference signal, thereby improving the accuracy of low-power link quality measurement.
  • the terminal determines the first received power according to the power of the reference signal on each time unit in the time unit set including:
  • the terminal linearly averages the power of the reference signals on all time units in the time unit set according to the power of the reference signal on each time unit in the time unit set to obtain the first received power.
  • the power distribution sum of the reference signal on all time units can be first calculated, and then the sum is divided by the number of time units to obtain the first received power, that is, the reception of one reference signal measurement. power.
  • the first received power that is, the reception of one reference signal measurement. power.
  • other calculation methods can also be used, which are not further limited here.
  • the method before the terminal determines the first received power based on the power of the reference signal on each time unit in the time unit set, the method includes any of the following:
  • the terminal determines the starting time domain position and the ending time domain position of the time unit set
  • the terminal determines the starting time domain position and length of the time unit set
  • the terminal determines the end time domain position and length of the time unit set.
  • the length of the above-mentioned time unit set may be determined based on the number of time units included in the time unit set and the length of the time unit.
  • the starting time domain position and/or the ending time domain position of the time unit set of the reference signal is determined by performing sequence detection in the time domain.
  • the terminal can perform sequence detection in the time domain to determine the time domain position of the above reference signal to obtain a time unit set.
  • the sequence included in the reference signal and/or the frequency domain resource location of the reference signal is configured by the network side device or agreed by the protocol.
  • the low-power consumption signal includes any of the following: a low-power beacon signal and a low-power wake-up signal.
  • the above-mentioned low-power beacon signal can be called a low-power maintenance signal. Since the quality of the low-power link is determined based on the received power of the low-power beacon signal, the quality of the low-power link is When the quality does not meet the requirements, the main communication receiver can be triggered to wake up, which avoids subsequent data transmission failures due to the inability to wake up the main communication receiver, thus improving the reliability of communication.
  • the method further includes:
  • the method further includes:
  • the terminal determines the quality of the low-power link corresponding to the reference signal based on the relationship between the first received power and a preset threshold;
  • the first received power includes at least one of the following:
  • whether the quality of the low-power link meets the requirements can be determined based on the received power of the reference signal within a period of time. For example, in some embodiments, assuming that N first received powers are determined based on a set of time units within a first time domain window, wherein the low power consumption link can be determined based on the received power of a type of low power consumption signal.
  • the quality meets the requirements (for example, the N first received powers include N low-power beacon signal received powers or N low-power wake-up signal received powers), it can also be based on multiple types of low-power signal reception
  • the power determines whether the quality of the low-power link meets the requirements (for example, the N first received powers include N1 low-power beacon signal received powers and N2 low-power wake-up signal received powers, N1 plus N2 equals N).
  • determining the quality of the low-power link corresponding to the reference signal includes at least one of the following:
  • the first time domain window includes at least one of the time unit sets.
  • the first received power is determined based on the power of a reference signal on at least one of the time unit sets.
  • the first received power when a first received power is determined based on the power of the reference signal on at least two time unit sets, the first received power can be obtained by performing a weighted average calculation on at least two second received powers; when a first received power When the received power is based on a second received power, the first received power may be the second received power, and the second received power may be understood as the received power determined based on the power of the reference signal on each time unit in a time unit set.
  • the second received power can be obtained by linearly averaging the power of the reference signals on all time units in the time unit set based on the power of the reference signal on each time unit in the time unit set.
  • the end position of the first time domain window is the end time domain position of the most recently measured time unit set of the reference signal, and the starting position of the first time domain window is It is determined according to the end position and the length of the first time domain window, wherein the length of the first time domain window is predefined by network configuration or protocol.
  • the first received power determines whether the current link quality meets the requirements. In this way, when the link quality does not meet the requirements, corresponding actions can be performed in a timely manner to ensure the reliability of communication.
  • the terminal receives the reference signal and determines whether the quality of the low-power link meets the requirements based on the second received power of the reference signal.
  • the reference signal is part or all of the low-power beacon signal.
  • the low-power beacon signal also includes sequences and/or data.
  • the terminal Before receiving the reference signal, the terminal obtains the time domain monitoring position of the low-power beacon signal, including the time domain starting position and transmission cycle, obtains the reference signal sequence, obtains the time unit set size and the length of the time unit, and obtains all the reference signal The occupied frequency domain resource location.
  • the terminal detects the reference signal based on the time domain listening position of the low-power beacon signal.
  • the detection method is that the terminal locally generates a first secondary reference signal sequence.
  • the first secondary reference signal sequence is the same as the reference signal sequence.
  • the terminal uses the first secondary reference signal sequence.
  • the reference signal sequence and the received signal are subjected to sliding autocorrelation processing in the time domain. When the autocorrelation output meets the preset criteria, it is judged as successful detection of the reference signal.
  • the preset criteria are predefined through network side device configuration or protocol.
  • the terminal After the terminal successfully detects the reference signal, it can determine the specific time domain position of the reference signal based on the peak position obtained by autocorrelation processing, that is, determine the starting position and end position of the time unit set, and the terminal calculates the time unit of each time unit in the time unit set.
  • the power distribution of the reference signal is summed, and a linear average is taken to obtain the second received power of the reference signal.
  • the terminal can also take a weighted average of the second received power calculated from multiple consecutively received reference signals to obtain a weighted average received power.
  • the weighting coefficient can be configured by the network side device or predefined by the protocol.
  • the method for the terminal to determine the link quality based on the second received power of the reference signal is as follows:
  • the terminal counts the number of times the first received power (i.e., the second received power or the weighted average received power of the reference signal) is greater than or equal to the preset threshold within the first time domain window, and compares it with M. When the first received power is greater than or equal to When the number of preset thresholds is less than M, it is judged that the link quality does not meet the requirements, and M is configured or predefined by the network side device.
  • the first received power i.e., the second received power or the weighted average received power of the reference signal
  • the terminal counts the number of times the first received power (i.e., the second received power of the reference signal or the weighted average received power after weighted average) is less than the preset threshold in the first time domain window, and compares it with N. When the target received power is greater than N It is judged that the low-power link quality does not meet the requirements.
  • N is configured or predefined by the network side device.
  • the length L of the first time domain window is configured or predefined by the network side device, and the end position of the first time domain window is the latest reference signal measurement time position (that is, the end time domain position of the above-mentioned time unit set) , the starting position of the first time domain window is based on the ending position minus a time offset of L.
  • the terminal receives reference signal 1 and reference signal 2, and determines whether the low power consumption link is satisfied based on the second received power of reference signal 1 and the second received power of reference signal 2. Whether the quality meets the requirements.
  • the reference signal 1 is part or all of the low-power beacon signal. When it is part of the low-power beacon signal, the low-power beacon signal also includes sequences and/or data.
  • Reference signal 2 is part or all of the low-power wake-up signal. When it is part of the low-power wake-up signal, the low-power wake-up signal also includes sequences and/or data.
  • the terminal Before receiving the reference signal, the terminal obtains the time domain listening position of the low-power beacon signal and/or the low-power wake-up signal, including the time domain starting position and transmission cycle, obtains the reference signal sequence, and obtains the time unit set size and time unit The length of the reference signal is used to obtain the occupied frequency domain resource position of the reference signal.
  • the terminal detects reference signals 1 and/or 2 based on the time domain listening position of the low-power beacon signal and/or the low-power wake-up signal.
  • the detection method is: the terminal locally generates a first secondary reference signal sequence.
  • the first secondary reference The signal sequence is the same as the reference signal sequence.
  • the terminal performs sliding autocorrelation processing on the first secondary reference signal sequence and the received signal in the time domain. When the autocorrelation output meets the preset criteria, it is judged as successfully detecting the reference signal.
  • the preset Criteria are predefined via network configuration or protocol.
  • the terminal After the terminal successfully detects the reference signal, it can determine the specific time domain position of the reference signal based on the peak position obtained by autocorrelation processing, that is, determine the starting position and end position of the time unit set, and the terminal calculates the time unit of each time unit in the time unit set. The sum of the power distributions and a linear average are taken to obtain the second received power of the reference signal. Further, the terminal can also take a weighted average of the second received power calculated from multiple consecutively received reference signals to obtain a weighted average received power.
  • the weighting coefficient can be configured by the network side device or predefined by the protocol.
  • the method for the terminal to judge the link quality based on the received power of the reference signal is as follows:
  • the terminal counts the number of times the first received power (i.e., the second received power or weighted average received power of reference signal 1 and/or reference signal 2) is greater than or equal to the preset threshold within the first time domain window, and compares it with M. When When the number of times the first received power is greater than or equal to the preset threshold is less than M, it is determined that the link quality does not meet the requirements, and M is configured or predefined by the network side device.
  • the terminal counts the number of times the first received power (ie, the second received power or weighted average received power of reference signal 1 and/or reference signal 2) is less than the preset threshold within the first time domain window, and compares it with N. When the first If the received power is greater than N times, it is judged that the low-power link quality does not meet the requirements.
  • N is configured or predefined by the network side device.
  • the length L of the first time domain window is configured or predefined by the network side device, and the end position of the first time domain window is the latest reference signal measurement time position (that is, the end time domain position of the above time unit set) , the starting position of the first time domain window is based on the ending position minus a time offset of L.
  • the execution subject may be a low-power signal receiving power measurement device.
  • a low-power signal receiving power measuring device performing a low-power signal receiving power measurement method is used as an example to illustrate the low-power signal receiving power measuring device provided by the embodiment of the present application.
  • an embodiment of the present application also provides a low-power signal received power measurement device.
  • the low-power signal received power measurement device 1500 includes:
  • the receiving module 1501 is used to receive reference signals within a time unit set
  • the first determination module 1502 is configured to determine the first received power according to the power of the reference signal on each time unit in the time unit set;
  • the time unit set includes at least one time unit carrying the reference signal.
  • the first determining module 1502 is specifically configured to: according to each time unit in the time unit set The power of the reference signal on all time units in the time unit set is linearly averaged to obtain the first received power.
