WO2024051009A1 - 一种基于多重扫描的三维成像系统 - Google Patents

一种基于多重扫描的三维成像系统 Download PDF

Info

Publication number
WO2024051009A1
WO2024051009A1 PCT/CN2022/136691 CN2022136691W WO2024051009A1 WO 2024051009 A1 WO2024051009 A1 WO 2024051009A1 CN 2022136691 W CN2022136691 W CN 2022136691W WO 2024051009 A1 WO2024051009 A1 WO 2024051009A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
subsystem
imaging system
system based
tested
Prior art date
Application number
PCT/CN2022/136691
Other languages
English (en)
French (fr)
Inventor
牛辉
张月新
张子豪
李宏飞
何伟
胡继闯
宋航
杨宇聪
李明惠
陈志明
Original Assignee
纳克微束(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222364024.8U external-priority patent/CN218601188U/zh
Priority claimed from CN202222364874.8U external-priority patent/CN219038882U/zh
Application filed by 纳克微束(北京)有限公司 filed Critical 纳克微束(北京)有限公司
Publication of WO2024051009A1 publication Critical patent/WO2024051009A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]

Definitions

  • the invention relates to the technical field of electron microscopy, and in particular to a three-dimensional imaging system based on multiple scanning.
  • the present invention provides a three-dimensional imaging system based on multiple scanning, which can realize the collection of microscopic three-dimensional images and simultaneously obtain three-dimensional image information from nanometer to centimeter levels.
  • the invention provides a three-dimensional imaging system based on multiple scanning, including an X-ray microscope subsystem, a sample processing subsystem, a scanning electron microscope subsystem, a PC terminal and an SEM sample stage;
  • the sample to be tested is arranged on the SEM sample stage;
  • the X-ray microscope subsystem includes an X-ray source and an X-ray detector; the X-ray source and the X-ray detector are respectively located on both sides of the SEM sample stage;
  • the scanning electron microscope subsystem is arranged directly above the sample to be tested;
  • the sample processing subsystem is movably disposed on the third side of the sample to be tested;
  • the SEM sample stage, the X-ray microscope subsystem, the sample processing subsystem, and the scanning electron microscope subsystem are all connected to the PC terminal.
  • an implementation is further provided, which further includes an optical microscope subsystem, and the optical microscope subsystem is optically connected to the upper surface of the sample to be tested;
  • the optical microscope subsystem includes a light source, a reflector, an objective lens and a high-resolution camera;
  • the light source, the upper surface of the sample to be measured, the reflecting mirror, the objective lens and the high-resolution camera are optically connected in sequence and form an optical path.
  • an implementation method is further provided, which further includes pads; the pads are provided between the sample to be tested and the SEM sample stage.
  • sample processing subsystem is a laser processing equipment or an ion grinder equipment.
  • the specific way of movable setting of the sample processing subsystem is: setting a sample processing base along the Y-axis direction, and the sample processing base can be A screw is rotatably provided, and one end of the screw is fixedly connected to a screw motor provided at one end of the sample processing base;
  • the sample processing subsystem is fixedly connected to the Y-direction slider; the Y-direction slider is fixedly connected to the nut set on the screw; specifically, the femtosecond laser generator or ion source device and the Y-direction slider Fixed connection, mobile.
  • an implementation is further provided, in which the longitudinal section of the pad is a right triangle.
  • an implementation method is further provided, in which the angle of the foot extending into a corner below the sample to be tested is 30-45 ⁇ .
  • an implementation is further provided, in which the sample to be tested is square; the sample to be tested is in a diamond shape under the action of the pads.
  • an implementation in which the sample to be tested moves horizontally, vertically, and rotates along the vertical axis under the action of the SEM sample stage. ;
  • the single movement distance of the vertical movement is 0.1mm-5cm.
  • an implementation is further provided, in which the single movement range of the sample processing subsystem when moving is 0.1mm-5cm.
  • the present invention uses an X-ray microscope subsystem, a scanning electron microscope subsystem, and an optical microscope subsystem to simultaneously scan the sample to be measured, and can scan the sample to be measured.
  • the same surface can realize topographic data collection with multiple principles and multiple precisions.
  • the three-dimensional image of the sample to be tested determined based on these three types of collected data is more accurate and realistic, and can detect sample topography from nanometer to centimeter levels.
  • the imaging system of the present invention can quickly and accurately realize three-dimensional imaging analysis of the internal structure of a large area of a sample to be measured.
