WO2022010317A1 - Method for preparing donepezil-containing sustained-release plga microspheres - Google Patents

Method for preparing donepezil-containing sustained-release plga microspheres Download PDF

Info

Publication number
WO2022010317A1
WO2022010317A1 PCT/KR2021/008816 KR2021008816W WO2022010317A1 WO 2022010317 A1 WO2022010317 A1 WO 2022010317A1 KR 2021008816 W KR2021008816 W KR 2021008816W WO 2022010317 A1 WO2022010317 A1 WO 2022010317A1
Authority
WO
WIPO (PCT)
Prior art keywords
donepezil
microspheres
release
plga
sustained
Prior art date
Application number
PCT/KR2021/008816
Other languages
French (fr)
Korean (ko)
Inventor
김미정
이상휘
정두용
김예지
Original Assignee
에이치엘비제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75480410&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022010317(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 에이치엘비제약 주식회사 filed Critical 에이치엘비제약 주식회사
Publication of WO2022010317A1 publication Critical patent/WO2022010317A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the present invention relates to a method for producing donepezil-containing sustained-release PLGA microspheres, and specifically, to a method for producing donepezil-containing sustained-release PLGA microspheres, i) donepezil or a pharmaceutically acceptable salt thereof, PLGA (Poly( lactic-co-glycolic acid) and an organic solvent to prepare microfluidic droplets by injecting the dispersed phase into the microfluidic chip; It relates to a method for producing donepezil-containing sustained-release PLGA microspheres comprising the steps of:
  • Donepezil is a drug used for the treatment of Alzheimer's-type dementia, which has an acetylcholine esterase inhibitory effect. After weekly use and clinical response evaluation, the dosage is increased to 10 mg and administered once a day.
  • the drugs currently in circulation are oral tablet formulations containing donepezil hydrochloride and an orally disintegrating film formulation. Problems with digestive disorders such as diarrhea and nausea are emerging.
  • biodegradable polymers used in the development of sustained-release microspheres include poly(lactic-co-glycolic acid, PLGA) and polylactic acid (PLA).
  • PLGA and PLA are Most of them in the living body are decomposed into water and carbon dioxide, which are harmless to the human body by hydrolysis, but have different structures and thus have significantly different properties. It is a homopolymer with long bonds, and poly lactide-co-glycolide is a copolymer in which lactide and glycolide units are cross-linked.
  • the physical properties of PLGA are that of lactide and glycolide. Depends on the composition ratio As the lactide ratio increases, crystallinity increases, strength increases, and the in vivo half-life becomes longer. , each has a different effect on the content and properties of microspheres.
  • PLGA as a representative biodegradable polymer used for the development of donepezil sustained-release microspheres, has the advantage of shorter in vivo retention time compared to PLA. It has been known to be unsuitable because it can reduce
  • microspheres containing donepezil were prepared by solvent evaporation using PLGA, but the content of the prepared microspheres was 13.2 because of the high solubility of donepezil in aqueous phase. The content was as low as ⁇ 2.1%.
  • the administered dose of the microspheres must be excessively increased, which cannot be regarded as an excellent pharmaceutical formulation (Korean Patent Publication No. 19-0064526).
  • the drug and PLGA weight ratio must be limited to 1:9 in the dispersed phase for preparing the microspheres to allow sustained release of the drug without initial rapid drug release.
  • the dosage of microspheres to show the actual therapeutic effect is very large because the content of the drug is 10% or less (2019 AAPS M0930-02-13).
  • microspheres containing donepezil it is very important to control the content of donepezil inside the microspheres in consideration of an appropriate release rate and dosage, and to simultaneously release sustained release while containing donepezil in a high content. It can be seen that it is a technical task in the art to prepare the PLGA microspheres shown. Accordingly, as a method of increasing the content of donepezil contained in microspheres, a method of reducing the solubility of donepezil in aqueous phase was studied.
  • PLGA used in the preparation of microspheres forms a polymer matrix inside the microspheres and acts as a carrier to encapsulate the drug in the microspheres. Since it cannot serve as a carrier, a method of adjusting the pH of the aqueous phase is not suitable as a method for preparing microspheres containing a high content of donepezil (J Control Release. 2007 Oct 8;122(3):338-44) .
  • Another method of reducing the solubility of donepezil in the aqueous phase is to control the surfactant concentration in the aqueous phase.
  • concentration of surfactant in the aqueous phase is a factor affecting the drug encapsulation rate and drug release rate of microspheres.
  • the surfactant helps to form stable droplets by adsorbing to the interface between the aqueous phase and the oil phase.
  • the concentration of the surfactant is increased, it is possible to form small stable droplets, but by increasing the solubility of the drug in the aqueous phase, the drug is distributed from the inside of the microspheres to the outside, which may lead to a decrease in the drug content.
  • concentration of the surfactant is decreased, colloidal stability is lowered and unstable droplets are generated, which may cause aggregation due to adhesion between the droplets. Therefore, a method of reducing the solubility of donepezil by controlling the concentration of the surfactant in the aqueous phase for the purpose of increasing the content of donepezil is not preferable because the range of controlling the concentration of the surfactant is extremely limited.
  • Another method of reducing the solubility of donepezil in the aqueous phase is to control the volume of the aqueous phase.
  • the content and encapsulation rate of a drug may be adjusted according to a change in the volume of the aqueous phase.
  • collisions between the droplets increase, causing agglomeration or expansion between the droplets, thereby causing aggregation between the droplets.
  • the method of increasing the volume of the aqueous phase can reduce the occurrence of agglomeration by reducing the collision between the droplets that occur during stirring, but it is a fairly counterproductive method in consideration of the size and economy of the reactor in the scale-up step.
  • a method of controlling the volume of the aqueous phase as a method of reducing the solubility of donepezil in the aqueous phase is not preferable.
  • microspheres include a solvent evaporation method, a solvent extraction method, a spray drying method, a membrane emulsification method, and a microfluidic method. method), but the previously reported sustained-release microspheres containing donepezil were mainly prepared using a solvent evaporation method or a membrane emulsification method (Korean Patent Application Laid-Open No. 2017-0179678, Korean Patent Publication No. 2019-0064526).
  • the solvent evaporation method controls the rotation speed per minute of a homogenizer to form droplets through mixing of the aqueous phase and the dispersion (oil phase).
  • the droplets generated in this process are inevitably accompanied by aggregation, expansion, and splitting phenomena due to collisions caused by high shear stress. Reproducibility may be low.
  • the membrane emulsification method may cause problems in production, such as a polymer forming a film on the surface of the membrane while the dispersed phase passes through the micropores of the membrane, thereby reducing the production yield.
  • the present inventors have developed a method for reducing the solubility of donepezil in aqueous phase by preparing donepezil-containing PLGA microspheres in a microfluidic method using a low-temperature aqueous phase, and thus prepared donepezil-containing PLGA.
  • the present invention was completed by confirming that microspheres contain donepezil in a high content and have excellent sustained-release effect and manufacturing reproducibility.
  • the present inventors developed a method for producing sustained-release PLGA microspheres containing donepezil that can be used for safe and stable production of therapeutic agents, etc. completed.
  • One object of the present invention is to provide a method for producing sustained-release PLGA microspheres containing donepezil, comprising: i) donepezil or a pharmaceutically acceptable salt thereof, poly (lactic-co-glycolic acid) (PLGA) and an organic solvent.
  • a sustained-release PLGA microsphere containing donepezil comprising the steps of injecting a dispersed phase into a microfluidic chip to prepare microsphere droplets, and ii) dispersing the microsphere droplets in an aqueous phase of 15 to 25° C. containing a surfactant.
  • the method for producing sustained-release PLGA microspheres containing donepezil of the present invention can produce sustained-release microspheres with high production reproducibility while containing a high content of donepezil, and thus can be used for the manufacture of safe and stable therapeutic agents.
  • 1 is a graph showing the cumulative dissolution rate of donepezil-containing sustained-release PLGA microspheres according to the injected donepezil content.
  • FIG. 2 is a view taken with an optical microscope of donepezil-containing sustained-release PLGA microspheres according to the temperature of the aqueous phase.
  • 3 is a graph showing the encapsulation rate of donepezil-containing sustained-release PLGA microspheres according to temperature.
  • One aspect of the present invention for achieving the above object is a method for producing sustained-release PLGA microspheres containing donepezil, i) donepezil or a pharmaceutically acceptable salt thereof, PLGA (Poly (lactic-co-glycolic acid)) and injecting a dispersed phase containing an organic solvent into a microfluidic chip to prepare microsphere droplets;
  • PLGA Poly (lactic-co-glycolic acid)
  • Donepezil refers to a compound having the structure of Formula 1 below. Donepezil of the present invention may be used as a therapeutic drug for Alzheimer's disease, but is not limited thereto.
  • PLGA microspheres specialized for donepezil it was attempted to prepare PLGA microspheres specialized for donepezil. Specifically, it is characterized in that PLGA microspheres containing donepezil, in particular, high content of donepezil, while showing sustained-release dissolution.
  • salts which are substances in which a cation and anion are bonded by electrostatic attraction, and is usually combined with a metal salt or an organic base. salts, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, and the like.
  • inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono- and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkandiones
  • Non-toxic organic acids such as ates, aromatic acids, aliphatic and aromatic sulfonic acids and sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, nitrates, phosphates, monohydrogen phosphates, dihydrogen phosphates, metaphosphates, pyrophosphates Phosphate chloride, bromide, iodide, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate,
  • PLGA polylactide-co-glycolic acid
  • the PLGA may be a block copolymer or a random copolymer.
  • the composition ratio of the lactide unit and the glycolide unit according to the PLGA of the present invention is 50:50 to 95: It may be 5 days, and specifically, it may be 75:25 to 85:15 when the targeted drug release period is delayed from 1 week to 1 month.
  • organic solvent is a liquid organic material with good volatility and low miscibility with water that can dissolve donepezil and PLGA, and may be chloroform, ethyl ether, dichloromethane, or a mixture thereof. , may be specifically dichloromethane, but is not limited thereto.
  • the dichloromethane is an organic solvent having a boiling point of 39.6 ° C. as a volatile material, and the solubility in water according to temperature is less than 25 ° C. When the temperature is lower, the solubility of dichloromethane in water increases, and when the temperature is 25 ° C. or more, the temperature is It has a solubility graph in the form of a quadratic function in which the solubility of dichloromethane in water increases as it increases (IUPAC-NIST Solubility Database).
  • the term “dispersed phase” refers to a composition for constituting an internal water phase in the case of water in oil microspheres, and an oil in the case of oil in water microspheres. phase), in the case of water in oil in water microspheres, as a composition for constituting an internal primary water in oil emulsion or primary emulsion, the external phase of the composition for preparing microspheres It refers to a mixture in which the drug and the polymer are dissolved or dispersed in the inner phase except for the (outer phase).
  • the dispersed phase of the present invention may include donepezil or a pharmaceutically acceptable salt thereof, PLGA, and an organic solvent.
  • the weight ratio of donepezil or a pharmaceutically acceptable salt thereof and PLGA included in the dispersed phase may be 15:85 to 40:60.
  • donepezil or a pharmaceutically acceptable salt thereof may be 15% or more, and more specifically, 15 to 40%, 20 to 40%, or 24 to 36%.
  • the production reproducibility of PLGA microspheres is high, and there is a technical significance in that sustained release can be achieved.
  • microfluidic chip refers to a reactor having a micro-channel having a size of a micrometer region, and means a reactor capable of continuously introducing an immiscible continuous phase and a dispersed phase by a pump. If the microfluid can be produced through the input of the continuous phase and the dispersed phase, it corresponds to the microfluidic chip of the present invention regardless of the shape of the reactor.
  • the dispersed phase may be injected into the microfluidic chip simultaneously with the continuous phase through separate passages.
  • the "continuous phase” refers to a fluid including a surfactant, which is injected into the microfluidic chip for the production of microsphere droplets.
  • microsphere droplets can be prepared from the contact point between the dispersed and continuous phases inside the microfluidic chip.
  • the term “droplet” refers to droplets of a dispersed phase dispersed in a colloidal form in an aqueous phase.
  • the terms “droplet” and “microsphere droplet” have the same meaning and may be used interchangeably.
  • the microsphere droplets of the present invention are intermediate substances obtained in the preparation step of donepezil-containing sustained-release PLGA microspheres.
  • microsphere droplets of the present invention are prepared by injecting a dispersed phase containing donepezil or a pharmaceutically acceptable salt thereof, PLGA, and an organic solvent into a microfluidic chip, and the prepared microsphere droplets are dispersed in an aqueous phase containing a surfactant to be done Pegil-containing sustained-release PLGA microspheres can be prepared.
  • surfactant refers to a substance that lowers the interfacial tension between the dispersed phase and the external aqueous phase, and serves to prevent merging and aggregation through collisions between the generated droplets.
  • gelatin sodium oleate, sodium stearate, sodium lauryl sulfate, anionic surfactants such as sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan fatty esters such as Tween 80, Tween 60 (Polysorbate)
  • SDS sodium dodecyl sulfate
  • polyoxyethylene sorbitan fatty esters such as Tween 80, Tween 60 (Polysorbate)
  • may be a nonionic surfactant such as polyoxyethylene castor oil derivative, polyvinyl alcohol (PVA, polyvinyl alcohol), carboxymethyl cellulose, lecithin, hyaluronic acid, or a mixture thereof, specifically polyvinyl alcohol.
  • the method for producing donepezil-containing sustained-release PLGA microspheres of the present invention includes dispersing the microsphere droplets obtained in step i) of the present invention in a surfactant-containing aqueous phase at 15 to 25°C.
  • the morphological characteristics of the microspheres according to the temperature change of the aqueous phase containing the surfactant were analyzed.
  • Comparative Example 3 in which the microsphere droplets were dispersed in the aqueous phase at 10° C., it was confirmed that aggregation between the droplets occurred ( FIG. 2 ), and the temperature of the aqueous phase in step ii) of the present invention was It was confirmed that 15 to 25° C., which can reduce the solubility of the vagina and can stably harden the droplets by diffusing the dichloromethane contained in the droplets into the external aqueous phase, is suitable.
  • drug release of PLGA microspheres has a tri-phasic profile.
  • burst phase or initial phase
  • the drug that is not encapsulated in the microsphere or the drug on the surface of the microsphere is rapidly diffused and released, and in the second lag phase, the polymer chain is decomposed into oligomers, This is the stage in which channels begin to form, and the drug release is significantly delayed.
  • degradation phase also called erosion phase, or continuous phase, depending on the name
  • degradation phase is the phase where the polymer is decomposed and the water channel formed inside is reduced. It refers to the stage in which the drug is released through
  • Drug release in the burst phase in which the drug on the surface of microspheres is rapidly diffused, follows Fick's Low and First order kinetics. Drugs located on the surface of microspheres can be easily released from microspheres according to drug solubility without resistance of the polymer matrix.
  • the drug release is significantly delayed because the drug on the surface of the microspheres has already diffused and dissipated due to the early drug release in the burst phase, and the internal water channel, which is a pathway for the drug release inside the microspheres, is not sufficiently created.
  • the drug release in the degradation phase has a property that the diffusion rate is significantly slower than in the burst phase because the diffusion of the drug is affected by the decomposition of the polymer matrix, and thus it is closer to the zero-order kinetic.
  • the duration of the lag phase is affected by 1) drug content, 2) microsphere internal porosity generated during the manufacturing process, and 3) polymer properties.
  • the higher the drug content inside the microspheres, the shorter the period of the lag phase is because the difference in osmotic pressure inside and outside the microspheres widens and the formation of internal water channels is promoted. The channel formation is accelerated and the lag phase period is shortened.
  • the end chain of the polymer is a carboxyl group or when the molecular weight of the polymer is small, the lag phase period is reduced because water is more easily introduced into the microspheres.
  • sustained release means that the drug is slowly released over a long period of time in the body by controlling the release mechanism.
  • sustained release of the present invention is not controlled only by simple diffusion (Fick's law) according to a general concentration gradient, but the release mechanism of the drug by the simple diffusion and the dissolution control effect (Higuchi model) by the polymer matrix is merged with each other It may appear in the form
  • the drug release rate per unit time is expressed as a log value, and the value decreases linearly as time elapses.
  • the sustained-release pharmaceutical formulation in the form of polymer-based microspheres of the present invention has a relatively low initial burst release rate (%), and after drug release by initial simple diffusion , even if the drug release rate per unit time in the lag phase and the polymer degradation phase is expressed as a log value, the value does not decrease linearly.
  • Examples 1 and 2 both of which are donepezil-containing PLGA microspheres prepared by the method of the present invention, contain a high content of donepezil, but unlike the conventional PLGA microspheres, It was confirmed that the drug could be released in a sufficiently sustained release until the time of polymer degradation, and it was confirmed that the drug had a dissolution pattern corresponding to the sustained release (Table 3).
  • microsphere refers to spherical particles having a diameter of 1 mm or less.
  • the method for producing the donepezil-containing sustained-release PLGA microspheres may be characterized in that the content or encapsulation rate of donepezil contained in the donepezil-containing sustained-release PLGA microspheres is uniform.
  • the dissolution rate differs significantly depending on the content of the drug of the present invention, the content inside the microspheres is very important, and the uniformity or reproducibility of the production is an important requirement. The rate was adjusted to be uniform.
  • the encapsulation rate of donepezil may have an error rate of 5% or less compared to the average value, but is not limited thereto.
  • the uniformity of the donepezil content or encapsulation rate means that the production reproducibility between production batches is high.
  • the "encapsulation rate" of the present invention means the percentage of the value obtained by dividing the content of the drug contained in the microspheres by the target content of the drug, that is, the content of the drug contained in the initial dispersion phase.
  • the donepezil content and encapsulation rate of the donepezil-containing sustained-release PLGA microspheres prepared using the microfluidic method and the solvent evaporation method were measured, and the error rate compared to the average value of the encapsulation rate according to the manufacturing method was calculated.
  • Examples 6 to 8 prepared using the solvent evaporation method had a significantly lower error rate compared to the average value of the encapsulation rate (Table 6) ), it was confirmed that the manufacturing method using the microfluidic method has high reproducibility between batches.
  • the method for producing donepezil-containing sustained-release PLGA microspheres of the present invention may further include the step of iii) removing the organic solvent from the dispersed microsphere droplets.
  • the method for removing the organic solvent of the dispersed microsphere droplets in the present invention is a method of removing the organic solvent by stirring by increasing the aqueous phase temperature under reduced pressure, and removing the organic solvent by stirring by increasing the aqueous phase temperature in a controlled vacuum condition It may be selected from a method of removing the organic solvent by stirring by increasing the temperature of the aqueous phase while introducing nitrogen gas into the aqueous phase, or a method of removing the organic solvent by simply stirring by increasing the aqueous phase temperature.
  • the removal of the organic solvent in step iii) may be due to an increase in the temperature of the aqueous phase, but is not particularly limited as long as it is a temperature range capable of effectively removing the organic solvent.
  • the temperature of the prepared donepezil-containing sustained-release PLGA microspheres may be increased to 30 to 45° C., which is below the glass transition temperature and close to the boiling point of the organic solvent.
  • Step iii) of the present invention may further include replacing the aqueous phase.
  • the method for producing donepezil-containing sustained-release PLGA microspheres of the present invention may further include, after the organic solvent removal step of step iii), iv) curing the microsphere droplets from which the organic solvent has been removed.
  • the curing of step iv) may be performed at a temperature of 15 to 25° C., but is not limited thereto.
  • the method for producing the donepezil-containing sustained-release PLGA microspheres of the present invention may further include: iv) curing the microsphere droplets, and v) washing, filtering, and drying the cured microspheres.
  • the filtration of step v) may be using a membrane filter, but is not limited thereto.
  • the drying in step v) may be at least one selected from vacuum drying, natural drying, freeze drying, heat drying or blow drying, and specifically, may be freeze drying, but is not limited thereto.
  • a dispersed phase containing donepezil was prepared by dissolving 200 mg of the biodegradable polymer PLGA (DLG85-7A, manufactured by Merck) and 65 mg of donepezil base (manufactured by Neuland Laboratories) in 2 mL of dichloromethane solvent. While injecting the prepared dispersed phase into a 1% polyvinyl alcohol aqueous solution, a homogenizer (Silverson, L5M-A) was used to stir (1,500 rpm) to form microspheres in the form of droplets. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • a dispersed phase containing donepezil was prepared by dissolving 200 mg of the biodegradable polymer PLGA and 110 mg of donepezil base in 2 mL of dichloromethane solvent. While injecting the prepared dispersed phase into 1% polyvinyl alcohol aqueous solution, it was stirred (1,500 rpm) using a homogenizer to form microspheres in the form of droplets. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • Example 1 Preparation of donepezil-containing PLGA microspheres in which the weight ratio of donepezil and PLGA contained in the dispersed phase is 24.5:75.5 (microfluidic method)
  • microsphere droplets It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • Example 2 Preparation of PLGA microspheres containing donepezil in which the weight ratio of donepezil and PLGA contained in the dispersed phase was 35.5:64.5 (microfluidic method)
  • the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • a 1% polyvinyl alcohol aqueous solution was used as the aqueous phase (continuous phase), and it was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 10 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • Example 3 Preparation of donepezil-containing PLGA microspheres with a temperature of 15° C. of an aqueous phase containing surfactant (microfluidic method)
  • aqueous phase used 1% polyvinyl alcohol aqueous solution, and was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 15 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • Example 4 Preparation of donepezil-containing PLGA microspheres with a temperature of 20° C. of an aqueous phase containing a surfactant (microfluidic method)
  • a 1% polyvinyl alcohol aqueous solution was used as the aqueous phase (continuous phase), and it was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 20 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • Example 5 Preparation of donepezil-containing PLGA microspheres with a temperature of 25° C. of an aqueous phase containing a surfactant (microfluidic method)
  • aqueous phase used 1% polyvinyl alcohol aqueous solution, and was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 25 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • aqueous phase used 1% polyvinyl alcohol aqueous solution, and was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 30 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • aqueous phase used 1% polyvinyl alcohol aqueous solution, and was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 35 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • aqueous phase used 1% polyvinyl alcohol aqueous solution, and was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at a temperature of 20 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
  • the dichloromethane solvent was removed at a temperature of 36° C. for 2 hours and solidified at a temperature of 20° C. for 1 hour to form microspheres.
  • the formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • a dispersed phase containing donepezil was prepared by dissolving 100 mg of the biodegradable polymer PLGA and 55 mg of donepezil base in 1 mL of dichloromethane solvent. While injecting the prepared dispersed phase into 1% polyvinyl alcohol aqueous solution, it was stirred (4,000 rpm) using a homogenizer to form microspheres in the form of droplets. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36° C. for 2 hours and solidified at a temperature of 20° C. for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
  • Drug content (%) concentration of drug quantified by HPLC / concentration of microspheres * 100
  • Drug encapsulation rate (%) drug content / target content of drug * 100
  • Table 3 below shows the cumulative dissolution rate of donepezil-containing sustained-release PLGA microspheres according to the ratio of donepezil included in the dispersed phase, and a graph thereof is shown in FIG. 1 .
  • the dissolution rate differs significantly depending on the donepezil content. Therefore, the uniformity of the donepezil content is essential in the production of the donepezil-containing sustained-release PLGA microspheres. confirmed that it should be. In particular, since the dissolution of donepezil is accelerated as the amount of injected donepezil is increased, it was confirmed that content uniformity and production reproducibility for the production of sustained-release PLGA microspheres containing high content of donepezil are more important requirements.
  • Examples 1 and 2 which are donepezil-containing PLGA microspheres provided from a method of dispersing microsphere droplets in an aqueous phase of 15 to 25° C. containing a surfactant, both have a drug content higher than 15%, despite the high content It was confirmed that, unlike the conventional PLGA microspheres, they had a dissolution pattern corresponding to the sustained release of the present invention. That is, the PLGA microspheres containing donepezil of the present invention have a complex effect of showing sustained-release dissolution while containing a high content of donepezil by combining the production conditions such as the setting of the aqueous phase temperature of 15 to 25°C and the microfluidic method. Confirmed.
  • microsphere droplets obtained from the aqueous phase were collected and dispersed in a 1% polyvinyl alcohol solution, and then using an optical microscope to form the microspheres was observed.
  • Example 3 The form of the microspheres prepared in each Example and Comparative Example is as shown in FIG. [Comparative Example 3] dispersed in an aqueous phase at 10 ° C had a problem in that aggregation occurred between the droplets, and the morphology of the donepezil-containing sustained-release PLGA microspheres obtained in all Examples and Comparative Examples except for this was uniform without aggregation. One microsphere was observed.
  • the temperature of the aqueous phase of less than 15° C. was not suitable as a production condition for donepezil-containing sustained-release PLGA microspheres.
  • Table 4 shows the donepezil content and encapsulation rate of the sustained-release PLGA microspheres containing donepezil according to the temperature of the aqueous phase containing the surfactant, and a graph thereof is shown in FIG. 3 .
  • Examples 3 to 5 are microspheres prepared by adjusting the temperature of the aqueous phase to 15 to 25 ° C. Under the above temperature conditions, the solubility of dichloromethane increases and the solubility of donepezil in the aqueous phase decreases, so that a high drug It was confirmed that the droplets were stably hardened while the microspheres having an encapsulation rate were manufactured.
  • aqueous phase temperature of 15 to 25° C. was most suitable for the production of donepezil-containing sustained-release PLGA microspheres having a high drug encapsulation rate.
  • Table 5 shows the content and encapsulation rate of donepezil-containing sustained-release PLGA microspheres prepared using the microfluidic method and the solvent evaporation method.
  • the dissolution rate of the donepezil-containing sustained-release PLGA microspheres is very sensitive to the donepezil content (FIG. 1), so content uniformity according to the preparation method must be guaranteed.
  • the microfluidic method has a uniform encapsulation rate and a significantly lower error rate compared to the average encapsulation rate compared to the solvent evaporation method, resulting in high production reproducibility between batches It was confirmed that pegil-containing sustained-release PLGA microspheres were produced.
  • microfluidic method was most suitable for the method for producing donepezil-containing sustained-release PLGA microspheres provided by the present invention considering the uniformity of the donepezil content or encapsulation rate.
  • the PLGA microspheres containing donepezil of the present invention solve the problem of donepezil content, which is a problem of the existing donepezil PLGA microspheres, by setting the temperature range of the aqueous phase and the microfluidic method, and at the same time, have a sustained release effect and uniformity. It was confirmed that it has a very good pharmaceutical effect of securing manufacturing reproducibility.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a method for preparing donepezil-containing sustained-release PLGA microspheres and, more specifically, to a method for preparing donepezil-containing sustained-release PLGA microspheres comprising the steps of: i) preparing microsphere droplets by injecting a dispersed phase comprising donepezil or a pharmaceutically acceptable salt thereof, poly(lactic-co-glycolic acid) (PLGA), and an organic solvent into a microfluidic chip; and ii) dispersing the microsphere droplets into a water phase of 15-20℃ comprising a surfactant. The method for producing donepezil-containing sustained-release PLGA microspheres of the present invention can produce sustained-release microspheres having high production reproducibility while containing a high content of donepezil, and thus can be used for production of safe and stable therapeutic agents and the like.