  • the set of time units includes at least two of the time units that are continuous in the time domain.
  • the length of the time units included in the time unit set and/or the number of time units included in the time unit set is determined by network device configuration or protocol.
  • the first determination module 1501 is also used to perform any of the following:
  • the starting time domain position and/or the ending time domain position of the time unit set of the reference signal is determined by performing sequence detection in the time domain.
  • the sequence included in the reference signal and/or the frequency domain resource location of the reference signal is configured by the network side device or agreed by the protocol.
  • the reference signal includes any one of the following: at least part of a low-power beacon signal and at least part of a low-power wake-up signal.
  • the low-power signal receiving power measurement device 1500 further includes:
  • the terminal determines the quality of the low-power link corresponding to the reference signal based on the relationship between the first received power and a preset threshold;
  • the first received power includes at least one of the following:
  • the second determination module is specifically configured to perform at least one of the following:
  • the first time domain window includes at least one of the time unit sets.
  • the end position of the first time domain window is the end time domain position of the most recently measured time unit set of the reference signal, and the starting position of the first time domain window is based on the end position and The length of the first time domain window is determined, wherein the length of the first time domain window is predefined by network configuration or protocol.
  • the first received power is determined based on the power of a reference signal on at least one of the time unit sets.
  • the low-power signal receiving power measurement device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., The embodiments of this application are not specifically limited.
  • the low-power signal receiving power measurement device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 12 and achieve the same technical effect. To avoid duplication, it will not be described again here.
  • another communication device 1600 provided by this embodiment of the application includes a processor 1601 and a memory 1602.
  • the memory 1602 stores programs or instructions that can be run on the processor 1601.
  • the steps of the low-power signal receiving power measurement method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the communication interface is configured to receive a reference signal within a time unit set; the processor is configured to determine based on the power of the reference signal on each time unit in the time unit set. The first received power; wherein the set of time units includes at least one time unit carrying the reference signal.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 17 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1700 includes but is not limited to: a radio frequency unit 1701, a network module 1702, an audio output unit 1703, an input unit 1704, a sensor 1705, a display unit 1706, a user input unit 1707, an interface unit 1708, a memory 1709, a processor 1710, etc. At least some parts.
  • the terminal 1700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1704 may include a graphics processing unit (Graphics Processing Unit, GPU) 17041 and a microphone 17042.
  • the graphics processor 17041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1706 may include a display panel 17061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1707 includes a touch panel 17071 and at least one of other input devices 17072 . Touch panel 17071, also known as touch screen.
  • the touch panel 17071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 17072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1701 after receiving downlink data from the network side device, the radio frequency unit 1701 can transmit it to the processor 1710 for processing; in addition, the radio frequency unit 1701 can send uplink data to the network side device.
  • the radio frequency unit 1701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1709 may be used to store software programs or instructions as well as various data.
  • the memory 1709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • Memory 1709 may include volatile memory or non-volatile memory, or memory 1709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 1710 may include one or more processing units; optionally, the processor 1710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1710.
  • the radio frequency unit 1701 is used to receive reference signals within a time unit set;
  • the processor 1710 is configured to determine the first received power according to the power of the reference signal on each time unit in the time unit set;
  • the time unit set includes at least one time unit carrying the reference signal.
  • a terminal receives a reference signal within a time unit set; the terminal determines the first received power according to the power of the reference signal on each time unit in the time unit set; wherein the time unit set includes at least A time unit carrying the reference signal. Since the received power has a corresponding relationship with the low-power link quality, embodiments of the present application can determine the low-power link quality based on the received power of the reference signal, thereby improving the accuracy of low-power link quality measurement.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • a program or instructions stored on the readable storage medium.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium may be non-volatile or non-transient.
