WO2024051198A1 - 一种基于线扫描的自动聚焦系统、方法及应用 - Google Patents

一种基于线扫描的自动聚焦系统、方法及应用 Download PDF

Info

Publication number
WO2024051198A1
WO2024051198A1 PCT/CN2023/093430 CN2023093430W WO2024051198A1 WO 2024051198 A1 WO2024051198 A1 WO 2024051198A1 CN 2023093430 W CN2023093430 W CN 2023093430W WO 2024051198 A1 WO2024051198 A1 WO 2024051198A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
light
objective lens
lens
automatic focusing
Prior art date
Application number
PCT/CN2023/093430
Other languages
English (en)
French (fr)
Inventor
陈宗普
符俊杰
Original Assignee
苏州精濑光电有限公司
武汉精立电子技术有限公司
武汉精测电子集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州精濑光电有限公司, 武汉精立电子技术有限公司, 武汉精测电子集团股份有限公司 filed Critical 苏州精濑光电有限公司
Publication of WO2024051198A1 publication Critical patent/WO2024051198A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • H04N1/031Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/02409Focusing, i.e. adjusting the focus of the scanning head

Definitions

  • This application relates to the field of AOI detection technology, and in particular to an automatic focusing system based on line scanning, an automatic focusing method based on line scanning, an electronic device and a computer-readable storage medium.
  • the accuracy of detection is getting higher and higher.
  • the current high-end requirements require detection accuracy of more than 1um.
  • the depth of field of the line scan system is less than 27um, which is very important for detection.
  • the flatness requirement of the surface is less than 14um, and the detection size is relatively large (such as G4.5 generation: the glass substrate size is 730mm ⁇ 920mm; G5.5 generation: the glass substrate size is 1300mm ⁇ 1500mm; G6 generation: the glass substrate size is 1500mm ⁇ 1850mm), which cannot meet the requirements of the scanning system to collect clear images.
  • the line scan camera 6 emits a parallel laser beam that passes through the notch filter 4 and enters the objective lens 2.
  • the laser spot occupies half of the entrance pupil of objective lens 2.
  • the parallel laser is focused on the reference object 1.
  • the objective lens 2 transmits it.
  • the notch filter 4 reflects it and enters the AF Sensor7 for signal processing, and then controls the motor module 3 to adjust.
  • Objective lens 2 moves up and down to reach the reference position where the objective lens focuses.
  • the scanning field of view of the above method is small. For example, at the same magnification of 5X, the field of view width is only 4.8mm. However, using a 16K line scan camera, the field of view width can reach 16.4mm under a 5X lens.
  • Another AF method uses a line scan system + a rangefinder, as shown in Figure 6. According to the information changes in the height measured by the rangefinder 3, it is transmitted to the computer, and then the computer drives the motor module 2 to move the entire rangefinder system ( Contains rangefinder 3, lens 4, and line scan camera 5) to ensure that the surface position of the lens to the reference object remains unchanged and the focus is clear.
  • the image collection points of the rangefinder and the scanning camera are not in the same area. Since the measured object surface may be highly deviated, focusing errors may occur.
  • the data needs to be received through a computer, analyzed, and then output to control the movement of the motor module, the focusing speed is slow.
  • embodiments of the present invention provide an automatic focusing system, method and application based on line scanning, which can solve the problem of the narrow field of view of the existing AOI detection method using a microscope + line scan camera, or the detection of The image collection points of the distance meter and the scanning camera are not in the same area. Due to the height deviation of the measured object surface, focusing errors occur, which makes it difficult to meet the problem of collecting clear images for the online scanning system.
  • the present invention provides an automatic focusing based on line scanning, which includes a light source module, a spectroscopic module, a microscope objective lens and a line scan detection module.
  • the light source module includes a light source, a lens and an automatic focusing sensor, wherein the The light splitting module is used to transmit light in the first wave band and reflect light in the second wave band; the light in the first wave band generated by the light source is guided to the light splitting module and transmitted into the microscope objective lens.
  • the light of the first wave band emitted by the micro objective lens enters the automatic focus sensor after being transmitted through the spectroscopic module; the light of the second wave band emitted by the micro objective lens is guided to the line scan detection after being reflected by the spectroscopic module.
  • the automatic focusing of the line scan detection module is achieved by adjusting the relative position of the entire automatic focusing system and the object to be measured.
  • the filter component further includes: a controller and a motor module.
  • the controller is connected to the autofocus sensor and the motor module respectively, and is used to obtain the defocus of the object under test. information, and sends a control signal to the motor module, so that the motor module controls the overall movement of the automatic focusing system to achieve automatic focusing.
  • the light of the first wavelength band transmitted by the spectroscopic module forms a laser spot on the microscopic objective lens, the laser spot covers half of the lens area of the microscopic objective lens, and the display The light of the first waveband emitted from the micro-objective lens passes through the other half of the lens area.
  • the light splitting module is a notch filter or a combination of a half-mirror and a filter.
  • the spectroscopic module reflects visible light with a wavelength range of 400-700 nm, and transmits non-visible light with a wavelength range of 750-800 nm.
  • the line-scan-based automatic focusing system further includes: flat glass, arranged between the lens and the spectroscopic module, for compensating the aberration of the spectroscopic module.
  • the lens is a negative lens to reduce the optical path.
