WO2024049167A1 - Novel salt of niclosamide, molecular aggregate thereof, and pharmaceutical composition containing same - Google Patents

Novel salt of niclosamide, molecular aggregate thereof, and pharmaceutical composition containing same Download PDF

Info

Publication number
WO2024049167A1
WO2024049167A1 PCT/KR2023/012799 KR2023012799W WO2024049167A1 WO 2024049167 A1 WO2024049167 A1 WO 2024049167A1 KR 2023012799 W KR2023012799 W KR 2023012799W WO 2024049167 A1 WO2024049167 A1 WO 2024049167A1
Authority
WO
WIPO (PCT)
Prior art keywords
niclosamide
salt
clause
pharmaceutical composition
molecular
Prior art date
Application number
PCT/KR2023/012799
Other languages
French (fr)
Korean (ko)
Inventor
김철환
김경희
이은주
이혜원
신석호
Original Assignee
주식회사 스카이테라퓨틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스카이테라퓨틱스 filed Critical 주식회사 스카이테라퓨틱스
Publication of WO2024049167A1 publication Critical patent/WO2024049167A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/56Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring

Definitions

  • the present invention relates to a new salt of niclosamide with improved physical properties and a molecular complex thereof. More specifically, it relates to a new salt of niclosamide with significantly improved solubility and bioavailability, a molecular complex thereof, and a pharmaceutical composition containing the same.
  • Niclosamide is a broad-spectrum oral anti-parasitic formulation included in the list of essential medicines designated by the WHO and has shown broad antiviral effects and inhibition of pathogenic bacteria, which are the cause of important infectious diseases. Its excellent antiviral effect was also recognized for MERS and SARS, and it was considered for development as a treatment.
  • SI therapeutic Index
  • niclosamide has anticancer and anti-inflammatory activities that cause minimal host toxicity. Therefore, in addition to its antiviral effect, it can be used to treat skin inflammation such as skin psoriasis, which is a symptom of overproliferation of keratinocytes and exaggerated immune response caused by autoimmune skin diseases.
  • skin inflammation such as skin psoriasis, which is a symptom of overproliferation of keratinocytes and exaggerated immune response caused by autoimmune skin diseases.
  • niclosamide is a representative poorly soluble drug with low solubility in water and has the disadvantage of low bioavailability.
  • Polymers., 2021, 13(7) , 1044 Due to its low bioavailability, a lot of effort is needed to develop a formulation that can deliver to target organs and low absorption, which is the biggest obstacle as a treatment.
  • Patent Document 1 WO2021-040337 A1
  • the reactivity to these enzymes was improved.
  • the goal is to significantly improve bioavailability by inhibiting the formation of metabolites.
  • Niclosamide which is attracting attention for its various pharmacological mechanisms and therapeutic effects such as anti-cancer, anti-viral, anti-inflammatory, and treatment for COVID-19, has an anti-inflammatory effect along with a COVID-19 virus killing effect to maintain better bioavailability than prior art. It is expected that it will create a synergy effect.
  • shear stress can be imparted to molecules by simply stirring the solution or causing shaking, and promotes formation by inducing the association of molecules.
  • the time and intensity of inducing molecular association may vary depending on the intensity or time of the applied shear stress, and it is difficult to expect accurate control of the behavior and physical properties of molecular association through shear stress control methods, and reproducibility is also low. .
  • a new salt of niclosamide and a molecular association thereof are produced that have significantly better solubility than existing niclosamide and are also superior in bioavailability. to provide.
  • the purpose of the present invention is to provide a novel salt of niclosamide and a molecular complex thereof, and a pharmaceutical composition containing the same, which have significantly better solubility and bioavailability than existing niclosamide.
  • the present invention provides a molecular assembly with excellent bioavailability and a pharmaceutical composition containing the molecular assembly using a novel molecular assembly containing niclosamide.
  • a salt of niclosamide there is a difference of 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ⁇ between the signal showing the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm.
  • a salt of niclosamide is provided, characterized in that it has a 1 H NMR spectrum with a chemical shift difference of 0.1 ppm.
  • a molecular complex of niclosamide there are 6.6, 7.1, 7.7, 8.1, 8.2, between the signal showing the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm.
  • a molecular assembly is provided, characterized in that it has a 1 H NMR spectrum with a chemical shift difference of 8.9 ⁇ 0.1 ppm.
  • a method for producing a molecular assembly including the step of applying shear stress to a solution containing niclosamide or a salt of niclosamide.
  • a pharmaceutical composition for treating or preventing diseases caused by coronavirus infection comprising the salt of niclosamide or the molecular complex.
  • a pharmaceutical composition for treating psoriasis of the skin comprising the salt of niclosamide or the molecular complex is provided.
  • an inhalation device comprising the pharmaceutical composition.
  • the new salt of niclosamide, the molecular complex thereof, and the pharmaceutical composition containing the same of the present invention have the effect of increased solubility and bioavailability compared to the existing niclosamide.
  • Figure 1 is a diagram showing 1H-NMR spectra between 9.5-0.0 ppm for Example 1-1 (red, top) and Example 1-2 (blue, bottom) of the present invention.
  • Figure 2 is a diagram showing 1H-NMR spectra between 9.0-6.5 ppm for Example 1-1 (red, top) and Example 1-2 (blue, bottom) of the present invention.
  • Figure 3 shows the results of HPLC analysis of commercially purchased niclosamide, Examples 1-1 and 1-2.
  • Figure 4 is a schematic diagram of niclosamide produced through the present invention and/or niclosamide with increased bioavailability due to a molecular complex of niclosamide and a pharmaceutically acceptable salt compared to existing niclosamide products. am.
  • Figure 5 is a graph showing the results of pharmacokinetic evaluation of the niclosamide molecular complex according to Example 3 of the present invention.
  • Figure 6 is a graph showing the results of pharmacokinetic evaluation of the niclosamide molecular complex according to Example 4 of the present invention.
  • Standard chemical symbols are used interchangeably with the full name represented by the symbol. For example, “hydrogen” and “H” are understood to have the same meaning. Standard techniques can be used for chemical processes, interactions between molecules, chemical analysis, formulation of compositions and testing thereof. The above techniques and procedures can generally be performed according to conventional methods well known in the art.
  • Molecular association refers to a novel molecular association of pharmacologically active substances obtained by controlling physical behavior, created using shear force considering the physical interaction between molecules existing in a solution.
  • a new molecular association created by considering physical interactions between molecules refers to a molecular association of pharmacologically active substances with improved physical properties.
  • bioavailability refers to the amount and rate at which a drug is delivered from the point of administration (site of administration) to the target site (site of action) in the body where the drug produces a therapeutic effect.
  • bioavailability is measured by the flow rate (FLUX) passing through biological barriers in the body, such as the cornea, skin, blood-brain-barrier, and blood-retina barrier. It can be understood.
  • Pharmacokinetic endpoints are used to conduct animal in vivo kinetic experiments to evaluate the oral bioavailability of pharmaceutical oral compositions. Pharmacokinetic variables are quantitatively calculated through mathematical calculations of the absorption, distribution, metabolism, and excretion processes over time of drugs administered in the body.
  • Pharmacokinetic evaluation variables include Cmax (maximum blood concentration), time to reach (Tmax), half-life, area under curve (AUC), and bioavailability (BA).
  • Time to reach (Tmax) is the time for the blood concentration to reach the highest level after drug administration.
  • Half-life refers to the time it takes for the plasma concentration of a drug to halve from the value at a certain reference point after drug administration.
  • Maximum blood concentration (Cmax) is an indicator indicating the maximum plasma concentration observed in each individual after drug administration.
  • AUC Area Under Curve
  • niclosamide has a very low solubility (0.61-13.21 ⁇ g/mL) and is rapidly metabolized after oral administration, resulting in very low bioavailability, so there is a limitation in maintaining effective therapeutic blood concentration through oral administration.
  • Research is being conducted on formulations using specialized technologies, including formulation technology, to increase solubility and improve bioavailability, but there has been no clinical progress.
  • solubility improvement technologies commonly use third substances (surfactants, micelles, cyclodextrins, lipids, albumin, water-soluble polymers, stabilizers/dispersants, nanoparticles, porous substances) to improve solubility (excluding pharmacologically active substances and water). Particles, etc. are such third substances) must be used, but in the present invention, pharmacologically active substance (API (Active Pharmaceutical Ingredient)) molecules are grouped in groups of several to dozens and exist as particles of 2 to 5 nm in size. This increases the solubility in aqueous solution and simultaneously improves the bioavailability of these particles.
  • API Active Pharmaceutical Ingredient
  • a new salt of niclosamide can be obtained by applying a new type of salt that has not been previously used for the purpose of increasing the solubility and improving bioavailability of niclosamide, a pharmacologically active substance.
  • a salt of niclosamide there is a difference of 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ⁇ 0.1 between the signal exhibiting the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm. It may be a salt of niclosamide with a 1 H NMR spectrum with a chemical shift difference of ppm.
  • the salt of niclosamide may have a solubility in purified water of 0.10 mg/mL or more, preferably 0.20 mg/mL or more, and more preferably 0.30 mg/mL or more. , more preferably 0.35 mg/mL or more, and most preferably 0.40 mg/mL or more, but is not limited thereto.
  • the upper limit of solubility is not particularly limited, but may be 1.0 mg/mL or less, for example. there is.
  • the salt of niclosamide according to the present invention may have a solubility in purified water that is 2 times more, 5 times more, 10 times more, or 20 times more than the existing salt of niclosamide.
  • the salt of niclosamide according to the present invention may have a solubility in purified water that is 2 times more, 5 times more, 10 times more, or 20 times more than the existing salt of niclosamide.
  • the salt of niclosamide according to the present invention may be a combination of niclosamide and any one of sodium, bicarbonate, and sulfate, preferably sodium bicarbonate and sodium. It may be in a sulfate-bound form.
  • the salt of niclosamide according to the present invention when it is a combination of sodium bicarbonate and sodium sulfate, it may be a salt containing 0.5 to 1.5 equivalents of sodium bicarbonate and 0.1 to 0.5 equivalents of sodium sulfate, It is not necessarily limited to this.
  • a pharmacologically active substance for the purpose of increasing the solubility and improving bioavailability of niclosamide, a pharmacologically active substance, it is possible to obtain a molecular assembly with a novel structure by adjusting the strength of the shear force in consideration of the physical interaction between molecules. there is.
  • a molecular complex of niclosamide there are 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 between the signal representing the lowest chemical shift in the chemical shift range of 6.5 to 9.5 ppm and another signal. It may be a molecular assembly having a 1 H NMR spectrum with a chemical shift difference of ⁇ 0.1 ppm.
  • Nuclear Magnetic Resonance (NMR) spectroscopy used to analyze the structure of small molecules, is a commonly used technique in chemistry. NMR spectroscopy allows you to study the nucleus of a molecule and obtain information about its chemical surroundings based on how the atoms are connected.
  • the 1 H and 13 C atoms are magnetically active (i.e. NMR active), and when a sample containing NMR active nuclei is placed in a magnetic environment and exposed to a specific radio frequency, the 1 H or 13 C atoms are converted into high energy states. 13 The nuclear atoms of C become excited. When excited from a low energy level to a high energy level, a spectrometer detects a change in the relaxation phenomenon of the nuclear spin. This change is a change in the spin state due to nuclear magnetic resonance and a chemical bond environment connected around the nucleus. Peaks located in different spectra indicate different positions.
  • NMR active magnetically active
  • the difference in peak position that is, the difference in chemical shift (ppm, ⁇ )
  • the difference in chemical shift is a phenomenon in which the resonance frequency of each 1 H in the molecule is shifted due to the influence of the surrounding magnetic environment.
  • the electric shift of adjacent atoms or atomic groups It is a phenomenon determined by the negative degree or caused by a change in the bonding environment between molecules.
  • the NMR chemical shift value of niclosamide easily available from commercial sources is different from that of the present invention, and the difference in these chemical shift values is a phenomenon caused by a change in the bonding environment between molecules.
  • the solubility of the molecular assembly in purified water may be 0.10 mg/mL or more, preferably 0.20 mg/mL or more, more preferably 0.25 mg/mL or more, and further Preferably it may be 0.30 mg/mL or more, and most preferably 0.33 mg/mL or more, but is not limited thereto.
  • the upper limit of solubility is not particularly limited, but may be 1.0 mg/mL or less, for example.
  • the molecular complex of niclosamide may have a solubility in purified water that is at least 2 times, 5 times, 10 times, or 20 times that of existing pharmacologically active substances.
  • niclosamide contained in the molecular complex of niclosamide may be in the form of a pharmaceutically acceptable salt, and the salt is one of niclosamide, sodium, bicarbonate, and sulfate. It may be in the form of a combination of any one salt, preferably a combination of sodium bicarbonate and sodium sulfate.
  • niclosamide contained in the molecular assembly of niclosamide is a salt in which sodium bicarbonate and sodium sulfate are combined, 0.5 to 1.5 equivalents of sodium bicarbonate and 0.1 to 0.5 equivalents of sodium sulfate It may be a salt included, but is not necessarily limited thereto.
  • the molecular complex of niclosamide may be a molecular complex composed of a mixture of niclosamide and a salt, and in this case, solubility and bioavailability may be improved.
  • the molecular assembly according to an embodiment of the present invention can be produced by applying shear stress to a solution containing niclosamide.
  • the niclosamide may be niclosamide itself, a pharmaceutically acceptable salt thereof, or a derivative thereof.
  • the pharmaceutically acceptable salt may be one or more salts selected from the group consisting of sodium, bicarbonate, and sulfate salts, but is not limited thereto.
  • the method of controlling physical behavior using the shear stress may be either mechanical shear stress or ultrasonic application.
  • the mechanical shear stress may be applied by passing the solution through a column or filter paper filled with one or more selected from the group consisting of silica gel, molecular sieve, sand, paper filter, and alumina. Below, mechanical shear stress is explained in detail.
  • the mechanical shear stress may be applied by passing a solution containing a pharmacologically active material through a column filled with silica, etc.
  • a solution containing the pharmacologically active material passes through a column filled with silica or the like, the pharmacologically active material undergoes a very high shear stress as it passes through a physically narrow area.
  • the silica may be spherical or prismatic, but its shape is not limited.
  • the size of the silica may be 0.01 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m, and more preferably 2.5 to 3.7 ⁇ m. When the size of the silica is less than 0.01 ⁇ m or more than 100 ⁇ m, even if the solution containing the niclosamide and niclosamide salt passes through a column filled with silica, shear stress is not applied and no change in the molecular assembly occurs. There may not be.
  • a negative pressure of 0.1 bar to 1.0 bar or 0.2 bar to 0.9 bar can be applied to the bottom of the column filled with silica.
  • the negative pressure applied to the bottom of the column filled with silica is less than 0.1 bar, the time required for the solution containing the pharmacologically active material to pass through the column increases, thereby reducing the production time of the new molecular assembly according to the present invention. There may be a delay.
  • the negative pressure applied to the bottom of the column filled with silica is more than 1.0 bar, the time required for the solution containing the pharmacologically active material to pass through the column is reduced, thereby reducing the time required for the solution containing the pharmacologically active material to pass through the column. Manufacturing time may be shortened, but manufacturing costs may increase because additional pump equipment is required.
  • the outflow flow rate may be 1 mL/min*5,000 mm 2 to 10 mL/min*10,000 mm 2 , and specifically, the outflow flow rate may be 1 mL/min*10,000 mm 2 to 10 mL/min. *Can be 5,000mm 2 , but is not limited to this.
  • the mixed solution before the shear force is applied can be in any state, such as supersaturated, saturated, and unsaturated.
  • in the step of contacting the mixed solution containing the active material with the multi-surface body intraparticle pores, interparticle pores, and inside/outside of the pores of the mixed solution and the multi-surface body.
  • Physical properties such as shear between surfaces, ion/salt, spatial confinement, surface effects, characteristics of solvent/dispersion medium for preparing mixed solution, contact rate with dispersion medium, etc. It can induce/cause/promote chemical (physico-chemical) interaction.
  • the mixed solution is subjected to high shear (shear or shear rate) as it passes through nanometer- or micrometer-sized particles or interparticle pores of the multi-surface body.
  • high shear shear or shear rate
  • the active material Certain types of arrangement or association of molecules can be induced/promoted.
  • the surface properties of the multisurface body e.g. polarity, hydrophilicity or surface functionality
  • the rate at which the physical and chemical environment (e.g. polarity, etc.) to which the mixed liquid is exposed changes depending on the time of contact, that is, the outflow rate. ) is changed, which can change the time or ease of arrangement or assembly of the active material molecules in the mixed solution.
  • the distance between molecules through the intraparticle pores of the multi-surface body becomes closer, and the intermolecular attraction increases, thereby forming new molecular associations of molecules. may be generated, but is not limited to this.
  • the mechanical shear stress may be applied by passing a solution containing the pharmacologically active material through one or more filter papers.
  • the pharmacologically active material undergoes a very high shear stress by passing through a physically narrow area.
  • the filter paper may be one filter paper or two or more filter papers.
  • the filter paper may be stacked and arranged.
  • the filter paper is a plurality of two or more filter papers, a higher shear stress can be provided than a single filter paper.
  • the pore size of the filter paper may be 0.1 to 5.0 microns or 0.3 to 4.5 microns. If the pore size of the filter paper is less than 0.1 micron, the amount of the solution containing the pharmacologically active material passing through or filtering through the filter paper is too small, and the production rate of the new molecular assembly according to the present invention may be reduced. If the pore size of the filter paper is greater than 5.0 microns, the solution containing the pharmacologically active material may simply pass through the filter paper and shear stress may not be effectively applied.
  • the shear stress may be applied using ultrasonic waves.
  • the application of ultrasonic waves will be described in detail below.
  • the shear stress may be applied by applying ultrasound to a solution containing the pharmacologically active material.
  • the intensity of the applied ultrasound may be 200 J/sec to 800 J/sec or 400 J/sec to 600 J/sec.
  • the energy applied per volume of the applied ultrasound can be calculated as the intensity of the ultrasound (J/sec) x the applied time (sec)/measured volume (ml).
  • the energy applied per volume of ultrasound applied to the solution containing the pharmacologically active material may be 100 J/ml to 90 kJ/ml. If the energy of the ultrasound is less than 100 J/ml, sufficient shear stress is not applied to the solution containing the pharmacologically active material, making it difficult to form molecular aggregates. Additionally, when the energy of the ultrasound is greater than 90 kJ/ml, excessive heat may be applied to the solution containing the pharmacologically active material, making it difficult to form molecular aggregates.
  • the ultrasound may be applied at 10°C to 80°C for 10 seconds to 60 minutes.
  • the ultrasound is applied at a temperature of less than 10°C, there is no change in the solution containing the pharmacologically active material, and when it is applied at a temperature of more than 80°C, a phase change occurs in the solution containing the pharmacologically active material, thereby forming the present invention.
  • the formation of new molecular associations may be difficult.
  • the ultrasound is applied for less than 10 seconds, there is no change in the solution containing the pharmacologically active material, and when applied for a time exceeding 60 minutes, the molecular assembly in the solution containing the pharmacologically active material is deformed. Therefore, the pharmacologically active substance according to the present invention cannot be formed.
  • a column filled with silica can be combined with an ultrasonic generator by applying the shear stress.
  • the silica-filled column may be placed inside an ultrasonic generator, or the silica-filled column and the ultrasonic generator may be separated and placed continuously.
  • the column may be placed in an ultrasonic generator to apply ultrasonic waves. Additionally, after applying ultrasound to a solution containing the pharmacologically active material, the solution may be passed through a column filled with silica.
  • a step of reacting the pharmacologically active material in an organic solvent may be performed prior to applying the shear stress.
  • the organic solvent any polar solvent can be used without particular limitation. Specifically, a solvent containing an OH group can be used, and alcohols such as ethanol can be preferably used.
  • filtering and drying steps can be additionally performed to remove residual solvent.
  • filtration and drying methods used in the industry can be used without particular restrictions as long as they do not affect the molecular assembly.
  • the solution phase Before shear stress is applied, the solution phase can be in any state such as supersaturated, saturated, and unsaturated.