  • Readable storage media may include computer-readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disks or optical disks.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to achieve the above-mentioned low-power signal receiving power.
  • Each process of the measurement method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above-mentioned low-power signal reception.
  • the embodiment of the power measurement method can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide an information determination system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the information determination method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息确定方法、低功耗信号接收功率测量方法、装置及终端,属于通信技术领域,本申请实施例的信息确定方法包括:终端获取第一信息;所述终端基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。

Description

信息确定方法、低功耗信号接收功率测量方法、装置及终端
相关申请的交叉引用
本申请主张在2022年09月08日在中国提交的中国专利申请No.202211098073.X的优先权,以及,本申请主张在2022年09月21日在中国提交的中国专利申请No.202211154176.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息确定方法、低功耗信号接收功率测量方法、装置及终端。
背景技术
新空口(New Radio,NR)引入低功耗信号来降低终端功耗。示例地,低功耗信号包括低功耗唤醒信号,在终端空闲时可以关闭主通信模块/接收机或将其设置成深睡眠状态,仅通过低功耗唤醒模块来监听低功耗唤醒信号,从而实现降低终端功耗的目的。目前,终端通过与网络侧设备之间进行异步通信接收网络侧设备发送的低功耗信号,异步通信下终端检测低功耗信号的准确性较低。
发明内容
本申请实施例提供一种信息确定方法、低功耗信号接收功率测量方法、装置及终端,能够解决终端检测低功耗信号的准确性较低的问题。
第一方面,提供了一种信息确定方法,包括:
终端获取第一信息;
所述终端基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
第二方面,提供了一种信息确定装置,包括:
获取模块,用于获取第一信息;
确定模块,用于基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的 方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于获取第一信息;
所述处理器还用于:基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
第五方面,提供了一种信息确定系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的信息确定方法的步骤。
第六方面,提供了一种低功耗信号接收功率测量方法,包括:
终端在时间单元集合内接收参考信号;
所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;
其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
第七方面,提供了一种低功耗信号接收功率测量装置,包括:
接收模块,用于在时间单元集合内接收参考信号;
第一确定模块,用于根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率,所述第一接收功率表示基于所述时间单元集合执行一次测量得到的接收功率;
其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
第八方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第九方面,提供了一种终端,包括处理器及通信接口,其中,通信接口用于在时间单元集合内接收参考信号;处理器用于根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第六方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第六方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第六方面所述的方法的步骤。
本申请实施例中,终端获取第一信息;所述终端基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;其中,所述时域资源映射信息用于指示:所述第一序列 在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。这样,通过低功耗信号中的第一序列的时域资源映射信息,能够确定第一序列的时域映射方式,在检测低功耗信号时,能够依据确定的时域映射方式进行序列自相关检验,从而能够提高终端检测低功耗信号的准确性。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是相关技术中的OFDM信号时隙示意图;
图3是相关技术中的802.11ba唤醒信号的PPDU格式示意图;
图4是相关技术中的802.11ba 2us OOK符号获取的流程示意图;
图5是相关技术中的802.11ba 4us OOK符号获取的流程示意图;
图6是本申请实施例提供的一种信息确定方法的流程图;
图7是本申请实施例提供的一种时域资源映射的示意图之一;
图8是本申请实施例提供的一种时域资源映射的示意图之二;
图9是本申请实施例提供的一种信息确定装置的结构图;
图10是本申请实施例提供的一种通信设备的结构图;
图11是本申请实施例提供的一种终端的结构示意图;
图12是本申请提供的低功耗信号接收功率测量方法的流程图;
图13是本申请提供的低功耗信号接收功率测量方法中的一种测量场景示例图;
图14是本申请提供的低功耗信号接收功率测量方法中的一种测量场景示例图;
图15是本申请提供的低功耗信号接收功率测量装置的结构图;
图16是本申请提供的另一种通信设备的结构图;
图17是本申请提供的另一种终端的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所属领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发 现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了便于更好地理解本申请实施例,下面先介绍以下技术点。
(1)正交频分复用(Orthogonal frequency division multiplex,OFDM)信号帧结构
移动通信系统中,如第5代(5th Generation,5G)NR和第4代(4th Generation,4G)LTE中,时域上的最小时间单元为一个OFDM符号,一个时隙包含14个OFDM符号,每个OFDM符号开始包含一个循环前缀(Cyclic prefix,CP),其中循环前缀是通过截取一个OFDM符号末尾部分长度复制得到的,根据子载波间隔(SCS)不同,每个OFDM符号的长度不同,例如在子载波间隔为15kHz时,一个OFDM符号除CP以外的长度为2048Ts,除第一个OFDM符号外其它OFDM符号包含的CP长度为144Ts,第一个OFDM符号包含的CP长度为160Ts,其中,
Ts=1/(Δfref·Nf,ref)=1/(15·103·2048)=0.033μs。
Δfref为子载波间隔,Nf,ref为一个OFDM符号除CP以外的长度。
不同子载波间隔下的一个OFDM符号长度及正常CP长度请见表1。一个OFDM信号时隙,OFDM符号,及循环前缀的说明如图2所示。
表1
(2)802.11ba唤醒信号时域结构
802.11ba中,唤醒信号的物理层数据单元(physical layer protocal data unit,PPDU)如图3所示,其中前五个域用以实现与802.11已有用户共存,不具备低功耗唤醒功能,802.11ba接收机不对其译码,后两个域分别为低功耗唤醒信号的同步域和数据域,同步域包含两种长度的序列:64us和128us,分别指示数据域的两种数据率:62.5kbs和250kbs。其中同步域和数据域低速率采用长度为2us的OOK符号发送,数据域高速率采用长度为4us的OOK符号发送。2us和4us的OOK符号均通过复用802.11OFDM信号的生成结构生成,如图4和图5所示。图4中,通过确定合适的子载波系数,进行离散傅里叶逆变换 (Inverse Discrete Fourier Transform,IDFT),得到3.2us的时域符号,仅保留第一半的1.6us,符号随机化后,截取结尾的0.4us信号作为循环前缀,得到2us开关键控(On-Off Keying,OOK)符号。图5中,通过确定合适的子载波系数,进行IDFT,得到3.2us的时域符号,符号随机化后,截取结尾的0.8us信号作为循环前缀,得到2us OOK符号。802.11OFDM符号长度为4us,因此可直接复用4us的OFDM信号生成结构得到2us和4us的OOK符号。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信息确定方法、装置及终端进行详细地说明。
参见图6,图6是本申请实施例提供的一种信息确定方法的流程图,如图6所示,信息确定方法包括以下步骤:
步骤101、终端获取第一信息;
步骤102、所述终端基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
其中,时域资源映射信息可以用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式。低功耗信号的时域资源可以包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。所述第一信息可以用于指示所述时域资源映射信息;所述第一序列;所述低功耗信号的时域资源长度;所述附加时间资源的长度;所述符号资源的长度;所述第一符号的长度中的至少一项。
一种实施方式中,时域资源映射信息可以用于指示第一序列的时域资源映射方法。该时域资源映射方法可以包括资源映射格式为第一格式,或者资源映射格式为第二格式。在资源映射格式为第一格式时,第一序列在附加时间资源上未映射有用信息;在资源映射格式为第二格式时,第一序列在附加时间资源上映射有用信息。
一种实施方式中,低功耗信号可以由OFDM信号生成结构生成,OFDM信号生成结构生成的信号的信号帧结构的特点为:在时域上,一个时隙包含多个OFDM符号,每个OFDM符号开始包含一个循环前缀,该循环前缀是通过截取一个OFDM符号末尾部分长度复制得到的。对于OFDM信号生成结构生成的低功耗信号,一个OFDM符号中包括多个低功耗信号符号。低功耗信号符号可以为OOK符号,或经过编码后的OOK符号。在该实施方式中,符号资源可以为OFDM符号,第一符号可以为低功耗信号符号。
一种实施方式中,所述低功耗信号包括循环前缀,该循环前缀通过截取一个符号资源包含的最后一个第一符号末尾的部分长度得到,所述附加时间资源为所述循环前缀的时域资源。
另外,第一序列的时域资源映射信息可以用于检测低功耗信号。通过第一序列的时域 资源映射信息,终端可以生成用于序列自相关检验的本地序列,通过该本地序列进行序列自相关检验,可以检测到与该本地序列的序列自相关程度高于预设阈值的序列,与该本地序列的序列自相关程度高于预设阈值的序列为第一序列,从而可以通过该第一序列判断检测到低功耗信号,该预设阈值可以按照实际需求设置。
需要说明的是,终端可以获取第一序列、低功耗信号的时域资源长度、附加时间资源的长度、符号资源的长度及第一符号的长度。通过所述时域资源映射信息、所述第一序列、所述低功耗信号的时域资源长度、所述附加时间资源的长度、所述符号资源的长度及所述第一符号的长度生成用于序列自相关检验的本地序列,通过该本地序列进行序列自相关检验,以检测低功耗信号。
另外,所述第一序列、所述低功耗信号的时域资源长度、所述附加时间资源的长度、所述符号资源的长度及所述第一符号的长度中的一项或多项可以通过第一信息指示,或者可以由网络预先配置,或者可以由协议预定义。本实施例对获取所述第一序列、所述低功耗信号的时域资源长度、所述附加时间资源的长度、所述符号资源的长度及所述第一符号的长度的方式不进行限定。
另外,低功耗信号的时域资源长度可以为L个符号资源的长度,符号资源的长度与附加时间资源的长度的差值可以为M个第一符号的长度,L及M均为正整数。
一种实施方式中,时域资源映射信息可以用于指示第一序列在附加时间资源上未映射有用信息。在第一序列在附加时间资源上未映射有用信息的情况下,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源包含的全部符号资源中除所述附加时间资源以外的资源。从而在生成用于序列自相关检验的本地序列时,能够依据第一序列的时域映射方式在第一序列的基础上扩展附加时间资源长度的序列,生成本地序列,使得生成的本地序列与第一序列的特征较为匹配,降低了低功耗信号中的循环前缀对序列自相关检验的影响,使得本地序列与第一序列的相关性较强,能够提高终端检测低功耗信号的准确性。
