WO2024049279A2 - Sustained-release microspheres containing leuprolide, injectable preparation comprising same, and preparation method therefor - Google Patents

Sustained-release microspheres containing leuprolide, injectable preparation comprising same, and preparation method therefor Download PDF

Info

Publication number
WO2024049279A2
WO2024049279A2 PCT/KR2023/013112 KR2023013112W WO2024049279A2 WO 2024049279 A2 WO2024049279 A2 WO 2024049279A2 KR 2023013112 W KR2023013112 W KR 2023013112W WO 2024049279 A2 WO2024049279 A2 WO 2024049279A2
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
leuprolide
injectable preparation
sustained
release
Prior art date
Application number
PCT/KR2023/013112
Other languages
French (fr)
Korean (ko)
Inventor
이진우
김보연
이주한
설은영
이희용
Original Assignee
주식회사 지투지바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230059471A external-priority patent/KR20240031868A/en
Application filed by 주식회사 지투지바이오 filed Critical 주식회사 지투지바이오
Publication of WO2024049279A2 publication Critical patent/WO2024049279A2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • A61K38/09Luteinising hormone-releasing hormone [LHRH], i.e. Gonadotropin-releasing hormone [GnRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention relates to sustained-release microspheres containing leuprolide, an injectable preparation containing the same, a method for producing the same, and a pharmaceutical composition containing the sustained-release microspheres.
  • sustained-release microspheres that contain a high content of leuprolide in the microspheres and exhibit effective drug release characteristics initially while providing stable drug release characteristics for a long period of time, and a method of producing the same, the leuprolide It relates to an injectable preparation containing sustained-release microspheres containing Lyde.
  • Luteinizing hormone-releasing hormone also known as gonadotropin-releasing hormone (GnRH)
  • GnRH gonadotropin-releasing hormone
  • pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg- a hypothalamic decapeptide that regulates the reproductive system in vertebrates. Pro-Gly-NH 2 ).
  • LHRH agonists and antagonists are used for the treatment of endometriosis, fibroids, polycystic ovary, breast, ovarian and endometrial cancer in women, gonadotropic pituitary desensitization during medically assisted birth protocols, benign prostate and polymorphism and prostate cancer in men. It is reported to be effective in the treatment of and treatment of precocious puberty in men or women.
  • LHRH agonists are peptide compounds that generally must be administered via injection due to low oral bioavailability.
  • LHRH agonists are drugs for chronic diseases that require long-term administration, and that early and rapid exposure to a sufficient amount of the drug is required for drug efficacy to manifest. It is known that for the drug efficacy of leuprolide acetate, one of the LHRH agonists, to be expressed, a sufficient amount of drug exposure to the target area is required at the beginning of administration, and it is known that it is desirable to have a high initial drug release rate.
  • the present invention was designed to solve the above-described conventional problems. It can contain a high content of leuprolide in the microspheres, and not only exhibits effective drug release characteristics initially, but also provides stable drug release characteristics for a long period of time.
  • the purpose is to provide sustained-release microspheres containing a high content of leuprolide that minimize pain or inflammatory reactions at the site of administration after administration due to administering a relatively small number of microspheres, and a method for producing the same.
  • an injectable preparation comprising sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof as an active ingredient and a biocompatible polymer
  • the content of the active ingredient in the injection preparation includes 1 to 50 mg/mL as leuprolide,
  • the injectable preparation may have a number of microspheres of 1,000,000 to 6,000,000/ml.
  • leuprolide or a pharmaceutically acceptable salt thereof in the microspheres may be 9.5 to 40% by weight, 10 to 30% by weight, or 12 to 25% by weight based on the total weight of the microspheres.
  • the biocompatible polymer includes polyethylene glycol-poly(lactide-co-glycolide) block-copolymer, polyethylene glycol-polylactide block-copolymer, and polyethylene glycol-polycaprolactone block-copolymer. It is one or more selected from the group consisting of polymer, polylactide, polyglycolide, poly(lactide-co-glycolide), poly(lactide-co-glycolide)glucose, polycaprolactone, and mixtures thereof. You can.
  • the biocompatible polymer in the microspheres may be 70 to 90% by weight, 75 to 90% by weight, or 80 to 90% by weight based on the total weight of the microspheres.
  • the weight ratio of the active ingredient to the biocompatible polymer in the microspheres may be 1:4 to 1:9, 1:3.5 to 1:9, or 1:3 to 1:9.
  • the biocompatible polymer may be a combination of polymers of the same type having different intrinsic viscosity and/or monomer ratios.
  • the pharmaceutically acceptable salt of leuprolide may be leuprolide acetate.
  • the weight average molecular weight of the biocompatible polymer may be 4,000 to 240,000.
  • the in vitro release rate of the injectable formulation may be 8 to 40%, more specifically 10 to 30%, 24 hours after release of the active ingredient.
  • the injectable formulation may be for a 1-month to 3-month formulation.
  • the cumulative drug area under the curve up to 24 hours after administration is the cumulative drug area under the curve up to the target administration period (AUC 0-24hrs, Area under the curve)
  • AUC total that is, for a 1-month formulation, AUC total is the area under the cumulative drug curve from 0 to 28 days after administration, and for a 3-month formulation, AUC total refers to the area under the cumulative drug curve from 0 to 84 days after administration. It may be 0.5 to 55%, 15 to 50%, or 20 to 50% of the total.
  • the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration to the area under the cumulative drug curve at 48 hours to 168 hours after administration is 2:1 to 10:1, preferably 2:1 to 8:1, more preferably It may be 2:1 to 6:1.
  • the residual solvent in the sustained-release microspheres of the injectable formulation may be less than 1,000 ppm.
  • the C max of the drug after administration of the injection preparation may be 5,000 to 2,000,000 pg/mL.
  • the particle size (D50) of the sustained-release microspheres in the injection preparation may be 10 to 40 um.
  • the injectable preparation reduces fibroid nuclei and improves symptoms in uterine fibroids accompanied by endometriosis, hypermenorrhea, lower abdominal pain, back pain, and anemia, prostate cancer, premenopausal breast cancer, or central precocious puberty. It may be for prevention or treatment.
  • a method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof comprising the following steps:
  • a) (i) prepare a dispersed solution by dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents, or (ii) prepare an oil phase by dissolving the biocompatible polymer in one or more organic solvents.
  • Prepare a solution for the oil phase prepare an aqueous solution by dissolving leuprolide or a pharmaceutically acceptable salt thereof in an aqueous solvent, and add the aqueous solution to the oil phase solution to form a water-in-oil (W/O) solution.
  • step b) The dispersion solution or water-in-oil emulsion prepared in step a) is added to an aqueous solution containing a surfactant as a continuous phase to form microspheres, and the dispersion solution or water-in-oil emulsion is injected and stirred to solidify the microspheres.
  • step b) extracting the organic solvent by adding an aqueous solution containing ethanol and a surfactant to the suspension containing the solidified microspheres of step b);
  • step d) exchanging the continuous phase in the suspension containing the microspheres of step c) with an aqueous solution containing fresh ethanol and a surfactant and stirring;
  • a method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof comprising the following steps:
  • a' (i) dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents to prepare a dispersion solution, or (ii) dissolving the biocompatible polymer in one or more organic solvents to prepare a dispersion solution.
  • a solution for the oil phase was prepared, and leuprolide or a pharmaceutically acceptable salt thereof was dissolved in an aqueous solvent to prepare an aqueous solution, and the aqueous solution was added to the oil phase solution to form a water-in-oil type (W/ O) preparing an emulsion;
  • step b' The dispersion solution or water-in-oil emulsion prepared in step a') is added to an aqueous solution containing ethanol and a surfactant as a continuous phase to form microspheres, and the microspheres are solidified after injection of the dispersion solution or water-in-oil emulsion. and preparing a suspension containing microspheres by stirring for organic solvent extraction;
  • step b' exchanging the continuous phase in the suspension containing the microspheres of step b') with an aqueous solution containing fresh ethanol and a surfactant and stirring;
  • sustained-release microspheres containing leuprolide unlike the conventional production method, it is possible to produce sustained-release microspheres containing leuprolide at a high encapsulation rate, allowing the drug to be contained for a long time. It is possible to manufacture microspheres that maximize the therapeutic effect by maintaining the concentration in the therapeutic range.
  • Figure 1 is a graph showing the in vivo pharmacokinetics of microspheres for a 1-month formulation according to the present invention (Example 1) and Leuprin 3.75 mg (Comparative Example 1), a reference drug.
  • Figure 2 is a graph showing the in vivo pharmacokinetics of microspheres for a 3-month formulation (Examples 5 and 6) according to the present invention.
  • Figures 3a and 3b are scanning electron microscope photographs confirming the shape of microspheres of an example according to the present invention.
  • Figures 4A to 4C are diagrams showing the histopathology slide samples of Example 4 and Comparative Example 2 showing the infiltration of inflammatory cells at the injection site by extracting tissues on the 3rd, 10th, and 28th days after administration of microspheres.
  • the present invention is an injectable preparation comprising sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof as an active ingredient and a biocompatible polymer,
  • the content of the active ingredient in the injection preparation includes 1 to 50 mg/mL as leuprolide,
  • the present invention relates to an injectable preparation in which the number of microspheres in the injectable preparation is 1,000,000 to 6,000,000/mL.
  • the content of the active ingredient in the injection preparation is leuprolide, 2 to 50 mg/mL, 2 to 47 mg/mL, 2 to 45 mg/mL, 2 to 30 mg/mL, 2 to 27.5 mg/mL, 2 to 5 mg/mL. It may be 25 mg/mL, 3 to 25 mg/mL, or 3 to 22.5 mg/mL.
  • the injectable preparation is a 1-month preparation, it may be 1 to 15 mg/mL, 1 to 12.5 mg/mL, or 2 to 12.5 mg/mL, and if the injectable preparation is a 3-month preparation, it may be 7 to 30 mg/mL, 9 It may be from 27.5 mg/mL or 10 to 25 mg/mL, and for a 6-month preparation, it may be 20 to 50 mg/mL, 20 to 47.5 mg/mL, 25 to 45 mg/mL, 30 to 50 mg/mL, 30 to 47.5 mg/mL. mL, or 30 to 45 mg/mL.
  • the number of microspheres in the injection preparation is 1,000,000 to 5,000,000/ml, 1,200,000 to 4,500,000/ml, 1,000,000 to 4,000,000/ml, 1,200,000 to 3,500,000/ml or 1,500,000. It may be 0 to 3,000,000/mL. More specifically, if the injectable preparation is a 1-month preparation, it may be 1,000,000 to 2,500,000 units/mL or 1,500,000 to 2,000,000 units/mL, and if the injectable preparation is a 3-month preparation, it may be 2,000,000 to 3,500,000 units/mL or 2,500,000 to 3,000, 000 units/mL , if the injectable preparation is a 6-month preparation, it may be 3,000,000 to 6,000,000 units/mL, 3,500,000 to 5,500,000 units/mL, or 4,000,000 to 5,000,000 units/mL.
  • the present invention unlike conventional leuprolide-containing microspheres and preparations containing the same, contains a high content of the active ingredient leuprolide or a pharmaceutically acceptable salt thereof in the microspheres, thereby providing an effective level of effective pharmacological effect. It is characterized by containing a sufficient number of ingredients, while allowing a significantly small number of microspheres per unit volume of the injectable preparation to be included in the injectable preparation. Due to these characteristics, the injectable formulation according to the present invention not only exhibits effective drug release characteristics initially and provides stable drug release characteristics for a long period of time, but also provides stable drug release characteristics for a long period of time, and by administering a relatively small number of microspheres, It can minimize pain or inflammatory reactions.
  • 'leuprolide' is 5-oxo-L-prolyl-L-histidyl-L-tryptophanyl-L-seryl-L-tyrosyl-D-leucyl-L-leucyl-L -Arginyl-L-prolyl ethylamide is an LHGH agonist.
  • the leuprolide may be expressed as leuprorelin. Additionally, in the present invention, all pharmaceutically acceptable salts of leuprolide can be used.
  • 'pharmaceutically acceptable means that it is physiologically acceptable and does not usually cause allergic reactions or similar reactions when administered to humans.
  • 'pharmaceutically acceptable salt' refers to an acid addition salt formed from a pharmaceutically acceptable free acid.
  • Organic acids and inorganic acids can be used as the free acids.
  • the organic acids are not limited thereto, but include citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, Includes glutamic acid and aspartic acid.
  • the inorganic acids include, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, and phosphoric acid.
  • the pharmaceutically acceptable salt of leuprolide of the present invention may be leuprolide acetate.
  • the leuprolide or a pharmaceutically acceptable salt thereof may be used in an amount of 9.5 to 40% by weight, 10 to 30% by weight, or 12 to 25% by weight based on the total weight of the microspheres.
  • the biocompatible polymer is polyethylene glycol-poly(lactide-co-glycolide) block-copolymer, polyethylene glycol-polylactide block-copolymer, polyethylene glycol-polycaprolactone block-copolymer, At least one selected from the group consisting of polylactide, polyglycolide, poly(lactide-co-glycolide), poly(lactide-co-glycolide)glucose, polycaprolactone, and mixtures thereof. It may be from 3 types, 1 to 2 types, or 2 to 3 types.
  • “Two or more types of biocompatible polymers” means a combination or blend of different types of biocompatible polymer materials (for example, a blend of poly(lactide-co-glycolide) and polylactide).
  • a combination of polymers of the same type with different intrinsic viscosity, molecular weight, and/or monomer ratio e.g., poly(lactide-co-) with a molar ratio of lactide to glycolide of 40:60
  • it may be the same type of polymer with different end groups (for example, an ester end group or an acid end group).
  • Examples of commercially available biocompatible polymers that can be used in the present invention include RG 502H, RG 503H, RG 504H, RG 502, RG 503, RG 504, and RG 653H from the Resomer series of Evonik Rohm GmbH.
  • the biocompatible polymer may preferably be polylactide.
  • biocompatible polymer being a combination (blend) of two or more types of polymers
  • polylactide is contained at least 50%.
  • the molar ratio of lactide to glycolide in the polymer is 40:60 to 90:10, 45:55 to 85:15, or 50:50 to 75:25, For example, it could be 45:55, 50:50, 75:25, or 85:15.
  • the intrinsic viscosity of the poly(lactide-co-glycolide) or polylactide is 0.16 dL/g to 1.7 dL/g, 0.16 dL/g to 1.5 dL/g, and 0.16 dL/g to 1.2 dL/g. , 0.16 dL/g to 0.9 dL/g, 0.16 dL/g to 0.6 dL/g, 0.16 dL/g to 0.4 dL/g, 0.2 dL/g to 1.3 dL/g, 0.2 dL/g to 1.0 dL/g.
  • 0.2 dL/g to 0.7 dL/g 0.2 dL/g to 0.5 dL/g, 0.24 dL/g to 1.2 dL/g, 0.24 dL/g to 0.7 dL/g, or 0.24 dL/g to 0.5 dL/. It may be g.
  • the intrinsic viscosity of poly(lactide-co-glycolide) or polylactide used in the present invention is measured at a concentration of 0.1% (w/v) in chloroform at 25°C using an Ubbelohde viscometer. . If the intrinsic viscosity of poly(lactide-co-glycolide) or polylactide is less than 0.16 dL/g, the molecular weight of the polymer is insufficient, making it difficult to exhibit the sustained-release effect of leuprolide or a pharmaceutically acceptable salt thereof. , if the intrinsic viscosity exceeds 1.7 dL/g, the release of leuprolide or a pharmaceutically acceptable salt thereof may be delayed too much. In addition, when manufacturing microspheres using a polymer with high intrinsic viscosity, there is a problem of having to use an excessive amount of production solvent due to the high viscosity of the polymer, and it is difficult to manufacture reproducible microspheres.
  • the weight average molecular weight of the biocompatible polymer is not particularly limited, but may have a weight average molecular weight of 4,000 to 240,000.
  • the weight average molecular weight of the biocompatible polymer is 4,000 to 100,000, 7,000 to 50,000, 5,000 to 20,000, 10,000 to 18,000, and 18,000 to 28,000. Includes all lower numerical ranges within the above range, such as average molecular weight.
  • the biocompatible polymer in the microspheres may be 70 to 90% by weight, 75 to 90% by weight, or 80 to 90% by weight based on the total weight of the microspheres.
  • the weight ratio of the active ingredient to the biocompatible polymer in the microspheres may be 1:4 to 1:9, 1:35 to 1:9, or 1:3 to 1:9.
  • the sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof of the present invention may have a particle diameter (D50) of 10 to 40 ⁇ m.
  • the sustained-release microspheres prepared according to the production method according to the present invention may have a significant amount of residual solvent removed compared to the prior art.
  • the residual solvent in the microspheres may be less than 1000 ppm, less than 900 ppm, or 800 ppm. It may be less than, less than 700 ppm, less than 600 ppm, 1000 to 0.01 ppm, 900 to 0.01 ppm, 800 to 0.01 ppm, 700 to 0.01 ppm, or 600 to 0.01 ppm.
  • the sustained-release microspheres may be suitable for a 1-month to 3-month formulation.
  • the sustained-release microspheres may have an in vitro release rate of 8 to 40% or 10 to 30% 24 hours after release of the active ingredient.
  • the sustained-release microspheres may have a C max of 20,000 to 2,000,000 pg/mL after being administered to rats as an active ingredient at a dose of 1.5 mg/head for 1 month (4 weeks).
  • the C max of the drug may be 20,000 to 900,000 pg/mL
  • the C max of the drug may be 50,000 to 2,000,000 pg/mL.
  • the cumulative drug area under the curve up to 24 hours after administration is the cumulative drug area under the curve up to the target administration period (AUC) total , for a 1-month formulation, the area under the cumulative drug curve up to 28 days after drug administration; for a 3-month formulation, the cumulative area under the drug curve up to 84 days after drug administration; and for a 6-month formulation, the area under the cumulative drug curve up to 168 days after drug administration. It may be 0.5 to 55%, 0.6 to 50%, or 0.7 to 50% of the cumulative drug curve area.
  • the cumulative area under the drug curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve ) is 12. It may be from 45% to 45%, 20 to 42% or 30 to 40%.
  • the cumulative area under the drug curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve) is 30 to 55% or 35% of the cumulative area under the curve until the target administration period (AUC total ). It may be from 40 to 53%, or from 40 to 50%.
  • the cumulative area under the drug curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve ) is 0.5 to 55%, 0.6%. It may be from 0.7 to 50% or from 0.7 to 50%.
  • the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration to the area under the cumulative drug curve at 48 hours to 168 hours after administration is 2:1 to 10:1, preferably 2:1 to 8:1, more preferably 2. :1 to 6:1.
  • sustained-release microspheres according to the present invention when administered in vivo as described above, exhibit the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration: the area under the cumulative drug curve at 48 hours to 168 hours after administration, Not only does it ensure sufficient initial release of leuprolide or a pharmaceutically acceptable salt thereof, but also maintains the efficacy of the active ingredient for a desired period of time, for example, 1 month or more, 3 months or more, 1 month to 3 months, etc. Enable continuous and sufficient performance.
  • a) (i) prepare a dispersed solution by dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents, or (ii) prepare an oil phase by dissolving the biocompatible polymer in one or more organic solvents.
  • Prepare a solution for the oil phase prepare an aqueous solution by dissolving leuprolide or a pharmaceutically acceptable salt thereof in an aqueous solvent, and add the aqueous solution to the oil phase solution to form a water-in-oil (W/O) solution.
  • step b) The dispersion solution or water-in-oil emulsion prepared in step a) is added to an aqueous solution containing a surfactant as a continuous phase to form microspheres, and the dispersion solution or water-in-oil emulsion is injected and stirred to solidify the microspheres.
  • step b) extracting the organic solvent by adding an aqueous solution containing ethanol and a surfactant to the suspension containing the solidified microspheres of step b);
  • step d) exchanging the continuous phase in the suspension containing the microspheres of step c) with an aqueous solution containing fresh ethanol and a surfactant and stirring;
  • e relates to a manufacturing method comprising the step of recovering microspheres.
  • the present invention provides another method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof,
  • a' (i) dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents to prepare a dispersion solution, or (ii) dissolving the biocompatible polymer in one or more organic solvents to prepare a dispersion solution.
  • a solution for the oil phase was prepared, and leuprolide or a pharmaceutically acceptable salt thereof was dissolved in an aqueous solvent to prepare an aqueous solution, and the aqueous solution was added to the oil phase solution to form a water-in-oil type (W/ O) preparing an emulsion;
  • step b' The dispersion solution or water-in-oil emulsion prepared in step a') is added to an aqueous solution containing ethanol and a surfactant as a continuous phase to form microspheres, and the microspheres are solidified after injection of the dispersion solution or water-in-oil emulsion. and preparing a suspension containing microspheres by stirring for organic solvent extraction;
  • step b' exchanging the continuous phase in the suspension containing the microspheres of step b') with an aqueous solution containing fresh ethanol and a surfactant and stirring;
  • d' relates to a manufacturing method comprising the step of recovering microspheres.
  • microsphere preparations using biocompatible polymers to develop sustained-release preparations have developed into a field of active research interest and clinical application.
  • the drug to be contained in the microspheres must be encapsulated in a high amount considering the administration period and dosage.
  • the present invention is a method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof, and is characterized in that ethanol is used without heating to remove the residual solvent of the microspheres.
  • the step a) or a') is a step of preparing (i) a dispersion solution or (ii) a water-in-oil emulsion for producing microspheres.
  • the emulsion prepared in step b) or b') below is an O/W emulsion
  • the water-in-oil emulsion of (ii), step b) or The emulsion prepared in b') may be a W/O/W type emulsion.
  • the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof are dissolved in one or more organic solvents to prepare a dispersed phase solution.
  • the one or more organic solvents may be two or more organic solvents, and one of the two or more organic solvents may be used as a co-solvent.
  • the biocompatible polymer is dissolved in one organic solvent, and leuprolide or a pharmaceutically acceptable salt thereof is dissolved in another organic solvent to prepare each solution, and then mixed to form a dispersed phase. (i) can be performed by obtaining a solution.
  • Step a) or step a') may be performed at 15 to 25°C, or at room temperature.
  • the organic solvent used in steps (i) and (ii) of step a) or a') is dichloromethane, chloroform, ethyl acetate, methyl ethyl ketone, acetone, acetonitrile, dimethyl sulfoxide, dimethyl formamide, It may be at least one solvent selected from the group consisting of enmethylpyrrolidone, acetic acid, methyl alcohol, ethyl alcohol, propyl alcohol, and benzyl alcohol, or a mixed solvent of two or more of the above solvents.
  • the amount of leuprolide or a pharmaceutically acceptable salt thereof is 9 to 40% compared to the total weight (i.e., total solid weight) of the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof to be prepared. It may be used in weight percent, 10 to 35 weight percent, or 12 to 25 weight percent.
  • biocompatible polymer may be applied to the injectable preparation containing the sustained-release microspheres, unless otherwise defined.
  • the method for producing leuprolide sustained-release microspheres according to the present invention is b) or b') adding the dispersed phase solution or water-in-oil emulsion prepared in step a) or a') to an aqueous solution containing a surfactant as a continuous phase.
  • This includes forming microspheres, and after completing the injection of the dispersion acid solution or water-in-oil emulsion, stirring to solidify the microspheres to prepare a suspension containing the microspheres.
  • the content of the surfactant in the continuous phase containing the surfactant is 0.01% by weight to 20% by weight, preferably 0.1% by weight to 5% by weight, based on the total volume of the continuous phase. You can. If the surfactant content is less than 0.01% by weight, a dispersed phase or emulsion in the form of droplets may not be formed in the continuous phase, and if the surfactant content exceeds 20% by weight, excessive surfactant may cause the formation of a dispersed phase or emulsion in the continuous phase. After the particulates are formed, it may be difficult to remove the surfactant.
  • the surfactant in step b) or b') is methylcellulose, polyvinylpyrrolidone, carboxymethylcellulose, lecithin, gelatin, polyvinyl alcohol, polyoxyethylene sorbitan fatty acid ester, and polyoxyethylene castor oil derivatives, and their It may be one or more types selected from the group consisting of mixtures.
  • the aqueous solvent for preparing the aqueous solution containing the surfactant in step b) or b') is water, or a solvent selected from the group consisting of water and methyl alcohol, ethyl alcohol, propyl alcohol, and ethyl acetate, or a mixed solvent thereof. It may be.
  • the method of homogeneously mixing the biocompatible polymer solution in which leuprolide or a pharmaceutically acceptable salt thereof is dispersed and the continuous phase containing the surfactant is not particularly limited, but includes a high-speed stirrer, It can be performed using an in-line mixer, ultrasonic disperser, static mixer, membrane emulsion method, microfluidics emulsion method, etc.
  • a high-speed stirrer it can be performed using an in-line mixer, ultrasonic disperser, static mixer, membrane emulsion method, microfluidics emulsion method, etc.
  • the stirring process in step b) or b') may be performed for 1 to 5 hours, 2 to 4 hours, or 3 hours for solidification.
  • step b) or b') may be performed at 4 to 24°C, 10 to 17°C, or 15°C.
  • an aqueous solution further containing ethanol in addition to a surfactant may be used as a continuous phase to extract the organic solvent during the formation and solidification of the microspheres.
  • the content of ethanol in the aqueous solution containing ethanol and surfactant is 5 to 40 (v/v)%, 5 to 30 (v/v)%, 5 to 5%, based on the total volume of the aqueous solution. It may be 20(v/v)%, 7 to 40(v/v)%, 7 to 30(v/v)%, 7 to 20(v/v)% or 10 to 20(v/v)%. . If the ethanol content is less than 5(v/v)%, the residual amount of organic solvent may increase, and if it exceeds 30(v/v)%, the encapsulation rate may be reduced or initial release control may be difficult. .
  • step c) an aqueous solution containing ethanol and a surfactant is added to the suspension containing the solidified microspheres prepared in step b) to extract the organic solvent in a continuous phase.
  • the temperature is lower than that of the prior art, at 4 to 24°C, 10 to 17°C, or 15°C for a certain period of time, for example, 1 hour to 48 hours, 5 to 36 hours, or 7 to 15°C.
  • the organic solvent can be effectively extracted from the microspheres by maintaining or stirring for 24 hours, 10 to 20 hours, or 15 hours. Some of the extracted organic solvent may evaporate from the surface of the microspheres.
  • step c) The type of surfactant used in step c) may be the same as that used in step b).
  • the solvent in the aqueous solution of step c) may be water or a mixed solvent of water and one or more solvents selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, and ethyl acetate.
  • the content of ethanol in the aqueous solution containing ethanol and surfactant is 5 to 40 (v/v)%, 5 to 30 (v/v)%, 5%, based on the total volume of the aqueous solution. to 20 (v/v)%, 7 to 40 (v/v)%, 7 to 30 (v/v)%, 7 to 20 (v/v)% or 10 to 20 (v/v)%. there is. If the ethanol content is less than 5(v/v)%, the residual amount of organic solvent may increase, and if it exceeds 30(v/v)%, the encapsulation rate may be reduced or initial release control may be difficult. .
  • step d) or c' after extracting the organic solvent in step c) or b'), it is exchanged with an aqueous solution containing fresh ethanol and a surfactant and incubated for a certain period of time, specifically 1 hour to 48 hours, 1 hour to 48 hours. Stir for 24 hours, 1 hour to 12 hours, and 1 hour to 5 hours.
  • the holding time may be 3 hours, but is not limited thereto.
  • step e) or d' the microspheres are finally recovered.
  • step e) or d' the method of recovering microspheres according to the present invention may be performed using various known techniques, for example, methods such as filtration or centrifugation may be used.
  • step e) or d' the microsphere suspension upon recovery is further washed with a washing liquid (e.g. water, specifically ultrapure water), preferably repeatedly, to remove residual surfactant.
  • a washing liquid e.g. water, specifically ultrapure water
  • the obtained microspheres are dried using a conventional drying method, for example, freeze-drying, to obtain final dried microspheres.
  • the sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof prepared by the production method of the present invention may have a particle diameter (D50) of 10 to 40 ⁇ m.
  • the sustained-release microspheres prepared according to the production method according to the present invention may have a significant amount of residual solvent removed compared to the prior art.
  • the residual solvent in the microspheres may be less than 1000 ppm.
  • the encapsulation rate of the prepared sustained-release microspheres is 60% or more, 60 to 100%, 70% or more, 70 to 100%, 75% or more, 75 to 100%, 75 to 98%, or 75%. It may be from 95% to 95%. Preferably, it may be 80% or more, 80 to 100%, 80 to 98%, 90 to 100%, 95 to 100%, or 80 to 95%.
  • microspheres of leuprolide or a pharmaceutically acceptable salt thereof were prepared.
  • the dispersed phase is a mixture of biocompatible polymers PLGA or PLA and leuprolide acetate (manufacturer: Polypeptide Laboratories Pvt, Ltd., India) with dichloromethane (manufacturer: J.T Baker, USA) and methyl alcohol (manufacturer: Tedia Company, USA). Alternatively, it was mixed with ethyl acetate (manufacturer: Junsei chemical Co. Ltd., Japan) and methyl alcohol (manufacturer: Tedia Company, USA) and dissolved until it became transparent to the naked eye.
  • a 1.0% (w/v) polyvinyl alcohol (viscosity: 4.8-5.8 mPa ⁇ s) aqueous solution was used as the continuous phase, and the continuous phase was connected to an emulsifier equipped with a porous membrane and the prepared dispersed phase was injected to prepare microspheres. did.
  • the temperature of the membrane emulsification device, preparation vessel, and microsphere suspension was maintained at 15°C, and after dispersion phase injection was completed, it was stirred at 200 rpm for 3 hours. Ethanol was added and stirred for 18 hours to extract the organic solvent, and then stirred in the same continuous phase for 3 hours.
  • the microsphere suspension was washed several times with ultrapure water to remove residual polyvinyl alcohol, and the microspheres were recovered by lyophilization.
  • Example 4 R202H 20 DCM MeOH PVA Solvent Extraction (10% EtOH) 15
  • Example 5 R202H 20 DCM MeOH PVA Solvent Extraction (20% EtOH) 15
  • Leuprolide microspheres that did not use the ethanol process for organic solvent extraction were prepared by the following method.
  • the dispersed phase is a mixture of biocompatible polymers PLGA or PLA and leuprolide acetate (manufacturer: Polypeptide Laboratories Pvt, Ltd., India) with dichloromethane (manufacturer: J.T Baker, USA) and methyl alcohol (manufacturer: Tedia Company, USA). It was dissolved until it became transparent to the naked eye. A 0.5% (w/v) polyvinyl alcohol (viscosity: 4.8-5.8 mPa ⁇ s) aqueous solution was used as the continuous phase, and the continuous phase was connected to an emulsifier equipped with a porous membrane and the prepared dispersed phase was injected to prepare microspheres. did.
  • the temperature of the membrane emulsification device, preparation vessel, and microparticle suspension was maintained at 25°C, and after the injection of the dispersed phase was completed, the organic solvent was removed while maintaining the temperature of the microparticle suspension at 36°C for 3 hours. After removal of the organic solvent, the temperature of the microparticle suspension was lowered to 25°C. The microsphere suspension was washed several times with ultrapure water to remove residual polyvinyl alcohol, and the microspheres were freeze-dried.
  • Leuprolide microspheres that did not use the ethanol process for organic solvent extraction were prepared by the following method.
  • the dispersed phase was prepared by dissolving the biocompatible polymers PLGA or PLA and leuprolide acetate (manufacturer: Polypeptide Laboratories Pvt, Ltd., India) in dichloromethane (manufacturer: J.T Baker, USA) and distilled water, respectively, to prepare an oil phase and an aqueous phase.
  • a W/O emulsion was formed by emulsifying at 12,000 rpm using an IKA homogenizer.
  • a 0.5% (w/v) polyvinyl alcohol (viscosity: 4.8-5.8 mPa ⁇ s) aqueous solution was used as the continuous phase, and microspheres were prepared by connecting the continuous phase to an emulsifier equipped with a porous membrane and simultaneously injecting the prepared dispersed phase. .
  • the temperature of the membrane emulsification device, preparation vessel, and microparticle suspension was maintained at 25°C, and after the injection of the dispersed phase was completed, the microparticle suspension was heated and maintained for 3 hours to remove the organic solvent. After removal of the organic solvent, the temperature of the microparticle suspension was lowered to 25°C.
  • the microsphere suspension was washed several times with ultrapure water to remove residual polyvinyl alcohol, and the microspheres were freeze-dried.
  • microspheres prepared in the above example 10 mg were completely dissolved in 2.5 mL of acetonitrile, and then extracted by adding 7.5 mL of 0.1% (w/w) trifluoroacetic acid aqueous solution. The solution filtered using a 0.45 um filter was used as the test solution. 20uL of the test solution was injected into the HPLC and measured at a detection wavelength of 280nm. The column used in this measurement was Inertsil ODS-3, 5 um, 4.6x150 mm, and the mobile phase was acetonitrile containing 0.1% (w/w) trifluoroacetic acid and 0.1% (w/w) trifluoroacetic acid. Acetic acid aqueous solution was mixed and used at a ratio of 25:75 (v/v). The measured encapsulation amounts are shown in Table 3.
  • a test was conducted using laser diffraction to quantitatively measure the average particle size, distribution, and uniformity of microspheres.
  • Example 2 32.45 E.E 91.2% DC 13.67%
  • Example 3 27.64 E.E 79.6% DC 15.92% 3 months
  • the following experiment was performed to confirm the initial drug release of the microspheres prepared in the above Examples and Comparative Examples. Place 10 mg of microspheres in an HDPE wide-mouth bottle, fill with 50 mL of release test solution, and store in an incubator at 37°C. After 24 hours, 1 mL of this sample solution was taken and centrifuged, and the obtained supernatant was analyzed for leuprolide content and release rate using HPLC under the same analysis conditions as in Experimental Example 1.
  • the release test solution for this measurement was a pH 7.4 aqueous solution containing phosphate and sodium azide.
  • Pharmacokinetic evaluation was performed on the microspheres of Examples and Preparation Examples using 9-week-old SD (Sprague-Dawly) rats.
  • the microsphere injection preparations of Examples and Preparation Examples in rats were measured at a dose of 1.5 mg/head as an active ingredient for 1 month (4 weeks) in rats, suspended in 0.3 mL dispersion solvent, and then subcutaneously injected into SD rats. . 0.25 to 0.5 mL of blood was collected at pre-planned times, and blood leuprolide concentration was measured using LC-MS/MS. The measurement results are shown in Table 5 and Figures 1 (1-month formulation) and Figure 2 (3-month formulation).
  • the morphological characteristics of the microspheres according to the present invention were analyzed through electron microscopy.
  • the experimental procedure is as follows. 5 mg of microspheres prepared in Examples and Preparation Examples were placed on an aluminum stub with carbon tape attached and coated with platinum using ION-COATER (COXEM, Korea). An aluminum stub was mounted on a scanning electron microscope (COXEM EM-30, Korea), and the morphological characteristics of the microspheres were observed at an acceleration voltage of 10 ⁇ kV. The results are shown in Figures 3a (1-month formulation) and 3b (3-month formulation).
  • microspheres according to the present invention have excellent storage stability and safety to the human body due to the low residual solvent amount of less than 1000 ppm.
  • the particle number of microspheres according to the present invention was measured as follows. The number of microspheres was confirmed by directly checking the number of particles using an optical microscope. 10 mg of microspheres prepared in Examples and Comparative Examples were weighed and dispersed in 0.5 (w/w)% PVA. At this time, the comparative example containing 15 (w/w)% mannitol was performed by correcting the weight (weight correction was performed by weighing 11.8 mg so that the weight of the microspheres was 10 mg when mannitol was excluded). The microspheres dispersed in 0.5 (w/w)% PVA were diluted with 0.5 (w/w)% PVA so that the concentration was 0.1 mg/mL. 10 ⁇ m of the diluted 0.1 mg/mL concentration microsphere solution was taken and the number of particles was confirmed under a microscope.
  • the administration dose was adjusted so that the content of the active ingredient (API) in the examples and comparative examples was the same, and is shown in Tables 7 and 8.
  • Table 7 shows the 1-month formulation
  • Table 8 shows the 3-month formulation.
  • Example 2 Based on one administration Example 2 Comparative Example 1 (Leuplin 3.75mg) API concentration (mg/mL) 3.75 3.75 Microparticle concentration (mg/mL) 27.4 44.1 Number of microspheres (piece/mg) 67,000 149,300 Number of administered microspheres (number/mL) 1,836,623 6,586,765
  • Example 4 Based on one administration Example 4 Comparative Example 2 (Leuplin 11.25mg) API concentration (mg/mL) 11.25 11.25 Microparticle concentration (mg/mL) 58.9 130.1 Number of microspheres (piece/mg) 49,700 262,300 Number of administered microspheres (number/mL) 2,927,356 34,114,162
  • the conventional injection preparation containing leuprolide has a microparticle concentration that is 1.6 to 2.2 times higher than the injection preparation according to the present invention. With this, it was confirmed that the number of microspheres was also 3.6 to 11.7 times greater. This has the advantage that the injection preparation according to the present invention has a significantly lower number and concentration of microspheres compared to the same active ingredient content, and can reduce various problems that may occur due to a large number of microspheres and a high concentration of microspheres upon administration, such as the level of inflammation. You can have it.
  • Example 4 The degree of inflammation at the administration site when the microspheres prepared in Example 4 and Comparative Example 2 were administered was confirmed.
  • 0.5 mL of suspension (Diluent) 0.5(w/w)% NaCMC, 5(w/w)% Mannitol, 0.1(w/w)% Tween 80
  • the microspheres were added. Mix well until completely dispersed.
  • the microspheres were administered subcutaneously to the back of SD rats at a dose of 4.5mg/head. Tissues were removed on the 3rd, 10th, and 28th days after administration and analysis of inflammation at the administration site was performed, which is shown in Table 9.
  • Example 4 (SD rat, male 8 weeks old) At each confirmation time, histopathology slide samples of Example 4 and Comparative Example 2 were prepared, stained with H&E (Hematoxylin and Eosin), and inflammatory cell infiltration was confirmed. Photographs of samples stained in this way are shown in Figures 4a (3 days), 4b (10 days), and 4c (28 days). Yellow circles represent infiltrated cells, red arrows represent angiogenesis, and blue arrows represent fibrous tissue formation.
  • H&E Hematoxylin and Eosin
  • Table 10 is a table that quantifies the degree of inflammatory cell infiltration on the 3rd, 10th, and 28th days after administration of microspheres to SD rats.
  • Inflammatory cell infiltration is graded from 0 to 3 by randomly selecting three parts at 400x field of view (HPF), counting the number of cells.
  • HPF 400x field of view
  • Example 4 On the 3rd day after microball administration, the inflammatory response was strong in both Example 4 and Comparative Example 2, so no significant difference could be confirmed, but on the 10th and 28th day after microball administration, the inflammatory response was strong. While the inflammatory response continued in Example 2, it was confirmed that the inflammatory response was relatively reduced in Example 4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pain & Pain Management (AREA)

