WO2024051014A1 - 连续变纤维直径的挤出式3d打印方法、打印系统和应用 - Google Patents
连续变纤维直径的挤出式3d打印方法、打印系统和应用 Download PDFInfo
- Publication number
- WO2024051014A1 WO2024051014A1 PCT/CN2022/137710 CN2022137710W WO2024051014A1 WO 2024051014 A1 WO2024051014 A1 WO 2024051014A1 CN 2022137710 W CN2022137710 W CN 2022137710W WO 2024051014 A1 WO2024051014 A1 WO 2024051014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- extrusion
- printing
- fiber
- pcl
- tcp
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 144
- 238000007639 printing Methods 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000001125 extrusion Methods 0.000 claims abstract description 188
- 238000010146 3D printing Methods 0.000 claims abstract description 92
- 239000011148 porous material Substances 0.000 claims abstract description 26
- 238000000465 moulding Methods 0.000 claims abstract description 12
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 45
- 210000001519 tissue Anatomy 0.000 claims description 12
- 238000009825 accumulation Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 210000000988 bone and bone Anatomy 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 210000000845 cartilage Anatomy 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 230000002792 vascular Effects 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 16
- 238000011049 filling Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Definitions
- the invention relates to the technical field of biomedical engineering, and in particular to an extrusion 3D printing method, printing system and application of continuously changing fiber diameter.
- the purpose of the present invention is to solve the shortcomings of the existing extrusion 3D printing technology for preparing gradient pore scaffolds, especially for radial gradient pore structures, to provide an extrusion 3D printing method, printing system and Application, a method of continuously variable fiber diameter extrusion 3D printing with variable printing speed and extrusion head height is proposed, which is used to prepare controllable gradient pore scaffolds, breaking through the existing extrusion 3D printing products to fill fiber diameter everywhere.
- the same constraints have expanded the application fields and scenarios of extrusion 3D printing technology.
- the present invention provides an extrusion 3D printing method that continuously changes the fiber diameter, establishes the functional relationship between the printing speed and the cross-sectional area of the fiber, and determines the corresponding relationship between the height of the extrusion head and the fiber state; by designing the printing speed at each part of the printing path And/or the height of the extrusion head, forming variable printing speed and/or variable extrusion head height printing, achieving layer-by-layer accumulation molding of continuously variable straight warp fibers, and accurately controlling the fiber diameter everywhere after molding.
- ⁇ -TCP and PCL with a molecular weight of 14,000 are mixed at a weight ratio of 1:4 to prepare ⁇ -TCP/PCL ink.
- the extrusion parameters are: the extrusion air pressure is 400kPa, the inner diameter of the extrusion head is 400 ⁇ m, and the heating temperature is 72°C.
- the establishment process of the functional relationship between the printing speed and the cross-sectional area of the ⁇ -TCP/PCL fiber is as follows:
- V is the volume of ⁇ -TCP/PCL ink extruded per unit time (mm 3 );
- ⁇ t is the unit time (s);
- S is the cross-sectional area of the extruded 3D printed ⁇ -TCP/PCL fiber (mm 2 );
- ⁇ l is the length of the extruded 3D printed ⁇ -TCP/PCL fiber per unit time (mm);
- Q is the flow rate of ⁇ -TCP/PCL ink extruded (mm 3 /s);
- m is the mass of ink extruded in 180s (g), which is obtained by weighing on an electronic balance;
- ⁇ is ⁇ - The density of TCP/PCL ink (kg/m 3 ), ignoring the effect of phase change on its density;
- U is the flow rate of ⁇ -TCP/PCL ink extrusion (mm/s);
- Q is the flow rate of ⁇ -TCP/PCL ink extrusion (mm 3 /s);
- the printing speed is always controlled to be 2-20 times the flow rate of ⁇ -TCP/PCL ink extrusion.
- the height of the extrusion head is always controlled to be 0.4-1.0 times the inner diameter of the extrusion head.
- the ink material is PCL, or GelMA.
- the extrusion 3D printing is room temperature extrusion 3D printing or low temperature freezing extrusion 3D printing.
- the present invention also provides a 3D printing system that adopts the extrusion 3D printing method of continuously changing fiber diameter as described above, including a printing head for loading ink, and a bottom for extruding ink located at the lower end of the printing head.
- the extrusion head as well as the support platform and control device for placing printed products; the vertical distance between the extrusion head and the support platform is the height of the extrusion head, and the movement speed of the extrusion head is called the printing speed; where , the extrusion head height and printing speed are adjusted and changed according to the control device.
- the present invention also provides an application of the extrusion 3D printing method of continuously changing fiber diameter as described above in printing gradient pore tissue engineering scaffolds.
- the scaffolds include bone tissue engineering scaffolds, cartilage tissue engineering scaffolds, and meniscus tissue engineering scaffolds. Stents and vascular tissue engineering scaffolds.
- the present invention also provides an application of the extrusion 3D printing method of continuously changing fiber diameter as described above in printing wearable flexible sensors or superstructures.
- the extrusion 3D printing method of the present invention that continuously changes the fiber diameter establishes the functional relationship between the printing speed and the cross-sectional area of the fiber, and determines the corresponding relationship between the height of the extrusion head and the fiber state; by designing the printing speed and / Or the extrusion head height, forming variable printing speed and/or variable extrusion head height printing, realizing the layer-by-layer accumulation molding of continuously variable straight warp fibers, accurately controlling the fiber diameter everywhere after molding, breaking through the existing extrusion 3D
- the constraint that the filled fiber diameters are the same everywhere in the printed product is used to prepare controllable gradient pore scaffolds, which expands the application of extrusion 3D printing technology in gradient pore scaffolds and expands the application fields and scenarios of extrusion 3D printing technology;
- the present invention adopts a 3D printing system using the extrusion 3D printing method of continuously changing fiber diameter as described above.