作为一种具体的实施例,时域资源映射信息指示第一序列在附加时间资源上未映射有用信息。第一序列的序列长度为:L*M。终端可以将第一序列按从左到右的顺序分成L个子组,每个子组包含M个序列元素,每个序列元素占用一个第一符号长度,得到L个子组,每个子组映射的时域资源长度为:(符号资源长度-附加时间资源长度)。终端生成本地序列用于自相关检验第一序列时,对于第1个子组至第L个子组,每相邻的两个子组间插入一个附加时间资源长度的信号,信号取值可以均取0,得到用于第一序列自相关检验的本地序列;或者,信号取值可以不为0,对于第1个子组至第L个子组,将第k个子组结尾一个附加时间资源长度的信号复制后插入第k个子组与第k-1个子组间,得到用于第一序列自相关检验的本地序列,k为大于1且小于等于L的整数。
一种实施方式中,时域资源映射信息可以用于指示第一序列在附加时间资源上映射有 用信息。在第一序列在附加时间资源上映射有用信息的情况下,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的,所述第二部分资源包括所述低功耗信号的时域资源中的全部符号资源。从而在生成用于序列自相关检验的本地序列时,能够考虑循环前缀映射到附加时间资源上的是第一序列的非冗余部分,使得生成的本地序列与第一序列的特征较为匹配,降低了低功耗信号中的循环前缀对序列自相关检验的影响,使得本地序列与第一序列的相关性较强,能够提高终端检测低功耗信号的准确性。
作为一种具体的实施例,时域资源映射信息指示第一序列在附加时间资源上映射有用信息。在符号资源内,附加时间资源长度包含N个第一符号长度时,附加时间资源内映射N个第一序列的序列元素;附加时间资源长度大于N-1个第一符号长度,且小于N个第一符号长度时,附加时间资源内映射N-1个或N个第一序列的序列元素。第一序列的序列长度为:L*M+L*N或L*M+L*(N-1)。终端可以将第一序列按从左到右的顺序分成L个子组,每个子组包含M+N或M+N-1个序列元素,每个子组中前N个或N-1个序列元素占用附加时间资源长度的时间资源,每个子组中后M个序列元素,每个序列元素占用一个第一符号长度的时间资源,L及M均为正整数,N为大于1的正整数。
需要说明的是,第一序列可以映射到低功耗信号的时域资源包含的全部符号资源除去附加时间资源以外的部分;或者,第一序列可以映射到低功耗信号的时域资源包含的全部符号资源。
另外,对于每个符号资源,附加时间资源的起始位置可以是符号资源的起始位置,至少一个第一符号中第一个第一符号的起始位置可以是附加时间资源的结束位置,至少一个第一符号中最后一个第一符号的结束位置可以是符号资源的结束位置。
一种实施方式中,附加时间资源可以为每个符号资源自起始持续附加时间资源长度的部分。
需要说明的是,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号,这样,通过第一序列映射的资源,终端能够确定用于序列自相关检验的本地序列,从而通过本地序列检测低功耗信号中的第一序列,能够通过第一序列确定低功耗信号,从而能够提高终端检测低功耗信号的准确性。
本申请实施例中,通过低功耗信号中的第一序列的时域资源映射信息,能够较为准确地确定第一序列的时域映射方式,依据该时域映射方式进行序列自相关检验,能够提高终端检测低功耗信号的准确性。
需要说明的是,802.11ba采用802.11OFDM信号生成结构得到2us和4us OOK符号。相关技术中,移动蜂窝系统引入低功耗唤醒信号时,同样可以基于LTE或NR发送端的OFDM信号生成结构来生成ASK信号,LTE中的一个OFDM符号为66.67us,NR包含多 种长度的OFDM符号,考虑到灵活支持低功耗接收信号的速率,不适于将低功耗唤醒信号的一个符号长度总是固定为LTE或NR中一个OFDM符号的长度或一半长度,当一个OFDM符号长度包含多于2个低功耗唤醒信号符号长度时,循环前缀容易导致低功耗唤醒信号的符号检测失败。
相关技术中,低功耗信号可复用OFDM信号生成结构生成,在频域生成信号后经傅立叶逆变换到时域得到幅度键控(ASK)信号。其优势在于不额外增加相关技术中的移动通信系统中发送端的复杂度,具有很好的系统兼容性。然而,考虑每个OFDM符号前均带有循环前缀(CP),当采用OFDM信号生成结构生成低功耗信号时,产生的循环前缀容易导致低功耗信号检测失败。具体地,因采用简化的接收机结构,终端是通过异步通信接收网络侧设备发送的低功耗信号,从而终端仅能通过盲检测的方式检测低功耗信号,从而终端无法确定低功耗信号及循环前缀的时域位置,无法提前将循环前缀去掉,本申请实施例通过低功耗信号中的第一序列的时域资源映射信息,能够较为准确地确定第一序列的时域映射方式,尤其是在附加时间资源上的映射信息,能够提高终端检测低功耗信号的准确性。
本申请实施例中,终端获取第一信息;所述终端基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。这样,通过低功耗信号中的第一序列的时域资源映射信息,能够确定第一序列的时域映射方式,在检测低功耗信号时,能够依据确定的时域映射方式进行序列自相关检验,从而能够提高终端检测低功耗信号的准确性
可选地,所述第一信息包括如下至少一项:
用于指示所述时域资源映射信息的信息;
用于指示所述第一序列的信息;
用于指示所述低功耗信号的时域资源长度的信息;
用于指示所述附加时间资源的长度的信息;
用于指示所述符号资源的长度的信息;
用于指示所述第一符号的长度的信息。
其中,所述第一信息可以用于指示时域资源映射信息,示例地,第一信息可以显式指示时域资源映射信息,或者第一信息可以隐式指示时域资源映射信息。所述第一信息可以用于指示第一序列,示例地,第一信息可以显式指示第一序列,或者第一信息可以隐式指示第一序列。
一种实施方式中,第一信息可以包括时域资源映射信息。
一种实施方式中,第一信息可以包括第一序列。
另外,附加时间资源的长度可以简称为附加时间资源长度,符号资源的长度可以简称 为符号资源长度,第一符号的长度可以简称为第一符号长度。
需要说明的是,低功耗信号的时域资源长度的单位可以为OFDM符号,时隙,子帧,微秒,毫秒,秒中的任意一个。附加时间资源的长度的单位可以为OFDM符号,时隙,子帧,微秒,毫秒,秒中的任意一个。符号资源的长度的单位可以为OFDM符号,时隙,子帧,微秒,毫秒,秒中的任意一个。第一符号的长度的单位可以为OFDM符号,时隙,子帧,微秒,毫秒,秒中的任意一个。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
一种实施方式中,所述时域资源映射信息用于指示:所述第一序列映射到第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
其中,所述时域资源映射信息可以显式指示或隐式指示:所述第一序列映射到第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。示例地,时域资源映射信息可以指示资源映射格式为第一格式,在资源映射格式为第一格式的情况下,所述第一序列映射到第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
一种实施方式中,所述时域资源映射信息可以用于指示:所述第一序列映射到第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的全部第一符号。从而能够基于低功耗信号的全部序列的时域资源映射信息检测低功耗信号,能够进一步提高终端检测低功耗信号的准确性。
一种实施方式中,在时域资源映射信息指示资源映射格式为第一格式的情况下,第一序列的时域资源映射方法包含:第一序列映射到低功耗信号的时域资源包含的全部符号资源除去附加时间资源以外的部分。
该实施方式中,所述时域资源映射信息用于指示:所述第一序列映射到第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号,这样,第一序列映射到附加时间资源上的映射信息为冗余信息,从而在进行用于低功耗信号检测的序列相关性检验时,能够去除该部分冗余信息,提高序列相关性检验的准确性,从而能够提高终端检测低功耗信号的准确性。
可选地,所述第一部分资源包括:所述低功耗信号的时域资源包含的全部符号资源中除所述附加时间资源以外的资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
一种实施方式中,所述时域资源映射信息用于指示:所述第一序列映射到第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
其中,所述时域资源映射信息可以显式指示或隐式指示:所述第一序列映射到第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。示例地,时域资源映射信息可以指示资源映射格式为第二格式,在资源映射格式为第二格式的情况下,所述第一序列映射到第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
一种实施方式中,所述时域资源映射信息用于指示:所述第一序列映射到第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的全部符号资源。从而能够基于低功耗信号的全部序列的时域资源映射信息检测低功耗信号,能够进一步提高终端检测低功耗信号的准确性。
一种实施方式中,在时域资源映射信息指示资源映射格式为第二格式的情况下,第一序列的时域资源映射方法包含:第一序列映射到低功耗信号的时域资源包含的全部符号资源。
该实施方式中,所述时域资源映射信息用于指示:所述第一序列映射到第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源,这样,第一序列映射到附加时间资源上的映射信息为有用信息,从而在进行用于低功耗信号检测的序列相关性检验时,能够保留该部分有用信息,提高序列相关性检验的准确性,从而能够提高终端检测低功耗信号的准确性。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源。
其中,所述时域资源映射信息可以显式指示或隐式指示:所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源。示例地,时域资源映射信息可以指示资源映射格式为第一格式,在资源映射格式为第一格式的情况下,所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源。
该实施方式中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源,这样,通过第一序列的序列元素占用的时域资源长度,终端能够更为准确地确定用于序列自相关检验的本地序列,从而能够提高终端检测低功耗信号的准确性。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射。
其中,所述时域资源映射信息可以显式指示或隐式指示:在每个所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射。示例地,时域资源映射信息可以指示资源映射格式为第一格式,在资源映射格式为第一格式的情况下,在每个所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射。
该实施方式中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射,这样,通过第一序列的映射起始位置,终端能够更为准确地确定低功耗信号的时域位置,从而更为准确地检测低功耗信号。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源。
其中,在符号资源内,附加时间资源长度包含N个第一符号长度时,附加时间资源内映射N个第一序列的序列元素;附加时间资源长度大于N-1个第一符号长度,且小于N个第一符号长度时,附加时间资源内映射N-1个或N个第一序列的序列元素;符号资源除附加时间资源以外的部分,每个第一序列的序列元素占用一个第一符号长度的时间资源。
另外,所述时域资源映射信息可以显式指示或隐式指示:所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源。示例地,时域资源映射信息可以指示资源映射格式为第二格式,在资源映射格式为第二格式的情况下,所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源。
该实施方式中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源,这样,通过第一序列的序列元素占用的时域资源长度,终端能够更为准确地确定用于序列自相关检验的本地序列,从而能够提高终端检测低功耗信号的准确性。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射。
其中,所述时域资源映射信息可以显式指示或隐式指示:在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射。示例地,时域资源映射信息可以指示资源映射格式为第二格式,在资源映射格式为第二格式的情况下,在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射。
该实施方式中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射,这样,通过第一序列的映射起始位置,终端能够更为准确地确定低功耗信号的时域位置,从而更为准确地检测低功耗信号。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列起始位置至序列结束位置依次按照所述低功耗信号的时域资源的时间先后顺序映射;或者,
所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列结束位置至序列起始位置依次按照所述低功耗信号的时域资源的时间先后顺序映射。