Description

도네페질 함유 서방출성 PLGA 미립구의 제조방법Method for producing sustained-release PLGA microspheres containing donepezil
본 발명은 도네페질 함유 서방출성 PLGA 미립구의 제조방법에 관한 것으로, 구체적으로, 도네페질 함유 서방출성 PLGA 미립구의 제조방법에 있어서, i) 도네페질 또는 이의 약제학적으로 허용되는 염, PLGA(Poly(lactic-co-glycolic acid) 및 유기용매를 포함하는 분산상을 미세유체칩에 주입하여 미립구 액적을 제조하는 단계; 및 ii) 상기 미립구 액적을, 계면활성제가 포함된 15 내지 25℃의 수상에 분산시키는 단계를 포함하는 것인 도네페질 함유 서방출성 PLGA 미립구의 제조방법에 관한 것이다.The present invention relates to a method for producing donepezil-containing sustained-release PLGA microspheres, and specifically, to a method for producing donepezil-containing sustained-release PLGA microspheres, i) donepezil or a pharmaceutically acceptable salt thereof, PLGA (Poly( lactic-co-glycolic acid) and an organic solvent to prepare microfluidic droplets by injecting the dispersed phase into the microfluidic chip; It relates to a method for producing donepezil-containing sustained-release PLGA microspheres comprising the steps of:
도네페질(donepezil)은 아세틸콜린 에스테라제 억제 효과를 갖는 알츠하이머형 치매증상의 치료에 사용되는 약물로서, 취침 시 도네페질 염산염의 형태로 5 mg을 1일 1회 투여하는 것으로 시작하여 4~6주간 사용하고 임상적 반응을 평가한 후, 10mg으로 증량시켜 1일 1회 투여하는 용법·용량을 가진다. 현재 시점에서 유통되고 있는 약물은 염산 도네페질(donepezil hydrochloride) 함유 경구용 정제 제형 및 구강붕해 필름제형으로, 치매 환자가 스스로 규칙적으로 복약하기에 어려움이 있어 복약 순응도가 낮고, 지속적으로 복약 시, 설사 및 구역질과 같은 소화기 장애에 대한 문제점이 대두되고 있다.Donepezil (donepezil) is a drug used for the treatment of Alzheimer's-type dementia, which has an acetylcholine esterase inhibitory effect. After weekly use and clinical response evaluation, the dosage is increased to 10 mg and administered once a day. The drugs currently in circulation are oral tablet formulations containing donepezil hydrochloride and an orally disintegrating film formulation. Problems with digestive disorders such as diarrhea and nausea are emerging.
이에, 환자의 복약 순응도를 개선하고자 생분해성 고분자를 이용한 도네페질 서방출성 주사 제제가 개발되어 왔다. Accordingly, a sustained-release injection of donepezil using a biodegradable polymer has been developed to improve patient compliance.
서방출성 미립구 개발에 사용되는 대표적인 생분해성 고분자로는 폴리 락타이드-코-글리콜라이드(Poly(lactic-co-glycolic acid, PLGA), 폴리락트산(Poly lactic acid, PLA)이 있다. PLGA와 PLA는 생체 내에서 대부분 가수분해에 의해 인체에 무해한 물과 이산화탄소로 분해 된다는 점은 동일하나, 서로 다른 구조를 가지며, 그로 인해 상당히 상이한 특성을 가진다. 폴리락트산(PLA)은 락타이드(Lactide) 유닛으로만 길게 결합하여 있는 단일 중합체이고, 폴리 락타이드-코-글리콜라이드는 락타이드(Lactide) 유닛과 글리콜라이드(Glycolide) 유닛이 교차하여 결합되어 있는 공중합체로써, PLGA의 물성은 락타이드와 글리콜라이드의 조성비에 의존한다. 락타이드 비율이 증가할수록 결정성이 증가하여 강도가 높아지고, 생체 내 반감기가 길어지는 특징을 가진다. 다시 말해, 생분해성 고분자는 고분자의 구조, 단량체의 조성에 따라 고분자의 생분해 속도, 미립구의 함량 및 성상에 각기 다른 영향을 미친다.Representative biodegradable polymers used in the development of sustained-release microspheres include poly(lactic-co-glycolic acid, PLGA) and polylactic acid (PLA). PLGA and PLA are Most of them in the living body are decomposed into water and carbon dioxide, which are harmless to the human body by hydrolysis, but have different structures and thus have significantly different properties. It is a homopolymer with long bonds, and poly lactide-co-glycolide is a copolymer in which lactide and glycolide units are cross-linked. The physical properties of PLGA are that of lactide and glycolide. Depends on the composition ratio As the lactide ratio increases, crystallinity increases, strength increases, and the in vivo half-life becomes longer. , each has a different effect on the content and properties of microspheres.
기존에 보고된 연구 결과에 따르면 도네페질 서방출성 미립구 개발에 사용되는 대표적인 생분해성 고분자로써 PLGA는, PLA과 비교하여 생체 내 잔존 기간이 적다는 장점을 가짐에도 불구하고, 미립구에 함유된 약물의 함량을 감소시킬 수 있어 적합하지 않은 것으로 알려져 왔다.According to previously reported research results, PLGA, as a representative biodegradable polymer used for the development of donepezil sustained-release microspheres, has the advantage of shorter in vivo retention time compared to PLA. It has been known to be unsuitable because it can reduce
이와 관련한 일례로, Biomaterials, 28(2007) 1882~1888에서는 PLGA를 이용하여 도네페질을 함유한 미립구를 용매증발법으로 제조하였으나, 수상에 대한 도네페질의 용해도가 높기 때문에 제조된 미립구의 함량이 13.2±2.1% 정도로 낮은 함량을 보였다. 낮은 함량의 도네페질 함유 미립구가 약제학적으로 유효성을 갖기 위해서는 상기 미립구의 투여 용량이 과도하게 많아져야 하는 바, 이는 의약학적으로 탁월한 제형으로 볼 수 없다 (대한민국 공개특허 19-0064526호).As an example related to this, in Biomaterials, 28 (2007) 1882 to 1888, microspheres containing donepezil were prepared by solvent evaporation using PLGA, but the content of the prepared microspheres was 13.2 because of the high solubility of donepezil in aqueous phase. The content was as low as ±2.1%. In order for the microspheres containing the low content of donepezil to be pharmaceutically effective, the administered dose of the microspheres must be excessively increased, which cannot be regarded as an excellent pharmaceutical formulation (Korean Patent Publication No. 19-0064526).
또 다른 일례로써, 도네페질을 함유한 PLGA 미립구를 미세유체법으로 제조한 경우, 미립구를 제조하기 위한 분산상에 약물과 PLGA의 중량 비율을 1:9로 한정해야만 초기 급격한 약물 방출 없이 약물이 서방출되는 경향을 나타내었으며, 이 때, 약물의 함량은 10% 이하이기 때문에 실제 치료 효과를 나타내기 위한 미립구의 투여량이 매우 많다는 문제가 있다 (2019 AAPS M0930-02-13).As another example, when PLGA microspheres containing donepezil are prepared by a microfluidic method, the drug and PLGA weight ratio must be limited to 1:9 in the dispersed phase for preparing the microspheres to allow sustained release of the drug without initial rapid drug release. In this case, there is a problem that the dosage of microspheres to show the actual therapeutic effect is very large because the content of the drug is 10% or less (2019 AAPS M0930-02-13).
이를 통해, 도네페질을 함유하는 미립구의 경우, 적절한 방출 속도 및 투여량을 고려했을 때, 미립구 내부의 도네페질 함량을 조절하는 것이 매우 중요하며, 도네페질을 고함량으로 포함하면서 서방적 용출을 동시에 나타내는 PLGA 미립구를 제조하는 것이 당업계의 기술적 과제임을 알 수 있다. 이에, 미립구에 포함된 도네페질의 함량을 증가시킬 방법으로, 수상에 대한 도네페질의 용해도를 감소시키는 방법에 대해 고찰하였다.Accordingly, in the case of microspheres containing donepezil, it is very important to control the content of donepezil inside the microspheres in consideration of an appropriate release rate and dosage, and to simultaneously release sustained release while containing donepezil in a high content. It can be seen that it is a technical task in the art to prepare the PLGA microspheres shown. Accordingly, as a method of increasing the content of donepezil contained in microspheres, a method of reducing the solubility of donepezil in aqueous phase was studied.
수상에 대한 도네페질의 용해도를 감소시키는 방법의 하나로, 외부수상의 pH를 조절하는 방법이 있다. 그러나, 미립구 제조 시 사용하는 PLGA는 미립구 내부에 고분자 매트릭스를 형성하여 약물을 미립구에 봉입하는 담체의 역할을 하는데, 수상이 산성 또는 염기성일 경우, 담체의 역할을 하는 PLGA의 가수분해가 촉진되어 적절한 담체의 역할을 수행하지 못하므로 수상의 pH를 조절하는 방법은 고함량의 도네페질을 포함하는 미립구의 제조방법으로써 적절하지 않다 (J Control Release. 2007 Oct 8;122(3):338-44).As one of the methods of reducing the solubility of donepezil in the aqueous phase, there is a method of adjusting the pH of the external aqueous phase. However, PLGA used in the preparation of microspheres forms a polymer matrix inside the microspheres and acts as a carrier to encapsulate the drug in the microspheres. Since it cannot serve as a carrier, a method of adjusting the pH of the aqueous phase is not suitable as a method for preparing microspheres containing a high content of donepezil (J Control Release. 2007 Oct 8;122(3):338-44) .
수상에 대한 도네페질의 용해도를 감소시키는 또 다른 방법으로, 수상의 계면활성제 농도를 조절하는 방법이 있다. 일례로, Open Pharmaceutical Science Journal, 2016, 3, 182-195에서는 수상의 계면활성제의 농도가 미립구의 약물 봉입률 및 약물 방출 속도에 영향을 미치는 요소임을 확인하였다. 계면활성제는 수상과 오일상과의 계면에 흡착하여 안정적인 액적 형성을 돕는다. 이 때, 계면활성제의 농도가 증가하면 크기가 작은 안정적인 액적을 형성할 수 있지만, 수상에 대한 약물의 용해도를 증가시켜 약물이 미립구 내부에서 외부로 분배되어 약물의 함량 감소를 초래할 수 있다. 반면, 계면활성제의 농도가 감소하면, colloidal stability가 낮아져서 불안정한 액적이 생성되어 액적 간의 유착에 의한 응집(aggregation)이 발생될 수 있다. 따라서, 도네페질의 함량 증가를 목적으로 수상의 계면활성제 농도를 조절하여 도네페질의 용해도를 감소시키는 방법은, 계면활성제의 농도 조절 범위가 극히 제한되어 있으므로 바람직하지 않다. Another method of reducing the solubility of donepezil in the aqueous phase is to control the surfactant concentration in the aqueous phase. For example, in Open Pharmaceutical Science Journal, 2016, 3, 182-195, it was confirmed that the concentration of surfactant in the aqueous phase is a factor affecting the drug encapsulation rate and drug release rate of microspheres. The surfactant helps to form stable droplets by adsorbing to the interface between the aqueous phase and the oil phase. At this time, if the concentration of the surfactant is increased, it is possible to form small stable droplets, but by increasing the solubility of the drug in the aqueous phase, the drug is distributed from the inside of the microspheres to the outside, which may lead to a decrease in the drug content. On the other hand, when the concentration of the surfactant is decreased, colloidal stability is lowered and unstable droplets are generated, which may cause aggregation due to adhesion between the droplets. Therefore, a method of reducing the solubility of donepezil by controlling the concentration of the surfactant in the aqueous phase for the purpose of increasing the content of donepezil is not preferable because the range of controlling the concentration of the surfactant is extremely limited.
수상에 대한 도네페질의 용해도를 감소시키는 또 다른 방법으로, 수상의 부피를 조절하는 방법이 있다. 일례로, Arabian Journal of Chemistry (2012) 5, 103-108에 따르면, 약물의 함량 및 봉입률은 수상의 부피 변화에 따라 조절될 수 있다. 미립구의 제조 시 수상의 부피가 감소하면, 액적 간의 충돌이 증가하여 액적 간의 뭉침이나 팽창을 발생시켜 액적 간의 응집을 발생시킬 수 있다. 반면, 수상의 부피를 증가시키는 방법은, 교반 시 발생하는 액적 간의 충돌을 줄여 응집의 발생을 감소시킬 수 있지만, scale-up 단계에서 반응조의 크기 및 경제성을 고려하였을 때 상당히 비생산적인 방법이다. 상기와 같은 이유로, 수상에 대한 도네페질의 용해도를 감소시키는 방법으로서 수상의 부피를 조절하는 방법은 바람직하지 않다.Another method of reducing the solubility of donepezil in the aqueous phase is to control the volume of the aqueous phase. For example, according to Arabian Journal of Chemistry (2012) 5, 103-108, the content and encapsulation rate of a drug may be adjusted according to a change in the volume of the aqueous phase. When the volume of the aqueous phase decreases during the preparation of the microspheres, collisions between the droplets increase, causing agglomeration or expansion between the droplets, thereby causing aggregation between the droplets. On the other hand, the method of increasing the volume of the aqueous phase can reduce the occurrence of agglomeration by reducing the collision between the droplets that occur during stirring, but it is a fairly counterproductive method in consideration of the size and economy of the reactor in the scale-up step. For the above reasons, a method of controlling the volume of the aqueous phase as a method of reducing the solubility of donepezil in the aqueous phase is not preferable.
이에, 수상의 pH를 조절하거나 수상의 계면활성제 농도를 조절하거나, 수상의 부피를 조절하는 방법이 아닌, 다른 방법을 이용한 고함량의 도네페질 함유 서방출성 미립구의 개발이 요구되는 바이다.Accordingly, there is a need for the development of sustained-release microspheres containing a high content of donepezil using a method other than a method of controlling the pH of the aqueous phase, adjusting the surfactant concentration of the aqueous phase, or controlling the volume of the aqueous phase.
한편, 미립구를 제조하는 알려진 방법으로는, 용매증발법 (Solvent evaporation method), 용매추출법 (Solvent extraction method), 분무건조법 (Spray drying method), 막유화법 (Membrane emulsification method), 미세유체법 (Microfluidic method) 등이 있으나, 기존에 보고된 도네페질 함유 서방출성 미립구는 주로 용매증발법 혹은 막유화법을 이용하여 제조되었다 (대한민국 공개특허 제2017-0179678호, 대한민국 공개특허 제2019-0064526호).On the other hand, known methods for preparing the microspheres include a solvent evaporation method, a solvent extraction method, a spray drying method, a membrane emulsification method, and a microfluidic method. method), but the previously reported sustained-release microspheres containing donepezil were mainly prepared using a solvent evaporation method or a membrane emulsification method (Korean Patent Application Laid-Open No. 2017-0179678, Korean Patent Publication No. 2019-0064526).
용매증발법은 호모게나이저(Homogenizer)의 분당 회전속도를 조절하여, 수상과 분산액(오일상)과의 혼합을 통해 액적을 형성한다. 이 과정에서 생성된 액적은 높은 전단 응력(shear stress)에 의한 충돌로 뭉침과 팽창, 쪼개짐 현상이 필연적으로 수반되며, 그로 인해 수상으로 도네페질이 쉽게 노출되어 약물의 함량이 감소하거나, batch 간 제조 재현성이 낮을 수 있다. 또한, 막유화법은 분산상이 멤브레인의 미세 세공을 통과하는 과정에서, 고분자가 멤브레인 표면에서 필름을 형성하여 제조 수율을 떨어트리는 등 생산상의 문제가 발생할 수 있다.The solvent evaporation method controls the rotation speed per minute of a homogenizer to form droplets through mixing of the aqueous phase and the dispersion (oil phase). The droplets generated in this process are inevitably accompanied by aggregation, expansion, and splitting phenomena due to collisions caused by high shear stress. Reproducibility may be low. In addition, the membrane emulsification method may cause problems in production, such as a polymer forming a film on the surface of the membrane while the dispersed phase passes through the micropores of the membrane, thereby reducing the production yield.
이러한 배경 하에서, 본 발명자들은 낮은 온도의 수상을 이용하여 미세유체법으로 도네페질 함유 PLGA 미립구를 제조함으로써, 수상에 대한 도네페질의 용해도를 감소시키는 방법을 개발하였고, 이를 통해 제조된 도네페질 함유 PLGA 미립구는, 도네페질을 높은 함량으로 함유하면서 그 서방출 효과 및 제조 재현성이 우수함을 확인함으로써 본 발명을 완성하였다.Under this background, the present inventors have developed a method for reducing the solubility of donepezil in aqueous phase by preparing donepezil-containing PLGA microspheres in a microfluidic method using a low-temperature aqueous phase, and thus prepared donepezil-containing PLGA. The present invention was completed by confirming that microspheres contain donepezil in a high content and have excellent sustained-release effect and manufacturing reproducibility.
본 발명자들은 고함량의 도네페질을 함유하면서도 제조 재현성이 높은 서방출성 미립구를 제조할 수 있으므로, 안전하면서 안정적인 치료제 제조 등에 이용될 수 있는 도네페질 함유 서방출성 PLGA 미립구의 제조방법을 개발하여 본 발명을 완성하였다.The present inventors developed a method for producing sustained-release PLGA microspheres containing donepezil that can be used for safe and stable production of therapeutic agents, etc. completed.
본 발명의 하나의 목적은 도네페질 함유 서방출성 PLGA 미립구의 제조방법에 있어서, i) 도네페질 또는 이의 약제학적으로 허용되는 염, PLGA(Poly(lactic-co-glycolic acid) 및 유기용매를 포함하는 분산상을 미세유체칩에 주입하여 미립구 액적을 제조하는 단계; 및 ii) 상기 미립구 액적을, 계면활성제가 포함된 15 내지 25℃의 수상에 분산시키는 단계를 포함하는 것인 도네페질 함유 서방출성 PLGA 미립구의 제조방법을 제공하는 것이다.One object of the present invention is to provide a method for producing sustained-release PLGA microspheres containing donepezil, comprising: i) donepezil or a pharmaceutically acceptable salt thereof, poly (lactic-co-glycolic acid) (PLGA) and an organic solvent. A sustained-release PLGA microsphere containing donepezil comprising the steps of injecting a dispersed phase into a microfluidic chip to prepare microsphere droplets, and ii) dispersing the microsphere droplets in an aqueous phase of 15 to 25° C. containing a surfactant. To provide a manufacturing method of
