WO2024050934A1 - 可见光通信系统 - Google Patents

可见光通信系统 Download PDF

Info

Publication number
WO2024050934A1
WO2024050934A1 PCT/CN2022/127179 CN2022127179W WO2024050934A1 WO 2024050934 A1 WO2024050934 A1 WO 2024050934A1 CN 2022127179 W CN2022127179 W CN 2022127179W WO 2024050934 A1 WO2024050934 A1 WO 2024050934A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photodiode
tracking
communication
communication system
Prior art date
Application number
PCT/CN2022/127179
Other languages
English (en)
French (fr)
Inventor
吕志坚
查露露
田金鹏
张文伟
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Priority to US18/272,795 priority Critical patent/US20240088999A1/en
Publication of WO2024050934A1 publication Critical patent/WO2024050934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • Embodiments of the present application relate to the technical field of visible light communication, for example, to a visible light communication system.
  • VLC Visible Light Communication
  • FOV Field of View
  • Embodiments of the present application provide a visible light communication system to achieve self-alignment of the receiving end, thereby improving the received optical power, signal-to-noise ratio, and bit error rate during the visible light communication process.
  • Embodiments of the present application provide a visible light communication system.
  • the system includes: a modulated light-emitting module configured to emit communication light modulated according to the information to be communicated; a tracking photosensitive module configured to receive and demodulate all the communication light in the communication light.
  • the communication information is further configured to align itself with the communication light according to the angle between itself and the communication light.
  • the tracking photosensitive module includes: a light tracking sensor, configured to generate light sensing signals for multiple areas according to the amount of reception of the communication light in different areas; a tracking circuit, configured to generate light sensing signals for multiple areas according to the reception of the communication light in the multiple areas.
  • the light sensing signal generates a motor drive signal; the motor is configured to adjust the direction of the photosensitive plane of the light tracking sensor according to the motor drive signal to align with the communication light.
  • the light tracking sensor includes a metal wall, and a first photodiode and a second photodiode provided on both sides of the metal wall, the first photodiode and the second photodiode being configured to generate respective light sensing signal.
  • the first photodiode and the second photodiode have the same size, and the metal wall is perpendicular to the photosensitive surface of the first photodiode and the photosensitive surface of the second photodiode.
  • the tracking circuit includes: a comparison unit configured to compare the light sensing signals of the multiple areas; a switching unit including a plurality of switch tubes configured to determine the The opening and closing of the plurality of switch tubes controls the access direction of the driving voltage of the motor, and generates a motor drive signal according to the access direction of the driving voltage.
  • the comparison unit includes a first operational amplifier and a second operational amplifier; the positive input terminal of the first operational amplifier is connected to the first photodiode, and the negative input terminal is connected to the second photodiode; The positive input terminal of the second operational amplifier is connected to the second photodiode, and the negative input terminal is connected to the first photodiode.
  • the switch unit includes a first switch tube, a second switch tube, a third switch tube and a fourth switch tube; the output of the first operational amplifier is used to control the second switch tube and the third switch tube.
  • the output of the second operational amplifier is used to control the opening and closing of the four switching tubes.
  • the output of the second operational amplifier is used to control the opening and closing of the first switching tube and the third switching tube; when the second switching tube and the fourth switching tube are closed And when the first switch tube and the third switch tube are disconnected, the positive electrode of the motor is connected to the driving voltage and the negative electrode is grounded.
  • the first switch tube and the third switch tube are closed, And when the second switch tube and the fourth switch tube are disconnected, the negative electrode of the motor is connected to the driving voltage, and the positive electrode is grounded.
  • the number of the light tracking sensors is multiple, arranged in an array, and the multiple light tracking sensors are connected in parallel.
  • the modulated light-emitting module uses a gallium nitride-based micron light-emitting diode micro-LED as the light source, and the modulation method is non-return-to-zero switch keying.
  • the system further includes a focusing module configured to focus the communication light onto the tracking photosensitive module.
  • Figure 1 is a schematic structural diagram of the visible light communication system provided by this application.
  • FIG. 2 is a schematic structural diagram of another visible light communication system provided by this application.
  • FIG. 3 is a schematic structural diagram of a tracking photosensitive module provided by this application.
  • Figure 4 is a schematic structural diagram of the optical tracking sensor provided by this application.
  • FIG. 5 is a circuit diagram of the tracking circuit provided by this application.
  • Figure 6 is a schematic structural diagram of another visible light communication system provided by this application.
  • first and second photodiode may be used herein to describe various directions, actions, steps or elements, but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, act, step or element from another direction, act, step or element.
  • first photodiode may be referred to as a second photodiode
  • second photodiode may be referred to as a first photodiode.
  • the first photodiode and the second photodiode are both photodiodes, but they are not the same photodiode.
  • first first
  • second etc.
  • Figure 1 is a schematic structural diagram of a visible light communication system provided in Embodiment 1 of the present application. This embodiment is applicable to situations where visible light communication is used for communication.
  • the system includes: a modulated light-emitting module 100, configured to emit communication light modulated according to the information to be communicated; a tracking photosensitive module 200, configured to receive and demodulate the information to be communicated in the communication light , and is further configured to align itself with the communication light according to the angle between itself and the communication light.