- the constructed printing speed and fiber cross-sectional area are different.
- the functional relationship and the corresponding relationship between the height of the extrusion head and the fiber state will be different, but the essential concept of the printing method is the same and has strong versatility.
- Figure 1 is a state diagram of existing extruded 3D printing fibers at different printing speeds and extrusion head heights
- Figure 2 is a cross-sectional statistical diagram of existing extruded 3D printing fibers at different printing speeds and extrusion head heights;
- Figure 3 shows the relationship between printing speed and fiber cross-sectional area under different extrusion head heights
- Figure 4 is an extrusion 3D printing system with continuously variable fiber diameter according to the present invention.
- A is a schematic diagram of extrusion 3D printing with variable fiber diameter, and B is the shear thinning rheological properties of extrusion 3D printing ink.
- C is a schematic diagram of the extrusion 3D printing fiber cross section;
- Figure 5 shows the effect of different extrusion head heights on the fiber state of extrusion 3D printing with continuously variable printing speed
- Figure 6 shows the working principle and sample evaluation of the continuously variable fiber diameter extrusion 3D printing system in Example 1, where A is the traditional fiber accumulation path; B is the target design gradient data distribution; C is the traditional fiber accumulation path and design gradient data Integration; D is a CAD model of a single-layer fiber for variable fiber diameter extrusion 3D printing based on 3D design software; E is a writing rule based on the extrusion 3D printer manufacturing code and the variable fiber diameter extrusion 3D printing design model Matching manufacturing code; F is a sample prepared by extrusion 3D printing with variable fiber diameter; G is a 2D display of fiber width data; H is a 3D display of fiber width data.
- the present invention provides an extrusion 3D printing method that continuously changes the fiber diameter, establishes the functional relationship between the printing speed and the cross-sectional area of the fiber, and determines the corresponding relationship between the height of the extrusion head and the fiber state; by designing the printing speed at each part of the printing path And/or the height of the extrusion head, forming variable printing speed and/or variable extrusion head height printing, achieving layer-by-layer accumulation molding of continuously variable straight warp fibers, and accurately controlling the fiber diameter everywhere after molding.
- the present invention introduces a continuously controllable fiber diameter extrusion 3D printing system with variable printing speed and variable extrusion head height based on the existing extrusion 3D printing technology. It obtains a gradient pore structure by precisely controlling the changes in the diameter of the filled fibers everywhere. This requires that the fibers distributed throughout the entire model should have corresponding printing speeds and extrusion head heights to ensure fiber status and fiber diameter. Meets design expectations.
- the present invention needs to establish the functional relationship between the printing speed and the cross-sectional area of the fiber, and determine the corresponding relationship between the height of the extrusion head and the fiber state.
- ⁇ -TCP and PCL with a molecular weight of 14,000 are mixed at a weight ratio of 1:4 to prepare ⁇ -TCP/PCL ink.
- the extrusion parameters are: the extrusion air pressure is 400kPa, the inner diameter of the extrusion head is 400 ⁇ m, and the heating temperature is 72°C.
- the mathematical theoretical model is explored.
- the functional relationship between the printing speed and the cross-sectional area of the ⁇ -TCP/PCL fiber is established as follows. :
- V is the volume of ⁇ -TCP/PCL ink extruded per unit time (mm 3 );
- ⁇ t is the unit time (s);
- S is the cross-sectional area of the extruded 3D printed ⁇ -TCP/PCL fiber (mm 2 );
- ⁇ l is the length of the extruded 3D printed ⁇ -TCP/PCL fiber per unit time (mm);
- Q is the flow rate of ⁇ -TCP/PCL ink extruded (mm 3 /s);
- m is the mass of ink extruded in 180s (g), which is obtained by weighing on an electronic balance;
- ⁇ is ⁇ - The density of TCP/PCL ink (kg/m 3 ), ignoring the effect of phase change on its density;
- U is the flow rate of ⁇ -TCP/PCL ink extrusion (mm/s);
- Q is the flow rate of ⁇ -TCP/PCL ink extrusion (mm 3 /s);
- ⁇ -TCP Sigma-Aldrich, USA
- PCL Aldrich, USA
- the extrusion parameters were: extrusion air pressure is 400kPa, the inner diameter of the extrusion head is 400 ⁇ m, and the heating temperature is 72°C
- the functional relationship between the printing speed and the cross-sectional area of the ⁇ -TCP/PCL fiber and the extrusion in the above theoretical mathematical model were also tested and verified from an experimental perspective
- the corresponding relationship between head height and fiber status is as follows:
- Figure 1 is a status diagram of existing extrusion 3D printing fibers at different printing speeds and extrusion head heights.
- A is a statistical diagram of the status of existing extrusion 3D printing fibers at different printing speeds and extrusion head heights.
- B is pictures of various fiber states. The results show that fiber states can be divided into five types: immersed accumulation, extrusion and exclusion, conventional deposition, suspended stretching, and rope swing, as shown in Figure 1B.
- Figure 1A printing too fast and extruding head height too high will cause the 3D printing fiber rope to swing. This state is not suitable for extrusion 3D printing to build samples through fiber accumulation.
- the overall results show that the printing speed has a greater impact on the fiber cross-sectional area.
- the recommended printing speed is 2-20 times the ink extrusion speed (which can be determined by (Equation 1.3)).