  • the present invention can provide a pharmaceutical composition for treating or preventing diseases caused by coronavirus infection, comprising a salt of niclosamide or a molecular complex of niclosamide.
  • the present invention can provide a pharmaceutical composition for treating psoriasis of the skin, comprising a salt of niclosamide or a molecular complex of niclosamide.
  • the present invention can provide a method of treating or preventing disease caused by coronavirus infection using a composition containing the salt of niclosamide.
  • the present invention can provide a method of treating or preventing diseases caused by coronavirus infection using a composition containing the above molecular complex.
  • the present invention can provide a method of treating or preventing skin psoriasis using a composition containing the salt of niclosamide.
  • the present invention can provide a method of treating or preventing skin psoriasis using a composition containing the above molecular complex.
  • the pharmaceutical composition may be administered in any one dosage form selected from the group consisting of powder, granule, tablet, capsule, and liquid form, but is not necessarily limited thereto.
  • the pharmaceutical composition may include at least one pharmaceutically acceptable vehicle or at least one pharmaceutically acceptable excipient.
  • the additive is an organic/inorganic carrier commonly used to facilitate the in vivo administration or delivery of the pharmacologically active substance, or a drug commonly used to deliver the pharmacologically active substance to the site of action. Additional commonly used additives may be used to prepare the formulation.
  • the niclosamide molecular assembly of the present invention is a product of the physical properties created by changing the arrangement or association of the molecular assembly by applying a shear force to the existing niclosamide, and can not be formulated into any pharmaceutical composition using known additives. Implementation is possible.
  • stabilizers, surfactants, surface modifiers, solubility enhancers, buffers, encapsulants, antioxidants, preservatives, and nonionic wetting agents are relatively inert substances compared to the pharmacologically active substances used to facilitate the preparation of drug formulations of pharmacologically active substances.
  • clarifying agents, viscosity increasing agents, and absorption enhancers and are not limited to the specific examples listed below.
  • the additives include organic/inorganic carriers, stabilizers, surfactants, surface modifiers, solubility enhancers, buffers, encapsulants, antioxidants, preservatives, non-ionic wetting agents, clarifying agents, viscosity increasing agents, and Any one or more selected from the group consisting of absorption enhancers may be used, but are not necessarily limited thereto.
  • the pharmaceutical composition of the present invention may include a dispersion medium, but is not limited thereto.
  • the pharmaceutical composition which is one of the embodiments of the present invention, has the effect of being stably dispersed in a dispersion medium.
  • the dispersion medium may be water, a saline solution, or a buffered aqueous solution as previously described in terms and definitions, but is not limited thereto.
  • the “pharmaceutical composition” consists of a mixture with an organic or inorganic carrier or excipient, for example, tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions or preparations for use. It can be combined with conventional non-toxic pharmaceutically acceptable carriers for other forms as appropriate.
  • the excipient or additive may be a type of surfactant, mediator solubilizer, or enhancer commonly used in pharmaceutical compositions.
  • the surfactants may fall into the category of fatty acids or fatty acid derivatives (anionic, cationic, zwitterionic and nonionic), bile salts, cyclodextrins, chitosan or chitosan derivatives, phospholipids, and nitrogen-containing ring compounds.
  • the organic/inorganic carriers include glucose, lactose, mannose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, silica, potato starch, urea, medium chain length triglycerides, dextran and agents.
  • Other carriers in solid, semi-solid or liquid form suitable for use in manufacturing may be included.
  • the silica may be SYLOID®, Cab-O-Sil®, SHIELDEX®, LUDOX®, SYLOBLOC®, TRISYL®, DARACLAR®, SYLOID® FP, SILSOL®, DAVISIL®, VYDAC®, and PERKASIL®. It may be SYLOID 244FP or XDP3050, but is not limited thereto.
  • the surfactant may be anionic, cationic, zwitterionic, and nonionic, and among the above nonionic ones, polyoxyethylene-polyoxypropylene block copolymer (poloxamer), sorbitan ester (Span), and polyoxyethylene sorbitol.
  • polyoxyethylene-polyoxypropylene block copolymer polyoxyethylene-polyoxypropylene block copolymer
  • Span sorbitan ester
  • polyoxyethylene sorbitol polyoxyethylene-polyoxypropylene block copolymer
  • One or more may be selected from the group consisting of Tween and polyoxyethylene ether (Brij).
  • the anionic surfactants include sodium lauryl sulfate, sodium dodecyl benzene sulfonate, sodium (C6-C16) alkyl phenoxy benzene sulfonate, disodium (C6-C16) alkyl phenoxy benzene sulfonate, disodium (C6- C16) Di-alkyl phenoxy benzene sulfonate, disodium laureth-3 sulfosuccinate, sodium dioctyl sulfosuccinate, sodium di-sec-butyl naphthalene sulfonate, disodium dodecyl diphenyl ether sulfonate, Disodium n-octadecyl sulfosuccinate, phosphate esters of branched alcohol ethoxylates, etc., but are not limited thereto.
  • the anionic surfactant includes alkyl sulfate, alkyl ether sulfate, alkyl sulfonate, alkaryl sulfonate, a-olefin-sulfonate, alkylamide sulfonate, alkaryl polyether sulfate, and alkylamido ether.
  • anionic surfactants include sodium, potassium, lithium, magnesium, and laureth sulfate, trideceth sulfate, myreth, ethoxylated with 1, 2 and 3 moles of ethylene oxide.
  • Sodium, potassium, lithium, magnesium, ammonium and triethanolamine Lauryl sulfate, coco sulfate, tridecyl sulfate, myrstyl sulfate, cetyl sulfate, cetearyl sulfate, stearyl sulfate, oleyl sulfate and tallow.
  • the cationic surfactant may be any one of the cationic surfactants commonly used or known in the art for aqueous surfactant compositions.
  • Classes of suitable cationic surfactants include, but are not limited to, alkyl amines, alkyl imidazolines, ethoxylated amines, quaternaries, and quaternized esters.
  • amphoteric and nonionic surfactants include capryl alcohol ethoxylate, lauryl alcohol ethoxylate, myristyl alcohol ethoxylate, cetyl alcohol ethoxylate, stearyl alcohol ethoxylate, and cetearyl.
  • linear or branched C8-C30 fatty alcohol ethoxylates such as alcohol ethoxylates, sterol ethoxylates, oleyl alcohol ethoxylates and behenyl alcohol ethoxylates; alkylphenol alkoxylates such as octyl phenol ethoxylate; and polyoxyethylene polyoxypropylene block copolymer, etc., but is not limited thereto.
  • nonionic surfactants suitable as nonionic surfactants are described below.
  • Other useful nonionic surfactants are C8-C22 fatty acid esters of polyoxyethylene glycols, ethoxylated mono- and diglycerides, sorbitan esters and ethoxylated sorbitan esters, C8-C22 fatty acid glycol esters, ethylene oxide and propylene. Includes block copolymers of oxides and combinations thereof.
  • the number of ethylene oxide units in each of the foregoing ethoxylates may be at least 2 in one aspect and between 2 and about 150 in another aspect.
  • the surfactants include Tween 20, Tween 60, Tween 80, Span 20, Span 80, Labrasol, Cremophores, Transcutol P, Transcutol HP, Labrafil, Sodium Lauryl Sulfate, and Plural Diisostearic.
  • Capriol 90, Capriol PGMC, Lauroglycol 90, Lauroglycol FCC, Poloxamer 188, Poloxamer 407, Aconone MC 8-2, Vitamin E TPGS, at least one selected from the group consisting of may include.
  • polyoxyethylene sorbitan monooleate that is, Tweeen TM 80, but is not limited thereto.
  • the pharmaceutical composition is used for the treatment or prevention of diseases caused by coronavirus strains, MERS-CoV, and SARS-CoV-2. You can.
  • the pharmaceutical composition comprising niclosamide or a molecular complex of a pharmaceutically acceptable salt of niclosamide is provided in a solid state, or in an aerosol or solidified powder formulation to provide formulations and preparations for oral and/or inhalation. to provide.
  • the pharmaceutical composition can be used in one or more of oral and inhalable dosage forms.
  • the pharmaceutical composition can be used in a transdermal formulation.
  • an inhalation device containing a pharmaceutical composition containing the molecular complex of the present invention can be provided.
  • the inhalation device may be manufactured in any form selected from the group consisting of an inhaler and a nebulizer, which are small portable devices, but is not limited thereto.
  • the pharmaceutical composition containing the molecular complex of the present invention may be provided as an oral drug.
  • the pharmaceutical composition containing the molecular complex of the present invention can be administered by oral administration or inhalation.
  • the pharmacologically active substance can be easily delivered to the nasal mucosa and/or lungs by inhalation, making it possible to deliver the pharmacologically active substance to the patient in a non-invasive manner.
  • the pharmaceutical composition may be administered to a patient in the form of an oral capsule.
  • the inhalation device may be in the form of a nasal spray in which the therapeutic dose of the composition is inhaled into the nose, and in this case, it may be absorbed through the nasal mucosa, but is not limited to this.
  • the pharmaceutical composition is used for the treatment or prevention of viral infections caused by coronavirus strains such as MERS-CoV and SARS-CoV-2.
  • coronavirus strains such as MERS-CoV and SARS-CoV-2.
  • Niclosamide (Olon) 2.5 g was dissolved in 500 g of ethanol (94.5% Ethanol, Daejeong Chemical) to prepare a niclosamide solution with a concentration of about 0.5%.
  • the completely dissolved 0.5% niclosamide ethanol solution was dissolved by adding 10 mL of salt solution while stirring at 1,000 rpm. After dissolving as much as possible, undissolved salt was filtered out using a 0.45 ⁇ m, PVDF membrane filter before proceeding with the subsequent process.
  • Example 1-1 15 g of SYLOID 244FP (WRGrace) was wepped in 150 g of ethanol and then packed in a glass funnel (G4 filter) with a diameter of 90 mm to prepare a 1 cm high SYLOID 244FP column.
  • a flask capable of reducing pressure by connecting to a vacuum pump was installed at the bottom of the funnel. After reducing the pressure to about 200 mbar using a vacuum pump, the niclosamide solution was added to the column, and the solution that passed through the column was recovered from the bottom. The outflow rate at this time was about 7.9mL/min*6358.5mm 2 .
  • Niclosamide (Olon) 2.5 g was dissolved in 500 g of ethanol (94.5% Ethanol, Daejeong Chemical) to prepare a niclosamide solution with a concentration of about 0.5%.
  • 0.3257g was dissolved in 10mL of purified water.
  • the completely dissolved 0.5% niclosamide ethanol solution was dissolved by adding 10 mL of salt solution while stirring at 1,000 rpm. After dissolving as much as possible, undissolved salt was filtered out using a 0.45 ⁇ m, PVDF membrane filter before proceeding with the subsequent process.
  • Example 2-1 15 g of SYLOID 244FP (WRGrace) was wepped in 150 g of ethanol and then packed in a glass funnel (G4 filter) with a diameter of 90 mm to prepare a 1 cm high SYLOID 244FP column.
  • a flask capable of reducing pressure by connecting to a vacuum pump was installed at the bottom of the funnel. After reducing the pressure to about 200 mbar using a vacuum pump, the niclosamide solution was added to the column, and the solution that passed through the column was recovered from the bottom. The outflow rate at this time was about 6.1mL/min*6358.5mm 2 .
  • the concentration of niclosamide present in the effluent of Example 1-2 was analyzed using HPLC (e2695, Waters, USA), and it was confirmed that the obtained niclosamide was 1.94 g.
  • Ethanolamine (Sigma aldrich) 181.1 mg, which is 0.5 equivalent of the obtained niclosamide content, was weighed and dissolved in 5 g of ethanol, then added to the effluent of Example 1-2 and stirred at 700 rpm for 2 minutes.
  • the concentration of niclosamide present in the effluent was analyzed using HPLC (e2695, Waters, USA), and it was confirmed that the obtained niclosamide was 2.3934 g. 5.2655 g of polysorbate 80 (Tween80, Tokyo chemical industry), which is 2.2 times the obtained niclosamide content, was weighed and dissolved in 20 g of ethanol, then added to the effluent of Example 2-2 and stirred at 700 rpm for 10 minutes.
  • This effluent was operated at 25°C and 20 mbar pressure for about 1 hour and 30 minutes at a rotation speed of 120 rpm using a rotary vacuum dryer to remove 90% of the ethanol, and then the porous silica XDP3050 (W.R.
  • NCS-EA Salt The solubility of commercially purchased niclosamide (NCS) in purified water was 0.003 mg/mL, and when 1 equivalent of ethanolamine (EA) was added to prepare it with NCS-EA Salt and analyzed, it dissolved at 0.22 mg/mL. It has been done. In the case of Examples 1-1 and 2-1, it was confirmed that the solubility in purified water was improved at about 0.4 mg/mL compared to NCS-EA Salt.
  • NCS API 0.003mg/mL
  • Example 1-1 0.44 mg/mL
  • Example 1-2 0.33 mg/mL
  • Example 2-1 0.43 mg/mL
  • Example 2-2 0.39 mg/mL
  • the salt of niclosamide and the niclosybe molecular complex according to the present invention have a solubility of about 0.33 mg/mL to 0.44 mg/mL.
  • the column used was Waters' Xbridge Shield RP C18 (250mm
  • the retention time of NCS was confirmed using acetonitrile - Honeywell (B&J), purified water - Honeywell (B&J), formic acid - Samjeon Pure Medicine at a ratio of 750/250/1 (v/v/v)) and the NCS Concentration is analyzed by calculating the peak area.
  • Example 1-1 corresponds to [A], [B], and [C] in the graph, respectively, and all show peaks in the same time period.
  • the NMR device used was a 600 MHz NMR (Avance Neo 600, Bruker Biopsin, USA) with a magnetic field of approximately 14.1 T, and the pulse sequence used was "zg30". Analysis was conducted at room temperature, and the chemical shift of the peak of DMSO-d6 (DLM-10, Cambridge Isotope Laboratories, USA) was used as a reference to set the standard to 2.500 ppm. The obtained fid data were processed with NMR processing software (MestReNova, Mestrelab, Spain).
  • Example 1-1 and 1-2 1 H NMR spectra were analyzed using the above NMR sample preparation method.
  • the 1 H NMR spectrum analysis results between 9.5-0.0 ppm for Example 1-1 are shown in red at the top of FIG. 1, and the 1 H NMR spectrum analysis results between 9.5-0.0 ppm for Example 1-2 is shown in blue at the bottom of Figure 1.
  • Example 1-1 the 1 H NMR spectrum analysis results between 9.5-6.5 ppm for Example 1-1 are shown in red at the top of FIG. 2, and the 1 H NMR spectrum between 9.5-6.5 ppm for Example 1-2 The analysis results are shown in blue at the bottom of Figure 2.
  • the niclosamide salt (Example 1-1) has a chemical shift range of 6.5 to 9.5 ppm between the signal showing the lowest chemical shift and another signal of 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ⁇ 0.1 ppm.
  • the molecular complex of niclosamide salt (Example 1-2) has a chemical shift range of 6.5 to 9.5 ppm between the signal showing the lowest chemical shift and another signal of 6.6, 7.1, 7.7, 8.1. , 8.2, 8.9 ⁇ 0.1 ppm, and there is a subtle difference between the niclosamide salt (Example 1-1) and the molecular complex of the niclosamide salt after shear stress (Example 1-2). It was found that there was a peak shift.
  • Peak thickness change peak thickness after process (NCS WP) - peak thickness before process (NCS API)
  • Figure 4 is a schematic diagram showing that the niclosamide molecular complex of the present invention has a higher bioavailability compared to commercially purchased or niclosamide itself.
  • rats were fasted for 12 hours in advance, sorted into each experimental group, and allowed sufficient rest time to minimize stress.
  • Approximately 0.1 ml of blood was collected at 2, 5, 15, 30, 60, 120, 180, 240, 360, and 720 minutes after drug administration. This was centrifuged, and 50 ⁇ l of plasma was taken as a sample.
  • To 20 ⁇ l of the sample add 200 ⁇ l of acetonitrile containing the internal standard, ketoprofen standard at a concentration of 2 ⁇ g/ml, mix thoroughly, and then centrifuge to dissolve 50 ⁇ l of the supernatant in 200 mL of water.
  • LC-qTOF-MS Liquid chromatography-quadrupole Time of Flight Mass spectrometry
  • the liquid chromatography equipment used was UFLC LC-20AD (Shimadzu, Japan), and the mass spectrometer was Triple TOF 5600 (Sciex). , USA) was used.
  • the column used was a C18 column (Kinetex The flow rate was 0.4 ml/min, the column temperature was 55°C, and the sample solution injection volume was 10 ⁇ l.
  • Pharmacokinetic analysis was performed using the Pharsight WinNonlin 8.1 program (Certara, USA) on the concentration analysis results of the main drug components in plasma obtained at each hour after oral drug administration in rats in the control or test agent treatment group.
  • the pharmacokinetic variables compared and evaluated for the two agents were AUClast (area under the time-blood concentration curve), Tmax (time to reach peak blood concentration), and Cmax (peak blood concentration), and the bioavailability rate was calculated using the AUClast value. was compared.
  • the calculated variable values and graphs are shown in Table 5 below and in Figures 5 and 6, respectively.
  • Control group 1 administered niclosamide intravenously (IV)**
  • Control group 2 administered niclosamide per oral (PO)
  • the composition containing the niclosamide molecular complex according to the present invention has a bioavailability compared to Control Group 2, which was orally administered niclosamide, which is easily available from commercial sources. It increased significantly by about 5 times from 3.14% to 15.72%.
  • the niclosamide formulations according to the present invention can be useful as a treatment for various viruses, including SARS-CoV-2, the virus that causes COVID-19.
  • rats were fasted for 12 hours in advance, sorted into each experimental group, and allowed sufficient rest time to minimize stress.
  • Approximately 0.1 ml of blood was collected at 2, 5, 15, 30, 60, 120, 180, 240, 360, and 720 minutes after drug administration. This was centrifuged, and 50 ⁇ l of plasma was taken as a sample.
  • To 20 ⁇ l of the sample add 200 ⁇ l of acetonitrile containing the internal standard, ketoprofen standard at a concentration of 2 ⁇ g/ml, mix thoroughly, and then centrifuge. 50 ⁇ l of the supernatant is mixed with 200 mL of water.
  • LC-qTOF-MS Liquid chromatography-quadrupole Time of Flight Mass spectrometry
  • the liquid chromatography equipment used was UFLC LC-20AD (Shimadzu, Japan), and the mass spectrometer was Triple TOF 5600 (Sciex). , USA) was used.
  • the column used was a C18 column (Kinetex The flow rate was 0.4 ml/min, the column temperature was 55°C, and the sample solution injection volume was 10 ⁇ l.
  • Pharmacokinetic analysis was performed using the Pharsight WinNonlin 8.1 program (Certara, USA) on the concentration analysis results of the main drug components in plasma obtained at each hour after oral drug administration in rats in the control or test treatment group.
  • the pharmacokinetic variables compared and evaluated for the two agents were AUClast (area under the time-blood concentration curve), Tmax (time to reach peak blood concentration), and Cmax (peak blood concentration), and the bioavailability rate was calculated using the AUClast value. was compared.
  • the calculated variable values and graphs are shown in Table 5 and Figure 6, respectively.
  • the composition comprising the niclosamide molecular complex increased Tmax, the time to reach Cmax, and Tmax compared to niclosamide (control), which is readily available from commercial sources.
  • the rate of elimination from the body was significantly reduced, resulting in an increase in AUClast, which significantly increased the bioavailability by more than four times from 3.14%, the existing bioavailability of niclosamide, to 14.94%.
  • composition containing the niclosamide molecular complex according to the present invention can be useful as a treatment for various viruses, including SARS-CoV-2, the virus that causes COVID-19.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a novel salt of niclosamide or a molecular aggregate containing niclosamide with improved physical properties. More specifically, the present invention relates to a novel salt of niclosamide or a molecular aggregate containing niclosamide, which has significantly better solubility and bioavailability compared to niclosamide, and a pharmaceutical composition containing same.

