WO2024050983A1 - 高温超导励磁电流引线热沉装置、方法及液氮灌注装置 - Google Patents

高温超导励磁电流引线热沉装置、方法及液氮灌注装置 Download PDF

Info

Publication number
WO2024050983A1
WO2024050983A1 PCT/CN2022/134504 CN2022134504W WO2024050983A1 WO 2024050983 A1 WO2024050983 A1 WO 2024050983A1 CN 2022134504 W CN2022134504 W CN 2022134504W WO 2024050983 A1 WO2024050983 A1 WO 2024050983A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid nitrogen
liquid
tank
current lead
temperature
Prior art date
Application number
PCT/CN2022/134504
Other languages
English (en)
French (fr)
Inventor
刘洪涛
胡浩
赵峻
高春尧
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2024050983A1 publication Critical patent/WO2024050983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of high-temperature superconductivity, and in particular to a high-temperature superconducting excitation current lead heat sink device, method and liquid nitrogen perfusion device.
  • the magnet After the high-temperature superconducting magnet cools down and enters a steady state, the magnet needs to be excited.
  • the excitation of the magnet requires an external current lead to form a closed loop with the superconducting coil of the magnet.
  • the current lead During the process of continuous excitation of large current, the current lead generates heat. It will cause the temperature of the magnet to rise, which will greatly reduce the excitation efficiency.
  • excessive temperature rise may cause local quenching of the magnet's superconducting coil, causing the magnetic field to rapidly decay and fail to excite the target magnetic field. In serious cases, quenching will occur. Irreversible phenomenon, that is, damage to the magnet superconducting coil, will cause large economic losses.
  • the object of the present invention is to provide a high-temperature superconducting excitation current lead heat sink device that can slow down the temperature rise rate of the high-temperature superconducting magnet, thereby effectively reducing the probability of quenching of the superconducting magnet.
  • a high-temperature superconducting excitation current lead heat sink device including a liquid nitrogen tank containing liquid nitrogen, where the liquid nitrogen is used to heat sink the current lead of a superconducting magnet;
  • the superconducting magnet includes a vacuum box, a superconducting coil and the current lead.
  • the superconducting coil is placed in the vacuum box.
  • the main body of the liquid nitrogen tank is placed in the vacuum box.
  • the liquid nitrogen Both the liquid inlet and the liquid outlet of the tank extend out of the vacuum box, one end of the current lead extends out of the vacuum box for connection with the power supply, and the other end of the current lead passes through the liquid nitrogen
  • the tank is connected to the superconducting coil, and the main body of the current lead is placed in the liquid nitrogen tank;
  • the liquid nitrogen tank is also provided with a liquid level detector for detecting the height of the liquid nitrogen and a temperature detector for detecting the temperature of the liquid nitrogen.
  • a high-temperature superconducting excitation current lead heat sink method applied to the high-temperature superconducting excitation current lead heat sink device as described above, includes the following steps:
  • S100 Fill the liquid nitrogen tank with liquid nitrogen, control the height of the liquid nitrogen to a preset height value, and control the temperature of the liquid nitrogen to a preset temperature value;
  • a liquid nitrogen perfusion device applied to the high-temperature superconducting excitation current lead heat sink device as described above, characterized in that the liquid nitrogen perfusion device is connected to the liquid outlet;
  • the liquid nitrogen perfusion device includes a liquid tank and an infusion pipeline. Both ends of the infusion pipeline are respectively connected to the liquid tank and the liquid inlet. The liquid nitrogen can pass through the liquid tank and the liquid inlet in sequence. The infusion pipeline enters the liquid nitrogen tank.
  • the infusion pipeline is threadedly connected or has a clearance fit with the liquid inlet.
  • the bottom plate of the liquid tank is tilted, and the first end of the bottom plate of the liquid tank is higher than the second end of the bottom plate of the liquid tank.
  • the invention further includes a first drain outlet provided on the bottom plate of the liquid tank, and the first drain outlet is provided on the second end of the bottom plate of the liquid tank.
  • the bottom plate of the liquid tank is provided with an arc-shaped protrusion, and the arc-shaped protrusion is provided with a through hole for the liquid nitrogen to enter the infusion pipeline;
  • a groove is further provided between the arc-shaped protrusion and the inner wall of the liquid tank, the groove is lower than the arc-shaped protrusion, and the first drain port is disposed in the recess. inside the tank.
