WO2024051169A1 - 小区组网方法、装置、存储介质及电子装置 - Google Patents

小区组网方法、装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2024051169A1
WO2024051169A1 PCT/CN2023/089296 CN2023089296W WO2024051169A1 WO 2024051169 A1 WO2024051169 A1 WO 2024051169A1 CN 2023089296 W CN2023089296 W CN 2023089296W WO 2024051169 A1 WO2024051169 A1 WO 2024051169A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical
physical cell
cell
frequency domain
cells
Prior art date
Application number
PCT/CN2023/089296
Other languages
English (en)
French (fr)
Inventor
王贵兴
付昂
王令斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024051169A1 publication Critical patent/WO2024051169A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and specifically, to a cell networking method, device, storage medium, and electronic device.
  • 3GPP proposed 5G lightweight reduced-capability (RedCap) terminals in R17.
  • terminal tailoring can achieve effects such as reduced terminal costs, ultimate size, and reduced power consumption, which will help promote the large-scale application of 5G terminals, expand the ecosystem of 5G equipment, and expand 5G application scenarios.
  • FR1 frequency range 1
  • NR New Radio
  • BWP initial bandwidth part
  • the system can initially configure the traditional 5G terminal with BWP configuration is provided to RedCap terminals, and RedCap terminals and traditional 5G terminals share the initial bandwidth part (Band Width Part, referred to as BWP).
  • BWP Band Width Part
  • Figure 1 is a schematic diagram of the initial BWP allocation in the existing RedCap technology. As shown in Figure 1, the initial BWP is often larger than the 20MHz bandwidth, so RedCap cannot complete access from the initial BWP.
  • the 3GPP protocol stipulates that the system can configure independent uplink and downlink initial BWP for RedCap terminals.
  • the independent uplink and downlink initial BWP configuration is within 20MHz, which can ensure that the RedCap terminal completes access on the independent uplink and downlink initial BWP.
  • the RedCap terminal After the RedCap terminal synchronizes and parses SIB1 in the Cell define-synchronization signal block (CD-SSB), it issues independent uplink and downlink information based on System Information Block Typel (SIB1).
  • SIB1 System Information Block Typel
  • Initial BWP position for RF retuning and BWP switching As shown in Figure 1. This RF retuning and BWP switching will affect the access delay of 6ms.
  • Embodiments of the present disclosure provide a cell networking method, device, storage medium and electronic device to at least solve the problem of the need to configure independent uplink and downlink initial BWP, RF retuning and BWP switching bands for RedCap terminals in the cell networking method in related technologies. To solve the problem of access delay overhead and increased signaling overhead.
  • a cell networking method includes:
  • the at least two physical cells include a first physical cell and at least a second physical cell, the at least two physical cells are independent of each other, and the first physical cell It is configured for 5G terminals, and the second physical cell is configured for RedCap terminals with reduced capabilities.
  • a cell networking device is also provided, and the device includes:
  • the first establishment module is configured to establish a carrier
  • the second establishment module is configured to establish at least two physical cells on the carrier, wherein the at least two physical cells include a first physical cell and at least one second physical cell, and the at least two physical cells are independent of each other.
  • the first physical cell is configured for 5G terminals
  • the second physical cell is configured for reduced-capability RedCap terminals.
  • a computer-readable storage medium is also provided, and a computer program is stored in the storage medium, wherein the computer program is configured to execute any of the above method embodiments when running. steps in.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Steps in method embodiments.
  • Figure 1 is a schematic diagram of initial BWP allocation in existing RedCap technology
  • Figure 2 is a flow chart of a cell networking method according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of configuring multiple SSBs on a carrier according to this embodiment
  • Figure 4 is a schematic diagram of a carrier, physical cell and logical cell model according to this embodiment
  • Figure 5 is a schematic diagram of establishing two physical cells on a carrier according to this embodiment.
  • Figure 6 is a flow chart of cell modeling according to this embodiment.
  • Figure 7 is a flow chart of physical cell configuration according to this embodiment.
  • Figure 8 is a schematic diagram of the RedCap terminal physical cell bandwidth and frequency domain location configuration according to this embodiment.
  • Figure 9 is a flow chart of physical resource configuration according to this embodiment.
  • Figure 10 is a schematic diagram 1 of establishing two physical cells on a carrier according to this optional embodiment
  • Figure 11 is a schematic diagram 2 of establishing two physical cells on a carrier according to this optional embodiment
  • Figure 12 is a schematic diagram of configuring logical cells according to this embodiment.
  • Figure 13 is a schematic diagram of a user configuration interface according to this embodiment.
  • Figure 14 is a block diagram of a cell networking device according to an embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a cell networking method according to an embodiment of the present disclosure. As shown in Figure 2, the process includes the following steps:
  • Step S202 establish a carrier
  • Step S202 Establish at least two physical cells on the carrier, wherein the at least two physical cells include a first physical cell and at least one second physical cell, the at least two physical cells are independent of each other, and the first physical cell The cell is configured for 5G terminals, and the second physical cell is configured for reduced-capability RedCap terminals.
  • the physical cells in this embodiment are independent of each other and have their own broadcast messages.
  • the networking method of multiple physical cells can support independent configuration of parameters between physical cells to achieve the purpose of different coverage demand scenarios, avoid the access delay overhead caused by RF retuning and BWP switching, and can also avoid the redcap Introducing the impact of increasing the signaling overhead of traditional 5G terminals.
  • the method further includes: configuring cell bandwidth and frequency domain location for the first physical cell and the second physical cell respectively. Specifically, setting the first physical cell to Configuring the cell bandwidth of the physical cell to be less than or equal to the carrier bandwidth, configuring the frequency domain positions of the first physical cell and the second physical cell; determining the frequency domain positions of the first physical cell and the second physical cell Relationship; configure physical resources for the first physical cell and the second physical cell respectively according to the frequency domain position relationship, and further configure the physical resources according to the cell bandwidth and the frequency of the first physical cell and the second physical cell.