- the extrusion head height has a small impact on the fiber cross-sectional area and can be ignored. ; However, the height of the extrusion head has a greater impact on the fiber state. In order to maintain a good line state of the deposited fiber, it is recommended that the extrusion head height be 0.4-1.0 times the inner diameter of the extrusion head.
- the present invention provides a 3D printing system using the above-mentioned extrusion 3D printing method of continuously changing fiber diameter, as shown in the figure
- a 3D printing system using the above-mentioned extrusion 3D printing method of continuously changing fiber diameter, as shown in the figure
- it includes a print head for loading ink, an extrusion head located at the lower end of the print head for extruding ink, and a support platform and control device for placing printed products; the extrusion head and The vertical distance between the supporting platforms is the height of the extrusion head, and the movement speed of the extrusion head is called the printing speed; wherein, the height of the extrusion head and the printing speed are adjusted and changed according to the control device.
- Figure 4A is a schematic diagram of variable fiber diameter extrusion 3D printing.
- the main requirement of extrusion 3D printing technology for printing ink is shear-thinning rheological properties.
- the rheological properties of ⁇ -TCP/PCL ink were measured using an Anton Paar rheometer (Anton Paar GmbH MCR302) at 72°C.
- the test results are shown in Figure 4B.
- Figure 4C is a schematic diagram of the extrusion 3D printing ⁇ -TCP/PCL ink deposited into elliptical cross-section fibers due to gravity.
- the key parameters are cross-sectional area, cross-sectional width and cross-sectional height.
- Figure 5 shows the effect of different extrusion head heights on the fiber state of extrusion 3D printing with continuously variable printing speed. The results show that if the extrusion head height is too high, the rope will swing, which is not suitable for extrusion 3D printing layer-by-layer fiber forming. , which verifies the accuracy of the conclusion in Figure 3.
- the extrusion 3D printing method of the present invention continuously changes fiber diameter.
- the main requirement of the extrusion 3D printing technology for the printing ink is to have shear-thinning rheological properties.
- the ink materials include but are not limited to ⁇ -TCP/PCL, PCL, GelMA, etc.
- extrusion 3D printing includes but is not limited to normal temperature extrusion 3D printing or low-temperature freezing extrusion 3D printing.
- the present invention also provides an application of the extrusion 3D printing method of continuously changing fiber diameter as described above in printing gradient pore tissue engineering scaffolds.
- the scaffolds include bone tissue engineering scaffolds, cartilage tissue engineering scaffolds, and meniscus tissue engineering scaffolds. Stents and vascular tissue engineering scaffolds.
- the present invention also provides an application of the extrusion 3D printing method of continuously changing fiber diameter as described above in printing wearable flexible sensors or superstructures.
- ⁇ -TCP (Sigma-Aldrich, USA) and PCL (Aldrich, USA) with a molecular weight of 14000 were selected to mix at a weight ratio of 25% (w/w) to prepare ⁇ -TCP/PCL ink material.
- the printer can realize XYZ three-axis linkage, meet the motion control requirements of the present invention for printing speed and extrusion head height, and can obtain the writing rules for the printer's manufacturing code.
- the control software matching this extrusion 3D printer is Bio-Architect.exe.
- the extrusion 3D printing method of the present invention that continuously changes the fiber diameter establishes the functional relationship between the printing speed and the cross-sectional area of the fiber, and determines the corresponding relationship between the height of the extrusion head and the fiber state; by designing the printing speed and / Or the extrusion head height, forming variable printing speed and/or variable extrusion head height printing, realizing the layer-by-layer accumulation molding of continuously variable straight warp fibers, accurately controlling the fiber diameter everywhere after molding, breaking through the existing extrusion 3D
- the constraint that the filled fiber diameters are the same everywhere in the printed product is used to prepare controllable gradient pore scaffolds, which expands the application of extrusion 3D printing technology in gradient pore scaffolds and expands the application fields and scenarios of extrusion 3D printing technology;
- the present invention adopts a 3D printing system using the extrusion 3D printing method of continuously changing fiber diameter as described above.
- the constructed printing speed and fiber cross-sectional area are different.