  • Figure 1 is a structural diagram of a three-dimensional imaging system based on multiple scanning provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a sample stage with added feet provided by an embodiment of the present invention
  • Figure 3 is a schematic diagram of the cutting process of the sample to be tested provided by the sample processing subsystem according to an embodiment of the present invention.
  • the present invention provides a three-dimensional imaging system based on multiple scanning, as shown in Figure 1, including:
  • X-ray microscope (Micro-CT) subsystem sample processing subsystem
  • SEM scanning electron microscope
  • optical microscope subsystem PC terminal (hardware and software).
  • the optical microscope subsystem may not be used as needed.
  • the X-ray microscope subsystem includes: X-ray source 2 and X-ray detector 4 are located on both sides of the sample to be tested.
  • X-ray source 2 emits X-rays to radiate the sample to be tested.
  • CT scan to measure sample morphology.
  • the sample processing subsystem 6 is used to process the sample to be tested to obtain a target cross-section of the target area; it may be an ion-milling device or a laser processing device.
  • the ion grinder equipment includes an ion source device and a numerical control unit.
  • the ion source device is set on one side of the sample stage and is facing the sample 3 to be tested (the sample 3 to be tested is placed on the sample stage 5), for generating ion beams;
  • the numerical control unit is connected to the ion source device and the sample stage 5 at the same time for
  • the sample stage is controlled to realize the movement of the X, Y, and Z axes (the movement accuracy is at the nanometer level), and the output power of the ion source device is also controlled.
  • the above-mentioned laser processing equipment includes a femtosecond laser generator and a CNC system, which are used to emit laser to cut and process the sample to be tested, so that the target area is exposed or about to be exposed, and the target cross-section of the target area is obtained; the setting position of the femtosecond laser generator Like the ion source device, it is set on one side of the sample stage and is facing the sample 3 to be measured.
  • Femtosecond laser generator is used to generate laser light source. For laser processing purposes, except for a few occasions where YAG solid-state lasers are used, most of them use CO 2 gas lasers with higher electro-optical conversion efficiency and higher power output.
  • the CNC system is installed on the PC side, which is part of the PC side.
  • the CNC system is used to control the sample stage to realize the movement of the X, Y, and Z axes, and also controls the output power of the laser.
  • the CNC system is also connected to the femtosecond laser generator in terms of mechanical power to control the laser generator to move along the Y-axis.
  • Laser processing equipment has the characteristics of precise target focusing and positioning, and can focus on ultra-fine spatial areas that are much smaller than the diameter of a hair; it uses femtosecond laser to cut biological tissues without thermal effects or shock waves, throughout the entire optical path There will be no biological tissue damage.
  • the sample processing subsystem is rotatable, and the emitted laser beam or ion beam can move along the Y and Z axes facing the sample stage.
  • Scanning electron microscope subsystem 1 is placed directly above the sample to be measured and connected to the PC. It is used to obtain a two-dimensional image of the target section and transmit it to the PC.
  • the sample stage 5 adopts the existing SEM sample stage (which has the functions of horizontal movement, vertical movement and rotation), which is connected to the PC end. Under the control of the PC end, it can move along the X, Y, and Z axes. And it can rotate in the horizontal direction. During the scanning process, the ion grinder subsystem translates along the Y-axis (single movement range 0.1mm-1cm, single movement range reflects movement accuracy; translation speed 1cm/s).
  • the first processing layer sample surface after completion of processing, the electron microscope scans the first layer target section; then the sample surface rises to a certain height along the Z axis (single movement range 0.1mm-1cm), and then the sample processing subsystem 6 translates along the Y axis to the original position ( The single movement range is 1mm-1cm) and the surface of the second layer of the sample is processed. After the processing is completed, the electron microscope scans the target cross-section of the second layer. Then repeat this series of operations until the target area processing and scanning is completed. As shown in Figure 3, several layers of the upper part of the sample 3 to be tested are cut. Each cutting process is accompanied by the sample processing subsystem moving on the horizontal Y-axis. direction of movement.
  • a sample processing subsystem base is provided along the Y-axis direction
  • a screw is rotatably provided on the base of the sample processing subsystem, and one end of the screw is connected to the base of the sample processing subsystem.