Abstract

The present invention relates to sustained-release microspheres containing a high amount of leuprolide, an injectable preparation comprising same, and a preparation method therefor. During administration, leuprolide is released at a sufficient level in an early stage so that effects of leuprolide are exhibited, thereby allowing exposure to a sufficient amount of a drug while inflammatory reactions and the like, which can be problematic during administration, are minimized, and thus the effects of leuprolide can safely be exhibited at least 1 month.

Description

루프롤라이드를 포함하는 서방형 미립구, 이를 포함하는 주사제제 및 이의 제조방법Sustained-release microspheres containing leuprolide, injectable preparations containing the same, and methods for producing the same
본 발명은 루프롤라이드를 포함하는 서방형 미립구, 이를 포함하는 주사제제 및 이의 제조방법과 상기 서방형 미립구들을 포함하는 약학적 조성물에 관한 것이다.The present invention relates to sustained-release microspheres containing leuprolide, an injectable preparation containing the same, a method for producing the same, and a pharmaceutical composition containing the sustained-release microspheres.
보다 상세하게는, 미립구 내에 고함량의 루프롤라이드를 포함하면서, 초기에 효과적인 약물의 방출 특성을 나타내면서도 장기간 동안 안정한 약물 방출의 특성을 제공하는 서방형 미립구 및 이를 제조하는 방법과, 상기 루프롤라이드를 포함하는 서방형 미립구를 포함하는 주사제제에 관한 것이다. More specifically, sustained-release microspheres that contain a high content of leuprolide in the microspheres and exhibit effective drug release characteristics initially while providing stable drug release characteristics for a long period of time, and a method of producing the same, the leuprolide It relates to an injectable preparation containing sustained-release microspheres containing Lyde.
LHRH(황체형성호르몬 방출 호르몬)은 GnRH(성선자극호르몬 방출 호르몬)으로도 알려져 있으며, 척추 동물의 생식계를 조절하는 시상하부 데카펩티드(pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2)이다. Luteinizing hormone-releasing hormone (LHRH), also known as gonadotropin-releasing hormone (GnRH), is a hypothalamic decapeptide (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-) that regulates the reproductive system in vertebrates. Pro-Gly-NH 2 ).
LHRH 작용제 및 길항제는 여성의 자궁내막증, 섬유종, 다낭난소증, 유방암, 난소암 및 자궁내막암, 의료보조된 출산 프로토콜 동안의 성선자극 뇌하수체 탈감작증의 치료, 남성의 양성 전립선과 다형성증 및 전립선 암의 치료, 및 남성 또는 여성의 성조숙증의 치료에 효과적인 것으로 보고되어있다. LHRH agonists and antagonists are used for the treatment of endometriosis, fibroids, polycystic ovary, breast, ovarian and endometrial cancer in women, gonadotropic pituitary desensitization during medically assisted birth protocols, benign prostate and polymorphism and prostate cancer in men. It is reported to be effective in the treatment of and treatment of precocious puberty in men or women.
현재 사용되는 LHRH 아고니스트(Luteinizing Hormone Releasing Hormone agonist)는 낮은 경구 생체 이용률로 인해 일반적으로 주사를 통해 투여해야 하는 펩티드 화합물이다. Currently used LHRH agonists (Luteinizing Hormone Releasing Hormone agonists) are peptide compounds that generally must be administered via injection due to low oral bioavailability.
또한 LHRH 아고니스트는 만성 질환의 약물로서 장기간 동안의 투약이 필요하고, 약효 발현을 위해 초기에 신속하게 충분한 양의 약물에의 노출이 필요하다고 알려져 있다. LHRH 아고니스트 중의 하나인 루프롤라이드 아세테이트(leuprolide acetate)의 약효 발현을 위해서는 표적부위에 대하여 투여 초기에 충분한 양의 약물 노출이 필요하다고 알려져 있어, 초기에 높은 약물 방출률을 가지는 것이 바람직한 것으로 알려져 있다.In addition, it is known that LHRH agonists are drugs for chronic diseases that require long-term administration, and that early and rapid exposure to a sufficient amount of the drug is required for drug efficacy to manifest. It is known that for the drug efficacy of leuprolide acetate, one of the LHRH agonists, to be expressed, a sufficient amount of drug exposure to the target area is required at the beginning of administration, and it is known that it is desirable to have a high initial drug release rate.
또한, 이와 같은 만성질환의 치료를 위한 의약품의 경우 환자의 편의성을 높이기 위해 자가투약이 가능한 제제가 필요한 실정이며 이를 만족하기 위해서는 미립구내 높은 약물의 봉입량이 요구되고 있다. 그러나, 종래 루프롤라이드를 유효성분으로 포함하는 서방형 미립구의 경우 봉입량이 충분하지 않는 문제점이 있으며, 일반적으로 미립구 제조시 잔류용매의 제거를 위하여 가온을 하는 공정을 사용하나, 이와 같이 가온 공정을 사용하는 경우 다량의 루프롤라이드가 손실되는 문제점이 발생한다. 이와 같이 많은 양의 루프롤라이드가 손실된 경우 원하는 서방 효과를 나타내기 위해서는 루프롤라이드를 포함하는 미립구들을 환자에게 투여해야 하며 이러한 경우 통증이나 염증 등의 문제가 발생할 수도 있다. In addition, in the case of medicines for the treatment of such chronic diseases, preparations capable of self-administration are required to increase patient convenience, and to satisfy this, a high amount of drug encapsulated in microspheres is required. However, in the case of conventional sustained-release microspheres containing leuprolide as an active ingredient, there is a problem in that the encapsulation amount is not sufficient. Generally, a heating process is used to remove residual solvents when manufacturing microspheres, but this heating process When used, a problem occurs in which a large amount of leuprolide is lost. In this case, when a large amount of leuprolide is lost, microspheres containing leuprolide must be administered to the patient to achieve the desired sustained-release effect, and in this case, problems such as pain or inflammation may occur.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 고안된 것으로, 미립구 내에 고함량의 루프롤라이드가 포함될 수 있고, 초기에 효과적인 약물의 방출 특성을 나타내면서도 장기간 동안 안정한 약물 방출의 특성을 제공할 뿐 아니라, 상대적으로 적은 수의 미립구를 투여함으로 인해 투여 후 투여 부위에 통증이나 염증 반응을 최소화하는 고함량의 루프롤라이드를 포함하는 서방형 미립구 및 이를 제조하는 방법을 제공하는 것을 목적으로 한다.The present invention was designed to solve the above-described conventional problems. It can contain a high content of leuprolide in the microspheres, and not only exhibits effective drug release characteristics initially, but also provides stable drug release characteristics for a long period of time. The purpose is to provide sustained-release microspheres containing a high content of leuprolide that minimize pain or inflammatory reactions at the site of administration after administration due to administering a relatively small number of microspheres, and a method for producing the same.
본 발명의 일 측면으로, 유효성분으로서 루프롤라이드 또는 이의 약학적으로 허용가능한 염 및 생체 적합성 고분자를 포함하는 서방형 미립구를 포함하는 주사제제로서, In one aspect of the present invention, an injectable preparation comprising sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof as an active ingredient and a biocompatible polymer,
상기 주사제제 중의 유효성분의 함량은 루프롤라이드로서 1 내지 50mg/mL를 포함하고, The content of the active ingredient in the injection preparation includes 1 to 50 mg/mL as leuprolide,
상기 주사제제 중의 미립구의 수는 1,000,000 내지 6,000,000개/ml인 것인, 주사제제일 수 있다.The injectable preparation may have a number of microspheres of 1,000,000 to 6,000,000/ml.
본 발명의 일 측면으로, 상기 미립구 중의 루프롤라이드 또는 이의 약학적으로 허용가능한 염은 전체 미립구 중량 대비 9.5 내지 40 중량%, 10 내지 30 중량% 또는 12 내지 25%일 수 있다. In one aspect of the present invention, leuprolide or a pharmaceutically acceptable salt thereof in the microspheres may be 9.5 to 40% by weight, 10 to 30% by weight, or 12 to 25% by weight based on the total weight of the microspheres.
본 발명의 일 측면으로, 상기 생체 적합성 고분자는 폴리에틸렌글리콜-폴리(락타이드-코-글리콜라이드) 블록-공중합체, 폴리에틸렌글리콜-폴리락타이드 블록-공중합체, 폴리에틸렌글리콜-폴리카프로락톤 블록-공중합체, 폴리락타이드, 폴리글리콜라이드, 폴리(락타이드-코-글리콜라이드), 폴리(락타이드-코-글리콜라이드)글루코스, 폴리카프로락톤 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있다. In one aspect of the present invention, the biocompatible polymer includes polyethylene glycol-poly(lactide-co-glycolide) block-copolymer, polyethylene glycol-polylactide block-copolymer, and polyethylene glycol-polycaprolactone block-copolymer. It is one or more selected from the group consisting of polymer, polylactide, polyglycolide, poly(lactide-co-glycolide), poly(lactide-co-glycolide)glucose, polycaprolactone, and mixtures thereof. You can.
본 발명의 일 측면으로, 상기 미립구 중의 생체 적합성 고분자는 전체 미립구 중량 대비 70 내지 90 중량%, 75 내지 90 중량%, 또는 80 내지 90 중량%일 수 있다. In one aspect of the present invention, the biocompatible polymer in the microspheres may be 70 to 90% by weight, 75 to 90% by weight, or 80 to 90% by weight based on the total weight of the microspheres.
본 발명의 일 측면으로, 상기 미립구 중의 유효성분 대 생체 적합성 고분자의 중량비가 1:4 내지 1:9, 1:3.5 내지 1:9, 또는 1:3 내지 1:9일 수 있다. In one aspect of the present invention, the weight ratio of the active ingredient to the biocompatible polymer in the microspheres may be 1:4 to 1:9, 1:3.5 to 1:9, or 1:3 to 1:9.
본 발명의 일 측면으로, 상기 생체 적합성 고분자는 동일한 종류의 고분자들이 서로 다른 고유점도 및/또는 단량체의 비율을 가지는 고분자들의 조합인 것일 수 있다. In one aspect of the present invention, the biocompatible polymer may be a combination of polymers of the same type having different intrinsic viscosity and/or monomer ratios.
본 발명의 일 측면으로, 상기 루프롤라이드의 약학적으로 허용가능한 염은 루프롤라이드 아세테이트인 것일 수 있다. In one aspect of the present invention, the pharmaceutically acceptable salt of leuprolide may be leuprolide acetate.
본 발명의 일 측면으로, 상기 생체 적합성 고분자의 중량평균분자량은 4,000 내지 240,000인 것일 수 있다.In one aspect of the present invention, the weight average molecular weight of the biocompatible polymer may be 4,000 to 240,000.
본 발명의 일 측면으로, 상기 주사제제의 인 비트로 방출률은, 유효성분의 방출 후 24 시간의 인 비트로 방출률이 8 내지 40% 보다 구체적으로 10 내지 30%일 수 있다. In one aspect of the present invention, the in vitro release rate of the injectable formulation may be 8 to 40%, more specifically 10 to 30%, 24 hours after release of the active ingredient.
본 발명의 일 측면으로, 상기 주사제제는 1개월 제형 내지 3개월 제형용 일 수 있다.In one aspect of the present invention, the injectable formulation may be for a 1-month to 3-month formulation.
본 발명의 일 측면으로, 상기 주사제제의 개체 내 투여 시, 투여 후 24시간까지의 누적 약물 곡선하 면적(AUC0-24hrs, Area under the curve)는 목표 투여기간까지의 누적 약물 곡선하 면적(AUCtotal, 즉 1개월 제형의 경우 AUCtotal은 투여 후 0 내지 28일까지의 누적 약물 곡선하 면적이고, 3개월 제형의 경우 AUCtotal은 투여 후 0 내지 84일까지의 누적 약물 곡선하 면적을 의미한다) 대비 0.5 내지 55%, 15 내지 50% 또는 20 내지 50%인 것일 수 있다.In one aspect of the present invention, when the injection preparation is administered within an individual, the cumulative drug area under the curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve) is the cumulative drug area under the curve up to the target administration period (AUC 0-24hrs, Area under the curve) AUC total , that is, for a 1-month formulation, AUC total is the area under the cumulative drug curve from 0 to 28 days after administration, and for a 3-month formulation, AUC total refers to the area under the cumulative drug curve from 0 to 84 days after administration. It may be 0.5 to 55%, 15 to 50%, or 20 to 50% of the total.
본 발명의 일 측면으로, 상기 주사제제의 개체 내 투여 시, 투여 후 48시간 내지 168시간의 누적 약물 곡선하 면적에 대한 투여 후 0 내지 24시간의 누적 약물 곡선하 면적에 대한 비율(즉, 투여 후 0 내지 24시간의 누적 약물 곡선하 면적 : 투여 후 48시간 내지 168시간의 누적 약물 곡선하 면적)은 2:1 내지 10:1, 바람직하게는 2:1 내지 8:1, 더욱 바람직하게는 2:1 내지 6:1 인 것일 수 있다.In one aspect of the present invention, when the injection preparation is administered within a subject, the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration to the area under the cumulative drug curve at 48 hours to 168 hours after administration (i.e., administration Area under the cumulative drug curve for 0 to 24 hours after administration: Area under the cumulative drug curve for 48 hours to 168 hours after administration) is 2:1 to 10:1, preferably 2:1 to 8:1, more preferably It may be 2:1 to 6:1.
본 발명의 일 측면으로, 상기 주사제제의 서방성 미립구 중의 잔류용매가 1,000ppm 미만인 것일 수 있다. In one aspect of the present invention, the residual solvent in the sustained-release microspheres of the injectable formulation may be less than 1,000 ppm.
본 발명의 일 측면으로, 상기 주사제제의 투여 후 약물의 Cmax는 5,000 내지 2,000,000pg/mL일 수 있다.In one aspect of the present invention, the C max of the drug after administration of the injection preparation may be 5,000 to 2,000,000 pg/mL.
본 발명의 일 측면으로, 상기 주사제제 중의 서방성 미립구의 입경(D50)이 10 내지 40um인 것일 수 있다. In one aspect of the present invention, the particle size (D50) of the sustained-release microspheres in the injection preparation may be 10 to 40 um.
본 발명의 일 측면으로, 상기 주사제제는 자궁내막증, 과다월경, 하복통, 요통 및 빈혈 등을 수반한 자궁근종에서 근종핵의 축소 및 증상의 개선, 전립선암, 폐경전 유방암 또는 중추성 사춘기조발증의 예방 또는 치료용일 수 있다. In one aspect of the present invention, the injectable preparation reduces fibroid nuclei and improves symptoms in uterine fibroids accompanied by endometriosis, hypermenorrhea, lower abdominal pain, back pain, and anemia, prostate cancer, premenopausal breast cancer, or central precocious puberty. It may be for prevention or treatment.
본 발명의 일 측면으로, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 제조방법으로서, 다음의 단계를 포함하는 제조방법을 제공할 수 있다: In one aspect of the present invention, a method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof can be provided, comprising the following steps:
a) (i) 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상용 용액을 제조하거나 또는 (ii) 생체 적합성 고분자를 하나 이상의 유기 용매에 용해시켜 유상(oil phase)용 용액을 제조하고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 수성 용매에 용해시켜 수상용 용액을 제조하고, 상기 수상용 용액을 유상용 용액에 첨가하여 유중수형(W/O) 에멀전을 제조하는 단계;a) (i) prepare a dispersed solution by dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents, or (ii) prepare an oil phase by dissolving the biocompatible polymer in one or more organic solvents. Prepare a solution for the oil phase, prepare an aqueous solution by dissolving leuprolide or a pharmaceutically acceptable salt thereof in an aqueous solvent, and add the aqueous solution to the oil phase solution to form a water-in-oil (W/O) solution. ) Preparing an emulsion;
b) 상기 단계 a)에서 제조된 분산상용 용액 또는 유중수형 에멀전을, 연속상으로서 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀젼 주입 후 미립구 고형화를 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계;b) The dispersion solution or water-in-oil emulsion prepared in step a) is added to an aqueous solution containing a surfactant as a continuous phase to form microspheres, and the dispersion solution or water-in-oil emulsion is injected and stirred to solidify the microspheres. preparing a suspension containing microspheres;
c) 상기 단계 b)의 고형화된 미립구를 포함하는 현탁액에 에탄올 및 계면활성제를 포함하는 수용액을 첨가시켜 상기 유기용매를 추출시키는 단계;c) extracting the organic solvent by adding an aqueous solution containing ethanol and a surfactant to the suspension containing the solidified microspheres of step b);
d) 상기 단계 c)의 미립구를 포함하는 현탁액 중의 연속상을 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 교반하는 단계; 및 d) exchanging the continuous phase in the suspension containing the microspheres of step c) with an aqueous solution containing fresh ethanol and a surfactant and stirring; and
e) 미립구를 회수하는 단계.e) Recovering microspheres.
본 발명의 일 측면으로, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 제조방법으로서, 다음의 단계를 포함하는 제조방법을 제공할 수 있다: In one aspect of the present invention, a method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof can be provided, comprising the following steps:
a') (i) 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상용 용액을 제조하거나 또는 (ii) 생체 적합성 고분자를 하나 이상의 유기 용매에 용해시켜 유상(oil phase)용 용액을 제조하고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 수성 용매에 용해시켜 수상용 용액을 제조하고, 상기 수상용 용액을 유상용 용액에 첨가하여 유중수형(W/O) 에멀전을 제조하는 단계;a') (i) dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents to prepare a dispersion solution, or (ii) dissolving the biocompatible polymer in one or more organic solvents to prepare a dispersion solution. A solution for the oil phase was prepared, and leuprolide or a pharmaceutically acceptable salt thereof was dissolved in an aqueous solvent to prepare an aqueous solution, and the aqueous solution was added to the oil phase solution to form a water-in-oil type (W/ O) preparing an emulsion;
b') 상기 단계 a')에서 제조된 분산상용 용액 또는 유중수형 에멀전을, 연속상으로서 에탄올 및 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀젼 주입 후 미립구 고형화 및 유기용매 추출을 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계;b') The dispersion solution or water-in-oil emulsion prepared in step a') is added to an aqueous solution containing ethanol and a surfactant as a continuous phase to form microspheres, and the microspheres are solidified after injection of the dispersion solution or water-in-oil emulsion. and preparing a suspension containing microspheres by stirring for organic solvent extraction;
c') 상기 단계 b')의 미립구를 포함하는 현탁액 중의 연속상을 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 교반하는 단계; 및 c') exchanging the continuous phase in the suspension containing the microspheres of step b') with an aqueous solution containing fresh ethanol and a surfactant and stirring; and
d') 미립구를 회수하는 단계. d') Recovering microspheres.
본 발명에 따른 루프롤라이드를 포함하는 서방형 미립구의 제조방법에 따르는 경우, 종래의 제조방법과 달리 루프롤라이드를 높은 봉입률로 포함하는 서방형 미립구를 제조할 수 있게 하여, 장시간 동안 약물의 치료범위 농도를 유지하여 치료효과를 극대화시킨 미립구를 제조할 수 있다. According to the method for producing sustained-release microspheres containing leuprolide according to the present invention, unlike the conventional production method, it is possible to produce sustained-release microspheres containing leuprolide at a high encapsulation rate, allowing the drug to be contained for a long time. It is possible to manufacture microspheres that maximize the therapeutic effect by maintaining the concentration in the therapeutic range.
도 1은 본 발명에 따른 1개월 제형용 미립구(실시예 1)와 대조약인 류프린 3.75mg(비교예 1)의 생체 내 약물동태(in vivo pharmacokinetics)를 나타낸 그래프이다.Figure 1 is a graph showing the in vivo pharmacokinetics of microspheres for a 1-month formulation according to the present invention (Example 1) and Leuprin 3.75 mg (Comparative Example 1), a reference drug.
도 2는 본 발명에 따른 3개월 제형용 미립구(실시예 5 및 6)의 생체 내 약물동태(in vivo pharmacokinetics)를 나타낸 그래프이다.Figure 2 is a graph showing the in vivo pharmacokinetics of microspheres for a 3-month formulation (Examples 5 and 6) according to the present invention.
도 3a 및 도 3b는 본 발명에 따른 실시예의 미립구의 형상을 확인한 주사전자현미경 사진이다.Figures 3a and 3b are scanning electron microscope photographs confirming the shape of microspheres of an example according to the present invention.
도 4a 내지 도 4c는 실시예 4와 비교예 2의 조직병리 슬라이드 표본을 통해 미립구 투여 후 3일, 10일, 28일째에 조직을 적출하여 투여부위의 염증세포 침윤을 확인한 도면이다.Figures 4A to 4C are diagrams showing the histopathology slide samples of Example 4 and Comparative Example 2 showing the infiltration of inflammatory cells at the injection site by extracting tissues on the 3rd, 10th, and 28th days after administration of microspheres.
이하 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
하나의 양태로서, 본 발명은, 유효성분으로서 루프롤라이드 또는 이의 약학적으로 허용가능한 염 및 생체 적합성 고분자를 포함하는 서방형 미립구를 포함하는 주사제제로서, In one embodiment, the present invention is an injectable preparation comprising sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof as an active ingredient and a biocompatible polymer,
상기 주사제제 중의 유효성분의 함량은 루프롤라이드로서 1 내지 50mg/mL를 포함하고,The content of the active ingredient in the injection preparation includes 1 to 50 mg/mL as leuprolide,
상기 주사제제 중의 미립구의 수는 1,000,000 내지 6,000,000개/ mL인 것인, 주사제제에 관한 것이다. The present invention relates to an injectable preparation in which the number of microspheres in the injectable preparation is 1,000,000 to 6,000,000/mL.