  • the domain location relationship configures the physical resources of the first physical cell and the second physical cell.
  • the frequency domain location relationship is the inclusion relationship or the overlapping relationship; if the determination result is no
  • the physical resources between the first physical cell and the second physical cell are independently configured according to the cell bandwidths of the first physical cell and the second physical cell respectively; when the judgment result is yes, Physical resources between the first physical cell and the second physical cell are staggered in the time domain, frequency domain or spatial domain according to the cell bandwidths of the first physical cell and the second physical cell respectively.
  • the second physical cell and the first physical cell include one of the following frequency domain position relationships: the first physical cell includes the frequency domain position of the second physical cell. relationship, an overlapping relationship in which the frequency domain position of the second physical cell partially overlaps with the frequency domain position of the first physical cell, the frequency domain position of the second physical cell and the frequency domain position of the first physical cell The staggered relationship of domain position frequency division stagger.
  • the method further includes: establishing at least two logical cells, and establishing a mapping relationship between the at least two logical cells and the at least two physical cells.
  • the method further includes: configuring at least the following carrier parameters of the carrier: center frequency point, carrier bandwidth, number of antennas, and duplex mode.
  • the Multi-CD SSB method is used to support the establishment of multiple physical cells on the carrier.
  • One or more physical cells are specially configured for RedCap terminals.
  • Each physical cell has independent CD-SSB, RMSI (Remaining Minimum System Information, BWP, CORESET (Control Resource Set, Control Resource Set), etc.
  • RMSI Remaining Minimum System Information
  • BWP Base
  • CORESET Control Resource Set, Control Resource Set
  • Support the rapid access of RedCap terminals by configuring a dedicated physical cell to avoid RF The access delay overhead caused by retuning and BWP switching. And it can avoid the impact of the introduction of RedCap on the increase in signaling overhead of traditional 5G terminals.
  • this embodiment can also support independent configuration of parameters between physical cells, such as power configuration and beam direction, by networking according to multiple physical cells, so as to achieve the purpose of scenarios with different coverage requirements.
  • broadcast information is independent of each other, different paging, reselection and other strategies can be configured for 5G traditional terminals and RedCap terminals.
  • Figure 3 is a schematic diagram of configuring multiple SSBs on a carrier according to this embodiment.
  • 3GPP defines that multiple SSBs can be configured on a carrier. Multiple SSBs can be configured on one carrier; multiple SSBs are divided into two Class: CD-SSB (SSB1, SSB3 in Figure 3) and non-CD-SSB (SSB2, SSB4 in Figure 3).
  • CD-SSB represents cell-defined SSB, which can define a cell: including PCI (Physical Cell Identifier, physical cell identifier), initial CORESET, initial BWP, RMSI, etc.
  • Figure 4 is a schematic diagram of the carrier, physical cell and logical cell model according to this embodiment.
  • the physical NR carrier cell on the network side (base station) under the carrier and cell three-layer model includes a set of baseband + radio frequency + Antenna software and hardware resources can provide one or more physical NR cell functions.
  • Physical cell a physical NR cell (PCI+SSB frequency point) that can be sensed by the UE side under the three-layer cell model, can be synchronized and wirelessly accessed for uplink/downlink data transmission.
  • a physical NR cell can provide one or more logical NR cell functions. In unambiguous scenarios, it is also called physical NR cell/physical cell/physical DU cell.
  • Logical cell a logical NR cell that can be perceived by the UE side under the three-layer cell model.
  • the UE perceives all logical NR cells by receiving the SIBl message of the physical NR cell.
  • the PLMN is selected and the logical NR cell is also selected. .
  • it is also called logical NR cell/logical cell/logical DU cell.
  • the physical cell used for FR1RedCap is configured with a 20M bandwidth and is specifically used for access and services of RedCap terminals.
  • FIG. 5 is a schematic diagram of establishing two physical cells on a carrier according to this embodiment.
  • two physical cells are established on a carrier, and physical cell 1 is used for traditional 5G terminal access.
  • Physical cell 2 is used for RedCap terminal access, and the bandwidth is configured as 20M (FR1).
  • Both physical cells have independent configurations such as CD-SSB, initial CORESET, initial BWP, and RMSI. After the physical RedCap terminal searches for the CD-SSB, it can complete access from this 20M bandwidth physical cell. It does not involve the issues of RF-retuning and BWP switching.
  • Figure 6 is a flow chart of cell modeling according to this embodiment. As shown in Figure 6, it includes:
  • Step S601 Carrier configuration. Specifically, configure carrier parameters such as carrier center frequency, bandwidth, number of antennas, and duplex mode.
  • Step S602 physical cell configuration.
  • Figure 7 is a flow chart of physical cell configuration according to this embodiment. As shown in Figure 7, it includes:
  • Step S701 traditional 5G terminal physical cell bandwidth and frequency domain location configuration, where the bandwidth of the physical cell is less than or equal to the carrier bandwidth;
  • Step S702 RedCap terminal physical cell bandwidth and frequency domain location configuration.
  • Figure 8 is a schematic diagram of the RedCap terminal physical cell bandwidth and frequency domain location configuration according to this embodiment. As shown in Figure 8, for the FR1 frequency band, the bandwidth configuration is 20M. Among them, the frequency domain positions of the physical cells of RedCap terminals and the physical cells of traditional 5G terminals include, partially overlap, and the frequency division is staggered.
  • Step S703 configure the physical resources of the traditional 5G terminal physical cell.
  • the physical resources under the network include CD-SSB, BWP, CORESET and other parameters, as well as downlink transmit power and SSB weight.