- the functional relationship and the corresponding relationship between the height of the extrusion head and the fiber state will be different, but the essential concept of the printing method is the same and has strong versatility.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
本发明提供一种连续变纤维直径的挤出式3D打印方法、打印系统和应用,属于生物医学工程技术领域,本发明的连续变纤维直径的挤出式3D打印方法,建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系;通过设计打印路径各处的打印速度和/或挤出头高度,形成变打印速度和/或变挤出头高度打印,实现连续变直经纤维的逐层堆积成型,精确控制成型后各处的纤维直径。本发明提出的变打印速度、变挤出头高度的连续变纤维直径挤出式3D打印的方法,用于制备可控梯度孔隙支架,突破了现有挤出式3D打印产品各处填充纤维直径均相同的制约,拓展了挤出式3D打印技术的应用领域和场景。
Description
本发明涉及生物医学工程技术领域,特别涉及连续变纤维直径的挤出式3D打印方法、打印系统和应用。
在挤出式3D打印过程中,自动化切片是打印系统的重要组成单元,纤维分布对样品的孔隙结构起到决定性作用,传统挤出式3D打印的技术特点为挤出头在各处的挤出气压、移动速度、打印高度保持不变,这就导致挤出式3D沉积纤维的直径在整个打印路径中均是相同的。虽然这种恒定纤维直径挤出式3D打印策略可以十分容易完成对模型的自动化切片和打印路径的规划,并且由于参数处处一致,其所涉及的不确定因素也较少,有助于提高挤出式3D打印样品的成功率。但是这也严重限制了挤出式3D打印技术在梯度孔隙支架领域的应用和拓展,难以实现对如挤出压强、打印速度、挤出头高度等关键打印参数的精确控制,无法满足对梯度孔隙支架日益迫切的需求。
对于挤出式3D打印系统的现有研究,主要为恒定打印速度和恒定挤出头高度下的恒定直径纤维的逐层堆积成型,所得挤出式3D打印样品通常为各处均匀孔隙的样品,对于挤出式3D打印在梯度孔隙支架的研究较为较少。尽管有研究通过调整打印速度的方式获得层间不同的纤维直径支架,进而得到轴向梯度孔隙结构,但是对于如何实现模仿天然组织的复杂径向梯度孔隙结构(如天然骨的“松质骨-皮质骨”梯度孔隙结构)的研究较为缺失。
目前现有技术虽然可以通过调整层间纤维直径尺寸的方式来获得挤出式3D打印轴向梯度孔隙支架,但是其难以完成径向梯度孔隙结构的制备。尽管Moroni团队(Di Luca A,Longoni A,Criscenti G,et al.Toward mimicking the bone structure:design of novel hierarchical scaffolds with a tailored radial porosity gradient[J].Biofabrication,2016,8(4):15)和Mikos团队(Diaz-Gomez L,Kontoyiannis P D,Melchiorri A J,et al.Three-dimensional printing of tissue engineering scaffolds with horizontal pore and composition gradients[J].Tissue Engineering Part C-Methods,2019,25(7):411-420)通过在挤出式3D打印目标模型的径向不同区域设置不同的纤维直径和间距来获得径向梯度孔隙,但是该方法难以基于传统挤出式3D打印技术实现高精度、连续、可控的梯度孔隙支架, 且该方法所得径向梯度效果并不显著。
因此,如何设计和制备基于挤出式3D打印的可控梯度孔隙支架是目前挤出式3D打印技术所面临的一大难题。
发明内容
本发明的目的在于解决现有挤出式3D打印技术制备梯度孔隙支架的不足,特别是对于径向梯度孔隙结构而言,提供一种连续变纤维直径的挤出式3D打印方法、打印系统和应用,提出了变打印速度、变挤出头高度的连续变纤维直径挤出式3D打印的方法,用于制备可控梯度孔隙支架,突破了现有挤出式3D打印产品各处填充纤维直径均相同的制约,拓展了挤出式3D打印技术的应用领域和场景。
为实现上述目的,本发明采用下述技术方案:
本发明提供一种连续变纤维直径的挤出式3D打印方法,建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系;通过设计打印路径各处的打印速度和/或挤出头高度,形成变打印速度和/或变挤出头高度打印,实现连续变直经纤维的逐层堆积成型,精确控制成型后各处的纤维直径。
优选地,将β-TCP和分子量为14000的PCL按重量比1∶4的混合,制备成β-TCP/PCL墨水。
优选地,挤压参数为:挤出气压为400kPa,挤出头内径尺寸为400μm,加热温度为72℃时,打印速度与β-TCP/PCL纤维的截面面积的函数关系建立过程如下:
基于质量守恒定律,考虑单位时间内通过挤出头的墨水体积和沉积纤维的单位长度,如下(式1.1)所示:
式中,V为单位时间内β-TCP/PCL墨水被挤出的体积(mm
3);Q为挤出头的流量(mm
3/s),可由公式(1.2)确定,Q=3.75mm
3/s;Δt为单位时间(s);S为挤出式3D打印β-TCP/PCL纤维的截面面积(mm
2);Δl为单位时间内挤 出式3D打印β-TCP/PCL纤维的长度(mm);
式中,Q为β-TCP/PCL墨水被挤出的流量(mm
3/s);m为180s的时间内被挤出墨水的质量(g),通过电子天平称量获得;ρ为β-TCP/PCL墨水的密度(kg/m
3),忽略相变对其密度的影响;t为挤出β-TCP/PCL墨水所用的时间,t=180s;
式中,U为β-TCP/PCL墨水挤出的流速(mm/s);Q为β-TCP/PCL墨水挤出的流量(mm
3/s);D为挤出头内径尺寸,D=400μm;
由(式1.1)可得打印速度和纤维截面面积的关系,如下(式1.4)所示:
式中,v为打印速度(mm/s);S为β-TCP/PCL纤维的截面面积(mm
2)。
优选地,始终控制打印速度为β-TCP/PCL墨水挤出的流速的2-20倍。
优选地,始终控制挤出头高度为挤出头内径的0.4-1.0倍。
优选地,墨水材料为PCL,或GelMA。
优选地,挤出式3D打印为常温挤出式3D打印或低温冷冻挤出式3D打印。
本发明还提供一种采用如上所述的连续变纤维直径的挤出式3D打印方法的3D打印系统,包括用于装入墨水的打印头,位于所述打印头的下端用于挤出墨水的挤出头,以及用于放置打印产品的支撑平台和控制装置;所述挤出头与支撑平台之间的垂直距离为挤出头高度,所述挤出头的运动速度称为打印速度;其中,挤出头高度和打印速度根据所述控制装置进行调整变化。