  • an embodiment of the present invention also proposes an automatic focusing method based on line scanning, which is suitable for the automatic focusing system based on line scanning described in any of the above embodiments, including: guiding the light of the first waveband generated by the light source to The light splitting module transmits the light of the first wave band emitted by the micro objective lens into the microscopic objective lens and enters the automatic focus sensor after being transmitted through the light splitting module; the light of the second wave band emitted by the micro objective lens passes through the light splitting module After reflection, it is guided to the line scan detection module; after the focal plane of the microscopic objective lens is calibrated to be confocal with the focal plane of the line scan detection module by adjusting the position of the lens, the object to be measured is placed in the microscopic objective lens for measurement.
  • Line scan measurement is performed within the field of view; automatic focusing of the line scan detection module is achieved by adjusting the relative position of the entire automatic focusing system and the object to be measured.
  • embodiments of the present invention also provide an electronic device, including: a memory and one or more processors connected to the memory.
  • the memory stores a computer program
  • the processor is used to execute the computer program to implement An automatic focusing method based on line scanning as described in any of the above embodiments.
  • An embodiment of the present invention also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the line scan-based method as described in any of the above embodiments. autofocus method.
  • Figure 1 is a schematic structural diagram of an automatic focusing system based on line scanning provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the principle of laser ranging provided by an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the spectral transmittance curve of the spectroscopic module provided by the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the distribution of laser spots on the objective lens provided by the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the input/output laser spot of the automatic focus sensor window provided by the embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of an existing scanning ranging system
  • Figure 7 is a schematic structural diagram of another existing scanning ranging system
  • Figure 8 is a schematic diagram of the parallel laser entrance pupil/exit pupil principle in Figure 7;
  • FIG. 9 is a flow chart of an automatic focusing method based on line scanning provided by an embodiment of the present invention.
  • the first embodiment of the present invention proposes an automatic focusing system based on line scanning, which includes, for example: a light source module, a spectroscopic module 3, a microscope objective lens 2 and a line scan detection module.
  • the light source module includes, for example: a light source, a lens 7 and an autofocus sensor 8 .
  • the automatic focus sensor 8 (AF Sensor, Auto Focus Sensor), for example, is integrated with the light source, which is used to output parallel laser light as the optical path light source of the automatic focus sensor 8.
  • the lens 7 guides the light of the first wave band generated by the light source to the spectroscopic module 3.
  • the spectroscopic module 3 is used to transmit the light of the first wave band and reflect the light of the second wave band, so that the light of the first wave band is displayed.
  • a laser spot is formed on the lens of the micro objective lens 2.
  • the light source light is focused by the microscope objective 2 onto the object to be measured, and the reflected light reflected by the object to be measured is obtained.
  • the reflected light returns along the original autofocus optical path, in which the light of the first wavelength passes through the spectroscopic module 3 and is coupled to the autofocus sensor 8 through the lens 7 to measure the defocus information of the object to be measured.
  • the laser spot above the focus appears as a semicircle on the right
  • the laser light converges to a point at the intersection
  • the laser spot below the focus appears as a semicircle on the left.
  • the detection object is focused at the focus.
  • the position of the center of mass of the laser spot has a linear relationship with the coordinates in the height direction. Therefore, as long as the position of the center of mass of the spot is known, the position of the focus height can be known.
  • the autofocus system also includes, for example, a controller 9 and a motor module 10.
  • the controller 9 is respectively connected to the autofocus sensor 8 and the motor module 10 to obtain the defocus information of the object to be measured and send control signals to
  • the motor module 10 can control the automatic focusing system as a whole to move up and down relative to the object to be measured to focus.
  • the line scanning system generally collects images when the object surface moves, during the movement, the surface height of the object to be measured has a certain deviation.
  • the AF system proposed in this embodiment performs measurements according to a certain sampling period, and the motor module Motion compensation enables real-time focusing.
  • the line scan detection module includes, for example, a reflector 4 and a line scan camera 5.
  • the spectroscopic module 3 for example, also reflects the light of the second wavelength in the reflected light through the reflector 4 to the line scan camera 5 for imaging.
  • the object 1 to be measured is placed within the measurement field of view of the microscopic objective lens 2 for line scanning. Measurement.
  • the light splitting module 3 is, for example, a combination of a notch filter or a semi-transparent mirror and an ordinary single-sided filter.
  • the spectroscopic module 3 is a long-wave pass filter, and its spectral transmittance curve is shown in Figure 3, which transmits non-visible light in the laser wavelength range of 750-800nm, and is used to obtain the defocus information of the measured object. , and reflects visible light with a laser wavelength range of 400-700nm for imaging.