구체적으로, 상기 주사제제 중의 유효성분의 함량은 루프롤라이드로서, 2 내지 50mg/mL, 2 내지 47mg/mL, 2 내지 45mg/mL, 2 내지 30mg/mL, 2 내지 27.5mg/mL, 2 내지 25mg/mL, 3 내지 25mg/mL, 3 내지 22.5mg/mL 일 수 있다. 보다 구체적으로, 상기 주사제제가 1개월용 제제인 경우 1 내지 15mg/mL, 1 내지 12.5mg/mL 또는 2 내지 12.5mg/mL일 수 있고, 상기 주사제제가 3개월용 제제인 경우 7 내지 30mg/mL, 9 내지 27.5mg/mL 또는 10 내지 25mg/mL일 수 있고, 6개월 제제인 경우 20 내지 50mg/mL, 20 내지 47.5mg/mL, 25 내지 45mg/mL, 30 내지 50mg/mL, 30 내지 47.5mg/mL, 또는 30 내지 45mg/mL일 수 있다.Specifically, the content of the active ingredient in the injection preparation is leuprolide, 2 to 50 mg/mL, 2 to 47 mg/mL, 2 to 45 mg/mL, 2 to 30 mg/mL, 2 to 27.5 mg/mL, 2 to 5 mg/mL. It may be 25 mg/mL, 3 to 25 mg/mL, or 3 to 22.5 mg/mL. More specifically, if the injectable preparation is a 1-month preparation, it may be 1 to 15 mg/mL, 1 to 12.5 mg/mL, or 2 to 12.5 mg/mL, and if the injectable preparation is a 3-month preparation, it may be 7 to 30 mg/mL, 9 It may be from 27.5 mg/mL or 10 to 25 mg/mL, and for a 6-month preparation, it may be 20 to 50 mg/mL, 20 to 47.5 mg/mL, 25 to 45 mg/mL, 30 to 50 mg/mL, 30 to 47.5 mg/mL. mL, or 30 to 45 mg/mL.
구체적으로, 상기 주사제제 중의 미립구의 수는 1,000,000 내지 5,000,000개/ml, 1,200,000 내지 4,500,000개/ml, 1,000,000 내지 4,000,000개/ml, 1,200,000 내지 3,500,000개/mL 또는 1,500,000 내지 3,000,000개/mL일 수 있다. 보다 구체적으로, 상기 주사제제가 1개월용 제제인 경우 1,000,000 내지 2,500,000개/mL 또는 1,500,000 내지 2,000,000개/mL일 수 있고, 상기 주사제제가 3개월용 제제인 경우 2,000,000 내지 3,500,000개/mL 또는 2,500,000 내지 3,000,000개/mL, 상기 주사제제가 6개월용 제제인 경우, 3,000,000 내지 6,000,000 개/mL, 3,500,000 내지 5,500,000개/mL 또는 4,000,000 내지 5,000,000개/mL 일 수 있다.Specifically, the number of microspheres in the injection preparation is 1,000,000 to 5,000,000/ml, 1,200,000 to 4,500,000/ml, 1,000,000 to 4,000,000/ml, 1,200,000 to 3,500,000/ml or 1,500,000. It may be 0 to 3,000,000/mL. More specifically, if the injectable preparation is a 1-month preparation, it may be 1,000,000 to 2,500,000 units/mL or 1,500,000 to 2,000,000 units/mL, and if the injectable preparation is a 3-month preparation, it may be 2,000,000 to 3,500,000 units/mL or 2,500,000 to 3,000, 000 units/mL , if the injectable preparation is a 6-month preparation, it may be 3,000,000 to 6,000,000 units/mL, 3,500,000 to 5,500,000 units/mL, or 4,000,000 to 5,000,000 units/mL.
본 발명은 종래의 루프롤라이드 함유 미립구 및 이를 포함하는 제제와는 달리 높은 함량으로 유효성분인 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 미립구 내에 포함함으로 인해, 효과적인 약리 효과를 나타내는 수준의 유효성분을 충분히 포함하면서도, 주사제제 단위 부피당 확연하게 적은 수의 미립구가 주사제제 내에 포함되게 하는 것을 특징으로 한다. 이러한 특징으로 인해, 본 발명에 따른 주사제제는 초기에 효과적인 약물의 방출 특성을 나타내면서도 장기간 동안 안정한 약물 방출의 특성을 제공할 뿐 아니라, 상대적으로 적은 수의 미립구를 투여함으로 인해 투여 후 투여 부위에 통증이나 염증 반응을 최소화시킬 수 있다.The present invention, unlike conventional leuprolide-containing microspheres and preparations containing the same, contains a high content of the active ingredient leuprolide or a pharmaceutically acceptable salt thereof in the microspheres, thereby providing an effective level of effective pharmacological effect. It is characterized by containing a sufficient number of ingredients, while allowing a significantly small number of microspheres per unit volume of the injectable preparation to be included in the injectable preparation. Due to these characteristics, the injectable formulation according to the present invention not only exhibits effective drug release characteristics initially and provides stable drug release characteristics for a long period of time, but also provides stable drug release characteristics for a long period of time, and by administering a relatively small number of microspheres, It can minimize pain or inflammatory reactions.
본 발명에서 '루프롤라이드(leuprolide)'는 5-옥소-L-프롤릴-L-히스티딜-L-트립토판일-L-세릴-L-타이로실-D-류실-L-류실-L-아르긴일-L-프롤릴 에틸아마이드의 LHGH 아고니스트이다. 상기 루프롤라이드는 류프로렐린(Leuprorelin)으로 표현될 수 있다. 또한 본 발명에서는 이러한 루프롤라이드의 약학적으로 허용 가능한 염도 모두 사용 가능하다. In the present invention, 'leuprolide' is 5-oxo-L-prolyl-L-histidyl-L-tryptophanyl-L-seryl-L-tyrosyl-D-leucyl-L-leucyl-L -Arginyl-L-prolyl ethylamide is an LHGH agonist. The leuprolide may be expressed as leuprorelin. Additionally, in the present invention, all pharmaceutically acceptable salts of leuprolide can be used.
본 발명에서 '약학적으로 허용가능한'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 것을 의미한다. 본 발명에서 '약학적으로 허용 가능한 염'은 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염을 의미한다. 상기 유리산으로는 유기산과 무기산을 사용할 수 있다. 상기 유기산은 이에 제한되는 것은 아니나, 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산을 포함한다. 또한 상기 무기산은 이에 제한되는 것은 아니나, 염산, 브롬산, 황산 및 인산을 포함한다. 구체적인 일 양태에서, 본 발명의 루프롤라이드의 약학적으로 허용가능한 염은 루프롤라이드 아세테이트일 수 있다. In the present invention, 'pharmaceutically acceptable' means that it is physiologically acceptable and does not usually cause allergic reactions or similar reactions when administered to humans. In the present invention, 'pharmaceutically acceptable salt' refers to an acid addition salt formed from a pharmaceutically acceptable free acid. Organic acids and inorganic acids can be used as the free acids. The organic acids are not limited thereto, but include citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, Includes glutamic acid and aspartic acid. Additionally, the inorganic acids include, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, and phosphoric acid. In a specific embodiment, the pharmaceutically acceptable salt of leuprolide of the present invention may be leuprolide acetate.
구체적인 일 양태에서, 상기 루프롤라이드 또는 이의 약학적으로 허용가능한 염은, 미립구의 전체 중량 대비 9.5 내지 40중량%, 10 내지 30중량%, 또는 12 내지 25 중량%로 사용되는 것일 수 있다. In a specific embodiment, the leuprolide or a pharmaceutically acceptable salt thereof may be used in an amount of 9.5 to 40% by weight, 10 to 30% by weight, or 12 to 25% by weight based on the total weight of the microspheres.
구체적인 일 양태에서, 상기 생체 적합성 고분자는 폴리에틸렌글리콜-폴리(락타이드-코-글리콜라이드) 블록-공중합체, 폴리에틸렌글리콜-폴리락타이드 블록-공중합체, 폴리에틸렌글리콜-폴리카프로락톤 블록-공중합체, 폴리락타이드, 폴리글리콜라이드, 폴리(락타이드-코-글리콜라이드), 폴리(락타이드-코-글리콜라이드)글루코스, 폴리카프로락톤 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상, 1종 내지 3종, 1종 내지 2종, 2종 내지 3종인 것일 수 있다. In a specific embodiment, the biocompatible polymer is polyethylene glycol-poly(lactide-co-glycolide) block-copolymer, polyethylene glycol-polylactide block-copolymer, polyethylene glycol-polycaprolactone block-copolymer, At least one selected from the group consisting of polylactide, polyglycolide, poly(lactide-co-glycolide), poly(lactide-co-glycolide)glucose, polycaprolactone, and mixtures thereof. It may be from 3 types, 1 to 2 types, or 2 to 3 types.
상기 생체 적합성 고분자가 “2종 이상”이라는 것은, 상기 생체 적합성 고분자 물질의 종류가 서로 상이한 것들의 조합 또는 블렌드(예를 들어, 폴리(락타이드-코-글리콜라이드)와 폴리락타이드의 블렌드)일 수도 있으나, 동일한 종류의 고분자들이 서로 다른 고유점도, 분자량 및/또는 단량체의 비율을 가지는 고분자들의 조합(예를 들어, 락타이드 대 글리콜라이드의 몰비가 40:60인 폴리(락타이드-코-글리콜라이드)와 락타이드 대 글리콜라이드의 몰비가 50:50인 폴리(락타이드-코-글리콜라이드)의 조합, 또는 고유점도가 0.16dL/g 인 폴리(락타이드-코-글리콜라이드)와 1.7dL/g인 폴리(락타이드-코-글리콜라이드)의 조합)일 수도 있고, 또는 말단기가 서로 다른(예를 들어 말단기가 에스터이거나 말단기가 산인 동일 종류의 고분자일 수도 있다. “Two or more types of biocompatible polymers” means a combination or blend of different types of biocompatible polymer materials (for example, a blend of poly(lactide-co-glycolide) and polylactide). However, a combination of polymers of the same type with different intrinsic viscosity, molecular weight, and/or monomer ratio (e.g., poly(lactide-co-) with a molar ratio of lactide to glycolide of 40:60 A combination of poly(lactide-co-glycolide) with a molar ratio of lactide to glycolide of 50:50, or poly(lactide-co-glycolide) with an intrinsic viscosity of 0.16 dL/g and 1.7 dL/g of poly(lactide-co-glycolide)), or it may be the same type of polymer with different end groups (for example, an ester end group or an acid end group).
본 발명에서 사용될 수 있는, 시판 중인 생체적합성 고분자의 예로는, 에보닉 롬 게엠베하(Evonik Rohm GmbH)사의 Resomer 계열인 RG 502H, RG 503H, RG 504H, RG 502, RG 503, RG 504, RG 653H, RG 752H, RG 753H, RG 752S, RG 755S, RG 756S, RG 858S, R202H, R203H, R205H, R 202S, R203S, R205S, 코비온사의 PDL 02A, PDL 02, PDL 04, PDL 05, PDLG 7502A, PDLG 7502, PDLG 7507, PDLG 5002A, PDLG 5002, PDLG 5004A, PDLG 5004, PDLG 5010, PL 10, PL 18, PL 24, PL 32, PL 38, PDL 20, PDL 45, PC 02, PC 04, PC 12, PC 17, PC 24를 단독으로 또는 조합 또는 블렌드한 것 등을 들 수 있으나 이에 제한되는 것은 아니다. Examples of commercially available biocompatible polymers that can be used in the present invention include RG 502H, RG 503H, RG 504H, RG 502, RG 503, RG 504, and RG 653H from the Resomer series of Evonik Rohm GmbH. , RG 752H, RG 753H, RG 752S, RG 755S, RG 756S, RG 858S, R202H, R203H, R205H, R 202S, R203S, R205S, Cobion's PDL 02A, PDL 02, PDL 04, PDL 05, PDLG 7502A , PDLG 7502, PDLG 7507, PDLG 5002A, PDLG 5002, PDLG 5004A, PDLG 5004, PDLG 5010, PL 10, PL 18, PL 24, PL 32, PL 38, PDL 20, PDL 45, PC 02, PC 04, PC 12 , PC 17, and PC 24 alone or in combination or blend, but are not limited thereto.
생체 적합성 고분자의 적합한 분자량이나 블렌딩 비율 등은 생체 적합성 고분자의 분해 속도 및 그에 따른 약물 방출 속도 등을 고려하여 당업자가 적절히 선택할 수 있다. 구체적인 일 실시예에서, 본 발명에 따른 미립구에 포함되는 생체 적합성 고분자는, Resomer R203H(i.v. = 0.25-0.35 dL/g; 중량평균분자량: 18,000-24,000, 제조사: Evonik, 독일), Resomer R202H(i.v. = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDL02A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드), Resomer RG752H(i.v. = 0.14-0.22 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDLG7502A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드)일 수 있다. The appropriate molecular weight or blending ratio of the biocompatible polymer can be appropriately selected by a person skilled in the art considering the decomposition rate of the biocompatible polymer and the resulting drug release rate. In a specific embodiment, the biocompatible polymer contained in the microspheres according to the present invention is Resomer R203H (i.v. = 0.25-0.35 dL/g; weight average molecular weight: 18,000-24,000, manufacturer: Evonik, Germany), Resomer R202H (i.v. = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany), Purasorb PDL02A (i.v = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Purac, Netherlands), Resomer RG752H (i.v. = 0.14-0.22 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany), Purasorb PDLG7502A (i.v. = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Purac , Netherlands).
상기 생체적합성 고분자는 바람직하게는 폴리락타이드일 수 있다. The biocompatible polymer may preferably be polylactide.
또한 상기 생체적합성 고분자가 2종 이상의 고분자의 조합(블렌드)인 경우의 일 예는 폴리락타이드와 폴리(락타이드-코-글리콜라이드)의 블렌드일 수 있다. 이 경우 폴리락타이드가 50% 이상 포함되는 것이 바람직하다.Additionally, an example of the biocompatible polymer being a combination (blend) of two or more types of polymers may be a blend of polylactide and poly(lactide-co-glycolide). In this case, it is preferable that polylactide is contained at least 50%.
또한, 폴리(락타이드-코-글리콜라이드)의 경우에는 상기 중합체 내의 락타이드 대 글리콜라이드의 몰 비가 40:60 내지 90:10, 45:55 내지 85:15 또는 50:50 내지 75:25, 예를 들어 45:55, 50:50, 75:25, 또는 85:15일 수 있다. Additionally, in the case of poly(lactide-co-glycolide), the molar ratio of lactide to glycolide in the polymer is 40:60 to 90:10, 45:55 to 85:15, or 50:50 to 75:25, For example, it could be 45:55, 50:50, 75:25, or 85:15.
또한, 상기 폴리(락타이드-코-글리콜라이드) 또는 폴리락타이드의 고유점도는 0.16dL/g 내지 1.7dL/g, 0.16dL/g 내지 1.5dL/g, 0.16dL/g 내지 1.2dL/g, 0.16dL/g 내지 0.9dL/g, 0.16dL/g 내지 0.6dL/g, 0.16dL/g 내지 0.4dL/g, 0.2dL/g 내지 1.3dL/g, 0.2dL/g 내지 1.0dL/g, 0.2dL/g 내지 0.7dL/g, 0.2dL/g 내지 0.5dL/g, 0.24dL/g 내지 1.2dL/g, 0.24dL/g 내지 0.7dL/g, 또는 0.24dL/g 내지 0.5dL/g일 수 있다. In addition, the intrinsic viscosity of the poly(lactide-co-glycolide) or polylactide is 0.16 dL/g to 1.7 dL/g, 0.16 dL/g to 1.5 dL/g, and 0.16 dL/g to 1.2 dL/g. , 0.16 dL/g to 0.9 dL/g, 0.16 dL/g to 0.6 dL/g, 0.16 dL/g to 0.4 dL/g, 0.2 dL/g to 1.3 dL/g, 0.2 dL/g to 1.0 dL/g. , 0.2 dL/g to 0.7 dL/g, 0.2 dL/g to 0.5 dL/g, 0.24 dL/g to 1.2 dL/g, 0.24 dL/g to 0.7 dL/g, or 0.24 dL/g to 0.5 dL/. It may be g.
본 발명에서 사용한 폴리(락타이드-코-글리콜라이드) 또는 폴리락타이드의 고유점도는 우벨로데(Ubbelohde) 점도계를 이용하여 25℃에서 클로로포름 중에서 0.1%(w/v) 농도로 측정된 것을 말한다. 폴리(락타이드-코-글리콜라이드) 또는 폴리락타이드의 고유점도가 0.16dL/g 미만일 경우에는 고분자의 분자량이 충분하지 못하여 루프롤라이드 또는 이의 약학적으로 허용가능한 염의 서방형 효과를 나타내기 어려우며, 고유점도가 1.7dL/g을 초과할 경우에는 루프롤라이드 또는 이의 약학적으로 허용가능한 염의 방출이 너무 지연되는 효과가 나타날 수 있다. 또한, 고유점도가 높은 고분자를 사용하여 미립구 제조 시 고분자의 높은 점도로 인해 제조 용매를 과량 사용하여야 하는 문제가 있으며 재현성 있는 미립구를 제조하기가 어렵다.The intrinsic viscosity of poly(lactide-co-glycolide) or polylactide used in the present invention is measured at a concentration of 0.1% (w/v) in chloroform at 25°C using an Ubbelohde viscometer. . If the intrinsic viscosity of poly(lactide-co-glycolide) or polylactide is less than 0.16 dL/g, the molecular weight of the polymer is insufficient, making it difficult to exhibit the sustained-release effect of leuprolide or a pharmaceutically acceptable salt thereof. , if the intrinsic viscosity exceeds 1.7 dL/g, the release of leuprolide or a pharmaceutically acceptable salt thereof may be delayed too much. In addition, when manufacturing microspheres using a polymer with high intrinsic viscosity, there is a problem of having to use an excessive amount of production solvent due to the high viscosity of the polymer, and it is difficult to manufacture reproducible microspheres.
상기 생체적합성 고분자의 중량평균분자량은 특별히 제한되지 안으나, 4,000 내지 240,000의 중량평균분자량을 갖는 것일 수 있다. 예를 들어, 상기 생체적합성 고분자의 중량평균분자량은 4,000 내지 100,000의 중량평균분자량, 7,000 내지 50,000의 중량평균분자량, 5,000 내지 20,000의 중량평균분자량, 10,000 내지 18,000의 중량평균분자량, 18,000 내지 28,000의 중량평균분자량 등 상기 범위 내 하위 수치 범위들을 모두 포함한다.The weight average molecular weight of the biocompatible polymer is not particularly limited, but may have a weight average molecular weight of 4,000 to 240,000. For example, the weight average molecular weight of the biocompatible polymer is 4,000 to 100,000, 7,000 to 50,000, 5,000 to 20,000, 10,000 to 18,000, and 18,000 to 28,000. Includes all lower numerical ranges within the above range, such as average molecular weight.
구체적인 일 양태로서, 상기 미립구 중의 생체 적합성 고분자는 전체 미립구 중량 대비 70 내지 90 중량%, 75 내지 90 중량%, 또는 80 내지 90 중량%일 수 있다. In a specific embodiment, the biocompatible polymer in the microspheres may be 70 to 90% by weight, 75 to 90% by weight, or 80 to 90% by weight based on the total weight of the microspheres.
구체적인 일 양태로서, 상기 미립구 중의 유효성분 대 생체 적합성 고분자의 중량비가 1:4 내지 1:9, 1:35 내지 1:9, 또는 1:3 내지 1:9일 수 있다. In a specific embodiment, the weight ratio of the active ingredient to the biocompatible polymer in the microspheres may be 1:4 to 1:9, 1:35 to 1:9, or 1:3 to 1:9.
구체적일 일 양태로, 본 발명의 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 입경(D50)이 10 내지 40μm인 것일 수 있다. In a specific embodiment, the sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof of the present invention may have a particle diameter (D50) of 10 to 40 μm.
구체적인 일 양태로서, 본 발명에 따른 제조방법에 따라 제조된 서방성 미립구는 잔류용매가 종래 기술에 비해 상당량 제거된 것일 수 있으며, 예를 들어, 상기 미립구 중의 잔류용매가 1000ppm 미만, 900ppm 미만, 800ppm 미만, 700ppm 미만, 600ppm 미만, 1000 내지 0.01ppm, 900 내지 0.01ppm, 800 내지 0.01ppm, 700 내지 0.01ppm, 또는 600 내지 0.01ppm일 수 있다.In a specific embodiment, the sustained-release microspheres prepared according to the production method according to the present invention may have a significant amount of residual solvent removed compared to the prior art. For example, the residual solvent in the microspheres may be less than 1000 ppm, less than 900 ppm, or 800 ppm. It may be less than, less than 700 ppm, less than 600 ppm, 1000 to 0.01 ppm, 900 to 0.01 ppm, 800 to 0.01 ppm, 700 to 0.01 ppm, or 600 to 0.01 ppm.
구체적인 일 양태로서, 상기 서방형 미립구는 1개월 제형 내지 3개월 제형에 적합한 것일 수 있다. In a specific embodiment, the sustained-release microspheres may be suitable for a 1-month to 3-month formulation.
구체적인 일 양태로서, 상기 서방형 미립구는 유효성분의 방출 후 24 시간의 인 비트로 방출률이 8 내지 40% 또는 10 내지 30%일 수 있다. In a specific embodiment, the sustained-release microspheres may have an in vitro release rate of 8 to 40% or 10 to 30% 24 hours after release of the active ingredient.
구체적인 일 양태로서, 상기 서방성 미립구는 랫드에 1개월(4주)을 기준으로 유효성분으로써 1.5mg/head의 용량으로 투여 후 약물의 Cmax가 20,000 내지 2,000,000pg/mL일 수 있다. 바람직하게, 1개월 제제용인 경우 약물의 Cmax가 20,000 내지 900,000pg/mL일 수 있고, 3개월 제제용인 경우 약물의 Cmax가 50,000 내지 2,000,000pg/mL일 수 있다.In a specific embodiment, the sustained-release microspheres may have a C max of 20,000 to 2,000,000 pg/mL after being administered to rats as an active ingredient at a dose of 1.5 mg/head for 1 month (4 weeks). Preferably, in the case of a 1-month formulation, the C max of the drug may be 20,000 to 900,000 pg/mL, and in the case of a 3-month formulation, the C max of the drug may be 50,000 to 2,000,000 pg/mL.
구체적인 일 양태로서, 상기 서방형 미립구의 개체 내 투여 시, 투여 후 24시간까지의 누적 약물 곡선하 면적(AUC0-24hrs, Area under the curve)은 목표 투여기간까지의 누적 약물 곡선하 면적(AUCtotal, 1개월 제형의 경우 약물 투여 후 28일까지의 누적 약물 곡선하 면적, 3개월 제형의 경우 약물 투여 후 84일까지의 누적 약물 곡선하 면적, 6개월 제형의 경우 약물 투여 후 168일까지의 누적 약물 곡선하 면적) 대비 0.5 내지 55%, 0.6 내지 50%, 또는 0.7 내지 50%인 것일 수 있다.In a specific embodiment, when administering the sustained-release microspheres within an individual, the cumulative drug area under the curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve) is the cumulative drug area under the curve up to the target administration period (AUC) total , for a 1-month formulation, the area under the cumulative drug curve up to 28 days after drug administration; for a 3-month formulation, the cumulative area under the drug curve up to 84 days after drug administration; and for a 6-month formulation, the area under the cumulative drug curve up to 168 days after drug administration. It may be 0.5 to 55%, 0.6 to 50%, or 0.7 to 50% of the cumulative drug curve area.
보다 구체적으로, 1개월 제형의 경우, 상기 투여 후 24시간까지의 누적 약물 곡선하 면적(AUC0-24hrs, Area under the curve)은 목표 투여기간까지의 누적 약물 곡선하 면적(AUCtotal)이 12 내지 45%, 20 내지 42% 또는 30 내지 40%일 수 있다.More specifically, in the case of a 1-month formulation, the cumulative area under the drug curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve ) is 12. It may be from 45% to 45%, 20 to 42% or 30 to 40%.
3개월 제형의 경우 상기 투여 후 24시간까지의 누적 약물 곡선하 면적(AUC0-24hrs, Area under the curve)은 목표 투여기간까지의 누적 약물 곡선하 면적(AUCtotal)이 30 내지 55% 또는 35 내지 53%, 또는 40 내지 50%일 수 있다.In the case of a 3-month formulation, the cumulative area under the drug curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve) is 30 to 55% or 35% of the cumulative area under the curve until the target administration period (AUC total ). It may be from 40 to 53%, or from 40 to 50%.
6개월 제형의 경우 상기 투여 후 24시간까지의 누적 약물 곡선하 면적(AUC0-24hrs, Area under the curve)은 목표 투여기간까지의 누적 약물 곡선하 면적(AUCtotal)이 0.5 내지 55 %, 0.6 내지 50% 또는 0.7 내지 50%일 수 있다.In the case of a 6-month formulation, the cumulative area under the drug curve up to 24 hours after administration (AUC 0-24hrs , Area under the curve ) is 0.5 to 55%, 0.6%. It may be from 0.7 to 50% or from 0.7 to 50%.