  • Visible light communication refers to a communication method that uses light in the visible light band as an information carrier to directly transmit optical signals in the air.
  • the information to be communicated can be modulated by the modulation and light-emitting module 100, that is, the information to be communicated can be processed and loaded onto an optical carrier to change it into a form suitable for visible light transmission, thereby obtaining communication light, and then emitting the communication light.
  • the tracking photosensitive module 200 can be placed at a position facing the light source of the modulated light-emitting module 100, so as to receive the communication light emitted by the modulated light-emitting module 100 and improve the transmission performance of the VLC link. After receiving the communication light, it can be Demodulate to obtain the required information to be communicated.
  • the tracking photosensitive module 200 can also adjust the angle of receiving the communication light. It can adjust to the opposite direction of the deflection direction when it detects that its photosensitive plane is not facing the communication light, or is deflected greatly from the opposite direction. alignment.
  • the modulated light-emitting module 100 can simulate the required communication light through the pulse generator 101, use the biaser 102 as a light modulator driver, and then emit the output communication light through the light source 103.
  • the simultaneous tracking photosensitive module 200 can receive the communication light through the optical receiver 201, and use a broadband oscilloscope 202 to display the received communication light.
  • An error detector 203 can also be added to analyze the generated error and modulate the light emitting module.
  • the free space distance between 100 and the tracking photosensitive module 200 can be set to 80cm.
  • the modulated light emitting module 100 uses gallium nitride (GaN)-based micro-Light Emitting Diode (micro-LED) as a light source.
  • GaN gallium nitride
  • micro-LED micro-Light Emitting Diode
  • LED Light Emitting Diode
  • the modulation method of the modulated light-emitting module 100 is Non-Return-To-Zero-On-Off Keying (NRZ-OOK), which is performed by using GaN micro-LED and NRZ-OOK.
  • NRZ-OOK Non-Return-To-Zero-On-Off Keying
  • High-rate visible light communication makes it insensitive to the spatial pattern of incident light.
  • the speed can reach 600Mbps at a bit error rate (Bit Error Ratio, BER) of 2.1*10 -4 , which is lower than the forward error correction limit (Forward Error Correction, FEC).
  • the tracking photosensitive module 200 includes: a light tracking sensor configured to generate light sensing signals in multiple areas according to the amount of reception of the communication light in different areas; a tracking circuit configured to A motor driving signal is generated according to the light sensing signals of the plurality of areas; the motor is configured to adjust the direction of the photosensitive plane of the light tracking sensor according to the motor driving signal to align with the communication light.
  • a light tracking sensor can be used as the light receiver 201 to sense light, and different areas on the light tracking sensor can be individually sensed, and then the relationship between the light sensing plane of the light tracking sensor and the communication light can be determined based on the reception of communication light in multiple areas. angle between.
  • corresponding light sensing signals can be generated through multiple areas on the light tracking sensor.
  • the multiple light sensing signals can be analyzed through the tracking circuit and the current deflection of the light tracking sensor can be determined. direction, thereby generating a motor drive signal.
  • the tracking photosensitive module 200 can realize the mechanical rotation process of alignment through a motor.
  • the motor can be a servo motor controlled by pulse width modulation (Pulse Width Modulation, PWM). Different motor drive signals can control the motor to deflect in different directions.
  • PWM pulse width modulation
  • Different motor drive signals can control the motor to deflect in different directions.
  • the direction of the photosensitive plane of the light tracking sensor can be adjusted through the motor, thereby tracking the communication light and pointing in the direction of the communication light.
  • Light tracking sensors and tracking circuits can be integrated on complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) chips.
  • CMOS complementary Metal Oxide Semiconductor
  • the number of the light tracking sensors is multiple, arranged in an array, and the multiple light tracking sensors are connected in parallel. Since the light sensing signal generated by a single light tracking sensor is usually small, multiple light tracking sensors connected in parallel can be used to obtain a larger light sensing signal so that the light sensing signal can be clearly identified. At the same time, multiple light tracking sensors can be arranged in an array and placed in the same direction to ensure that the maximum received light power point of multiple light tracking sensors is the same, thereby ensuring the accuracy of the results.
  • the light tracking sensor includes a metal wall 211, and a first photodiode 212 and a second photodiode 213 provided on both sides of the metal wall 211.
  • the first photodiode 212 and the second photodiode 213 are arranged to generate respective light sensing signals.
  • the metal wall 211 can be created by metal layers, contacts and vias in the stacking process.
  • the metal wall 211 is opaque.
  • the first photodiode 212 and the second photodiode 213 have the same size, and the photosensitive surface of the metal wall 211 and the first photodiode 212 and the photosensitive surface of the second photodiode 213 are the same.
  • the surface is vertical, making it easier to determine the deflection of the light tracking sensor based on the light sensing signal.
  • the first photodiode 212 and the second photodiode 213 have the same size, that is, the length and width of the photosensitive surface of the first photodiode 212 and the second photodiode 213 are the same, and the metal wall 211 is perpendicular to the photosensitive surfaces of the two photodiodes.
  • IL represents the photocurrent generated by the first photodiode 212
  • IR represents the photocurrent generated by the second photodiode 213
  • represents the ratio corresponding to the reflected light to the total light reaching the metal wall 211 on the first photodiode 212 side.
  • represents the ratio corresponding to the reflected light and the total light reaching the metal wall 211 on the second photodiode 213 side