  • the laser spot covers, for example, half of the lens area of the objective lens 2, and the reflected light passes through the other half of the lens area of the objective lens 2, corresponding to the schematic diagram of the laser spot input and output of the AF Sensor window shown in Figure 5. . If the laser spot covers too much or too little area, you can adjust the AF sensor for translation.
  • the auto-focus optical path and the line scan detection optical path are coupled into one, and the ranging and imaging functions are respectively realized with light of different bands.
  • This can avoid the use of the existing technology shown in Figure 6, which scans the images of the camera and the rangefinder.
  • the focus can be adjusted directly based on the detection data received by the AF sensor, effectively improving the real-time performance of autofocus.
  • the scanning field of view for microscopic inspection through direct focusing of parallel lasers is smaller.
  • the field of view width is only 4.8mm.
  • a lens 7 is provided between the autofocus sensor 8 and the notch filter 3.
  • the lens 7 can be a positive lens or a negative lens to modulate the reflected light as The parallel laser is then guided into the autofocus sensor, enabling the coupling of the infinite microscope objective system to the non-infinity line scan system, which can effectively increase the field of view.
  • the field of view width can reach 16.4mm.
  • the lens 7 uses a negative lens, which can effectively reduce the optical path, thereby reducing the overall volume of the autofocus system and saving costs.
  • the line-scan-based automatic focusing system also includes, for example, flat glass 6, which is disposed between the lens 7 and the spectroscopic module 3 to compensate for the aberration of the spectroscopic module 3.
  • the embodiment of the present invention proposes an automatic focusing system based on line scanning.
  • the automatic focusing sensor line and the scanning detection module optical path coupling By setting the automatic focusing sensor line and the scanning detection module optical path coupling, the same position on the object to be measured is collected using light of different bands.
  • the realization of scanning imaging and automatic focusing can avoid the height deviation when the image collection points of the scanning camera and the rangefinder are not in the same area, resulting in the problem of focusing errors, so that the clarity of the collected images is guaranteed; and the controllers are set to be connected separately
  • the autofocus sensor and motor module can adjust the focus directly based on the detection data received by the autofocus sensor, effectively improving the real-time performance of autofocus.
  • a lens is set between the autofocus sensor and the spectroscopic module to modulate the reflected light into a parallel laser. It is then guided into the autofocus sensor to couple the infinite microscope objective system to the non-infinity line scan system, which can effectively increase the field of view.
  • the second embodiment of the present invention proposes an automatic focusing method based on line scanning, for example, including steps S1 to S5.
  • step S1 the light of the first wave band generated by the light source is guided to the spectroscopic module and transmitted into the microscopic objective lens, and the light of the first wave band emitted by the microscopic objective lens is transmitted through the spectroscopic module and then enters the automatic focus sensor;
  • step S2 guide the second waveband light emitted by the microscopic objective lens to the line scan detection module after being reflected by the spectroscopic module;
  • Step S3 calibrate the focal plane of the microscopic objective lens and the line scan detection module by adjusting the position of the lens.
  • step S4 is achieved by adjusting the relative position of the entire autofocus system and the object to be measured. Automatic focusing of the line scan detection module.
  • the second embodiment of the present invention proposes an automatic focusing method based on line scanning that is suitable for the automatic focusing system based on line scanning proposed in the first embodiment.
  • the specific structure of the automatic focusing system based on line scanning and Functions can be referred to the content described in the first embodiment, which will not be described in detail here.
  • the beneficial effects of the line-scan-based automatic focusing method provided by this embodiment are the same as the benefits of the line-scan-based automatic focusing system provided by the first embodiment. The effect is the same.
  • a third embodiment of the present invention also provides an electronic device, for example, including: at least one processing unit and at least one storage unit, wherein the storage unit stores a computer program, and when the computer program is executed by the processing unit , so that the processing unit executes the method as described in the first embodiment, and the beneficial effects of the electronic device provided by this embodiment are the same as the beneficial effects of the line scan-based automatic focusing method provided by the second embodiment.
  • the fourth embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored. When the program is executed by a processor, the steps of the above method are implemented.
  • the beneficial effects of the computer-readable storage medium provided by this embodiment are The beneficial effects are the same as those of the line scan-based automatic focusing method provided by the second embodiment.
  • the computer-readable storage medium may include, but is not limited to, any type of disk, including floppy disks, optical disks, DVDs, CD-ROMs, microdrives and magneto-optical disks, ROM, RAM, EPROM, EEPROM, DRAM, VRAM, flash memory devices , magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some service interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable memory.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, It includes several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned memory includes: U disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), mobile hard disk, magnetic disk or optical disk and other media that can store program code.
  • the program can be stored in a computer-readable memory.
  • the memory can include: flash memory. disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