본 발명의 도네페질 함유 서방출성 PLGA 미립구의 제조방법은 고함량의 도네페질을 함유하면서 제조 재현성이 높은 서방출성 미립구를 제조할 수 있는 바, 안전하면서 안정적인 치료제 제조 등에 이용될 수 있다.The method for producing sustained-release PLGA microspheres containing donepezil of the present invention can produce sustained-release microspheres with high production reproducibility while containing a high content of donepezil, and thus can be used for the manufacture of safe and stable therapeutic agents.
도 1은 도네페질 함유 서방출성 PLGA 미립구의 투입되는 도네페질 함량에 따른 누적용출률을 나타낸 그래프이다.1 is a graph showing the cumulative dissolution rate of donepezil-containing sustained-release PLGA microspheres according to the injected donepezil content.
도 2는 수상의 온도에 따른 도네페질 함유 서방출성 PLGA 미립구를 광학현미경으로 촬영한 도이다.2 is a view taken with an optical microscope of donepezil-containing sustained-release PLGA microspheres according to the temperature of the aqueous phase.
도 3은 온도에 따른 도네페질 함유 서방출성 PLGA 미립구의 봉입률을 나타낸 그래프이다.3 is a graph showing the encapsulation rate of donepezil-containing sustained-release PLGA microspheres according to temperature.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.This will be described in detail as follows. Meanwhile, each description and embodiment disclosed in the present invention may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be considered that the scope of the present invention is limited by the specific descriptions described below.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 발명에 기재된 본 발명의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 발명에 포함되는 것으로 의도된다.In addition, those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Also, such equivalents are intended to be encompassed by the present invention.
상기 목적을 달성하기 위한 본 발명의 하나의 양태는 도네페질 함유 서방출성 PLGA 미립구의 제조방법에 있어서, i) 도네페질 또는 이의 약제학적으로 허용되는 염, PLGA(Poly(lactic-co-glycolic acid) 및 유기용매를 포함하는 분산상을 미세유체칩에 주입하여 미립구 액적을 제조하는 단계; 및 ii) 상기 미립구 액적을, 계면활성제가 포함된 15 내지 25℃의 수상에 분산시키는 단계를 포함하는 것인 도네페질 함유 서방출성 PLGA 미립구의 제조방법을 제공한다.One aspect of the present invention for achieving the above object is a method for producing sustained-release PLGA microspheres containing donepezil, i) donepezil or a pharmaceutically acceptable salt thereof, PLGA (Poly (lactic-co-glycolic acid)) and injecting a dispersed phase containing an organic solvent into a microfluidic chip to prepare microsphere droplets; Provided is a method for preparing pegil-containing sustained-release PLGA microspheres.
본 발명의 용어 "도네페질(donepezil)"은 하기 화학식 1의 구조를 갖는 화합물을 의미한다. 본 발명의 도네페질은 알츠하이머 병의 치료 약물로 사용될 수 있으나, 이에 제한되지 않는다.As used herein, the term “donepezil” refers to a compound having the structure of Formula 1 below. Donepezil of the present invention may be used as a therapeutic drug for Alzheimer's disease, but is not limited thereto.
Figure PCTKR2021008816-appb-C000001
Figure PCTKR2021008816-appb-C000001
본 발명에서는 도네페질에 특화된 PLGA 미립구를 제조하고자 하였으며, 구체적으로는 도네페질을 함유하는, 특히 도네페질을 고함량으로 함유하면서도 서방적 용출을 보이는 PLGA 미립구를 제조한 데에 특징이 있다.In the present invention, it was attempted to prepare PLGA microspheres specialized for donepezil. Specifically, it is characterized in that PLGA microspheres containing donepezil, in particular, high content of donepezil, while showing sustained-release dissolution.
본 발명의 용어 "약제학적으로 허용 가능한 염"은 양이온과 음이온이 정전기적 인력에 의해 결합하고 있는 물질인 염 중에서도 약제학적으로 사용될 수 있는 형태의 염을 의미하며, 통상적으로 금속염, 유기염기와의 염, 무기산과의 염, 유기산과의 염, 염기성 또는 산성 아미노산과의 염 등이 될 수 있다. 예를 들어, 염산, 질산, 인산, 황산, 브롬화수소산, 요오드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산류와 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트일 수 있다.The term "pharmaceutically acceptable salt" of the present invention refers to a salt in a form that can be used pharmaceutically among salts, which are substances in which a cation and anion are bonded by electrostatic attraction, and is usually combined with a metal salt or an organic base. salts, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, and the like. For example, inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono- and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkandiones Non-toxic organic acids such as ates, aromatic acids, aliphatic and aromatic sulfonic acids and sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, nitrates, phosphates, monohydrogen phosphates, dihydrogen phosphates, metaphosphates, pyrophosphates Phosphate chloride, bromide, iodide, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malo Nate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate , hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfonate, chlorobenzenesulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycolate, malate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate or mandelate.
본 발명의 용어 "PLGA"는 폴리락타이드-코-글리콜라이드(Poly(lactic-co-glycolic acid)로, 락타이드 유닛(Lactic unit)과 글리콜라이드 유닛(Glycolic unit)의 단량체가 교차하여 결합되어 있는 고분자이다. 상기 PLGA는 블록 공중합체(Block copolymer)이거나 혹은 랜덤 공중합체(Random copolymer)일 수 있다. 본 발명의 상기 PLGA에 따른 락타이드 유닛과 글리콜라이드 유닛의 조성비는 50:50 내지 95:5일 수 있으며, 구체적으로 목표한 약물 방출 기간을 1주 내지 1개월로 미루어 보았을 때 75:25 내지 85:15일 수 있다.The term "PLGA" of the present invention is polylactide-co-glycolic acid (Poly (lactic-co-glycolic acid)), the monomers of the lactide unit (Lactic unit) and the glycolide unit (Glycolic unit) are cross-bonded. The PLGA may be a block copolymer or a random copolymer. The composition ratio of the lactide unit and the glycolide unit according to the PLGA of the present invention is 50:50 to 95: It may be 5 days, and specifically, it may be 75:25 to 85:15 when the targeted drug release period is delayed from 1 week to 1 month.
본 발명의 용어 "유기용매"는 도네페질과 PLGA를 녹일 수 있는, 휘발성이 좋으면서 물과의 혼화성이 낮은 액체 상태의 유기물질로서, 클로로포름, 에틸에테르, 디클로로메탄 또는 이들의 혼합물일 수 있으며, 구체적으로 디클로로메탄일 수 있으나, 이에 제한되지 않는다. 상기 디클로로메탄은 휘발성 물질로써 끓는점이 39.6℃인 유기용매이며, 온도에 따른 물에 대한 용해도는, 25℃ 미만일 때에는 온도가 낮을수록 물에 대한 디클로로메탄의 용해도가 증가하고, 25℃ 이상일 때에는 온도가 높을수록 물에 대한 디클로로메탄의 용해도가 증가하는 2차 함수 형태의 용해도 그래프를 가진다 (IUPAC-NIST Solubility Database).As used herein, the term "organic solvent" is a liquid organic material with good volatility and low miscibility with water that can dissolve donepezil and PLGA, and may be chloroform, ethyl ether, dichloromethane, or a mixture thereof. , may be specifically dichloromethane, but is not limited thereto. The dichloromethane is an organic solvent having a boiling point of 39.6 ° C. as a volatile material, and the solubility in water according to temperature is less than 25 ° C. When the temperature is lower, the solubility of dichloromethane in water increases, and when the temperature is 25 ° C. or more, the temperature is It has a solubility graph in the form of a quadratic function in which the solubility of dichloromethane in water increases as it increases (IUPAC-NIST Solubility Database).
본 발명의 용어 "분산상(dispersed phase)"은 유중수형(water in oil) 미립구의 경우, 내부 수상(water phase)을 구성하기 위한 조성물, 수중유형(oil in water) 미립구의 경우, 내부 유상(oil phase)을 구성하기 위한 조성물, 수중유중수형(water in oil in water) 미립구의 경우, 내부 1차 유중수상(water in oil emulsion 또는 primary emulsion)을 구성하기 위한 조성물로써, 미립구 제조용 조성물 중 외부상(outer phase)을 제외한 내부상(inner phase), 즉 약물과 고분자가 용해 또는 분산된 형태의 혼합물을 의미한다. 본 발명의 분산상은 도네페질 또는 이의 약제학적으로 허용되는 염, PLGA 및 유기용매를 포함할 수 있다.As used herein, the term “dispersed phase” refers to a composition for constituting an internal water phase in the case of water in oil microspheres, and an oil in the case of oil in water microspheres. phase), in the case of water in oil in water microspheres, as a composition for constituting an internal primary water in oil emulsion or primary emulsion, the external phase of the composition for preparing microspheres It refers to a mixture in which the drug and the polymer are dissolved or dispersed in the inner phase except for the (outer phase). The dispersed phase of the present invention may include donepezil or a pharmaceutically acceptable salt thereof, PLGA, and an organic solvent.
본 발명에 있어서, 상기 분산상에 포함되는 도네페질 또는 이의 약제학적으로 허용되는 염 및 PLGA의 중량 비율은 15:85 내지 40:60일 수 있다. 구체적으로 이에 제한되지는 않으나, 상기 도네페질 또는 이의 약제학적으로 허용되는 염 및 PLGA의 중량의 합을 기준으로, 도네페질 또는 이의 약제학적으로 허용되는 염이 15% 이상일 수 있으며, 보다 구체적으로는 15 내지 40%, 20 내지 40%, 또는 24 내지 36% 일 수 있다. 본 발명에서는 상기와 같이 15% 이상의 고함량의 도네페질을 포함하면서도 PLGA 미립구 제조 재현성이 높으며, 서방적 용출을 달성할 수 있다는 데에 기술적 의의가 있다.In the present invention, the weight ratio of donepezil or a pharmaceutically acceptable salt thereof and PLGA included in the dispersed phase may be 15:85 to 40:60. Although not specifically limited thereto, based on the sum of the weight of donepezil or a pharmaceutically acceptable salt thereof and PLGA, donepezil or a pharmaceutically acceptable salt thereof may be 15% or more, and more specifically, 15 to 40%, 20 to 40%, or 24 to 36%. In the present invention, as described above, while containing donepezil in a high content of 15% or more, the production reproducibility of PLGA microspheres is high, and there is a technical significance in that sustained release can be achieved.
한편, 상기 분산상에 포함되는 도네페질의 비율이 매우 낮을 경우, 장기간 약물 방출에 필요한 약물 1회 투여량이 증가하게 되므로 상용화하기 어렵다. 반면, 분산상에 포함되는 도네페질의 비율이 과다할 경우, 미립구 표면에 노출되는 약물의 양이 증가하여 약물의 초기 용출이 급격히 증가하게 되어 충분한 서방출 효과를 얻지 못한다.On the other hand, when the ratio of donepezil included in the dispersed phase is very low, it is difficult to commercialize the drug because a single dose of the drug required for long-term drug release is increased. On the other hand, when the ratio of donepezil included in the dispersed phase is excessive, the amount of drug exposed to the surface of the microspheres increases and the initial dissolution of the drug rapidly increases, so that a sufficient sustained-release effect is not obtained.
본 발명의 용어 "미세유체칩(microfluidic chip)"은 마이크로미터 영역의 크기를 가진 미세유로가 있는 반응기로써, 펌프에 의해 서로 섞이지 않는 연속상과 분산상을 연속적으로 투입할 수 있는 반응기를 의미한다. 연속상과 분산상의 투입을 통해 미세유체를 제조할 수 있다면, 반응기의 형태와 관계없이 본 발명의 미세유체칩에 해당한다. 본 발명의 도네페질 함유 서방출성 PLGA 미립구의 제조방법은, 단계 i)에서 분산상이 연속상과 동시에 각각 별도의 통로를 통하여 미세유체칩에 주입되는 것일 수 있다. As used herein, the term “microfluidic chip” refers to a reactor having a micro-channel having a size of a micrometer region, and means a reactor capable of continuously introducing an immiscible continuous phase and a dispersed phase by a pump. If the microfluid can be produced through the input of the continuous phase and the dispersed phase, it corresponds to the microfluidic chip of the present invention regardless of the shape of the reactor. In the method for producing donepezil-containing sustained-release PLGA microspheres of the present invention, in step i), the dispersed phase may be injected into the microfluidic chip simultaneously with the continuous phase through separate passages.
본 발명에서 상기 "연속상(continuous phase)"은, 미립구 액적의 제조를 위해 미세유체칩에 주입되는, 계면활성제를 포함하는 유체를 의미한다. 본 발명의 단계 i)에서 분산상과 연속상이 미세유체칩으로 주입된 후, 미세유체칩 내부의 분산상과 연속상의 접점으로부터 미립구 액적을 제조할 수 있다.In the present invention, the "continuous phase" refers to a fluid including a surfactant, which is injected into the microfluidic chip for the production of microsphere droplets. After the dispersed phase and the continuous phase are injected into the microfluidic chip in step i) of the present invention, microsphere droplets can be prepared from the contact point between the dispersed and continuous phases inside the microfluidic chip.
본 발명의 용어 "액적"은, 수상에 콜로이도 형태로 분산된 분산상 방울을 의미한다. 본 발명의 용어 "액적"과 "미립구 액적"은 동일한 의미로써 혼용되어 사용 가능하다. 본 발명의 미립구 액적은 도네페질 함유 서방출성 PLGA 미립구의 제조단계에서 수득되는 중간 물질이다. 본 발명의 미립구 액적은 도네페질 또는 이의 약제학적으로 허용되는 염, PLGA 및 유기용매를 포함하는 분산상을 미세유체칩에 주입하여 제조되며, 제조된 미립구 액적을 계면활성제가 포함된 수상에 분산시켜 도네페질 함유 서방출성 PLGA 미립구를 제조할 수 있다.As used herein, the term “droplet” refers to droplets of a dispersed phase dispersed in a colloidal form in an aqueous phase. As used herein, the terms “droplet” and “microsphere droplet” have the same meaning and may be used interchangeably. The microsphere droplets of the present invention are intermediate substances obtained in the preparation step of donepezil-containing sustained-release PLGA microspheres. The microsphere droplets of the present invention are prepared by injecting a dispersed phase containing donepezil or a pharmaceutically acceptable salt thereof, PLGA, and an organic solvent into a microfluidic chip, and the prepared microsphere droplets are dispersed in an aqueous phase containing a surfactant to be done Pegil-containing sustained-release PLGA microspheres can be prepared.
본 발명의 용어 "계면활성제"는, 분산상과 외부의 수상과의 계면 장력을 낮추어주는 물질로써, 생성되는 액적 간의 충돌을 통해 병합 및 응집되는 것을 방지하는 역할을 한다. 예를 들어, 젤라틴, 나트륨 올레에이트, 나트륨 스테아레이트, 나트륨 라우릴 설페이트, 소듐 도데실 설페이트(SDS) 등의 음이온성 계면활성제, Tween 80, Tween 60과 같은 폴리옥시에틸렌 소르비탄 지방 에스테르(Polysorbate), 폴리옥시에틸렌 피마자유 유도체 등의 비이온성 계면활성제, 폴리비닐알코올(PVA, polyvinyl alcohol), 카르복시메틸셀룰로오스, 레시틴, 히알루론산 또는 이들의 혼합물일 수 있으며, 구체적으로 폴리비닐알코올일 수 있다.As used herein, the term "surfactant" refers to a substance that lowers the interfacial tension between the dispersed phase and the external aqueous phase, and serves to prevent merging and aggregation through collisions between the generated droplets. For example, gelatin, sodium oleate, sodium stearate, sodium lauryl sulfate, anionic surfactants such as sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan fatty esters such as Tween 80, Tween 60 (Polysorbate) , may be a nonionic surfactant such as polyoxyethylene castor oil derivative, polyvinyl alcohol (PVA, polyvinyl alcohol), carboxymethyl cellulose, lecithin, hyaluronic acid, or a mixture thereof, specifically polyvinyl alcohol.
본 발명의 도네페질 함유 서방출성 PLGA 미립구의 제조방법은, 본 발명의 단계 i)에서 수득한 미립구 액적을, 계면활성제가 포함된 15 내지 25℃의 수상에 분산시키는 단계를 포함한다.The method for producing donepezil-containing sustained-release PLGA microspheres of the present invention includes dispersing the microsphere droplets obtained in step i) of the present invention in a surfactant-containing aqueous phase at 15 to 25°C.
수상에 대한 도네페질의 용해도를 감소시켜 미립구에 포함된 도네페질의 함량을 증가시키기 위하여, 본 발명에서는 수상의 온도를 감소시키는 방법을 이용하였다. 용해도는 용매와 용질의 종류에 따라 달라지기는 하나, 대부분의 경우 용매의 온도가 높아질수록 고체 용질의 용해도는 증가한다. 따라서, 도네페질 함유 서방출성 PLGA 미립구의 제조과정 중 수상의 온도를 감소시키면 수상에 대한 도네페질의 용해도가 감소하여, 미립구의 함량을 증가시킬 수 있다.In order to increase the content of donepezil contained in microspheres by reducing the solubility of donepezil in the aqueous phase, a method of reducing the temperature of the aqueous phase was used in the present invention. Although solubility varies depending on the type of solvent and solute, in most cases, the solubility of a solid solute increases as the temperature of the solvent increases. Therefore, if the temperature of the aqueous phase is decreased during the production of donepezil-containing sustained-release PLGA microspheres, the solubility of donepezil in the aqueous phase decreases, thereby increasing the content of the microspheres.