需要说明的是,第一序列从序列起始位置至序列结束位置依次按照所述低功耗信号的时域资源的时间先后顺序映射,可以是指,第一序列由左至右依次按照所述低功耗信号的时域资源的时间先后顺序映射;第一序列从序列结束位置至序列起始位置依次按照所述低功耗信号的时域资源的时间先后顺序映射,可以是指,第一序列由右至左依次按照所述低功耗信号的时域资源的时间先后顺序映射。
该实施方式中,通过时域资源映射信息确定第一序列按照所述低功耗信号的时域资源的时间先后顺序映射的次序,终端能够更为准确地确定用于序列自相关检验的本地序列,从而能够提高终端检测低功耗信号的准确性。
可选地,所述低功耗信号的时域资源长度为整数倍的所述符号资源的长度。
可选地,所述附加时间资源为从所述符号资源的起始位置开始的预设长度的连续时域资源。
其中,该预设长度可以为附加时间资源长度。
可选地,所述低功耗信号包括序列部分和数据部分,所述序列部分包括所述第一序列。
可选地,所述第一信息通过如下至少一项获取:
网络配置;
协议预定义。
下面通过两个具体的实施例对本申请实施例提供的信息确定方法进行说明:
实施例1:
终端获取第一信息,确定时域资源映射信息指示资源映射格式为第一格式;
终端获取第一序列,序列表示为S,序列长度为:L*M;
终端获取附加时间资源长度为:2.35us;
终端获取符号资源长度为:33.33us+2.35us;
终端获取第一符号长度为:33.33us/M
终端获取第一时域资源长度为L个符号资源长度,第一时域资源为低功耗信号的时域资源的一部分或全部,低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号;
其中,符号资源长度可显式获取,或隐式获取,隐式获取方式为符号资源长度与附加时间资源长度唯一关联,终端可通过获取的附加时间资源长度确定符号资源长度,符号资源长度与附加时间资源长度的关联关系可以示例如表2所示:
表2

不失一般性,符号资源可以为OFDM符号资源;第一符号可以为OOK符号,或经过编码后的OOK符号,一个示例编码方式为曼彻斯特编码。
本实施例中,在资源映射格式为第一格式下,第一序列的时域资源映射方法可以如图7所示,其中,
第一序列映射到第一时域资源包含的全部符号资源除去附加时间资源以外的部分;
第一序列由左至右依次按第一时域资源时间先后顺序映射,或第一序列由右至左依次按第一时域资源时间先后顺序映射;
在第一时域资源包含的每个符号资源内,第一序列的每个序列元素自附加时间资源结束位置起映射,每个序列元素占用一个第一符号长度的时间资源。
在本实施例中,根据第一序列的时域资源映射方法,终端检测低功耗信号中的第一序列的方法如下:
终端生成第一副序列信号,将第一副序列信号在时域上与收到的信号进行序列自相关。第一副序列信号根据第一序列,以及第一信息生成。第一副序列信号为与第一序列的序列自相关程度高于预设阈值的序列,该预设阈值可以按照实际需求设置,该第一副序列信号为本地序列对应的信号。
将第一序列按从左到右的顺序分成L个子组,每个子组包含M个序列元素,每个序列元素占用一个第一符号长度,得到L个子组信号,每个子组长度为(符号资源长度-附加时间资源长度);
对于第1个子组至第L个子组,每相邻的两个子组间插入一个附加时间资源长度的信号,且信号取值为0,得到第一副序列信号。
或者在另外一种实施方式中,对于第1个子组至第L个子组,每相邻的两个子组间插入一个附加时间资源长度的信号,且信号取值不为0,例如,将第k个子组结尾一个附加时间资源长度的信号复制后插入第k个子组与第k-1个子组间,得到第一副序列信号。
在本实施例中,通过第一信息,终端可以确定附加时间资源长度,并通过时域资源映射信息确定第一序列在该附加时间资源长度未映射有用信息,即第一序列在每一个OFDM符号循环前缀的映射信息为冗余信息,终端在生成第一副序列信号时,将每一个附加时间资源对应部分插入0或循环前缀,从而保证第一副序列与第一序列的相关性,从而能够消除OFDM符号循环前缀带来的影响。
实施例2:
终端获取第一信息,确定时域资源映射信息指示资源映射格式为第二格式;
终端获取第一序列,序列表示为S,序列长度为:L*M+L*N或L*M+L*(N-1);
终端获取附加时间资源长度为2.35us;
终端获取符号资源长度为33.33us+2.35us;
终端获取第一符号长度为:33.33us/M
终端获取第一时域资源长度为L个符号资源长度,第一时域资源为低功耗信号的时域资源的部分或全部,低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号;
其中,符号资源长度可显式获取,或隐式获取,隐式获取方式为符号资源长度与附加时间资源长度唯一关联,终端可通过获取的附加时间资源长度确定符号资源长度,符号资源长度与附加时间资源长度的关联关系可以示例如表3所示:
表3
不失一般性,符号资源可以为OFDM符号资源,第一符号可以为OOK符号,或经过编码后的OOK符号,一个示例编码方式为曼彻斯特编码。
在本实施例中,在资源映射格式为第二格式下,第一序列的时域资源映射方法如图8所示,其中,
第一序列映射到第一时域资源包含的全部符号资源;
第一序列由左至右依次按第一时域资源时间先后顺序映射,或第一序列由右至左依次按第一时域资源时间先后顺序映射,在第一时域资源包含的每个符号资源内,自符号资源起始位置起映射,每个第一序列的序列元素占用不大于一个第一符号长度的时间资源。具体地:
在符号资源内,附加时间资源长度包含N个第一符号长度时,附加时间资源内映射N个第一序列的序列元素;附加时间资源长度大于N-1个第一符号长度,且小于N个第一符号长度时,附加时间资源内映射N-1个或N个第一序列的序列元素;
符号资源除附加时间资源以外的部分,每个第一序列的序列元素占用一个第一符号长度的时间资源。
在本实施例中,根据第一序列的时域资源映射方法,终端检测低功耗信号中的第一序列的方法如下:
终端生成第一副序列信号,将第一副序列信号在时域上与收到的信号进行序列自相关。第一副序列信号根据第一序列信号,第一信息生成。第一副序列信号为与第一序列的序列自相关程度高于预设阈值的序列,该预设阈值可以按照实际需求设置,该第一副序列信号为本地序列对应的信号。
将第一序列按从左到右的顺序分成L个子组,每个子组包含M+N或M+N-1个序列元素,每个子组中前N个或N-1个序列元素占用附加时间资源长度,后M个序列元素, 每个序列元素占用一个第一符号长度的时间资源,得到第一副序列信号。
在本实施例中,通过第一信息,终端可以确定附加时间资源长度,并通过时域资源映射信息确定第一序列在该附加时间资源长度映射有用信息,即第一序列在每一个OFDM符号循环前缀的映射信息为有用信息,终端在生成第一副序列信号时,将第一序列信号按从左到右的顺序分成L个子组,每个子组包含M+N或M+N-1个序列元素,每个子组中前N个或N-1个序列元素占用附加时间资源长度,后M个元素,每个序列元素占用一个第一符号长度的时间资源,从而保证第一副序列信号与第一序列的相关性,消除OFDM符号循环前缀带来的影响。
在本申请实施例中,提供了两种低功耗信号序列的时域资源映射指示方法,终端可以根据获取的时域资源映射信息确定低功耗信号序列在OFDM循环前缀的映射信息,生成与发送序列对应的本地序列信号,从而可以通过序列自相关检测低功耗信号,进而能够消除掉循环前缀对低功耗信号检测的影响,有效提高低功耗信号检测的可靠性。
本申请实施例提供的信息确定方法,执行主体可以为信息确定装置。本申请实施例中以信息确定装置执行信息确定方法为例,说明本申请实施例提供的信息确定的装置。
请参见图9,图9是本申请实施例提供的一种信息确定装置的结构图,终端包括所述信息确定装置,如图9所示,信息确定装置200包括:
获取模块201,用于获取第一信息;
确定模块202,用于基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
可选地,所述第一信息包括如下至少一项:
用于指示所述时域资源映射信息的信息;
用于指示所述第一序列的信息;
用于指示所述低功耗信号的时域资源长度的信息;
用于指示所述附加时间资源的长度的信息;
用于指示所述符号资源的长度的信息;
用于指示所述第一符号的长度的信息。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
可选地,所述第一部分资源包括:所述低功耗信号的时域资源包含的全部符号资源中除所述附加时间资源以外的资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第 一序列映射至所述低功耗信号的时域资源的第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列起始位置至序列结束位置依次按照所述低功耗信号的时域资源的时间先后顺序映射;或者,
所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列结束位置至序列起始位置依次按照所述低功耗信号的时域资源的时间先后顺序映射。
可选地,所述低功耗信号的时域资源长度为整数倍的所述符号资源的长度。
可选地,所述附加时间资源为从所述符号资源的起始位置开始的预设长度的连续时域资源。
可选地,所述低功耗信号包括序列部分和数据部分,所述序列部分包括所述第一序列。
可选地,所述第一信息通过如下至少一项获取:
网络配置;
协议预定义。
本申请实施例中的信息确定装置包括:获取模块获取第一信息;确定模块基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息。这样,通过低功耗信号中的第一序列的时域资源映射信息,能够较为准确地确定第一序列的时域映射方式,从而能够提高终端检测低功耗信号的准确性。
本申请实施例中的信息确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息确定装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图10所示,本申请实施例还提供一种通信设备300,包括处理器301和存储器302,存储器302上存储有可在所述处理器301上运行的程序或指令,例如,该通信设备300为终端时,该程序或指令被处理器301执行时实现上述信息确定方法实施例的各个步骤,且能达到相同的技术效果。
本申请实施例还提供一种终端,包括处理器及通信接口,其中,所述处理器用于获取第一信息;所述处理器还用于基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息。该终端实施例与上述信息确定方法实施例对应,上述信息确定方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端400包括但不限于:射频单元401、网络模块402、音频输出单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409以及处理器410等中的至少部分部件。
本领域技术人员可以理解,终端400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元404可以包括图形处理单元(Graphics Processing Unit,GPU)4041和麦克风4042,图形处理器4041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元406可包括显示面板4061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板4061。用户输入单元407包括触控面板4071以及其他输入设备4072中的至少一种。触控面板4 071,也称为触摸屏。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元401接收来自网络侧设备的下行数据后,可以传输给处理器410进行处理;另外,射频单元401可以向网络侧设备发送上行数据。通常,射频单元401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器409可用于存储软件程序或指令以及各种数据。存储器409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器409可以包括易失性存储器或非易失性存储器,或者,存储器409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储 器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器409包括但不限于这些和任意其它适合类型的存储器。
处理器410可包括一个或多个处理单元;可选地,处理器410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
其中,处理器410,用于获取第一信息;
处理器410,还用于基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
可选地,所述第一信息包括如下至少一项:
用于指示所述时域资源映射信息的信息;
用于指示所述第一序列的信息;
用于指示所述低功耗信号的时域资源长度的信息;
用于指示所述附加时间资源的长度的信息;
用于指示所述符号资源的长度的信息;
用于指示所述第一符号的长度的信息。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
可选地,所述第一部分资源包括:所述低功耗信号的时域资源包含的全部符号资源中除所述附加时间资源以外的资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
可选地,可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个 所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射。