Description

니클로사미드의 신규 염, 이의 분자회합체 및 이를 포함하는 약학 조성물Novel salts of niclosamide, molecular complexes thereof, and pharmaceutical compositions containing the same
본 발명은 물성 개선된 니클로사미드의 신규 염 및 이의 분자회합체에 관한 것이다. 보다 구체적으로, 용해도 및 생체이용율이 현저히 개선된 니클로사미드의 신규 염 및 이의 분자회합체 그리고 이를 포함하는 약학 조성물에 관한 것이다.The present invention relates to a new salt of niclosamide with improved physical properties and a molecular complex thereof. More specifically, it relates to a new salt of niclosamide with significantly improved solubility and bioavailability, a molecular complex thereof, and a pharmaceutical composition containing the same.
니클로사미드(Niclosamide)는 WHO에서 지정한 필수의약품항목에 포함된 광범위한 경구용 항기생충 제형으로 중요한 감염성 질환의 원인인 병원성세균 억제와 광범위한 항바이러스 효과를 보였고, COVID-19와 동일한 바이러스 과에 속하는 메르스(MERS)와 사스(SARS)에도 뛰어난 항바이러스 효과가 인정되어 치료제로서 개발 검토되었다.Niclosamide is a broad-spectrum oral anti-parasitic formulation included in the list of essential medicines designated by the WHO and has shown broad antiviral effects and inhibition of pathogenic bacteria, which are the cause of important infectious diseases. Its excellent antiviral effect was also recognized for MERS and SARS, and it was considered for development as a treatment.
FDA 허가된 48종 의약품들에 대한 시험관 내(in vitro) 항바이러스 시험결과, 니클로사미드의 COVID-19에 대한 IC50 0.28μM, Cell Cytotoxicity (CC50) >50μM로서 Selective index (SI; therapeutic Index)는 176.65로 가장 우수한 항바이러스 효과와 안전하였고, 렘데시비르(Remdesivir, IC50 11.41μM와 CC50 > 25μM (SI=2.19))보다 약 40배의 항바이러스효과와 약 80배의 안전성 측면에서 더 우수하다. 또한, 강해진 전파력, 백신과 중화항체에 대한 저항성을 가진 COVID-19 바이러스 변이 형인 B.1.1.7(Alpha), B.1.351(Beta)와 D614G의 시험관내 시험에서 니클로사미드의 항바이러스 효과를 확인하였다.In vitro antiviral test results for 48 types of FDA-approved drugs, niclosamide's IC50 against COVID-19 was 0.28μM, Cell Cytotoxicity (CC 50 ) >50μM, and Selective Index (SI; therapeutic Index) was 176.65, showing the best antiviral effect and safety, and was about 40 times better in terms of antiviral effect and about 80 times better than Remdesivir (IC50 11.41μM and CC50 > 25μM (SI=2.19)). . In addition, the antiviral effect of niclosamide was demonstrated in in vitro tests of B.1.1.7 (Alpha), B.1.351 (Beta), and D614G, COVID-19 virus variants with enhanced transmissibility and resistance to vaccines and neutralizing antibodies. Confirmed.
또한, 니클로사미드는 최소한의 숙주독성을 일으키는 항암과 항염증 작용을 하는 것으로 체외 및 전임상 연구가 입증되었다. 따라서, 항바이러스 효과 뿐만 아니라, 자가면역성 피부질환으로 인한 각질세포의 과증식과 과장된 면역 반응 증상인 피부 건선과 같은 피부 염증 치료에도 이용이 가능하다. (J Cell Physiol. 2019;1-14.)In addition, in vitro and preclinical studies have proven that niclosamide has anticancer and anti-inflammatory activities that cause minimal host toxicity. Therefore, in addition to its antiviral effect, it can be used to treat skin inflammation such as skin psoriasis, which is a symptom of overproliferation of keratinocytes and exaggerated immune response caused by autoimmune skin diseases. (J Cell Physiol. 2019;1-14.)
그러나, 니클로사미드는 물에 대한 용해도가 낮은 대표적인 난용성 약물로 생체이용률(Bioavailability)이 낮은 단점이 있다. (Polymers., 2021, 13(7), 1044). 생체이용률이 낮아 치료제로써 가장 큰 장애인 낮은 흡수율(Low absorption)과 표적 장기로 전달(delivery) 할 수 있는 제형(formulation)을 개발하기 위한 많은 노력이 필요하다.However, niclosamide is a representative poorly soluble drug with low solubility in water and has the disadvantage of low bioavailability. ( Polymers., 2021, 13(7) , 1044). Due to its low bioavailability, a lot of effort is needed to develop a formulation that can deliver to target organs and low absorption, which is the biggest obstacle as a treatment.
여러 선행에서는 니클로사미드가 코로나19에 대한 탁월한 항바이러스 효과에도 불구하고 경구 복용 시, 체내 혈중 약물농도를 높게 유지하는데 여전히 문제점이 존재하여, 효율적인 코로나19 치료가 어렵다고 한다. 또한, 경피형(Transdermal) 피부질환 치료제로서도 피부투과율이 현저히 떨어지기 때문에, 피부건선과 같은 피부염증 치료제로서의 이용가능성이 있는데도 불구하고 니클로사미드를 이용한 피부건선 치료제는 아직까지 없다. Several prior studies say that despite niclosamide's excellent antiviral effect against COVID-19, there are still problems in maintaining high blood drug concentration in the body when taken orally, making efficient treatment of COVID-19 difficult. In addition, because the skin penetration rate is significantly low even as a treatment for transdermal skin diseases, there is still no treatment for skin psoriasis using niclosamide, although it has the potential to be used as a treatment for skin inflammation such as psoriasis.
이렇듯, 다양한 질병에 사용될 수 있음에도 불구하고 니클로사미드의 용도를 변경하는 것은 매우 까다롭다고 알려져 있고, 또한 니클로사미드 무수물의 물에 대한 용해도는 약 13.32 μg/mL로 낮은 편이며 생체이용률 또한 낮다. 이는 용도를 바꾸기 위해 진행된 임상실험 결과를 통해 확인할 수 있다. NCT02532114의 임상 실험을 살펴보면, 니클로사미드를 하루 3번 500 mg씩 매일 섭취했을 경우에 체내 최고혈장농도인 Cmax 값이 35.7에서 182 ng/mL 사이의 결과값을 가지고 구강섭취를 통한 생체이용률이 매우 낮아 조기 종료되었다. 게다가, 이전에 승인된 암 치료를 위해 용도 변경되었던 시도 결과를 통해 니클로사미드를 통한 암 치료는 피해야 한다는 주장이 있다. 이에따라, 높은 생체이용률을 가지는 유사체인 아날로그를 개발하는 쪽으로 행해져 왔으며, 아날로그 개발 형태는 Co-crystal, solid lipid nanoparticle, dendrimer-like material, 미셀, 나노서스펜션, 나노파티클, lipid emulsion, 나노크리스탈을 사용한 경우가 있고 아날로그 형태를 이용하여 생체이용률을 높이기 위한 노력은 계속되고 있다. (Pharmaceutics., 2021, 13, 97.)As such, although it can be used for various diseases, it is known to be very difficult to repurpose niclosamide, and the solubility of niclosamide anhydride in water is low at about 13.32 μg/mL and bioavailability is also low. This can be confirmed through the results of clinical trials conducted to change its use. Looking at the clinical trial of NCT02532114, when 500 mg of niclosamide was ingested three times a day, the C max value, the highest plasma concentration in the body, was between 35.7 and 182 ng/mL, and the bioavailability through oral intake was high. It was very low and ended early. In addition, there are arguments that cancer treatment with niclosamide should be avoided, based on results from trials that were repurposed for previously approved cancer treatments. Accordingly, efforts have been made to develop analogs, which are analogues with high bioavailability, and the forms of analog development include Co-crystal, solid lipid nanoparticle, dendrimer-like material, micelle, nanosuspension, nanoparticle, lipid emulsion, and nanocrystal. Efforts to increase bioavailability by using analog forms are continuing. ( Pharmaceutics., 2021 , 13, 97.)
[특허문헌][Patent Document]
(특허문헌 1) WO2021-040337 A1 (Patent Document 1) WO2021-040337 A1
본 발명에 있어서, 니클로사미드의 분자회합체를 제조하여 물에 대한 용해도를 개선하여 간 또는 신장 및 다른 장 효소에 의해 니클로사미드가 급속하게 대사되어지는 것을 방지하고자, 이들 효소에 대한 반응성을 낮추어 metabolite의 형성을 저해하여 궁극적으로 생체이용율을 현저히 개선하고자 한다.In the present invention, in order to prepare a molecular complex of niclosamide to improve its solubility in water and prevent niclosamide from being rapidly metabolized by liver or kidney and other intestinal enzymes, the reactivity to these enzymes was improved. Ultimately, the goal is to significantly improve bioavailability by inhibiting the formation of metabolites.
항암, 항바이러스, 항염증 및 코로나 19의 치료제 등 다양한 약리 기전 및 치료효과로 주목받고 있는 니클로사미드가 선행기술보다 더 나은 생체이용율을 유지할 수 있도록 COVID-19 바이러스 사멸 효과와 함께 항염증 작용효과 등에 의한 시너지효과를 낼 것으로 기대된다.Niclosamide, which is attracting attention for its various pharmacological mechanisms and therapeutic effects such as anti-cancer, anti-viral, anti-inflammatory, and treatment for COVID-19, has an anti-inflammatory effect along with a COVID-19 virus killing effect to maintain better bioavailability than prior art. It is expected that it will create a synergy effect.
더불어 다양한 물리적 자극을 이용하여 용해도를 높이는 연구가 시도되고 있으며, 가장 널리 사용되는 방법은 약효성분이 용해된 용액에 전단력을 가하는 것이다. 전단 응력(shear stress)은 단순히 용액을 교반하거나 흔들림을 발생시켜 분자에 부여될 수 있으며 분자의 회합을 유도하여 형성을 촉진한다. 이때 분자의 회합을 유도하는 시간 및 강도는 부여된 전단응력의 세기나 시간에 따라 달라질 수 있고, 전단응력 조절 방법으로는 분자 회합의 거동 및 물성에 대한 정확한 제어를 기대하기 어렵고 재현성도 낮은 편이다.In addition, research is being attempted to increase solubility using various physical stimuli, and the most widely used method is to apply shear force to a solution in which the medicinal ingredient is dissolved. Shear stress can be imparted to molecules by simply stirring the solution or causing shaking, and promotes formation by inducing the association of molecules. At this time, the time and intensity of inducing molecular association may vary depending on the intensity or time of the applied shear stress, and it is difficult to expect accurate control of the behavior and physical properties of molecular association through shear stress control methods, and reproducibility is also low. .
본 발명에서는 물리화학 작용(physicochemical interaction)을 고려하여 분자 회합의 거동 및 물성을 제어하여 기존의 니클로사미드보다 용해도가 현저히 우수하며 생체이용률 측면에서도 우수한 니클로사미드의 신규 염 및 이의 분자회합체를 제공한다. In the present invention, by controlling the behavior and physical properties of molecular associations in consideration of physicochemical interactions, a new salt of niclosamide and a molecular association thereof are produced that have significantly better solubility than existing niclosamide and are also superior in bioavailability. to provide.
따라서, 본 발명의 목적은 기존의 니클로사미드에 비하여 용해도 및 생체이용율이 현저히 우수한 니클로사미드의 신규 염 및 이의 분자회합체와 이를 포함하는 약학 조성물를 제공하는데 있다.Therefore, the purpose of the present invention is to provide a novel salt of niclosamide and a molecular complex thereof, and a pharmaceutical composition containing the same, which have significantly better solubility and bioavailability than existing niclosamide.
본 발명의 목적들은 이상에서 언급한 목적으로 한정되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the objects mentioned above, and other objects and advantages of the present invention that are not mentioned can be understood through the following description and will be more clearly understood by the examples of the present invention. Additionally, it will be readily apparent that the objects and advantages of the present invention can be realized by the means and combinations thereof indicated in the patent claims.
상기 목적을 달성하기 위하여, 본 발명은 니클로사미드를 포함하는 신규 분자회합체를 이용하여 생체이용률이 우수한 분자회합체 및 분자회합체를 포함하는 약학 조성물을 제공한다.In order to achieve the above object, the present invention provides a molecular assembly with excellent bioavailability and a pharmaceutical composition containing the molecular assembly using a novel molecular assembly containing niclosamide.
본 발명에 따른 일 실시예에 따르면, 니클로사미드의 염으로서, 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖는 1H NMR 스펙트럼을 가지는 것을 특징으로 하는, 니클로사미드의 염을 제공한다.According to one embodiment according to the invention, as a salt of niclosamide, there is a difference of 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± between the signal showing the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm. A salt of niclosamide is provided, characterized in that it has a 1 H NMR spectrum with a chemical shift difference of 0.1 ppm.
본 발명에 따른 일 실시예에 따르면, 니클로사미드의 분자회합체로서, 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖는 1H NMR 스펙트럼을 가지는 것을 특징으로 하는, 분자회합체를 제공한다.According to one embodiment of the present invention, as a molecular complex of niclosamide, there are 6.6, 7.1, 7.7, 8.1, 8.2, between the signal showing the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm. A molecular assembly is provided, characterized in that it has a 1 H NMR spectrum with a chemical shift difference of 8.9 ± 0.1 ppm.
본 발명에 따른 일 실시예에 따르면, 니클로사미드 또는 니클로사미드의 염을 포함한 용액에 전단응력을 가하는 단계;를 포함하는, 분자회합체의 제조방법을 제공한다.According to one embodiment of the present invention, a method for producing a molecular assembly is provided, including the step of applying shear stress to a solution containing niclosamide or a salt of niclosamide.
본 발명에 따른 일 실시예에 따르면, 상기 니클로사미드의 염 또는 상기 분자회합체를 포함하는 코로나 바이러스 감염으로 인한 질병의 치료 또는 방지용 약학 조성물을 제공한다.According to one embodiment of the present invention, a pharmaceutical composition for treating or preventing diseases caused by coronavirus infection is provided, comprising the salt of niclosamide or the molecular complex.
본 발명에 따른 일 실시예에 따르면, 상기 니클로사미드의 염 또는 상기 분자회합체를 포함하는 피부건선 치료용 약학 조성물을 제공한다.According to one embodiment of the present invention, a pharmaceutical composition for treating psoriasis of the skin comprising the salt of niclosamide or the molecular complex is provided.
본 발명에 따른 일 실시예에 따르면, 상기 약학 조성물을 포함하는, 흡입 장치를 제공한다.According to one embodiment of the present invention, an inhalation device comprising the pharmaceutical composition is provided.
본 발명의 니클로사미드의 신규 염 및 이의 분자회합체와 이를 포함하는 약학조성물은 기존의 니클로사미드에 비하여 용해도 및 생체이용률이 증가된 효과를 가진다.The new salt of niclosamide, the molecular complex thereof, and the pharmaceutical composition containing the same of the present invention have the effect of increased solubility and bioavailability compared to the existing niclosamide.
도 1은 본 발명의 실시예 1-1(붉은색, 상단)과 실시예 1-2(푸른색, 하단)에 대한 9.5-0.0 ppm 사이의 1H-NMR 스펙트럼을 나타낸 도이다.Figure 1 is a diagram showing 1H-NMR spectra between 9.5-0.0 ppm for Example 1-1 (red, top) and Example 1-2 (blue, bottom) of the present invention.
도 2는 본 발명의 실시예 1-1(붉은색, 상단)과 실시예 1-2(푸른색, 하단)에 대한 9.0-6.5 ppm 사이의 1H-NMR 스펙트럼을 나타낸 도이다.Figure 2 is a diagram showing 1H-NMR spectra between 9.0-6.5 ppm for Example 1-1 (red, top) and Example 1-2 (blue, bottom) of the present invention.
도 3은 시중에서 구입한 니클로사미드, 실시예 1-1, 실시예 1-2의 HPLC 분석 결과를 나타낸 도이다.Figure 3 shows the results of HPLC analysis of commercially purchased niclosamide, Examples 1-1 and 1-2.
도 4는 기존의 니클로사미드 제품 보다 본 발명을 통하여 제조된 니클로사미드 및/또는 니클로사미드와 약학적으로 허용가능한 염의 분자회합체로 인하여 생체이용률이 증가된 니클로사미드에 관하여 도식화한 도이다.Figure 4 is a schematic diagram of niclosamide produced through the present invention and/or niclosamide with increased bioavailability due to a molecular complex of niclosamide and a pharmaceutically acceptable salt compared to existing niclosamide products. am.
도 5는 본 발명의 실시예 3에 따른 니클로사미드 분자회합체의 약물동태학적 평가 결과 그래프이다. Figure 5 is a graph showing the results of pharmacokinetic evaluation of the niclosamide molecular complex according to Example 3 of the present invention.
도 6는 본 발명의 실시예 4에 따른 니클로사미드 분자회합체의 약물동태학적 평가 결과 그래프이다. Figure 6 is a graph showing the results of pharmacokinetic evaluation of the niclosamide molecular complex according to Example 4 of the present invention.
용어 및 정의Terms and Definitions
구체적인 정의가 제공되지 않는 한, 본원에 기재된 물리/유기/분석 화학과 관련한 명명법, 실험 절차 및 기술은 당업계에 잘 알려진 것이다. 표준 화학 기호는 기호로 표시되는 전체 이름과 상호교환적으로 사용된다. 예를 들어, "수소" 및 "H"는 동일 의미로 이해된다. 표준 기술은 화학 공정, 분자 간의 상호작용, 화학 분석, 조성물 제형화 및 그의 시험에 사용될 수 있다. 상기 기술 및 절차는 일반적으로 당업계에 잘 알려진 종래의 방법에 따라 수행될 수 있다. Unless specific definitions are provided, the nomenclature, experimental procedures and techniques related to physical/organic/analytical chemistry described herein are well known in the art. Standard chemical symbols are used interchangeably with the full name represented by the symbol. For example, “hydrogen” and “H” are understood to have the same meaning. Standard techniques can be used for chemical processes, interactions between molecules, chemical analysis, formulation of compositions and testing thereof. The above techniques and procedures can generally be performed according to conventional methods well known in the art.
상기 일반적 설명 및 그 후의 상세한 설명 모두 단지 예시적 및 설명적이며 청구된 발명을 한정하는 것이 아님을 이해해야 한다. 본원에서 사용되는 바와 같은, 단수형의 사용은 다르게 구체적으로 언급되지 않는 한 복수형을 포함한다. 본원에 사용된 문단의 제목은 오직 구성 목적을 위한 것이며, 기재된 주제를 한정하는 것으로 여겨지면 안 된다. It is to be understood that both the foregoing general description and the subsequent detailed description are illustrative and explanatory only and are not limiting of the claimed invention. As used herein, uses of the singular form include the plural form unless specifically stated otherwise. The paragraph headings used herein are for organizational purposes only and should not be considered limiting of the subject matter described.
본원에서 사용되는 바와 같은, "또는"은 다르게 언급되지 않는 한 "및/또는"을 의미한다. 또한 용어 "포함하는" 뿐만 아니라 "포함하다" 및 "포함된다"와 같은 다른 형태의 사용은 한정적이 아니다.As used herein, “or” means “and/or” unless stated otherwise. Additionally, the use of the term "comprising" as well as other forms such as "includes" and "includes" is not limiting.
"분자회합체"는 용액상에 존재하는 분자간의 물리적 상호작용을 고려한 전단력을 이용하여 만든 것으로, 물리적 거동을 조절해서 얻은 약리 활성 물질의 신규한 분자회합체를 의미한다. 분자간의 물리적 상호작용을 고려하여 만든 신규 분자회합체는 물성이 개선된 약리 활성 물질의 분자회합체를 의미한다. “Molecular association” refers to a novel molecular association of pharmacologically active substances obtained by controlling physical behavior, created using shear force considering the physical interaction between molecules existing in a solution. A new molecular association created by considering physical interactions between molecules refers to a molecular association of pharmacologically active substances with improved physical properties.