  • H represents the height of the metal wall 211
  • L represents the length of the two photodiodes (perpendicular to the metal wall 211 direction), Among them, ⁇ and ⁇ depend on the process, layout and packaging, which are constants.
  • the current ratio between IL and IR has nothing to do with the light intensity, but only depends on the angle ⁇ .
  • the height of the metal wall 211 can be set to 12 microns, thereby optimizing the performance of the light tracking sensor.
  • the physical size is much larger than the wavelength of absorbed light, diffraction has a negative impact on the performance of the light tracking sensor. Less affected.
  • the tracking circuit includes: a comparison unit configured to compare the light sensing signals of the multiple areas; a switching unit including a plurality of switch tubes configured to determine the The opening and closing of the plurality of switch tubes controls the access direction of the driving voltage of the motor, and generates a motor drive signal according to the access direction of the driving voltage.
  • the photocurrent generated by the first photodiode 212 and the second photodiode 213 can be compared by the comparison unit, and under different comparison results, the driving voltage provided to the motor can be controlled by controlling the opening and closing of different switch tubes. Access direction, and different access directions can make the motor rotate in different directions, thereby achieving the alignment process.
  • the comparison unit includes a first operational amplifier CP 1 and a second operational amplifier CP 2 ; the positive input terminal of the first operational amplifier CP 1 is connected to the first photodiode D L connected, the negative input terminal is connected to the second photodiode DR ; the positive input terminal of the second operational amplifier CP 2 is connected to the second photodiode DR , and the negative input terminal is connected to the first photodiode D L connection.
  • the first operational amplifier CP 1 can determine its output voltage V 1 by comparing the voltage V L generated by the first photodiode DL with the voltage VR generated by the second photodiode DR .
  • the second operational amplifier CP 2 can determine its output voltage V 1 by comparing The magnitude of the voltage VR generated by the second photodiode DR and the voltage VL generated by the first photodiode DL determines its output voltage V 2 , which can also be determined by the first variable resistor R 2 and the second variable resistor R 3
  • the voltage generated by the second photodiode DR is divided, and the divided voltage V Redundant, thereby achieving alignment only when the deflection of the light tracking sensor exceeds a certain angle, preventing the tracking photosensitive module 200 from being in a jittering state for a long time, thereby reducing consumption.
  • the switching unit includes a first switching tube M 1 , a second switching tube M 2 , a third switching tube M 3 and a fourth switching tube M 4 ; the output of the first operational amplifier CP 1 is used to control The output of the second operational amplifier CP 2 is used to control the opening and closing of the second switching tube M 2 and the fourth switching tube M 4 , and the output of the second operational amplifier CP 2 is used to control the first switching tube M 1 and the third switching tube M 3 ; when the second switching tube M2 and the fourth switching tube M4 are closed and the first switching tube M1 and the third switching tube M3 are opened, the motor M The positive electrode is connected to the driving voltage V DD and the negative electrode is connected to ground.
  • the first switching tube M1 and the third switching tube M3 are controlled to close, thereby
  • the driving voltage V DD can flow through the third switching transistor M 3 , the motor M (negative pole to positive pole) and the first switching transistor M 1 in sequence, and is finally grounded.
  • the positive and negative output voltages of the first operational amplifier CP 1 and the second operational amplifier CP 2 can be determined according to the magnitude of the photocurrent generated by the first photodiode DL and the second photodiode DR , thereby controlling the opening of multiple switching tubes. Close, and then control the access direction of the driving voltage V DD of the motor M to control the motor M to rotate in different directions.
  • Motor M can choose a DC servo motor to respond to the voltage difference, making the entire system simple and reliable.
  • the motor driver will not consume power, so that for low-power applications, the static consumption current (about 88 microamps) ) and the consumption of the tracking photosensitive module (around 334 mA) are both very low.
  • the system has good sensitivity to the incident angle and can achieve a tracking accuracy of 1.9 degrees within a range of 120 degrees. After tracking and alignment, the received optical power, signal-to-noise ratio and bit error rate are also greatly improved. .
  • the system further includes a focusing module configured to focus the communication light onto the tracking photosensitive module 200 .
  • a focusing module configured to focus the communication light onto the tracking photosensitive module 200 .
  • the focusing module may include a transmitting optical module and a receiving optical module.
  • the transmitting optical module is close to the modulated light-emitting module 100 and can be configured to converge the communication light to the optical axis direction and inject it into the receiving optical module.
  • the receiving optical module Close to the tracking photosensitive module 200, it can be configured to converge the communication light to the tracking photosensitive module 200, thereby improving the reception efficiency of the communication light.
  • the visible light communication system includes a modulated light-emitting module and a tracking photosensitive module.
  • the modulated light-emitting module is configured to emit communication light modulated according to the information to be communicated
  • the tracking photosensitive module is configured to receive and demodulate the communication light.
  • the information to be communicated is also set to align itself with the communication light according to the angle between itself and the communication light, thereby realizing self-alignment of the receiving end, and can realize real-time according to the change of angle at any time during use. Alignment improves the received optical power, signal-to-noise ratio and bit error rate during visible light communication, and also expands the field of view of the receiving end.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种可见光通信系统。该系统包括:调制发光模块,设置为发射根据待通信信息调制得到的通信光线;跟踪感光模块,设置为接收并解调所述通信光线中的所述待通信信息,还设置为根据自身与所述通信光线之间的角度进行自身与所述通信光线的对准。