可选地,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列起始位置至序列结束位置依次按照所述低功耗信号的时域资源的时间先后顺序映射;或者,
所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列结束位置至序列起始位置依次按照所述低功耗信号的时域资源的时间先后顺序映射。
可选地,所述低功耗信号的时域资源长度为整数倍的所述符号资源的长度。
可选地,所述附加时间资源为从所述符号资源的起始位置开始的预设长度的连续时域资源。
可选地,所述低功耗信号包括序列部分和数据部分,所述序列部分包括所述第一序列。
可选地,所述第一信息通过如下至少一项获取:
网络配置;
协议预定义。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述的信息确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,可以是非易失性的,也可以是非瞬态的。可读存储介质可以包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息确定系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的信息确定方法的步骤。
随着通信技术的发展,在移动通信终端引入低功耗(Low power)唤醒接收机(Wake-up  Receiver,WUR),通过检测低功耗唤醒信号(wake-up signal,WUS)来触发唤醒主通信模块。由于移动通信终端的链路状态是变化的,当低功耗链路质量较差时,将导致终端检测低功耗唤醒信号失败。对于链路质量检测通常包括以下两种检测方式:
方式1:通过检测一段时间内发送的保持信号的次数确定链路质量;
方式2:基于同步信号块(Synchronization Signal and PBCH block,SSB)进行无线资源管理(Radio resource management,RRM)测量。
针对方式1,在基于竞争接入的通信场景中,由于在没有接收到保持信号时,无法确定是由于网络侧设备没有发送保持信号还是由于链路质量差所导致的,因此确定链路质量的准确性较差。针对方式2,由于是基于频域资源单元确定参考信号接收功率,无法应用到低功耗接收机对参考信号的接收功率进行计算。因此,相关技术中存在低功耗链路的链路质量测量的准确性较差的问题。
本申请实施例还提供一种低功耗信号接收功率测量方法,能够解决低功耗链路的链路质量测量的准确性较差的问题。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、WUR信标(beacon)信号。
为保持低功耗WUR与接入点(Access Point,AP)间同步,通常采用周期性发送WUR beacon信号来传递时间信息,WUR beacon媒体接入控制(Medium Access Control,MAC)帧(frame)的类型相关控制(type dependent control)携带AP的时间同步功能(Time Synchronization function,TSF)时钟(timer)64比特中的[5:16]共12比特信息,用户收到该12比特信息后,根据定义的时间更新准则,更新用户本地的TSF timer,从而达到与AP同步的目的。WUR beacon的发送周期和发送起始位置的偏移量由AP发送的操作单元(operation element)指示,周期为两次beacon发送间最少的TSF时间单元数,起始位置为相对于TSF0偏移的TSF时间单元数。当发生载波侦听多址访问(Carrier Sense Multiple Access,CSMA)延迟(deferrals),WUR beacon在当前周期会延迟发送,但在后续周期仍按WUR beacon的发送周期和发送起始位置确定的位置发送。
WUR beacon信号还用来做链路保持信号,当一段时间没有收到WUR beacon信号时,STA必须进行WUR搜索或切换到主通信模块醒来的模式。当唤醒信号配置DRX周期时,即按照非连续接收(Discontinuous Reception,DRX)周期醒来监听唤醒信号时,唤醒信号也用来做链路保持信号,在未发送唤醒信号的DRX周期,AP可以发送WUR beacon用来做链路保持信号。其中,未接受到链路保持信号的时间通过用户实现来确定。
二、5G NR空闲态RRM测量。
5G终端处于空闲态时,需对服务小区的搜索空间参考信号接收功率(Search Space Reference Signal Received Power,SS-RSRP)和搜索空间参考信号接收质量(Search Space Reference Signal Received Quality,SS-RSRQ)水平进行测量并评估是否满足小区选择S准则,测量频率为每M1*L1个DRX周期至少一次,测量的时域位置位于同步信号块测量 时序配置(SS/PBCH block measurement time configuration,SMTC)窗口内,M1的取值范围见下:若SMTC周期大于20ms且DRX周期小于或等于,则M1等于2,否则M1等于1。
终端根据测量结果判断是否满足小区选择S准则,当存在连续N个DRX周期,终端在服务小区的测量结果均不满足S准则时,终端启动对相邻小区的测量。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的低功耗信号接收功率测量方法进行详细地说明。
参照图12,本申请实施例提供了一种低功耗信号接收功率测量方法,如图12所示,该低功耗信号接收功率测量方法包括:
步骤1201,终端在时间单元集合内接收参考信号;
步骤1202,所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;
其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
本申请实施例中,上述参考信号可以为低功耗信号,也可以为低功耗信号的一部分信号,当参考信号为目标低功耗信号的一部分信号时,低功耗信号的另一部分信号可以包括序列和/或数据。在一些实施例中,参考信号至少包括低功耗信号的一个或多个序列,以使所述终端可以基于序列检测到所述参考信号,从而确定在每一所述时间单元上的参考信号的功率。
可选地,在一些实施例中,上述时间单元集合包括在时域上连续的至少两个所述时间单元。
可选地,所述时间单元集合所包含的时间单元的长度和/或所述时间单元集合所包含的时间单元的数量由网络设备配置或协议约定。
可选地,所述时间单元集合的长度可以由网络设备配置或协议约定。
其中,时间单元的时间长度的单位可以为微秒(us)、毫秒(ms)、秒(s)或正交频分复用(Orthogonal frequency division multiplex,OFDM)符号。
可选地,在检测到参考信号时,可以确定承载参考信号的时间单元集合,也可以在检测参考信号之前获取时间单元集合。然后可以检测获得在时间单元集合中每一时间单元上的参考信号的功率,并基于在每一所述时间单元的参考信号的功率,确定所述第一接收功率。其中,基于一个所述时间单元集合确定的所述第一接收功率可以理解为一次参考信号的测量获得的接收功率。也就是说所述第一接收功率可以表示基于一个所述时间单元集合执行一次测量得到的接收功率。这样基于至少一个时间单元上参考信号的接收功率来确定第一接收功率,根据第一接收功率确定链路质量,无需借助快速傅立叶变换(Fast Fourier Transform,FFT)模块即可实现链路质量测量,也即仅需要低功耗接收机就可进行链路质量测量,而无需唤醒主接收机。
需要说明的是,终端可以根据参考信号的第一接收功率确定低功耗链路质量,当低功 耗链路质量不满足预设条件(即不满足需求)时,表示终端无法解调低功耗唤醒信号,此时基于低功耗链路质量触发唤醒主通信接收机,可以有效保证通信的可靠性。当低功耗链路质量满足预设条件时,终端可以正确检测并解调低功耗唤醒信号,从而可以根据低功耗唤醒信号触发唤醒通信接收机,以降低终端的电能损耗。
本申请实施例,通过终端在时间单元集合内接收参考信号;所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。由于接收功率与低功耗链路质量具有对应关系,因此,本申请实施例可以基于参考信号的接收功率确定低功耗链路质量,提高了低功耗链路质量测量的准确性。
可选地,在一些实施例中,所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率包括:
所述终端根据所述时间单元集合中每一时间单元上的参考信号的功率,对所述时间单元集合内所有时间单元上的参考信号的功率进行线性平均,得到所述第一接收功率。
本申请实施例中,可以首先计算所有时间单元上的参考信号的功率分布和值,然后基于该和值除以时间单元的数量,从而得到所述第一接收功率,即一次参考信号测量的接收功率。当然在其他实施例中,还可以采用其他计算方式,在此不做进一步地限定。
可选地,在一些实施例中,所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率之前,所述方法包括以下任一项:
所述终端确定所述时间单元集合的起始时域位置和结束时域位置;
所述终端确定所述时间单元集合的起始时域位置和长度;
所述终端确定所述时间单元集合的结束时域位置和长度。
本申请实施例中,上述所述时间单元集合的长度可以基于时间单元集合包含的时间单元的数量和时间单元的长度确定。
可选地,在一些实施例中,所述参考信号的时间单元集合的起始时域位置和/或结束时域位置通过在时域进行序列检测确定。
也就是说,在本申请实施例中,终端可以在时域进行序列检测,从而确定上述参考信号的时域位置,以得到时间单元集合。
可选地,在一些实施例中,所述参考信号所包含的序列和/或所述参考信号的频域资源位置由网络侧设备配置或协议约定。
可选地,在一些实施例中,所述低功耗信号包括以下任一项:低功耗信标信号和低功耗唤醒信号。
本申请实施例中,上述低功耗信标信号可以称之为低功耗保持信号,由于基于低功耗信标信号的接收功率确定低功耗链路的质量,从而在低功耗链路质量不满足需求时,可以触发唤醒主通信接收机,避免了由于无法唤醒主通信接收机导致后续数据传输失败,因此提高了通信的可靠性。
可选地,在一些实施例中,所述终端根据所述参考信号在每一所述时间单元的功率,确定所述参考信号的接收功率之后,所述方法还包括:
所述终端根据所述时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率之后,所述方法还包括:
所述终端根据第一接收功率和预设门限的关系,确定所述参考信号对应的低功耗链路的质量;
其中,所述第一接收功率包括以下至少一项:
低功耗信标信号接收功率;
低功耗唤醒信号接收功率。
本申请实施例中,可以根据一段时间内参考信号的接收功率确定低功耗链路的质量是否满足要求。例如,在一些实施例中,假设基于第一时域窗口内的时间单元集合确定了N个第一接收功率,其中,可以根据一种类型的低功耗信号接收功率确定低功耗链路的质量是否满足要求(例如,所述N个第一接收功率包括N个低功耗信标信号接收功率或N个低功耗唤醒信号接收功率),也可以基于多种类型的低功耗信号接收功确定率低功耗链路的质量是否满足要求(例如,所述N个第一接收功率包括N1个低功耗信标信号接收功率和N2个低功耗唤醒信号接收功率,N1加N2等于N)。
可选地,在一些实施例中,确定所述参考信号对应的低功耗链路的质量包括以下至少一项:
在第一时域窗口内所述第一接收功率大于或等于所述预设门限的数量小于第一预设值的情况下,确定所述低功耗链路的质量不满足要求;
在所述第一时域窗口内所述第一接收功率小于所述第一预设门限的数量大于第二预设值的情况下,确定所述低功耗链路的质量不满足要求;
其中,所述第一时域窗口包括至少一个所述时间单元集合。
可选地,在一些实施例中,所述第一接收功率基于至少一个所述时间单元集合上参考信号的功率确定。
本申请实施例中,当一个第一接收功率基于至少两个时间单元集合上参考信号的功率确定时,可以对至少两个第二接收功率进行加权平均计算获得第一接收功率;当一个第一接收功率基于一个第二接收功率时,该第一接收功率可以为第二接收功率,该第二接收功率可以理解为基于一个时间单元集合中每一时间单元上的参考信号的功率确定的接收功率,例如,第二接收功率可以根据一个所述时间单元集合中每一时间单元上的参考信号的功率,对所述时间单元集合内所有时间单元上的参考信号的功率进行线性平均得到。
可选地,在一些实施例中,所述第一时域窗口的结束位置为最近一次测量的所述参考信号的时间单元集合的结束时域位置,所述第一时域窗口的起始位置根据所述结束位置和所述第一时域窗口的长度确定,其中,所述第一时域窗口的长度由网络配置或协议预定义。
换句话说,在本申请实施例中,完成一次参考信号的测量后,基于前一段时间内(即 第一时域窗口内)第一接收功率判断当前链路质量是否满足要求。这样,在链路质量不满足要求时,可以及时通过执行相应的行为保证通信的可靠性。
为了更好的理解本申请,以下通过一些实例进行详细说明。
在一些实施例中,如图13所示,终端接收参考信号,并基于参考信号的第二接收功率确定是否满足低功耗链路的质量是否满足要求。在本实施例中,参考信号为低功耗信标信号的一部分或全部,当为低功耗信标信号的一部分时,低功耗信标信号还包含序列和/或数据。
终端接收参考信号前,获取低功耗信标信号的时域监听位置,包含时域起始位置和发送周期,获取参考信号序列,获取时间单元集合大小和时间单元的长度,获取参考信号的所占用的频域资源位置。
终端根据低功耗信标信号的时域监听位置检测参考信号,检测方法为,终端在本地生成一个第一副参考信号序列,第一副参考信号序列与参考信号序列相同,终端将第一副参考信号序列与接收到的信号在时域上做滑动自相关处理,当自相关输出满足预设准则时,判断为成功检测参考信号,预设准则通过网络侧设备配置或协议预定义。