  • Step S704 RedCap terminal physical cell physical resource configuration, configure physical resources under the physical cell according to the bandwidth and frequency domain location of the traditional RedCap terminal physical cell, and the frequency domain location relationship between the traditional 5G terminal physical cell and the RedCap terminal physical cell, including Parameters such as CD-SSB, BWP, CORESET, as well as downlink transmit power and SSB weight.
  • Figure 9 is a flow chart of physical resource configuration according to this embodiment. As shown in Figure 9, it includes:
  • Step S901 Determine whether the frequency domain between physical cells has an inclusive relationship. If so, go to step S904; otherwise, go to step S902.
  • Step S902 Determine whether the frequency domains between physical cells have an overlapping relationship. If so, go to step S904; otherwise, go to step S903.
  • Step S903 Physical channel resources between physical cells are configured independently without affecting each other.
  • Step S904 The physical resource configuration between physical cells needs to be staggered in the time domain, frequency domain or air domain to avoid mutual interference.
  • Step S705 Associate the configured physical cell of the traditional 5G terminal and the physical cell of the RedCap terminal to the same carrier.
  • Step S603 logical cell configuration, configure and establish multiple logical cells, including logical cells of traditional terminal bandwidth and logical cells of the RedCap network; configure relevant parameters of each logical cell; establish a mapping relationship between logical cells and physical cells.
  • Step S604 terminal access, including:
  • the RedCap terminal is connected.
  • the RedCap terminal searches for the CD-SSB of physical cell 2, and the bandwidth of physical cell 2 is configured as 20M.
  • the terminal parses out the SIB1 issued by the base station, and the terminal directly accesses the initial BWP of physical cell 2.
  • the traditional terminal searches for the CD-SSB of physical cell 1, and the terminal parses out the SIB1 issued by the base station. This SIB1 does not contain any RedCap related content.
  • the terminal directly accesses the initial BWP of physical cell 1.
  • Figure 10 is a schematic diagram of establishing two physical cells on a carrier according to this optional embodiment.
  • FR1 100M bandwidth spectrum first establish a 100M carrier, configure the center frequency point, and the carrier bandwidth is 100M.
  • Two physical cells are established.
  • Physical cell 1 has a bandwidth of 100M and overlaps with the carrier.
  • Physical cell 2 has a bandwidth of 20M and is on the high frequency band of the carrier.
  • the frequency band of physical cell 1 includes physical cell 2.
  • configure the frequency domain location of physical resources such as SSB, BWP and CoreSet of each physical cell.
  • Establish a mapping relationship between a carrier and two physical cells physical cell 1 and physical cell 2 are associated with the same carrier. Configure two logical cells.
  • Physical cell 1 corresponds to logical cell 1
  • physical cell 2 corresponds to logical cell 2.
  • the Redcap terminal searches for the SSB of physical cell 2 and then accesses it from physical cell 2.
  • Traditional 5G terminals access from physical cell 1.
  • the SIB message on physical cell 1 does not contain RedCap related configurations, and traditional 5G terminals do not perceive the existence of RedCap terminals.
  • Figure 11 is a second schematic diagram of establishing two physical cells on a carrier according to this optional embodiment.
  • FR1 40M bandwidth spectrum first establish a 40M carrier, configure the center frequency point, and the carrier bandwidth is 40M.
  • Two physical cells are established, where physical cell 1 has a bandwidth of 30M and is in the low frequency band, and physical cell 2 has a bandwidth of 20M and is on the high frequency band of the carrier.
  • the frequency band of physical cell 1 and the spectrum of physical cell 2 partially overlap.
  • configure the frequency domain location of physical resources such as SSB, BWP and CoreSet of each physical cell.
  • Physical cell 1 corresponds to logical cell 1
  • physical cell 2 corresponds to logical cell 2.
  • the Redcap terminal searches for the SSB of physical cell 2 and then accesses it from physical cell 2.
  • Traditional 5G terminals access from physical cell 1.
  • the SIB message on physical cell 1 does not contain RedCap related configurations, and traditional 5G terminals do not perceive the existence of RedCap terminals.
  • FIG. 10 For the FR1 100M bandwidth spectrum, first establish a 100M carrier, configure the center frequency point, and the carrier bandwidth is 100M. Establish two physical cells. The bandwidth of physical cell 1 is 100M and overlaps with the carrier. The bandwidth of physical cell 2 is 20M. on the high frequency band of the carrier. The frequency band of physical cell 1 includes physical cell 2. According to the frequency band position of the physical cell, configure the frequency domain position of physical resources such as SSB, BWP and CoreSet of each cell. Establish a mapping relationship between a carrier and two physical cells: physical cell 1 and physical cell 2 are associated with the same carrier.
  • Figure 12 is a schematic diagram of configuring SSB beams in a physical cell according to this embodiment. Two physical cells are configured with different SSB beams.
  • Physical cell 1 is configured with a 5ms single-cycle frame structure.
  • SSB transmission can be shaped into 8 sub-beams. The symbol positions of these 8 beams in each slot are as follows and are transmitted in time division.
  • the RedCap terminal searches for the SSB of physical cell 2, and then accesses from physical cell 2.
  • Traditional 5G terminals access from physical cell 1.
  • Figure 13 is a schematic diagram of a user configuration interface according to this embodiment. As shown in Figure 13, carriers, physical cells and logical cells have respective user configuration interfaces on the network management system.
  • RedCap terminals fast access of RedCap terminals is supported, and access delay overhead caused by RF retuning and BWP switching is avoided. Avoid the impact of the introduction of RedCap on the increased signaling overhead of traditional 5G terminals. Supports independent configuration of parameters between physical cells, such as power configuration and beam direction, to achieve different coverage scenarios. Broadcast information is independent of each other, and different paging, reselection and other strategies can be configured for 5G traditional terminals and RedCap terminals.