구체적인 일 양태로서, 상기 서방형 미립구의 개체 내 투여 시, 투여 후 48시간 내지 168시간의 누적 약물 곡선하 면적에 대한 투여 후 0 내지 24시간의 누적 약물 곡선하 면적에 대한 비율(즉, 투여 후 0 내지 24시간의 누적 약물 곡선하 면적 : 투여 후 48시간 내지 168시간의 누적 약물 곡선하 면적)은 2:1 내지 10:1, 바람직하게는 2:1 내지 8:1, 더욱 바람직하게는 2:1 내지 6:1인 것일 수 있다. In a specific embodiment, when the sustained-release microspheres are administered within a subject, the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration to the area under the cumulative drug curve at 48 hours to 168 hours after administration (i.e., after administration Area under the cumulative drug curve for 0 to 24 hours: Area under the cumulative drug curve for 48 hours to 168 hours after administration) is 2:1 to 10:1, preferably 2:1 to 8:1, more preferably 2. :1 to 6:1.
루프롤라이드의 효과적인 약효 발휘를 위해서는, 초기에 상당한 수준의 약물 방출을 통해 높은 약물의 혈중 농도를 확보하여야 한다. 본 발명에 따른 서방형 미립구는, 상기한 바와 같은 특유의 인 비보 투여시 투여 후 0 내지 24시간의 누적 약물 곡선하 면적 : 투여 후 48시간 내지 168시간의 누적 약물 곡선하 면적 비율을 나타내는 경우, 루프롤라이드 또는 이의 약학적으로 허용가능한 염의 충분한 초기 방출을 확보하게 할 뿐 아니라, 원하는 기간, 예를 들어 1개월 이상, 3개월 이상, 1개월 내지 3개월 등의 기간 동안 상기 유효성분의 약효를 지속적으로 충분히 발휘할 수 있게 한다. In order for leuprolide to exert its effective drug effect, a high blood concentration of the drug must be secured through a significant level of drug release in the initial stage. The sustained-release microspheres according to the present invention, when administered in vivo as described above, exhibit the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration: the area under the cumulative drug curve at 48 hours to 168 hours after administration, Not only does it ensure sufficient initial release of leuprolide or a pharmaceutically acceptable salt thereof, but also maintains the efficacy of the active ingredient for a desired period of time, for example, 1 month or more, 3 months or more, 1 month to 3 months, etc. Enable continuous and sufficient performance.
또 다른 하나의 양태로서, 본 발명은,As another aspect, the present invention,
루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 제조방법으로서, A method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof,
a) (i) 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상용 용액을 제조하거나 또는 (ii) 생체 적합성 고분자를 하나 이상의 유기 용매에 용해시켜 유상(oil phase)용 용액을 제조하고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 수성 용매에 용해시켜 수상용 용액을 제조하고, 상기 수상용 용액을 유상용 용액에 첨가하여 유중수형(W/O) 에멀전을 제조하는 단계;a) (i) prepare a dispersed solution by dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents, or (ii) prepare an oil phase by dissolving the biocompatible polymer in one or more organic solvents. Prepare a solution for the oil phase, prepare an aqueous solution by dissolving leuprolide or a pharmaceutically acceptable salt thereof in an aqueous solvent, and add the aqueous solution to the oil phase solution to form a water-in-oil (W/O) solution. ) Preparing an emulsion;
b) 상기 단계 a)에서 제조된 분산상용 용액 또는 유중수형 에멀전을, 연속상으로서 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀젼 주입 후 미립구 고형화를 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계;b) The dispersion solution or water-in-oil emulsion prepared in step a) is added to an aqueous solution containing a surfactant as a continuous phase to form microspheres, and the dispersion solution or water-in-oil emulsion is injected and stirred to solidify the microspheres. preparing a suspension containing microspheres;
c) 상기 단계 b)의 고형화된 미립구를 포함하는 현탁액에 에탄올 및 계면활성제를 포함하는 수용액을 첨가시켜 상기 유기용매를 추출시키는 단계;c) extracting the organic solvent by adding an aqueous solution containing ethanol and a surfactant to the suspension containing the solidified microspheres of step b);
d) 상기 단계 c)의 미립구를 포함하는 현탁액 중의 연속상을 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 교반하는 단계; 및 d) exchanging the continuous phase in the suspension containing the microspheres of step c) with an aqueous solution containing fresh ethanol and a surfactant and stirring; and
e) 미립구를 회수하는 단계를 포함하는, 제조방법에 관한 것이다. e) relates to a manufacturing method comprising the step of recovering microspheres.
추가의 일 양태로서, 본 발명은 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 또 다른 제조방법으로서, In a further aspect, the present invention provides another method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof,
a') (i) 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상용 용액을 제조하거나 또는 (ii) 생체 적합성 고분자를 하나 이상의 유기 용매에 용해시켜 유상(oil phase)용 용액을 제조하고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 수성 용매에 용해시켜 수상용 용액을 제조하고, 상기 수상용 용액을 유상용 용액에 첨가하여 유중수형(W/O) 에멀전을 제조하는 단계;a') (i) dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents to prepare a dispersion solution, or (ii) dissolving the biocompatible polymer in one or more organic solvents to prepare a dispersion solution. A solution for the oil phase was prepared, and leuprolide or a pharmaceutically acceptable salt thereof was dissolved in an aqueous solvent to prepare an aqueous solution, and the aqueous solution was added to the oil phase solution to form a water-in-oil type (W/ O) preparing an emulsion;
b') 상기 단계 a')에서 제조된 분산상용 용액 또는 유중수형 에멀전을, 연속상으로서 에탄올 및 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀젼 주입 후 미립구 고형화 및 유기용매 추출을 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계;b') The dispersion solution or water-in-oil emulsion prepared in step a') is added to an aqueous solution containing ethanol and a surfactant as a continuous phase to form microspheres, and the microspheres are solidified after injection of the dispersion solution or water-in-oil emulsion. and preparing a suspension containing microspheres by stirring for organic solvent extraction;
c') 상기 단계 b')의 미립구를 포함하는 현탁액 중의 연속상을 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 교반하는 단계; 및 c') exchanging the continuous phase in the suspension containing the microspheres of step b') with an aqueous solution containing fresh ethanol and a surfactant and stirring; and
d') 미립구를 회수하는 단계를 포함하는, 제조방법에 관한 것이다. d') relates to a manufacturing method comprising the step of recovering microspheres.
종래 서방성 제제로 개발하기 위해 생체적합성 고분자를 이용한 미립구 제제는 활발한 연구관심분야와 임상응용분야로 발전하였다. 그런데, 이와 같이 장기간 지속적인 투여를 위해 미립구 제제를 제조하기 위해서는 미립구 내에 포함되어야 하는 약물이 투여 기간 및 투여량을 고려시 높은 양으로 봉입되어야 한다.Conventionally, microsphere preparations using biocompatible polymers to develop sustained-release preparations have developed into a field of active research interest and clinical application. However, in order to manufacture a microsphere preparation for long-term continuous administration, the drug to be contained in the microspheres must be encapsulated in a high amount considering the administration period and dosage.
그런데, 본 발명자의 경우 유효성분으로서 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구를 제조시, 통상 사용되는 용매 추출 및 증발법을 사용하는 경우, 미립구의 제조 후 용매를 제거하는 공정에서 열을 가하는 경우 봉입률이 예측하지 못하게 상당히 저하된다는 점을 발견하였다. However, in the case of the present inventors, when producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof as an active ingredient, when using commonly used solvent extraction and evaporation methods, the solvent is removed after production of the microspheres. It was discovered that when heat is applied during the process, the encapsulation rate decreases significantly and unexpectedly.
이러한 관점에서, 본 발명은 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 제조방법에 있어서, 미립구의 잔류 용매 제거시 가온을 하지 않고 에탄올을 사용하는 것을 일 특징으로 한다. From this perspective, the present invention is a method for producing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof, and is characterized in that ethanol is used without heating to remove the residual solvent of the microspheres.
이하, 본 발명에 따른 제조방법을 각 단계별로 상세히 설명한다.Hereinafter, the manufacturing method according to the present invention will be described in detail for each step.
상기 단계 a) 또는 a')는 미립구 제조를 위한 (i) 분산상용 용액 또는 (ii) 유중수형 에멀전을 제조하는 단계이다.The step a) or a') is a step of preparing (i) a dispersion solution or (ii) a water-in-oil emulsion for producing microspheres.
상기 (i)의 분산산용 용액을 사용하는 경우 이하 단계 b) 또는 b')에서 제조되는 에멀전은 O/W 형태의 에멀전이 되며, (ii)의 유중수형 에멀전을 사용하는 경우 이하 단계 b) 또는 b')에서 제조되는 에멀전은 W/O/W 형태의 에멀전이 될 수 있다. When using the dispersion acid solution of (i) above, the emulsion prepared in step b) or b') below is an O/W emulsion, and when using the water-in-oil emulsion of (ii), step b) or The emulsion prepared in b') may be a W/O/W type emulsion.
상기 (i)의 분산산용 용액을 제조하기 위해, 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상 용액을 제조한다. 구체적인 일 양태로, 상기 하나 이상의 유기 용매는 2 종 이상의 유기 용매일 수 있고, 상기 2종 이상의 유기 용매 중 하나의 유기 용매는 공용매로서 사용되는 것일 수 있다. 구체적인 일 실시예에서, 상기 생체 적합성 고분자를 하나의 유기 용매에 용해시키고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 다른 하나의 유기 용매에 용해시켜 각각의 용액을 제조한 후 이를 혼합하여 분산상 용액을 수득하는 것에 의해 (i)를 수행할 수 있다. To prepare the dispersion acid solution of (i) above, the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof are dissolved in one or more organic solvents to prepare a dispersed phase solution. In a specific embodiment, the one or more organic solvents may be two or more organic solvents, and one of the two or more organic solvents may be used as a co-solvent. In a specific embodiment, the biocompatible polymer is dissolved in one organic solvent, and leuprolide or a pharmaceutically acceptable salt thereof is dissolved in another organic solvent to prepare each solution, and then mixed to form a dispersed phase. (i) can be performed by obtaining a solution.
상기 단계 a) 또는 a') 단계는 15 내지 25℃, 또는 상온에서 수행될 수 있다. Step a) or step a') may be performed at 15 to 25°C, or at room temperature.
상기 단계 a) 또는 a')의 (i) 및 (ii)에서 사용하는 유기 용매는 유기 용매는 디클로로메탄, 클로로포름, 에틸아세테이트, 메틸에틸케톤, 아세톤, 아세토니트릴, 디메틸설폭사이드, 디메틸포름아마이드, 엔메틸피롤리돈, 아세트산, 메틸알콜, 에틸알콜, 프로필알콜, 및 벤질알콜로 이루어진 군 중에서 선택된 적어도 하나 이상의 용매 또는 상기 용매 2종 이상의 혼합 용매인 것일 수 있다. The organic solvent used in steps (i) and (ii) of step a) or a') is dichloromethane, chloroform, ethyl acetate, methyl ethyl ketone, acetone, acetonitrile, dimethyl sulfoxide, dimethyl formamide, It may be at least one solvent selected from the group consisting of enmethylpyrrolidone, acetic acid, methyl alcohol, ethyl alcohol, propyl alcohol, and benzyl alcohol, or a mixed solvent of two or more of the above solvents.
구체적인 일 양태에서, 상기 루프롤라이드 또는 이의 약학적으로 허용가능한 염은, 제조되는 상기 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염의 전체 중량(즉, 고형분 전체 중량) 대비 9 내지 40중량%, 10 내지 35 중량% 또는 12 내지 25 중량%로 사용되는 것일 수 있다. In a specific embodiment, the amount of leuprolide or a pharmaceutically acceptable salt thereof is 9 to 40% compared to the total weight (i.e., total solid weight) of the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof to be prepared. It may be used in weight percent, 10 to 35 weight percent, or 12 to 25 weight percent.
구체적인 일 양태에서, 상기 생체 적합성 고분자에 관한 사항은 달리 정의하지 않는 한 상기 서방형 미립구를 포함하는 주사제제에 개시된 사항을 적용할 수 있다. In a specific embodiment, matters relating to the biocompatible polymer may be applied to the injectable preparation containing the sustained-release microspheres, unless otherwise defined.
생체 적합성 고분자의 적합한 분자량이나 블렌딩하는 비율 등은 생체 적합성 고분자의 분해 속도 및 그에 따른 약물 방출 속도 등을 고려하여 당업자가 적절히 선택할 수 있다. 구체적인 일 실시예에서, 본 발명에 따른 미립구에 포함되는 생체 적합성 고분자는, Resomer R203H(i.v. = 0.25-0.35 dL/g; 중량평균분자량: 18,000-24,000, 제조사: Evonik, 독일), Resomer R202H(i.v. = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDL02A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드), Resomer RG752H(i.v. = 0.14-0.22 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDLG7502A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드)을 사용할 수 있다.The appropriate molecular weight or blending ratio of the biocompatible polymer can be appropriately selected by a person skilled in the art in consideration of the decomposition rate of the biocompatible polymer and the resulting drug release rate. In a specific embodiment, the biocompatible polymer contained in the microspheres according to the present invention is Resomer R203H (i.v. = 0.25-0.35 dL/g; weight average molecular weight: 18,000-24,000, manufacturer: Evonik, Germany), Resomer R202H (i.v. = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany), Purasorb PDL02A (i.v = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Purac, Netherlands), Resomer RG752H (i.v. = 0.14-0.22 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany), Purasorb PDLG7502A (i.v. = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Purac , Netherlands) can be used.
본 발명에 따른 루프롤라이드 서방성 미립구의 제조방법은 b) 또는 b') 상기 단계 a) 또는 a')에서 제조된 분산상용 용액 또는 유중수형 에멀전을 연속상으로서 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀전의 주입 완료 후, 이러한 미립구의 고형화를 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계를 포함한다.The method for producing leuprolide sustained-release microspheres according to the present invention is b) or b') adding the dispersed phase solution or water-in-oil emulsion prepared in step a) or a') to an aqueous solution containing a surfactant as a continuous phase. This includes forming microspheres, and after completing the injection of the dispersion acid solution or water-in-oil emulsion, stirring to solidify the microspheres to prepare a suspension containing the microspheres.
상기 단계 b) 또는 b')에서, 계면활성제를 함유한 연속상 중의 계면활성제의 함량은 연속상의 전체 부피를 기준으로, 0.01 중량% 내지 20 중량 %, 바람직하게는 0.1 중량% 내지 5 중량%일 수 있다. 계면활성제의 함량이 0.01 중량% 미만일 경우에는, 연속상 내의 액적 형태의 분산상 또는 에멀전이 형성되지 않을 수 있고, 계면활성제의 함량이 20중량 %를 초과할 경우, 과량의 계면활성제로 인해 연속상 내의 미립자가 형성된 후, 계면활성제를 제거하는 데 어려움이 있을 수 있다. In step b) or b'), the content of the surfactant in the continuous phase containing the surfactant is 0.01% by weight to 20% by weight, preferably 0.1% by weight to 5% by weight, based on the total volume of the continuous phase. You can. If the surfactant content is less than 0.01% by weight, a dispersed phase or emulsion in the form of droplets may not be formed in the continuous phase, and if the surfactant content exceeds 20% by weight, excessive surfactant may cause the formation of a dispersed phase or emulsion in the continuous phase. After the particulates are formed, it may be difficult to remove the surfactant.
상기 단계 b) 또는 b')의 계면활성제는 메틸셀룰로오스, 폴리비닐피롤리돈, 카르복시메틸셀룰로오스, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르 및 폴리옥시에틸렌 피마자유 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. The surfactant in step b) or b') is methylcellulose, polyvinylpyrrolidone, carboxymethylcellulose, lecithin, gelatin, polyvinyl alcohol, polyoxyethylene sorbitan fatty acid ester, and polyoxyethylene castor oil derivatives, and their It may be one or more types selected from the group consisting of mixtures.
상기 단계 b) 또는 b')의 계면활성제를 함유한 수용액을 제조하기 위한 수성용매는 물, 또는 물 및 메틸알콜, 에틸알콜, 프로필알콜 및 에틸아세테이트로 이루어진 군으로부터 선택되는 용매 또는 이들의 혼합용매인 것일 수 있다. The aqueous solvent for preparing the aqueous solution containing the surfactant in step b) or b') is water, or a solvent selected from the group consisting of water and methyl alcohol, ethyl alcohol, propyl alcohol, and ethyl acetate, or a mixed solvent thereof. It may be.
상기 단계 b) 또는 b')에서 루프롤라이드 또는 이의 약학적으로 허용가능한 염이 분산된 생체적합성 고분자 용액과 계면활성제를 함유한 연속상을 균질하게 혼합하는 방법은 특별히 제한되지 않으나, 고속 교반기, 인라인 믹서기, 초음파 분산기, static mixer, 멤브레인 에멀전법, 마이크로플루이딕스 에멀전법 등을 이용하여 수행할 수 있다. 고속 교반기, 인라인 믹서기, 초음파 분산기, static mixer를 이용하여 에멀전을 형성하는 경우, 균일한 에멀전을 얻기가 어렵기 때문에 후술하는 각단계들 사이에서 추가적으로 입도를 선별하는 공정을 수행할 수도 있다. In step b) or b'), the method of homogeneously mixing the biocompatible polymer solution in which leuprolide or a pharmaceutically acceptable salt thereof is dispersed and the continuous phase containing the surfactant is not particularly limited, but includes a high-speed stirrer, It can be performed using an in-line mixer, ultrasonic disperser, static mixer, membrane emulsion method, microfluidics emulsion method, etc. When forming an emulsion using a high-speed stirrer, in-line mixer, ultrasonic disperser, or static mixer, it is difficult to obtain a uniform emulsion, so an additional particle size selection process may be performed between each step described later.
구체적인 일 양태로서, 상기 단계 b) 또는 b')에서 상기 교반 공정은 고형화를 위해 1 내지 5시간, 2 내지 4시간, 또는 3시간 수행될 수 있다. 이에 제한되는 것은 아니나, 상기 단계 b) 또는 b')는 4 내지 24℃, 10 내지 17℃, 또는 15℃에서 수행될 수 있다. In a specific embodiment, the stirring process in step b) or b') may be performed for 1 to 5 hours, 2 to 4 hours, or 3 hours for solidification. Although not limited thereto, step b) or b') may be performed at 4 to 24°C, 10 to 17°C, or 15°C.
또한 상기 단계 b')에서는 연속상으로서 계면활성제 외에 에탄올을 더 포함하는 수용액을 사용하여, 상기 미립구 형성 및 고형화 중 유기용매를 추출할 수 있다. 단계 b')에서 에탄올 및 계면활성제를 포함하는 수용액중의 에탄올의 함량은 상기 수용액의 전체 부피를 기준으로, 5 내지 40(v/v)%, 5 내지 30(v/v)%, 5 내지 20(v/v)%, 7 내지 40(v/v)%, 7 내지 30(v/v)%, 7 내지 20(v/v)% 또는 10 내지 20(v/v)%일 수 있다. 에탄올의 함량이 5(v/v)% 미만일 경우에는, 유기용매의 잔류량이 증가할 수 있으며, 30(v/v)%를 초과하는 경우, 봉입률 저하 또는 초기방출제어에 어려움이 있을 수 있다.Additionally, in step b'), an aqueous solution further containing ethanol in addition to a surfactant may be used as a continuous phase to extract the organic solvent during the formation and solidification of the microspheres. In step b'), the content of ethanol in the aqueous solution containing ethanol and surfactant is 5 to 40 (v/v)%, 5 to 30 (v/v)%, 5 to 5%, based on the total volume of the aqueous solution. It may be 20(v/v)%, 7 to 40(v/v)%, 7 to 30(v/v)%, 7 to 20(v/v)% or 10 to 20(v/v)%. . If the ethanol content is less than 5(v/v)%, the residual amount of organic solvent may increase, and if it exceeds 30(v/v)%, the encapsulation rate may be reduced or initial release control may be difficult. .
상기 단계 c)에서는 단계 b)에서 제조된 고형화된 미립구를 포함하는 현탁액에 에탄올 및 계면활성제를 포함하는 수용액을 첨가시켜 유기용매를 연속상으로 추출시킨다. In step c), an aqueous solution containing ethanol and a surfactant is added to the suspension containing the solidified microspheres prepared in step b) to extract the organic solvent in a continuous phase.
본 발명에서는, 상기 단계 c)에서, 종래 기술 대비 낮은 온도, 4 내지 24℃, 10 내지 17℃, 또는 15℃에서 일정시간, 예를 들면, 1시간 내지 48시간, 5 내지 36시간, 7 내지 24시간, 10 내지 20시간 또는 15시간 유지 또는 교반하여 미립구로부터 유기 용매를 효과적으로 추출할 수 있다. 추출된 유기 용매의 일부는 미립구의 표면에서 증발될 수 있다. In the present invention, in step c), the temperature is lower than that of the prior art, at 4 to 24°C, 10 to 17°C, or 15°C for a certain period of time, for example, 1 hour to 48 hours, 5 to 36 hours, or 7 to 15°C. The organic solvent can be effectively extracted from the microspheres by maintaining or stirring for 24 hours, 10 to 20 hours, or 15 hours. Some of the extracted organic solvent may evaporate from the surface of the microspheres.
상기 단계 c)에서 사용되는 계면활성제의 종류는 단계 b)에서 사용되는 종류의 계면활성제를 그대로 사용할 수 있다.The type of surfactant used in step c) may be the same as that used in step b).