本发明公开了一种基于线扫描的自动聚焦系统,包括光源模块、分光模块、显微物镜和线扫检测模块,所述光源模块包括一光源、透镜和自动聚焦传感器;其中,光源产生的第一波段的光被引导至分光模块透射进入显微物镜,显微物镜出射的第一波段的光经分光模块透射后进入自动聚焦传感器;显微物镜出射的第二波段的光经分光模块反射后被引导至线扫检测模块;通过调整透镜的位置标定显微物镜与线扫检测模块的焦平面共焦后进行线扫测量,并通过调整自动聚焦系统整体与待测量物的相对位置实现线扫检测模块的自动聚焦。其可以解决现有AOI检测视野宽度窄,以及对检测物表面的平整度要求高,难以满足在线扫描系统采集清晰图像的问题。

Description

一种基于线扫描的自动聚焦系统、方法及应用 技术领域
 本申请涉及AOI检测技术领域,尤其涉及到一种基于线扫描的自动聚焦系统、一种基于线扫描的自动聚焦方法、一种电子设备及一种计算机可读存储介质。
背景技术
 在AOI 发展过程中,对检测的精度越来越高,在平板显示(FPD)检测领域,目前高端要求检测精度达到1um以上,在这样的检测规格下,线扫描系统的景深小于27um,对检测面的平整度的要求小于14um,而检测尺寸比较大(如G4.5代:玻璃基板尺寸为730mm×920mm;G5.5代:玻璃基板尺寸为1300mm×1500mm;G6代:玻璃基板尺寸为1500mm×1850mm),无法满足扫描系统采集清晰图像的要求。
 当前常用的AF方式之一采用自动聚焦显微镜+线扫描相机的方式,如图7和图8中所示,线扫描相机6发出一束平行激光通过陷波滤光片4透射,进入物镜2,激光光斑占物镜2入瞳一半的区域,平行激光聚焦在参考物1上,再经过反射,物镜2透射,陷波滤光片4反射进入AF Sensor7,进行信号处理,然后控制电机模组3调整物镜2进行上下位移,达到物镜聚焦的参考位置。然而,上述方式的扫描视野范围较小,如在相同的倍率5X下,视野宽度只有4.8mm,而使用16K线扫描相机,在5X的镜头下,视野宽度可以达到16.4mm。
 另一种AF方式采用线扫描系统+测距仪,如图6中所示,根据测距仪3测量高度的信息变化,传输到电脑,然后电脑再驱动电机模组2移动测距系统整体(包含测距仪3,镜头4,线扫描相机5),以达到镜头到参考物的表面位置保持不变,使聚焦清晰。然而,该方式测距仪与扫描相机的图像采集点位置不在同一区域,由于被测物面可能有高度偏差,导致产生聚焦误差。并且,由于需要通过电脑接收数据,进行分析,然后输出控制电机模组移动,导致聚焦速度较慢。
发明内容
 为了克服上述现有技术的缺陷,本发明实施例提供了一种基于线扫描的自动聚焦系统、方法及应用,其可以解决现有AOI检测采用显微镜+线扫描相机的方式视野宽度窄,或者测距仪与扫描相机的图像采集点位置不在同一区域,由于被测物面的高度偏差导致产生聚焦误差,难以满足在线扫描系统采集清晰图像的问题。
 具体的,本发明提供一种基于线扫描的自动聚焦,其包括光源模块、分光模块、显微物镜和线扫检测模块,所述光源模块包括一光源、透镜和自动聚焦传感器,其中,所述分光模块用于透射第一波段的光和反射第二波段的光;所述光源产生的第一波段的光被引导至所述分光模块透射进入所述透射进入所述显微物镜,所述显微物镜出射的第一波段的光经所述分光模块透射后进入所述自动聚焦传感器;所述显微物镜出射的第二波段的光经所述分光模块反射后被引导至所述线扫检测模块;通过调整所述透镜的位置标定所述显微物镜的焦平面与所述线扫检测模块的焦平面共焦后,将待测量物置于所述显微物镜测量视野内进行线扫测量,通过调整所述自动聚焦系统整体与所述待测量物的相对位置实现所述线扫检测模块的自动聚焦。
 在本发明的一个实施例中,所述滤波组件还包括:控制器和电机模组,所述控制器分别连接所述自动聚焦传感器和所述电机模组,用于获取被测物的离焦信息,并发送控制信号至所述电机模组,以由所述电机模组控制所述自动聚焦系统整体移动,实现自动聚焦。
 在本发明的一个实施例中,所述分光模块透射的第一波段的光在所述显微物镜上形成激光光斑,所述激光光斑覆盖所述显微物镜的一半镜头区域、且所述显微物镜出射的第一波段的光通过另一半镜头区域。
 在本发明的一个实施例中,所述分光模块为陷波滤光片或半透半反镜与滤光片的组合。
 在本发明的一个实施例中,所述分光模块对波长范围为400-700nm的可见光进行反射,以及对波长范围为750-800nm的非可见光进行透射。
 在本发明的一个实施例中,所述基于线扫描的自动聚焦系统还包括:平板玻璃,设置于所述透镜与所述分光模块之间,用于补偿所述分光模块的像差。
 在本发明的一个实施例中,所述透镜选用负透镜,用于减少光程。
 另外,本发明实施例还提出一种基于线扫描的自动聚焦方法,适用于上述中任意一个实施例所述的基于线扫描的自动聚焦系统,包括:将光源产生的第一波段的光引导至分光模块透射进入显微物镜,并使显微物镜出射的第一波段的光经所述分光模块透射后进入所述自动聚焦传感器;将显微物镜出射的第二波段的光经所述分光模块反射后引导至线扫检测模块;通过调整所述透镜的位置标定所述显微物镜的焦平面与所述线扫检测模块的焦平面共焦后,将所述待测量物置于显微物镜测量视野内进行线扫测量;通过调整所述自动聚焦系统整体与所述待测量物的相对位置实现所述线扫检测模块的自动聚焦。