구체적으로, 수상의 온도가 15℃ 미만일 경우, 미립구 액적에 포함되어 있던 디클로로메탄(유기용매)이 수상으로 확산되어 액적이 빠르게 경화되지만, 수상으로 녹아 든 디클로로메탄이 증발하여 제거되기에 15℃ 미만의 온도는 너무 낮은 온도이므로, 수상 내 노출된 액적 사이의 병합으로 인해 응집이 발생할 수 있다. 반면에, 수상의 온도가 25℃를 초과할 경우, 온도가 증가할수록 미립구 액적에 포함되어 있던 디클로로메탄이 수상으로 확산되어 액적이 빠르게 경화되지만, 액적에 포함된 도네페질의 용해도도 동시에 증가하여, 최종 수득한 미립구 함량이 감소한다.Specifically, when the temperature of the aqueous phase is less than 15 ° C, dichloromethane (organic solvent) contained in the microsphere droplets diffuses into the aqueous phase and the droplets harden quickly, but the dichloromethane dissolved in the aqueous phase is evaporated and removed, so less than 15 ° C. Since the temperature of is too low, agglomeration may occur due to coalescence between the exposed droplets in the aqueous phase. On the other hand, when the temperature of the aqueous phase exceeds 25° C., as the temperature increases, the dichloromethane contained in the microsphere droplets diffuses into the aqueous phase and the droplets harden rapidly, but the solubility of donepezil contained in the droplets also increases at the same time, The final obtained microsphere content is reduced.
본 발명의 구체적인 일 실시예에서, 계면활성제가 포함된 수상의 온도 변화에 따른 미립구의 형태학적 특성을 분석하였다. 그 결과, 10℃의 수상에서 미립구 액적을 분산시킨 비교예 3의 경우, 액적 간의 응집이 발생함을 확인한 바 (도 2), 본 발명의 단계 ii)에서 수상의 온도는, 수상에 대한 도네페질의 용해도를 감소시킬 수 있으면서, 액적에 포함된 디클로로메탄을 외부의 수상으로 확산하여 액적을 안정적으로 경화할 수 있는 15 내지 25℃가 적합함을 확인하였다.In a specific embodiment of the present invention, the morphological characteristics of the microspheres according to the temperature change of the aqueous phase containing the surfactant were analyzed. As a result, in the case of Comparative Example 3 in which the microsphere droplets were dispersed in the aqueous phase at 10° C., it was confirmed that aggregation between the droplets occurred ( FIG. 2 ), and the temperature of the aqueous phase in step ii) of the present invention was It was confirmed that 15 to 25° C., which can reduce the solubility of the vagina and can stably harden the droplets by diffusing the dichloromethane contained in the droplets into the external aqueous phase, is suitable.
일반적으로 PLGA 미립구의 약물방출은 tri-phasic profile을 가진다. 첫 번째, burst phase (또는 initial phase)에서는 미립구에 봉입되어지지 않은 약물 또는 미립구 표면의 약물이 급격히 확산 방출되는 구간이며, 두 번째 lag phase는 고분자 사슬이 올리고머(oligomers)로 분해되면서 미립구 내부에 수채널이 형성되기 시작하는 단계로, 약물 방출이 현저히 지연되는 시기이며, 세번째 시기인 degradation phase (명칭에 따라 Erosion phase, 또는 Continuous phase 라고 명명하기도 한다.)는 고분자가 분해되며 내부에 형성된 수채널을 통해 약물이 방출되는 단계를 의미한다. In general, drug release of PLGA microspheres has a tri-phasic profile. First, in the burst phase (or initial phase), the drug that is not encapsulated in the microsphere or the drug on the surface of the microsphere is rapidly diffused and released, and in the second lag phase, the polymer chain is decomposed into oligomers, This is the stage in which channels begin to form, and the drug release is significantly delayed. The third stage, degradation phase (also called erosion phase, or continuous phase, depending on the name), is the phase where the polymer is decomposed and the water channel formed inside is reduced. It refers to the stage in which the drug is released through
미립구 표면의 약물이 급격히 확산 방출되는 burst phase에서의 약물방출은 Fick's Low 및 First order kinetic을 따른다. 미립구 표면에 위치한 약물의 경우 고분자 매트릭스의 저항없이 약물 용해도에 따라 미립구로부터 방출이 쉽게 이뤄질 수 있다. Drug release in the burst phase, in which the drug on the surface of microspheres is rapidly diffused, follows Fick's Low and First order kinetics. Drugs located on the surface of microspheres can be easily released from microspheres according to drug solubility without resistance of the polymer matrix.
Lag phase의 경우, burst phase에서 초반 약물 방출로 미립구 표면의 약물이 이미 확산소실되었고 미립구 내부의 약물이 방출되기 위한 경로인 내부 수채널이 충분히 생성되지 않았기 때문에 약물 방출은 현저히 지연되게 된다. In the case of the lag phase, the drug release is significantly delayed because the drug on the surface of the microspheres has already diffused and dissipated due to the early drug release in the burst phase, and the internal water channel, which is a pathway for the drug release inside the microspheres, is not sufficiently created.
Degradation phase에서의 약물 방출은 약물의 확산이 고분자 매트릭스의 분해에 영향을 받기 때문에 burst phase에 비해 확산 속도가 현저히 느려져 zero-order kinetic에 더 가깝게 되는 특성이 있다.The drug release in the degradation phase has a property that the diffusion rate is significantly slower than in the burst phase because the diffusion of the drug is affected by the decomposition of the polymer matrix, and thus it is closer to the zero-order kinetic.
Lag phase의 기간은 1) 약물의 함량과 2) 제조 과정 중 생성되는 미립구 내부 다공성 및 3) 고분자 물성에 영향을 받는다. 미립구 내부의 약물 함량이 높으면 높을수록 미립구 내·외부 삼투압 차가 벌어져 내부 수채널 형성이 촉진되기 떄문에 Lag phase의 기간이 짧아지게 되며, 미립구 제조 과정 중 미립구 내부에 다공성이 생길 경우 Lag phase에서의 수채널 형성이 가속화되어 Lag phase 기간이 짧아지게 된다. 또한, 고분자 말단 사슬이 카르복실기일 경우 혹은 고분자 분자량이 작을 경우 미립구 내부로 물 유입이 보다 더 용이하기 때문에 Lag phase 기간이 감소하게 된다. The duration of the lag phase is affected by 1) drug content, 2) microsphere internal porosity generated during the manufacturing process, and 3) polymer properties. The higher the drug content inside the microspheres, the shorter the period of the lag phase is because the difference in osmotic pressure inside and outside the microspheres widens and the formation of internal water channels is promoted. The channel formation is accelerated and the lag phase period is shortened. In addition, when the end chain of the polymer is a carboxyl group or when the molecular weight of the polymer is small, the lag phase period is reduced because water is more easily introduced into the microspheres.
일 예로, 도네페질을 함유하는 PLGA 미립구의 경우, 10% 이상의 약물함량을 가질 때, Lag phase가 관찰되지 않은 상태로 초반 용출이 매우 빠르게 나타나고, 고분자가 분해되기 시작하기 전 약물 용출이 모두 종료되었다(asian journal of pharmaceutical sciences 10 (2015) 405-414). 상기와 같은 이유로, 도네페질 미립구 개발시 치료학적 유효 약물양을 확보하면서도 충분한 서방적 용출을 기대하기 위하여 10% 이상의 약물 함량을 가지는 경우에서 PLGA 보다 소수성이 높은 폴리락트산을 주로 사용해 왔다.For example, in the case of PLGA microspheres containing donepezil, when the drug content was 10% or more, the initial dissolution appeared very quickly with no lag phase observed, and the drug dissolution was terminated before the polymer started to decompose. (asian journal of pharmaceutical sciences 10 (2015) 405-414). For the above reasons, polylactic acid, which has a higher hydrophobicity than PLGA, has been mainly used in the case of having a drug content of 10% or more in order to secure a therapeutically effective drug amount and to expect sufficient sustained-release dissolution during the development of donepezil microspheres.
본 발명의 용어 "서방출"은, 약물의 방출 기전을 조절하여 체내에서 장기간에 걸쳐 서서히 방출되는 것을 의미한다. 구체적으로 본 발명의 서방출은, 일반적 농도구배에 따른 단순 확산(Fick's law)으로만 조절되지 않고, 상기 단순확산과 고분자 매트리스에 의한 용출조절 효과(Higuchi model)에 의한 약물의 방출 기전이 서로 병합된 형태로 나타나는 것일 수 있다. 단순 확산으로만 약물이 방출될 경우, 약물의 방출은 단위 시간당 약물방출률을 로그(Log)값으로 나타내었을 때, 시간이 경과할수록 그 값이 일직선형으로 감소하게 되는 특징을 갖는다. 상기 서방출 제제의 약물방출 기본 원리에 따라, 본 발명의 고분자 기반 미립구 형태의 서방출형 의약 제제는 초기 약물방출률 (initial burst release rate, %)이 상대적으로 적고, 초기 단순 확산에 의한 약물방출 이후, 약물방출 지연 시기 (lag phase)와 고분자 분해 시기 (degradation phase)에서의 단위 시간당 약물방출률을 로그값으로 나타내더라도 그 값이 일직선형으로 감소하지 않는 특징을 갖는다.As used herein, the term "sustained release" means that the drug is slowly released over a long period of time in the body by controlling the release mechanism. Specifically, the sustained release of the present invention is not controlled only by simple diffusion (Fick's law) according to a general concentration gradient, but the release mechanism of the drug by the simple diffusion and the dissolution control effect (Higuchi model) by the polymer matrix is merged with each other It may appear in the form When the drug is released only through simple diffusion, the drug release rate per unit time is expressed as a log value, and the value decreases linearly as time elapses. According to the basic principle of drug release of the sustained-release formulation, the sustained-release pharmaceutical formulation in the form of polymer-based microspheres of the present invention has a relatively low initial burst release rate (%), and after drug release by initial simple diffusion , even if the drug release rate per unit time in the lag phase and the polymer degradation phase is expressed as a log value, the value does not decrease linearly.
본 발명의 구체적인 일 실시예에서, 본 발명의 제조방법으로 제조된 도네페질 함유 PLGA 미립구인 실시예 1 및 실시예 2는 모두 도네페질을 고함량으로 함유함에도 불구하고, 기존의 PLGA 미립구와 달리, 고분자 분해시기까지 충분히 서방적으로 약물을 방출할 수 있음을 확인하여, 상기 서방출에 해당하는 용출 양상을 가짐을 확인하였다 (표 3).In a specific embodiment of the present invention, Examples 1 and 2, both of which are donepezil-containing PLGA microspheres prepared by the method of the present invention, contain a high content of donepezil, but unlike the conventional PLGA microspheres, It was confirmed that the drug could be released in a sufficiently sustained release until the time of polymer degradation, and it was confirmed that the drug had a dissolution pattern corresponding to the sustained release (Table 3).
본 발명의 용어 "미립구"는 1mm 이하의 지름을 가지는 구형 입자를 의미한다.As used herein, the term “microsphere” refers to spherical particles having a diameter of 1 mm or less.
본 발명에 있어서, 도네페질 함유 서방출성 PLGA 미립구의 제조방법은 도네페질 함유 서방출성 PLGA 미립구 내 함유되는 도네페질의 함량 또는 봉입률이 균일한 것을 특징으로 할 수 있다. 본 발명의 약물인 도네페질은 그 함량에 따라 용출률의 차이가 현저하여 미립구 내부 함량이 매우 중요하며 그 균일성 혹은 제조 재현성이 중요한 요건이므로, 본 발명에서는 PLGA 미립구 내 함유되는 도네페질의 함량 또는 봉입률이 균일하도록 조절하고자 하였다.In the present invention, the method for producing the donepezil-containing sustained-release PLGA microspheres may be characterized in that the content or encapsulation rate of donepezil contained in the donepezil-containing sustained-release PLGA microspheres is uniform. As for the drug of the present invention, the dissolution rate differs significantly depending on the content of the drug of the present invention, the content inside the microspheres is very important, and the uniformity or reproducibility of the production is an important requirement. The rate was adjusted to be uniform.
구체적으로, 도네페질의 봉입률이 평균값 대비 오차율이 5% 이하일 수 있으나, 이에 제한되지 않는다. 상기 도네페질의 함량 또는 봉입률이 균일함은 제조 배치(batch) 간 제조 재현성이 높음을 의미한다.Specifically, the encapsulation rate of donepezil may have an error rate of 5% or less compared to the average value, but is not limited thereto. The uniformity of the donepezil content or encapsulation rate means that the production reproducibility between production batches is high.
본 발명의 구체적인 일 실시예에서, 투입되는 도네페질의 함량이 65mg인 경우와 110mg인 경우를 비교한 결과, 투입되는 도네페질의 함량에 따라 용출 속도 및 용출 패턴이 크게 달라지는 것을 확인한 바 (도 1), 서방출이라는 미립구의 특성을 확보하기 위해서는, 미립구의 제조방법에 따른 도네페질 함량의 균일성이 반드시 보장되어야 함을 알 수 있다.In a specific embodiment of the present invention, as a result of comparing the case where the amount of the injected donepezil was 65 mg and the case of 110 mg, it was confirmed that the dissolution rate and the dissolution pattern greatly changed according to the amount of the injected donepezil (Fig. 1) ) and sustained release, it can be seen that the uniformity of the donepezil content according to the method of manufacturing the microspheres must be guaranteed.
본 발명의 "봉입률"은, 미립구에 함유된 약물의 함량을, 약물의 목표 함량, 즉, 최초 분산상에 포함되는 약물의 함량으로 나눈 값의 백분율을 의미한다. The "encapsulation rate" of the present invention means the percentage of the value obtained by dividing the content of the drug contained in the microspheres by the target content of the drug, that is, the content of the drug contained in the initial dispersion phase.
본 발명의 구체적인 일 실시예에서, 미세유체법 및 용매증발법을 이용하여 제조한 도네페질 함유 서방출성 PLGA 미립구의 도네페질 함량 및 봉입률을 측정하고 제조방법에 따른 봉입률의 평균값 대비 오차율을 계산하였다. 그 결과, 용매증발법을 이용하여 제조한 비교예 6 내지 비교예 8에 비해, 미세유체법을 이용하여 제조한 실시예 6 내지 실시예 8이 봉입률 평균값 대비 오차율이 현저하게 낮은 바 (표 6), 미세유체법을 이용한 제조방법이 batch 간 제조 재현성이 높은 것을 확인하였다.In a specific embodiment of the present invention, the donepezil content and encapsulation rate of the donepezil-containing sustained-release PLGA microspheres prepared using the microfluidic method and the solvent evaporation method were measured, and the error rate compared to the average value of the encapsulation rate according to the manufacturing method was calculated. did As a result, compared to Comparative Examples 6 to 8 prepared using the solvent evaporation method, Examples 6 to 8 prepared using the microfluidic method had a significantly lower error rate compared to the average value of the encapsulation rate (Table 6) ), it was confirmed that the manufacturing method using the microfluidic method has high reproducibility between batches.
본 발명의 도네페질 함유 서방출성 PLGA 미립구의 제조방법은 iii) 분산된 미립구 액적으로부터 유기용매를 제거하는 단계를 추가로 포함할 수 있다.The method for producing donepezil-containing sustained-release PLGA microspheres of the present invention may further include the step of iii) removing the organic solvent from the dispersed microsphere droplets.
본 발명에서 분산된 미립구 액적의 유기용매를 제거하기 위한 방법은, 감압조건에서 수상 온도를 증가시켜 교반하여 유기용매를 제거하는 방법, 조절된 진공 조건에서 수상 온도를 증가시켜 교반하여 유기용매를 제거하는 방법, 수상에 질소 기체를 투입하면서 수상의 온도를 증가시켜 교반하여 유기용매를 제거하는 방법, 또는 수상 온도를 증가시켜 단순 교반하여 유기용매를 제거하는 방법으로부터 선택될 수 있다.The method for removing the organic solvent of the dispersed microsphere droplets in the present invention is a method of removing the organic solvent by stirring by increasing the aqueous phase temperature under reduced pressure, and removing the organic solvent by stirring by increasing the aqueous phase temperature in a controlled vacuum condition It may be selected from a method of removing the organic solvent by stirring by increasing the temperature of the aqueous phase while introducing nitrogen gas into the aqueous phase, or a method of removing the organic solvent by simply stirring by increasing the aqueous phase temperature.
본 발명에서 상기 iii) 단계의 유기용매의 제거는 수상의 온도 증가에 의한 것일 수 있으나, 유기용매를 효과적으로 제거할 수 있는 온도 범위이면 특별히 제한되지 않는다. 구체적으로, 제조한 도네페질 함유 서방출성 PLGA 미립구의 유리전이온도 이하이면서, 유기용매의 비등점에 근접한 온도인 30 내지 45℃로 증가시키는 것일 수 있다.In the present invention, the removal of the organic solvent in step iii) may be due to an increase in the temperature of the aqueous phase, but is not particularly limited as long as it is a temperature range capable of effectively removing the organic solvent. Specifically, the temperature of the prepared donepezil-containing sustained-release PLGA microspheres may be increased to 30 to 45° C., which is below the glass transition temperature and close to the boiling point of the organic solvent.