"생체이용율"은 제약기술에서 약물의 투여지점 (site of administration)에서 약물이 치료효과를 야기하는 생체내 표적장소 (site of action)로 약물이 전달되는 양 (amount)과 속도 (rate)를 나타내는 개념으로, 생체이용율이 낮으면, 체외에서 치료 효능이 높은 약물이라도, 작용해야 하는 생체내 기관으로 전달되는 실제 양이 낮아, 체내 치료효과가 낮거나 미미한 수준에 머무르게 된다. 생체이용율은 각막 (cornea), 피부(skin), 뇌혈관장벽 (Blood-Brain-Barrier), 혈망막장벽 (Blood-Retina Barrier) 같은 생체내 생물학적 장벽 (biological barrier)을 통과하는 유속 (FLUX)으로 이해될 수 있다. In pharmaceutical technology, “ bioavailability ” refers to the amount and rate at which a drug is delivered from the point of administration (site of administration) to the target site (site of action) in the body where the drug produces a therapeutic effect. Conceptually, if the bioavailability is low, even if the drug has high therapeutic efficacy in vitro, the actual amount delivered to the in vivo organ where it needs to act is low, resulting in a low or insignificant therapeutic effect in the body. Bioavailability is measured by the flow rate (FLUX) passing through biological barriers in the body, such as the cornea, skin, blood-brain-barrier, and blood-retina barrier. It can be understood.
유속 (FLUX) = 용해도 (solubility) * 투과도 (permeability)Flow rate (FLUX) = solubility * permeability
유속 (FLUX)을 높이기 위해, 용해도와 투과도가 모두 균형 있게 높아야 함을 알 수 있다.It can be seen that in order to increase the flow rate (FLUX), both solubility and permeability must be balanced and high.
"약물동태학 평가변수"는 약학적 경구 조성물에 대한 경구 생체이용율을 평가하기 위해 동물 체내 동태 실험을 진행하는데 이용된다. 체내에 투여된 약물의 시간 경과에 따른 흡수(Abosrption), 분포(Distribution), 대사(Metabolism)및 배설(Excretion)과정을 수학적인 계산을 통해 약물동태학적 변수값을 정량적으로 계산한다. Pharmacokinetic endpoints ” are used to conduct animal in vivo kinetic experiments to evaluate the oral bioavailability of pharmaceutical oral compositions. Pharmacokinetic variables are quantitatively calculated through mathematical calculations of the absorption, distribution, metabolism, and excretion processes over time of drugs administered in the body.
약물동태학 평가변수는 Cmax (최대혈중농도), 도달시간(Tmax), 반감기 (Half-life), 곡선하면적 (Area Under Curve, AUC), 그리고 생체이용율 (BA)등이 있다. Pharmacokinetic evaluation variables include Cmax (maximum blood concentration), time to reach (Tmax), half-life, area under curve (AUC), and bioavailability (BA).
도달시간 (Tmax)는 약물 투여 후 혈중농도가 최고치에 도달하는 시간이다.Time to reach (Tmax) is the time for the blood concentration to reach the highest level after drug administration.
반감기 (Half-life)는 약물 투여 후 약물의 혈장농도가 어느 기준 시점의 값으로부터 반이 되는데 걸리는 시간을 의미한다. Half-life refers to the time it takes for the plasma concentration of a drug to halve from the value at a certain reference point after drug administration.
최대혈중농도 (Cmax)는 약물 투여 후 각 개체에서 관찰된 최대 혈장 농도를 가리키는 지표이다. Maximum blood concentration (Cmax) is an indicator indicating the maximum plasma concentration observed in each individual after drug administration.
곡선하면적(Area Under Curve, AUC)은 약물의 생체흡수율의 정도를 의미하고, 전신순환에 도달한 약리활성물질의 총량을 의미한다. AUClast는 약물 투여 후 혈중 농도의 최종 관찰 시점까지의 산출된 면적값이고, AUCinf는 앞서 구한 AUClast에 최종 측정 시각 이후의 가정된 면적을 더하는 방식으로 산출된 값이다. Area Under Curve (AUC) refers to the degree of bioabsorption of a drug and the total amount of pharmacologically active substances that have reached systemic circulation. AUClast is the calculated area value from the time of final observation of blood concentration after drug administration, and AUCinf is a value calculated by adding the assumed area after the final measurement time to the previously obtained AUClast.
생체이용률(BA, Bioavailability)은 약물의 소화관내 흡수율과 비슷한 지표로서 경구투여 후 혈중 약물농도-시간 곡선하 총 면적과 정맥주사 후 혈중 약물농도-시간 곡선하 총면적을 비교하는 생체이용율 (BA=AUC경구/AUC정맥)을 계산한 값이다. 정맥투여에 대한 상대적인 흡수율을 나타내며 %로 표시한다.Bioavailability (BA) is an indicator similar to the absorption rate of a drug in the digestive tract. Bioavailability (BA=AUC) compares the total area under the blood drug concentration-time curve after oral administration with the total area under the blood drug concentration-time curve after intravenous injection. This is the calculated value of oral/AUC venous). It indicates the relative absorption rate for intravenous administration and is expressed in %.
종래 니클로사미드의 문제점Problems with conventional niclosamide
통상의 니클로사미드는 매우 낮은 용해도 (0.61~13.21 μg/mL)를 가지고, 경구투여 후 빠르게 대사되어 생체이용율이 매우 낮아지기 때문에 경구투여에 의한 유효 치료혈중농도를 유지하기에 한정적이라는 한계가 있었다. 용해도 증가와 생체이용율을 개선하기 위하여 formulation 기술을 포함하여 특화된 기술을 적용한 제형들에 대한 적용과 관련 연구들이 진행되고 있으나, 임상적인 진전은 없었다.Conventional niclosamide has a very low solubility (0.61-13.21 μg/mL) and is rapidly metabolized after oral administration, resulting in very low bioavailability, so there is a limitation in maintaining effective therapeutic blood concentration through oral administration. Research is being conducted on formulations using specialized technologies, including formulation technology, to increase solubility and improve bioavailability, but there has been no clinical progress.
본 발명의 니클로사미드의 염과 분자회합체Salts and molecular complexes of niclosamide of the present invention
기존의 용해도 향상 기술은 공통적으로 (약리 활성 물질과 물을 제외한) 용해도 향상을 위해 제3의 물질(계면활성제, 마이셀, 사이클로덱스트린, lipid, 알부민, 수용성 고분자, 안정화제/분산제, 나노입자, 다공성 입자 등이 이러한 제3의 물질에 해당함)을 필수적으로 사용해야 하지만, 본 발명에서는 약리 활성 물질(API(Active Pharmaceutical Ingredient)) 분자를 수 개에서 수 십개 정도씩 묶어서 2~5 nm 크기의 입자로서 존재하게 함으로써 수용액에서의 용해도가 증가함과 동시에 이들 입자들의 생체이용률을 향상시킨다.Existing solubility improvement technologies commonly use third substances (surfactants, micelles, cyclodextrins, lipids, albumin, water-soluble polymers, stabilizers/dispersants, nanoparticles, porous substances) to improve solubility (excluding pharmacologically active substances and water). Particles, etc. are such third substances) must be used, but in the present invention, pharmacologically active substance (API (Active Pharmaceutical Ingredient)) molecules are grouped in groups of several to dozens and exist as particles of 2 to 5 nm in size. This increases the solubility in aqueous solution and simultaneously improves the bioavailability of these particles.
본 발명의 일 구현예 중 하나로 약리 활성 물질인 니클로사미드의 용해도 증가 및 생체이용율 개선을 목적으로 기존에 사용하지 않은 새로운 형태의 염을 적용하여 신규한 니클로사미드의 염을 얻을 수 있다.In one embodiment of the present invention, a new salt of niclosamide can be obtained by applying a new type of salt that has not been previously used for the purpose of increasing the solubility and improving bioavailability of niclosamide, a pharmacologically active substance.
본 발명의 일 구현예에 있어서, 니클로사미드의 염으로서, 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖는 1H NMR 스펙트럼을 가지는 니클로사미드의 염일 수 있다.In one embodiment of the invention, as a salt of niclosamide, there is a difference of 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 between the signal exhibiting the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm. It may be a salt of niclosamide with a 1 H NMR spectrum with a chemical shift difference of ppm.
구체적으로 본 발명의 니클로사미드의 염에 대하여 9.5-0.0 ppm 사이의 1H NMR 스펙트럼 분석 결과, 도 1의 상단 및 후술하는 표 1에 나타낸 바와 같이, 3.3, 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖게 되나, 0-6.5ppm 사이의 peak는 NMR측정시 사용한 용액인 DMSO와 물의 peak에 해당하여 의미가 있는 peak가 아니라는 점을 고려하면, 실제 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖게 되는 것이다. 이를 보다 구체적으로 나타낸 것이 도 2 상단의 붉은색으로 표시된 1H NMR 스펙트럼이나, 반드시 이에 한정되는 것은 아니다. 상기 "± 0.1 ppm"은 오차를 의미하며, 바람직하게는 "± 0.05 ppm"의 값을 가질 수 있다.Specifically, as a result of 1 H NMR spectrum analysis between 9.5 and 0.0 ppm for the salt of niclosamide of the present invention, as shown at the top of FIG. 1 and Table 1 described below, 3.3, 6.5, 7.0, 7.6, 8.1, 8.2 , it has a chemical shift difference of 8.9 ± 0.1 ppm, but considering that the peak between 0-6.5 ppm is not a meaningful peak because it corresponds to the peak of DMSO and water, which are the solutions used in the NMR measurement, the actual 6.5 to 9.5 ppm In the chemical shift range, there is a chemical shift difference of 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm between the signal showing the lowest chemical shift and another signal. A more detailed illustration of this is the 1 H NMR spectrum shown in red at the top of Figure 2, but it is not necessarily limited thereto. The “± 0.1 ppm” means an error, and may preferably have a value of “± 0.05 ppm”.
본 발명의 일 구현예에 있어서, 상기 니클로사미드의 염은 정제수에서 용해도가 0.10 mg/mL 이상일 수 있고, 바람직하게는 0.20 mg/mL 이상일 수 있고, 더 바람직하게는 0.30 mg/mL 이상일 수 있고, 더욱 바람직하게는 0.35 mg/mL 이상일 수 있고, 가장 바람직하게는 0.40 mg/mL 이상일 수 있으나, 이에 한정되는 것은 아니다, 상기 용해도의 상한은 특별히 한정되는 것은 아니나, 일례로 1.0 mg/mL 이하일 수 있다. In one embodiment of the present invention, the salt of niclosamide may have a solubility in purified water of 0.10 mg/mL or more, preferably 0.20 mg/mL or more, and more preferably 0.30 mg/mL or more. , more preferably 0.35 mg/mL or more, and most preferably 0.40 mg/mL or more, but is not limited thereto. The upper limit of solubility is not particularly limited, but may be 1.0 mg/mL or less, for example. there is.
본 발명의 일 구현예에 있어서, 본 발명에 따른 니클로사미드의 염은 기존의 니클로사미드의 염보다 정제수에서 용해도가 2배이상, 5배이상, 10배이상, 또는 20배 이상일 수 있다. In one embodiment of the present invention, the salt of niclosamide according to the present invention may have a solubility in purified water that is 2 times more, 5 times more, 10 times more, or 20 times more than the existing salt of niclosamide.
본 발명의 일 구현예에 있어서, 본 발명에 따른 니클로사미드의 염은 기존의 니클로사미드의 염보다 정제수에서 용해도가 2배이상, 5배이상, 10배이상, 또는 20배 이상일 수 있다. In one embodiment of the present invention, the salt of niclosamide according to the present invention may have a solubility in purified water that is 2 times more, 5 times more, 10 times more, or 20 times more than the existing salt of niclosamide.
본 발명의 일 구현예에 있어서, 본 발명에 따른 니클로사미드의 염은 니클로사미드와 소듐, 바이카보네이트 및 설페이트 중 어느 하나의 염이 결합된 형태일 수 있으며, 바람직하게는 소듐 바이카보네이트 및 소듐 설페이트이 결합된 형태일 수 있다. In one embodiment of the present invention, the salt of niclosamide according to the present invention may be a combination of niclosamide and any one of sodium, bicarbonate, and sulfate, preferably sodium bicarbonate and sodium. It may be in a sulfate-bound form.
본 발명의 일 구현예에 있어서, 본 발명에 따른 니클로사미드의 염이 소듐 바이카보네이트 및 소듐 설페이트이 결합되는 경우, 소듐 바이카보네이트 0.5 내지 1.5 당량 및 소듐 설페이트 0.1 내지 0.5 당량으로 포함되는 염일 수 있으나, 반드시 이에 한정되는 것은 아니다. In one embodiment of the present invention, when the salt of niclosamide according to the present invention is a combination of sodium bicarbonate and sodium sulfate, it may be a salt containing 0.5 to 1.5 equivalents of sodium bicarbonate and 0.1 to 0.5 equivalents of sodium sulfate, It is not necessarily limited to this.
본 발명의 일 구현예 중 하나로 약리 활성 물질인 니클로사미드의 용해도 증가 및 생체이용율 개선을 목적으로 분자간의 물리적 상호작용을 고려하여 전단력의 세기를 조절함에 따라 신규한 구조의 분자회합체를 얻을 수 있다.In one embodiment of the present invention, for the purpose of increasing the solubility and improving bioavailability of niclosamide, a pharmacologically active substance, it is possible to obtain a molecular assembly with a novel structure by adjusting the strength of the shear force in consideration of the physical interaction between molecules. there is.
본 발명의 일 구현예에 있어서, 니클로사미드의 분자회합체로서, 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖는 1H NMR 스펙트럼을 가지는 분자회합체일 수 있다.In one embodiment of the present invention, as a molecular complex of niclosamide, there are 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 between the signal representing the lowest chemical shift in the chemical shift range of 6.5 to 9.5 ppm and another signal. It may be a molecular assembly having a 1 H NMR spectrum with a chemical shift difference of ±0.1 ppm.
구체적으로 본 발명의 니클로사미드의 염에 대하여 9.5-0.0 ppm 사이의 1H NMR 스펙트럼 분석 결과, 도 1의 하단 및 후술하는 표 2에 나타낸 바와 같이, 3.3, 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖게 되나, 0-6.5ppm 사이의 peak는 NMR측정시 사용한 용액인 DMSO와 물의 peak에 해당하여 의미가 있는 peak가 아니라는 점을 고려하면, 실제 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖게 되는 것이다. 이를 보다 구체적으로 나타낸 것이 도 2 하단의 푸른색으로 표시된 1H NMR 스펙트럼이나, 반드시 이에 한정되는 것은 아니다.Specifically, as a result of 1 H NMR spectrum analysis between 9.5 and 0.0 ppm for the salt of niclosamide of the present invention, as shown at the bottom of FIG. 1 and in Table 2 described below, 3.3, 6.6, 7.1, 7.7, 8.1, 8.2 , it has a chemical shift difference of 8.9 ± 0.1 ppm, but considering that the peak between 0-6.5 ppm is not a meaningful peak because it corresponds to the peak of DMSO and water, which are the solutions used in the NMR measurement, the actual 6.5 to 9.5 ppm In the chemical shift range, there is a chemical shift difference of 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm between the signal showing the lowest chemical shift and another signal. A more detailed illustration of this is the 1 H NMR spectrum shown in blue at the bottom of Figure 2, but it is not necessarily limited thereto.
분자(small molecule)의 구조 분석을 위해 이용되는 핵자기공명 (Nuclear Magnetic Resonance, NMR) 분광법(spectroscopy)은 화학에서 일반적으로 사용되는 기법이다. NMR 분광학으로 분자의 핵을 연구할 수 있고, 원자들이 어떻게 연결되어 있는지에 따른 화학적인 주변환경에 대한 정보를 얻을 수 있다. Nuclear Magnetic Resonance (NMR) spectroscopy, used to analyze the structure of small molecules, is a commonly used technique in chemistry. NMR spectroscopy allows you to study the nucleus of a molecule and obtain information about its chemical surroundings based on how the atoms are connected.
1H와 13C 원자들은 자기적으로 활성(즉, NMR 활성)을 띄는데, NMR 활성을 가진 핵을 포함하는 샘플을 마그네틱 환경에 위치시키고 특정 라디오 주파수에 노출시키게 되면 높은 에너지 상태로 1H 또는 13C의 핵 원자들이 들뜨게 된다. 낮은 에너지 준위에서 높은 에너지 준위로 들뜨게 되면 핵 스핀의 이완현상에 대한 변화를 분광기(spectrometer)가 감지하게 되는데, 이러한 변화는 핵자기공명에 따른 스핀 상태의 변화이고, 핵 주위에 연결된 화학적 결합 환경에 따라 다른 스펙트럼에 위치한 peak는 다른 위치를 나타낸다. 따라서, Peak 위치가 다르다는 것은 즉, chemical shift(ppm, δ)가 다른 것은 분자내 개개의 1H가 주위의 자기적 환경의 영향으로 공명주파수가 shift된 현상이다, 또한, 인접원자 또는 원자단의 전기음성도에 의해 결정되거나 분자간 결합 환경이 바뀌어서 생겨나는 현상이다. The 1 H and 13 C atoms are magnetically active (i.e. NMR active), and when a sample containing NMR active nuclei is placed in a magnetic environment and exposed to a specific radio frequency, the 1 H or 13 C atoms are converted into high energy states. 13 The nuclear atoms of C become excited. When excited from a low energy level to a high energy level, a spectrometer detects a change in the relaxation phenomenon of the nuclear spin. This change is a change in the spin state due to nuclear magnetic resonance and a chemical bond environment connected around the nucleus. Peaks located in different spectra indicate different positions. Therefore, the difference in peak position, that is, the difference in chemical shift (ppm, δ), is a phenomenon in which the resonance frequency of each 1 H in the molecule is shifted due to the influence of the surrounding magnetic environment. In addition, the electric shift of adjacent atoms or atomic groups It is a phenomenon determined by the negative degree or caused by a change in the bonding environment between molecules.
본 발명에서 제조하는 니클로사미드 신규 염 및 이의 분자회합체와 달리, 상업적 공급원으로부터 쉽게 이용 가능한 니클로사미드의 NMR chemical shift 값은 본 발명의 NMR chemical shift는 값이 다르며, 이러한 chemical shift 값의 차이는 분자간 결합 환경이 바뀌어서 생겨난 현상이다.Unlike the new salt of niclosamide and its molecular complex prepared in the present invention, the NMR chemical shift value of niclosamide easily available from commercial sources is different from that of the present invention, and the difference in these chemical shift values is a phenomenon caused by a change in the bonding environment between molecules.
본 발명의 일 구현예에 있어서, 상기 분자회합체는 정제수에서 용해도가 0.10 mg/mL 이상일 수 있고, 바람직하게는 0.20 mg/mL 이상일 수 있고, 더 바람직하게는 0.25 mg/mL 이상일 수 있고, 더욱 바람직하게는 0.30 mg/mL 이상일 수 있고, 가장 바람직하게는 0.33 mg/mL 이상일 수 있으나, 이에 한정되는 것은 아니다, 상기 용해도의 상한은 특별히 한정되는 것은 아니나, 일례로 1.0 mg/mL 이하일 수 있다. In one embodiment of the present invention, the solubility of the molecular assembly in purified water may be 0.10 mg/mL or more, preferably 0.20 mg/mL or more, more preferably 0.25 mg/mL or more, and further Preferably it may be 0.30 mg/mL or more, and most preferably 0.33 mg/mL or more, but is not limited thereto. The upper limit of solubility is not particularly limited, but may be 1.0 mg/mL or less, for example.
본 발명의 일 구현예에 있어서, 상기 니클로사미드의 분자회합체는 기존의 약리활성물질보다 정제수에서 용해도가 2배이상, 5배이상, 10배이상, 또는 20배 이상일 수 있다. In one embodiment of the present invention, the molecular complex of niclosamide may have a solubility in purified water that is at least 2 times, 5 times, 10 times, or 20 times that of existing pharmacologically active substances.