  • Figure 14 is a block diagram of a cell networking device according to an embodiment of the present disclosure. As shown in Figure 14, the device includes:
  • the first establishment module 142 is configured to establish a carrier
  • the second establishment module 144 is configured to establish at least two physical cells on the carrier, wherein the at least two physical cells include a first physical cell and at least one second physical cell, and the at least two physical cells are mutually exclusive. Independently, the first physical cell is configured for 5G terminals, and the second physical cell is configured for reduced-capability RedCap terminals.
  • the device further includes:
  • a first configuration module configured to configure cell bandwidth and frequency domain location for the first physical cell and the second physical cell respectively;
  • a determination module configured to determine the frequency domain position relationship between the first physical cell and the second physical cell
  • the second configuration module is configured to configure physical resources for the first physical cell and the second physical cell according to the frequency domain location relationship.
  • the first configuration module is further configured to configure the cell bandwidth of the first physical cell to be less than or equal to the carrier bandwidth; configure the frequency of the first physical cell and the second physical cell. domain location.
  • the second physical cell and the first physical cell include one of the following frequency domain location relationships: the first physical cell includes a frequency domain location of the frequency domain location of the second physical cell. It includes an overlapping relationship in which the frequency domain position of the second physical cell partially overlaps with the frequency domain position of the first physical cell, and the frequency domain position of the second physical cell is partially overlapped with the frequency domain position of the first physical cell.
  • the stagger relationship of frequency domain position frequency division stagger is not limited to the frequency domain position of the first physical cell.
  • the second configuration module is further configured to configure the first physical cell and the second physical cell according to the cell bandwidth and the frequency domain position relationship between the first physical cell and the second physical cell. Physical resources of the second physical cell.
  • the second configuration module is further configured to determine whether the frequency domain position relationship is the inclusion relationship or the overlapping relationship; if the determination result is no, the second configuration module is configured to determine whether the frequency domain position relationship is the inclusion relationship or the overlapping relationship.
  • the cell bandwidths of a physical cell and the second physical cell independently configure the physical resources between the first physical cell and the second physical cell; if the judgment result is yes, configure the physical resources between the first physical cell and the second physical cell independently.
  • the physical resources between the first physical cell and the second physical cell are configured in a staggered manner in the time domain, frequency domain or spatial domain with the cell bandwidth of the second physical cell.