本发明还提供一种如上所述的连续变纤维直径的挤出式3D打印方法在打印梯度孔隙组织工程支架中的应用,所述支架包括骨组织工程支架、软骨组织工程支架、半月板组织工程支架和血管组织工程支架。
本发明还提供一种如上所述的连续变纤维直径的挤出式3D打印方法在打印可穿戴柔性传感器或超结构中的应用。
本发明采用上述技术方案,具备下述有益效果:
本发明的连续变纤维直径的挤出式3D打印方法,建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系;通过设计打印路径各处的打印速度和/或挤出头高度,形成变打印速度和/或变挤出头高度打印,实现连续变直经纤维的逐层堆积成型,精确控制成型后各处的纤维直径,突破了现有挤出式3D打印产品各处填充纤维直径均相同的制约,用于制备可控梯度孔隙支架,拓展了挤出式3D打印技术在梯度孔隙支架的应用,拓展了挤出式3D打印技术的应用领域和场景;本发明采用如上所述的连续变纤维直径的挤出式3D打印方法的3D打印系统,由于墨水材料、挤出压力、喷嘴尺寸等打印工况的不同,所构建的打印速度与纤维截面面积的函数关系和挤出头高度与纤维状态的对应关系会有所区别,但是打印方法的本质构思相同,通用性强。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为不同打印速度和挤出头高度下现有挤出式3D打印纤维的状态图;
图2为不同打印速度和挤出头高度下现有挤出式3D打印纤维的截面统计图;
图3为不同挤出头高度下的打印速度和纤维截面面积的关系图;
图4为本发明的连续变纤维直径的挤出式3D打印系统,其中,A为变纤维直径挤出式3D打印的示意图,B为挤出式3D打印墨水的剪切变稀流变性能,C为挤出式3D打印纤维截面的示意图;
图5为不同挤出头高度对连续变打印速度挤出式3D打印纤维状态的影响;
图6为实施例1连续变纤维直径挤出式3D打印系统的工作原理和样品评价,其中,A为传统纤维堆积路径;B为目标设计梯度数据分布;C为传统纤维堆积路径与设计梯度数据相融合;D为基于三维设计软件获得变纤维直径挤出式3D打印单层纤维的CAD模型;E为基于挤出式3D打印机制造代码的书写规则编写与变纤维直径挤出式3D打印设计模型相匹配的制造代码;F为变纤 维直径挤出式3D打印制备样品;G为纤维宽度数据的2D展示;H为纤维宽度数据的3D展示。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
现有挤出式3D打印技术通常使用自动化切片方法获得每层各处位置均具有相同厚度的单元层,每层填充一定间距的纤维,层间纤维以一定角度交叉,通常交叉角度为90°,填充纤维各处的直径均保持一致。
本发明提供一种连续变纤维直径的挤出式3D打印方法,建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系;通过设计打印路径各处的打印速度和/或挤出头高度,形成变打印速度和/或变挤出头高度打印,实现连续变直经纤维的逐层堆积成型,精确控制成型后各处的纤维直径。
本发明在现有挤出式3D打印技术的基础上引入变打印速度、变挤出头高度的连续可控纤维直径挤出式3D打印系统。其通过精确控制填充纤维在各处直径的变化来获得梯度孔隙结构,这就要求在整个模型各处分布的纤维均应具有与其对应的打印速度和挤出头高度,才能保证纤维状态和纤维直径符合设计预期。
本发明需要建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系。例如,将β-TCP和分子量为14000的PCL按重量比1∶4的混合,制备成β-TCP/PCL墨水。挤压参数为:挤出气压为400kPa,挤出头内径尺寸为400μm,加热温度为72℃时,探究其数学理论模型,打印速度与β-TCP/PCL纤维的截面面积的函数关系建立过程如下:
基于质量守恒定律,考虑单位时间内通过挤出头的墨水体积和沉积纤维的单位长度,如下(式1.1)所示:
式中,V为单位时间内β-TCP/PCL墨水被挤出的体积(mm
3);Q为挤出头的流量(mm
3/s),可由公式(1.2)确定,Q=3.75mm
3/s;Δt为单位时间(s);S为挤出式3D打印β-TCP/PCL纤维的截面面积(mm
2);Δl为单位时间内挤出式3D打印β-TCP/PCL纤维的长度(mm);
式中,Q为β-TCP/PCL墨水被挤出的流量(mm
3/s);m为180s的时间内被挤出墨水的质量(g),通过电子天平称量获得;ρ为β-TCP/PCL墨水的密度(kg/m
3),忽略相变对其密度的影响;t为挤出β-TCP/PCL墨水所用的时间,t=180s;
式中,U为β-TCP/PCL墨水挤出的流速(mm/s);Q为β-TCP/PCL墨水挤出的流量(mm
3/s);D为挤出头内径尺寸,D=400μm;
由(式1.1)可得打印速度和纤维截面面积的关系,如下(式1.4)所示:
式中,v为打印速度(mm/s);S为β-TCP/PCL纤维的截面面积(mm
2)。
同时,将β-TCP(Sigma-Aldrich,美国)和分子量为14000的PCL(Aldrich,美国)按重量比1∶4的混合,制备成β-TCP/PCL墨水,挤压参数为:挤出气压为400kPa,挤出头内径尺寸为400μm,加热温度为72℃时,也从实验的角度测试并验证了上述理论数学模型中打印速度与β-TCP/PCL纤维的截面面积的函数关系和挤出头高度与纤维状态的对应关系,如下:
图1为不同打印速度和挤出头高度下现有挤出式3D打印纤维的状态图,图中,A为不同打印速度和挤出头高度下现有挤出式3D打印纤维的状态统计图,B为各种纤维状态的图片。结果表明,纤维状态一共可以分为五种:浸没堆积、挤压排挤、常规沉积、悬空拉伸、卷绳摆动,如图1B所示。如图1A所示,打印速度过快和挤出头高度过高将造成3D打印纤维的卷绳摆动,该状态并不适合用来挤出式3D打印通过纤维堆积来构建样品。
为了定性定量评价打印速度和挤出头高度对挤出纤维截面几何尺寸的影响,基于ImageJ图像处理技术对纤维截面进行了评价,如图2所示,为不同打印速度和挤出头高度下现有挤出式3D打印纤维的截面统计图。结果表明,β-TCP/PCL墨水挤出材料由于重力作用沉积纤维的截面呈现椭圆状,随着打印速度的增加截面面积逐渐减小。
整体结果表明打印速度对纤维截面面积影响较大,推荐打印速度为墨水挤出速度的2-20倍(可由(式1.3)确定),挤出头高度对纤维截面面积的影响较小可忽略不计;但挤出头高度对纤维状态的影响较大,为了保持沉积纤维良好的线条状态,推荐挤出头高度为挤出头内径的0.4-1.0倍。