 再者,本发明实施例还提出一种电子设备,包括:存储器和连接所述存储器的一个或多个处理器,所述存储器存储有计算机程序,所述处理器用于执行所述计算机程序以实现如上述中任意一个实施例所述的基于线扫描的自动聚焦方法。
 本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行如上述中任意一个实施例所述的基于线扫描的自动聚焦方法。
 由上可知,本发明的上述实施例可以具有以下一个或多个有益效果:
(1)通过设置自动聚焦传感器线和扫检测模块光路耦合一体,分别利用不同波段的光采集待测量物上的同一位置,实现扫描成像与自动聚焦,能够避免扫描相机与测距仪的图像采集点位置不在同一区域时存在高度偏差,导致出现聚焦误差的问题,使采集的图像清晰得到保障;
(2)通过设置控制器分别连接自动聚焦传感器和电机模组,能够直接根据自动聚焦传感器接收的检测数据调节聚焦,有效提高自动聚焦的实时性;
(3)在自动聚焦传感器和分光模块之间设置透镜,将反射光线调制为平行激光后引导进入自动聚焦传感器,实现将无穷远显微物镜系统耦合到非无穷远的线扫描系统,能够有效增大视野范围。
附图说明
 此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种基于线扫描的自动聚焦系统的结构示意图;
图2为本发明实施例提供的激光测距原理示意图;
图3为本发明实施例提供的分光模块的分光透过率曲线示意图;
图4为本发明实施例提供的激光光斑在物镜上的分布示意图;
图5为本发明实施例提供的自动聚焦传感器窗口输入/输出激光光斑示意图;
图6为一种现有的扫描测距系统结构示意图;
图7为另一种现有的扫描测距系统结构示意图;
图8为图7中平行激光入瞳/出瞳原理示意图;
图9为本发明实施例提供的一种基于线扫描的自动聚焦方法的流程图。
实施方式
 需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以互相组合。下面将参考附图并结合实施例来说明本发明。
 为了使本领域普通技术人员更好地理解本发明的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,都应当属于本发明的保护范围。
 需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等适用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解这样使用的术语在适当情况下可以互换,以便这里描述的本发明实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外。术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备国有的其它步骤或单元。
 还需要说明的是,本发明中多个实施例的划分仅是为了描述的方便,不应构成特别的限定,各种实施例中的特征在不矛盾的情况下可以相结合,相互引用。
 如图1所示,本发明第一实施例提出一种基于线扫描的自动聚焦系统,例如包括:光源模块、分光模块3、显微物镜2和线扫检测模块。所述光源模块例如包括:一光源、透镜7和自动聚焦传感器8。
 其中,自动聚焦传感器8(AF Sensor,Auto Focus Sensor)例如集成有所述光源,用于输出平行激光,作为自动聚焦传感器8的光路光源。
 具体的,例如由透镜7将光源产生的第一波段的光引导至分光模块3,分光模块3用于透射第一波段的光和反射第二波段的光,以使第一波段的光在显微物镜2的镜头上形成激光光斑。
 由显微物镜2将光源光线聚焦到待测量物上,并获取经待测量物反射的反射光线。该反射光线沿着原自动聚焦光路返回,其中第一波长的光线通过分光模块3,并经透镜7耦合至自动聚焦传感器8中测得待测量物的离焦信息。
 具体测距原理如下:
结合图2所示,焦点上方激光光斑呈现为右侧半圆,交点处激光汇聚为一点,焦点下方激光光斑呈现为左侧半圆。由此,检测物在焦点处聚焦,在焦点上方或下方时,激光光斑的质心位置与高度方向的坐标近视线性关系,因此只要知道光斑质心的位置即可得知聚焦高度的位置。
 进一步的,自动聚焦系统例如还包括控制器9和电机模组10,控制器9分别通信连接自动聚焦传感器8和电机模组10,用于获取待测量物的离焦信息,并发送控制信号至所述电机模组,可由电机模组10控制自动聚焦系统整体相对待测量物上下移动进行聚焦。
 由于线扫描系统一般都是物面运动进行采集图像,在移动的过程中,待测量物表面高度有一定的偏差,通过本实施例提出的AF系统按一定的采样周期进行测量,由电机模组移动补偿,能够实现实时聚焦的功能。
 承上所述,线扫检测模块例如包括反射镜4和线扫描相机5,分光模块3例如还将所述反射光线中第二波长的光线经由反射镜4反射至线扫描相机5中进行成像。
 具体的,例如通过调整透镜7所在的位置标定显微物镜2的焦平面与所述线扫检测模块的焦平面共焦,将待测量物1置于显微物镜2的测量视野内进行线扫测量。