  • the lead screw motor at one end of the base of the sample processing subsystem is fixedly connected; the sample processing subsystem is fixedly connected to the Y-direction slider; the Y-direction slider is fixedly connected to the nut set on the lead screw.
  • the optical microscope subsystem includes a light source 7, a reflector 8, an objective lens 9, and a high-resolution camera 10, which is used to obtain centimeter-level image information.
  • the light source 7 is arranged above the side of the sample to be tested 3 and the light beam is irradiated on the upper surface of the sample to be tested 3; the reflector 8 is arranged on the other side opposite to the light source 7 for reflecting the light reflected from the surface of the sample to be tested;
  • the objective lens 9 is arranged directly above the emission lens 8; the high-resolution camera 10 is arranged directly above the objective lens 9.
  • the light beam emitted by the light source 7 reaches the light incident end of the objective lens 9 through the reflection of the upper surface of the sample 3 to be measured and the reflection of the reflector 8. After the objective lens 9 magnifies the image by a specific multiple, it is captured by the high-resolution camera located above it. 10 photos and records.
  • the high-resolution camera 10 is connected to the PC for communication and transmits the captured image data to the PC
  • the scanning electron microscope subsystem and the optical microscope subsystem have different scanning magnifications.
  • the scanning electron microscope has a scanning magnification of 100 times to 15,000 times to achieve nanoscale scanning; the optical microscope has a magnification of 1 to 100 times to achieve centimeter level scanning.
  • the PC end is connected to the X-ray microscope subsystem, sample processing subsystem, scanning electron microscope subsystem, optical microscope subsystem and sample stage 5; it is used to perform navigation correction on the target area, obtain the determined scanning area, and determine
  • the position information of the determined scanning area is the position information of the target area, and the two-dimensional image is three-dimensionally reconstructed to obtain a three-dimensional imaging of the target area.
  • the PC controls the actions of the ion grinder subsystem and adjusts the position and posture of the sample stage. It is also used to receive scanning data from the Micro-CT subsystem, scanning electron microscope subsystem, and image data from the optical microscope subsystem. According to the received The data is used to perform three-dimensional reconstruction of the two-dimensional image to obtain three-dimensional imaging of the target area.
  • the present invention obtains three-dimensional image information of the target area through three-dimensional reconstruction on the PC. Due to the high performance of the SEM sample stage and the reasonable z-direction adjustment range, the scanning electron microscope subsystem 1 can quickly and accurately focus on the sample to be measured, thereby achieving fast and precise imaging of three-dimensional imaging and improving imaging quality.
  • This invention obtains a three-dimensional image of the sample to be tested based on the Micro-CT subsystem, quickly determines the target area, processes the sample to be tested through the ion grinder subsystem to obtain the target cross-section of the target area, and then obtains the target through the scanning electron microscope subsystem.
  • the two-dimensional image of the cross-section can be obtained simultaneously through the optical microscope subsystem, and finally the three-dimensional image of the internal structure of the target area is obtained through three-dimensional reconstruction using the operating PC (hardware and software). Millimeter-level three-dimensional image information can be obtained.
  • adding a pad 51 below the sample to be tested can reduce the processing volume and improve the processing efficiency.
  • the longitudinal section of the pad 51 is a right-angled triangle. After being placed under a square sample, one corner of the sample to be tested faces upward, and the longitudinal section presents a rhombus shape.
  • the angle of the right-angled triangle in the longitudinal section of the pad 51 is 30-45 ⁇ , which is the angle at which the sample to be tested is padded.
  • the attitude of the sample can be adjusted by adjusting the insertion degree of the pad feet 51 (that is, the lateral distance of the pad feet inserted into the bottom of the sample to be tested) to make it more precise. Suitable for cutting and scanning, increasing the scope of application of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种基于多重扫描的三维成像系统,属于电子显微镜技术领域,能够实现微观三维图像的采集,同时获取纳米级到厘米级的三维图像信息,包括X射线显微镜子系统、样品加工子系统(6)、扫描电子显微镜子系统(1)、光学显微镜子系统、PC端(11)和样品台(5);样品台(5)上设置有待测样品(3);X射线显微镜子系统包括X射线源(2)和X射线探测器(4);X射线源(2)和X射线探测器(4)分设在样品台(5)的两侧;扫描电子显微镜子系统(1)设置在待测样品(3)正上方;样品加工子系统(6)设置在待测样品(3)一侧;光学显微镜子系统与待测样品(3)的上表面光性连接;样品台(5)、X射线显微镜子系统、样品加工子系统(6)、扫描电子显微镜子系统(1)、光学显微镜子系统均与PC端(11)连接。