또한, 단계 c)의 수용액 중의 용매 또한 물, 또는 물 및 메틸알콜, 에틸알콜, 프로필알콜 및 에틸아세테이트로 이루어진 군으로부터 선택되는 1종 이상의 용매의 혼합용매를 사용할 수 있다. Additionally, the solvent in the aqueous solution of step c) may be water or a mixed solvent of water and one or more solvents selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, and ethyl acetate.
상기 단계 c)에서, 에탄올 및 계면활성제를 포함하는 수용액중의 에탄올의 함량은 상기 수용액의 전체 부피를 기준으로, 5 내지 40(v/v)%, 5 내지 30(v/v)%, 5 내지 20(v/v)%, 7 내지 40(v/v)%, 7 내지 30(v/v)%, 7 내지 20(v/v)% 또는 10 내지 20(v/v)%일 수 있다. 에탄올의 함량이 5(v/v)% 미만일 경우에는, 유기용매의 잔류량이 증가할 수 있으며, 30(v/v)%를 초과하는 경우, 봉입률 저하 또는 초기방출제어에 어려움이 있을 수 있다. In step c), the content of ethanol in the aqueous solution containing ethanol and surfactant is 5 to 40 (v/v)%, 5 to 30 (v/v)%, 5%, based on the total volume of the aqueous solution. to 20 (v/v)%, 7 to 40 (v/v)%, 7 to 30 (v/v)%, 7 to 20 (v/v)% or 10 to 20 (v/v)%. there is. If the ethanol content is less than 5(v/v)%, the residual amount of organic solvent may increase, and if it exceeds 30(v/v)%, the encapsulation rate may be reduced or initial release control may be difficult. .
상기 단계 d) 또는 c')에서는, 단계 c) 또는 b')에서 유기용매를 추출한 후, 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 일정시간, 구체적으로 1시간 내지 48시간, 1시간 내지 24시간, 1시간 내지 12시간, 1시간 내지 5시간 교반시킨다. 바람직하게, 상기 유지 시간은 3시간일 수 있으나 이에 제한되는 것은 아니다.In step d) or c'), after extracting the organic solvent in step c) or b'), it is exchanged with an aqueous solution containing fresh ethanol and a surfactant and incubated for a certain period of time, specifically 1 hour to 48 hours, 1 hour to 48 hours. Stir for 24 hours, 1 hour to 12 hours, and 1 hour to 5 hours. Preferably, the holding time may be 3 hours, but is not limited thereto.
이후, 단계 e) 또는 d')에서는 최종적으로 미립구를 회수한다. Thereafter, in step e) or d'), the microspheres are finally recovered.
상기 단계 e) 또는 d')에서, 본 발명에 따른 미립구를 회수하는 방법은 여러 가지 공지 기술을 사용하여 수행될 수 있으며, 예를 들어 여과 또는 원심분리 등의 방법을 이용할 수 있다. 상기 단계 e) 또는 d')에서는 추가로, 회수시 미립구 현탁액을 세척액(예를 들어 물, 구체적으로 초순수)로 세척, 바람직하게는 반복 세척하여 잔여의 계면활성제를 제거한다. In step e) or d'), the method of recovering microspheres according to the present invention may be performed using various known techniques, for example, methods such as filtration or centrifugation may be used. In step e) or d'), the microsphere suspension upon recovery is further washed with a washing liquid (e.g. water, specifically ultrapure water), preferably repeatedly, to remove residual surfactant.
본 발명의 제조방법은, 상기 단계 e) 또는 d')이후, 수득된 미립구를 통상의 건조 방법, 예를 들어 동결건조를 이용하여 건조시켜 최종적으로 건조된 미립구를 얻을 수 있다.In the production method of the present invention, after step e) or d'), the obtained microspheres are dried using a conventional drying method, for example, freeze-drying, to obtain final dried microspheres.
구체적일 일 양태로, 본 발명의 제조방법에 의해 제조된 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 입경(D50)이 10 내지 40um인 것일 수 있다. In one specific embodiment, the sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof prepared by the production method of the present invention may have a particle diameter (D50) of 10 to 40 μm.
구체적인 일 양태로서, 본 발명에 따른 제조방법에 따라 제조된 서방성 미립구는 잔류용매가 종래 기술에 비해 상당량 제거된 것일 수 있으며, 예를 들어, 상기 미립구 중의 잔류용매가 1000ppm 미만인 것일 수 있다. In a specific embodiment, the sustained-release microspheres prepared according to the production method according to the present invention may have a significant amount of residual solvent removed compared to the prior art. For example, the residual solvent in the microspheres may be less than 1000 ppm.
본 발명의 일 측면으로, 제조된 서방성 미립구의 봉입률은, 60% 이상, 60 내지 100%, 70% 이상, 70 내지 100%, 75% 이상, 75 내지 100%, 75 내지 98% 또는 75 내지 95% 일 수 있다. 바람직하게는 80% 이상, 80 내지 100%, 80 내지 98%, 90 내지 100%, 95 내지 100%, 또는 80 내지 95% 일 수 있다.In one aspect of the present invention, the encapsulation rate of the prepared sustained-release microspheres is 60% or more, 60 to 100%, 70% or more, 70 to 100%, 75% or more, 75 to 100%, 75 to 98%, or 75%. It may be from 95% to 95%. Preferably, it may be 80% or more, 80 to 100%, 80 to 98%, 90 to 100%, 95 to 100%, or 80 to 95%.
[실시예][Example]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are merely illustrative of the present invention, and it is clear to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the attached patent claims.
실시예 1 내지 7: 공용매 및 O/W 에멀전 공정에서 에탄올을 사용한 루프롤라이드 미립구의 제조 Examples 1 to 7: Preparation of leuprolide microspheres using ethanol in co-solvent and O/W emulsion process
본 발명에 따른 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구의 효과를 확인하기 위하여 루프롤라이드 또는 이의 약학적으로 허용가능한 염 미립구를 제조하였다. In order to confirm the effect of sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof according to the present invention, microspheres of leuprolide or a pharmaceutically acceptable salt thereof were prepared.
분산상은 생체 적합성 고분자인 PLGA 또는 PLA와 루프롤라이드 아세테이트 (제조사: Polypeptide Laboratories Pvt, Ltd., 인도)를 디클로로메탄 (제조사: J.T Baker, 미국) 및 메틸알코올(제조사: Tedia Company, 미국)과 혼합하거나, 에틸 아세테이트 (제조사: Junsei chemical Co.Ltd , 일본) 및 메틸알코올(제조사: Tedia Company, 미국)과 혼합하여 육안상 투명해질 때까지 용해시켰다. 1.0 %(w/v) 폴리비닐알코올(점도: 4.8-5.8 mPa·s) 수용액을 연속상으로 사용하였으며, 연속상을 다공성 멤브레인을 장착한 유화장치에 연결하는 동시에 준비된 분산상을 주입하여 미립구를 제조하였다. 멤브레인 유화장치 및 조제용기, 미립구 현탁액 온도는 15℃를 유지하였으며, 분산상 주입이 끝나면 3시간 동안 200 rpm으로 교반 하였다. 에탄올을 추가하여 18시간 동안 교반을 통해 유기용매를 추출하는 과정을 거친 후, 동일한 연속상으로 3시간동안 교반하였다. 미립구 현탁액을 초순수로 수차례 반복 세척하여 잔여 폴리비닐알코올을 제거하고 미립구는 동결건조 하여 회수하였다.The dispersed phase is a mixture of biocompatible polymers PLGA or PLA and leuprolide acetate (manufacturer: Polypeptide Laboratories Pvt, Ltd., India) with dichloromethane (manufacturer: J.T Baker, USA) and methyl alcohol (manufacturer: Tedia Company, USA). Alternatively, it was mixed with ethyl acetate (manufacturer: Junsei chemical Co. Ltd., Japan) and methyl alcohol (manufacturer: Tedia Company, USA) and dissolved until it became transparent to the naked eye. A 1.0% (w/v) polyvinyl alcohol (viscosity: 4.8-5.8 mPa·s) aqueous solution was used as the continuous phase, and the continuous phase was connected to an emulsifier equipped with a porous membrane and the prepared dispersed phase was injected to prepare microspheres. did. The temperature of the membrane emulsification device, preparation vessel, and microsphere suspension was maintained at 15°C, and after dispersion phase injection was completed, it was stirred at 200 rpm for 3 hours. Ethanol was added and stirred for 18 hours to extract the organic solvent, and then stirred in the same continuous phase for 3 hours. The microsphere suspension was washed several times with ultrapure water to remove residual polyvinyl alcohol, and the microspheres were recovered by lyophilization.
분산상으로 사용된 생체적합성 고분자는 PLA 또는 PLGA 고분자로서, Resomer R203H(i.v. = 0.25-0.35 dL/g; 중량평균분자량: 18,000-24,000, 제조사: Evonik, 독일), Resomer R202H(i.v. = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDL02A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드), Resomer RG752H(i.v. = 0.14-0.22 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDLG7502A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드)를 단독 또는 혼합하여 사용하였다.The biocompatible polymer used as the dispersed phase is PLA or PLGA polymer, Resomer R203H (i.v. = 0.25-0.35 dL/g; weight average molecular weight: 18,000-24,000, manufacturer: Evonik, Germany), Resomer R202H (i.v. = 0.16-0.24 dL) /g; Weight average molecular weight: 10,000-18,000, Manufacturer: Evonik, Germany), Purasorb PDL02A (i.v = 0.16-0.24 dL/g; Weight average molecular weight: 10,000-18,000, Manufacturer: Purac, Netherlands), Resomer RG752H (i.v. = 0.14-0.22 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany), Purasorb PDLG7502A (i.v = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Purac, Netherlands) alone. Or it was used in combination.
본 제조예에서 사용된 고분자의 종류, 약물의 이론함량, 사용되는 용매, 연속상 내 에탄올의 농도 및 잔류용매 제거공정 온도를 다음 표 1에 나타낸 바와 같다. The type of polymer used in this preparation example, the theoretical content of the drug, the solvent used, the concentration of ethanol in the continuous phase, and the temperature of the residual solvent removal process are shown in Table 1 below.
    실시예Example 미립구 고분자microsphere polymer TL (%)TL (%) 용매1Solvent 1 용매2Solvent 2 계면활성제Surfactants 잔류용매 제거 공정Residual solvent removal process 온도 (℃)Temperature (℃)
실시예) 루프롤라이드 미립구 (에탄올 공정 사용)Example) Leuprolide microspheres (using ethanol process) 1개월 1 month 실시예 1Example 1 PDLG 7502A PDLG 7502A 1010 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction)
(10% EtOH)
Solvent Extraction
(10% EtOH)
1515
실시예 2Example 2 PDLG 7502A PDLG 7502A 1515 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction)
(20% EtOH)
Solvent Extraction
(20% EtOH)
1515
실시예 3Example 3 PDLG 7502APDLG 7502A 2020 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction) (20% EtOH)Solvent Extraction (20% EtOH) 1515
실시예 3-1Example 3-1 PDLG 7502A PDLG 7502A 1515 Ethyl acetateEthyl acetate MeOHMeOH PVAPVA 용매 추출법(Extraction) (20% EtOH)Solvent Extraction (20% EtOH) 1515
3개월3 months 실시예 4Example 4 R202H
R202H
2020 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction)
(10% EtOH)
Solvent Extraction
(10% EtOH)
1515
실시예 5
Example 5
R202H
R202H
2020 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction)
(20% EtOH)
Solvent Extraction
(20% EtOH)
1515
실시예 6Example 6 R202H:R203H=7:3R202H:R203H=7:3 2020 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction)
(20% EtOH)
Solvent Extraction
(20% EtOH)
1515
실시예 7Example 7 R202HR202H 17.517.5 DCMDCM MeOHMeOH PVAPVA 용매 추출법(Extraction) (20% EtOH)Solvent Extraction (20% EtOH) 1515
비교예 1 및 2: 대조약 Comparative Examples 1 and 2: Control drug
현재 시판중인 루프롤라이드 미립구 대조약으로 루프린(Leuplin) 3.75 mg(제조사: Takeda), 루프린(Leuplin) 11.25 mg(제조사: Takeda)을 각각 비교예 1과 2로 명명하였다. Currently commercially available leuprolide microsphere control drugs, Leuplin 3.75 mg (manufacturer: Takeda) and Leuplin 11.25 mg (manufacturer: Takeda) were named Comparative Examples 1 and 2, respectively.
비교예 3: 유기용매 추출에 에탄올 공정을 사용하지 않는 루프롤라이드 미립구의 제조 1 (O/W 제형)Comparative Example 3: Preparation of leuprolide microspheres without using ethanol process for organic solvent extraction 1 (O/W formulation)
유기용매 추출에 에탄올 공정을 사용하지 않는 루프롤라이드 미립구를 다음과 같은 방법에 의해 제조하였다. Leuprolide microspheres that did not use the ethanol process for organic solvent extraction were prepared by the following method.
분산상은 생체 적합성 고분자인 PLGA 또는 PLA와 루프롤라이드 아세테이트 (제조사: Polypeptide Laboratories Pvt, Ltd., 인도)를 디클로로메탄 (제조사: J.T Baker, 미국) 및 메틸알코올(제조사: Tedia Company, 미국)과 혼합하여 육안상 투명해질 때까지 용해시켰다. 0.5 %(w/v) 폴리비닐알코올(점도: 4.8-5.8 mPa·s) 수용액을 연속상으로 사용하였으며, 연속상을 다공성 멤브레인을 장착한 유화장치에 연결하는 동시에 준비된 분산상을 주입하여 미립구를 제조하였다. 멤브레인 유화장치 및 조제용기, 미립구 현탁액 온도는 25℃를 유지하였으며, 분산상 주입이 끝나면 미립구 현탁액 온도를 36℃ 로 3시간 유지하면서 유기용매를 제거하였다. 유기용매 제거가 끝나면 미립구 현탁액 온도를 25℃로 낮추었다. 미립구 현탁액을 초순수로 수차례 반복 세척하여 잔여 폴리비닐알콜을 제거하고 미립구는 동결건조 하였다. The dispersed phase is a mixture of biocompatible polymers PLGA or PLA and leuprolide acetate (manufacturer: Polypeptide Laboratories Pvt, Ltd., India) with dichloromethane (manufacturer: J.T Baker, USA) and methyl alcohol (manufacturer: Tedia Company, USA). It was dissolved until it became transparent to the naked eye. A 0.5% (w/v) polyvinyl alcohol (viscosity: 4.8-5.8 mPa·s) aqueous solution was used as the continuous phase, and the continuous phase was connected to an emulsifier equipped with a porous membrane and the prepared dispersed phase was injected to prepare microspheres. did. The temperature of the membrane emulsification device, preparation vessel, and microparticle suspension was maintained at 25°C, and after the injection of the dispersed phase was completed, the organic solvent was removed while maintaining the temperature of the microparticle suspension at 36°C for 3 hours. After removal of the organic solvent, the temperature of the microparticle suspension was lowered to 25°C. The microsphere suspension was washed several times with ultrapure water to remove residual polyvinyl alcohol, and the microspheres were freeze-dried.
분산상으로 사용된 생체적합성 고분자는 PLA 또는 PLGA 고분자로서, Purasorb PDLG7502A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드)를 단독으로 사용하였다.The biocompatible polymer used as the dispersed phase was PLA or PLGA polymer, and Purasorb PDLG7502A (i.v = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Purac, Netherlands) was used alone.
본 제조예에서 사용된 고분자의 종류, 약물의 이론함량, 사용되는 용매 및 잔류용매 제거공정 온도를 다음 표 3에 나타낸 바와 같다. The type of polymer used in this production example, the theoretical content of the drug, the solvent used, and the temperature of the residual solvent removal process are shown in Table 3 below.
비교예 4: 유기용매 추출에 에탄올 공정을 사용하지 않는 루프롤라이드 미립구의 제조 2 (W/O/W)Comparative Example 4: Preparation of leuprolide microspheres without using ethanol process for organic solvent extraction 2 (W/O/W)
유기용매 추출에 에탄올 공정을 사용하지 않는 루프롤라이드 미립구를 다음과 같은 방법에 의해 제조하였다. Leuprolide microspheres that did not use the ethanol process for organic solvent extraction were prepared by the following method.
분산상은 생체 적합성 고분자인 PLGA 또는 PLA와 루프롤라이드 아세테이트 (제조사: Polypeptide Laboratories Pvt, Ltd., 인도)를 각각 디클로로메탄 (제조사: J.T Baker, 미국)과 증류수에 용해시켜 유상과 수상을 제조하였다. IKA 호모게나이져를 이용하여 12,000 rpm에서 유화시켜 W/O 에멀젼을 형성하였다. 연속상은 0.5 %(w/v) 폴리비닐알코올(점도: 4.8-5.8 mPa·s) 수용액을 사용하였으며, 연속상을 다공성 멤브레인을 장착한 유화장치에 연결하는 동시에 준비된 분산상을 주입하여 미립구를 제조하였다. 멤브레인 유화장치 및 조제용기, 미립구 현탁액 온도는 25℃를 유지하였으며, 분산상 주입이 끝나면 미립구 현탁액을 가온하여 3시간 유지하면서 유기용매를 제거하였다. 유기용매 제거가 끝나면 미립구 현탁액 온도를 25℃로 낮추었다. 미립구 현탁액을 초순수로 수차례 반복 세척하여 잔여 폴리비닐알콜을 제거하고 미립구는 동결건조 하였다. The dispersed phase was prepared by dissolving the biocompatible polymers PLGA or PLA and leuprolide acetate (manufacturer: Polypeptide Laboratories Pvt, Ltd., India) in dichloromethane (manufacturer: J.T Baker, USA) and distilled water, respectively, to prepare an oil phase and an aqueous phase. A W/O emulsion was formed by emulsifying at 12,000 rpm using an IKA homogenizer. A 0.5% (w/v) polyvinyl alcohol (viscosity: 4.8-5.8 mPa·s) aqueous solution was used as the continuous phase, and microspheres were prepared by connecting the continuous phase to an emulsifier equipped with a porous membrane and simultaneously injecting the prepared dispersed phase. . The temperature of the membrane emulsification device, preparation vessel, and microparticle suspension was maintained at 25°C, and after the injection of the dispersed phase was completed, the microparticle suspension was heated and maintained for 3 hours to remove the organic solvent. After removal of the organic solvent, the temperature of the microparticle suspension was lowered to 25°C. The microsphere suspension was washed several times with ultrapure water to remove residual polyvinyl alcohol, and the microspheres were freeze-dried.
분산상으로 사용된 생체적합성 고분자는 PLA 또는 PLGA 고분자로서 Resomer R202H(i.v. = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일), Purasorb PDL02A(i.v = 0.16-0.24 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Purac, 네덜란드), Resomer RG752H(i.v. = 0.14-0.22 dL/g; 중량평균분자량: 10,000-18,000, 제조사: Evonik, 독일)를 단독으로 사용하였다.The biocompatible polymer used as the dispersed phase is PLA or PLGA polymer, Resomer R202H (i.v. = 0.16-0.24 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany), Purasorb PDL02A (i.v. = 0.16-0.24 dL/g). g; weight average molecular weight: 10,000-18,000, manufacturer: Purac, Netherlands), and Resomer RG752H (i.v. = 0.14-0.22 dL/g; weight average molecular weight: 10,000-18,000, manufacturer: Evonik, Germany) were used alone.
본 제조예에서 사용된 고분자의 종류, 약물의 이론함량, 사용되는 용매 및 잔류용매 제거공정 온도를 다음 표 2에 나타낸 바와 같다. The type of polymer used in this production example, the theoretical content of the drug, the solvent used, and the temperature of the residual solvent removal process are shown in Table 2 below.
    비교예 번호Comparative example number 미립구 고분자microsphere polymer TL (%)TL (%) 용매1Solvent 1 용매2Solvent 2 계면활성제Surfactants 잔류용매 제거 공정Residual solvent removal process 온도 (℃)Temperature (℃)
비교예) 루프롤라이드 미립구 (에탄올 공정 미사용)Comparative example) Leuprolide microspheres (without ethanol process) 1개월 1 month 비교예 3
Comparative Example 3
PDLG7502APDLG7502A 2020 DCMDCM MeOHMeOH PVAPVA 용매증발법(Evaporation)Solvent evaporation 3636
3개월3 months 비교예 4
Comparative Example 4
PDL02APDL02A 16.016.0 DCMDCM WaterWater PVAPVA 용매증발법(Evaporation)Solvent evaporation 4545
실험예 1. 루프롤라이드 서방성 미립구의 약물 함량 측정Experimental Example 1. Measurement of drug content of leuprolide sustained-release microspheres
상기 실시예에서 제조된 미립구의 약물 함량을 측정하기 위하여, 미립구 10mg을 아세토나이트릴 2.5mL로 완전히 용해시킨 후, 0.1%(w/w) 트리플루오로아세트산 수용액을 7.5mL 가하여 추출하였다. 0.45 um 필터를 이용하여 여과한 액을 검액으로 사용하였다. 검액 20uL를 HPLC에 주입하여 검출파장 280nm에서 측정하였다. 본 측정에서 활용한 컬럼은 Inertsil ODS-3, 5 um, 4.6x150 mm이며, 이동상은 0.1%(w/w) 트리플루오로아세트산이 함유된 아세토나이트릴과 0.1%(w/w) 트리플루오로아세트산 수용액을 25:75(v/v) 비율로 혼합하여 사용하였다. 측정된 봉입량을 표 3에 나타내었다.To measure the drug content of the microspheres prepared in the above example, 10 mg of microspheres were completely dissolved in 2.5 mL of acetonitrile, and then extracted by adding 7.5 mL of 0.1% (w/w) trifluoroacetic acid aqueous solution. The solution filtered using a 0.45 um filter was used as the test solution. 20uL of the test solution was injected into the HPLC and measured at a detection wavelength of 280nm. The column used in this measurement was Inertsil ODS-3, 5 um, 4.6x150 mm, and the mobile phase was acetonitrile containing 0.1% (w/w) trifluoroacetic acid and 0.1% (w/w) trifluoroacetic acid. Acetic acid aqueous solution was mixed and used at a ratio of 25:75 (v/v). The measured encapsulation amounts are shown in Table 3.
실험예 2. 서방성 미립구의 입도분석Experimental Example 2. Particle size analysis of sustained-release microspheres
미립구의 평균 입도, 분포 및 균일성을 정량적으로 측정하기 위하여 레이저 회절법을 이용하여 시험을 실시하였다. A test was conducted using laser diffraction to quantitatively measure the average particle size, distribution, and uniformity of microspheres.
상기 실시예 및 비교예에서 제조된 서방성 미립구의 입도 측정 결과를 하기 표 3에 나타내었다.The particle size measurement results of the sustained-release microspheres prepared in the above examples and comparative examples are shown in Table 3 below.
   지속기간duration 실시예 및 비교예 번호Example and Comparative Example No. 입경(D50)Particle size (D50) 봉입률(E.E, (w/w)%))Inclusion rate (E.E, (w/w)%)) 미립구 중 약물 함량(D.C, (w/w)%)Drug content in microspheres (D.C, (w/w)%)
실시예) 루프롤라이드 미립구 (에탄올 공정 사용)Example) Leuprolide microspheres (using ethanol process) 1개월1 month 실시예 1Example 1 24.7724.77 E.E 98.1 %E.E. 98.1% D.C 9.81 %
DC 9.81%
실시예 2Example 2 32.4532.45 E.E 91.2 %E.E 91.2% D.C 13.67 %DC 13.67%
실시예 3Example 3 27.6427.64 E.E 79.6 %E.E 79.6% D.C 15.92 %DC 15.92%