Description

可见光通信系统
本申请要求在2022年09月08日提交中国专利局、申请号为202211092797.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及可见光通信技术领域,例如涉及一种可见光通信系统。
背景技术
可见光通信(Visible Light Communication,VLC)已成为一种前景广阔的无线通信方法,光载波频率的使用允许以多个数量级显著扩大可用频谱、高度空间多路复用、以及以更高的数据速率进行通信的可能性。在VLC投入使用之前,需要人工手动将接收端与发射端对准,但是在使用过程中,接收端的角度可能发生偏移,就会影响通信效果。另外,针对一些尺寸较小的光源,光功率较低,根据几何光学中的集光率守恒定律光源的视野(Field of View,FOV)就会减小,从而会影响接收端的对准程度。
发明内容
本申请实施例提供一种可见光通信系统,以实现接收端的自对准,从而提高可见光通信过程中的接收光功率、信噪比和误码率。
本申请实施例提供了一种可见光通信系统,该系统包括:调制发光模块,设置为发射根据待通信信息调制得到的通信光线;跟踪感光模块,设置为接收并解调所述通信光线中的所述待通信信息,还设置为根据自身与所述通信光线之间的角度进行自身与所述通信光线的对准。
可选的,所述跟踪感光模块包括:光跟踪传感器,设置为根据不同区域对所述通信光线的接收量生成各多个区域的光感应信号;跟踪电路,设置为根据所述多个区域的光感应信号生成电机驱动信号;电机,设置为根据所述电机驱动信号调整所述光跟踪传感器的感光平面的方向,以与所述通信光线进行对准。
可选的,所述光跟踪传感器包括金属墙,以及在所述金属墙两侧设置的第一光电二极管和第二光电二极管,所述第一光电二极管和所述第二光电二极管设置为生成各自的光感应信号。
可选的,所述第一光电二极管与所述第二光电二极管的尺寸相同,且所述金属墙与所述第一光电二极管的感光面及所述第二光电二极管的感光面垂直。
可选的,所述跟踪电路包括:比较单元,设置为对所述多个区域的光感应信号进行比较;开关单元,包括多个开关管,设置为根据所述比较单元的比较结果确定所述多个开关管的开闭,根据所述多个开关管的开闭控制所述电机的驱动电压的接入方向,并根据所述驱动电压的接入方向生成电机驱动信号。
可选的,所述比较单元包括第一运算放大器和第二运算放大器;所述第一运算放大器的正输入端与所述第一光电二极管连接,负输入端与所述第二光电二极管连接;所述第二运算放大器的正输入端与所述第二光电二极管连接,负输入端与所述第一光电二极管连接。
可选的,所述开关单元包括第一开关管、第二开关管、第三开关管和第四开关管;所述第一运算放大器的输出用于控制所述第二开关管和所述第四开关管的开闭,所述第二运算放大器的输出用于控制所述第一开关管和所述第三开关管的开闭;在所述第二开关管和所述第四开关管闭合且所述第一开关管和所述第三开关管断开的情况下,所述电机的正极接入所述驱动电压,负极接地,在所述第一开关管和所述第三开关管闭合且所述第二开关管和所述第四开关管断开的情况下,所述电机的负极接入所述驱动电压,正极接地。
可选的,所述光跟踪传感器的数量为多个,呈阵列排布,且所述多个光跟踪传感器之间并联连接。
可选的,所述调制发光模块使用基于氮化镓的微米发光二极管micro-LED作为光源,调制方式为无归零开关键控。
可选的,所述系统还包括聚焦模组,设置为将所述通信光线聚焦到所述跟踪感光模块上。
附图说明
图1为本申请提供的可见光通信系统的结构示意图;
图2为本申请提供的另一种可见光通信系统的结构示意图;
图3为本申请提供的一种跟踪感光模块的结构示意图;
图4为本申请提供的光跟踪传感器的结构示意图;
图5为本申请提供的跟踪电路的电路图;
图6为本申请提供的另一种可见光通信系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的 实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关部分的结构。
在讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多个步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,多个步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等。
此外,术语“第一”、“第二”等可在本文中用于描述多种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请实施例的范围的情况下,可以将第一光电二极管称为第二光电二极管,且类似地,可将第二光电二极管称为第一光电二极管。第一光电二极管和第二光电二极管两者都是光电二极管,但其不是同一光电二极管。术语“第一”、“第二”等不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确的限定。
图1为本申请实施例一提供的可见光通信系统的结构示意图。本实施例可适用于采用可见光通信的方式进行通信的情况。如图1所示,该系统包括:调制发光模块100,设置为发射根据待通信信息调制得到的通信光线;跟踪感光模块200,设置为接收并解调所述通信光线中的所述待通信信息,还设置为根据自身与所述通信光线之间的角度进行自身与所述通信光线的对准。