如图3所示,为不同挤出头高度下的打印速度和纤维截面面积的关系图,在相同梯度打印速度下,探究了不同挤出头高度(0.2mm-1.6mm)对挤出式3D打印纤维截面面积的影响,结果表明实验数据和数学理论模型基本一致。具体的,在打印速度较高时,相同打印速度下不同挤出头高度对纤维截面面积的影响很小;但是随着打印速度的降低,挤出头高度对纤维截面面积实验值的影响越来越大,考虑是由于挤出头高度对纤维状态造成影响而导致的误差。
基于上述连续变纤维直径的挤出式3D打印方法及其数学理论模型和实验结果,本发明提供一种采用如上所述的连续变纤维直径的挤出式3D打印方法的3D打印系统,如图4所示,包括用于装入墨水的打印头,位于所述打印头的下端用于挤出墨水的挤出头,以及用于放置打印产品的支撑平台和控制装置;所述挤出头与支撑平台之间的垂直距离为挤出头高度,所述挤出头的运动速度称为打印速度;其中,挤出头高度和打印速度根据所述控制装置进行调整变化。其中,图4A为变纤维直径挤出式3D打印的示意图。挤出式3D打印技术对打印墨水的主要要求为具有剪切变稀的流变性能,β-TCP/PCL墨水的流变性能通过安东帕流变仪(Anton Paar GmbH MCR302)在72℃下测试结果如图4B所示。图4C为挤出式3D打印β-TCP/PCL墨水由于重力作用沉积为椭圆截面纤维的示意图,其中关键参数为截面面积、截面宽度和截面高度。
图5为不同挤出头高度对连续变打印速度挤出式3D打印纤维状态的影响,结果表明,挤出头高度过高将产生卷绳摆动,不适合挤出式3D打印逐层堆积纤维成型,侧面验证了图3中所得结论的准确性。
本发明的连续变纤维直径的挤出式3D打印方法,挤出式3D打印技术对打印墨水的主要要求为具有剪切变稀的流变性能,墨水材料包括但不限于β-TCP/PCL、PCL、GelMA等。
本发明的连续变纤维直径的挤出式3D打印方法,挤出式3D打印包括但不限于常温挤出式3D打印或低温冷冻挤出式3D打印。
本发明还提供一种如上所述的连续变纤维直径的挤出式3D打印方法在打印梯度孔隙组织工程支架中的应用,所述支架包括骨组织工程支架、软骨组织工程支架、半月板组织工程支架和血管组织工程支架。
本发明还提供一种如上所述的连续变纤维直径的挤出式3D打印方法在打印可穿戴柔性传感器或超结构中的应用。
实施例1
选择β-TCP(Sigma-Aldrich,美国)和分子量为14000的PCL(Aldrich,美国)以25%(w/w)的重量比混合制备β-TCP/PCL墨水材料。选择中国捷诺飞公司生产的挤出式3D打印机Regenovo
WS作为本研究的硬件平台,该打印机可以实现XYZ三坐标轴联动,满足本发明对打印速度和挤出头高度的运动控制需求,并可获得该打印机制造代码的书写规则。另外,与该款挤出式3D打印机相配套的控制软件为Bio-Architect.exe。
首先,将墨水放在72℃的加热箱中1小时,然后在室温下用药勺搅拌均匀,重复这个过程3次。
其次,将其与传统纤维堆积路径、梯度数据相融合,如图6A-6D所示。根据梯度数据将其在不同位置赋予一定的打印速度和挤出头高度,基于商业挤出式3D打印机制造代码的书写规则,获得与连续变纤维直径模型相匹配的制造代码,如图6E所示。最后通过商用挤出式3D打印机Regenovo
WS的控制软件Bio-Architect.exe调用上述特异性制造代码,使用β-TCP/PCL材料作为打印墨水,即可获得连续变纤维直径样品,如图6F所示。
基于ImageJ图像处理获得样品宽度的定性结果,如图6G和6H所示。结果表明,基于连续变纤维直径挤出式3D打印可以实现可控直径纤维的精准控制与制备,验证了本发明的可行性。
本发明采用上述技术方案,具备下述有益效果:
本发明的连续变纤维直径的挤出式3D打印方法,建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系;通过设计打印路径各处的打印速度和/或挤出头高度,形成变打印速度和/或变挤出头高度打印,实现连续变直经纤维的逐层堆积成型,精确控制成型后各处的纤维直径,突破了现有挤出式3D打印产品各处填充纤维直径均相同的制约,用于制备可控梯 度孔隙支架,拓展了挤出式3D打印技术在梯度孔隙支架的应用,拓展了挤出式3D打印技术的应用领域和场景;本发明采用如上所述的连续变纤维直径的挤出式3D打印方法的3D打印系统,由于墨水材料、挤出压力、喷嘴尺寸等打印工况的不同,所构建的打印速度与纤维截面面积的函数关系和挤出头高度与纤维状态的对应关系会有所区别,但是打印方法的本质构思相同,通用性强。
以上仅为本发明的较佳实施例而已,仅具体描述了本发明的技术原理,这些描述只是为了解释本发明的原理,不能以任何方式解释为对本发明保护范围的限制。基于此处解释,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其他具体实施方式,均应包含在本发明的保护范围之内。
Claims (10)
- 一种连续变纤维直径的挤出式3D打印方法,其特征在于,建立打印速度与纤维的截面面积的函数关系,确定挤出头高度与纤维状态的对应关系;通过设计打印路径各处的打印速度和/或挤出头高度,形成变打印速度和/或变挤出头高度打印,实现连续变直经纤维的逐层堆积成型,精确控制成型后各处的纤维直径。
- 根据权利要求1所述的连续变纤维直径的挤出式3D打印方法,其特征在于,将β-TCP和分子量为14000的PCL按重量比1∶4的混合,制备成β-TCP/PCL墨水。
- 根据权利要求2所述的连续变纤维直径的挤出式3D打印方法,其特征在于,挤压参数为:挤出气压为400kPa,挤出头内径尺寸为400μm,加热温度为72℃时,打印速度与β-TCP/PCL纤维的截面面积的函数关系建立过程如下:基于质量守恒定律,考虑单位时间内通过挤出头的墨水体积和沉积纤维的单位长度,如下(式1.1)所示:式中,V为单位时间内β-TCP/PCL墨水被挤出的体积(mm 3);Q为挤出头的流量(mm 3/s),可由公式(1.2)确定,Q=3.75mm 3/s;Δt为单位时间(s);S为挤出式3D打印β-TCP/PCL纤维的截面面积(mm 2);Δl为单位时间内挤出式3D打印β-TCP/PCL纤维的长度(mm);式中,Q为β-TCP/PCL墨水被挤出的流量(mm 3/s);m为180s的时间内被挤出墨水的质量(g),通过电子天平称量获得;ρ为β-TCP/PCL墨水的密度(kg/m 3),忽略相变对其密度的影响;t为挤出β-TCP/PCL墨水所用的时间,t=180s;式中,U为β-TCP/PCL墨水挤出的流速(mm/s);Q为β-TCP/PCL墨水挤出的流量(mm 3/s);D为挤出头内径尺寸,D=400μm;由(式1.1)可得打印速度和纤维截面面积的关系,如下(式1.4)所示:式中,v为打印速度(mm/s);S为β-TCP/PCL纤维的截面面积(mm 2)。
- 根据权利要求2所述的连续变纤维直径的挤出式3D打印方法,其特征在于,始终控制打印速度为β-TCP/PCL墨水挤出的流速的2-20倍。
- 根据权利要求2所述的连续变纤维直径的挤出式3D打印方法,其特征在于,始终控制挤出头高度为挤出头内径的0.4-1.0倍。