Description

一种基于多重扫描的三维成像系统 技术领域
本发明涉及电子显微镜技术领域,尤其涉及一种基于多重扫描的三维成像系统。
背景技术
近年来,电镜技术迅速发展,特别是电镜在生物学中的应用,已不仅停留在单纯直观的描述,而且已开展了由定性到定量,由平面到空间的立体研究。这对深入了解生物材料尤其是细胞成分的空间相对位置和生物大分子的空间结构及其与功能关系,都有十分重大的意义。与此同时,电镜技术正在逐渐与数学和物理学的有关领域结合起来,从而给生物科学工作者提供了很多定量的信息。
近年来相关的三维成像方法趋近成熟,有三维重构技术,三维冷冻电镜技术,还有公开号为CN208420756U的中国专利公开了一种成像系统,该专利技术方案采用聚焦离子束子系统(FIB)对待测样品进行加工处理。
但是上面的方法都适用于纳米、微米、毫米级的三维成像技术,不适用于更大尺寸的三维图像。
因此,有必要研究一种新的基于多重扫描的三维成像系统来应对现有技术的不足,以解决或减轻上述一个或多个问题。
发明内容
有鉴于此,本发明提供了一种基于多重扫描的三维成像系统,能够实现微观三维图像的采集,同时获取纳米级到厘米级的三维图像信息。
本发明提供一种基于多重扫描的三维成像系统,包括X射线显微镜 子系统、样品加工子系统、扫描电子显微镜子系统、PC端和SEM样品台;
所述SEM样品台上设置有待测样品;
所述X射线显微镜子系统包括X射线源和X射线探测器;所述X射线源和所述X射线探测器对应性地分设在所述SEM样品台的两侧;
所述扫描电子显微镜子系统设置在所述待测样品正上方;
所述样品加工子系统可移动地设置在所述待测样品的第三侧;
所述SEM样品台、所述X射线显微镜子系统、所述样品加工子系统、所述扫描电子显微镜子系统均与所述PC端连接。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,还包括光学显微镜子系统,所述光学显微镜子系统与所述待测样品的上表面光性连接;
所述光学显微镜子系统包括光源、反射镜、物镜和高分辨相机;
所述光源、所述待测样品的上表面、所述反射镜、所述物镜和所述高分辨相机依次光性连接且形成光路。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,还包括垫脚;所述垫脚垫设在所述待测样品与所述SEM样品台之间。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述样品加工子系统为激光加工设备或离子研磨仪设备。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述样品加工子系统可移动设置的具体方式为:沿Y轴方向设置样品加工底座,所述样品加工底座上可转动地设有丝杠,所述丝杠的一端与设置在所述样品加工底座一端的丝杠电机固定连接;
所述样品加工子系统与Y向滑块固定连接;所述Y向滑块与套设在所述丝杠上的螺母固定连接;具体为飞秒激光发生器或离子源装置与Y向滑块固定连接,实现移动。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述垫脚的纵向截面为直角三角形。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述垫脚伸入所述待测样品下方的一角的角度为30-45゜。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述待测样品为方形;所述待测样品在所述垫脚的垫设作用下呈菱形。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述待测样品在所述SEM样品台的作用下实现水平向移动、竖直向移动以及沿竖向轴的转动;