  • the device further includes:
  • the third establishment module is configured to establish at least two logical cells, and establish a mapping relationship between the at least two logical cells and the at least two physical cells.
  • the device further includes:
  • the third configuration module is configured to configure at least the following carrier parameters of the carrier: center frequency point, carrier bandwidth, number of antennas, and duplex mode.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present disclosure can be implemented using general-purpose computing devices, and they can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Abstract

本公开实施例提供了一种小区组网方法、装置、存储介质及电子装置,该方法包括:建立载波;在所述载波上建立至少两个物理小区,至少两个物理小区包括第一物理小区,至少一个第二物理小区,该至少两个物理小区相互独立,第一物理小区是为5G终端配置的,第二物理小区是为降能力RedCap终端配置的,可以解决相关技术中小区组网方式,需要为RedCap终端配置独立的上下行初始BWP,RF retuning和BWP切换带来接入时延开销,且信令开销变大的问题,按照多个物理小区进行组网的方式能支持物理小区间参数独立配置,以达到不同覆盖需求场景的目的,避免RF retuning和BWP切换带来的接入时延开销,且还可以避免由于RedCap引入对传统5G终端信令开销变大的影响。

Description

小区组网方法、装置、存储介质及电子装置
相关申请的交叉引用
本公开基于2022年09月05日提交的发明名称为“小区组网方法、装置、存储介质及电子装置”的中国专利申请CN202211079274.5,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种小区组网方法、装置、存储介质及电子装置。
背景技术
3GPP在R17中提出了5G轻量级降能力(reduced-capability,简称为RedCap)终端。在确保业务需求及性能的前提下,通过终端裁剪,达到终端成本降低、尺寸极致、功耗减少等效果,有助于推动5G终端规模应用、拓展5G设备的生态系统、扩大5G应用场景。在频率范围1(frequency range 1,简称为FR1)频段上,基于新空口(New radio,简称为NR)UE的100MHz带宽,将RedCap UE支持的最大带宽缩减为20MHz,适用于业务需求相对低的5G终端通信使用。
为了与传统5G终端兼容共存,当系统从终端节能考虑为传统5G终端配置初始带宽部分(Bandwidth part,简称为BWP)不超过20MHz时,从兼容共存和资源共用考虑,系统可将传统5G终端初始BWP配置提供给RedCap终端,RedCap终端和传统5G终端共享初始带宽部分(Band Width Part,简称为BWP)。但是在实际现网中,图1是现有RedCap技术中初始BWP分配的示意图,如图1所示,初始BWP往往大于20MHz带宽,那么RedCap无法从初始BWP上完成接入。针对这种情况,3GPP协议中规定系统可为RedCap终端配置独立上下行初始BWP,独立上下行初始BWP配置在20MHz之内,可以保证RedCap终端在独立上下行初始BWP上完成接入。RedCap终端在小区定义同步块(Cell define-synchronization signal block,简称为CD-SSB)同步完解析出SIB1后,根据系统消息块类型1(System Information Block Typel,简称为SIB1)下发的独立上下行初始BWP位置进行RF retuning和BWP切换。如图1所示。这种RF retuning和BWP切换会影响6ms的接入时延。(38.133协议规定基于RRC消息的BWP时延为6ms。“TBWPswitchDelayRRC=6ms is the time used by the UE to perform BWP switch.”)。
另外,传统的组网方式上,需要为RedCap终端配置独立的上下行初始BWP,由于RedCap UE和Legacy UE使用同一套SIB1消息,必然会导致SIB1消息内增加,信令开销变大,影响传统5G终端接收和解析SIB1消息。
针对相关技术中小区组网方式,需要为RedCap终端配置独立的上下行初始BWP,RF retuning和BWP切换带来接入时延开销,且信令开销变大的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种小区组网方法、装置、存储介质及电子装置,以至少解决相关技术中小区组网方式,需要为RedCap终端配置独立的上下行初始BWP,RF retuning和BWP切换带来接入时延开销,且信令开销变大的问题。
根据本公开的一个实施例,提供了一种小区组网方法,所述方法包括:
在所述载波上建立至少两个物理小区,其中,所述至少两个物理小区包括第一物理小区,至少一个第二物理小区,所述至少两个物理小区相互独立,所述第一物理小区是为5G终端配置的,所述第二物理小区是为降能力RedCap终端配置的。
根据本公开的另一个实施例,还提供了一种小区组网装置,所述装置包括:
第一建立模块,设置为建立载波;
第二建立模块,设置为在所述载波上建立至少两个物理小区,其中,所述至少两个物理小区包括第一物理小区,至少一个第二物理小区,所述至少两个物理小区相互独立,所述第一物理小区是为5G终端配置的,所述第二物理小区是为降能力RedCap终端配置的。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是现有RedCap技术中初始BWP分配的示意图;
图2是根据本公开实施例的小区组网方法的流程图;
图3是根据本实施例的载波上配置多个SSB的示意图;
图4是根据本实施例的载波、物理小区及逻辑小区模型的示意图;
图5是根据本实施例的载波上建立两个物理小区的示意图;
图6是根据本实施例的小区建模的流程图;
图7是根据本实施例的物理小区配置的流程图;
图8是根据本实施例的RedCap终端物理小区带宽和频域位置配置的示意图;
图9是根据本实施例的物理资源配置的流程图;
图10是根据本可选实施例的载波上建立两个物理小区的示意图一;
图11是根据本可选实施例的载波上建立两个物理小区的示意图二;
图12是根据本实施例的配置逻辑小区的示意图;
图13是根据本实施例的用户配置界面的示意图;
图14是根据本公开实施例的小区组网装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种小区组网方法,图2是根据本公开实施例的小区组网方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,建立载波;