- 根据权利要求1所述的连续变纤维直径的挤出式3D打印方法,其特征在于,墨水材料为PCL,或GelMA。
- 根据权利要求1所述的连续变纤维直径的挤出式3D打印方法,其特征在于,挤出式3D打印为常温挤出式3D打印或低温冷冻挤出式3D打印。
- 一种采用如权利要求1-7任意一项所述的连续变纤维直径的挤出式3D打印方法的3D打印系统,其特征在于,包括用于装入墨水的打印头,位于所述打印头的下端用于挤出墨水的挤出头,以及用于放置打印产品的支撑平台和控制装置;所述挤出头与支撑平台之间的垂直距离为挤出头高度,所述挤出头的运动速度称为打印速度;其中,挤出头高度和打印速度根据所述控制装置进行调整变化。
- 一种如权利要求1-7任意一项所述的连续变纤维直径的挤出式3D打印方法在打印梯度孔隙组织工程支架中的应用,其特征在于,所述支架包括骨组织工程支架、软骨组织工程支架、半月板组织工程支架和血管组织工程支架。
- 一种如权利要求1-7任意一项所述的连续变纤维直径的挤出式3D打印方法在打印可穿戴柔性传感器或超结构中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211082302.9A CN115476508A (zh) | 2022-09-06 | 2022-09-06 | 连续变纤维直径的挤出式3d打印方法、打印系统和应用 |
CN202211082302.9 | 2022-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024051014A1 true WO2024051014A1 (zh) | 2024-03-14 |
Family
ID=84424096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/137710 WO2024051014A1 (zh) | 2022-09-06 | 2022-12-08 | 连续变纤维直径的挤出式3d打印方法、打印系统和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115476508A (zh) |
WO (1) | WO2024051014A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105350098A (zh) * | 2015-11-13 | 2016-02-24 | 广东工业大学 | 一种具有三维结构的纳米纤维支架制备装置及方法 |
CN105477682A (zh) * | 2016-01-20 | 2016-04-13 | 北京大学第三医院 | 一种组织工程半月板支架及制备方法 |
CN109701080A (zh) * | 2018-07-27 | 2019-05-03 | 东华大学 | 一种4轴3d打印管状医用支架及其制备方法 |
CN110385851A (zh) * | 2018-04-19 | 2019-10-29 | 波音公司 | 液滴拉伸和挤压打印方法 |
CN111424333A (zh) * | 2020-05-08 | 2020-07-17 | 广安长明高端产业技术研究院 | 静电纺丝peek/低熔点金属复合纤维及其3d打印耗材和制备方法 |
CN114343929A (zh) * | 2022-01-13 | 2022-04-15 | 苏州大学 | 利用近场直写3d打印技术制备微型仿生椎间盘支架的方法 |
CN114642764A (zh) * | 2020-12-18 | 2022-06-21 | 中国科学院深圳先进技术研究院 | 骨组织工程分形状支架构建方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104097327B (zh) * | 2014-07-11 | 2017-01-25 | 东莞中国科学院云计算产业技术创新与育成中心 | 3d打印机喷丝截面积可调结构及其速度和精度控制方法 |
WO2018077712A1 (en) * | 2016-10-31 | 2018-05-03 | Philips Lighting Holding B.V. | Method for 3d printing a 3d item with a decorative surface texture |
KR102003256B1 (ko) * | 2017-04-21 | 2019-07-25 | 동국대학교 산학협력단 | 3d 프린터의 가변 압출 방법, 3d 모델 출력 방법 및 이를 위한 3d 모델 출력 시스템 |
KR102092767B1 (ko) * | 2018-05-17 | 2020-03-24 | 서울대학교산학협력단 | 능동 가변형 구조물 프린팅 장치 및 방법 |
CN111347666B (zh) * | 2020-03-19 | 2022-04-08 | 合肥工业大学 | 一种基于粘性液体挤出的3d打印延迟补偿方法及其系统 |
CN211994251U (zh) * | 2020-03-25 | 2020-11-24 | 上海酷鹰机器人科技有限公司 | 在3d打印速度变化时保持打印线宽恒定的装置 |
CN113246473B (zh) * | 2021-05-10 | 2022-04-22 | 深圳拓竹科技有限公司 | 3d打印机的补偿方法、补偿装置、3d打印机和存储介质 |
CN114654719B (zh) * | 2022-02-25 | 2023-03-24 | 北京航空航天大学 | 一种活塞式直写打印中沉积细丝宽度与高度的预测方法 |
-
2022
- 2022-09-06 CN CN202211082302.9A patent/CN115476508A/zh active Pending
- 2022-12-08 WO PCT/CN2022/137710 patent/WO2024051014A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105350098A (zh) * | 2015-11-13 | 2016-02-24 | 广东工业大学 | 一种具有三维结构的纳米纤维支架制备装置及方法 |
CN105477682A (zh) * | 2016-01-20 | 2016-04-13 | 北京大学第三医院 | 一种组织工程半月板支架及制备方法 |
CN110385851A (zh) * | 2018-04-19 | 2019-10-29 | 波音公司 | 液滴拉伸和挤压打印方法 |
CN109701080A (zh) * | 2018-07-27 | 2019-05-03 | 东华大学 | 一种4轴3d打印管状医用支架及其制备方法 |