所述竖直向移动的单次移动距离为0.1mm-5cm。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述样品加工子系统移动时的单次移动范围为0.1mm-5cm。
与现有技术相比,上述技术方案中的一个技术方案具有如下优点或有益效果:本发明采用X射线显微镜子系统、扫描电子显微镜子系统、光学显微镜子系统同时对待测样品进行扫描,能够对同一表面实现多种原理、多种精度的形貌数据采集,根据这三种采集数据确定的待测样品的三维图像更加精准和逼真,能够检测到纳米级到厘米级的样品形貌。
上述技术方案中的另一个技术方案具有如下优点或有益效果:本发明的成像系统可以快速的、精准的实现大面积待测样品内部结构三维成像分析。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需 要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明一个实施例提供的基于多重扫描的三维成像系统结构图;
图2是本发明一个实施例提供的样品台添加垫脚结构示意图;
图3是本发明一个实施例提供的样品加工子系统对待测样品切割过程的示意图。
其中,图中:
1、扫描电子显微镜子系统;2、X射线源;3、待测样品;4、X射线探测器;5、样品台;51、垫脚;6、样品加工子系统;7、光源;8、反射镜;9、物镜;10、高分辨相机;11、PC端。
具体实施方式
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
针对现有技术的不足,本发明提供一种基于多重扫描的三维成像系统,如图1所示,包括:
X射线显微镜(Micro-CT)子系统、样品加工子系统、扫描电子显微镜(SEM)子系统、光学显微镜子系统、PC端(硬件和软件)。在本发明的一个实施方式中,也可以根据需要不使用光学显微镜子系统。
X射线显微镜子系统包括:X射线源2和X射线探测器4,用于获取 整个待测样品的三维图像数据,还用于获取一层层切割后剩余的待测样品的三维图像数据。X射线源2和X射线探测器4分设在待测样品的两侧,X射线源2发射X射线对待测样品进行辐射,X射线探测器4接收X射线信号,探测出信号变化,进而实现对待测样品形貌的CT扫描。
样品加工子系统6用于对所述待测样品进行加工,得到目标区域的目标截面;其可以是离子研磨仪(Ion-Milling)设备或激光加工设备。
其中,离子研磨仪设备包括离子源装置和数控单元。离子源装置设置在样品台的一侧且正对待测样品3(待测样品3置于样品台5上),用于产生离子束;数控单元同时与离子源装置以及样品台5连接,用于控制样品台实现X、Y、Z轴的运动(移动精度为纳米级),同时也控制离子源装置的输出功率。
上述的激光加工设备包括飞秒激光发生器和数控系统,用于发射激光对待测样品进行切割加工,以使目标区域暴露或即将暴露,得到目标区域的目标截面;飞秒激光发生器的设置位置和离子源装置一样,设置在样品台的一侧且正对待测样品3。飞秒激光发生器用于产生激光光源。对于激光加工的用途而言,除了少数场合采用YAG固体激光器外,绝大部分采用电-光转换效率较高并能输出较高功率的CO 2气体激光器。数控系统安装在PC端,即属于PC端的一部分,数控系统用于控制样品台实现X、Y、Z轴的运动,同时也控制激光器的输出功率。数控系统还在机械动力方面连接飞秒激光发生器,用于控制激光发生器能够沿Y轴运动。激光加工设备具有精确的靶向聚焦定位特点,能够聚焦到比头发的直径还要小的多的超细微空间区域;用飞秒激光对生物组织进行切割,没有热效应和冲击波,在整个光程中都不会有生物组织组织损伤。在一些可选的实施方式中,样品加工子系统可转动,发射的激光束或离子束可以正对着样品台沿Y、Z轴移动。
扫描电子显微镜子系统1,设置在待测样品的正上方,并与PC端连接,用于获取目标截面的二维图像并传输给PC端。