可见光通信是指利用可见光波段的光作为信息载体,在空气中直接传输光信号的通信方式。可以通过调制发光模块100对待通信信息进行调制,即对待通信信息进行处理以加载到光载波上,使其变为适合于可见光传输的形式,从而得到通信光线,再将该通信光线发射出去。跟踪感光模块200可以放置在正对调制发光模块100的光源的位置,以便于接收到调制发光模块100发射的通信光线,并提高VLC链路的传输性能,在接收到通信光线后可以对其进行解调,从而获得所需的待通信信息。同时,跟踪感光模块200还可以调整接收通信光线的角度,可以在检测到其感光平面未正对通信光线,或者与正对方向偏转较大的情况下向偏转方向的相反方向进行调整,以实现对准。在实验阶段,如图2所示,调制发光模块100可以通过脉冲发生器101模拟产生所需的通信光线,并使用偏置器102作为光调制器驱动,再将输出的通信光线通过光源103发射 出去,同时跟踪感光模块200可以通过光接收器201接收该通信光线,并使用宽带示波器202对接收到的通信光线进行显示,还可以增加误差检波器203以便对产生的误差进行分析,调制发光模块100与跟踪感光模块200之间的自由空间距离可以设置为80cm。可选的,所述调制发光模块100使用基于氮化镓(GaN)的微米发光二极管(micro-Light Emitting Diode,micro-LED)作为光源,发光二极管(Light Emitting Diode,LED)通常用作可见光通信中的光源,由于系统带宽主要受LED的光电带宽限制,基于氮化镓的micro-LED的载流子寿命较短,结电容也较低,可根据其尺寸进行缩放,从而使得带宽能够达到100MHz左右,但是相应的,由于GaN micro-LED尺寸较小,使得光功率从100mW降至1mW,因此本实施例所提供的能够实现自对准的可见光通信系统将更为重要,以实现高数据速率的VLC链路。可选的,所述调制发光模块100的调制方式为无归零开关键控(Non-Return-To-Zero-On-Off Keying,NRZ-OOK),通过使用GaN micro-LED和NRZ-OOK进行高速率可见光通信,使得对入射光的空间模式不敏感,在2.1*10 -4的误码率(Bit Error Ratio,BER)下速度可达到600Mbps,低于前向纠错限制(Forward Error Correction,FEC)。
在上述技术方案的基础上,可选的,所述跟踪感光模块200包括:光跟踪传感器,设置为根据不同区域对所述通信光线的接收量生成多个区域的光感应信号;跟踪电路,设置为根据所述多个区域的光感应信号生成电机驱动信号;电机,设置为根据所述电机驱动信号调整所述光跟踪传感器的感光平面的方向,以与所述通信光线进行对准。可以使用光跟踪传感器作为光接收器201进行感光,并且可以在光跟踪传感器上的不同区域分别进行感光,然后可以根据多个区域对通信光线的接收量确定光跟踪传感器的感光平面与通信光线之间的角度。例如,可以通过光跟踪传感器上的多个区域分别生成对应的光感应信号,在获得多个光感应信号后,可以通过跟踪电路对多个光感应信号加以分析,并判断出光跟踪传感器当前的偏转方向,从而生成电机驱动信号。跟踪感光模块200可以通过电机来实现对准的机械转动过程,其中,电机可以是由脉冲宽度调制(Pulse Width Modulation,PWM)控制的伺服电机,不同的电机驱动信号可以控制电机向不同的方向偏转,同时在电机与光跟踪传感器之间增加机械传动装置,即可通过电机实现对光跟踪传感器的感光平面方向的调整,从而实现跟踪通信光线并指向通信光线的方向。光跟踪传感器和跟踪电路可以集成在互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)芯片上。
可选的,所述光跟踪传感器的数量为多个,呈阵列排布,且所述多个光跟踪传感器之间并联连接。由于单个光跟踪传感器产生的光感应信号通常较小,因此可以使用多个相互并联的光跟踪传感器来获得一个较大的光感应信号,以便清楚的识别该光感应信号。同时多个光跟踪传感器可以呈阵列排布,且放置 方向一致,以保证多个光跟踪传感器的最大接收光功率点相同,从而保证结果的准确性。
可选的,如图3所示,所述光跟踪传感器包括金属墙211,以及在所述金属墙211两侧设置的第一光电二极管212和第二光电二极管213,所述第一光电二极管212和所述第二光电二极管213设置为生成各自的光感应信号。金属墙211可以通过堆叠工艺中的金属层、触点和过孔进行创建,金属墙211不透光,则当光跟踪传感器有一定的偏转时,通信光线与金属墙211之间形成角度θ(不等于0),会在一侧的光电二极管上形成微尺度阴影,即减少了一侧光电二极管上对通信光线的接收量,使得所生成的光感应信号中的光电流变小,从而可以根据不同的光电流值确定光跟踪传感器的偏转情况。可选的,所述第一光电二极管212与所述第二光电二极管213的尺寸相同,且所述金属墙211与所述第一光电二极管212的感光面及所述第二光电二极管213的感光面垂直,从而更方便于根据光感应信号确定光跟踪传感器的偏转情况。第一光电二极管212与第二光电二极管213的尺寸相同,即第一光电二极管212的感光面与第二光电二极管213的感光面的长宽相同,同时金属墙211垂直于两个光电二极管的感光面,则当通信光线平行于金属墙211入射(θ=0)时,在第一光电二极管212与第二光电二极管213上对通信光线的接收量相同,从而两个光电二极管产生的光电流值相同,而当通信光线与金属墙211之间的角度为θ(不等于0)时,由于其中一侧的光电二极管对通信光线的接收量减少,导致其产生的光电流值比另一侧的光电二极管所产生的光电流值小,从而可以通过直接对两个光电流值的比较方便的确定光跟踪传感器的偏转情况。两侧光电二极管所产生的光电流值与角度θ之间的关系可以参考如下关系式:
Figure PCTCN2022127179-appb-000001
I L表示第一光电二极管212产生的光电流,I R表示第二光电二极管213产生的光电流,α表示对应于反射光与到达金属墙211在第一光电二极管212一侧的总光的比率,β表示对应于反射光与到达金属墙211在第二光电二极管213一侧的总光的比率,H表示金属墙211的高度,L表示两个光电二极管的长度(垂直金属墙211方向),其中,α和β取决于工艺、布局和封装,即为常数。根据该关系式可以确定I L与I R之间的电流比与光强度无关,而只取决于角度θ。考虑到视野和精度之间的权衡,金属墙211的高度可以设置为12微米,从而优化了光跟踪传感器的性能,同时由于该物理尺寸远大于吸收光的波长,使得衍射对光跟踪传感器性能的影响较小。
可选的,所述跟踪电路包括:比较单元,设置为对所述多个区域的光感应信号进行比较;开关单元,包括多个开关管,设置为根据所述比较单元的比较结果确定所述多个开关管的开闭,根据所述多个开关管的开闭控制所述电机的驱动电压的接入方向,并根据所述驱动电压的接入方向生成电机驱动信号。可以通过比较单元对第一光电二极管212和第二光电二极管213产生的光电流进行比较,并可以在不同的比较结果下,通过控制不同的开关管的开闭来控制提供给电机的驱动电压的接入方向,而不同的接入方向可以使得电机向不同方向转动,从而实现对准过程。
可选的,如图4所示,所述比较单元包括第一运算放大器CP 1和第二运算放大器CP 2;所述第一运算放大器CP 1的正输入端与所述第一光电二极管D L连接,负输入端与所述第二光电二极管D R连接;所述第二运算放大器CP 2的正输入端与所述第二光电二极管D R连接,负输入端与所述第一光电二极管D L连接。第一运算放大器CP 1可以通过比较第一光电二极管D L产生的电压V L与第二光电二极管D R产生的电压V R的大小确定其输出电压V 1,第二运算放大器CP 2可以通过比较第二光电二极管D R产生的电压V R与第一光电二极管D L产生的电压V L的大小确定其输出电压V 2,还可以通过第一可变电阻R 2和第二可变电阻R 3对第二光电二极管D R产生的电压进行分压,并使用分压电压V X作为第一运算放大器CP 1的负输入端的输入,以使得两个光电二极管产生的电压之间的比较存在一定的冗余,从而实现仅当光跟踪传感器的偏转超过一定角度时才进行对准,避免跟踪感光模块200长期处于抖动的状态,以减少消耗。
可选的,所述开关单元包括第一开关管M 1、第二开关管M 2、第三开关管M 3和第四开关管M 4;所述第一运算放大器CP 1的输出用于控制所述第二开关管M 2和所述第四开关管M 4的开闭,所述第二运算放大器CP 2的输出用于控制所述第一开关管M 1和所述第三开关管M 3的开闭;当所述第二开关管M 2和所述第四开关管M 4闭合且所述第一开关管M 1和所述第三开关管M 3断开时,所述电机M的正极接入所述驱动电压V DD,负极接地,当所述第一开关管M 1和所述第三开关管M 3闭合且所述第二开关管M 2和所述第四开关管M 4断开时,所述电机M的负极接入所述驱动电压V DD,正极接地。可以当第一运算放大器CP 1的输出电压V 1为正时,控制第二开关管M 2和第四开关管M 4闭合,从而驱动电压V DD可以依次流经第二开关管M 2、电机M(正极到负极)和第四开关管M 4并最终接地,当第二运算放大器CP 2的输出电压V 2为正时,控制第一开关管M 1和第三开关管M 3闭合,从而驱动电压V DD可以依次流经第三开关管M 3、电机M(负极到正极)和第一开关管M 1并最终接地。可以根据第一光电二极管D L和第二光电二极管D R产生的光电流的大小确定第一运算放大器CP 1和第二运算放大器CP 2的输出电压的正负,从而控制多个开关管的开闭,进而控制电机M的驱动 电压V DD的接入方向,以控制电机M向不同的方向转动。电机M可选用直流伺服电机,以对电压差做出响应,使得整个系统简单可靠,当电机M静止时,电机驱动器将不消耗功率,从而使得对于低功率应用,静态消耗电流(88微安左右)和跟踪感光模块的消耗(334毫安左右)都很低。根据仿真结果,该系统对入射角具有良好的灵敏度,在120度的范围内可以实现1.9度的跟踪精度,跟踪对准后,也极大的提高了接收光功率、信噪比和误码率。
在上述技术方案的基础上,可选的,所述系统还包括聚焦模组,设置将所述通信光线聚焦到所述跟踪感光模块200上。当使用GaN micro-LED作为光源时,光功率较低,视野较小,因此可以通过聚焦光学进行补偿,以进一步提高VLC链路的数据速率。聚焦模组可以包括发射光学模组和接收光学模组,其中,发射光学模组靠近调制发光模块100,可设置为将通信光线汇聚至光轴方向并射入接收光学模组,接收光学模组靠近跟踪感光模块200,可设置为将通信光线汇聚至跟踪感光模块200,从而提高通信光线的接收效率。
本申请实施例所提供的可见光通信系统,包括调制发光模块和跟踪感光模块,其中,调制发光模块设置为发射根据待通信信息调制得到的通信光线,跟踪感光模块设置为接收并解调通信光线中的待通信信息,还设置为根据自身与通信光线之间的角度进行自身与所述通信光线的对准,从而实现了接收端的自对准,并可以在使用过程中随时根据角度的变化实现实时对准,提高了可见光通信过程中的接收光功率、信噪比和误码率,也扩大了接收端的视野。