 进一步的,分光模块3例如为陷波滤光片或半透半反镜与普通单侧滤光片的组合。举例而言,分光模块3为长波通滤光片,其分光透过率曲线如图3中所示,使激光波长范围为750-800nm的非可见光透射,用于获取被测物的离焦信息,并使激光波长范围为400-700nm 的可见光反射,用于成像。
 进一步的,如图4所示,所述激光光斑例如覆盖物镜2的一半镜头区域,并且反射光线通过物镜2的另一半镜头区域,对应图5所示为AF Sensor 窗口输入和输出的激光光斑示意图。如果激光光斑覆盖的面积过多或过少,可通过调节AF sensor进行平移。
 如此一来,使得自动聚焦光路和线扫描检测光路耦合一体,以不同波段的光线分别实现测距与成像功能,能够避免采用图6所示的现有技术,其扫描相机与测距仪的图像采集点位置不在同一区域时存在高度偏差,导致出现聚焦误差的问题,使采集的图像清晰得到保障。并且,能够直接根据AF sensor接收的检测数据调节聚焦,有效提高自动聚焦的实时性。
 另外,由于激光光斑入瞳出瞳各占激光光斑一半区域,结合图7和图8所示的现有技术方案,其通过平行激光直接聚焦进行显微检测的扫描视野范围较小,如在相同的倍率5X下,视野宽度只有4.8mm,而本实施例通过在自动聚焦传感器8和陷波滤光片3之间设置透镜7,该透镜7可以为正透镜或负透镜,将反射光线调制为平行激光后引导进入自动聚焦传感器,实现将无穷远显微物镜系统耦合到非无穷远的线扫描系统,能够有效增大视野范围,例如使用16K线扫描相机,5X的镜头下,视野宽度可以达到16.4mm。优选的,透镜7选用负透镜,能够有效减小光程,以减小自动聚焦系统的整体体积,节约成本。
 进一步的,所述基于线扫描的自动聚焦系统例如还包括平板玻璃6,设置于透镜7与分光模块3之间,用于补偿分光模块3的像差。
 综上所述,本发明实施例提出的一种基于线扫描的自动聚焦系统,通过设置自动聚焦传感器线和扫检测模块光路耦合一体,分别利用不同波段的光采集待测量物上的同一位置,实现扫描成像与自动聚焦,能够避免扫描相机与测距仪的图像采集点位置不在同一区域时存在高度偏差,导致出现聚焦误差的问题,使采集的图像清晰得到保障;并且,设置控制器分别连接自动聚焦传感器和电机模组,能够直接根据自动聚焦传感器接收的检测数据调节聚焦,有效提高自动聚焦的实时性;另外,在自动聚焦传感器和分光模块之间设置透镜,将反射光线调制为平行激光后引导进入自动聚焦传感器,实现将无穷远显微物镜系统耦合到非无穷远的线扫描系统,能够有效增大视野范围。
 如图9所示,本发明第二实施例提出一种基于线扫描的自动聚焦方法,例如包括步骤S1至S5。其中,步骤S1,将光源产生的第一波段的光引导至分光模块透射进入显微物镜,并使显微物镜出射的第一波段的光经所述分光模块透射后进入所述自动聚焦传感器;步骤S2,将显微物镜出射的第二波段的光经所述分光模块反射后引导至线扫检测模块;步骤S3,通过调整所述透镜的位置标定所述显微物镜的焦平面与所述线扫检测模块的焦平面共焦后,将所述待测量物置于显微物镜测量视野内进行线扫测量;步骤S4,通过调整所述自动聚焦系统整体与所述待测量物的相对位置实现所述线扫检测模块的自动聚焦。
 值得一提的是,本发明第二实施例提出基于线扫描的自动聚焦方法适用于前述第一实施例中提出的基于线扫描的自动聚焦系统,具体的基于线扫描的自动聚焦系统的结构及功能可参考第一实施例所述的内容,在此不再详细讲述,且本实施例提供基于线扫描的自动聚焦方法的有益效果同第一实施例提供的基于线扫描的自动聚焦系统的有益效果相同。
 本发明第三实施例还提出一种电子设备,例如包括:至少一个处理单元、以及至少一个存储单元,其中,所述存储单元存储有计算机程序,当所述计算机程序被所述处理单元执行时,使得所述处理单元执行如第一实施例所述的方法,且本实施例提供的电子设备的有益效果与第二实施例提供的基于线扫描的自动聚焦方法的有益效果相同。
 本发明第四实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤,且本实施例提供的计算机可读存储介质的有益效果与第二实施例提供的基于线扫描的自动聚焦方法的有益效果相同。
 其中,计算机可读存储介质可以包括但不限于任何类型的盘,包括软盘、光盘、DVD、CD-ROM、微型驱动器以及磁光盘、ROM、RAM、EPROM、EEPROM、DRAM、VRAM、闪速存储器设备、磁卡或光卡、纳米系统(包括分子存储器IC),或适合于存储指令和/或数据的任何类型的媒介或设备。
 需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
 在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
 在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些服务接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