样品台5采用现有的SEM样品台(其具有水平移动和竖直移动的功能以及转动功能),其与PC端连接,在PC端的控制下,能够实现沿X、Y、Z轴的移动,并且能够在水平向实现转动,扫描过程中随着离子研磨仪子系统沿Y轴平移(单次移动范围0.1mm-1cm,单次移动范围体现出移动精度;平移速度1cm/s)加工第一层样品表面,完成加工后电子显微镜扫描第一层目标截面;然后样品表面沿Z轴上升一定高度(单次移动范围0.1mm-1cm),接着样品加工子系统6沿Y轴平移到原位置(单次移动范围1mm-1cm)开始加工第二层样品表面,完成加工后电子显微镜扫描第二层目标截面。然后重复这一系列操作,直至目标区域加工扫描完成即可停止;如图3所示,待测样品3的上部有若干层被切割,每次切割过程都伴随着样品加工子系统在水平Y轴方向的移动。所述样品加工子系统可移动设置的具体方式为:沿Y轴方向设置样品加工子系统底座,所述样品加工子系统底座上可转动地设有丝杠,所述丝杠的一端与设置在所述样品加工子系统底座一端的丝杠电机固定连接;所述样品加工子系统与Y向滑块固定连接;所述Y向滑块与套设在所述丝杠上的螺母固定连接。
光学显微镜子系统包括光源7、反射镜8、物镜9、高分辨相机10,用于获取厘米级图像信息。光源7设置在待测样品3的侧上方且光束照射在待测样品3的上表面;反射镜8设置在与光源7相对的另一侧,用于反射由待测样品表面反射过来的光线;物镜9设置在发射镜8的正上方;高分辨相机10设置在物镜9的正上方。光源7发射出的光束经待测样品3上表面的反射作用、反射镜8的反射作用到达物镜9的光线入射端,物镜9对影像进行特定倍数的放大后,由位于其上方的高分辨相机10拍摄记录下来。高分辨相机10与PC端通信连接,将拍摄到的影像数据传输给 PC端进行处理和使用。
扫描电子显微镜子系统和光学显微镜子系统的扫描倍率不同,扫描电子显微镜的扫描倍率在100倍-15000倍,实现纳米级扫描;光学显微镜的倍数在1倍到100倍,实现厘米级扫描。
PC端,与X射线显微镜子系统、样品加工子系统、扫描电子显微镜子系统、光学显微镜子系统以及样品台5均连接;用于对所述目标区域进行导航修正,得到确定扫描区域,并确定所述确定扫描区域的位置信息为所述目标区域的位置信息,对所述二维图像进行三维重构,得到所述目标区域的三维成像。PC端控制离子研磨仪子系统的动作以及对样品台的位置姿态进行调整,还用于接收Micro-CT子系统、扫描电子显微镜子系统的扫描数据以及光学显微镜子系统的影像数据,根据接收的数据从而对二维图像进行三维重构,得到目标区域的三维成像。
本发明通过PC端进行三维重构得到目标区域的三维图像信息。由于SEM样品台的高性能以及合理的z向调节范围,使得扫描电子显微镜子系统1能够快速精准实现对待测样品的聚焦,进而实现三维成像的快速成像、精准成像,提高成像品质。
本发明基于Micro-CT子系统获取待测样品的三维图像,快速确定目标区域,通过离子研磨仪子系统对待测样品进行加工得到目标区域的目标截面,然后通过扫描电子显微镜子系统获取所述目标截面的二维图像,同步可以通过光学显微镜子系统获得二维图像,最后使用操作PC端(硬件和软件)经过三维重构得到目标区域内部结构的三维图像。可以获得毫米级三维图像信息。
在本发明另一个实施例中,如图2所示,在待测样品下方添加一个垫脚51,可以减少加工体积提高加工效率。垫脚51的纵截面为直角三角形,垫在方形的样品下后使得待测样品一角边朝上,纵截面呈现出菱形。垫脚 51的纵截面直角三角形的角度为30-45゜,即将待测样品垫起的角度。针对不同的待测样品或者同一待测样品的不同切割状态、扫描状态,可以通过调整垫脚51的垫入程度(即垫脚插入待测样品底部的横向距离)实现对样品姿态的调整,使之更适合进行切割以及扫描,增加了装置的适用范围。
以上对本申请实施例所提供的一种基于多重扫描的三维成像系统,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。