  • the infusion line includes a first infusion line, a second infusion line, and a curved connecting line provided between the first infusion line and the second infusion line.
  • it also includes a second drain port provided on the curved connecting pipe.
  • the liquid nitrogen tank is filled with liquid nitrogen, and the current leads in the liquid nitrogen tank are heat-sinked.
  • the detector determines whether the liquid nitrogen in the liquid nitrogen tank has reached the preset height, and the temperature detector determines whether the liquid nitrogen in the liquid nitrogen tank has reached the preset temperature.
  • the overflow control begins.
  • the magnetic conductor is excited.
  • the temperature of the liquid nitrogen tank will not be directly transferred to the superconducting coil.
  • Figure 1 is a schematic structural diagram of a high-temperature superconducting excitation current lead heat sink device disclosed in an embodiment of the present invention
  • Figure 2 is a schematic three-dimensional structural diagram of the liquid nitrogen perfusion device disclosed in the embodiment of the present invention.
  • Figure 3 is a schematic front structural view of the liquid nitrogen perfusion device disclosed in the embodiment of the present invention.
  • Figure 4 is a schematic side view of the liquid nitrogen perfusion device disclosed in the embodiment of the present invention.
  • Figure 5 is a schematic top structural view of the liquid nitrogen perfusion device disclosed in the embodiment of the present invention.
  • 100 is the liquid nitrogen tank
  • 200 is the vacuum box
  • 300 is the liquid inlet
  • 400 is the liquid outlet
  • 500 is the current lead
  • 600 is the superconducting coil
  • 700 is the liquid nitrogen perfusion device
  • 701 is the liquid tank
  • 7011 is the third One end
  • 7012 is the second end
  • 702 is the infusion line
  • 7021 is the first infusion line
  • 7022 is the second infusion line
  • 7023 is the curved connecting line
  • 703 is the arc-shaped protrusion
  • 704 is the first drainage outlet
  • 705 is the second drain outlet.
  • the core of the present invention is to provide a high-temperature superconducting excitation current lead heat sink device that can slow down the temperature rise rate of the high-temperature superconducting magnet and effectively reduce the probability of quenching of the superconducting magnet.
  • the high-temperature superconducting excitation current lead heat sink device disclosed in the embodiment of the present invention includes a liquid nitrogen tank 100 for heat sinking the current lead 500 of the superconducting magnet; wherein the superconducting magnet includes a vacuum box. 200, a superconducting coil 600 and a current lead 500.
  • the superconducting coil 500 is placed in the vacuum box 200.
  • the main body of the liquid nitrogen tank 100 is placed in the vacuum box 200.
  • the liquid inlet 300 and the liquid outlet 400 of the liquid nitrogen tank 100 are both Extending out of the vacuum box 200, one end of the current lead 500 extends out of the vacuum box 200 for connection with the power supply.
  • the other end of the current lead 500 passes through the liquid nitrogen tank 100 and is connected to the superconducting coil 600.
  • the main body of the current lead 500 is placed in the liquid nitrogen tank 100.
  • the high-temperature superconducting excitation current lead heat sink device disclosed in the embodiment of the present invention is also provided with a liquid level detector for detecting the height of liquid nitrogen and a temperature detector for detecting the temperature of liquid nitrogen in the liquid nitrogen tank 100 , the liquid level of the liquid nitrogen in the liquid nitrogen tank 100 can be monitored at all times through the liquid level detector, and the temperature of the liquid nitrogen in the liquid nitrogen tank 100 can be monitored in real time through the temperature detector.
  • a liquid level detector for detecting the height of liquid nitrogen
  • a temperature detector for detecting the temperature of liquid nitrogen in the liquid nitrogen tank 100
  • the liquid level of the liquid nitrogen in the liquid nitrogen tank 100 can be monitored at all times through the liquid level detector, and the temperature of the liquid nitrogen in the liquid nitrogen tank 100 can be monitored in real time through the temperature detector.
  • Such settings can make the liquid nitrogen in the liquid nitrogen tank 100 Liquid nitrogen can be maintained at a preset altitude and within a preset temperature range.