 另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(Read-Only Memory, ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通进程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(Read-Only Memory, ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
 以上所述者,仅为本公开的示例性实施例,不能以此限定本公开的范围。即但凡依本公开教导所作的等效变化与修饰,皆仍属本公开涵盖的范围内。本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未记载的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的范围和精神由权利要求限定。
 以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
 本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1.  一种基于线扫描的自动聚焦系统,其特征在于,其包括光源模块、分光模块、显微物镜和线扫检测模块,所述光源模块包括一光源、透镜和自动聚焦传感器,其中,
    所述分光模块用于透射第一波段的光和反射第二波段的光;
    所述光源产生的第一波段的光被引导至所述分光模块透射进入所述显微物镜,所述显微物镜出射的第一波段的光经所述分光模块透射后进入所述自动聚焦传感器;
    所述显微物镜出射的第二波段的光经所述分光模块反射后被引导至所述线扫检测模块;
    所述透镜设置在所述自动聚焦传感器和所述分光模块之间,所述光源产生的入射光经过透镜到所述分光模块,第一波段的光经所述分光模块透射后经过所述透镜再传输到所述自动聚焦传感器;
    通过调整所述透镜的位置标定所述显微物镜的焦平面与所述线扫检测模块的焦平面共焦后,将待测量物置于所述显微物镜测量视野内进行线扫测量,通过调整所述自动聚焦系统整体与所述待测量物的相对位置实现所述线扫检测模块的自动聚焦。
  2.  根据权利要求1所述的基于线扫描的自动聚焦系统,其特征在于,还包括:控制器和电机模组,所述控制器分别连接所述自动聚焦传感器和所述电机模组,用于获取被测物的离焦信息,并发送控制信号至所述电机模组,以由所述电机模组控制所述自动聚焦系统整体移动,实现自动聚焦。
  3.  根据权利要求1所述的基于线扫描的自动聚焦系统,其特征在于,所述分光模块透射的第一波段的光在所述显微物镜上形成激光光斑,所述激光光斑覆盖所述显微物镜的一半镜头区域、且所述显微物镜出射的第一波段的光通过另一半镜头区域。
  4.  根据权利要求1所述的基于线扫描的自动聚焦系统,其特征在于,所述分光模块为陷波滤光片或半透半反镜与滤光片的组合。
  5.  根据权利要求4所述的基于线扫描的自动聚焦系统,其特征在于,所述分光模块对波长范围为400-700nm的可见光进行反射,以及对波长范围为750-800nm的非可见光进行透射。
  6.  根据权利要求1所述的基于线扫描的自动聚焦系统,其特征在于,还包括:平板玻璃,设置于所述透镜与所述分光模块之间,用于补偿所述分光模块的像差。
  7.  根据权利要求1所述的基于线扫描的自动聚焦系统,其特征在于,所述透镜选用负透镜,用于减少光程。
  8.  一种基于线扫描的自动聚焦方法,其特征在于,适用于权利要求1-7中任意一项所述的基于线扫描的自动聚焦系统,包括:
    将光源产生的第一波段的光引导至分光模块透射进入显微物镜,并使显微物镜出射的第一波段的光经所述分光模块透射后进入所述自动聚焦传感器;
    将显微物镜出射的第二波段的光经所述分光模块反射后引导至线扫检测模块;
    通过调整所述透镜的位置标定所述显微物镜的焦平面与所述线扫检测模块的焦平面共焦后,将所述待测量物置于显微物镜测量视野内进行线扫测量;
    通过调整所述自动聚焦系统整体与所述待测量物的相对位置实现所述线扫检测模块的自动聚焦。
  9.  一种电子设备,其特征在于,包括:存储器和连接所述存储器的一个或多个处理器,所述存储器存储有计算机程序,所述处理器用于执行所述计算机程序以实现如权利要求8所述的基于线扫描的自动聚焦方法。
  10.  一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求8所述的基于线扫描的自动聚焦方法。
PCT/CN2023/093430 2022-09-05 2023-05-11 一种基于线扫描的自动聚焦系统、方法及应用 WO2024051198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211076094.1A CN115150519B (zh) 2022-09-05 2022-09-05 一种基于线扫描的自动聚焦系统、方法及应用
CN202211076094.1 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024051198A1 true WO2024051198A1 (zh) 2024-03-14