Claims (10)

  1. 一种基于多重扫描的三维成像系统,其特征在于,包括X射线显微镜子系统、样品加工子系统、扫描电子显微镜子系统、PC端和SEM样品台;
    所述SEM样品台上设置有待测样品;
    所述X射线显微镜子系统包括X射线源和X射线探测器;所述X射线源和所述X射线探测器对应性地分设在所述SEM样品台的两侧;
    所述扫描电子显微镜子系统设置在所述待测样品正上方;
    所述样品加工子系统可移动地设置在所述待测样品的第三侧;
    所述SEM样品台、所述X射线显微镜子系统、所述样品加工子系统、所述扫描电子显微镜子系统均与所述PC端连接。
  2. 根据权利要求1所述的基于多重扫描的三维成像系统,其特征在于,还包括光学显微镜子系统,所述光学显微镜子系统与所述待测样品的上表面光性连接;
    所述光学显微镜子系统包括光源、反射镜、物镜和高分辨相机;
    所述光源、所述待测样品的上表面、所述反射镜、所述物镜和所述高分辨相机依次光性连接且形成光路。
  3. 根据权利要求1所述的基于多重扫描的三维成像系统,其特征在于,还包括垫脚;所述垫脚垫设在所述待测样品与所述SEM样品台之间。
  4. 根据权利要求1所述的基于多重扫描的三维成像系统,其特征在于,所述样品加工子系统为激光加工设备或离子研磨仪设备。
  5. 根据权利要求4所述的基于多重扫描的三维成像系统,其特征在于,所述样品加工子系统可移动设置的具体方式为:沿Y轴方向设置样品加工底座,所述样品加工底座上可转动地设有丝杠,所述丝杠的一端与设置在所述样品加工底座一端的丝杠电机固定连接;
    所述样品加工子系统与Y向滑块固定连接;所述Y向滑块与套设在所 述丝杠上的螺母固定连接。
  6. 根据权利要求3所述的基于多重扫描的三维成像系统,其特征在于,所述垫脚的纵向截面为直角三角形。
  7. 根据权利要求6所述的基于多重扫描的三维成像系统,其特征在于,所述垫脚伸入所述待测样品下方的一角的角度为30-45゜。
  8. 根据权利要求3所述的基于多重扫描的三维成像系统,其特征在于,所述待测样品为方形;所述待测样品在所述垫脚的垫设作用下呈菱形。
  9. 根据权利要求1所述的基于多重扫描的三维成像系统,其特征在于,所述待测样品在所述SEM样品台的作用下实现水平向移动、竖直向移动以及沿竖向轴的转动;
    所述竖直向移动的单次移动距离为0.1mm-5cm。
  10. 根据权利要求1所述的基于多重扫描的三维成像系统,其特征在于,所述样品加工子系统移动时的单次移动范围为0.1mm-5cm。
PCT/CN2022/136691 2022-09-06 2022-12-05 一种基于多重扫描的三维成像系统 WO2024051009A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222364874.8 2022-09-06
CN202222364024.8U CN218601188U (zh) 2022-09-06 2022-09-06 一种基于多重扫描的三维成像系统
CN202222364024.8 2022-09-06
CN202222364874.8U CN219038882U (zh) 2022-09-06 2022-09-06 一种三维成像系统

Publications (1)

Publication Number Publication Date
WO2024051009A1 true WO2024051009A1 (zh) 2024-03-14