  • the liquid nitrogen tank 100 is filled with liquid nitrogen, the current lead 500 in the liquid nitrogen tank 100 is heat-sinked, and the liquid nitrogen is judged by a liquid level detector. Whether the liquid nitrogen in the tank 100 reaches the preset height is judged by a temperature detector whether the liquid nitrogen in the liquid nitrogen tank 100 reaches the preset temperature. When the liquid nitrogen reaches the preset height and the preset temperature, the superconducting magnet is started to be inspected. excitation. During the excitation process, since the liquid nitrogen tank 100 is placed in the vacuum box 200, the temperature of the liquid nitrogen tank 100 will not be directly transferred to the superconducting coil 600.
  • the liquid nitrogen in the liquid nitrogen tank 100 will heat sink the current lead 500.
  • the heating rate of the superconducting coil 600 will be greatly slowed down, thereby effectively reducing the probability of the superconducting coil 600 quenching.
  • the embodiment of the present invention also discloses a high-temperature superconducting excitation current lead heat sinking method, which is applied to the high-temperature superconducting excitation current lead heat sink device disclosed in the above embodiment, specifically including the following steps: S100: Put the liquid nitrogen tank into Inject liquid nitrogen, control the height of the liquid nitrogen to the preset height value, and control the temperature of the liquid nitrogen to the preset temperature value; S200: Place the current lead of the superconducting magnet in the liquid nitrogen tank for heat sinking.
  • the liquid nitrogen tank 100 is filled with liquid nitrogen, the current lead 500 in the liquid nitrogen tank 100 is heat-sinked, and the liquid level is judged by a liquid level detector. Whether the liquid nitrogen in the nitrogen tank 100 reaches the preset height is judged by a temperature detector whether the liquid nitrogen in the liquid nitrogen tank 100 reaches the preset temperature. When the liquid nitrogen reaches the preset height and the preset temperature, the superconducting magnet starts to Carry out excitation. During the excitation process, since the liquid nitrogen tank 100 is placed in the vacuum box 200, the temperature of the liquid nitrogen tank 100 will not be directly transferred to the superconducting coil 600.
  • the liquid nitrogen in the liquid nitrogen tank 100 will heat sink the current lead 500.
  • the heating rate of the superconducting coil 600 will be greatly slowed down, thereby effectively reducing the probability of the superconducting coil 600 quenching.
  • the preset temperature value refers to the temperature of liquid nitrogen, which is approximately 77K.
  • an embodiment of the present invention also discloses a liquid nitrogen perfusion device 700, which is applied to a high-temperature superconducting excitation current lead heat sink device.
  • the liquid nitrogen perfusion device 700 is connected with the liquid outlet 400.
  • the liquid nitrogen perfusion device 700 includes a liquid tank 701 and an infusion pipeline 702.
  • the two ends of the infusion pipeline 702 are respectively connected to the liquid tank 701 and the liquid inlet 300.
  • Liquid nitrogen can enter the liquid nitrogen tank 100 through the liquid tank 701 and the infusion pipeline 702 in sequence.
  • the upper opening of the liquid holding tank 701 has an open structure and is in a horizontal state for injecting liquid nitrogen.
  • the liquid nitrogen enters the liquid inlet from the liquid holding tank 701 through the infusion pipeline 702 Within 300, it enters the liquid nitrogen tank 100 from the liquid inlet 300.
  • the embodiment of the present invention does not limit the connection structure between the liquid nitrogen perfusion device 700 and the liquid inlet 300. As long as the structure meets the usage requirements of the present invention, it is within the protection scope of the present invention.
  • the infusion pipeline 702 and the liquid inlet 300 can be connected through threads or can be clearance-fitted.
  • the embodiment of the present invention does not specifically limit the structure of the liquid tank 701. As long as the structure meets the usage requirements of the present invention, it is within the protection scope of the present invention.
  • the bottom plate of the liquid tank 701 disclosed in the embodiment of the present invention is tilted, and the first end 7011 of the bottom plate of the liquid tank 701 is higher than the second end 7012 of the bottom plate of the liquid tank 701 .
  • a first drain outlet 704 is provided on the bottom plate of the liquid tank 701 , and the first drain outlet 704 is provided on the second end 7012 of the bottom plate of the liquid tank 701 .
  • the liquid nitrogen in the liquid tank 701 can be discharged through the first drain port 704 .
  • the bottom plate of the liquid tank 701 is provided with an arc-shaped protrusion, and a through hole for liquid nitrogen to enter the infusion pipeline 702 is provided on the arc-shaped protrusion.