본 발명의 상기 iii) 단계는 수상을 교체하는 단계를 추가로 포함할 수 있다.Step iii) of the present invention may further include replacing the aqueous phase.
본 발명의 도네페질 함유 서방출성 PLGA 미립구의 제조방법은 iii) 단계의 유기용매 제거 단계 이후, iv) 유기용매가 제거된 미립구 액적을 경화하는 단계를 추가로 포함할 수 있다. 상기 iv) 단계의 경화는, 15 내지 25℃의 온도에서 수행될 수 있으나, 이에 제한되지 않는다.The method for producing donepezil-containing sustained-release PLGA microspheres of the present invention may further include, after the organic solvent removal step of step iii), iv) curing the microsphere droplets from which the organic solvent has been removed. The curing of step iv) may be performed at a temperature of 15 to 25° C., but is not limited thereto.
본 발명의 도네페질 함유 서방출성 PLGA 미립구의 제조방법은 iv) 미립구 액적의 경화 단계 이후, v) 경화된 미립구를 세척, 여과 및 건조하는 단계를 추가로 포함할 수 있다.The method for producing the donepezil-containing sustained-release PLGA microspheres of the present invention may further include: iv) curing the microsphere droplets, and v) washing, filtering, and drying the cured microspheres.
본 발명에서 v) 단계의 여과는, 멤브레인 필터를 이용하는 것일 수 있으나, 이에 제한되지 않는다.In the present invention, the filtration of step v) may be using a membrane filter, but is not limited thereto.
본 발명에서 v) 단계의 건조는 진공건조, 자연건조, 동결건조, 가열건조 또는 송풍건조에서 선택되는 1종 이상의 것일 수 있으며, 구체적으로, 동결건조일 수 있으나, 이에 제한되지 않는다.In the present invention, the drying in step v) may be at least one selected from vacuum drying, natural drying, freeze drying, heat drying or blow drying, and specifically, may be freeze drying, but is not limited thereto.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These Examples are for explaining the present invention in more detail, and the scope of the present invention is not limited by these Examples.
비교예 1. 분산상에 포함되는 도네페질 및 PLGA의 중량 비율이 24.5:75.5인 도네페질 함유 PLGA 미립구 제조 (용매증발법)Comparative Example 1. Preparation of PLGA microspheres containing donepezil in which the weight ratio of donepezil and PLGA contained in the dispersed phase was 24.5:75.5 (solvent evaporation method)
생분해성 고분자 PLGA (DLG85-7A, 제조원: Merck) 200mg 및 도네페질 베이스 (제조원: Neuland Laboratories) 65mg을 2mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조하였다. 제조한 분산상을 1% 폴리비닐알코올 수용액에 주입하면서, Homogenizer (Silverson, L5M-A)를 이용하여 교반(1,500rpm)하여 액적 형태의 미립구를 형성하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.A dispersed phase containing donepezil was prepared by dissolving 200 mg of the biodegradable polymer PLGA (DLG85-7A, manufactured by Merck) and 65 mg of donepezil base (manufactured by Neuland Laboratories) in 2 mL of dichloromethane solvent. While injecting the prepared dispersed phase into a 1% polyvinyl alcohol aqueous solution, a homogenizer (Silverson, L5M-A) was used to stir (1,500 rpm) to form microspheres in the form of droplets. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
비교예 2. 분산상에 포함되는 도네페질 및 PLGA의 중량 비율이 35.5:64.5인 도네페질 함유 PLGA 미립구 제조 (용매증발법)Comparative Example 2. Preparation of PLGA microspheres containing donepezil in which the weight ratio of donepezil and PLGA contained in the dispersed phase was 35.5:64.5 (solvent evaporation method)
생분해성 고분자 PLGA 200mg 및 도네페질 베이스 110mg을 2mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조하였다. 제조한 분산상을 1% 폴리비닐알코올 수용액에 주입하면서, Homogenizer를 이용하여 교반(1,500rpm)하여 액적 형태의 미립구를 형성하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.A dispersed phase containing donepezil was prepared by dissolving 200 mg of the biodegradable polymer PLGA and 110 mg of donepezil base in 2 mL of dichloromethane solvent. While injecting the prepared dispersed phase into 1% polyvinyl alcohol aqueous solution, it was stirred (1,500 rpm) using a homogenizer to form microspheres in the form of droplets. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
실시예 1. 분산상에 포함되는 도네페질 및 PLGA의 중량 비율이 24.5:75.5인 도네페질 함유 PLGA 미립구 제조 (미세유체법)Example 1. Preparation of donepezil-containing PLGA microspheres in which the weight ratio of donepezil and PLGA contained in the dispersed phase is 24.5:75.5 (microfluidic method)
생분해성 고분자 PLGA 200mg 및 도네페질 베이스 65mg을 2mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후, 0.01mL/min의 유속으로 미세유체칩(Microfluidic chip; Dolomite, 3D focusing hydrophilic chip)에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 20℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.After dissolving 200 mg of biodegradable polymer PLGA and 65 mg of donepezil base in 2 mL of dichloromethane solvent to prepare a dispersed phase containing donepezil, it was applied to a microfluidic chip (Dolomite, 3D focusing hydrophilic chip) at a flow rate of 0.01 mL/min. injected. At this time, a 1% polyvinyl alcohol aqueous solution was used as the aqueous phase (continuous phase), and it was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 20 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
실시예 2. 분산상에 포함되는 도네페질 및 PLGA의 중량 비율이 35.5:64.5인 도네페질 함유 PLGA 미립구 제조 (미세유체법)Example 2. Preparation of PLGA microspheres containing donepezil in which the weight ratio of donepezil and PLGA contained in the dispersed phase was 35.5:64.5 (microfluidic method)
생분해성 고분자 PLGA 200mg 및 도네페질 베이스 110mg을 2mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 20℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.200 mg of biodegradable polymer PLGA and 110 mg of donepezil base were dissolved in 2 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, a 1% polyvinyl alcohol aqueous solution was used as the aqueous phase (continuous phase), and it was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 20 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
비교예 3. 계면활성제가 포함된 수상의 온도가 10℃ 인, 도네페질 함유 PLGA 미립구 제조 (미세유체법)Comparative Example 3. Preparation of donepezil-containing PLGA microspheres with a temperature of 10° C. of an aqueous phase containing a surfactant (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 10℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, a 1% polyvinyl alcohol aqueous solution was used as the aqueous phase (continuous phase), and it was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 10 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution.
수득된 미립구 액적을 광학현미경으로 관찰한 결과, 도 2에 나타난 바와 같이, 액적 간의 응집이 발생함을 확인하였다.As a result of observing the obtained microsphere droplets with an optical microscope, it was confirmed that aggregation between the droplets occurred, as shown in FIG. 2 .
실시예 3. 계면활성제가 포함된 수상의 온도가 15℃ 인, 도네페질 함유 PLGA 미립구 제조 (미세유체법)Example 3. Preparation of donepezil-containing PLGA microspheres with a temperature of 15° C. of an aqueous phase containing surfactant (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 15℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, the aqueous phase (continuous phase) used 1% polyvinyl alcohol aqueous solution, and was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 15 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
수득된 미립구 액적을 광학현미경으로 관찰한 결과를 도 2에 나타내었다.The results of observing the obtained microsphere droplets with an optical microscope are shown in FIG. 2 .
실시예 4. 계면활성제가 포함된 수상의 온도가 20℃ 인, 도네페질 함유 PLGA 미립구 제조 (미세유체법)Example 4. Preparation of donepezil-containing PLGA microspheres with a temperature of 20° C. of an aqueous phase containing a surfactant (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 20℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, a 1% polyvinyl alcohol aqueous solution was used as the aqueous phase (continuous phase), and it was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 20 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
수득된 미립구 액적을 광학현미경으로 관찰한 결과를 도 2에 나타내었다. The results of observing the obtained microsphere droplets with an optical microscope are shown in FIG. 2 .
실시예 5. 계면활성제가 포함된 수상의 온도가 25℃ 인, 도네페질 함유 PLGA 미립구 제조 (미세유체법)Example 5. Preparation of donepezil-containing PLGA microspheres with a temperature of 25° C. of an aqueous phase containing a surfactant (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 25℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, the aqueous phase (continuous phase) used 1% polyvinyl alcohol aqueous solution, and was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 25 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
수득된 미립구 액적을 광학현미경으로 관찰한 결과를 도 2에 나타내었다.The results of observing the obtained microsphere droplets with an optical microscope are shown in FIG. 2 .
비교예 4. 계면활성제가 포함된 수상의 온도가 30℃ 인, 도네페질 함유 PLGA 미립구 제조 (미세유체법)Comparative Example 4. Preparation of PLGA microspheres containing donepezil with a temperature of 30° C. of an aqueous phase containing surfactant (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 30℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, the aqueous phase (continuous phase) used 1% polyvinyl alcohol aqueous solution, and was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 30 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
수득된 미립구 액적을 광학현미경으로 관찰한 결과를 도 2에 나타내었다.The results of observing the obtained microsphere droplets with an optical microscope are shown in FIG. 2 .
비교예 5. 계면활성제가 포함된 수상의 온도가 35℃ 인, 도네페질 함유 PLGA 미립구 제조 (미세유체법)Comparative Example 5. Preparation of PLGA microspheres containing donepezil with a temperature of 35° C. of an aqueous phase containing surfactant (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 35℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, the aqueous phase (continuous phase) used 1% polyvinyl alcohol aqueous solution, and was injected simultaneously with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at 35 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36°C for 2 hours and solidified at a temperature of 20°C for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
수득된 미립구 액적을 광학현미경으로 관찰한 결과를 도 2에 나타내었다. The results of observing the obtained microsphere droplets with an optical microscope are shown in FIG. 2 .
실시예 6 내지 8. Batch 간 함량 재현성 검증을 위한 도네페질 함유 PLGA 미립구 제조 (미세유체법)Examples 6 to 8. Preparation of PLGA microspheres containing donepezil for verification of content reproducibility between batches (microfluidic method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조한 후 0.01mL/min의 유속으로 미세유체칩에 주입하였다. 이 때, 수상(연속상)은 1% 폴리비닐알코올 수용액을 이용하였으며, 0.08mL/min의 유속으로 분산상과 동시에 주입하였고, 미세유체칩 내부에서 형성된 미립구 액적을, 20℃ 온도에서 150rpm으로 교반되고 있는 1% 폴리비닐알코올 용액에 분산시켜 수득하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.100 mg of biodegradable polymer PLGA and 55 mg of donepezil base were dissolved in 1 mL of dichloromethane solvent to prepare a donepezil-containing dispersed phase, and then injected into the microfluidic chip at a flow rate of 0.01 mL/min. At this time, the aqueous phase (continuous phase) used 1% polyvinyl alcohol aqueous solution, and was simultaneously injected with the dispersed phase at a flow rate of 0.08 mL/min, and the microfluidic droplets formed inside the microfluidic chip were stirred at 150 rpm at a temperature of 20 ° C. It was obtained by dispersing in a 1% polyvinyl alcohol solution. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36° C. for 2 hours and solidified at a temperature of 20° C. for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
비교예 6 내지 8. Batch 간 함량 재현성 검증을 위한 도네페질 함유 PLGA 미립구 제조 (용매증발법)Comparative Examples 6 to 8. Preparation of PLGA microspheres containing donepezil for verification of content reproducibility between batches (solvent evaporation method)
생분해성 고분자 PLGA 100mg 및 도네페질 베이스 55mg을 1mL의 디클로로메탄 용매에 용해하여 도네페질 함유 분산상을 제조하였다. 제조한 분산상을 1% 폴리비닐알코올 수용액에 주입하면서, Homogenizer를 이용하여 교반(4,000rpm)하여 액적 형태의 미립구를 형성하였다. 상기 수득한 미립구 액적으로부터 36℃ 온도에서 2시간 동안 디클로로메탄 용매를 제거하고 20℃의 온도에서 1시간 동안 고형화하여 미립구를 형성하였다. 형성된 미립구를 정제수로 세척하여 폴리비닐알코올을 제거하고, 멤브레인 필터(membrane filter)로 여과 후, 2일간 동결건조하여 파우더 형태의 미립구를 수득하였다.A dispersed phase containing donepezil was prepared by dissolving 100 mg of the biodegradable polymer PLGA and 55 mg of donepezil base in 1 mL of dichloromethane solvent. While injecting the prepared dispersed phase into 1% polyvinyl alcohol aqueous solution, it was stirred (4,000 rpm) using a homogenizer to form microspheres in the form of droplets. From the obtained microsphere droplets, the dichloromethane solvent was removed at a temperature of 36° C. for 2 hours and solidified at a temperature of 20° C. for 1 hour to form microspheres. The formed microspheres were washed with purified water to remove polyvinyl alcohol, filtered through a membrane filter, and freeze-dried for 2 days to obtain powdery microspheres.
실험예 1. 함량에 따른 도네페질 함유 서방출성 PLGA 미립구의 용출 분석 Experimental Example 1. Analysis of dissolution of donepezil-containing sustained-release PLGA microspheres according to the content
실험예 1-1. 도네페질 함유 PLGA 미립구 약물 함량 및 봉입률 측정Experimental Example 1-1. Measurement of donepezil-containing PLGA microsphere drug content and encapsulation rate
최종 동결건조 된 미립구 1mg을 1mL의 아세토니트릴에 용해하고, 이 용액 1mL을 10mL의 아세토니트릴에 희석한 후 0.45㎛ PVDF 실린지 필터로 여과하였다. 이후, 하기 표 1과 동일한 조건에 따라 HPLC-UV 장비를 이용하여 Standard curve를 구하고, 정량 분석하였다.1 mg of the final freeze-dried microspheres were dissolved in 1 mL of acetonitrile, 1 mL of this solution was diluted in 10 mL of acetonitrile, and filtered through a 0.45 μm PVDF syringe filter. Thereafter, a standard curve was obtained using HPLC-UV equipment under the same conditions as in Table 1 below, and quantitative analysis was performed.
ColumnColumn YMC-Triart C18 column, C18 (150 x 4.0mm ID), S-5㎛YMC-Triart C18 column, C18 (150 x 4.0mm ID), S-5㎛
Column temperatureColumn temperature 35℃35℃
Mobile phasemobile phase 인산이수소칼륨 수용액 (용액 A)과 아세토니트릴 (용액 B)의 혼합용액 (용액 A:용액 B = 6.5:3.5)A mixed solution of potassium dihydrogen phosphate aqueous solution (solution A) and acetonitrile (solution B) (solution A:solution B = 6.5:3.5)
WavelengthWavelength 224nm 224nm
Injection volumeInjection volume 20㎕20 μl
상기 정량분석으로부터, 약물의 함량은 아래 [식 1]에 의하여 계산하였으며, 비교예 및 실시예에서 얻어진 도네페질 함유 미립구에서의 도네페질 함량을 표 2에 나타내었다.From the quantitative analysis, the drug content was calculated by [Equation 1] below, and the donepezil content in the donepezil-containing microspheres obtained in Comparative Examples and Examples is shown in Table 2.
[식 1] [Equation 1]