Claims (10)

  1. 一种可见光通信系统,包括:
    调制发光模块,设置为发射根据待通信信息调制得到的通信光线;
    跟踪感光模块,设置为接收并解调所述通信光线中的所述待通信信息,还设置为根据自身与所述通信光线之间的角度进行自身与所述通信光线的对准。
  2. 根据权利要求1所述的可见光通信系统,其中,所述跟踪感光模块包括:
    光跟踪传感器,设置为根据不同区域对所述通信光线的接收量生成多个区域的光感应信号;
    跟踪电路,设置为根据所述多个区域的光感应信号生成电机驱动信号;
    电机,设置为根据所述电机驱动信号调整所述光跟踪传感器的感光平面的方向,以与所述通信光线进行对准。
  3. 根据权利要求2所述的可见光通信系统,其中,所述光跟踪传感器包括金属墙,以及在所述金属墙两侧设置的第一光电二极管和第二光电二极管,所述第一光电二极管和所述第二光电二极管设置为生成各自的光感应信号。
  4. 根据权利要求3所述的可见光通信系统,其中,所述第一光电二极管与所述第二光电二极管的尺寸相同,且所述金属墙与所述第一光电二极管的感光面及所述第二光电二极管的感光面垂直。
  5. 根据权利要求4所述的可见光通信系统,其中,所述跟踪电路包括:
    比较单元,设置为对所述多个区域的光感应信号进行比较;
    开关单元,包括多个开关管,设置为根据所述比较单元的比较结果确定所述多个开关管的开闭,根据所述多个开关管的开闭控制所述电机的驱动电压的接入方向,并根据所述驱动电压的接入方向生成电机驱动信号。
  6. 根据权利要求5所述的可见光通信系统,其中,所述比较单元包括第一运算放大器和第二运算放大器;所述第一运算放大器的正输入端与所述第一光电二极管连接,负输入端与所述第二光电二极管连接;所述第二运算放大器的正输入端与所述第二光电二极管连接,负输入端与所述第一光电二极管连接。
  7. 根据权利要求6所述的可见光通信系统,其中,所述开关单元包括第一开关管、第二开关管、第三开关管和第四开关管;所述第一运算放大器的输出用于控制所述第二开关管和所述第四开关管的开闭,所述第二运算放大器的输出用于控制所述第一开关管和所述第三开关管的开闭;在所述第二开关管和所述第四开关管闭合且所述第一开关管和所述第三开关管断开的情况下,所述电机的正极接入所述驱动电压,负极接地,在所述第一开关管和所述第三开关管闭合且所述第二开关管和所述第四开关管断开的情况下,所述电机的负极接入 所述驱动电压,正极接地。
  8. 根据权利要求2所述的可见光通信系统,其中,所述光跟踪传感器的数量为多个,呈阵列排布,且所述多个光跟踪传感器之间并联连接。
  9. 根据权利要求1所述的可见光通信系统,其中,所述调制发光模块使用基于氮化镓的微米发光二极管micro-LED作为光源,调制方式为无归零开关键控。
  10. 根据权利要求1所述的可见光通信系统,还包括聚焦模组,设置为将所述通信光线聚焦到所述跟踪感光模块上。
PCT/CN2022/127179 2022-09-08 2022-10-25 可见光通信系统 WO2024050934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/272,795 US20240088999A1 (en) 2022-09-08 2022-10-25 Visible light communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211092797.3A CN115173944B (zh) 2022-09-08 2022-09-08 一种可见光通信系统
CN202211092797.3 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024050934A1 true WO2024050934A1 (zh) 2024-03-14

Family

ID=83481453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127179 WO2024050934A1 (zh) 2022-09-08 2022-10-25 可见光通信系统