본 발명의 일 구현예에 있어서, 상기 니클로사미드의 분자회합체에 포함되어 있는 니클로사미드는 약학적으로 허용 가능한 염의 형태일 수 있으며, 상기 염은 니클로사미드와 소듐, 바이카보네이트 및 설페이트 중 어느 하나의 염이 결합된 형태일 수 있으며, 바람직하게는 소듐 바이카보네이트 및 소듐 설페이트이 결합된 형태일 수 있다. In one embodiment of the present invention, niclosamide contained in the molecular complex of niclosamide may be in the form of a pharmaceutically acceptable salt, and the salt is one of niclosamide, sodium, bicarbonate, and sulfate. It may be in the form of a combination of any one salt, preferably a combination of sodium bicarbonate and sodium sulfate.
본 발명의 일 구현예에 있어서, 상기 니클로사미드의 분자회합체에 포함되어 있는 니클로사미드가 소듐 바이카보네이트 및 소듐 설페이트이 결합되는 염인 경우, 소듐 바이카보네이트 0.5 내지 1.5 당량 및 소듐 설페이트 0.1 내지 0.5 당량으로 포함되는 염일 수 있으나, 반드시 이에 한정되는 것은 아니다. In one embodiment of the present invention, when niclosamide contained in the molecular assembly of niclosamide is a salt in which sodium bicarbonate and sodium sulfate are combined, 0.5 to 1.5 equivalents of sodium bicarbonate and 0.1 to 0.5 equivalents of sodium sulfate It may be a salt included, but is not necessarily limited thereto.
본 발명의 일 구현예에 있어서, 니클로사미드의 분자회합체는 니클로사미드와 염의 혼합물로 이루어진 분자회합체일 수 있으며, 이 경우 용해도 및 생체이용율이 증진되는 효과를 가질 수 있다.In one embodiment of the present invention, the molecular complex of niclosamide may be a molecular complex composed of a mixture of niclosamide and a salt, and in this case, solubility and bioavailability may be improved.
본 발명의 분자회합체의 제조방법Method for producing molecular assembly of the present invention
본 발명의 일 실시예에 따른 분자회합체는, 니클로사미드를 포함한 용액에 전단 응력을 가하여 제조될 수 있다.The molecular assembly according to an embodiment of the present invention can be produced by applying shear stress to a solution containing niclosamide.
본 발명의 일 구현예에 있어서, 상기 니클로사미드는 니클로사드미 (Niclosamide) 그 자체이거나, 이의 약학적으로 허용되는 염(salt)이거 또는 이의 유도체 (derivatives)일 수 있다.In one embodiment of the present invention, the niclosamide may be niclosamide itself, a pharmaceutically acceptable salt thereof, or a derivative thereof.
상기 약학적으로 허용 가능한 염은, 소듐, 바이카보네이트 및 설페이트 중 어느 하나의 염으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있지만, 이에 한정하는 것은 아니다.The pharmaceutically acceptable salt may be one or more salts selected from the group consisting of sodium, bicarbonate, and sulfate salts, but is not limited thereto.
상기 전단 응력을 이용한 물리적 거동을 조절하는 방법은 기계적 전단응력 또는 초음파 인가 중 어느 하나일 수 있다.The method of controlling physical behavior using the shear stress may be either mechanical shear stress or ultrasonic application.
상기 기계적 전단응력은 용액을 실리카겔(silica gel), molecular sieve, sand, 종이 필터 및 알루미나로 이루어진 군에서 선택되는 어느 하나 이상으로 충진된 컬럼 또는 필터 페이퍼를 통과시켜 가하는 것일 수 있다. 이하에서 기계적 전단응력을 구체적으로 설명한다.The mechanical shear stress may be applied by passing the solution through a column or filter paper filled with one or more selected from the group consisting of silica gel, molecular sieve, sand, paper filter, and alumina. Below, mechanical shear stress is explained in detail.
본 발명의 일 실시예에 따르면, 상기 기계적 전단응력은 약리 활성 물질이 포함된 용액을 상기 실리카 등이 충진된 컬럼에 통과시켜 가하는 것일 수 있다. 상기 약리 활성 물질이 포함된 용액이 실리카 등으로 충진된 컬럼을 통과하면 물리적으로 좁은 영역을 통과함으로써 상기 약리 활성 물질이 매우 높은 전단응력을 받게 된다.According to one embodiment of the present invention, the mechanical shear stress may be applied by passing a solution containing a pharmacologically active material through a column filled with silica, etc. When a solution containing the pharmacologically active material passes through a column filled with silica or the like, the pharmacologically active material undergoes a very high shear stress as it passes through a physically narrow area.
상기 실리카는 구형이거나 각형일 수 있으나, 그의 형태에는 제한되지 않는다.The silica may be spherical or prismatic, but its shape is not limited.
상기 실리카의 크기는 0.01 내지 100 μm일 수 있고, 바람직하게는 0.1 내지 10 μm 일 수 있으며, 더욱 바람직하게는 2.5 내지 3.7 μm 일 수 있다. 상기 실리카의 크기가 0.01 μm 미만이거나 100 μm 초과인 경우, 상기 니클로사미드 및 니클로사미드 염이 포함된 용액이 실리카가 충진된 컬럼에 통과하더라도, 전단응력이 가해지지 않아 분자회합체의 변화가 없을 수 있다.The size of the silica may be 0.01 to 100 μm, preferably 0.1 to 10 μm, and more preferably 2.5 to 3.7 μm. When the size of the silica is less than 0.01 μm or more than 100 μm, even if the solution containing the niclosamide and niclosamide salt passes through a column filled with silica, shear stress is not applied and no change in the molecular assembly occurs. There may not be.
상기 실리카가 충진된 컬럼의 하부에는 0.1 bar 내지 1.0 bar 또는 0.2 bar 내지 0.9 bar의 음압을 걸어줄 수 있다. 상기 실리카가 충진된 컬럼의 하부에 걸리는 음압이 0.1 bar 미만인 경우, 상기 약리 활성 물질이 포함된 용액이 상기 컬럼을 통과하는 데 소요 시간이 증가하여, 본 발명에 따른 신규 분자회합체의 제조 시간이 지연될 수 있다. 또한, 상기 실리카가 충진된 컬럼의 하부에 걸리는 음압이 1.0 bar 초과인 경우, 상기 약리 활성 물질이 포함된 용액이 상기 컬럼을 통과하는 데 소요 시간이 감축하여, 본 발명에 따른 신규 분자회합체의 제조 시간이 단축될 수 있으나, 추가의 펌프 장비가 필요하므로, 제조 비용이 증가할 수 있다.A negative pressure of 0.1 bar to 1.0 bar or 0.2 bar to 0.9 bar can be applied to the bottom of the column filled with silica. When the negative pressure applied to the bottom of the column filled with silica is less than 0.1 bar, the time required for the solution containing the pharmacologically active material to pass through the column increases, thereby reducing the production time of the new molecular assembly according to the present invention. There may be a delay. In addition, when the negative pressure applied to the bottom of the column filled with silica is more than 1.0 bar, the time required for the solution containing the pharmacologically active material to pass through the column is reduced, thereby reducing the time required for the solution containing the pharmacologically active material to pass through the column. Manufacturing time may be shortened, but manufacturing costs may increase because additional pump equipment is required.
또한, 충진관에 통과시키는 단계에서 유출 유속이 1 mL/min*5,000 mm2 내지 10 mL/min*10,000mm2 일수 있으며 구체적으로는 유출 유속이 1 mL/min*10,000 mm2 내지 10 mL/min*5,000mm2 일 수 있지만, 이에 한정하는 것은 아니다. In addition, in the step of passing through the filling tube, the outflow flow rate may be 1 mL/min*5,000 mm 2 to 10 mL/min*10,000 mm 2 , and specifically, the outflow flow rate may be 1 mL/min*10,000 mm 2 to 10 mL/min. *Can be 5,000mm 2 , but is not limited to this.
또한, 전단력이 가해지기 전 혼합액은 과포화, 포화 및 불포화 등 어떠한 상태의 용액도 이용 가능하다.In addition, the mixed solution before the shear force is applied can be in any state, such as supersaturated, saturated, and unsaturated.
본 발명의 일 구현예에서, 활성 물질을 포함하는 혼합액을 다표면체와 접촉시키는 단계에서, 혼합액과 다표면체의 입자내 공극 (intraparticle pore), 입자간 공극 (interparticle pore), 공극 내/외부의 표면사이에 전단 (shear), 이온/염 (ion/salt), 공간적 제약 (confinement), 표면효과 (surface effects), 혼합액 제조용 용매/분산매의 특성, 분산매와의 접촉 속도 (rate) 등과 같은 물리화학적 (physico-chemical) 상호작용 (interaction)을 유도/야기/촉진할 수 있다. In one embodiment of the present invention, in the step of contacting the mixed solution containing the active material with the multi-surface body, intraparticle pores, interparticle pores, and inside/outside of the pores of the mixed solution and the multi-surface body. Physical properties such as shear between surfaces, ion/salt, spatial confinement, surface effects, characteristics of solvent/dispersion medium for preparing mixed solution, contact rate with dispersion medium, etc. It can induce/cause/promote chemical (physico-chemical) interaction.
상기 혼합액은 다표면체의 나노미터 혹은 마이크로미터 크기의 입자내 혹은 입자간 공극 사이를 통과하면서 높은 전단 (shear or Shear rate)을 받게 되는데, 이러한 높은 전단조건하에서 (high shear or shear rate) 활성 물질 분자들의 특정 형태의 배열 또는 회합이 유도/촉진될 수 있다. 다표면체의 표면특성에 따라 (예를 들어 극성, 친수성 혹은 표면 작용기), 혼합액이 다표면체의 공극 내/외부의 표면과 접촉 할때, 활성 물질 분자들의 특정 형태의 배열 또는 회합이 유도/촉진될 수 있다. 혼합액이 다표면체와 접촉한 후, 분산매와 접촉될 때, 접촉되는 시간 즉, 유출 속도 (rate)에 따라, 혼합액이 노출되는 물리화학적 환경 (예를 들어, 극성 등)이 변화는 속도 (rate)가 변화하게 되어, 혼합액내 활성 물질 분자들의 특정 형태의 배열 혹은 회합에 필요한 시간이나 용이도를 변화시킬 수 있다.The mixed solution is subjected to high shear (shear or shear rate) as it passes through nanometer- or micrometer-sized particles or interparticle pores of the multi-surface body. Under these high shear conditions (high shear or shear rate), the active material Certain types of arrangement or association of molecules can be induced/promoted. Depending on the surface properties of the multisurface body (e.g. polarity, hydrophilicity or surface functionality), when the mixed liquid comes into contact with the surface inside/outside the pores of the polysurface body, a specific arrangement or association of active material molecules is induced. It can be promoted. When the mixed liquid comes into contact with the multi-surface body and then the dispersion medium, the rate at which the physical and chemical environment (e.g. polarity, etc.) to which the mixed liquid is exposed changes depending on the time of contact, that is, the outflow rate. ) is changed, which can change the time or ease of arrangement or assembly of the active material molecules in the mixed solution.
위의 상술한 과정 중 본 발명의 일 구현예에 있어서, 본 공정은 다표면체의 입자내 공극 (intraparticle pore)을 통한 분자 간의 거리가 가까워지면서 분자간 인력이 커지고, 이로 인해 분자의 신규 분자회합체가 생성되는 것일 수 있으나, 이에 한정하지 않는다.In one embodiment of the present invention among the above-described processes, in this process, the distance between molecules through the intraparticle pores of the multi-surface body becomes closer, and the intermolecular attraction increases, thereby forming new molecular associations of molecules. may be generated, but is not limited to this.
본 발명의 다른 실시예에 따르면, 상기 기계적 전단응력은 상기 약리 활성 물질이 포함된 용액을 하나 이상의 필터 페이퍼에 통과시켜 가하는 것일 수 있다. 상기 하나 이상의 필터 페이퍼를 통과하면 물리적으로 좁은 영역을 통과함으로써 상기 약리 활성 물질이 매우 높은 전단응력을 받게 된다.According to another embodiment of the present invention, the mechanical shear stress may be applied by passing a solution containing the pharmacologically active material through one or more filter papers. When passing through the one or more filter papers, the pharmacologically active material undergoes a very high shear stress by passing through a physically narrow area.
상기 필터 페이퍼는 하나의 필터 페이퍼이거나 둘 이상의 복수의 필터 페이퍼일 수 있다. 상기 필터 페이퍼가 둘 이상의 복수의 필터 페이퍼일 경우, 상기 필터 페이퍼를 적층하여 배치할 수 있다. 상기 필터 페이퍼가 둘 이상의 복수의 필터 페이퍼일 경우, 하나의 필터 페이퍼보다 높은 전단응력이 제공될 수 있다.The filter paper may be one filter paper or two or more filter papers. When the filter paper consists of two or more filter papers, the filter papers may be stacked and arranged. When the filter paper is a plurality of two or more filter papers, a higher shear stress can be provided than a single filter paper.
상기 필터 페이퍼의 기공의 크기는 0.1 내지 5.0 미크론 또는 0.3 내지 4.5 미크론일 수 있다. 상기 필터 페이퍼의 기공의 크기가 0.1 미크론 미만인 경우, 상기 약리 활성 물질이 포함된 용액이 상기 필터 페이퍼에 통과 또는 여과되는 양이 너무 적어, 본 발명에 따른 신규 분자회합체의 제조 속도가 감소될 수 있고, 상기 필터 페이퍼의 기공의 크기가 5.0 미크론 초과인 경우, 상기 약리 활성 물질이 포함된 용액이 상기 필터 페이퍼를 단순히 통과하여 전단응력이 효과적으로 가해지지 않을 수 있다.The pore size of the filter paper may be 0.1 to 5.0 microns or 0.3 to 4.5 microns. If the pore size of the filter paper is less than 0.1 micron, the amount of the solution containing the pharmacologically active material passing through or filtering through the filter paper is too small, and the production rate of the new molecular assembly according to the present invention may be reduced. If the pore size of the filter paper is greater than 5.0 microns, the solution containing the pharmacologically active material may simply pass through the filter paper and shear stress may not be effectively applied.
상기 전단응력은 초음파를 이용하여 가하는 것일 수 있다. 이하에서 초음파 인가에 대하여 구체적으로 설명한다.The shear stress may be applied using ultrasonic waves. The application of ultrasonic waves will be described in detail below.
본 발명의 일 실시예에 따르면, 상기 전단응력은 상기 약리 활성 물질이 포함된 용액에 초음파를 인가시켜 가하는 것일 수 있다. According to one embodiment of the present invention, the shear stress may be applied by applying ultrasound to a solution containing the pharmacologically active material.
상기 초음파를 상기 약리 활성 물질이 포함된 용액에 가하면, 압력파가 발생하고, 상기 압력파에 의해 상기 약리 활성 물질에 전단응력이 가해질 수 있다.When the ultrasound is applied to a solution containing the pharmacologically active material, a pressure wave is generated, and shear stress may be applied to the pharmacologically active material by the pressure wave.
상기 인가되는 초음파의 세기는 200 J/sec 내지 800 J/sec 또는 400 J/sec 내지 600 J/sec일 수 있다.The intensity of the applied ultrasound may be 200 J/sec to 800 J/sec or 400 J/sec to 600 J/sec.
상기 인가되는 초음파의 부피당 가해지는 에너지는 초음파의 세기 (J/sec) x 가해진 시간 (sec) / 측정 부피 (ml)로 구해질 수 있다. The energy applied per volume of the applied ultrasound can be calculated as the intensity of the ultrasound (J/sec) x the applied time (sec)/measured volume (ml).
본 발명의 일 실시예에 따르면, 상기 약리 활성 물질이 포함된 용액에 인가되는 초음파의 부피당 가해지는 에너지는 100 J/ml 내지 90 kJ/ml일 수 있다. 상기 초음파의 에너지가 100 J/ml 미만일 경우, 상기 약리 활성 물질이 포함된 용액에 충분한 전단응력이 가해지지 않아 분자회합체의 형성이 어려울 수 있다. 또한, 상기 초음파의 에너지가 90 kJ/ml 초과일 경우, 상기 약리 활성 물질이 포함된 용액에 과도한 열이 가해져서 분자회합체의 형성이 어려울 수 있다.According to one embodiment of the present invention, the energy applied per volume of ultrasound applied to the solution containing the pharmacologically active material may be 100 J/ml to 90 kJ/ml. If the energy of the ultrasound is less than 100 J/ml, sufficient shear stress is not applied to the solution containing the pharmacologically active material, making it difficult to form molecular aggregates. Additionally, when the energy of the ultrasound is greater than 90 kJ/ml, excessive heat may be applied to the solution containing the pharmacologically active material, making it difficult to form molecular aggregates.
상기 초음파는 10 ℃ 내지 80 ℃에서 10 초 내지 60분 간 인가될 수 있다. 상기 초음파가 10 ℃ 미만인 온도에서 인가될 경우, 상기 약리 활성 물질이 포함된 용액에 변화가 없고, 80 ℃ 초과인 온도에서 인가될 경우, 상기 약리 활성 물질이 포함된 용액에 상 변화가 일어나서 본 발명에 따른 신규 분자회합체의 형성이 어려울 수 있다. 또한, 상기 초음파가 10 초 미만에서 인가될 경우, 상기 약리 활성 물질이 포함된 용액에 변화가 없고, 60 분 초과인 시간 동안 인가될 경우, 상기 약리 활성 물질이 포함된 용액에 분자회합체가 변형되어, 본 발명에 따른 약리 활성 물질을 형성할 수 없다.The ultrasound may be applied at 10°C to 80°C for 10 seconds to 60 minutes. When the ultrasound is applied at a temperature of less than 10°C, there is no change in the solution containing the pharmacologically active material, and when it is applied at a temperature of more than 80°C, a phase change occurs in the solution containing the pharmacologically active material, thereby forming the present invention. The formation of new molecular associations may be difficult. In addition, when the ultrasound is applied for less than 10 seconds, there is no change in the solution containing the pharmacologically active material, and when applied for a time exceeding 60 minutes, the molecular assembly in the solution containing the pharmacologically active material is deformed. Therefore, the pharmacologically active substance according to the present invention cannot be formed.
본 발명의 다른 실시예에 따르면, 상기 전단응력을 가하는 방법으로 실리카가 충진된 컬럼을 초음파 발생 장치와 결합할 수 있다. 상기 실리카가 충진된 컬럼이 초음파 발생 장치 내부에 배치되거나, 상기 실리카가 충진된 컬럼 및 초음파 발생 장치가 분리되어 연속적으로 배치될 수 있다. According to another embodiment of the present invention, a column filled with silica can be combined with an ultrasonic generator by applying the shear stress. The silica-filled column may be placed inside an ultrasonic generator, or the silica-filled column and the ultrasonic generator may be separated and placed continuously.
예를 들어, 상기 실리카가 충진된 컬럼에 상기 약리 활성 물질이 포함된 용액을 부어준 후, 상기 컬럼을 초음파 발생 장치 내에 배치시켜 초음파를 인가시킬 수 있다. 또한, 상기 약리 활성 물질이 포함된 용액에 초음파를 인가시킨 후, 상기 실리카가 충진된 컬럼에 상기 용액을 통과시킬 수 있다.For example, after pouring a solution containing the pharmacologically active material into the silica-filled column, the column may be placed in an ultrasonic generator to apply ultrasonic waves. Additionally, after applying ultrasound to a solution containing the pharmacologically active material, the solution may be passed through a column filled with silica.
또한, 필요한 경우, 상기 전단 응력을 가하기에 앞서서, 약리 활성 물질을 유기용매 중에서 반응시키는 단계를 진행할 수 있다. 상기 유기용매로는 극성을 가지는 용매라면 특별한 제한없이 사용할 수 있으며, 구체적으로는 OH기를 포함하는 용매를 사용할 수 있으며, 바람직하게는 에탄올과 같은 알코올류를 사용할 수 있다. Additionally, if necessary, a step of reacting the pharmacologically active material in an organic solvent may be performed prior to applying the shear stress. As the organic solvent, any polar solvent can be used without particular limitation. Specifically, a solvent containing an OH group can be used, and alcohols such as ethanol can be preferably used.