약물 함량(%) = HPLC에 의하여 정량된 약물의 농도 / 미립구의 농도 * 100Drug content (%) = concentration of drug quantified by HPLC / concentration of microspheres * 100
약물 봉입률(%) = 약물 함량 / 약물의 목표 함량 * 100Drug encapsulation rate (%) = drug content / target content of drug * 100
약물 함량 (%)Drug content (%) 약물 봉입률 (%)Drug Encapsulation Rate (%) 제조방법Manufacturing method
비교예 1Comparative Example 1 21.021.0 85.785.7 용매증발법solvent evaporation
비교예 2Comparative Example 2 28.228.2 79.479.4 용배증발법solvent evaporation
실시예 1Example 1 18.918.9 77.177.1 미세유체법microfluidic method
실시예 2Example 2 29.229.2 82.382.3 미세유체법microfluidic method
실험예 1-2. 투입되는 도네페질의 함량에 따른 도네페질 PLGA 미립구의 약물 용출 분석Experimental Example 1-2. Analysis of drug dissolution of donepezil PLGA microspheres according to the amount of injected donepezil
도네페질 함유 서방출성 PLGA 미립구 50mg 내지 90mg을 0.2% 소듐 라우릴 설페이트(Sodium Lauryl sulfate)가 포함된 100mL pH 7.4의 인산완충액에 넣고, 항온수조를 이용하여 37℃의 조건에서 50rpm의 조건으로 좌/우 진탕(shaking) 하였다. 미리 셋팅된 일정 시간 (0.3일, 1일, 3일, 7일, 10일, 14일, 17일, 21일, 24일, 28일)에 용출액을 1mL씩 취하여 9,000rpm으로 3분간 원심분리 하고 상층액을 취하여 HPLC-UV 장비를 이용하여 정량 분석하였다. 이 때, HPLC 칼럼 및 운용 조건은 [실험예 1-1]의 분석 조건과 동일하다.50 mg to 90 mg of donepezil-containing sustained-release PLGA microspheres were placed in 100 mL of pH 7.4 phosphate buffer containing 0.2% sodium lauryl sulfate, and left / It was shaken. At a preset time (0.3 days, 1 day, 3 days, 7 days, 10 days, 14 days, 17 days, 21 days, 24 days, 28 days), 1 mL of the eluate is taken and centrifuged at 9,000 rpm for 3 minutes. The supernatant was taken and quantitatively analyzed using HPLC-UV equipment. At this time, the HPLC column and operating conditions are the same as the analysis conditions of [Experimental Example 1-1].
아래 표 3은, 분산상에 포함되는 도네페질의 비율에 따른 도네페질 함유 서방출성 PLGA 미립구의 누적용출률을 나타낸 것으로, 이에 대한 그래프는 도 1과 같다.Table 3 below shows the cumulative dissolution rate of donepezil-containing sustained-release PLGA microspheres according to the ratio of donepezil included in the dispersed phase, and a graph thereof is shown in FIG. 1 .
도네페질 누적용출률 (%)Donepezil cumulative dissolution rate (%)
0.3일0.3 days 1일1 day 3일3 days 7일7 days 10일10 days 14일14 days 17일17th 21일21 days 24일24 days 28일28 days
비교예 1Comparative Example 1 <0.1<0.1 0.50.5 2.42.4 8.18.1 45.145.1 86.186.1 92.892.8 98.098.0 -- --
비교예 2Comparative Example 2 <0.1<0.1 <0.1<0.1 2.02.0 56.356.3 78.178.1 89.389.3 92.292.2 -- -- --
실시예 1Example 1 <0.1<0.1 <0.1<0.1 1.61.6 4.94.9 26.826.8 50.150.1 73.773.7 81.781.7 87.687.6 88.488.4
실시예 2Example 2 <0.1<0.1 0.20.2 7.27.2 19.619.6 76.476.4 90.490.4 -- -- -- --
먼저, 비교예의 용매증발법 대비 실시예의 미세유체법을 이용한 경우에 초기 용출이 서서히 되는 이점이 있음을 알 수 있었다.First, it was found that there is an advantage in that the initial dissolution is slow when the microfluidic method of Examples is used compared to the solvent evaporation method of Comparative Examples.
아울러 이와 별개로, 투입되는 도네페질의 함량이 65mg인 [비교예 1] 및 [실시예 1]과, 투입되는 도네페질의 함량이 110mg인 [비교예 2] 및 [실시예 2]와 각각 비교한 결과, 제조 방법의 원리가 동일할 경우 도네페질의 함량에 따라 용출 속도 및 용출 패턴이 크게 달라지는 것을 확인하였다. In addition, separate comparisons with [Comparative Example 1] and [Example 1] in which the injected donepezil content was 65 mg, and [Comparative Example 2] and [Example 2] in which the injected donepezil content was 110 mg, respectively As a result, it was confirmed that the dissolution rate and dissolution pattern greatly changed according to the content of donepezil when the principle of the manufacturing method was the same.
즉, 도네페질 함유 미립구는 제조 방법의 원리가 동일할 경우, 도네페질의 함량에 따라 용출률의 차이가 현저한 바, 도네페질 함유 서방출성 PLGA 미립구의 제조에 있어서 도네페질 함량의 균일성이 필수적으로 보장되어야 함을 확인하였다. 특히, 투입되는 도네페질의 함량이 높을수록 도네페질의 용출이 촉진되는 바, 고함량의 도네페질 함유 서방출성 PLGA 미립구의 제조 시, 함량 균일성 및 이를 위한 제조 재현성은 더욱 중요한 요건임을 확인하였다.That is, when the principle of the production method is the same for the donepezil-containing microspheres, the dissolution rate differs significantly depending on the donepezil content. Therefore, the uniformity of the donepezil content is essential in the production of the donepezil-containing sustained-release PLGA microspheres. confirmed that it should be. In particular, since the dissolution of donepezil is accelerated as the amount of injected donepezil is increased, it was confirmed that content uniformity and production reproducibility for the production of sustained-release PLGA microspheres containing high content of donepezil are more important requirements.
또한, 미립구 액적을 계면활성제가 포함된 15 내지 25℃의 수상에 분산시키는 방법으로부터 제공된 도네페질 함유 PLGA 미립구인 실시예 1 및 실시예 2는 모두 약물의 함량이 15%보다 높은 고함량임에도 불구하고 기존의 PLGA 미립구와 달리 본 발명의 서방출에 해당하는 용출 양상을 가지는 것으로 확인되었다. 즉, 본 발명의 도네페질 함유 PLGA 미립구는 15 내지 25℃의 수상 온도 설정 및 미세유체법이라는 제조 조건을 결합함에 따라, 고함량의 도네페질을 함유하면서 서방적 용출을 보이는 복합적인 효과를 가짐을 확인하였다.In addition, Examples 1 and 2, which are donepezil-containing PLGA microspheres provided from a method of dispersing microsphere droplets in an aqueous phase of 15 to 25° C. containing a surfactant, both have a drug content higher than 15%, despite the high content It was confirmed that, unlike the conventional PLGA microspheres, they had a dissolution pattern corresponding to the sustained release of the present invention. That is, the PLGA microspheres containing donepezil of the present invention have a complex effect of showing sustained-release dissolution while containing a high content of donepezil by combining the production conditions such as the setting of the aqueous phase temperature of 15 to 25°C and the microfluidic method. Confirmed.
실험예 2. 계면활성제가 포함된 외부수상의 온도에 따른 도네페질 함유 PLGA 미립구 분석Experimental Example 2. Analysis of donepezil-containing PLGA microspheres according to the temperature of the external aqueous phase containing surfactant
실험예 2-1. 도네페질 함유 서방출성 PLGA 미립구 형태 관찰Experimental Example 2-1. Observation of the morphology of donepezil-containing sustained-release PLGA microspheres
계면활성제가 포함된 수상의 온도 변화에 따른 미립구의 형태학적 특성을 분석하기 위하여, 수상에서 수득한 미립구 액적을 일부 채취하여 1% 폴리비닐알코올 용액에 분산한 후, 광학현미경을 이용하여 미립구의 형태를 관찰하였다.In order to analyze the morphological characteristics of the microspheres according to the temperature change of the aqueous phase containing the surfactant, some of the microsphere droplets obtained from the aqueous phase were collected and dispersed in a 1% polyvinyl alcohol solution, and then using an optical microscope to form the microspheres was observed.
각 실시예 및 비교예에서 제조한 미립구의 형태는 도 2에 나타낸 바와 같다. 10℃의 수상에서 분산시킨 [비교예 3]은 액적 간의 응집이 발생하는 문제가 있었으며, 이를 제외한 모든 실시예 및 비교예에서 수득한 도네페질 함유 서방출성 PLGA 미립구의 형태는 응집의 발생 없이, 균일한 미립구가 관찰되었다. The form of the microspheres prepared in each Example and Comparative Example is as shown in FIG. [Comparative Example 3] dispersed in an aqueous phase at 10 ° C had a problem in that aggregation occurred between the droplets, and the morphology of the donepezil-containing sustained-release PLGA microspheres obtained in all Examples and Comparative Examples except for this was uniform without aggregation. One microsphere was observed.
이로부터, 도네페질 함유 PLGA 미립구의 제조 시, 15℃ 미만의 수상의 온도는 도네페질 함유 서방출성 PLGA 미립구의 제조 조건으로써 적합하지 않음을 확인하였다.From this, it was confirmed that when preparing donepezil-containing PLGA microspheres, the temperature of the aqueous phase of less than 15° C. was not suitable as a production condition for donepezil-containing sustained-release PLGA microspheres.
실험예 2-2. 도네페질 함유 서방출성 PLGA 미립구 약물 함량 및 봉입률 측정Experimental Example 2-2. Measurement of drug content and encapsulation rate of sustained-release PLGA microspheres containing donepezil
최종 동결건조 된 미립구 1mg을 1mL의 아세토니트릴에 용해하고, 이 용액 1mL을 10mL의 아세토니트릴에 희석한 후 0.45㎛ PVDF 실린지 필터로 여과하였다. 이후, HPLC 칼럼 및 운용 조건과 계산방법은 [실험예 1-1]의 분석 조건과 동일하다.1 mg of the final lyophilized microspheres were dissolved in 1 mL of acetonitrile, and 1 mL of this solution was diluted in 10 mL of acetonitrile and filtered through a 0.45 μm PVDF syringe filter. Thereafter, the HPLC column, operating conditions, and calculation method are the same as the analysis conditions of [Experimental Example 1-1].
수상 온도water temperature 약물 함량 (%)Drug content (%) 약물 봉입률 (%)Drug Encapsulation Rate (%)
실시예 3Example 3 15℃15℃ 30.630.6 86.486.4
실시예 4Example 4 20℃20℃ 30.730.7 86.586.5
실시예 5Example 5 25℃25℃ 30.730.7 86.586.5
비교예 4Comparative Example 4 30℃30℃ 29.229.2 82.282.2
비교예 5Comparative Example 5 35℃35℃ 27.727.7 78.078.0
상기 표 4는, 계면활성제가 포함된 수상의 온도에 따른 도네페질 함유 서방출성 PLGA 미립구의 도네페질 함량 및 봉입률을 나타낸 것이며, 이에 대한 그래프는 도 3에 나타내었다. Table 4 shows the donepezil content and encapsulation rate of the sustained-release PLGA microspheres containing donepezil according to the temperature of the aqueous phase containing the surfactant, and a graph thereof is shown in FIG. 3 .
[비교예 3]의 경우, 앞서 언급한 바와 같이, 미립구 액적을 수상에 분산하는 과정에서, 미립구 액적 간의 병합에 의한 응집이 발생하여 함량 및 봉입률 측정에서 제외하였다 (도 1). In the case of [Comparative Example 3], as mentioned above, in the process of dispersing the microsphere droplets in the aqueous phase, aggregation due to merging between the microsphere droplets occurred, and thus the content and the encapsulation rate were excluded from the measurement ( FIG. 1 ).
[실시예 3 내지 5]는, 수상의 온도를 15 내지 25℃로 조절하여 제조한 미립구로써, 상기 온도 조건에서 디클로로메탄의 용해도는 증가하고, 수상에 대한 도네페질의 용해도는 낮아지므로, 높은 약물 봉입률을 갖는 미립구가 제조되면서 안정적으로 액적의 경화가 이루어 지는 것을 확인하였다.[Examples 3 to 5] are microspheres prepared by adjusting the temperature of the aqueous phase to 15 to 25 ° C. Under the above temperature conditions, the solubility of dichloromethane increases and the solubility of donepezil in the aqueous phase decreases, so that a high drug It was confirmed that the droplets were stably hardened while the microspheres having an encapsulation rate were manufactured.
[비교예 4 내지 5]의 경우, 수상의 온도가 증가함에 따라 액적에 포함되어 있던 유기용매와 도네페질이 동시에 수상으로 확산되어, 최종 수득한 미립구의 도네페질 봉입률이 감소하는 것을 확인하였다.In the case of [Comparative Examples 4 to 5], as the temperature of the aqueous phase increased, the organic solvent and donepezil contained in the droplets were simultaneously diffused into the aqueous phase, and it was confirmed that the encapsulation rate of the finally obtained donepezil in the microspheres decreased.
상기 결과를 통해, 높은 약물 봉입률을 갖는 도네페질 함유 서방출성 PLGA 미립구의 제조를 위해서는, 15 내지 25℃의 수상 온도가 가장 적합함을 확인하였다.From the above results, it was confirmed that the aqueous phase temperature of 15 to 25° C. was most suitable for the production of donepezil-containing sustained-release PLGA microspheres having a high drug encapsulation rate.
실험예 3. 미세유체법 및 용매증발법을 이용한 Batch 간 재현성 분석Experimental Example 3. Batch-to-batch reproducibility analysis using microfluidic method and solvent evaporation method
최종 동결건조 된 미립구 1mg을 1mL의 아세토니트릴에 용해하고, 이 용액 1mL을 10mL의 아세토니트릴에 희석한 후 0.45㎛ PVDF 실린지 필터로 여과하였다. 이후, HPLC 칼럼 및 운용 조건과 계산방법은 [실험예 1-1]의 분석 조건과 동일하다.1 mg of the final lyophilized microspheres were dissolved in 1 mL of acetonitrile, and 1 mL of this solution was diluted in 10 mL of acetonitrile and filtered through a 0.45 μm PVDF syringe filter. Thereafter, the HPLC column, operating conditions, and calculation method are the same as the analysis conditions of [Experimental Example 1-1].
약물 함량 (%)Drug content (%) 약물 봉입률 (%)Drug Encapsulation Rate (%)
비교예 6Comparative Example 6 28.228.2 79.479.4
비교예 7Comparative Example 7 19.019.0 53.753.7
비교예 8Comparative Example 8 21.821.8 61.461.4
실시예 6Example 6 29.229.2 82.382.3
실시예 7Example 7 31.031.0 87.487.4
실시예 8Example 8 30.730.7 86.586.5
상기 표 5는, 미세유체법 및 용매증발법을 이용하여 제조한 도네페질 함유 서방출성 PLGA 미립구의 함량 및 봉입률을 나타낸 것이다.Table 5 shows the content and encapsulation rate of donepezil-containing sustained-release PLGA microspheres prepared using the microfluidic method and the solvent evaporation method.
상기 얻어진 봉입률로부터, [식 2]를 사용하여, 제조방법 (미세유체법 또는 용매증발법)에 따른 봉입률의 평균값 대비 오차율을 아래 표 6에 나타내었다. From the obtained encapsulation rate, using [Equation 2], the error rate compared to the average value of the encapsulation rate according to the manufacturing method (microfluidic method or solvent evaporation method) is shown in Table 6 below.
[식 2][Equation 2]
약물 봉입률 평균값 대비 오차율(%) = 표준편차 / 평균값 * 100Error rate (%) compared to the average value of drug encapsulation rate = standard deviation / average value * 100
미세유체법microfluidic method 용매증발법solvent evaporation
약물 봉입률 평균값Average drug encapsulation rate 85.4085.40 64.8364.83
약물 봉입률 표준편차Standard deviation of drug encapsulation rate 2.722.72 13.1913.19
약물 봉입률 평균값 대비 오차율(%)Error rate (%) compared to the average value of drug encapsulation rate 3.193.19 20.3420.34
본 발명의 [실험예 1]에 따르면 도네페질 함유 서방출성 PLGA 미립구의 용출 속도는 도네페질의 함량에 매우 민감하므로 (도 1), 제조방법에 따른 함량 균일성이 반드시 보장되어야 한다.According to [Experimental Example 1] of the present invention, the dissolution rate of the donepezil-containing sustained-release PLGA microspheres is very sensitive to the donepezil content (FIG. 1), so content uniformity according to the preparation method must be guaranteed.
[비교예 6 내지 8]과 [실시예 6 내지 8]을 비교하였을 때, 용매증발법에 비해 미세유체법이 봉입률이 균일하며 봉입률 평균값 대비 오차율이 현저히 낮은 바, batch 간 제조 재현성 높게 도네페질 함유 서방출성 PLGA 미립구가 제조되는 것을 확인하였다. When comparing [Comparative Examples 6 to 8] and [Examples 6 to 8], the microfluidic method has a uniform encapsulation rate and a significantly lower error rate compared to the average encapsulation rate compared to the solvent evaporation method, resulting in high production reproducibility between batches It was confirmed that pegil-containing sustained-release PLGA microspheres were produced.
따라서, 본 발명이 제공하는 도네페질 함유 서방출성 PLGA 미립구의 제조방법은 도네페질의 함량 또는 봉입률의 균일성을 고려하였을 때, 미세유체법이 가장 적절함을 확인하였다.Therefore, it was confirmed that the microfluidic method was most suitable for the method for producing donepezil-containing sustained-release PLGA microspheres provided by the present invention considering the uniformity of the donepezil content or encapsulation rate.
즉, 본 발명의 도네페질 함유 PLGA 미립구는 수상의 온도 범위 및 미세유체법이라는 조건을 설정하여, 기존의 도네페질 PLGA 미립구의 문제점인 도네페질의 함량 문제를 해결함과 동시에, 서방출 효과 및 균일한 제조 재현성 확보라는 의약학적으로 매우 우수한 효과를 가짐을 확인하였다.That is, the PLGA microspheres containing donepezil of the present invention solve the problem of donepezil content, which is a problem of the existing donepezil PLGA microspheres, by setting the temperature range of the aqueous phase and the microfluidic method, and at the same time, have a sustained release effect and uniformity. It was confirmed that it has a very good pharmaceutical effect of securing manufacturing reproducibility.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the claims described below and their equivalents.