  • a groove is also provided between the inner side walls, the groove is lower than the arc-shaped protrusion, and the first drain port 704 is provided in the groove.
  • the first drain port 704 and the second drain port 705 need to be blocked or equipped with standard drain valves.
  • the liquid nitrogen infusion device 700 is at room temperature. The water vapor in the air will freeze on the wall of the device when it is cold, and then turn into water as the temperature rises. The condensed water in the liquid tank 701 will flow into the second end of the bottom plate of the liquid tank 701 through the first drain port 704 discharge.
  • the embodiment of the present invention does not limit the specific structure of the infusion pipeline 702. As long as the structure meets the usage requirements of the present invention, it is within the protection scope of the present invention.
  • the infusion pipeline 702 disclosed in the embodiment of the present invention includes a first infusion pipeline 7021, a second infusion pipeline 7022, and an infusion pipeline 702 disposed between the first infusion pipeline 7021 and the second infusion pipeline 7022. Bend connecting pipe 7023.
  • the curved connecting pipe 7023 is also provided with a second drain port 705, and the condensed water in the infusion pipe 702 is discharged through the second drain port 705.
  • the embodiment of the present invention does not limit the specific materials of the liquid tank 701 and the infusion pipeline 702. As long as the structures meet the usage requirements of the present invention, they are within the protection scope of the present invention.
  • liquid tank 701 and the infusion pipeline 702 disclosed in the embodiment of the present invention are both made of non-magnetic or low-magnetic conductive metal materials.
  • liquid tank 701 and the infusion pipeline 702 disclosed in the embodiment of the present invention are made of non-magnetic or low-magnetic metal materials such as stainless steel or aluminum alloy.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

本发明公开了一种高温超导励磁电流引线热沉装置、方法及液氮灌注装置,其中高温超导励磁电流引线热沉装置包括盛装有液氮的液氮槽,液氮用于对超导磁体的电流引线进行热沉;超导磁体包括真空箱、超导线圈和电流引线,超导线圈置于真空箱内,液氮槽的主体置于真空箱内,液氮槽的进液口和出液口均伸出真空箱外,电流引线的一端伸出真空箱外用于与电源相连接,电流引线的另一端穿过液氮槽与超导线圈相连接,电流引线的主体置于液氮槽内;液氮槽内还设置有用于检测液氮高度的液位检测计,和用于检测液氮温度的温度检测仪。在励磁过程中,当开启电源电流引线加热升温时,会极大的减缓超导线圈的升温速度,从而有效降低超导线圈失超的几率。