步骤S202,在载波上建立至少两个物理小区,其中,所述至少两个物理小区包括第一物理小区,至少一个第二物理小区,所述至少两个物理小区相互独立,所述第一物理小区是为5G终端配置的,所述第二物理小区是为降能力RedCap终端配置的。
本实施例中的物理小区之间相互独立,具有各自的广播消息。
通过上述步骤S202至S204,可以解决相关技术中小区组网方式,需要为RedCap终端配置独立的上下行初始BWP,RF retuning和BWP切换带来接入时延开销,且信令开销变大的问题,按照多个物理小区进行组网的方式能支持物理小区间参数独立配置,以达到不同覆盖需求场景的目的,避免RF retuning和BWP切换带来的接入时延开销,且还可以避免由于RedCap引入对传统5G终端信令开销变大的影响。
在一实施例中,在上诉步走向S202之后,所述方法还包括:分别为所述第一物理小区与所述第二物理小区配置小区带宽和频域位置,具体的,将所述第一物理小区的小区带宽配置为小于或等于载波带宽,配置所述第一物理小区与所述第二物理小区的频域位置;确定所述第一物理小区与所述第二物理小区的频域位置关系;分别根据所述频域位置关系为所述第一物理小区与所述第二物理小区配置物理资源,进一步根据所述第一物理小区与所述第二物理小区的小区带宽及所述频域位置关系配置所述第一物理小区与所述第二物理小区的物理资源,具体的,判断所述频域位置关系是否为所述包含关系或所述交叠关系;在判断结果为否的情况下,分别根据所述第一物理小区与所述第二物理小区的小区带宽对所述第一物理小区与第二物理小区间的物理资源进行独立配置;在判断结果为是的情况下,分别根据所述第一物理小区与所述第二物理小区的小区带宽对所述第一物理小区与所述第二物理小区间的物理资源在时域、频域或空域上错开配置。
本实施例中,所述第二物理小区与所述第一物理小区包括以下之一频域位置关系:所述第一物理小区包含所述第二物理小区的频域位置的频域位置的包含关系,所述第二物理小区的频域位置与所述第一物理小区的频域位置部分交叠的交叠关系,所述第二物理小区的频域位置与所述第一物理小区的频域位置频分错开的错开关系。
在一实施例中,所述方法还包括:建立至少两个逻辑小区,并建立所述至少两个逻辑小区与所述至少两个物理小区的映射关系。
在另一实施例中,在上述步骤S202之后,所述方法还包括:配置所述载波的至少以下载波参数:中心频点、载波带宽、天线数、双工模式。
本实施例中采用Multi-CD SSB的方式,支持在载波上建立多个物理小区,针对RedCap终端专门配置1个或多个物理小区,每个物理小区具备相互独立的CD-SSB、RMSI(Remaining Minimum System Information,乘余系统消息)、BWP、CORESET(Control Resource Set,控制资源集)等。通过配置专门的物理小区方式来支持RedCap终端的快速接入,避免RF  retuning和BWP切换带来的接入时延开销。并且可以避免由于RedCap引入对传统5G终端信令开销变大的影响。本实施例除了能解决上述问题外,由于按照多个物理小区进行组网的方式还能支持物理小区间参数独立配置,比如功率配置和波束方向等,以达到不同覆盖需求场景的目的。另外,由于广播信息相互独立,对于5G传统终端和RedCap终端可以配置不同的寻呼、重选等策略。
图3是根据本实施例的载波上配置多个SSB的示意图,如图3所示,3GPP上定义载波上可以配置多个SSB,一个载波上,可以配置多个SSB;多个SSB分为两类:CD-SSB(图3中SSB1、SSB3)和非CD-SSB(图3中SSB2、SSB4)。CD-SSB表示cell-define的SSB,可以定义一个小区:包含PCI(Physical Cell Identifier,物理小区标识)、初始CORESET、初始BWP、RMSI等。
图4是根据本实施例的载波、物理小区及逻辑小区模型的示意图,如图4所示,载波,小区三层模型下网络侧(基站)的物理NR载波小区,包含一套基带+射频+天线软硬件资源,可提供1个或多个物理NR小区功能。传统的小区模型载波和物理小区是一一对应的,即一个载波对应一个物理小区。
物理小区,小区三层模型下UE侧可感知的物理NR小区(PCI+SSB频点),可以同步并无线接入,从而进行上行/下行数据传输。物理NR小区可提供1个或多个逻辑NR小区功能。无歧义场景下,也称物理NR小区/物理小区/物理DU小区。
逻辑小区,小区三层模型下UE侧可感知的逻辑NR小区,UE通过接收物理NR小区的SIBl消息感知所有的逻辑NR小区,UE接入时选定了PLMN也就同时选定了逻辑NR小区。无歧义场景下,也称逻辑NR小区/逻辑小区/逻辑DU小区。用于FR1RedCap的物理小区配置成20M带宽,专门用于RedCap终端的接入和业务。
图5是根据本实施例的载波上建立两个物理小区的示意图,如图5所示,载波上建立两个物理小区,物理小区1用于传统5G终端接入。物理小区2用于RedCap终端接入,带宽配置为20M(FR1)。两个物理小区上,都有独立的CD-SSB、初始CORESET、初始BWP、RMSI等配置。物理RedCap的终端搜索到该CD-SSB后即可从这个20M带宽的物理小区上完成接入。不涉及到RF-retuning和BWP切换的问题。
图6是根据本实施例的小区建模的流程图,如图6所示,包括:
步骤S601,载波配置,具体的,配置载波中心频点、带宽、天线数、双工模式等载波类参数。
步骤S602,物理小区配置,图7是根据本实施例的物理小区配置的流程图,如图7所示,包括:
步骤S701,传统5G终端物理小区带宽和频域位置配置,其中,物理小区的带宽小于等于载波带宽;
步骤S702,RedCap终端物理小区带宽和频域位置配置,图8是根据本实施例的RedCap终端物理小区带宽和频域位置配置的示意图,如图8所示,对于FR1频段,带宽配置为20M。其中RedCap终端的物理小区和传统5G终端物理小区的频域位置包含、部分交叠、频分错开等关系。
步骤S703,传统5G终端物理小区物理资源配置,根据传统5G终端物理小区的带宽和频域位置,以及传统5G终端物理小区和RedCap终端物理小区之间频域位置关系配置物理小区 下的物理资源,包括CD-SSB、BWP、CORESET等参数,以及下行发送功率,SSB权值。
步骤S704,RedCap终端物理小区物理资源配置,根据传统RedCap终端物理小区的带宽和频域位置,以及传统5G终端物理小区和RedCap终端物理小区之间频域位置关系配置物理小区下的物理资源,包括CD-SSB、BWP、CORESET等参数,以及下行发送功率,SSB权值。
图9是根据本实施例的物理资源配置的流程图,如图9所示,包括:
步骤S901,判断物理小区间频域是否是包含关系,如果是转步骤S904,否则转步骤S902。
步骤S902,判断物理小区间频域是否是交叠关系,如果是转步骤S904,否则转步骤S903。
步骤S903,物理小区间的物理信道资源独立配置,互不影响。
步骤S904,物理小区间的物理资源配置需要保证时域、频域或者空域错开,避免相互间产生干扰。
步骤S705,将配置的传统5G终端物理小区和RedCap终端物理小区关联到同一个载波上。
步骤S603,逻辑小区配置,配置建立多个逻辑小区,包含传统终端带宽的逻辑小区和RedCap网络的逻辑小区;配置各个逻辑小区的相关参数;建立逻辑小区和物理小区之间的映射关系。
步骤S604,终端接入,包括:
RedCap终端接入,RedCap终端搜索到物理小区2的CD-SSB,物理小区2带宽配置为20M。终端解析出基站下发的SIB1,终端在物理小区2的初始BWP上直接接入。
传统5G终端接入,传统终端搜索到物理小区1的CD-SSB,终端解析出基站下发的SIB1,该SIB1不包含任何RedCap相关内容。终端在物理小区1初始BWP上直接接入。