Claims (15)

  1. 도네페질 함유 서방출성 PLGA 미립구의 제조방법에 있어서,In the production method of donepezil-containing sustained-release PLGA microspheres,
    i) 도네페질 또는 이의 약제학적으로 허용되는 염, PLGA(Poly(lactic-co-glycolic acid) 및 유기용매를 포함하는 분산상을 미세유체칩에 주입하여 미립구 액적을 제조하는 단계; 및i) preparing microsphere droplets by injecting a dispersed phase containing donepezil or a pharmaceutically acceptable salt thereof, poly (lactic-co-glycolic acid) (PLGA) and an organic solvent into a microfluidic chip; and
    ii) 상기 미립구 액적을, 계면활성제가 포함된 15 내지 25℃의 수상에 분산시키는 단계를 포함하는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.ii) The method for producing sustained-release PLGA microspheres containing donepezil, comprising dispersing the microsphere droplets in an aqueous phase of 15 to 25° C. containing a surfactant.
  2. 제1항에 있어서, 상기 분산상에 포함되는 도네페질 또는 이의 약제학적으로 허용되는 염 및 PLGA의 중량 비율은 15:85 내지 40:60인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method according to claim 1, wherein the weight ratio of donepezil or a pharmaceutically acceptable salt thereof and PLGA in the dispersed phase is 15:85 to 40:60.
  3. 제1항에 있어서, 도네페질 함유 서방출성 PLGA 미립구 내 함유되는 도네페질의 함량 또는 봉입률이 균일한 것을 특징으로 하는, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method according to claim 1, wherein the content or encapsulation rate of donepezil contained in the donepezil-containing sustained-release PLGA microspheres is uniform.
  4. 제3항에 있어서, 도네페질의 봉입률이 평균값 대비 오차율이 5% 이하인 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 3, wherein the donepezil encapsulation rate has an error rate of 5% or less compared to the average value.
  5. 제1항에 있어서, 상기 i) 단계에서 분산상은 연속상과 동시에 각각 별도의 통로를 통하여 미세유체칩에 주입되는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 1, wherein in step i), the dispersed phase is injected into the microfluidic chip through separate passages at the same time as the continuous phase.
  6. 제1항에 있어서, 상기 유기용매는 디클로로메탄인 것인, 서방출성 PLGA 미립구의 제조방법.The method of claim 1, wherein the organic solvent is dichloromethane.
  7. 제1항에 있어서, iii) 상기 분산된 미립구 액적으로부터 유기용매를 제거하는 단계를 추가로 포함하는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 1, further comprising the step of iii) removing the organic solvent from the dispersed microsphere droplets.
  8. 제7항에 있어서, 상기 iii) 단계의 유기용매의 제거는 수상의 온도 증가에 의한 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 7, wherein the removal of the organic solvent in step iii) is by increasing the temperature of the aqueous phase, donepezil-containing sustained-release PLGA microspheres.
  9. 제8항에 있어서, 상기 iii) 단계의 수상의 온도는 30 내지 45℃로 증가시키는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 8, wherein the temperature of the aqueous phase in step iii) is increased to 30 to 45°C.
  10. 제7항에 있어서, 상기 iii) 단계에서 수상을 교체하는 단계를 추가로 포함하는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 7, further comprising replacing the aqueous phase in step iii).
  11. 제7항에 있어서, iv) 유기용매가 제거된 미립구 액적을 경화하는 단계를 추가로 포함하는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 7, further comprising the step of iv) curing the microsphere droplets from which the organic solvent has been removed.
  12. 제11항에 있어서, 상기 iv) 단계의 경화는 15 내지 25℃의 온도에서 수행되는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 11, wherein the curing of step iv) is performed at a temperature of 15 to 25°C.
  13. 제11항에 있어서, v) 상기 경화된 미립구를 세척, 여과 및 건조하는 단계를 추가로 포함하는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 11, further comprising v) washing, filtering and drying the cured microspheres.
  14. 제13항에 있어서, 상기 v) 단계의 여과는 멤브레인 필터를 이용하는 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 13, wherein the filtration in step v) uses a membrane filter.
  15. 제14항에 있어서, 상기 v) 단계의 건조는 동결 건조인 것인, 도네페질 함유 서방출성 PLGA 미립구의 제조방법.The method of claim 14, wherein the drying in step v) is freeze-drying, donepezil-containing sustained-release PLGA microspheres.
PCT/KR2021/008816 2020-07-09 2021-07-09 Method for preparing donepezil-containing sustained-release plga microspheres WO2022010317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200084894A KR102237737B1 (en) 2020-07-09 2020-07-09 Methods for preparation of donepezil loaded sustained-release PLGA microsphere
KR10-2020-0084894 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022010317A1 true WO2022010317A1 (en) 2022-01-13