Description

高温超导励磁电流引线热沉装置、方法及液氮灌注装置
本申请要求于2022年09月05日提交中国专利局、申请号为202211079056.1、发明名称为“高温超导励磁电流引线热沉装置、方法及液氮灌注装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高温超导技术领域,特别涉及一种高温超导励磁电流引线热沉装置、方法及液氮灌注装置。
背景技术
高温超导磁体在降温进入稳态后,需要对磁体进行励磁作业,而磁体的励磁需要外接电流引线与磁体的超导线圈形成闭合回路,在持续通入大电流励磁的过程中,电流引线发热会导致磁体的温度上升,会极大的降低励磁效率,同时过高的温升可能会使磁体超导线圈局部失超,导致磁场快速衰退,无法励至目标磁场,严重的情况会产生失超不可逆现象,即磁体超导线圈损坏,会产生较大经济损失。
因此,如何减缓高温超导磁体的温度上升速度,从而有效降低超导磁体失超的几率是本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种高温超导励磁电流引线热沉装置,能够减缓高温超导磁体的温度上升速度,从而有效降低超导磁体失超的几率。
为实现上述目的,本发明提供如下技术方案:
一种高温超导励磁电流引线热沉装置,包括盛装有液氮的液氮槽,所述液氮用于对超导磁体的电流引线进行热沉;
所述超导磁体包括真空箱、超导线圈和所述电流引线,所述超导线圈置于所述真空箱内,所述液氮槽的主体置于所述真空箱内,所述液氮槽的进液口和出液口均伸出所述真空箱外,所述电流引线的一端伸出所述真空箱外用于与电源相连接,所述电流引线的另一端穿过所述液氮槽与所述超导线圈相连接,所述电流引线的主体置于所述液氮槽内;
所述液氮槽内还设置有用于检测液氮高度的液位检测计,和用于检测所述液氮温度的温度检测仪。
一种高温超导励磁电流引线热沉方法,应用于如上述所述的高温超导励磁电流引线热沉装置,包括以下步骤:
S100:将液氮槽内灌注液氮,控制所述液氮的高度为预设高度值,同时控制所述液氮的温度为预设温度值;
S200:将超导磁体的电流引线放置于液氮槽内进行热沉。
一种液氮灌注装置,应用于如上述所述高温超导励磁电流引线热沉装置,其特征在于,所述液氮灌注装置与所述出液口相连通;
所述液氮灌注装置包括盛液箱和输液管路,所述输液管路的两端分别连接所述盛液箱与所述进液口,所述液氮能够依次通过所述盛液箱和所述输液管路进入所述液氮槽内。
优选的,所述输液管路与所述进液口螺纹连接或间隙配合。
优选的,所述盛液箱的底板倾斜设置,且所述盛液箱的底板的第一端高于所述盛液箱的底板的第二端。
优选的,还包括设置于所述盛液箱的底板上的第一排水口,所述第一排水口设置于所述盛液箱的底板的第二端。
优选的,所述盛液箱的底板上设置有弧形凸起,所述弧形凸起上开设有用于所述液氮进入所述输液管路的通孔;
优选的,所述弧形凸起与所述盛液箱的内侧壁之间还设置有凹槽,所述凹槽低于所述弧形凸起,所述第一排水口设置于所述凹槽内。
优选的,所述输液管路包括第一输液管路,第二输液管路,和设置于所述第一输液管路与所述第二输液管路之间的弯曲连接管路。
优选的,还包括设置于所述弯曲连接管路上的第二排水口。
由以上技术方案可以看出,在进行励磁前,确定超导磁体的关键温度群处于稳定范围,然后将液氮槽内灌注液氮,对液氮槽内的电流引线进行热沉,通过液位检测计判断液氮槽内的液氮是否达到预设高度,通过温度检测仪判断液氮槽内的液氮是否达到预设温度,当液氮达到预设高度和预设温度时,开始对超导磁体进行励磁。在励磁过程中,由于液氮槽置于真空箱内,液氮槽的温度不会直接传递给超导线圈,同时由于液氮槽内的液氮对电流引线进行热沉,当开启电源电流引线加热升温时,会极大的减缓超导线圈的升温速度,从而有效降低超导线圈失超的几率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见的,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所公开的高温超导励磁电流引线热沉装置的结构示意图;
图2为本发明实施例所公开的液氮灌注装置的立体结构示意图;
图3为本发明实施例所公开的液氮灌注装置的主视结构示意图;
图4为本发明实施例所公开的液氮灌注装置的侧视结构示意图;
图5为本发明实施例所公开的液氮灌注装置的俯视结构示意图。
其中,各部件名称如下:
100为液氮槽,200为真空箱,300为进液口,400为出液口,500为电流引线,600为超导线圈,700为液氮灌注装置,701为盛液箱,7011为第一端,7012为第二端,702为输液管路,7021为第一输液管路,7022为第二输液管路,7023为弯曲连接管路,703为弧形凸起,704为第一排水口,705为第二排水口。
具体实施方式
有鉴于此,本发明的核心在于提供一种高温超导励磁电流引线热沉装置,能够减缓高温超导磁体的温度上升速度,有效降低超导磁体失超的几率。