3개월3 months 실시예 4(GB-7103-519)Example 4 (GB-7103-519) 38.0938.09 E.E 95.5 %
EE 95.5%
D.C 19.09 %DC 19.09%
실시예 5Example 5 38.6338.63 E.E 93.8 % E.E. 93.8% D.C 18.76 %DC 18.76%
실시예 6Example 6 30.0530.05 E.E 99.1 %E.E 99.1% D.C 19.82 %DC 19.82%
실시예 7Example 7 22.4822.48 E.E 92.6 %E.E. 92.6% D.C 16.21 %DC 16.21%
비교예) 대조약 (Leuplin)Comparative example) Control drug (Leuplin) 1개월 1 month 비교예 1Comparative Example 1 11.6111.61 -- D.C 7.72 %DC 7.72%
3개월3 months 비교예 2Comparative Example 2 12.4912.49 -- D.C 8.49 %DC 8.49%
비교예) 루프롤라이드 미립구 (에탄올 공정 미사용)Comparative example) Leuprolide microspheres (without ethanol process) 1개월 1 month 비교예 3Comparative Example 3 23.9823.98 E.E 37.2 %E.E 37.2% D.C 7.45 %DC 7.45%
3개월3 months 비교예 4Comparative Example 4 46.2646.26 E.E 59.4 %E.E 59.4% D.C 9.48 %DC 9.48%
상기 표 3에서 보여지듯이 용매증발공정으로 제조된 미립구 대비, 에탄올 추출을 수행하여 용매를 추출하는 경우, 높은 봉입률을 유지하는 모습을 확인할 수 있다. 기존 용매증발 공정의 경우, 높은 연속상의 온도로 인해 제조 과정 중 미립구 내 주성분의 손실되며, 이에 의해 봉입률 감소가 나타나게 됨을 확인할 수 있었다. As shown in Table 3 above, it can be seen that a high encapsulation rate is maintained when the solvent is extracted by performing ethanol extraction compared to the microspheres prepared through the solvent evaporation process. In the case of the existing solvent evaporation process, it was confirmed that the main component in the microspheres was lost during the manufacturing process due to the high temperature of the continuous phase, which resulted in a decrease in the encapsulation rate.
실험예 3: 루프롤라이드 미립구의 시험관 내(in vitro) 약물 초기방출 측정Experimental Example 3: In vitro drug initial release measurement of leuprolide microspheres
상기 실시예 및 비교예에서 제조된 미립구의 약물 초기방출을 확인하기 위하여 다음의 실험을 수행하였다. 미립구 10 mg을 HDPE 광구병에 넣고 방출시험액 50 mL을 채운 후 37°C 배양기에 보관한다. 24시간이 지난 후 이 검액 1 mL을 취하고 원심분리하여 획득한 상층액을 실험예 1과 동일한 분석조건으로 HPLC를 이용하여 루프롤라이드 함유량 및 방출률을 분석하였다. 본 측정의 방출시험액은 인산염 및 아지드화 나트륨이 포함된 pH 7.4 수용액을 사용하였다. The following experiment was performed to confirm the initial drug release of the microspheres prepared in the above Examples and Comparative Examples. Place 10 mg of microspheres in an HDPE wide-mouth bottle, fill with 50 mL of release test solution, and store in an incubator at 37°C. After 24 hours, 1 mL of this sample solution was taken and centrifuged, and the obtained supernatant was analyzed for leuprolide content and release rate using HPLC under the same analysis conditions as in Experimental Example 1. The release test solution for this measurement was a pH 7.4 aqueous solution containing phosphate and sodium azide.
그 결과를 표 4에 나타내었다.The results are shown in Table 4.
실시예 번호 Example number 생체 외(in vitro)in vitro
초기 방출률(%, 1-day)Initial release rate (%, 1-day)
실시예) 루프롤라이드 미립구 (에탄올 공정 사용)Example) Leuprolide microspheres (using ethanol process) 1개월1 month 실시예 1 Example 1 18.0418.04
실시예 2 Example 2 28.9928.99
실시예 3 Example 3 39.4139.41
3개월3 months 실시예 4 Example 4 19.1419.14
실시예 5 Example 5 26.8126.81
실시예 6 Example 6 9.429.42
실시예 7 Example 7 23.1123.11
비교예) 대조약 (Leuplin)Comparative example) Control drug (Leuplin) 1개월1 month 비교예 1Comparative Example 1 13.9813.98
3개월3 months 비교예 2Comparative Example 2 8.148.14
비교예) 루프롤라이드 미립구 (용매 증발(evaporation)법)Comparative example) Leuprolide microspheres (solvent evaporation method) 1개월1 month 비교예 3Comparative Example 3 6.216.21
3개월3 months 비교예 4Comparative Example 4 16.9916.99
실험예 4. 루프롤라이드 미립구의 약물 방출 프로파일 특성 평가Experimental Example 4. Evaluation of drug release profile characteristics of leuprolide microspheres
실시예 및 제조예의 미립구에 대해, 9주령 SD (Sprague-Dawly) 래트를 이용하여 약물동태 평가를 실시하였다. 랫드에 실시예 및 제조예의 미립구 주사제제를 랫드에 1개월(4주)을 기준으로 유효성분으로써 1.5mg/head의 용량으로 맞추어 계측하고 0.3 mL 분산 용제에 현탁시킨 후, SD 랫드에 피하 주사하였다. 미리 계획된 시간마다 0.25~0.5 mL 혈액을 채취하고 LC-MS/MS를 사용하여 혈중 루프롤라이드 농도를 측정하였다. 상기 측정 결과를 표 5 및 도 1(1개월 제제) 및 도 2(3개월 제제)에 나타냈다. Pharmacokinetic evaluation was performed on the microspheres of Examples and Preparation Examples using 9-week-old SD (Sprague-Dawly) rats. The microsphere injection preparations of Examples and Preparation Examples in rats were measured at a dose of 1.5 mg/head as an active ingredient for 1 month (4 weeks) in rats, suspended in 0.3 mL dispersion solvent, and then subcutaneously injected into SD rats. . 0.25 to 0.5 mL of blood was collected at pre-planned times, and blood leuprolide concentration was measured using LC-MS/MS. The measurement results are shown in Table 5 and Figures 1 (1-month formulation) and Figure 2 (3-month formulation).
  실시예 번호
Example number
생체 내(In vivo)In vivo 누적 AUC(%)Cumulative AUC (%)
Dose (mg/head)Dose (mg/head) Cmax (ng/mL)C max (ng/mL) 0-24hr0-24hrs 0-48hr0-48hrs 0-168hr0-168hrs
실시예) 루프롤라이드 미립구 (에탄올 공정 사용)Example) Leuprolide microspheres (using ethanol process) 1개월1 month 실시예 1
(GB-7101-025)
Example 1
(GB-7101-025)
1.51.5 97.697.6 22.922.9 28.228.2 40.940.9
3개월3 months 실시예 5Example 5 4.54.5 946.7946.7 46.446.4 51.151.1 58.658.6
실시예 6Example 6 4.54.5 863.0863.0 44.644.6 50.550.5 63.863.8
비교예) 대조약 (Leuplin)Comparative example) Control drug (Leuplin) 1개월 1 month 비교예 1Comparative Example 1 1.51.5 113.6113.6 22.922.9 28.228.2 40.940.9
3개월3 months 비교예 2Comparative Example 2 4.54.5 413.0413.0 49.449.4 53.453.4 60.860.8
비교예) 루프롤라이드 미립구 (용매 증발(evaporation)법)Comparative example) Leuprolide microspheres (solvent evaporation method) 3개월3 months 비교예 4Comparative Example 4 1.51.5 286.0286.0 50.750.7 53.253.2 65.365.3
실험예 5. 전자 현미경을 통한 형태학 분석Experimental Example 5. Morphological analysis through electron microscopy
본 발명에 따른 미립구의 형태학적 특성을 전자 현미경을 통해 분석하였다. 실험 절차는 다음과 같다. 실시예 및 제조예에서 제조된 미립구 5 mg을 카본테이프가 부착된 알루미늄 스터브에 올려놓고 ION-COATER(COXEM, 대한민국)을 이용하여 백금 코팅하였다. 알루미늄 스터브를 주사전자현미경(COXEM EM-30, 대한민국)에 장착하고 가속전압 10~ kV로 미립구 형태학 특성을 관찰하였으며 그 결과를 도 3a (1개월 제형) 및 3b(3개월 제형)에 나타내었다.The morphological characteristics of the microspheres according to the present invention were analyzed through electron microscopy. The experimental procedure is as follows. 5 mg of microspheres prepared in Examples and Preparation Examples were placed on an aluminum stub with carbon tape attached and coated with platinum using ION-COATER (COXEM, Korea). An aluminum stub was mounted on a scanning electron microscope (COXEM EM-30, Korea), and the morphological characteristics of the microspheres were observed at an acceleration voltage of 10~ kV. The results are shown in Figures 3a (1-month formulation) and 3b (3-month formulation).
도 3a 내지 3b에 나타난 것과 같이 본 발명에 따른 미립구는 구형의 형태를 잘 유지하고 있음을 확인할 수 있었다. 가온을 통해 잔류용매를 제거한 비교예의 경우, 비교적 빠른 고형화를 겪어 다공성의 표면을 보여주었다. 반면에, 에탄올 추출을 통해 낮은 온도에서 서서히 고형화가 진행된 실시예의 제형들은 표면이 매끄러운 모습이 확인되었다.As shown in Figures 3a and 3b, it was confirmed that the microspheres according to the present invention maintained their spherical shape well. In the case of the comparative example in which the residual solvent was removed through heating, it underwent relatively rapid solidification and showed a porous surface. On the other hand, the formulations in the example where solidification was gradually carried out at low temperature through ethanol extraction were confirmed to have a smooth surface.
실험예 6. 루프롤라이드 미립구의 잔류용매 분석Experimental Example 6. Analysis of residual solvent of leuprolide microspheres
분산상용 용매로 사용하는 디클로로메탄의 잔류량을 측정하기 위해, 미립구 검체 약 100mg을 칭량하여 헤드스페이스용 바이알에 넣고 정제수 0.5mL를 넣어 현탁 후 N-메틸피롤리돈을 5mL 넣어 녹인 후 기체크로마토그래프법(GC)으로 잔류용매를 측정하였다. 이때 사용한 컬럼은 DB-624(제조사: 애질런트, 미국)(0.53mm x 30m, 3.0um)를 사용하였고 검출기로 불꽃이온화검출기(FID, flame ionization detector)를 사용했고 온도는 250 ℃로 설정하고 측정하였다. SPL의 온도는 150℃를 유지했고, 샘플의 split ratio는 1:5였다. Carrier gas는 고순도 헬륨가스를 사용하였다. 유속 5.0ml/min에서 50℃에서 5분 유지하고 분당 10℃의 rate로 250℃까지 승온한 후 5분간 유지했다.To measure the residual amount of dichloromethane used as a solvent for the dispersion phase, weigh about 100 mg of a microsphere sample, place it in a headspace vial, suspend it in 0.5 mL of purified water, dissolve it in 5 mL of N-methylpyrrolidone, and perform gas chromatography. Residual solvent was measured by (GC). The column used at this time was DB-624 (manufacturer: Agilent, USA) (0.53mm . The temperature of SPL was maintained at 150°C, and the split ratio of the sample was 1:5. Carrier gas used high purity helium gas. The temperature was maintained at 50°C for 5 minutes at a flow rate of 5.0 ml/min, raised to 250°C at a rate of 10°C per minute, and maintained for 5 minutes.
1) 표준액 조제1) Preparation of standard solution
디클로로메탄 표준품 120mg을 정밀하게 달아 100mL 용량플라스크에 넣고 N-메틸피롤리돈 약 80mL를 넣어 섞은 후 N-메틸피롤리돈을 넣어 정확하게 100mL로 한 다. 이 액 10mL를 정확하게 취해 100mL 용량플라스크에 넣고 N-메틸피롤리돈을 넣어 정확하게 100mL로 한다. 이 액 5mL 및 물 0.5mL를 정확하게 취하여 헤드스페이스용 바이알에 넣고 마개를 덮어 밀봉시켜 혼합한 액을 표준액으로 한다.Accurately weigh 120 mg of dichloromethane standard, place in a 100 mL volumetric flask, add approximately 80 mL of N-methylpyrrolidone, mix, and then add N-methylpyrrolidone to make exactly 100 mL. Take exactly 10 mL of this solution, place it in a 100 mL volumetric flask, and add N-methylpyrrolidone to make exactly 100 mL. Accurately take 5 mL of this solution and 0.5 mL of water, place them in a headspace vial, cap and seal, and use the mixed solution as the standard solution.
2) 검액 조제2) Preparation of test solution
검체 약 100mg을 칭량하여 헤드스페이스용 바이알에 넣고 정제수 0.5mL를 넣어 현탁 후 N-메틸피롤리돈을 5mL를 넣어 녹인다. 마개를 덮어 밀봉시켜 검액으로 한다.Weigh approximately 100 mg of the sample, place it in a headspace vial, suspend it in 0.5 mL of purified water, and then add 5 mL of N-methylpyrrolidone to dissolve it. Cover with a stopper, seal it, and use it as the sample solution.
상기 실험결과, 측정된 미립구 내 잔류 디클로로메탄의 함량을 표 6에 나타내었다.As a result of the above experiment, the content of residual dichloromethane in the measured microspheres is shown in Table 6.
  실시예 번호 Example number 잔류용매residual solvent
디클로로메탄 (ppm)Dichloromethane (ppm)
실시예) 루프롤라이드 미립구 (에탄올 공정 사용)Example) Leuprolide microspheres (using ethanol process) 1개월1 month 실시예 1Example 1 45.545.5
실시예 2Example 2 261.8261.8
실시예 3Example 3 0.00.0
3개월3 months 실시예 5Example 5 473.8473.8
실시예 6Example 6 446.4446.4
실시예 7Example 7 383.5383.5
비교예) 루프롤라이드 미립구 (용매 증발(evaporation)법)Comparative example) Leuprolide microspheres (solvent evaporation method) 1개월1 month 비교예 3Comparative Example 3 221.3221.3
3개월3 months 비교예 4Comparative Example 4 78.978.9
표 6에 나타난 바와 같이, 에탄올의 사용량이 증가할수록 미립구 내 디클로로메탄의 잔류량은 감소하는 모습을 보여준다.As shown in Table 6, as the amount of ethanol used increases, the residual amount of dichloromethane in the microspheres decreases.
미립구의 잔류 용매량이 적어질수록 루프롤라이드를 포함하는 서방성 미립구의 보관 안정성과 인체에 대한 안전성 또한 확보할 수 있어 유리하다. 따라서 본 발명에 따른 미립구는 1000 ppm 미만의 낮은 잔류 용매량으로 인해 보관 안정성 및 인체에 대한 안전성이 탁월한 것임을 확인할 수 있었다.It is advantageous to ensure the storage stability of sustained-release microspheres containing leuprolide and their safety to the human body as the amount of residual solvent in the microspheres decreases. Therefore, it was confirmed that the microspheres according to the present invention have excellent storage stability and safety to the human body due to the low residual solvent amount of less than 1000 ppm.
실험예 7. 루프롤라이드 미립구의 입자수 분석Experimental Example 7. Particle number analysis of leuprolide microspheres
본 발명에 따른 미립구의 입자수를 다음과 같은 방법으로 측정하였다. 광학현미경을 통해 입자 개수를 직접 확인하여 미립구의 입자수를 확인하였다. 실시예 및 비교예에서 제조된 미립구 10mg을 칭량하여, 0.5(w/w)% PVA에 분산시켰다. 이 때, 만니톨이 15(w/w)% 포함된 비교예는 무게를 보정하여 진행하였다(무게 보정은 만니톨을 제외하였을 때 미립구의 무게가 10mg이 되도록 11.8mg을 칭량하는 방법으로 수행하였다). 0.5(w/w)% PVA에 분산시킨 미립구의 농도가 0.1mg/mL이 되도록 0.5(w/w)% PVA로 희석시켰다. 희석된 0.1mg/mL 농도의 미립구 용액 10μm를 취하여 현미경으로 입자 개수를 확인하였다.The particle number of microspheres according to the present invention was measured as follows. The number of microspheres was confirmed by directly checking the number of particles using an optical microscope. 10 mg of microspheres prepared in Examples and Comparative Examples were weighed and dispersed in 0.5 (w/w)% PVA. At this time, the comparative example containing 15 (w/w)% mannitol was performed by correcting the weight (weight correction was performed by weighing 11.8 mg so that the weight of the microspheres was 10 mg when mannitol was excluded). The microspheres dispersed in 0.5 (w/w)% PVA were diluted with 0.5 (w/w)% PVA so that the concentration was 0.1 mg/mL. 10 μm of the diluted 0.1 mg/mL concentration microsphere solution was taken and the number of particles was confirmed under a microscope.
이후, 실시예와 비교예의 유효성분(API)의 함량이 동일하도록 투여용량을 조절하였고, 표 7 및 표 8에 나타내었다, 표 7은 1개월 제형이고, 표 8은 3개월 제형을 나타내었다.Afterwards, the administration dose was adjusted so that the content of the active ingredient (API) in the examples and comparative examples was the same, and is shown in Tables 7 and 8. Table 7 shows the 1-month formulation, and Table 8 shows the 3-month formulation.
1회 투여 기준Based on one administration 실시예 2Example 2 비교예 1(Leuplin 3.75mg)Comparative Example 1 (Leuplin 3.75mg)
API 농도(mg/mL)API concentration (mg/mL) 3.753.75 3.753.75
미립구 농도(mg/mL)Microparticle concentration (mg/mL) 27.427.4 44.144.1
미립구 개수(개/mg)Number of microspheres (piece/mg) 67,00067,000 149,300149,300
투여된 미립구 개수(개/mL)Number of administered microspheres (number/mL) 1,836,6231,836,623 6,586,7656,586,765
1회 투여 기준Based on one administration 실시예 4Example 4 비교예 2(Leuplin 11.25mg)Comparative Example 2 (Leuplin 11.25mg)
API 농도(mg/mL)API concentration (mg/mL) 11.2511.25 11.2511.25
미립구 농도(mg/mL)Microparticle concentration (mg/mL) 58.958.9 130.1130.1
미립구 개수(개/mg)Number of microspheres (piece/mg) 49,70049,700 262,300262,300
투여된 미립구 개수(개/mL)Number of administered microspheres (number/mL) 2,927,3562,927,356 34,114,16234,114,162
상기 표 7 및 표 8의 결과에서 확인할 수 있는 바와 같이, 동일한 함량의 유효성분을 포함한다 하더라도, 종래 루프롤라이드를 포함하는 주사제제는 본 발명에 따른 주사제제보다 1.6배 내지 2.2배 높은 미립구 농도를 가지고, 미립구 수 또한 3.6배 내지 11.7배 많은 것을 확인할 수 있었다. 이는 본 발명에 따른 주사제제가 동일한 유효성분 함량 대비 미립구 수 및 농도가 현저하게 낮아, 투여시 많은 미립구 수 및 높은 미립구 농도로 인해 발생할 수 있는 다양한 문제, 예를 들어 염증 발생 수준을 낮출 수 있다는 장점을 가질 수 있다. As can be seen from the results in Tables 7 and 8 above, even if they contain the same amount of active ingredients, the conventional injection preparation containing leuprolide has a microparticle concentration that is 1.6 to 2.2 times higher than the injection preparation according to the present invention. With this, it was confirmed that the number of microspheres was also 3.6 to 11.7 times greater. This has the advantage that the injection preparation according to the present invention has a significantly lower number and concentration of microspheres compared to the same active ingredient content, and can reduce various problems that may occur due to a large number of microspheres and a high concentration of microspheres upon administration, such as the level of inflammation. You can have it.
실험예 8 : 미립구 개수에 따른 염증 비교Experimental Example 8: Comparison of inflammation according to the number of microparticles
실시예 4 및 비교예 2에서 제조한 미립구를 투여하였을 때의 투여부위 염증 정도를 확인하였다. 먼저 시험 물질이 들어있는 마이크로 튜브에 0.5mL의 현탁액(Diluent)(0.5(w/w)% NaCMC, 5(w/w)% Mannitol, 0.1(w/w)% Tween 80)을 첨가하고 미립구가 완전히 분산될 때까지 잘 섞어주었다. 1mL 주사기(23G needle)를 이용하여 현탁액을 취한 후, 상기 미립구들을 SD 랫드의 등쪽 피하에 4.5mg/head의 용량으로 투여하였다. 투여 후 3일, 10일, 28일째에 조직을 적출하여 투여부위의 염증 분석을 수행하였으며, 이를 표 9에 나타내었다.The degree of inflammation at the administration site when the microspheres prepared in Example 4 and Comparative Example 2 were administered was confirmed. First, 0.5 mL of suspension (Diluent) (0.5(w/w)% NaCMC, 5(w/w)% Mannitol, 0.1(w/w)% Tween 80) was added to the microtube containing the test substance, and the microspheres were added. Mix well until completely dispersed. After taking the suspension using a 1mL syringe (23G needle), the microspheres were administered subcutaneously to the back of SD rats at a dose of 4.5mg/head. Tissues were removed on the 3rd, 10th, and 28th days after administration and analysis of inflammation at the administration site was performed, which is shown in Table 9.
제형Formulation 투여용량(mg/head as API)Dosage (mg/head as API) 투여액량
(mL/head)
Dosage amount
(mL/head)
동물 수number of animals
3일 염증분석3-day inflammation analysis 10일 염증분석10-day inflammation analysis 28일 염증분석28-day inflammation analysis
실시예 4(GB-7103-519)Example 4 (GB-7103-519) 4.54.5 0.50.5 33 33 33
비교예 2(Leuplin 11.25mg)Comparative Example 2 (Leuplin 11.25mg) 4.54.5 0.50.5 33 33 33
(SD rat, male 8주령)각 확인 시점에 실시예 4와 비교예 2의 조직병리 슬라이드 표본을 제작하여, H&E(Hematoxylin and Eosin) 염색을 하고, 염증세포 침윤을 확인하였다. 이와 같이 염색된 표본의 사진을 도 4a(3일), 4b(10일), 4c(28일)에 나타내었다. 노란색 원은 침윤된 세포를, 빨간색 화살표는 혈관 신생을, 파란색 화살표는 섬유조직 형성을 나타낸다. (SD rat, male 8 weeks old) At each confirmation time, histopathology slide samples of Example 4 and Comparative Example 2 were prepared, stained with H&E (Hematoxylin and Eosin), and inflammatory cell infiltration was confirmed. Photographs of samples stained in this way are shown in Figures 4a (3 days), 4b (10 days), and 4c (28 days). Yellow circles represent infiltrated cells, red arrows represent angiogenesis, and blue arrows represent fibrous tissue formation.
표 10은 SD 랫드에 미립구를 투여한 후, 3일차, 10일차, 및 28일차의 염증세포 침윤(Inflammatory cell infiltration) 정도를 수치화 하여 나타낸 표이다.Table 10 is a table that quantifies the degree of inflammatory cell infiltration on the 3rd, 10th, and 28th days after administration of microspheres to SD rats.
구분division 실시예 4Example 4 비교예 2(Leuplin 11.25mg)Comparative Example 2 (Leuplin 11.25mg)
염증세포 침윤(Inflammatory cell infiltration)Inflammatory cell infiltration Day 3Day 3 2.78±0.192.78±0.19 3.00±0.003.00±0.00
Day 10 Day 10 1.87±0.511.87±0.51 2.33±0.342.33±0.34
Day 28 Day 28 1.89±0.581.89±0.58 3.00±0.003.00±0.00
* 염증세포 침윤은 400배 시야(HPF)에서 임의로 세 부분을 선정하고 세포수를 계수하여 0 에서 3까지의 grade로 표기한다.- Grade 0은 ≤5 cells per HPF* Inflammatory cell infiltration is graded from 0 to 3 by randomly selecting three parts at 400x field of view (HPF), counting the number of cells. - Grade 0 is ≤5 cells per HPF.
- Grade 1은 6-20 cells per HPF- Grade 1 is 6-20 cells per HPF
- Grade 2는 21-50 cells per HPF- Grade 2 is 21-50 cells per HPF
- Grade 3은 >50 cells per HPF- Grade 3 is >50 cells per HPF
도 4a 내지 도 4c 및 표 11을 참조하면, 미립구 투여 후 3일째에서는 실시예 4와 비교예 2에서 모두 염증반응이 강하게 나타나 큰 차이를 확인할 수 없었으나, 미립구 투여 후 10일째와 28일째에서는 비교예 2에서 염증반응이 지속되는 반면 실시예 4 에서는 염증반응이 비교적 감소되어 있는 양상을 확인할 수 있었다.Referring to FIGS. 4A to 4C and Table 11, on the 3rd day after microball administration, the inflammatory response was strong in both Example 4 and Comparative Example 2, so no significant difference could be confirmed, but on the 10th and 28th day after microball administration, the inflammatory response was strong. While the inflammatory response continued in Example 2, it was confirmed that the inflammatory response was relatively reduced in Example 4.