CN111424333A (zh) * | 2020-05-08 | 2020-07-17 | 广安长明高端产业技术研究院 | 静电纺丝peek/低熔点金属复合纤维及其3d打印耗材和制备方法 |
CN114642764A (zh) * | 2020-12-18 | 2022-06-21 | 中国科学院深圳先进技术研究院 | 骨组织工程分形状支架构建方法 |
CN114343929A (zh) * | 2022-01-13 | 2022-04-15 | 苏州大学 | 利用近场直写3d打印技术制备微型仿生椎间盘支架的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115476508A (zh) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miyanaji et al. | Effect of printing speed on quality of printed parts in Binder Jetting Process | |
Habib et al. | 3D printability of alginate-carboxymethyl cellulose hydrogel | |
Zhang et al. | Direct ink writing of polycaprolactone/polyethylene oxide based 3D constructs | |
Ozbolat et al. | Development of ‘Multi-arm Bioprinter’for hybrid biofabrication of tissue engineering constructs | |
Jiang et al. | Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a mini‐deposition system | |
EP3102353A1 (en) | Three-dimensional printing of metallic materials | |
Zhong et al. | Characterization approach on the extrusion process of bioceramics for the 3D printing of bone tissue engineering scaffolds | |
Zhao et al. | Experimental study of polymeric stent fabrication using homemade 3D printing system | |
Thompson et al. | Sequential deposition of overlapping droplets to form a liquid line | |
Nelson et al. | 3D bio-printability of hybrid pre-crosslinked hydrogels | |
Al Hashimi et al. | 3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering | |
WO2024051014A1 (zh) | 连续变纤维直径的挤出式3d打印方法、打印系统和应用 | |
Mulji et al. | Rupture and dewetting of water films on solid surfaces | |
EP4275868A1 (en) | Method and system for additive manufacturing using closed-loop temperature control | |
CN108312292A (zh) | 一种3d打印喷头及包括该喷头的3d打印装置以及用于该3d打印装置的生物陶瓷浆料 | |
Pandya et al. | Breakthrough to the pragmatic evolution of direct ink writing: Progression, challenges, and future | |
Gao et al. | Simultaneous multi-material embedded printing for 3D heterogeneous structures | |
Dee et al. | Fabrication of microstructured calcium phosphate ceramics scaffolds by material extrusion-based 3D printing approach | |
US20190232551A1 (en) | Methods and Apparatus for Parametric Fabrication | |
Qu et al. | Gradient matters via filament diameter-adjustable 3D printing | |
Ma et al. | Modeling for silicone foam material extrusion with liquid rope coiling | |
Ravi et al. | Effects of pseudoplasticity on spread and recoil dynamics of aqueous polymeric solution droplets on solid surfaces | |
Tu et al. | Predictive modeling of extruded filament in the air for bioink in direct ink writing using numerical simulation | |
Deisinger et al. | Fabrication of tailored hydroxyapatite scaffolds: comparison between a direct and an indirect rapid prototyping technique | |
Chimate et al. | Pressure assisted multi-syringe single nozzle deposition system for manufacturing of heterogeneous tissue scaffolds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22957973 Country of ref document: EP Kind code of ref document: A1 |