图10是根据本可选实施例的载波上建立两个物理小区的示意图一,如图10所示,FR1 100M带宽频谱,先建立100M载波,配置中心频点,载波带宽为100M。建立两个物理小区,其中物理小区1带宽为100M,与载波重叠,物理小区2带宽为20M,在载波的高频段上。物理小区1频段包含物理小区2。根据物理小区的频段位置,配置各个物理小区的SSB,BWP和CoreSet等物理资源的频域位置。建立载波和两个物理小区的映射关系:物理小区1和物理小区2关联同一个载波。配置两个逻辑小区。建立物理小区和逻辑小区的映射关系,物理小区1对应逻辑小区1,物理小区2对应逻辑小区2。Redcap终端搜索到物理小区2的SSB,然后从物理小区2上接入。传统5G终端从物理小区1上接入。物理小区1上的SIB消息中不包含RedCap相关配置,传统5G终端不感知RedCap终端存在。
图11是根据本可选实施例的载波上建立两个物理小区的示意图二,如图11所示,FR1 40M带宽频谱,先建立40M载波,配置中心频点,载波带宽为40M。建立两个物理小区,其中物理小区1带宽为30M,在低频段,物理小区2带宽为20M,在载波的高频段上。物理小区1频段和物理小区2频谱部分交叠。根据物理小区的频段位置,配置各个物理小区的SSB,BWP和CoreSet等物理资源的频域位置。建立载波和两个物理小区的映射关系:物理小区1和物理小区2关联同一个载波。配置两个逻辑小区。建立物理小区和逻辑小区的映射关系,物理小区1对应逻辑小区1,物理小区2对应逻辑小区2。Redcap终端搜索到物理小区2的SSB,然后从物理小区2上接入。传统5G终端从物理小区1上接入。物理小区1上的SIB消息中不包含RedCap相关配置,传统5G终端不感知RedCap终端存在。
如图10所示,FR1 100M带宽频谱,先建立100M载波,配置中心频点,载波带宽为100M。建立两个物理小区,其中物理小区1带宽为100M,与载波重叠,物理小区2带宽为20M,在 载波的高频段上。物理小区1频段包含物理小区2。根据物理小区的频段位置,配置各个小区的SSB,BWP和CoreSet等物理资源的频域位置。建立载波和两个物理小区的映射关系:物理小区1和物理小区2关联同一个载波。图12是根据本实施例配置物理小区SSB波束的示意图,两个物理小区配置不同的SSB波束。物理小区1配置为5ms单周期的帧结构,SSB发射可以赋形到8个子波束,这8个波束在每个Slot的符号位置如下,是时分发送的。对于物理小区2也是5ms单周期的帧结构,SSB只发1个宽波束。RedCap终端搜索到物理小区2的SSB,然后从物理小区2上接入。传统5G终端从物理小区1上接入。
图13是根据本实施例的用户配置界面的示意图,如图13所示,载波、物理小区和逻辑小区在网管系统上有各自的用户配置界面。
通过本实施例,支持RedCap终端的快速接入,避免RF retuning和BWP切换带来的接入时延开销。避免由于RedCap引入对传统5G终端信令开销变大的影响。支持物理小区间参数独立配置,比如功率配置和波束方向等,以达到不同覆盖场景的目的。广播信息相互独立,对于5G传统终端和RedCap终端可以配置不同的寻呼、重选等策略。
根据本公开的另一个实施例,还提供了一种小区组网装置,图14是根据本公开实施例的小区组网装置的框图,如图14所示,所述装置包括:
第一建立模块142,设置为建立载波;
第二建立模块144,设置为在所述载波上建立至少两个物理小区,其中,所述至少两个物理小区包括第一物理小区,至少一个第二物理小区,所述至少两个物理小区相互独立,所述第一物理小区是为5G终端配置的,所述第二物理小区是为降能力RedCap终端配置的。
在一实施例中,所述装置还包括:
第一配置模块,设置为分别为所述第一物理小区与所述第二物理小区配置小区带宽和频域位置;
确定模块,设置为确定所述第一物理小区与所述第二物理小区的频域位置关系;
第二配置模块,设置为分别根据所述频域位置关系为所述第一物理小区与所述第二物理小区配置物理资源。
在一实施例中,所述第一配置模块,还设置为将所述第一物理小区的小区带宽配置为小于或等于载波带宽;配置所述第一物理小区与所述第二物理小区的频域位置。
在一实施例中,所述第二物理小区与所述第一物理小区包括以下之一频域位置关系:所述第一物理小区包含所述第二物理小区的频域位置的频域位置的包含关系,所述第二物理小区的频域位置与所述第一物理小区的频域位置部分交叠的交叠关系,所述第二物理小区的频域位置与所述第一物理小区的频域位置频分错开的错开关系。
在一实施例中,所述第二配置模块,还设置为根据所述第一物理小区与所述第二物理小区的小区带宽及所述频域位置关系配置所述第一物理小区与所述第二物理小区的物理资源。
在一实施例中,所述第二配置模块,还设置为判断所述频域位置关系是否为所述包含关系或所述交叠关系;在判断结果为否的情况下,分别根据所述第一物理小区与所述第二物理小区的小区带宽对所述第一物理小区与第二物理小区间的物理资源进行独立配置;在判断结果为是的情况下,分别根据所述第一物理小区与所述第二物理小区的小区带宽对所述第一物理小区与所述第二物理小区间的物理资源在时域、频域或空域上错开配置。
在一实施例中,所述装置还包括:
第三建立模块,设置为建立至少两个逻辑小区,并建立所述至少两个逻辑小区与所述至少两个物理小区的映射关系。
在一实施例中,所述装置还包括:
第三配置模块,设置为配置所述载波的至少以下载波参数:中心频点、载波带宽、天线数、双工模式。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种小区组网方法,所述方法包括:
    建立载波;
    在所述载波上建立至少两个物理小区,其中,所述至少两个物理小区包括第一物理小区,至少一个第二物理小区,所述至少两个物理小区相互独立,所述第一物理小区是为5G终端配置的,所述第二物理小区是为降能力RedCap终端配置的。
  2. 根据权利要求1所述的方法,其中,在所述载波上建立至少两个物理小区之后,所述方法还包括:
    分别为所述第一物理小区与所述第二物理小区配置小区带宽和频域位置;
    确定所述第一物理小区与所述第二物理小区的频域位置关系;
    分别根据所述频域位置关系为所述第一物理小区与所述第二物理小区配置物理资源。
  3. 根据权利要求2所述的方法,其中,分别为所述第一物理小区与所述第二物理小区配置带宽和频域位置包括:
    将所述第一物理小区的小区带宽配置为小于或等于载波带宽;
    配置所述第一物理小区与所述第二物理小区的频域位置。
  4. 根据权利要求2所述的方法,其中,所述第二物理小区与所述第一物理小区包括以下之一频域位置关系:所述第一物理小区包含所述第二物理小区的频域位置的频域位置的包含关系,所述第二物理小区的频域位置与所述第一物理小区的频域位置部分交叠的交叠关系,所述第二物理小区的频域位置与所述第一物理小区的频域位置频分错开的错开关系。
  5. 根据权利要求4所述的方法,其中,分别根据所述频域位置关系为所述第一物理小区与所述第二物理小区配置物理资源包括:
    根据所述第一物理小区与所述第二物理小区的小区带宽及所述频域位置关系配置所述第一物理小区与所述第二物理小区的物理资源。
  6. 根据权利要求5所述的方法,其中,根据所述第一物理小区与所述第二物理小区的小区带宽及所述频域位置关系配置所述第一物理小区与所述第二物理小区的物理资源包括:
    判断所述频域位置关系是否为所述包含关系或所述交叠关系;
    在判断结果为否的情况下,分别根据所述第一物理小区与所述第二物理小区的小区带宽对所述第一物理小区与第二物理小区间的物理资源进行独立配置;
    在判断结果为是的情况下,分别根据所述第一物理小区与所述第二物理小区的小区带宽对所述第一物理小区与所述第二物理小区间的物理资源在时域、频域或空域上错开配置。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述方法还包括:
    建立至少两个逻辑小区,并建立所述至少两个逻辑小区与所述至少两个物理小区的映射关系。
  8. 根据权利要求1至6中任一项所述的方法,其中,在建立所述载波之后,所述方法还包括:
    配置所述载波的至少以下载波参数:中心频点、载波带宽、天线数、双工模式。
  9. 一种小区组网装置,所述装置包括:
    第一建立模块,设置为建立载波;
    第二建立模块,设置为在所述载波上建立至少两个物理小区,其中,所述至少两个物理小区包括第一物理小区,至少一个第二物理小区,所述至少两个物理小区相互独立,所述第一物理小区是为5G终端配置的,所述第二物理小区是为降能力RedCap终端配置的。
  10. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至8任一项中所述的方法。
  11. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
PCT/CN2023/089296 2022-09-05 2023-04-19 小区组网方法、装置、存储介质及电子装置 WO2024051169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211079274.5 2022-09-05
CN202211079274.5A CN117715057A (zh) 2022-09-05 2022-09-05 小区组网方法、装置、存储介质及电子装置

Publications (1)

Publication Number Publication Date
WO2024051169A1 true WO2024051169A1 (zh) 2024-03-14

Family

ID=90150272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089296 WO2024051169A1 (zh) 2022-09-05 2023-04-19 小区组网方法、装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN117715057A (zh)
WO (1) WO2024051169A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640530A (zh) * 2020-11-11 2021-04-09 北京小米移动软件有限公司 接入控制信息处理方法及装置、通信设备及存储介质
WO2021190510A1 (en) * 2020-03-23 2021-09-30 FG Innovation Company Limited Method of initial access and related device
CN113973393A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 随机接入方法、装置、设备及系统
CN114175820A (zh) * 2021-11-01 2022-03-11 北京小米移动软件有限公司 资源配置、确定方法和装置、通信装置和存储介质
CN114846851A (zh) * 2019-12-25 2022-08-02 华为技术有限公司 小区重选方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846851A (zh) * 2019-12-25 2022-08-02 华为技术有限公司 小区重选方法、终端设备和网络设备
WO2021190510A1 (en) * 2020-03-23 2021-09-30 FG Innovation Company Limited Method of initial access and related device
CN113973393A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 随机接入方法、装置、设备及系统
CN112640530A (zh) * 2020-11-11 2021-04-09 北京小米移动软件有限公司 接入控制信息处理方法及装置、通信设备及存储介质
CN114175820A (zh) * 2021-11-01 2022-03-11 北京小米移动软件有限公司 资源配置、确定方法和装置、通信装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Access restriction of RedCap UE", 3GPP TSG-RAN WG2 MEETING #112 ELECTRONIC, R2-2009009, 23 October 2020 (2020-10-23), XP051942054 *

Also Published As

Publication number Publication date
CN117715057A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US20210014842A1 (en) Information sending and receiving methods and devices
US10149292B2 (en) Systems and methods for efficient resource allocation in wireless communication networks
CN109152029B (zh) 一种通信方法、网络设备及用户设备
JP2021518074A (ja) 新無線におけるページングオケージョンの設計
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
KR20190126338A (ko) 신호를 전송하는 방법, 단말 장비 및 네트워크 장비
JP2019525505A (ja) データ伝送のための方法、端末と基地局
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
CN111586842A (zh) 通信方法和通信装置
WO2021159941A1 (zh) 一种通信的方法及装置
US20230199479A1 (en) Capability coordination between wireless devices
CN115065987B (zh) 空闲信道侦听方法、装置及设备
WO2024051169A1 (zh) 小区组网方法、装置、存储介质及电子装置
EP4195815A1 (en) Switching method and apparatus for terminal, device and medium
CN114340005A (zh) 用于执行通信和计算的无线通信系统和方法
EP4062694A1 (en) Group rnti update at beam change
WO2022061733A1 (zh) 无线通信方法和设备
US20240137908A1 (en) Method and apparatus for paging procedure in wireless communication system
WO2023077961A1 (zh) 通信方法和装置
WO2023125091A1 (zh) 通信方法及装置
WO2022061777A1 (zh) 无线通信方法和设备
WO2024032208A1 (zh) 一种通信的方法和装置
WO2024093323A1 (en) Determination of rach occasion groups
WO2022156436A1 (zh) 一种终端识别方法及设备
WO2022061735A1 (zh) 无线通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861875

Country of ref document: EP

Kind code of ref document: A1