또한, 약리 활성 물질이 포함된 용액에 전단응력을 가하여, 본 발명의 신규 분자회합체를 제조한 후, 잔여 용매를 제거하기 위하여 여과하고 건조하는 단계를 추가로 진행할 수 있다. 이 때 여과 및 건조는 상기 분자회합체에 영향을 미치지 않는 방법이라면 특별한 제한 없이 당해 업계에서 사용하는 여과 및 건조 방법을 사용할 수 있다. In addition, after applying shear stress to a solution containing a pharmacologically active substance to prepare the novel molecular assembly of the present invention, filtering and drying steps can be additionally performed to remove residual solvent. At this time, filtration and drying methods used in the industry can be used without particular restrictions as long as they do not affect the molecular assembly.
전단 응력이 가해지기 전 용액 상은 과포화, 포화 및 불포화 등 어떠한 상태의 용액도 이용 가능하다. Before shear stress is applied, the solution phase can be in any state such as supersaturated, saturated, and unsaturated.
니클로사미드의 염 또는 분자회합체를 포함하는 약학 조성물Pharmaceutical composition containing a salt or molecular complex of niclosamide
본 발명은 상기 니클로사미드의 염 또는 상기 니클로사미드의 분자회합체를 포함하는 코로나 바이러스 감염으로 인한 질병의 치료 또는 방지용 약학 조성물을 제공할 수 있다. The present invention can provide a pharmaceutical composition for treating or preventing diseases caused by coronavirus infection, comprising a salt of niclosamide or a molecular complex of niclosamide.
또한, 본 발명은 상기 니클로사미드의 염 또는 상기 니클로사미드의 분자회합체를 포함하는 피부건선 치료용 약학 조성물을 제공할 수 있다. In addition, the present invention can provide a pharmaceutical composition for treating psoriasis of the skin, comprising a salt of niclosamide or a molecular complex of niclosamide.
또한, 본 발명은 상기 니클로사미드의 염을 포함하는 조성물을 사용하여 코로나 바이러스 감염으로 인한 질병을 치료하거나 방지하는 방법을 제공할 수 있다. Additionally, the present invention can provide a method of treating or preventing disease caused by coronavirus infection using a composition containing the salt of niclosamide.
또한, 본 발명은 상기 분자회합체를 포함하는 조성물을 사용하여 코로나 바이러스 감염으로 인한 질병을 치료하거나 방지하는 방법을 제공할 수 있다. Additionally, the present invention can provide a method of treating or preventing diseases caused by coronavirus infection using a composition containing the above molecular complex.
또한, 본 발명은 상기 니클로사미드의 염을 포함하는 조성물을 사용하여 피부건선을 치료하거나 방지하는 방법을 제공할 수 있다. Additionally, the present invention can provide a method of treating or preventing skin psoriasis using a composition containing the salt of niclosamide.
또한, 본 발명은 상기 분자회합체를 포함하는 조성물을 사용하여 피부건선을 치료하거나 방지하는 방법을 제공할 수 있다. Additionally, the present invention can provide a method of treating or preventing skin psoriasis using a composition containing the above molecular complex.
상기 니클로사미드의 염과 상기 분자회합체의 기술적 특징은 앞서 살펴본 분자회합체의 내용과 동일하다.The technical characteristics of the salt of niclosamide and the molecular association are the same as those of the molecular association discussed above.
본 발명의 일 구현예에서, 상기 약학 조성물은 산제, 과립제, 정제, 캡슐제 및 액체 형태로 이루어진 군으로부터 선택되는 어느 하나의 제형으로 투여할 수 있으나, 반드시 이에 한정하지 않는다.In one embodiment of the present invention, the pharmaceutical composition may be administered in any one dosage form selected from the group consisting of powder, granule, tablet, capsule, and liquid form, but is not necessarily limited thereto.
본 발명의 일 구현예에서, 상기 약학 조성물은 적어도 하나의 약제학적으로 허용 가능한 매개체 또는 적어도 하나의 약학적으로 허용 가능한 첨가제를 포함할 수 있다.In one embodiment of the present invention, the pharmaceutical composition may include at least one pharmaceutically acceptable vehicle or at least one pharmaceutically acceptable excipient.
본 발명의 일 구현예에서, 상기 첨가제는 약리 활성 물질이 생체내 투여 또는 전달을 용이하게 하기 위해 통상 많이 사용되는 유/무기 담체이거나, 약리 활성 물질이 작용 부위로 전달되기 위하여 통상 많이 사용되는 약물 제형의 제조를 위하여 통상 사용되는 첨가제를 더 사용할 수 있다. 그러나, 본 발명의 니클로사미드 분자회합체는 기존의 니클로사미드에 전단력 가하여 분자회합체의 배열 또는 회합을 변화시켜 생겨난 물성적 이점으로 생긴 것으로 기존의 알려진 첨가제를 이용하여 어떠한 약학 조성물의 제형도 구현 가능하다. 즉, 약리 활성 물질의 약물제형 제조를 용이하게 하기 위해 사용되는 약리 활성 물질 대비 비교적 불활성 물질인, 안정화제, 계면활성제, 표면 개질제, 용해도 향상제, 완충제, 캡슐화제, 항산화제, 방부제, 비이온성 습윤제, 투명화제, 점도 증가제, 및 흡수 증진제를 포함할 수 있으며, 아래 나열한 구체적 예들에 의해 한정되지 아니한다.In one embodiment of the present invention, the additive is an organic/inorganic carrier commonly used to facilitate the in vivo administration or delivery of the pharmacologically active substance, or a drug commonly used to deliver the pharmacologically active substance to the site of action. Additional commonly used additives may be used to prepare the formulation. However, the niclosamide molecular assembly of the present invention is a product of the physical properties created by changing the arrangement or association of the molecular assembly by applying a shear force to the existing niclosamide, and can not be formulated into any pharmaceutical composition using known additives. Implementation is possible. That is, stabilizers, surfactants, surface modifiers, solubility enhancers, buffers, encapsulants, antioxidants, preservatives, and nonionic wetting agents are relatively inert substances compared to the pharmacologically active substances used to facilitate the preparation of drug formulations of pharmacologically active substances. , clarifying agents, viscosity increasing agents, and absorption enhancers, and are not limited to the specific examples listed below.
본 발명의 일 구현예에서, 상기 첨가제는 유/무기 담체, 안정화제, 계면활성제, 표면 개질제, 용해도 향상제, 완충제, 캡슐화제, 항산화제, 방부제, 비이온성 습윤제, 투명화제, 점도 증가제, 및 흡수 증진제로 이루어진 군에서 선택되는 어느 하나 이상인 것을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.In one embodiment of the present invention, the additives include organic/inorganic carriers, stabilizers, surfactants, surface modifiers, solubility enhancers, buffers, encapsulants, antioxidants, preservatives, non-ionic wetting agents, clarifying agents, viscosity increasing agents, and Any one or more selected from the group consisting of absorption enhancers may be used, but are not necessarily limited thereto.
본 발명의 일 구현예에 있어서, 본 발명의 약학 조성물은 구성 중 분산매를 포함할 수 있으나, 이에 한정하지 않는다. 또한, 본 발명의 일 구현예 중 하나인 약학 조성물은 분산매에 안정적으로 잘 분산되는 효과를 가지고 있다. In one embodiment of the present invention, the pharmaceutical composition of the present invention may include a dispersion medium, but is not limited thereto. In addition, the pharmaceutical composition, which is one of the embodiments of the present invention, has the effect of being stably dispersed in a dispersion medium.
본 발명의 일 구현예에 있어서, 상기 분산매는 앞서 용어 및 정의에서 설명한 바와 같이 물, 식염수 (saline solution) 혹은 수용액 버퍼 (buffered aqueous solution) 일 수 있지만, 이에 제한하지 않는다.In one embodiment of the present invention, the dispersion medium may be water, a saline solution, or a buffered aqueous solution as previously described in terms and definitions, but is not limited thereto.
본 발명의 일 구현예에 있어서, "약학 조성물"은 유기 또는 무기 담체 또는 부형제와의 혼합물로 이루어지고, 예를 들어 정제, 펠릿제, 캡슐제, 좌제, 용액제, 에멀션제, 현탁액제 또는 사용하기에 적절한 다른 형태를 위한 통상적인 비독성의 약학적으로 허용되는 담체와 배합될 수 있다. In one embodiment of the present invention, the “pharmaceutical composition” consists of a mixture with an organic or inorganic carrier or excipient, for example, tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions or preparations for use. It can be combined with conventional non-toxic pharmaceutically acceptable carriers for other forms as appropriate.
상기 부형제 또는 첨가제는 약학조성물에 통상적으로 들어가는 계면활성제, 매개체 가용화제 또는 증진제의 일종일 수 있다. 상기 계면활성제는 (음이온성, 양이온성, 양쪽이온성 및 비이온성), 지방산 또는 지방산 유도체, 담즙염, 사이클로덱스트린, 키토산 또는 키토산 유도체, 인지질, 및 질소 함유 고리 화합물의 범주에 속할 수 있다.The excipient or additive may be a type of surfactant, mediator solubilizer, or enhancer commonly used in pharmaceutical compositions. The surfactants may fall into the category of fatty acids or fatty acid derivatives (anionic, cationic, zwitterionic and nonionic), bile salts, cyclodextrins, chitosan or chitosan derivatives, phospholipids, and nitrogen-containing ring compounds.
상기 유/무기 담체는 글루코스, 락토스, 만노스, 아카시아 검, 젤라틴, 만니톨, 전분 페이스트, 삼규산마그네슘, 탈크, 옥수수 전분, 케라틴, 실리카, 감자 전분, 요소, 중간쇄 길이의 트리글리세리드, 덱스트란 및 제제 제조에 사용하기에 적합한 고체, 반고체 또는 액체 형태의 기타 담체를 포함할 수 있다. The organic/inorganic carriers include glucose, lactose, mannose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, silica, potato starch, urea, medium chain length triglycerides, dextran and agents. Other carriers in solid, semi-solid or liquid form suitable for use in manufacturing may be included.
상기 실리카는 SYLOID®, Cab-O-Sil®, SHIELDEX®, LUDOX®, SYLOBLOC®, TRISYL®, DARACLAR®, SYLOID® FP, SILSOL®, DAVISIL®, VYDAC®, PERKASIL®가 이용될 수 있으며, 구체적으로는 SYLOID 244FP 또는 XDP3050 일 수 있으나, 이에 한정하지 않는다.The silica may be SYLOID®, Cab-O-Sil®, SHIELDEX®, LUDOX®, SYLOBLOC®, TRISYL®, DARACLAR®, SYLOID® FP, SILSOL®, DAVISIL®, VYDAC®, and PERKASIL®. It may be SYLOID 244FP or XDP3050, but is not limited thereto.
상기 계면활성제는 음이온성, 양이온성, 양쪽이온성 및 비이온성일 수 있으며, 위의 비이온성 중 폴리옥시에틸렌-폴리옥시프로필렌 블록 공중합체(poloxamer), 솔비탄 에스테르(Span), 폴리옥시에틸렌솔비탄(Tween) 및 폴리옥시에틸렌에테르(Brij)로 이루어진 군에서 하나 이상 선택될 수 있다.The surfactant may be anionic, cationic, zwitterionic, and nonionic, and among the above nonionic ones, polyoxyethylene-polyoxypropylene block copolymer (poloxamer), sorbitan ester (Span), and polyoxyethylene sorbitol. One or more may be selected from the group consisting of Tween and polyoxyethylene ether (Brij).
상기 음이온성 계면활성제는 소듐 라우릴 설페이트, 소듐 도데실 벤젠 설포네이트, 소듐 (C6-C16) 알킬 페녹시 벤젠 설포네이트, 디소듐 (C6-C16) 알킬 페 녹시 벤젠 설포네이트, 디소듐 (C6-C16) 디-알킬 페녹시 벤젠 설포네이트, 디소듐 라우레쓰-3 설포숙시네이트, 소듐 디옥틸 설포숙시네이트, 소듐 디-sec-부틸 나프탈렌 설포네이트, 디소듐 도데실 디페닐 에테르 설포네이트, 디소듐 n-옥타데실 설포숙시네이트, 분지형 알코올 에톡실레이트의 포스페이트 에스테르 등을 포함하지만, 이에 한정되지는 않는다. 상기 음이온성 계면활성제로는 알킬 설페이트, 알킬 에테르 설페이트, 알킬 설포네이트, 알크아릴(alkaryl) 설포네이트, a-올레핀-설포네이트, 알킬아마이드 설포네이드, 알크아 릴폴리에테르 설페이트, 알킬아미도에테르 설페이트, 알킬 모노글리세릴 에테르 설페이트, 알킬 모노글리세라이 드 설페이트, 알킬 모노글리세라이드 설포네이트, 알킬 숙시네이트, 알킬 설포숙시네이트, 알킬 설포숙신아메이트, 알킬 에테르 설포숙시네이트, 알킬 아미도설포숙시네이트; 알킬 설포아세테이트, 알킬 포스페이트, 알킬 에테르 포스페이트, 알킬 에테르 카르복실레이트, 알킬 아미도에테르카르복실레이트, N-알킬아미노산, N-아실 아미노산, 알킬 펩타이드, N-아실 타우레이트, 알킬 이세티오네이트(isethionate), 카르복실레이트 염, 여기서 상기 아실 기는 지방산으로부터 유래되며, 알칼리 금속, 알칼리토금속, 암모늄, 아민 및 이들의 트리에탄올아민 염을 포함하지만, 이에 한정되지는 않는다. 적합한 음이온성 계면활성제의 예는, 1, 2 및 3 몰의 에틸렌 옥사이드로 에톡실화된, 소듐, 포타슘, 리튬, 마그 네슘, 및 라우레쓰 설페이트, 트리데세쓰(trideceth) 설페이트, 미레쓰(myreth) 설페이트, C12-C13 파레쓰 (pareth) 설페이트, C12-C14 파레쓰 설페이트 및 C12-C15 파레쓰 설페이트의 암모늄 염; 소듐, 포타슘, 리튬, 마그 네슘, 암모늄 및 트리에탄올아민 라우릴 설페이트, 코코 설페이트, 트리데실 설페이트, 미르스틸(myrstyl) 설페 이트, 세틸 설페이트, 세테아릴 설페이트, 스테아릴 설페이트, 올레일 설페이트 및 탤로우(tallow) 설페이트, 디소듐 라우릴 설포숙시네이트, 디소듐 라우레쓰 설포숙시네이트, 소듐 코코일 이세티오네이트, 소듐 C12-C14 올 레핀 설포네이트, 소듐 라우레쓰-6 카르복실레이트, 소듐 메틸 코코일 타우레이트, 소듐 코코일 글리시네이트, 소듐 미리스틸 사르코시네이트(sarcocinate), 소듐 도데실벤젠 설포네이트, 소듐 코코일 사르코시네이트, 소듐 코코일 글루타메이트, 포타슘 미리스토일 글루타메이트, 트리에탄올아민 모노라우릴 포스페이트, 및 약 8 내지 약 22 개의 탄소 원자를 함유하는 포화 및 불포화 지방산의 소듐, 포타슘, 암모늄 및 트리에탄올아민 염을 포함하는 지방산 비누를 포함한다.The anionic surfactants include sodium lauryl sulfate, sodium dodecyl benzene sulfonate, sodium (C6-C16) alkyl phenoxy benzene sulfonate, disodium (C6-C16) alkyl phenoxy benzene sulfonate, disodium (C6- C16) Di-alkyl phenoxy benzene sulfonate, disodium laureth-3 sulfosuccinate, sodium dioctyl sulfosuccinate, sodium di-sec-butyl naphthalene sulfonate, disodium dodecyl diphenyl ether sulfonate, Disodium n-octadecyl sulfosuccinate, phosphate esters of branched alcohol ethoxylates, etc., but are not limited thereto. The anionic surfactant includes alkyl sulfate, alkyl ether sulfate, alkyl sulfonate, alkaryl sulfonate, a-olefin-sulfonate, alkylamide sulfonate, alkaryl polyether sulfate, and alkylamido ether. Sulfate, alkyl monoglyceryl ether sulfate, alkyl monoglyceride sulfate, alkyl monoglyceride sulfonate, alkyl succinate, alkyl sulfosuccinate, alkyl sulfosuccinamate, alkyl ether sulfosuccinate, alkyl amidosulfosuccinate synate; Alkyl sulfoacetate, alkyl phosphate, alkyl ether phosphate, alkyl ether carboxylate, alkyl amidoethercarboxylate, N-alkylamino acid, N-acyl amino acid, alkyl peptide, N-acyl taurate, alkyl isethionate ), carboxylate salts, wherein the acyl group is derived from a fatty acid, and includes, but is not limited to, alkali metals, alkaline earth metals, ammoniums, amines, and their triethanolamine salts. Examples of suitable anionic surfactants include sodium, potassium, lithium, magnesium, and laureth sulfate, trideceth sulfate, myreth, ethoxylated with 1, 2 and 3 moles of ethylene oxide. Ammonium salts of sulfates, C12-C13 pareth sulfate, C12-C14 pareth sulfate and C12-C15 pareth sulfate; Sodium, potassium, lithium, magnesium, ammonium and triethanolamine Lauryl sulfate, coco sulfate, tridecyl sulfate, myrstyl sulfate, cetyl sulfate, cetearyl sulfate, stearyl sulfate, oleyl sulfate and tallow. (tallow) Sulfate, Disodium Lauryl Sulfosuccinate, Disodium Laureth Sulfosuccinate, Sodium Cocoyl Isethionate, Sodium C12-C14 Olefin Sulfonate, Sodium Laureth-6 Carboxylate, Sodium Methyl Cocoyl Taurate, Sodium Cocoyl Glycinate, Sodium Myristyl Sarcocinate, Sodium Dodecylbenzene Sulfonate, Sodium Cocoyl Sarcosinate, Sodium Cocoyl Glutamate, Potassium Myristoyl Glutamate, Triethanolamine Mono fatty acid soaps comprising lauryl phosphate, and sodium, potassium, ammonium and triethanolamine salts of saturated and unsaturated fatty acids containing from about 8 to about 22 carbon atoms.
상기 양이온성 계면활성제로는 양이온성 계면활성제는, 수성 계면활성제 조성물에 대한 기술분야에서 통상적으로 사용되거나 알려진 양이온성 계면 활성제 중 어느 하나일 수 있다. 적합한 양이온성 계면활성제의 부류는 알킬 아민, 알킬 이미다졸린, 에톡실화 아민, 4차 화합물 및 4차화 에스테르를 포함하지만, 이에 한정되지는 않는다.The cationic surfactant may be any one of the cationic surfactants commonly used or known in the art for aqueous surfactant compositions. Classes of suitable cationic surfactants include, but are not limited to, alkyl amines, alkyl imidazolines, ethoxylated amines, quaternaries, and quaternized esters.
상기 양쪽성 및 비이온성 계면활성제로는 카프릴 (capryl) 알코올 에톡실레이트, 라우릴 알코올 에톡실레이트, 미리스틸 알코올 에톡실레이트, 세틸 알코올 에톡 실레이트, 스테아릴 알코올 에톡실레이트, 세테아릴 알코올 에톡실레이트, 스테롤 에톡실레이트, 올레일 알코올 에톡실레이트 및 베헤닐 알코올 에톡실레이트와 같은 선형 또는 분지형 C8-C30 지방 알코올 에톡실레이트; 옥틸 페놀 에톡실레이트와 같은 알킬페놀 알콕실레이트; 및 폴리옥시에틸렌 폴리옥시프로필렌 블록(block) 공중합체 등을 포함하며, 이에 한정되지 않는다. 비이온성 계면활성제로서 적합한 추가의 지방 알코올 에톡실레이트가 하기에 기재된다. 다른 유용한 비이온성 계면활성제는 폴리옥시에틸렌 글리콜의 C8-C22 지방산 에스테르, 에톡 실화된 모노- 및 디글리세라이드, 소르비탄 에스테르 및 에톡실화된 소르비탄 에스테르, C8-C22 지방산 글리콜 에스테르, 에틸렌 옥사이드 및 프로필렌 옥사이드의 블록 공중합체 및 이들의 조합물을 포함한다. 전술한 에톡실레이트 각각에서의 에틸렌 옥사이드 단위 수는, 일 측면에 있어서 2 이상 및 다른 측면에 있어서 2 내지 약 150 사이일 수 있다The amphoteric and nonionic surfactants include capryl alcohol ethoxylate, lauryl alcohol ethoxylate, myristyl alcohol ethoxylate, cetyl alcohol ethoxylate, stearyl alcohol ethoxylate, and cetearyl. linear or branched C8-C30 fatty alcohol ethoxylates such as alcohol ethoxylates, sterol ethoxylates, oleyl alcohol ethoxylates and behenyl alcohol ethoxylates; alkylphenol alkoxylates such as octyl phenol ethoxylate; and polyoxyethylene polyoxypropylene block copolymer, etc., but is not limited thereto. Additional fatty alcohol ethoxylates suitable as nonionic surfactants are described below. Other useful nonionic surfactants are C8-C22 fatty acid esters of polyoxyethylene glycols, ethoxylated mono- and diglycerides, sorbitan esters and ethoxylated sorbitan esters, C8-C22 fatty acid glycol esters, ethylene oxide and propylene. Includes block copolymers of oxides and combinations thereof. The number of ethylene oxide units in each of the foregoing ethoxylates may be at least 2 in one aspect and between 2 and about 150 in another aspect.