Family

ID=83416554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093430 WO2024051198A1 (zh) 2022-09-05 2023-05-11 一种基于线扫描的自动聚焦系统、方法及应用

Country Status (2)

Country Link
CN (1) CN115150519B (zh)
WO (1) WO2024051198A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150519B (zh) * 2022-09-05 2022-12-23 武汉精立电子技术有限公司 一种基于线扫描的自动聚焦系统、方法及应用
CN116030423B (zh) * 2023-03-29 2023-06-16 浪潮通用软件有限公司 一种区域边界侵入检测方法、设备及介质
CN118317029A (zh) * 2024-06-05 2024-07-09 先临三维科技股份有限公司 三维扫描装置及三维扫描系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142398A1 (en) * 2000-03-08 2003-07-31 Leblans Marc Jan Rene Microscope suitable for high-throughput screening having an autofocusing apparatus
WO2010067256A1 (en) * 2008-12-09 2010-06-17 Koninklijke Philips Electronics N.V. Autofocus for a microscope system.
CN112415735A (zh) * 2020-03-16 2021-02-26 中国科学院深圳先进技术研究院 一种用于显微镜的实时自动对焦系统
WO2021184169A1 (zh) * 2020-03-16 2021-09-23 中国科学院深圳先进技术研究院 一种用于显微镜的实时自动对焦系统
CN114047203A (zh) * 2022-01-13 2022-02-15 武汉精立电子技术有限公司 一种基于光谱共焦的内同轴式自动对焦装置、方法及系统
CN115150519A (zh) * 2022-09-05 2022-10-04 武汉精立电子技术有限公司 一种基于线扫描的自动聚焦系统、方法及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490444B (zh) * 2009-01-23 2015-07-01 Univ Nat Taipei Technology 線型多波長共焦顯微方法與系統
US20130250088A1 (en) * 2012-03-22 2013-09-26 Molecular Devices, Llc Multi-color confocal microscope and imaging methods
CN106441571B (zh) * 2016-11-29 2018-07-31 中国科学院苏州生物医学工程技术研究所 一种光源模块及应用其的线扫描多光谱成像系统
JP6985506B2 (ja) * 2017-09-29 2021-12-22 ライカ バイオシステムズ イメージング インコーポレイテッドLeica Biosystems Imaging, Inc. リアルタイムオートフォーカス合焦アルゴリズム
JP2020012806A (ja) * 2018-07-05 2020-01-23 オリンパス株式会社 発光計測装置及び超解像顕微鏡
CN114577758A (zh) * 2020-12-01 2022-06-03 中国科学院苏州纳米技术与纳米仿生研究所 一种高速激光共聚焦显微成像系统、方法及扫描头
CN113589506B (zh) * 2021-08-05 2022-07-29 浙江大学 一种基于光谱共焦原理的生物显微视觉预对焦装置及方法
CN114460020B (zh) * 2022-01-30 2023-11-17 清华大学深圳国际研究生院 一种基于数字微反射镜的高光谱扫描系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142398A1 (en) * 2000-03-08 2003-07-31 Leblans Marc Jan Rene Microscope suitable for high-throughput screening having an autofocusing apparatus
WO2010067256A1 (en) * 2008-12-09 2010-06-17 Koninklijke Philips Electronics N.V. Autofocus for a microscope system.
CN112415735A (zh) * 2020-03-16 2021-02-26 中国科学院深圳先进技术研究院 一种用于显微镜的实时自动对焦系统
WO2021184169A1 (zh) * 2020-03-16 2021-09-23 中国科学院深圳先进技术研究院 一种用于显微镜的实时自动对焦系统
CN114047203A (zh) * 2022-01-13 2022-02-15 武汉精立电子技术有限公司 一种基于光谱共焦的内同轴式自动对焦装置、方法及系统
CN115150519A (zh) * 2022-09-05 2022-10-04 武汉精立电子技术有限公司 一种基于线扫描的自动聚焦系统、方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LING-YU TANG, MING-FENG GE, WEN-FEI DONG: "Design and research of fully automatic push-broom hyperspectral microscopic imaging system", CHINESE OPTICS, vol. 14, no. 6, 1 January 2021 (2021-01-01), pages 1486 - 1494, XP093147169, ISSN: 2095-1531, DOI: 10.37188/CO.2021-0040 *

Also Published As

Publication number Publication date
CN115150519B (zh) 2022-12-23
CN115150519A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2024051198A1 (zh) 一种基于线扫描的自动聚焦系统、方法及应用
TWI406025B (zh) 自動聚焦裝置及方法
CN101303269B (zh) 光学系统评价装置及光学系统评价方法
US20060249651A1 (en) Image inspection system for correcting focal position in autofocusing
CN111208144B (zh) 一种缺陷检测系统和缺陷检测方法
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
JPH1152224A (ja) 自動焦点検出方法およびその装置並びに検査装置
JP2001108910A (ja) 投射光および透過光観察型顕微鏡
CN116540393B (zh) 自动对焦系统及方法、半导体缺陷检测系统及方法
TW202020436A (zh) 用於樣本的多模式檢查的系統和方法
TWI574072B (zh) 自動對焦系統及其對焦方法
JP2001091821A (ja) 顕微鏡用オートフォーカスシステム
JP2022518950A (ja) 顕微鏡用の光学システム
CN114441531B (zh) 带图像识别的自动聚焦方法、装置、计算机及存储介质
JP2002296018A (ja) 3次元形状計測装置
JP2002522801A (ja) 落射照明接続顕微鏡
JPH07239216A (ja) 共焦点型三次元計測装置及び高さ計測方法
KR20190059411A (ko) 다기능 광학 검사장치
JP2008267842A (ja) 生物観察容器並びにこれを用いる生物顕微鏡及び生物観察装置
CN107843969A (zh) 一种多焦点扫频oct调焦装置及其方法
CN112859317A (zh) 自动对焦显微成像系统
JP4723842B2 (ja) 走査型光学顕微鏡
CN216117309U (zh) 基于光谱共焦原理的生物显微视觉预对焦装置
CN114726995B (zh) 检测方法和检测系统
CN114236799B (zh) 超振荡环带片共焦成像系统的样品实时定焦装置与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861902

Country of ref document: EP

Kind code of ref document: A1