Claims (30)

  1. 유효성분으로서 루프롤라이드 또는 이의 약학적으로 허용가능한 염 및 생체 적합성 고분자를 포함하는 서방성 미립구를 포함하는 주사제제로서, An injectable preparation containing sustained-release microspheres containing leuprolide or a pharmaceutically acceptable salt thereof as an active ingredient and a biocompatible polymer,
    상기 주사제제 중의 유효성분의 함량은 루프롤라이드로서 1 내지 50mg/mL를 포함하고,The content of the active ingredient in the injection preparation includes 1 to 50 mg/mL as leuprolide,
    상기 주사제제 중의 미립구의 수는 1,000,000 내지 6,000,000개/ml인 것인, 주사제제.An injectable preparation, wherein the number of microspheres in the injectable preparation is 1,000,000 to 6,000,000/ml.
  2. 제1항에 있어서, 상기 유효성분의 함량은 루프롤라이드로서, 전체 미립구 중량 대비 9.5 내지 40 중량%을 포함하는 것인, 주사제제.The injectable preparation according to claim 1, wherein the content of the active ingredient is leuprolide, comprising 9.5 to 40% by weight based on the total weight of microspheres.
  3. 제1항에 있어서, 상기 생체 적합성 고분자는 폴리에틸렌글리콜-폴리(락타이드-코-글리콜라이드) 블록-공중합체, 폴리에틸렌글리콜-폴리락타이드 블록-공중합체, 폴리에틸렌글리콜-폴리카프로락톤 블록-공중합체, 폴리락타이드, 폴리글리콜라이드, 폴리(락타이드-코-글리콜라이드), 폴리(락타이드-코-글리콜라이드)글루코스, 폴리카프로락톤 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것인 주사제제.The method of claim 1, wherein the biocompatible polymer is polyethylene glycol-poly(lactide-co-glycolide) block-copolymer, polyethylene glycol-polylactide block-copolymer, and polyethylene glycol-polycaprolactone block-copolymer. , polylactide, polyglycolide, poly(lactide-co-glycolide), poly(lactide-co-glycolide)glucose, polycaprolactone, and mixtures thereof. Injectable preparation.
  4. 제1항에 있어서, 상기 미립구 중의 생체 적합성 고분자는 전체 미립구 중량 대비 70 내지 90 중량%인 것인, 주사제제. The injectable preparation according to claim 1, wherein the biocompatible polymer in the microspheres is 70 to 90% by weight based on the total weight of the microspheres.
  5. 제1항에 있어서, 상기 미립구 중의 유효성분 대 생체 적합성 고분자의 중량비가 1:4 내지 1:9인 것인, 주사제제.The injectable preparation according to claim 1, wherein the weight ratio of the active ingredient to the biocompatible polymer in the microspheres is 1:4 to 1:9.
  6. 제1항에 있어서, 상기 루프롤라이드의 약학적으로 허용가능한 염은 루프롤라이드 아세테이트인 것인, 주사제제.The injectable preparation according to claim 1, wherein the pharmaceutically acceptable salt of leuprolide is leuprolide acetate.
  7. 제1항에 있어서, 생체적합성 고분자의 중량평균분자량은 4,000 내지 240,000인 것인, 주사제제.The injectable preparation according to claim 1, wherein the biocompatible polymer has a weight average molecular weight of 4,000 to 240,000.
  8. 제1항에 있어서, 서방형 미립구 중의 잔류용매가 1000ppm 미만인 것인, 주사제제.The injectable preparation according to claim 1, wherein the residual solvent in the sustained-release microspheres is less than 1000 ppm.
  9. 제1항에 있어서, 유효성분의 방출 후 24 시간의 인 비트로 방출률이 8 내지 40%인, 주사제제.The injectable preparation according to claim 1, wherein the in vitro release rate 24 hours after release of the active ingredient is 8 to 40%.
  10. 제1항에 있어서, 유효성분의 투여 후 24 시간 까지의 AUC0-24hrs가 목표 투여기간의 누적 AUCtotal 대비 0.5 내지 55%인, 주사제제.The injectable preparation according to claim 1, wherein the AUC 0-24hrs up to 24 hours after administration of the active ingredient is 0.5 to 55% of the cumulative AUC total during the target administration period.
  11. 제1항에 있어서, 서방형 미립구의 개체 내 투여 시, 투여 후 48시간 내지 168시간의 누적 약물 곡선하 면적에 대한 투여 후 0 내지 24시간의 누적 약물 곡선하 면적에 대한 비율은 2:1 내지 10:1 인 것인, 주사제제. The method of claim 1, wherein, upon intra-subject administration of sustained-release microspheres, the ratio of the area under the cumulative drug curve at 0 to 24 hours after administration to the area under the cumulative drug curve at 48 hours to 168 hours after administration is 2:1 to 2:1. 10:1, injectable formulation.
  12. 제1항에 있어서, 상기 서방형 미립구의 D50이 10 내지 40 μm인 것인, 주사제제.The injectable formulation according to claim 1, wherein the sustained-release microspheres have a D50 of 10 to 40 μm.
  13. 제1항에 있어서, 상기 주사제제는 1개월 투여용이며, 상기 주사제제 중의 미립구의 수가 1,000,000 내지 2,500,000개/ml인 것인, 주사제제.The injectable preparation according to claim 1, wherein the injectable preparation is for one-month administration, and the number of microspheres in the injectable preparation is 1,000,000 to 2,500,000/ml.
  14. 제1항에 있어서, 상기 주사제제는 3개월 투여용이며, 상기 주사제제 중의 미립구의 수가 2,000,000 내지 3,500,000개/ml인 것인, 주사제제.The injectable preparation according to claim 1, wherein the injectable preparation is for administration for 3 months, and the number of microspheres in the injectable preparation is 2,000,000 to 3,500,000/ml.
  15. 제1항에 있어서, 상기 주사제제는 6개월 투여용이며, 상기 주사제제 중의 미립구의 수가 3,000,000 내지 6,000,000개/ml인 것인, 주사제제.The injectable preparation according to claim 1, wherein the injectable preparation is for 6-month administration, and the number of microspheres in the injectable preparation is 3,000,000 to 6,000,000/ml.
  16. 제1항에 있어서, 자궁내막증, 과다월경, 하복통, 요통 및 빈혈 등을 수반한 자궁근종에서 근종핵의 축소 및 증상의 개선, 전립선암, 폐경전 유방암 또는 중추성 사춘기조발증의 예방 또는 치료용인, 주사제제.The method of claim 1, for use in the reduction of fibroid nuclei and improvement of symptoms in uterine fibroids accompanied by endometriosis, hypermenorrhea, lower abdominal pain, back pain, and anemia, and in the prevention or treatment of prostate cancer, premenopausal breast cancer, or central precocious puberty. , injection preparation.
  17. a) (i) 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상용 용액을 제조하거나 또는 (ii) 생체 적합성 고분자를 하나 이상의 유기 용매에 용해시켜 유상(oil phase)용 용액을 제조하고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 수성 용매에 용해시켜 수상용 용액을 제조하고, 상기 수상용 용액을 유상용 용액에 첨가하여 유중수형(W/O) 에멀전을 제조하는 단계;a) (i) prepare a dispersed solution by dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents, or (ii) prepare an oil phase by dissolving the biocompatible polymer in one or more organic solvents. Prepare a solution for the oil phase, prepare an aqueous solution by dissolving leuprolide or a pharmaceutically acceptable salt thereof in an aqueous solvent, and add the aqueous solution to the oil phase solution to form a water-in-oil (W/O) solution. ) Preparing an emulsion;
    b) 상기 단계 a)에서 제조된 분산상용 용액 또는 유중수형 에멀전을, 연속상으로서 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀젼 주입 후 미립구 고형화를 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계;b) The dispersion solution or water-in-oil emulsion prepared in step a) is added to an aqueous solution containing a surfactant as a continuous phase to form microspheres, and the dispersion solution or water-in-oil emulsion is injected and stirred to solidify the microspheres. preparing a suspension containing microspheres;
    c) 상기 단계 b)의 고형화된 미립구를 포함하는 현탁액에 에탄올 및 계면활성제를 포함하는 수용액을 첨가시켜 상기 유기용매를 추출시키는 단계;c) extracting the organic solvent by adding an aqueous solution containing ethanol and a surfactant to the suspension containing the solidified microspheres of step b);
    d) 상기 단계 c)의 미립구를 포함하는 현탁액 중의 연속상을 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 교반하는 단계; 및 d) exchanging the continuous phase in the suspension containing the microspheres of step c) with an aqueous solution containing fresh ethanol and a surfactant and stirring; and
    e) 미립구를 회수하는 단계를 포함하는 서방성 미립구의 제조방법으로서, e) A method for producing sustained-release microspheres comprising the step of recovering the microspheres,
    상기 서방성 미립구는 전체 미립구 중량 대비 루프롤라이드로서 9.5 내지 40 중량%의 루프롤라이드 또는 이의 약학적으로 허용가능한 염 및 생체 적합성 고분자를 포함하는 서방성 미립구인 제조방법.The sustained-release microspheres are sustained-release microspheres containing 9.5 to 40% by weight of leuprolide or a pharmaceutically acceptable salt thereof and a biocompatible polymer as leuprolide relative to the total weight of the microspheres.
  18. a') (i) 생체 적합성 고분자 및 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 하나 이상의 유기 용매에 용해시켜 분산상용 용액을 제조하거나 또는 (ii) 생체 적합성 고분자를 하나 이상의 유기 용매에 용해시켜 유상(oil phase)용 용액을 제조하고, 루프롤라이드 또는 이의 약학적으로 허용가능한 염을 수성 용매에 용해시켜 수상용 용액을 제조하고, 상기 수상용 용액을 유상용 용액에 첨가하여 유중수형(W/O) 에멀전을 제조하는 단계;a') (i) dissolving the biocompatible polymer and leuprolide or a pharmaceutically acceptable salt thereof in one or more organic solvents to prepare a dispersion solution, or (ii) dissolving the biocompatible polymer in one or more organic solvents to prepare a dispersion solution. A solution for the oil phase was prepared, and leuprolide or a pharmaceutically acceptable salt thereof was dissolved in an aqueous solvent to prepare an aqueous solution, and the aqueous solution was added to the oil phase solution to form a water-in-oil type (W/ O) preparing an emulsion;
    b') 상기 단계 a')에서 제조된 분산상용 용액 또는 유중수형 에멀전을, 연속상으로서 에탄올 및 계면활성제를 함유한 수용액에 첨가하여 미립구를 형성시키고, 분산산용 용액 또는 유중수형 에멀젼 주입 후 미립구 고형화 및 유기용매 추출을 위해 교반하여 미립구를 포함하는 현탁액을 제조하는 단계;b') The dispersion solution or water-in-oil emulsion prepared in step a') is added to an aqueous solution containing ethanol and a surfactant as a continuous phase to form microspheres, and the microspheres are solidified after injection of the dispersion solution or water-in-oil emulsion. and preparing a suspension containing microspheres by stirring for organic solvent extraction;
    c') 상기 단계 b')의 미립구를 포함하는 현탁액 중의 연속상을 새로운 에탄올 및 계면활성제를 포함하는 수용액으로 교환하고 교반하는 단계; 및 c') exchanging the continuous phase in the suspension containing the microspheres of step b') with an aqueous solution containing fresh ethanol and a surfactant and stirring; and
    d') 미립구를 회수하는 단계를 포함하는 서방성 미립구의 제조방법으로서, d') A method for producing sustained-release microspheres comprising the step of recovering the microspheres,
    상기 서방성 미립구는 전체 미립구 중량 대비 루프롤라이드로서 9.5 내지 40 중량%의 루프롤라이드 또는 이의 약학적으로 허용가능한 염 및 생체 적합성 고분자를 포함하는 서방성 미립구인 제조방법.The sustained-release microspheres are sustained-release microspheres containing 9.5 to 40% by weight of leuprolide or a pharmaceutically acceptable salt thereof and a biocompatible polymer as leuprolide relative to the total weight of the microspheres.
  19. 제17항 또는 제18항에 있어서, 상기 단계 a) 또는 a')의 유기 용매는 디클로로메탄, 클로로포름, 에틸아세테이트, 메틸에틸케톤, 아세톤, 아세토니트릴, 디메틸설폭사이드, 디메틸포름아마이드, 엔메틸피롤리돈, 아세트산, 메틸알콜, 에틸알콜, 프로필알콜, 및 벤질알콜로 이루어진 군에서 중에서 선택된 용매 또는 이들의 혼합 용매인 것인, 제조방법.The method of claim 17 or 18, wherein the organic solvent in step a) or a') is dichloromethane, chloroform, ethyl acetate, methyl ethyl ketone, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, and enmethyl p. A manufacturing method, which is a solvent selected from the group consisting of rolidone, acetic acid, methyl alcohol, ethyl alcohol, propyl alcohol, and benzyl alcohol, or a mixed solvent thereof.
  20. 제17항 또는 제18항에 있어서, 상기 생체 적합성 고분자는 폴리에틸렌글리콜-폴리(락타이드-코-글리콜라이드) 블록-공중합체, 폴리에틸렌글리콜-폴리락타이드 블록-공중합체, 폴리에틸렌글리콜-폴리카프로락톤 블록-공중합체, 폴리락타이드, 폴리글리콜라이드, 폴리(락타이드-코-글리콜라이드), 폴리(락타이드-코-글리콜라이드)글루코스, 폴리카프로락톤 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것인, 제조방법.The method of claim 17 or 18, wherein the biocompatible polymer is polyethylene glycol-poly(lactide-co-glycolide) block-copolymer, polyethylene glycol-polylactide block-copolymer, polyethylene glycol-polycaprolactone. 1 selected from the group consisting of block-copolymers, polylactide, polyglycolide, poly(lactide-co-glycolide), poly(lactide-co-glycolide)glucose, polycaprolactone, and mixtures thereof A manufacturing method that is more than one species.
  21. 제17항 또는 제18항에 있어서, 상기 생체 적합성 고분자는 동일한 종류의 고분자들이 서로 다른 고유점도 및/또는 단량체의 비율을 가지는 고분자들의 조합인 것인, 제조방법.The manufacturing method according to claim 17 or 18, wherein the biocompatible polymer is a combination of polymers of the same type having different intrinsic viscosity and/or monomer ratios.
  22. 제17항 또는 제18항에 있어서, 상기 단계 a) 또는 a')의 (i) 및 (ii)에서 사용하는 유기 용매는 디클로로메탄, 클로로포름, 에틸아세테이트, 메틸에틸케톤, 아세톤, 아세토니트릴, 디메틸설폭사이드, 디메틸포름아마이드, 엔메틸피롤리돈, 아세트산, 메틸알콜, 에틸알콜, 프로필알콜 및 벤질알콜로 이루어진 군 중에서 선택된 적어도 하나 이상의 용매 또는 상기 용매 2종 이상의 혼합 용매인 것인, 제조방법.The method of claim 17 or 18, wherein the organic solvent used in steps (i) and (ii) of step a) or a') is dichloromethane, chloroform, ethyl acetate, methyl ethyl ketone, acetone, acetonitrile, dimethyl A manufacturing method comprising at least one solvent selected from the group consisting of sulfoxide, dimethylformamide, enmethylpyrrolidone, acetic acid, methyl alcohol, ethyl alcohol, propyl alcohol, and benzyl alcohol, or a mixed solvent of two or more of the above solvents.
  23. 제17항 또는 제18항에 있어서, 상기 단계 a) 또는 a')는 15 내지 25℃에서 수행되는 것인, 제조방법.The manufacturing method according to claim 17 or 18, wherein step a) or a') is performed at 15 to 25°C.
  24. 제17항 또는 제18항에 있어서, 상기 단계 b) 또는 b')에서, 계면활성제를 함유한 연속상 중의 계면활성제의 함량은 연속상의 전체 부피를 기준으로, 0.01 중량% 내지 20 중량 %인 것인, 제조방법.The method of claim 17 or 18, wherein in step b) or b'), the content of the surfactant in the continuous phase containing the surfactant is 0.01% by weight to 20% by weight based on the total volume of the continuous phase. Phosphorus, manufacturing method.
  25. 제17항 또는 제18항에 있어서, 상기 단계 b) 또는 b')의 계면활성제는 메틸셀룰로오스, 폴리비닐피롤리돈, 카르복시메틸셀룰로오스, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르 및 폴리옥시에틸렌 피마자유 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 것인, 제조방법.The method of claim 17 or 18, wherein the surfactant in step b) or b') is methylcellulose, polyvinylpyrrolidone, carboxymethylcellulose, lecithin, gelatin, polyvinyl alcohol, polyoxyethylene sorbitan fatty acid ester. and polyoxyethylene castor oil derivatives and mixtures thereof.
  26. 제17항 또는 제18항에 있어서, 상기 단계 b) 또는 b')에서 교반 공정은 1 내지 5시간 동안, 4 내지 20℃에서 수행되는 것인, 제조방법.The manufacturing method according to claim 17 or 18, wherein the stirring process in step b) or b') is performed at 4 to 20° C. for 1 to 5 hours.
  27. 제18항에 있어서, 상기 단계 b')에서 에탄올 및 계면활성제를 포함하는 수용액중의 에탄올의 함량은 상기 수용액의 전체 부피를 기준으로, 5 내지 40(v/v)%인 것인, 제조방법.The method of claim 18, wherein the content of ethanol in the aqueous solution containing ethanol and the surfactant in step b') is 5 to 40 (v/v)% based on the total volume of the aqueous solution. .
  28. 제17항 또는 제18항에 있어서, 상기 단계 c)는 4 내지 24℃에서 수행되는 것인, 제조방법.The manufacturing method according to claim 17 or 18, wherein step c) is performed at 4 to 24°C.
  29. 제17항 또는 제18항에 있어서, 상기 단계 d) 또는 c')의 교반은 1 내지 48시간 동안 수행되는 것인, 제조방법.The manufacturing method according to claim 17 or 18, wherein the stirring in step d) or c') is performed for 1 to 48 hours.
  30. 제17항 또는 제18항에 있어서, 제조된 서방성 미립구의 봉입률은, 60 내지 100%인 것인, 제조방법.The production method according to claim 17 or 18, wherein the encapsulation ratio of the produced sustained-release microspheres is 60 to 100%.
PCT/KR2023/013112 2022-09-01 2023-09-01 Sustained-release microspheres containing leuprolide, injectable preparation comprising same, and preparation method therefor WO2024049279A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20220110883 2022-09-01
KR10-2022-0110883 2022-09-01
KR20220147421 2022-11-07
KR10-2022-0147421 2022-11-07
KR10-2023-0059471 2023-05-08
KR1020230059471A KR20240031868A (en) 2022-09-01 2023-05-08 Sustained release microsphere comprising leuprolide, injection formula comprising the same, and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2024049279A2 true WO2024049279A2 (en) 2024-03-07