为了使本技术领域的人员更好地理解本发明方案,下面接合附图和具体实施方式对本发明作进一步的详细说明,请参考图1至图5。
请参考图1,本发明实施例所公开的高温超导励磁电流引线热沉装置,包括用于对超导磁体的电流引线500进行热沉的液氮槽100;其中,超导磁体包括真空箱200,超导线圈600和电流引线500,超导线圈500置于真空箱200内,液氮槽100的主体置于真空箱200内,液氮槽100的进液口300和出液口400均伸出真空箱200外,电流引线500的一端伸出真空箱200外用于与电源相连接,电流引线500的另一端穿过液氮槽100与超导线圈600相连接,电流引线500的主体置于液氮槽100内。
其中,本发明实施例所公开的高温超导励磁电流引线热沉装置,在液氮槽100内还设置有用于检测液氮高度的液位检测计,和用于检测液氮温度的温度检测仪,通过液位检测计能够时时监测液氮槽100内的液氮的液位,通过温度检测仪能够实时监测液氮槽100内的液氮的温度,如此设置,可以使得液氮槽100内的液氮能够保持在预设高度和预设温度范围值内。
在进行励磁前,确定超导磁体的关键温度群处于稳定范围,然后将液氮槽100内灌注液氮,对液氮槽100内的电流引线500进行热沉,通过液位检测计判断液氮槽100内的液氮是否达到预设高度,通过温度检测仪判断液氮槽100内的液氮是否达到预设温度,当液氮达到预设高度和预设温度时,开始对超导磁体进行励磁。在励磁过程中,由于液氮槽100置于真空箱200内,液氮槽100的温度不会直接传递给超导线圈600,同时由于液氮槽100内的液氮对电流引线500进行热沉,当开启电源电流引线500加热升温时,会极大的减缓超导线圈600的升温速度,从而有效降低超导线圈600失超的几率。
需要说明的是,在励磁过程中,要保持液氮槽100内的液氮不能
完全挥发空,通过液位检测计来监控液氮的高度,通过温度检测仪来监控液氮的温度,及时补充氮液。
需要进一步说明的是,当超导线圈600的关键温度群温度在平均30K左右时,开始进行励磁。
本发明实施例还公开了一种高温超导励磁电流引线热沉方法,应用于如上述实施例所公开的高温超导励磁电流引线热沉装置,具体包括以下步骤:S100:将液氮槽内灌注液氮,控制液氮的高度为预设高度值,同时控制液氮的温度为预设温度值;S200:将超导磁体的电流引线放置于液氮槽内进行热沉。
在进行励磁前,确定超导磁体的关键温度群处于稳定温度范围,然后将液氮槽100内灌注液氮,对液氮槽100内的电流引线500进行热沉,通过液位检测计判断液氮槽100内的液氮是否达到预设高度,通过温度检测仪判断液氮槽100内的液氮是否达到预设温度,当液氮达到预设高度和预设温度时,开始对超导磁体进行励磁。在励磁过程中,由于液氮槽100置于真空箱200内,液氮槽100的温度不会直接传递给超导线圈600,同时由于液氮槽100内的液氮对电流引线500进行热沉,当开启电源电流引线500加热升温时,会极大的减缓超导线圈600的升温速度,从而有效降低超导线圈600失超的几率。
需要说明的是,预设温度值指温度为液氮温度,大约77K左右。
需要解释的是,不是全部电流引线都用来进行热沉,电流引线的一部分置于液氮槽100内进行热沉,剩余电流引线中的一部分电流引线伸出真空箱200与电源连接,另一部分电流引线穿过液氮槽100与超导线圈600相连。请参考图2至图5,本发明实施例还公开了一种液氮灌注装置700,应用于高温超导励磁电流引线热沉装置。
其中,液氮灌注装置700与出液口400相连通,液氮灌注装置700包括盛液箱701和输液管路702,输液管路702的两端分别连接盛液箱701与进液口300,液氮能够依次通过盛液箱701和输液管路702进入液氮槽100内。
需要说明的是,盛液箱701的上口为开放式结构,且呈水平状态,用于灌注液氮,当灌注液氮时,液氮从盛液箱701通过输液管路702进入进液口300内,从进液口300进入液氮槽100内。
本发明实施例对液氮灌注装置700与进液口300的连接结构不进行限定,只要满足本发明使用要求的结构均在本发明的保护范围之内。
作为优选实施例,本发明实施例所公开的液氮灌注装置700中,输液管路702与进液口300可以通过螺纹连接,也可以进行间隙配合。
本发明实施例对盛液箱701的结构不进行具体限定,只要满足本发明使用要求的结构均在本发明的保护范围之内。
作为优选实施例,本发明实施例所公开的盛液箱701的底板倾斜设置,且盛液箱701的底板的第一端7011高于盛液箱701的底板的第二端7012。
其中,盛液箱701的底板上设置有第一排水口704,且第一排水口704设置于盛液箱701的底板的第二端7012。如此设置,盛液箱701内的液氮可以通过第一排水口704排出。
需要说明的是,盛液箱701的底板上设置有弧形凸起,弧形凸起上开设有用于液氮进入输液管路702的通孔,其中,弧形凸起与盛液箱701的内侧壁之间还设置有凹槽,凹槽低于弧形凸起,第一排水口704设置于所述凹槽内。
如此设置,当进行液氮灌注时,需将第一排水口704和第二排水口705封堵,或装有标准的排水阀,当液氮灌注完成之后,液氮灌注装置700处于室温内,空气的水蒸气遇冷会在装置壁上结霜,然后随着温度的升高化成水,盛液箱701内的冷凝水会流入盛液箱701的底板的第二端通过第一排水口704 排出。