상기 계면활성제는 트윈 20, 트윈 60, 트윈 80, 스판 20, 스판 80, 라브라솔, 크레모포어류, 트랜스큐톨 P, 트랜스큐톨 HP, 라브라필, 소듐라우릴설페이트, 플루롤 다이아이소스테아릭, 카프리올 90, 카프리올 PGMC, 라우로글라이콜 90, 라우로글라이콜 FCC, 폴록사머 188, 폴록사머 407, 아코논 엠씨 8-2, 비타민 E TPGS로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. The surfactants include Tween 20, Tween 60, Tween 80, Span 20, Span 80, Labrasol, Cremophores, Transcutol P, Transcutol HP, Labrafil, Sodium Lauryl Sulfate, and Plural Diisostearic. , Capriol 90, Capriol PGMC, Lauroglycol 90, Lauroglycol FCC, Poloxamer 188, Poloxamer 407, Aconone MC 8-2, Vitamin E TPGS, at least one selected from the group consisting of may include.
구체적으로는 폴리옥시에틸렌 솔비탄 모노올레이트 즉, 트윈TM 80(TweeenTM 80) 일 수 있으나, 이에 한정하지 않는다.Specifically, it may be polyoxyethylene sorbitan monooleate, that is, Tweeen TM 80, but is not limited thereto.
본 발명의 일 구현예에 있어서, 약학 조성물은 코로나바이러스 균(coronavirus strains), 메르스(MERS-CoV), 사스-코브-2(SARS-CoV-2)로 인한 질병의 치료 또는 예방용으로 사용될 수 있다. In one embodiment of the present invention, the pharmaceutical composition is used for the treatment or prevention of diseases caused by coronavirus strains, MERS-CoV, and SARS-CoV-2. You can.
상기 니클로사미드 또는 니클로사미드의 약학적으로 허용 가능한 염의 분자회합체를 포함하는 약학적 조성물은 고체 상태, 또는 에어로졸 또는 고체화된 분말 제형물로 제공되어 경구 그리고/또는 흡입을 위한 제형 및 제제를 제공한다. The pharmaceutical composition comprising niclosamide or a molecular complex of a pharmaceutically acceptable salt of niclosamide is provided in a solid state, or in an aerosol or solidified powder formulation to provide formulations and preparations for oral and/or inhalation. to provide.
본 발명의 일 구현예에 있어서, 상기 약학 조성물은 경구 및 흡입 중 어느 하나 이상의 제형으로 사용될 수 있다. In one embodiment of the present invention, the pharmaceutical composition can be used in one or more of oral and inhalable dosage forms.
본 발명의 일 구현예에 있어서, 상기 약학 조성물은 경피(transdermal)의 제형으로 사용될 수 있다. In one embodiment of the present invention, the pharmaceutical composition can be used in a transdermal formulation.
흡입 장치suction device
본 발명의 일 구현예에 있어서, 본 발명의 분자회합체를 포함하는 약학 조성물을 포함하는 흡입장치를 제공할 수 있다.In one embodiment of the present invention, an inhalation device containing a pharmaceutical composition containing the molecular complex of the present invention can be provided.
상기 흡입 장치는 소형 휴대용 장치 형태인 흡입기(inhaler) 및 네뷸라이저(nebulizer)로 이루어진 군에서 선택되는 어느 하나의 형태로 제조될 수 있으나, 이에 한정하지 않는다.The inhalation device may be manufactured in any form selected from the group consisting of an inhaler and a nebulizer, which are small portable devices, but is not limited thereto.
본 발명의 일 구현예에 있어서, 본 발명의 분자회합체를 포함하는 약학적 조성물은 경구제 (oral drug)로 제공될 수 있다.In one embodiment of the present invention, the pharmaceutical composition containing the molecular complex of the present invention may be provided as an oral drug.
본 발명의 일 구현예에 있어서, 본 발명의 분자회합체를 포함하는 약학적 조성물은 경구 및 흡입 중 어느 하나 이상에 의해 제공될 수 있다. 약리 활성 물질의 흡입에 의해 코점막 그리고/또는 폐 전달에 용이하여 환자에게 비침습 방식으로 약리 활성 물질을 전달할 수 있다. In one embodiment of the present invention, the pharmaceutical composition containing the molecular complex of the present invention can be administered by oral administration or inhalation. The pharmacologically active substance can be easily delivered to the nasal mucosa and/or lungs by inhalation, making it possible to deliver the pharmacologically active substance to the patient in a non-invasive manner.
본 발명의 일 구현예에 있어서, 상기 약학적 조성물은 경구용 캡슐 형태로 환자에게 투여될 수 있다.In one embodiment of the present invention, the pharmaceutical composition may be administered to a patient in the form of an oral capsule.
본 발명의 일 구현예에 있어서, 상기 흡입 장치는 조성물의 치료 용량이 코로 흡입되어 이루어지는 코분무 형태일 수 있으며, 이 경우 코점막을 통해서 흡수될 수 있으나, 이에 한정하지 않는다. In one embodiment of the present invention, the inhalation device may be in the form of a nasal spray in which the therapeutic dose of the composition is inhaled into the nose, and in this case, it may be absorbed through the nasal mucosa, but is not limited to this.
적응증Indications
본 발명의 일 구현예에 있어서, 약학적 조성물은 메르스(MERS-CoV), 사스바이러스(SARS-CoV-2) 등 같은 코로나바이러스 균(coronavirus strains) 계열 으로 인한 바이러스 감염의 치료 또는 예방을 위하여 사용될 수 있다. 또한 질병 암, 기생충 감염, 대사 질환, 제2형 당뇨병, 비알코올성 지방간염(NASH), 비알코올성 지방간질환(NAFLD), 동맥 수축, 자궁내막증, 신경통, 류마티스 관절염, 경피 이식 대 숙주 질환, 피부건선 및 전신 경화증으로부터 선택되는 질병을 치료하거나 예방 가능하지만, 이에 한정하는 것은 아니다.In one embodiment of the present invention, the pharmaceutical composition is used for the treatment or prevention of viral infections caused by coronavirus strains such as MERS-CoV and SARS-CoV-2. can be used Additionally, the diseases cancer, parasitic infections, metabolic diseases, type 2 diabetes, non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), arterial constriction, endometriosis, neuralgia, rheumatoid arthritis, percutaneous graft-versus-host disease, psoriasis of the skin. and systemic sclerosis, but is not limited thereto.
[실시예][Example]
니클로사미드 신규 염 및 분자회합체의 제조방법Method for producing new niclosamide salts and molecular complexes
[실시예 1-1][Example 1-1]
니클로사미드(Niclosamide, Olon), 2.5g을 에탄올(94.5% Ethanol, 대정화금) 500g에 녹여서 약 0.5% 농도의 니클로사미드 용해액을 제조하였다. 니클로사미드 2.5g에 대한 1당량의 탄산수소나트륨(Sodium bicarbonate, NaHCO3, 대정화금) 642mg과 니클로사미드 2.5g에 대한 0.3당량의 황산나트륨(Sodium sulfate, Na2SO4, 대정화금) 325.7mg을 정제수 10mL에 용해하였다. 완전히 용해된 0.5% 니클로사미드 에탄올 용액을 1,000rpm으로 교반하면서 Salt 용해액 10mL 투입하여 용해시켰다. 최대한 용해시킨 후 0.45μm, PVDF membrane filter를 이용해 녹지 않은 Salt를 걸러낸 후에 이후 공정을 진행하였다.Niclosamide (Olon), 2.5 g was dissolved in 500 g of ethanol (94.5% Ethanol, Daejeong Chemical) to prepare a niclosamide solution with a concentration of about 0.5%. 642 mg of 1 equivalent of sodium bicarbonate (NaHCO 3 , Daejung Chemical Gold) for 2.5 g of niclosamide and 0.3 equivalent of sodium sulfate (Na 2 SO 4 , Daejung Chemical Gold) for 2.5 g of niclosamide 325.7 mg was dissolved in 10 mL of purified water. The completely dissolved 0.5% niclosamide ethanol solution was dissolved by adding 10 mL of salt solution while stirring at 1,000 rpm. After dissolving as much as possible, undissolved salt was filtered out using a 0.45μm, PVDF membrane filter before proceeding with the subsequent process.
[실시예 1-2][Example 1-2]
위의 실시예 1-1의 용액을 가지고, SYLOID 244FP(W.R.Grace) 15g을 에탄올 150g에 wetting한 후 직경이 90mm Glass funnel(G4 filter)에 Packing 하여 1cm높이의 SYLOID 244FP Column을 제조하였다. 퍼넬 하부에 진공펌프에 연결하여 감압가능한 플라스크를 설치하였다. 진공펌프를 이용해 약 200 mbar까지 감압한 후 Column 위에 니클로사미드 용액을 투입하고 칼럼을 통과한 용액을 하부에서 회수하여 제조하였다. 이 때의 유출 유속은 약 7.9mL/min*6358.5mm2이었다. Using the solution of Example 1-1 above, 15 g of SYLOID 244FP (WRGrace) was wepped in 150 g of ethanol and then packed in a glass funnel (G4 filter) with a diameter of 90 mm to prepare a 1 cm high SYLOID 244FP column. A flask capable of reducing pressure by connecting to a vacuum pump was installed at the bottom of the funnel. After reducing the pressure to about 200 mbar using a vacuum pump, the niclosamide solution was added to the column, and the solution that passed through the column was recovered from the bottom. The outflow rate at this time was about 7.9mL/min*6358.5mm 2 .
[실시예 2-1][Example 2-1]
니클로사미드(Niclosamide, Olon), 2.5g을 에탄올(94.5% Ethanol, 대정화금) 500g에 녹여서 약 0.5% 농도의 니클로사미드 용해액을 제조하였다. 니클로사미드 2.5g에 대한 1당량의 탄산수소나트륨(Sodium bicarbonate, NaHCO3, 대정화금) 0.642g과 니클로사미드 2.5g에 대한 0.3당량의 황산나트륨(Sodium sulfate, Na2SO4, 대정화금) 0.3257g을 정제수 10mL에 용해하였다. 완전히 용해된 0.5% 니클로사미드 에탄올 용액을 1,000rpm으로 교반하면서 Salt 용해액 10mL 투입하여 용해시켰다. 최대한 용해시킨 후 0.45μm, PVDF membrane filter를 이용해 녹지 않은 Salt를 걸러낸 후에 이후 공정을 진행하였다. Niclosamide (Olon), 2.5 g was dissolved in 500 g of ethanol (94.5% Ethanol, Daejeong Chemical) to prepare a niclosamide solution with a concentration of about 0.5%. 0.642 g of 1 equivalent of sodium bicarbonate (NaHCO 3 , Daejung Chemical) for 2.5 g of niclosamide and 0.3 equivalent of sodium sulfate (Na 2 SO 4 , Daejung Chemical) for 2.5 g of niclosamide. ) 0.3257g was dissolved in 10mL of purified water. The completely dissolved 0.5% niclosamide ethanol solution was dissolved by adding 10 mL of salt solution while stirring at 1,000 rpm. After dissolving as much as possible, undissolved salt was filtered out using a 0.45μm, PVDF membrane filter before proceeding with the subsequent process.
[실시예 2-2][Example 2-2]
위의 실시예 2-1의 용액을 가지고, SYLOID 244FP(W.R.Grace) 15g을 에탄올 150g에 wetting한 후 직경이 90mm Glass funnel(G4 filter)에 Packing 하여 1cm높이의 SYLOID 244FP Column을 제조하였다. 퍼넬 하부에 진공펌프에 연결하여 감압가능한 플라스크를 설치하였다. 진공펌프를 이용해 약 200 mbar까지 감압한 후 Column 위에 니클로사미드 용액을 투입하고 칼럼을 통과한 용액을 하부에서 회수하여 제조하였다. 이 때의 유출 유속은 약 6.1mL/min*6358.5mm2이었다. Using the solution of Example 2-1 above, 15 g of SYLOID 244FP (WRGrace) was wepped in 150 g of ethanol and then packed in a glass funnel (G4 filter) with a diameter of 90 mm to prepare a 1 cm high SYLOID 244FP column. A flask capable of reducing pressure by connecting to a vacuum pump was installed at the bottom of the funnel. After reducing the pressure to about 200 mbar using a vacuum pump, the niclosamide solution was added to the column, and the solution that passed through the column was recovered from the bottom. The outflow rate at this time was about 6.1mL/min*6358.5mm 2 .
니클로사미드 분자회합체를 포함하는 조성물Composition containing niclosamide molecular complex
[실시예 3] [Example 3]
실시예 1-2의 유출액 내에 존재하는 니클로사미드 농도를 HPLC(e2695, Waters, 미국)를 이용하여 분석하였고, 수득된 니클로사미드가 1.94g임을 확인하였다. 수득된 니클로사미드 함량의 0.5당량인 에탄올아민(Ethanolamine, Sigma aldrich) 181.1mg을 정량하여 에탄올 5g에 용해한 후 실시예 1-2 유출액에 넣고 700rpm에서 2분간 교반하였다. 수득된 니클로사미드 함량의 2.2배인 폴리소베이트80(Tween80, Tokyo chemical industry) 4.268g을 정량하여 에탄올 20g에 용해한 후 실시예 1-2에 넣고 700rpm에서 10분간 교반하였다. 이후, 회전식 감압건조기를 이용해 25℃, 20mbar 압력에서 회전속도 120rpm으로 약 1시간 30분 운전하여 에탄올을 90% 제거한 후 다공성 실리카인 XDP3050(W.R.Grace)을 폴리소베이트80의 양의 0.7333배인 3.1297g 투입하였다. 폴리소베이트80은 계면활성제로 장흡수를 촉진하는 효과가 알려져 있고, 니클로사미드 혼합물은 점성이 강한(조청같은) 액상의 혼합물을 형성하여, 이를 다루기 편한 고상의 제형으로 만들기 위하여 XDP에 담지한 형태이다. 회전식 감압건조기를 이용해 남아있는 에탄올을 모두 제거하면 최종적으로 10.6g의 흐름성이 좋은 노랑색 성상의 실리카에 담지된 시료를 얻었다.The concentration of niclosamide present in the effluent of Example 1-2 was analyzed using HPLC (e2695, Waters, USA), and it was confirmed that the obtained niclosamide was 1.94 g. Ethanolamine (Sigma aldrich) 181.1 mg, which is 0.5 equivalent of the obtained niclosamide content, was weighed and dissolved in 5 g of ethanol, then added to the effluent of Example 1-2 and stirred at 700 rpm for 2 minutes. 4.268 g of polysorbate 80 (Tween80, Tokyo chemical industry), which is 2.2 times the obtained niclosamide content, was weighed and dissolved in 20 g of ethanol, then added to Example 1-2 and stirred at 700 rpm for 10 minutes. Afterwards, 90% of the ethanol was removed using a rotary vacuum dryer at 25°C and 20mbar pressure at a rotation speed of 120rpm for about 1 hour and 30 minutes, and then 3.1297g of porous silica, XDP3050 (W.R.Grace), was added, which was 0.7333 times the amount of polysorbate 80. It was put in. Polysorbate 80 is known to be effective in promoting intestinal absorption as a surfactant, and the niclosamide mixture forms a highly viscous (rice syrup-like) liquid mixture, which is supported in XDP to make it into a solid formulation that is easy to handle. It is a form. When all remaining ethanol was removed using a rotary vacuum dryer, a final sample of 10.6 g supported on yellow silica with good flowability was obtained.
[실시예 4][Example 4]
유출액 내에 존재하는 니클로사미드 농도를 HPLC(e2695, Waters, 미국)를 이용하여 분석하였고, 수득된 니클로사미드가 2.3934g임을 확인하였다. 수득된 니클로사미드 함량의 2.2배인 폴리소베이트80(Tween80, Tokyo chemical industry) 5.2655g을 정량하여 에탄올 20g에 용해한 후 실시예 2-2 유출액에 넣고 700rpm에서 10분간 교반하였다. 이 유출액을 회전식 감압건조기를 이용해 25℃, 20mbar 압력에서 회전속도 120rpm으로 약 1시간 30분 운전하여 에탄올을 90% 제거한 후 다공성 실리카인 XDP3050(W.R.Grace)을 폴리소베이트80의 양의 0.7333배인 3.8612g 투입하였다. 회전식 감압건조기를 이용해 남아있는 에탄올을 모두 제거하면 최종적으로 14.87g의 흐름성이 좋은 노랑색 성상의 실리카에 담지된 시료를 얻었다. The concentration of niclosamide present in the effluent was analyzed using HPLC (e2695, Waters, USA), and it was confirmed that the obtained niclosamide was 2.3934 g. 5.2655 g of polysorbate 80 (Tween80, Tokyo chemical industry), which is 2.2 times the obtained niclosamide content, was weighed and dissolved in 20 g of ethanol, then added to the effluent of Example 2-2 and stirred at 700 rpm for 10 minutes. This effluent was operated at 25°C and 20 mbar pressure for about 1 hour and 30 minutes at a rotation speed of 120 rpm using a rotary vacuum dryer to remove 90% of the ethanol, and then the porous silica XDP3050 (W.R. Grace) was added to 3.8612, which is 0.7333 times the amount of polysorbate 80. g was added. When all remaining ethanol was removed using a rotary vacuum dryer, a final sample of 14.87 g supported on yellow silica with good flowability was obtained.
[실험예][Experimental example]
실험예 1. 니클로사미드 분자회합체의 용해도Experimental Example 1. Solubility of niclosamide molecular complex
실시예 1-1, 1-2, 2-1, 2-2의 유출액을 고체화한 후 2mg을 취해서 정제수 2mL에 700rpm, 30분간 용해하여 0.45μm, PVDF syringe filter 후 HPLC로 분석하였다. After solidifying the effluents of Examples 1-1, 1-2, 2-1, and 2-2, 2 mg was taken and dissolved in 2 mL of purified water at 700 rpm for 30 minutes, filtered to 0.45 μm, PVDF syringe, and analyzed by HPLC.
시중에서 구입한 니클로사미드(NCS)의 정제수에 대한 용해도는 0.003mg/mL이었고, 여기에 에탄올아민(EA) 1당량을 넣어 NCS-EA Salt로 제조한 후 분석하였을 때는 0.22mg/mL로 용해되었다. 실시예 1-1과 실시예 2-1 같은 경우 약 0.4mg/mL 로 정제수에 대한 용해도가 NCS-EA Salt보다 개선되는 것을 확인하였다. The solubility of commercially purchased niclosamide (NCS) in purified water was 0.003 mg/mL, and when 1 equivalent of ethanolamine (EA) was added to prepare it with NCS-EA Salt and analyzed, it dissolved at 0.22 mg/mL. It has been done. In the case of Examples 1-1 and 2-1, it was confirmed that the solubility in purified water was improved at about 0.4 mg/mL compared to NCS-EA Salt.