Country Status (2)

Country Link
CN (1) CN115173944B (zh)
WO (1) WO2024050934A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173944B (zh) * 2022-09-08 2023-01-03 深圳技术大学 一种可见光通信系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203225681U (zh) * 2012-10-29 2013-10-02 林金城 一种小型太阳能发电站
CN105337665A (zh) * 2014-08-15 2016-02-17 南京复实通讯科技有限公司 基于可见光通信的收发装置及其方法
CN106533559A (zh) * 2016-12-23 2017-03-22 南京邮电大学 可见光非平面立体接收机、可见光接收终端及通信系统
CN108036271A (zh) * 2018-01-29 2018-05-15 苏州臻翌光电科技有限公司 一种太阳跟踪装置及具有其的光纤阳光照明系统
US20180138977A1 (en) * 2015-11-06 2018-05-17 Panasonic Intellectual Property Corporation Of America Visible light signal generating method, signal generating apparatus, and program
CN109617613A (zh) * 2019-01-10 2019-04-12 南京邮电大学 可见光通信装置
CN111953416A (zh) * 2020-07-24 2020-11-17 西安理工大学 基于光敏电阻的室内可见光通信自动对准系统
CN115173944A (zh) * 2022-09-08 2022-10-11 深圳技术大学 一种可见光通信系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746741B (zh) * 2014-01-17 2016-06-15 清华大学 一种基于追踪对准机制的室外无线光移动通信系统
CN107979419A (zh) * 2018-01-12 2018-05-01 东莞信大融合创新研究院 一种远距离可见光通信收发系统
US10348404B1 (en) * 2018-05-09 2019-07-09 Ford Global Technologies, Llc Visible light communication system with pixel alignment for high data rate
CN110389455A (zh) * 2018-12-17 2019-10-29 中国科学院长春光学精密机械与物理研究所 深空光通信视轴高精度指向与跟踪装置及深空光通信装置
CN112491470A (zh) * 2020-11-20 2021-03-12 长春光客科技有限公司 利用通信光外围部分实现对准跟踪无线光通信装置及方法
CN113900063A (zh) * 2021-09-17 2022-01-07 湖北文理学院 一种可见光定位辅助的多用户光通信系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203225681U (zh) * 2012-10-29 2013-10-02 林金城 一种小型太阳能发电站
CN105337665A (zh) * 2014-08-15 2016-02-17 南京复实通讯科技有限公司 基于可见光通信的收发装置及其方法
US20180138977A1 (en) * 2015-11-06 2018-05-17 Panasonic Intellectual Property Corporation Of America Visible light signal generating method, signal generating apparatus, and program
CN106533559A (zh) * 2016-12-23 2017-03-22 南京邮电大学 可见光非平面立体接收机、可见光接收终端及通信系统
CN108036271A (zh) * 2018-01-29 2018-05-15 苏州臻翌光电科技有限公司 一种太阳跟踪装置及具有其的光纤阳光照明系统
CN109617613A (zh) * 2019-01-10 2019-04-12 南京邮电大学 可见光通信装置
CN111953416A (zh) * 2020-07-24 2020-11-17 西安理工大学 基于光敏电阻的室内可见光通信自动对准系统
CN115173944A (zh) * 2022-09-08 2022-10-11 深圳技术大学 一种可见光通信系统

Also Published As

Publication number Publication date
CN115173944A (zh) 2022-10-11
CN115173944B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
US20160113082A1 (en) Visible light communication transceiver
US9151711B2 (en) Optoelectronic shutter, method of operating the same and optical apparatus including the optoelectronic shutter
Lu et al. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK
WO2024050934A1 (zh) 可见光通信系统
US11112494B2 (en) Photodetector and portable electronic equipment
JP4068842B2 (ja) 光受信装置、並びに、その保持装置及び配置方法
Lorrière et al. Photovoltaic solar cells for outdoor LiFi communications
CN105190385A (zh) 耦合环谐振系统
WO2020061969A1 (zh) 一种激光发射装置和测距装置
US20210339255A1 (en) Microfluidic substrate, microfluidic chip and detection method thereof
CN110568216B (zh) 同质集成光电子装置
Milovančev et al. Optical wireless communication using a fully integrated 400 µm diameter APD receiver
Al-rubaiai Design and development of an LED-based optical communication system
WO2024050933A1 (zh) 二维光电探测器、光追踪装置和光通信系统
CN108647541B (zh) 一种条码扫描芯片以及扫描方法
US20240088999A1 (en) Visible light communication system
WO2024050932A1 (zh) 水下无线光通信系统
EP3015958B1 (en) Light sensor array device
CN203858361U (zh) 一种相位测量的校准装置及测量装置
CN114440943B (zh) 可编程光电传感器及应用电路
CN207558184U (zh) 微控制模块内置的红外遥控信号接收电路结构及相应装置
CN113358221A (zh) 光电感应钙钛矿探测器
CN103324304A (zh) 光传感器阵列装置
CN113093211A (zh) 一种驱动激光系统
Chatterjee et al. Optimization of the components of a visible light communication system for efficient data transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957899

Country of ref document: EP

Kind code of ref document: A1