本发明实施例对输液管路702的具体结构不进行限定,只要满足本发明使用要求的结构均在本发明的保护范围之内。
作为优选实施例,本发明实施例所公开的输液管路702包括第一输液管路7021,第二输液管路7022,和设置于第一输液管路7021与第二输液管路7022之间的弯曲连接管路7023。
其中,弯曲连接管路7023还设置有第二排水口705,输液管路702的冷凝水通过第二排水口705排出。
本发明实施例对盛液箱701和输液管路702的具体材质不进行限定,只要满足本发明使用要求的结构均在本发明的保护范围之内。
为了优化上述实施例,本发明实施例所公开的盛液箱701和输液管路702均采用不导磁或低导磁的金属材料加工。
更为优选的,本发明实施例所公开的盛液箱701和输液管路702均采用不锈钢或铝合金的不导磁或低导磁的金属材料加工。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高温超导励磁电流引线热沉装置,其特征在于,包括盛装有液氮的液氮槽,所述液氮用于对超导磁体的电流引线进行热沉;
    所述超导磁体包括真空箱、超导线圈和所述电流引线,所述超导线圈置于所述真空箱内,所述液氮槽的主体置于所述真空箱内,所述液氮槽的进液口和出液口均伸出所述真空箱外,所述电流引线的一端伸出所述真空箱外用于与电源相连接,所述电流引线的另一端穿过所述液氮槽与所述超导线圈相连接,所述电流引线的主体置于所述液氮槽内;
    所述液氮槽内还设置有用于检测液氮高度的液位检测计,和用于检测所述液氮温度的温度检测仪。
  2. 一种高温超导励磁电流引线热沉方法,应用于如权利要求1所述的高温超导励磁电流引线热沉装置,其特征在于,包括以下步骤:
    S100:将液氮槽内灌注液氮,控制所述液氮的高度为预设高度值,同时控制所述液氮的温度为预设温度值;
    S200:将超导磁体的电流引线放置于液氮槽内进行热沉。
  3. 一种液氮灌注装置,应用于如权利要求1所述的高温超导励磁电流引线热沉装置,其特征在于,所述液氮灌注装置与所述出液口相连通;
    所述液氮灌注装置包括盛液箱和输液管路,所述输液管路的两端分别连接所述盛液箱与所述进液口,所述液氮能够依次通过所述盛液箱和所述输液管路进入所述液氮槽内。
  4. 根据权利要求3所述的液氮灌注装置,其特征在于,所述输液管路与所述进液口螺纹连接或间隙配合。
  5. 根据权利要求3所述的液氮灌注装置,其特征在于,所述盛液箱的底板倾斜设置,且所述盛液箱的底板的第一端高于所述盛液箱的底板的第二端。
  6. 根据权利要求5所述的液氮灌注装置,其特征在于,还包括设置于所述盛液箱的底板上的第一排水口,所述第一排水口设置于所述盛液箱的底板的第二端。
  7. 根据权利要求6所述的液氮灌注装置,其特征在于,所述盛液箱的底板上设置有弧形凸起,所述弧形凸起上开设有用于所述液氮进入所述输液管路的通孔。
  8. 根据权利要求7所述的液氮灌注装置,其特征在于,所述弧形凸起与所述盛液箱的内侧壁之间还设置有凹槽,所述凹槽低于所述弧形凸起,所述第一排水口设置于所述凹槽内。
  9. 根据权利要求3所述的液氮灌注装置,其特征在于,所述输液管路包括第一输液管路,第二输液管路,和设置于所述第一输液管路与所述第二输液管路之间的弯曲连接管路。
  10. 根据权利要求9所述的液氮灌注装置,其特征在于,还包括设置于所述弯曲连接管路上的第二排水口。
PCT/CN2022/134504 2022-09-05 2022-11-25 高温超导励磁电流引线热沉装置、方法及液氮灌注装置 WO2024050983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211079056.1A CN115394514A (zh) 2022-09-05 2022-09-05 高温超导励磁电流引线热沉装置、方法及液氮灌注装置
CN202211079056.1 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024050983A1 true WO2024050983A1 (zh) 2024-03-14

Family

ID=84124240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134504 WO2024050983A1 (zh) 2022-09-05 2022-11-25 高温超导励磁电流引线热沉装置、方法及液氮灌注装置

Country Status (2)

Country Link
CN (1) CN115394514A (zh)
WO (1) WO2024050983A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314615A (ja) * 1993-04-28 1994-11-08 Hitachi Cable Ltd 超電導装置
JPH0766031A (ja) * 1993-08-25 1995-03-10 Toshiba Corp 超電導電流リード
CN1674163A (zh) * 2005-04-15 2005-09-28 中国科学院等离子体物理研究所 大幅度增加高温超导电流引线稳定性的液氮/氮蒸汽冷却方法