Family

ID=75480410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008816 WO2022010317A1 (en) 2020-07-09 2021-07-09 Method for preparing donepezil-containing sustained-release plga microspheres

Country Status (2)

Country Link
KR (1) KR102237737B1 (en)
WO (1) WO2022010317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083026A1 (en) * 2022-10-19 2024-04-25 四川科伦药物研究院有限公司 Lumateperone pharmaceutical composition, and long-acting microsphere sustained-release formulation and preparation method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237737B1 (en) * 2020-07-09 2021-04-08 에이치엘비제약 주식회사 Methods for preparation of donepezil loaded sustained-release PLGA microsphere
KR102537678B1 (en) 2022-11-03 2023-05-30 충남대학교산학협력단 Sustained-release PLGA nanospheres containing GS-441524 and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181563B1 (en) * 2008-11-14 2012-09-10 에스케이케미칼주식회사 Method for preparing microspheres and microspheres produced thereby
KR20160090581A (en) * 2015-01-22 2016-08-01 주식회사 셀루메드 Porous biodegradable polymer microsphere for dual-loaded drug delivery and method for producing thereof
KR20170061499A (en) * 2015-11-26 2017-06-05 단국대학교 천안캠퍼스 산학협력단 Preparation method of porous microspheres or nanocomposite microspheres using a microfluidic device
KR20180131077A (en) * 2017-05-31 2018-12-10 주식회사 대웅제약 Method of preparing sustained release drug microparticles with ease of release control
KR102237737B1 (en) * 2020-07-09 2021-04-08 에이치엘비제약 주식회사 Methods for preparation of donepezil loaded sustained-release PLGA microsphere

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181563B1 (en) * 2008-11-14 2012-09-10 에스케이케미칼주식회사 Method for preparing microspheres and microspheres produced thereby
KR20160090581A (en) * 2015-01-22 2016-08-01 주식회사 셀루메드 Porous biodegradable polymer microsphere for dual-loaded drug delivery and method for producing thereof
KR20170061499A (en) * 2015-11-26 2017-06-05 단국대학교 천안캠퍼스 산학협력단 Preparation method of porous microspheres or nanocomposite microspheres using a microfluidic device
KR20180131077A (en) * 2017-05-31 2018-12-10 주식회사 대웅제약 Method of preparing sustained release drug microparticles with ease of release control
KR102237737B1 (en) * 2020-07-09 2021-04-08 에이치엘비제약 주식회사 Methods for preparation of donepezil loaded sustained-release PLGA microsphere

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO WENJIA, PENG QUAN, LIANG FANG, DONGMEI CUN, MINGSHI YANG: "Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study", ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 10, no. 5, 31 October 2015 (2015-10-31), pages 405 - 414, XP055886578, DOI: 10.1016/j.ajps.2015.06.001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083026A1 (en) * 2022-10-19 2024-04-25 四川科伦药物研究院有限公司 Lumateperone pharmaceutical composition, and long-acting microsphere sustained-release formulation and preparation method therefor

Also Published As

Publication number Publication date
KR102237737B9 (en) 2022-08-19
KR102237737B1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2022010317A1 (en) Method for preparing donepezil-containing sustained-release plga microspheres
WO2019078583A1 (en) Extended release microparticles comprising drug, and preparation method therefor
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2021010719A1 (en) Long-lasting formulation containing rivastigmine, and method for preparing same
US8486447B2 (en) Pharmaceutical formulation
WO2021091246A1 (en) Sustained-release microspheres capable of controlling initial release, and preparation method therefor
WO2020197185A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2023027401A1 (en) Parallel-type membrane emulsification method and device for preparing biodegradable polymer microspheres, and injection formulation preparation method using same
WO2018147660A1 (en) Drug drug delivery formulation for treating mental illness or central nervous system disorder
WO2017204548A1 (en) Damp-proofing tablet containing choline alfoscerate, and preparation method therefor
WO2022050783A1 (en) Sustained-release microparticles for sustained release of drug
EP0761210A2 (en) Process for the manufacture of pharmaceutical preparations with controlled release
WO2020242234A1 (en) Injectable composition containing prodrug of caspase inhibitors, and preparation method therefor
WO2021091333A1 (en) Microsphere for continuous release and method for manufacturing same
WO2023101348A1 (en) Microparticles containing leuprolide, and preparation method thereof
WO2020130585A1 (en) Sustained-release injection comprising deslorelin, and preparation method therefor
WO2023038202A1 (en) Sustained-release microsphere using biodegradable polymer, and method for preparing same
WO2022124508A1 (en) Injectable composition for tissue repair and method for preparing same
WO2024101859A1 (en) Sustained-release injectable preparation comprising dexamethasone acetate and preparation method therefor
WO2023249465A1 (en) Long-acting microsphere formulation containing entecavir, and preparation method thereof
WO2024122991A1 (en) Method for removing organic solvent remaining in microparticles by using complex aqueous-phase solution
WO2023249464A1 (en) Sustained-release microparticles containing drug and pamoic acid
WO2021261926A1 (en) Long-acting injection for dementia treatment
WO2023249461A1 (en) Sustained-release microspheres containing donepezil and pamoic acid
WO2024122778A1 (en) Emulsion comprising dexamethasone, preparation method therefor, and microparticles comprising dexamethasone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837081

Country of ref document: EP

Kind code of ref document: A1