Family

ID=90192730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136691 WO2024051009A1 (zh) 2022-09-06 2022-12-05 一种基于多重扫描的三维成像系统

Country Status (1)

Country Link
WO (1) WO2024051009A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537477A (en) * 1982-03-05 1985-08-27 Jeol Ltd. Scanning electron microscope with an optical microscope
JP2004319518A (ja) * 2004-07-22 2004-11-11 Topcon Corp 走査型電子顕微鏡装置
CN105675639A (zh) * 2014-11-19 2016-06-15 中国科学院苏州纳米技术与纳米仿生研究所 电子束诱导二次谐波的超分辨显微系统及测试方法
CN109142399A (zh) * 2018-07-26 2019-01-04 聚束科技(北京)有限公司 一种成像系统及样品探测方法
CN212134535U (zh) * 2020-01-17 2020-12-11 聚束科技(北京)有限公司 一种成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537477A (en) * 1982-03-05 1985-08-27 Jeol Ltd. Scanning electron microscope with an optical microscope
JP2004319518A (ja) * 2004-07-22 2004-11-11 Topcon Corp 走査型電子顕微鏡装置
CN105675639A (zh) * 2014-11-19 2016-06-15 中国科学院苏州纳米技术与纳米仿生研究所 电子束诱导二次谐波的超分辨显微系统及测试方法
CN109142399A (zh) * 2018-07-26 2019-01-04 聚束科技(北京)有限公司 一种成像系统及样品探测方法
CN212134535U (zh) * 2020-01-17 2020-12-11 聚束科技(北京)有限公司 一种成像系统

Similar Documents

Publication Publication Date Title
WO2019140778A1 (zh) 一种三维重构系统及三维重构方法
CN106001927B (zh) 一种测量加工一体化的激光平整化抛光方法
JP3233779U (ja) 連続損失光を用いた二光子誘導放出抑制複合顕微鏡
CN102981261B (zh) 一种激光相干衍射显微成像装置及应用
CN104597062A (zh) 一种柱形束大视场x射线ct成像系统
CN111060294B (zh) 一种荧光显微物镜综合测试平台
CN106841136B (zh) 一种对超薄细胞的高精度轴向定位与成像方法与装置
CN104502634A (zh) 探针伺服角度控制方法及控制模块、基于该控制模块的成像系统及该系统的成像方法
JPWO2019066051A1 (ja) インテリアct位相イメージングx線顕微鏡装置
CN109732201B (zh) 利用三棱台棱镜进行近4π立体角飞秒激光直写加工的方法及其应用
JP2009152120A (ja) 電子線トモグラフィ法及び電子線トモグラフィ装置
CN111288927B (zh) 基于法向跟踪的自由曲面差动共焦测量方法及装置
WO2024051009A1 (zh) 一种基于多重扫描的三维成像系统
JP2020046670A (ja) 調整可能な角度付照明を備えたハイスループット光シート顕微鏡
CN111290108B (zh) 一种基于宽带光源的反射扫描相干衍射显微成像装置及应用
CN109884020A (zh) 利用共聚焦激光扫描显微系统对微纳米级介质波导或台阶型结构侧壁角的无损测量方法
JP2014025936A (ja) 荷電粒子顕微鏡における角度ルミネセンスを測定するためのシステムおよび方法
CN108982455A (zh) 一种多焦点光切片荧光显微成像方法和装置
CN218601188U (zh) 一种基于多重扫描的三维成像系统
CN113030134A (zh) 用于icf靶三维重建的三轴ct成像装置及方法
CN202956532U (zh) 一种激光相干衍射显微成像装置
CN116295102A (zh) 基于光镊微球的白光干涉扫描超分辨测量装置及应用方法
CN214953038U (zh) 一种超分辨显微成像系统
CN111288926B (zh) 基于法向跟踪的自由曲面共焦测量方法及装置
JP2003202303A (ja) X線ct装置、x線ct装置の調整方法及びx線ct装置の調整用冶具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957968

Country of ref document: EP

Kind code of ref document: A1