终端成功检测到参考信号后,根据自相关处理得到的峰值位置,可以确定参考信号的具体时域位置,即确定时间单元集合的起始位置和结束位置,终端计算时间单元集合每个时间单元上的参考信号的功率分布和,并取线性平均,得到参考信号的第二接收功率。进一步地,终端还可以将连续收到的多个参考信号计算得到的第二接收功率取加权平均,得到一个加权平均后的加权平均接收功率,加权系数可由网络侧设备配置,或协议预定义。
终端根据参考信号的第二接收功率判断链路质量的方法如下:
终端统计在第一时域窗口内第一接收功率(即参考信号的第二接收功率或加权平均接收功率)大于或等于预设门限的次数,并与M比较,当第一接收功率大于或等于预设门限的次数小于M时,判断为链路质量不满足要求,M由网络侧设备配置或预定义。
或者,
终端统计在第一时域窗口内第一接收功率(即参考信号的第二接收功率或加权平均后的加权平均接收功率)小于预设门限的次数,并与N比较,当标接收功率大于N次判断为低功耗链路质量不满足要求,N由网络侧设备配置或预定义。
可选地,第一时域窗口的长度L为网络侧设备配置或预定义,第一时域窗口的结束位置为最新的一次参考信号测量时间位置(即上述时间单元集合的结束时域位置),第一时域窗口的起始位置为根据结束位置减去一个L的时间偏移。
在一些实施例中,如图14所示,终端接收参考信号1和参考信号2,并基于参考信号1的第二接收功率和参考信号2的第二接收功率确定是否满足低功耗链路的质量是否满足要求。其中,参考信号1为低功耗信标信号一部分或全部,当为低功耗信标信号的一部分时,低功耗信标信号还包含序列和/或数据。参考信号2为低功耗唤醒信号的一部分或全部,当为低功耗唤醒信号的一部分时,低功耗唤醒信号还包含序列和/或数据。
终端接收参考信号前,获取低功耗信标信号和/或低功耗唤醒信号的时域监听位置,包含时域起始位置和发送周期,获取参考信号序列,获取时间单元集合大小和时间单元的长度,获取参考信号的所占用的频域资源位置。
终端根据低功耗信标信号和/或低功耗唤醒信号的时域监听位置检测参考信号1和/或2,检测方法为,终端在本地生成一个第一副参考信号序列,第一副参考信号序列与参考信号序列相同,终端将第一副参考信号序列与接收到的信号在时域上做滑动自相关处理,当自相关输出满足预设准则时,判断为成功检测参考信号,预设准则通过网络配置或协议预定义。
终端成功检测到参考信号后,根据自相关处理得到的峰值位置,可以确定参考信号的具体时域位置,即确定时间单元集合的起始位置和结束位置,终端计算时间单元集合每个时间单元上的功率分布和,并取线性平均,得到参考信号的第二接收功率。进一步地,终端还可以将连续收到的多个参考信号计算得到的第二接收功率取加权平均,得到一个加权平均后的加权平均接收功率,加权系数可由网络侧设备配置,或协议预定义。
终端根据参考信号的接收功率判断链路质量的方法如下:
终端统计在第一时域窗口内第一接收功率(即参考信号1和/或参考信号2的第二接收功率或加权平均接收功率)大于或等于预设门限的次数,并与M比较,当第一接收功率大于或等于预设门限的次数小于M时,判断为链路质量不满足要求,M由网络侧设备配置或预定义。
或者,
终端统计在第一时域窗口内第一接收功率(即参考信号1和/或参考信号2的第二接收功率或加权平均接收功率)小于预设门限的次数,并与N比较,当第一接收功率大于N次判断为低功耗链路质量不满足要求,N由网络侧设备配置或预定义。
可选地,第一时域窗口的长度L为网络侧设备配置或预定义,第一时域窗口的结束位置为最新的一次参考信号测量时间位置(即上述时间单元集合的结束时域位置),第一时域窗口的起始位置为根据结束位置减去一个L的时间偏移。
本申请实施例提供的低功耗信号接收功率测量方法,执行主体可以为低功耗信号接收功率测量装置。本申请实施例中以低功耗信号接收功率测量装置执行低功耗信号接收功率测量方法为例,说明本申请实施例提供的低功耗信号接收功率测量装置。
参照图15,本申请实施例还提供了一种低功耗信号接收功率测量装置,如图15所示,该低功耗信号接收功率测量装置1500包括:
接收模块1501,用于在时间单元集合内接收参考信号;
第一确定模块1502,用于根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;
其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
可选地,所述第一确定模块1502具体用于:根据所述时间单元集合中每一时间单元 上的参考信号的功率,对所述时间单元集合内所有时间单元上的参考信号的功率进行线性平均,得到所述第一接收功率。
可选地,所述时间单元集合包括在时域上连续的至少两个所述时间单元。
可选地,所述时间单元集合所包含的时间单元的长度和/或所述时间单元集合所包含的时间单元的数量由网络设备配置或协议约定。
可选地,所述第一确定模块1501还用于执行以下任一项:
确定所述时间单元集合的起始时域位置和结束时域位置;
确定所述时间单元集合的起始时域位置和长度;
确定所述时间单元集合的结束时域位置和长度。
可选地,所述参考信号的时间单元集合的起始时域位置和/或结束时域位置通过在时域进行序列检测确定。
可选地,所述参考信号所包含的序列和/或所述参考信号的频域资源位置由网络侧设备配置或协议约定。
可选地,所述参考信号包括以下任一项:低功耗信标信号的至少部分信号和低功耗唤醒信号的至少部分信号。
可选地,所述低功耗信号接收功率测量装置1500还包括:
所述终端根据第一接收功率和预设门限的关系,确定所述参考信号对应的低功耗链路的质量;
其中,所述第一接收功率包括以下至少一项:
低功耗信标信号接收功率;
低功耗唤醒信号接收功率。
可选地,所述第二确定模块具体用于执行以下至少一项:
在第一时域窗口内所述第一接收功率大于或等于所述预设门限的数量小于第一预设值的情况下,确定所述低功耗链路的质量不满足要求;
在所述第一时域窗口内所述第一接收功率小于所述第一预设门限的数量大于第二预设值的情况下,确定所述低功耗链路的质量不满足要求;
其中,所述第一时域窗口包括至少一个所述时间单元集合。
可选地,所述第一时域窗口的结束位置为最近一次测量的所述参考信号的时间单元集合的结束时域位置,所述第一时域窗口的起始位置根据所述结束位置和所述第一时域窗口的长度确定,其中,所述第一时域窗口的长度由网络配置或协议预定义。
可选地,所述第一接收功率基于至少一个所述时间单元集合上参考信号的功率确定。
本申请实施例中的低功耗信号接收功率测量装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等, 本申请实施例不作具体限定。
本申请实施例提供的低功耗信号接收功率测量装置能够实现图12的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图16所示,本申请实施例还提供的另一种通信设备1600,包括处理器1601和存储器1602,存储器1602上存储有可在所述处理器1601上运行的程序或指令,例如,该通信设备1600为终端时,该程序或指令被处理器1601执行时实现上述低功耗信号接收功率测量方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于在时间单元集合内接收参考信号;处理器用于根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图17为实现本申请实施例的一种终端的硬件结构示意图。
该终端1700包括但不限于:射频单元1701、网络模块1702、音频输出单元1703、输入单元1704、传感器1705、显示单元1706、用户输入单元1707、接口单元1708、存储器1709以及处理器1710等中的至少部分部件。
本领域技术人员可以理解,终端1700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1704可以包括图形处理单元(Graphics Processing Unit,GPU)17041和麦克风17042,图形处理器17041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1706可包括显示面板17061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板17061。用户输入单元1707包括触控面板17071以及其他输入设备17072中的至少一种。触控面板17071,也称为触摸屏。触控面板17071可包括触摸检测装置和触摸控制器两个部分。其他输入设备17072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1701接收来自网络侧设备的下行数据后,可以传输给处理器1710进行处理;另外,射频单元1701可以向网络侧设备发送上行数据。通常,射频单元1701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1709可用于存储软件程序或指令以及各种数据。存储器1709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外, 存储器1709可以包括易失性存储器或非易失性存储器,或者,存储器1709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1709包括但不限于这些和任意其它适合类型的存储器。
处理器1710可包括一个或多个处理单元;可选地,处理器1710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1710中。
其中,射频单元1701用于在时间单元集合内接收参考信号;
处理器1710用于根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;
其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
本申请实施例,通过终端在时间单元集合内接收参考信号;所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。由于接收功率与低功耗链路质量具有对应关系,因此,本申请实施例可以基于参考信号的接收功率确定低功耗链路质量,提高了低功耗链路质量测量的准确性。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述低功耗信号接收功率测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,可以是非易失性的,也可以是非瞬态的。可读存储介质可以包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述低功耗信号接收功率测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述低功耗信号接收功率测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息确定系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的信息确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种信息确定方法,包括:
    终端获取第一信息;
    所述终端基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
    其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
  2. 根据权利要求1所述的方法,其中,所述第一信息包括如下至少一项:
    用于指示所述时域资源映射信息的信息;
    用于指示所述第一序列的信息;
    用于指示所述低功耗信号的时域资源长度的信息;
    用于指示所述附加时间资源的长度的信息;
    用于指示所述符号资源的长度的信息;
    用于指示所述第一符号的长度的信息。
  3. 根据权利要求1所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
  4. 根据权利要求3所述的方法,其中,所述第一部分资源包括:所述低功耗信号的时域资源包含的全部符号资源中除所述附加时间资源以外的资源。
  5. 根据权利要求1所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
  6. 根据权利要求3所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用一个所述第一符号的长度的时域资源。
  7. 根据权利要求3所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述附加时间资源的结束位置开始映射。
  8. 根据权利要求5所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列包括至少一个序列元素,每个所述序列元素占用不大于所述第一符号的长度的时域资源。
  9. 根据权利要求5所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:在每个所述符号资源内,所述第一序列从所述符号资源的起始位置开始映射。
  10. 根据权利要求4或5所述的方法,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列起始位置至序列结束位置依次按照所述低功耗信号的时域资源的时间先后顺序映射;或者,
    所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列从序列结束位置至序列起始位置依次按照所述低功耗信号的时域资源的时间先后顺序映射。