Family

ID=90098380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013112 WO2024049279A2 (en) 2022-09-01 2023-09-01 Sustained-release microspheres containing leuprolide, injectable preparation comprising same, and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2024049279A2 (en)

Similar Documents

Publication Publication Date Title
WO2011081406A2 (en) Macromolecule for delivering protein, polypeptide or peptide drugs and a production method for the same, and a slow release composition for protein, polypeptide or peptide drugs and a production method for the same
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2019078583A1 (en) Extended release microparticles comprising drug, and preparation method therefor
US10478470B2 (en) Pharmaceutical composition containing leuprolide and having both immediate and sustained release properties
WO2020040438A1 (en) Pharmaceutical preparation having excellent dissolution properties, containing esomeprazole and sodium bicarbonate
WO2021162532A2 (en) Pharmaceutical composition comprising sustained-release microspheres including glp-1 analogue or pharmaceutically acceptable salt thereof
WO2021010719A1 (en) Long-lasting formulation containing rivastigmine, and method for preparing same
WO2021091246A1 (en) Sustained-release microspheres capable of controlling initial release, and preparation method therefor
WO2018147660A1 (en) Drug drug delivery formulation for treating mental illness or central nervous system disorder
EP3946273A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2022010317A1 (en) Method for preparing donepezil-containing sustained-release plga microspheres
WO2012087051A2 (en) Microparticles containing physiologically active peptide, method for preparing the same, and pharmaceutical composition comprising the same
WO2022050783A1 (en) Sustained-release microparticles for sustained release of drug
WO2024049279A2 (en) Sustained-release microspheres containing leuprolide, injectable preparation comprising same, and preparation method therefor
WO2020130585A1 (en) Sustained-release injection comprising deslorelin, and preparation method therefor
WO2016036093A1 (en) Tadalafil oral dispersible film and preparing method thereof
WO2019208982A1 (en) Method for preparing biodegradable microsheres using stabilized single-phase mixed solution
WO2023101348A1 (en) Microparticles containing leuprolide, and preparation method thereof
WO2020242234A1 (en) Injectable composition containing prodrug of caspase inhibitors, and preparation method therefor
WO2023038202A1 (en) Sustained-release microsphere using biodegradable polymer, and method for preparing same
WO2021167364A1 (en) Pharmaceutical composition comprising esomeprazole and sodium bicarbonate having excellent release properties
WO2023249464A1 (en) Sustained-release microparticles containing drug and pamoic acid
WO2024101859A1 (en) Sustained-release injectable preparation comprising dexamethasone acetate and preparation method therefor
WO2022005169A1 (en) Injectable composition comprising gnrh derivatives
WO2023146187A1 (en) Lipid fusion depot composition with controlled initial release, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860954

Country of ref document: EP

Kind code of ref document: A2