CN111157926A (zh) * 2020-01-03 2020-05-15 北京交通大学 一种用于高温超导磁体失超检测实验的杜瓦装置
CN111174087A (zh) * 2020-01-21 2020-05-19 中国科学院电子学研究所 现场灌注液氮的装置及方法
CN214947179U (zh) * 2021-03-22 2021-11-30 河南正荣恒能源科技有限公司 一种高压、低温介质输出联接部件及加注机
CN114974790A (zh) * 2021-02-19 2022-08-30 住友重机械工业株式会社 超导磁体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314615A (ja) * 1993-04-28 1994-11-08 Hitachi Cable Ltd 超電導装置
JPH0766031A (ja) * 1993-08-25 1995-03-10 Toshiba Corp 超電導電流リード
CN1674163A (zh) * 2005-04-15 2005-09-28 中国科学院等离子体物理研究所 大幅度增加高温超导电流引线稳定性的液氮/氮蒸汽冷却方法
CN111157926A (zh) * 2020-01-03 2020-05-15 北京交通大学 一种用于高温超导磁体失超检测实验的杜瓦装置
CN111174087A (zh) * 2020-01-21 2020-05-19 中国科学院电子学研究所 现场灌注液氮的装置及方法
CN114974790A (zh) * 2021-02-19 2022-08-30 住友重机械工业株式会社 超导磁体装置
CN214947179U (zh) * 2021-03-22 2021-11-30 河南正荣恒能源科技有限公司 一种高压、低温介质输出联接部件及加注机

Also Published As

Publication number Publication date
CN115394514A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
JP5809391B2 (ja) 超伝導マグネット冷却の装置及び方法
Keith et al. The Jefferson Lab frozen spin target
US6984264B2 (en) Single crystal pulling device and method and superconducting magnet
CN206312703U (zh) 一种具有自动降温功能的油浸式变压器
CN112712958B (zh) 一种液氮屏蔽混合液体介质冷却的高温超导磁体
WO2024050983A1 (zh) 高温超导励磁电流引线热沉装置、方法及液氮灌注装置
GB2389647A (en) Recondensing helium cryostat
CN213178841U (zh) 使用二级媒介的流体加热装置
CN109979704B (zh) 一种传导冷却超导线圈限位装置
CN109285646A (zh) 一种用于冷屏快速降温的结构及方法
CN104900370A (zh) 一种包含真空腔的超导磁体液氦容器
Li et al. Cooling unit for the 500 kV saturated iron core fault current limiter
CN114624286A (zh) 一种节省液氢用量的高安全性液氢储罐测试系统及方法
CN212758697U (zh) 一种稀土硅胶蓄电池实验用恒温水槽
Nacher et al. Nuclear polarization enhancement by distillation of liquid− 4 3 He solutions
CN203984760U (zh) 一种高产额中子发生器高电位端散热装置
CN107527703A (zh) 一种磁体强制对流液冷方法及其冷却系统
Smits Gas cooled electrical leads for use on forced cooled superconducting magnets
CN207009224U (zh) 一种自循环冷却变压器
CN206058088U (zh) 一种cpu散热装置
CN113628827B (zh) 一种传导冷却超导磁体
Morpurgo A superconducting solenoid cooled by forced circulation of supercritical helium
CN212802503U (zh) 一种方便大体积混凝土散热模板
Yoshida et al. 1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer
CN216337330U (zh) 一种大体积混凝土温控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957942

Country of ref document: EP

Kind code of ref document: A1