  11. 根据权利要求1所述的方法,其中,所述低功耗信号的时域资源长度为整数倍的所述符号资源的长度。
  12. 根据权利要求1所述的方法,其中,所述附加时间资源为从所述符号资源的起始位置开始的预设长度的连续时域资源。
  13. 根据权利要求1所述的方法,其中,所述低功耗信号包括序列部分和数据部分,所述序列部分包括所述第一序列。
  14. 根据权利要求1所述的方法,其中,所述第一信息通过如下至少一项获取:
    网络配置;
    协议预定义。
  15. 一种信息确定装置,包括:
    获取模块,用于获取第一信息;
    确定模块,用于基于所述第一信息确定低功耗信号中的第一序列的时域资源映射信息;
    其中,所述时域资源映射信息用于指示:所述第一序列在所述低功耗信号的时域资源上映射的映射方式,所述低功耗信号的时域资源包括多个符号资源,所述多个符号资源中每个符号资源包括附加时间资源和至少一个第一符号。
  16. 根据权利要求15所述的装置,其中,所述第一信息包括如下至少一项:
    用于指示所述时域资源映射信息的信息;
    用于指示所述第一序列的信息;
    用于指示所述低功耗信号的时域资源长度的信息;
    用于指示所述附加时间资源的长度的信息;
    用于指示所述符号资源的长度的信息;
    用于指示所述第一符号的长度的信息。
  17. 根据权利要求15所述的装置,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第一部分资源,所述第一部分资源包括所述低功耗信号的时域资源中的至少两个所述第一符号。
  18. 根据权利要求15所述的装置,其中,所述第一序列在所述低功耗信号的时域资源上映射的映射方式包括:所述第一序列映射至所述低功耗信号的时域资源的第二部分资源,所述第二部分资源包括所述低功耗信号的时域资源中的至少一个所述符号资源。
  19. 一种低功耗信号接收功率测量方法,包括:
    终端在时间单元集合内接收参考信号;
    所述终端根据所述时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;
    其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
  20. 根据权利要求19所述的方法,其中,所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率包括:
    所述终端根据所述时间单元集合中每一时间单元上的参考信号的功率,对所述时间单元集合内所有时间单元上的参考信号的功率进行线性平均,得到所述第一接收功率。
  21. 根据权利要求19所述的方法,其中,所述时间单元集合包括在时域上连续的至少两个所述时间单元。
  22. 根据权利要求19所述的方法,其中,所述时间单元集合所包含的时间单元的长度和/或所述时间单元集合所包含的时间单元的数量由网络设备配置或协议约定。
  23. 根据权利要求19所述的方法,其中,所述终端根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率之前,所述方法包括以下任一项:
    所述终端确定所述时间单元集合的起始时域位置和结束时域位置;
    所述终端确定所述时间单元集合的起始时域位置和长度;
    所述终端确定所述时间单元集合的结束时域位置和长度。
  24. 根据权利要求23所述的方法,其中,所述参考信号的时间单元集合的起始时域位置和/或结束时域位置通过在时域进行序列检测确定。
  25. 根据权利要求19所述的方法,其中,所述参考信号所包含的序列和/或所述参考信号的频域资源位置由网络侧设备配置或协议约定。
  26. 根据权利要求19所述的方法,其中,所述参考信号包括以下任一项:低功耗信标信号的至少部分信号和低功耗唤醒信号的至少部分信号。
  27. 根据权利要求19至26任一项所述的方法,其中,所述终端根据所述时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率之后,所述方法还包括:
    所述终端根据第一接收功率和预设门限的关系,确定所述参考信号对应的低功耗链路的质量;
    其中,所述第一接收功率包括以下至少一项:
    低功耗信标信号接收功率;
    低功耗唤醒信号接收功率。
  28. 根据权利要求27所述的方法,其中,确定所述参考信号对应的低功耗链路的质量包括以下至少一项:
    在第一时域窗口内所述第一接收功率大于或等于所述预设门限的数量小于第一预设值的情况下,确定所述低功耗链路的质量不满足要求;
    在所述第一时域窗口内所述第一接收功率小于所述第一预设门限的数量大于第二预设值的情况下,确定所述低功耗链路的质量不满足要求;
    其中,所述第一时域窗口包括至少一个所述时间单元集合。
  29. 根据权利要求28所述的方法,其中,所述第一时域窗口的结束位置为最近一次测量的所述参考信号的时间单元集合的结束时域位置,所述第一时域窗口的起始位置根据所述结束位置和所述第一时域窗口的长度确定,其中,所述第一时域窗口的长度由网络配置或协议预定义。
  30. 根据权利要求19所述的方法,其中,所述第一接收功率基于至少一个所述时间单元集合上参考信号的功率确定。
  31. 一种低功耗信号接收功率测量装置,包括:
    接收模块,用于在时间单元集合内接收参考信号;
    第一确定模块,用于根据时间单元集合中每一时间单元上的参考信号的功率,确定第一接收功率;
    其中,所述时间单元集合包括至少一个承载所述参考信号的时间单元。
  32. 根据权利要求31所述的装置,其中,所述第一确定模块具体用于:根据所述时间单元集合中每一时间单元上的参考信号的功率,对所述时间单元集合内所有时间单元上的参考信号的功率进行线性平均,得到所述第一接收功率。
  33. 根据权利要求31或32所述的装置,其中,所述低功耗信号接收功率测量装置还包括:
    第二确定模块,用于根据第一接收功率和预设门限的关系,确定所述参考信号对应的低功耗链路的质量;
    其中,所述第一接收功率包括以下至少一项:
    低功耗信标信号接收功率;
    低功耗唤醒信号接收功率。
  34. 根据权利要求33所述的装置,其中,所述第二确定模块具体用于执行以下至少一项:
    在第一时域窗口内所述第一接收功率大于或等于所述预设门限的数量小于第一预设值的情况下,确定所述低功耗链路的质量不满足要求;
    在所述第一时域窗口内所述第一接收功率小于所述第一预设门限的数量大于第二预设值的情况下,确定所述低功耗链路的质量不满足要求;
    其中,所述第一时域窗口包括至少一个所述时间单元集合。
  35. 根据权利要求34所述的装置,其中,所述第一时域窗口的结束位置为最近一次测量的所述参考信号的时间单元集合的结束时域位置,所述第一时域窗口的起始位置根据所述结束位置和所述第一时域窗口的长度确定,其中,所述第一时域窗口的长度由网络配置或协议预定义。
  36. 根据权利要求31所述的装置,其中,所述第一接收功率基于至少一个所述时间单元集合上参考信号的功率确定。
  37. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的信息确定方法的步骤,或者实现如权利要求19至30任一项所述的低功耗信号接收功率测量方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14任一项所述的信息确定方法的步骤,或者实现如权利要求19至30任一项所述的低功耗信号接收功率测量方法的步骤。
PCT/CN2023/116393 2022-09-08 2023-09-01 信息确定方法、低功耗信号接收功率测量方法、装置及终端 WO2024051583A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211098073.XA CN117675146A (zh) 2022-09-08 2022-09-08 信息确定方法、装置及终端
CN202211098073.X 2022-09-08
CN202211154176.3A CN117793860A (zh) 2022-09-21 2022-09-21 低功耗信号接收功率测量方法、装置、终端及存储介质
CN202211154176.3 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024051583A1 true WO2024051583A1 (zh) 2024-03-14

Family

ID=90192009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116393 WO2024051583A1 (zh) 2022-09-08 2023-09-01 信息确定方法、低功耗信号接收功率测量方法、装置及终端

Country Status (1)

Country Link
WO (1) WO2024051583A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157748A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 通信方法和设备
CN111417177A (zh) * 2019-01-07 2020-07-14 电信科学技术研究院有限公司 一种节能信号的传输方法、检测方法和设备
CN112913286A (zh) * 2018-10-17 2021-06-04 苹果公司 唤醒信号设计
CN114342495A (zh) * 2019-09-11 2022-04-12 联想(北京)有限公司 用于nr-light系统的唤醒信号传输

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157748A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 通信方法和设备
CN112913286A (zh) * 2018-10-17 2021-06-04 苹果公司 唤醒信号设计
CN111417177A (zh) * 2019-01-07 2020-07-14 电信科学技术研究院有限公司 一种节能信号的传输方法、检测方法和设备
CN114342495A (zh) * 2019-09-11 2022-04-12 联想(北京)有限公司 用于nr-light系统的唤醒信号传输

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "Wake-up signal for low power wake-up radio", 3GPP TSG RAN WG1 #106BIS-E R1-2109954, 1 October 2021 (2021-10-01), XP052058872 *

Similar Documents

Publication Publication Date Title
EP3737163B1 (en) Time-and-frequency synchronization method, network device and terminal
TW201012116A (en) Methods for detection of failure and recovery in a radio link
US11729731B2 (en) Information transmission method, network device and terminal
WO2024051583A1 (zh) 信息确定方法、低功耗信号接收功率测量方法、装置及终端
WO2023098684A1 (zh) 信息传输方法及设备
WO2022151423A1 (zh) 一种寻呼指示方法及装置
WO2024061302A1 (zh) 信号检测和发送方法、终端及网络侧设备
CN117675146A (zh) 信息确定方法、装置及终端
WO2024027678A1 (zh) 扩展非连续接收的配置方法及装置、通信设备
WO2024022316A1 (zh) 下行参考信号发送方法、装置、终端及网络侧设备
WO2023125304A1 (zh) 通信操作执行方法、装置、终端和存储介质
CN117793860A (zh) 低功耗信号接收功率测量方法、装置、终端及存储介质
CN117353804B (zh) 一种环境反向散射通信方法及通信设备
WO2024017322A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023185901A1 (zh) 资源处理方法、装置及终端
WO2023143303A1 (zh) 参考信号的有效持续时段的确定方法及装置、终端
WO2023241602A1 (zh) 节能唤醒方法、装置、终端、基站及存储介质
WO2023169571A1 (zh) 唤醒信号接收方法、装置、终端及网络侧设备
WO2023030084A1 (zh) 确定唤醒链路质量的方法、设备及可读存储介质
CN115176446B (zh) 用于基于循环前缀的时间和/或频率校正的装置和方法
WO2024022311A1 (zh) 同步参考小区确定方法、装置、终端及网络侧设备
WO2024012273A1 (zh) 信息确定方法、装置及终端
WO2023179477A1 (zh) 信息确定方法、装置、发送端及接收端
US20230403653A1 (en) Recurrent data reception in idle/inactive ue
WO2024027646A1 (zh) 参考信号发送方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862277

Country of ref document: EP

Kind code of ref document: A1