시중에서 구입한 NCS API = 0.003mg/mL Commercially purchased NCS API = 0.003mg/mL
실시예 1-1 = 0.44 mg/mL Example 1-1 = 0.44 mg/mL
실시예 1-2 = 0.33 mg/mL Example 1-2 = 0.33 mg/mL
실시예 2-1 = 0.43 mg/mL임 Example 2-1 = 0.43 mg/mL
실시예 2-2 = 0.39 mg/mL Example 2-2 = 0.39 mg/mL
상기 실험 결과를 통하여, 본 발명에 따른 니클로사미드의 염과 니클로사이브 분자회합체은 용해도는 0.33 mg/mL 내지 0.44 mg/mL 정도의 용해도를 가진다는 것을 확인할 수 있었다.Through the above experimental results, it was confirmed that the salt of niclosamide and the niclosybe molecular complex according to the present invention have a solubility of about 0.33 mg/mL to 0.44 mg/mL.
실험예 2. HPLC 분석Experimental Example 2. HPLC analysis
컬럼은 Waters사의 Xbridge Shield RP C18 (250mm×4.6mm, 5㎛) 컬럼을 이용하고, 검출파장은 230 nm, 컬럼온도는 30℃, 분당유속은 1mL, 이동상용매로는 아세토니트릴/정제수/포름산 (750/250/1 (v/v/v)) 비율로 아세토니트릴 - Honeywell(B&J), 정제수 - Honeywell(B&J), 포름산 - 삼전순약을 사용하여 NCS의 머무름시간(Retention time)을 확인하고 NCS의 피크면적(peak area)을 계산하여 농도를 분석한다.The column used was Waters' Xbridge Shield RP C18 (250mm The retention time of NCS was confirmed using acetonitrile - Honeywell (B&J), purified water - Honeywell (B&J), formic acid - Samjeon Pure Medicine at a ratio of 750/250/1 (v/v/v)) and the NCS Concentration is analyzed by calculating the peak area.
도 3을 살펴보면 시중에서 구입한 니클로사미드, 실시예 1-1, 실시예 1-2는 그래프의 각각 [A], [B], [C]에 해당하며 모두 동일한 시간대의 peak를 나타내고 있다. Looking at Figure 3, commercially purchased niclosamide, Example 1-1, and Example 1-2 correspond to [A], [B], and [C] in the graph, respectively, and all show peaks in the same time period.
실험예 3. NMR 샘플 제조 및 측정Experimental Example 3. NMR sample preparation and measurement
실시예 1-1, 1-2의 유출액 일부를 취하여 회전식 감압농축기를 이용해 25℃, 20mbar 압력에서 회전속도 120rpm으로 약 15분간 운전하여 최대한 에탄올을 제거한 후 5mg을 회수하여 다이메틸술폭시드D-6(DMSO-d6, Cambridge isotope lab.) 1mL에 용해하여 NMR샘플로 하였다.A portion of the effluent from Examples 1-1 and 1-2 was taken, and ethanol was removed as much as possible by using a rotary vacuum concentrator at a pressure of 20 mbar at 25° C. and a rotation speed of 120 rpm for about 15 minutes, and then 5 mg was recovered as dimethyl sulfoxide D-6. (DMSO-d6, Cambridge isotope lab.) was dissolved in 1 mL and used as an NMR sample.
사용한 NMR 기기는 약 14.1 T의 자기장을 가지는 600 MHz NMR(Avance Neo 600, Bruker Biopsin사, 미국)이며, 사용한 펄스 시퀀스는 "zg30"이다. 상온에서 분석을 진행하였으며, DMSO-d6 (DLM-10, Cambridge Isotope Laboratories사, 미국) 피크의 chemical shift(화학적 이동)를 레퍼런스 삼아 2.500 ppm 기준으로 맞추었다. 얻어진 fid 데이터는 NMR 프로세싱 소프트웨어(MestReNova, Mestrelab사, 스페인)로 처리하였다.The NMR device used was a 600 MHz NMR (Avance Neo 600, Bruker Biopsin, USA) with a magnetic field of approximately 14.1 T, and the pulse sequence used was "zg30". Analysis was conducted at room temperature, and the chemical shift of the peak of DMSO-d6 (DLM-10, Cambridge Isotope Laboratories, USA) was used as a reference to set the standard to 2.500 ppm. The obtained fid data were processed with NMR processing software (MestReNova, Mestrelab, Spain).
실시예 1-1, 1-2은 위의 NMR 샘플제조 방법을 통하여 1H NMR 스펙트럼을 분석하였다. 실시예 1-1에 대한 9.5-0.0 ppm 사이의 1H NMR 스펙트럼 분석 결과를 도 1의 상단에 붉은색에 나타내었고, 실시예 1-2에 대한 9.5-0.0 ppm 사이의 1H NMR 스펙트럼 분석 결과를 도 1의 하단의 푸른색에 나타내었다.In Examples 1-1 and 1-2, 1 H NMR spectra were analyzed using the above NMR sample preparation method. The 1 H NMR spectrum analysis results between 9.5-0.0 ppm for Example 1-1 are shown in red at the top of FIG. 1, and the 1 H NMR spectrum analysis results between 9.5-0.0 ppm for Example 1-2 is shown in blue at the bottom of Figure 1.
또한, 실시예 1-1에 대한 9.5-6.5 ppm 사이의 1H NMR 스펙트럼 분석 결과를 도 2의 상단에 붉은색으로 나타내었고, 실시예 1-2에 대한 9.5-6.5 ppm 사이의 1H NMR 스펙트럼 분석 결과를 도 2의 하단에 푸른색으로 나타내었다.In addition, the 1 H NMR spectrum analysis results between 9.5-6.5 ppm for Example 1-1 are shown in red at the top of FIG. 2, and the 1 H NMR spectrum between 9.5-6.5 ppm for Example 1-2 The analysis results are shown in blue at the bottom of Figure 2.
도 1에 나타낸 9.5-0.0 ppm 사이의 1H NMR 스펙트럼 분석 결과를 살펴보면, 0-6.5ppm 사이의 peak는 NMR측정시 사용한 용액인 DMSO와 물의 peak에 해당하여 의미가 있는 peak가 아니므로, 도 2에 6.5-9.5ppm 범위를 별도로 나타내었다.Looking at the 1 H NMR spectrum analysis results between 9.5 and 0.0 ppm shown in Figure 1, the peak between 0 and 6.5 ppm is not a meaningful peak because it corresponds to the peak of DMSO and water, which are the solutions used in the NMR measurement. The range of 6.5-9.5ppm is shown separately.
이를 통하여, 니클로사미드 염(실시예 1-1)은 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 가지고, 니클로사미드 염의 분자회합체(실시예 1-2)는 6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 가지며, 니클로사미드 염(실시예 1-1)과 전단응력을 주고 난 후인, 니클로사미드 염의 분자회합체(실시예 1-2) 사이에 미묘한 peak 이동이 있음을 알 수 있었다.Through this, the niclosamide salt (Example 1-1) has a chemical shift range of 6.5 to 9.5 ppm between the signal showing the lowest chemical shift and another signal of 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm. With a chemical shift difference of , the molecular complex of niclosamide salt (Example 1-2) has a chemical shift range of 6.5 to 9.5 ppm between the signal showing the lowest chemical shift and another signal of 6.6, 7.1, 7.7, 8.1. , 8.2, 8.9 ± 0.1 ppm, and there is a subtle difference between the niclosamide salt (Example 1-1) and the molecular complex of the niclosamide salt after shear stress (Example 1-2). It was found that there was a peak shift.
표 1과 표 2에는 실시예 1-1와 실시예 1-2의 각 피크 별 정보(화학적 이동, 두께, 수소 식별 및 적분값)이 정리되어 있다. 그리고 그 둘 사이의 각 피크 별 화학적 이동 및 두께 변화는 표 3에 정리되어 있다. 표 3에서 보는 바와 같이 물(water) 피크를 제외한 16개의 피크들은 평균적으로 0.035 ppm 정도 화학적 이동이 변하였으며, 두께* 또한 평균적으로 0.114 Hz 정도 공정 후 두꺼워졌음을 알 수 있다. (*피크 두께 변화 = 공정 후(실시예 1-2) 피크 두께 - 공정 전(실시예 1-2) 피크 두께) 특히 물 피크는 공정 전에 18.813 Hz였던 피크 두께가 공정 후 59.703 Hz로 큰 변화가 있음을 확인할 수 있다.Tables 1 and 2 summarize information (chemical shift, thickness, hydrogen identification, and integral value) for each peak of Examples 1-1 and 1-2. And the chemical shifts and thickness changes for each peak between the two are summarized in Table 3. As shown in Table 3, the chemical shifts of the 16 peaks excluding the water peak changed by about 0.035 ppm on average, and the thickness* also became thicker by about 0.114 Hz on average after the process. (*Peak thickness change = Peak thickness after the process (Example 1-2) - Peak thickness before the process (Example 1-2)) In particular, the water peak had a significant change in peak thickness from 18.813 Hz before the process to 59.703 Hz after the process. You can confirm that it exists.
실시예 1-1의 각 피크 별 정보Information for each peak in Example 1-1
피크 연번 (NCS API)Peak serial number (NCS API) 화학적 이동 (ppm)Chemical shift (ppm) 두께 (Hz)Thickness (Hz) 수소 식별hydrogen identification 적분값integral value
1One 8.9538.953 1.0681.068 AA 1H 1H
22 8.9378.937 1.0301.030
33 8.2738.273 0.8740.874 B B 1H1H
44 8.2688.268 0.8930.893
55 8.1468.146 0.8730.873 C C 1H1H
66 8.1428.142 0.8840.884
77 8.1318.131 0.8290.829
88 8.1268.126 0.8580.858
99 7.6867.686 1.1491.149 D D 1H1H
1010 7.6817.681 1.1121.112
1111 7.0757.075 0.9430.943 E E 1H1H
1212 7.0707.070 1.0751.075
1313 7.0617.061 1.0101.010
1414 7.0567.056 1.0381.038
1515 6.5386.538 1.3381.338 FF 1H1H
1616 6.5236.523 1.3841.384
1717 3.3543.354 18.81318.813 WaterWater --
실시예 1-2의 각 피크 별 정보Information for each peak in Example 1-2
피크 연번(NCS WP)Peak serial number (NCS WP) 화학적 이동 (ppm)Chemical shift (ppm) 두께 (Hz)Thickness (Hz) 수소 식별hydrogen identification 적분값integral value
1One 8.9428.942 0.9850.985 AA 1H 1H
22 8.9268.926 0.9770.977
33 8.2938.293 0.8810.881 B B 1H1H
44 8.2888.288 0.9000.900
55 8.1668.166 0.8790.879 C C 1H1H
66 8.1628.162 0.9260.926
77 8.1518.151 0.8450.845
88 8.1468.146 0.9770.977
99 7.7207.720 1.1431.143 D D 1H1H
1010 7.7157.715 1.1761.176
1111 7.1297.129 1.2201.220 E E 1H1H
1212 7.1247.124 1.3411.341
1313 7.1147.114 1.2421.242
1414 7.1097.109 1.3321.332
1515 6.6106.610 1.6501.650 FF 1H1H
1616 6.5956.595 1.7081.708
1717 3.3713.371 59.70359.703 WaterWater --
실시예 1-1와 실시예 1-2의 각 피크 별 화학적 이동 변화와 피크 두께 변화Chemical shift change and peak thickness change for each peak in Example 1-1 and Example 1-2
피크 연번(NCS API)Peak serial number (NCS API) 화학적 이동 절댓값 변화 (ppm)Absolute change in chemical shift (ppm) 두께 변화* (Hz)Thickness change* (Hz) 수소 식별hydrogen identification
1One 0.0110.011 -0.083-0.083 A A
22 0.0110.011 -0.053-0.053
33 0.0200.020 0.0070.007 B B
44 0.0200.020 0.0070.007
55 0.0200.020 0.0060.006 C C
66 0.0200.020 0.0420.042
77 0.0200.020 0.0160.016
88 0.0200.020 0.1190.119
99 0.0340.034 -0.006-0.006 D D
1010 0.0340.034 0.0640.064
1111 0.0540.054 0.2770.277 E E
1212 0.0540.054 0.2660.266
1313 0.0530.053 0.2320.232
1414 0.0530.053 0.2940.294
1515 0.0720.072 0.3120.312 FF
1616 0.0720.072 0.3240.324
1717 0.0170.017 40.89040.890 WaterWater
피크 두께 변화 = 공정 후 (NCS WP) 피크 두께 - 공정 전 (NCS API) 피크 두께Peak thickness change = peak thickness after process (NCS WP) - peak thickness before process (NCS API)
실험예 4. 니클로사미드 분자회합체를 포함하는 조성물(실시예 3)의 생체이용률 평가 1Experimental Example 4. Evaluation of bioavailability 1 of composition containing niclosamide molecular complex (Example 3)
상기 니클로사미드 분자회합체를 포함하는 조성물(실시예 3) 및 상업적 공급원으로부터 쉽게 이용 가능한 니클로사미드(대조군)에 대해서 흰쥐(ICR-mouse, 30±2g)에서의 생체이용률을 측정하였다. 구체적으로, 각 실험군에 대하여 10mg/kg 용량 및 10 ml/kg의 용적으로 흰쥐에 경구 투여하였다. 하기 표 4에 각 실험군에 사용된 투여용제에 대하여 정리하였다. 도 4는 시중에서 구입한 또는 니클로사미드 자체와 비교하였을 때 본 발명의 니클로사미드 분자회합체가 생체이용률이 더 높다는 것을 도식화한 도면이다. The bioavailability of the composition containing the niclosamide molecular complex (Example 3) and niclosamide (control group), which is readily available from commercial sources, was measured in rats (ICR-mouse, 30 ± 2 g). Specifically, each experimental group was orally administered to rats at a dose of 10 mg/kg and a volume of 10 ml/kg. Table 4 below summarizes the administration solvents used in each experimental group. Figure 4 is a schematic diagram showing that the niclosamide molecular complex of the present invention has a higher bioavailability compared to commercially purchased or niclosamide itself.
실험군experimental group 투여경로Route of administration 용량 (mg/kg)Dosage (mg/kg) 투여용제Administration solvent
니클로사미드
(대조군)
Niclosamide
(Control group)
경구oral- 1010 Niclosamide 1 mg/ml
Normal saline 25%: PEG400 25%: DMSO 50%
Niclosamide 1 mg/ml
Normal saline 25%: PEG400 25%: DMSO 50%
실시예 3 (HW92)Example 3 (HW92) 경구oral- 1010 Niclosamide 1 mg/ml
100% DW
Niclosamide 1 mg/ml
100% D.W.
각 경구 투여전, 흰쥐는 미리 12시간 전부터 절식시킨 후 각 실험군에 따라 분류한 후, 스트레스를 최소화하기 위하여 충분히 휴식시간을 갖게 하였다. 각 실험군의 n수는 정확한 통계처리를 위하여 각각 n=3로 하였다. 약물의 투여 후 2, 5, 15, 30, 60, 120, 180, 240, 360, 720분에 혈액 약 0.1ml씩을 채혈하였고 이것을 원심분리 한 뒤 혈장 50㎕를 취해 검체로 하였다. 검체 20㎕에 내부표준물질인 케토프로펜(ketoprofen) 표준품을 2㎍/ml의 농도로 함유하고 있는 아세토니트릴(acetonitrile) 200 ㎕를 가하여 충분히 혼합 후 원심분리를 통해 취한 상층액 50㎕를 물 200㎕과 혼합 후 이를 검액으로 하였다. 검액의 분석은 LC-qTOF-MS(Liquid chromatography-quadrupole Time of Flight Mass spectrometry) 법으로 수행하였으며, 사용한 액체크로마토그래피 장비는 UFLC LC-20AD (Shimadzu, 일본)이고, 질량분석기는 Triple TOF 5600 (Sciex, 미국)을 사용하였다. 컬럼은 내경 2.1mm, 길이 50mm인 C18 컬럼 (Kinetex XB-C18 column, Phenomenex, 미국)을 사용하였으며, 이동상으로 아세토니트릴(0.1% 포름산 완충액)과 물(0.1% 포름산 완충액)을 사용하였다. 유속은 0.4ml/min, 컬럼의 온도는 55℃로, 검액주입량은 10㎕로 하였다. 대조제제 혹은 시험제제 처리군 흰쥐에서 약물 경구 투여 후 각 시간 별로 얻은 혈장 내 약물 주성분의 농도 분석 결과에 대해 Pharsight WinNonlin 8.1 프로그램 (Certara, USA)을 사용해 약동학 분석을 진행하였다. 두 제제에 대하여 비교 평가한 약물동태학적 변수는 AUClast(시간-혈중농도 곡선하면적), Tmax(최고혈중농도 도달시간), 및 Cmax(최고혈중농도)을 사용하였으며, AUClast 값을 이용하여 생체이용률을 비교하였다. 계산한 변수값과 그래프를 아래 표 5와 도 5 및 도 6에 각각 나타내었다. Before each oral administration, rats were fasted for 12 hours in advance, sorted into each experimental group, and allowed sufficient rest time to minimize stress. The n number of each experimental group was set to n = 3 for accurate statistical processing. Approximately 0.1 ml of blood was collected at 2, 5, 15, 30, 60, 120, 180, 240, 360, and 720 minutes after drug administration. This was centrifuged, and 50 μl of plasma was taken as a sample. To 20 ㎕ of the sample, add 200 ㎕ of acetonitrile containing the internal standard, ketoprofen standard at a concentration of 2 ㎍/ml, mix thoroughly, and then centrifuge to dissolve 50 ㎕ of the supernatant in 200 mL of water. After mixing with ㎕, this was used as the sample solution. Analysis of the sample solution was performed using LC-qTOF-MS (Liquid chromatography-quadrupole Time of Flight Mass spectrometry). The liquid chromatography equipment used was UFLC LC-20AD (Shimadzu, Japan), and the mass spectrometer was Triple TOF 5600 (Sciex). , USA) was used. The column used was a C18 column (Kinetex The flow rate was 0.4 ml/min, the column temperature was 55°C, and the sample solution injection volume was 10 μl. Pharmacokinetic analysis was performed using the Pharsight WinNonlin 8.1 program (Certara, USA) on the concentration analysis results of the main drug components in plasma obtained at each hour after oral drug administration in rats in the control or test agent treatment group. The pharmacokinetic variables compared and evaluated for the two agents were AUClast (area under the time-blood concentration curve), Tmax (time to reach peak blood concentration), and Cmax (peak blood concentration), and the bioavailability rate was calculated using the AUClast value. was compared. The calculated variable values and graphs are shown in Table 5 below and in Figures 5 and 6, respectively.
SubjectSubject DoseDose T1/2T1/2 TmaxTmax CmaxCmax AUClastAUClast AUCinfAUCinf BA-AUClastBA-AUClast
(mg/kg)(mg/kg) (h)(h) (h)(h) (ng/mL)(ng/mL) (h*ng/mL)(h*ng/mL) (h*ng/mL)(h*ng/mL) (%)(%)
니클로사미드 IV 2mpk*Niclosamide IV 2mpk* 2.002.00 0.890.89 0.030.03 6990.73 (±1245.96)6990.73 (±1245.96) 1001.78 (±109.44)1001.78 (±109.44) 1014.58
(±100.98)
1014.58
(±100.98)
--
니클로사미드 PO 10mpk**Niclosamide PO 10mpk** 10.0010.00 2.34 (±0.07)2.34 (±0.07) 0.030.03 857.06 (±660.84)857.06 (±660.84) 157.24
(±111.93)
157.24
(±111.93)
178.49 (±121.03)178.49 (±121.03) 3.14%3.14%
실시예 3
PO 10mpk
Example 3
PO 10mpk
10.0010.00 5.77 (±2.59)5.77 (±2.59) 0.12 (±0.08)0.12 (±0.08) 1106.14 (±994.89)1106.14 (±994.89) 787.51
(±405.12)
787.51
(±405.12)
935.74 (±490.01)935.74 (±490.01) 15.72%15.72%
실시예 4
PO 10mpk
Example 4
PO 10mpk
10.0010.00 2.43 (±0.61)2.43 (±0.61) 0.17 (±0.09)0.17 (±0.09) 753.79 (±601.85)753.79 (±601.85) 748.51(±526.59)748.51(±526.59) 763.98 (±537.35)763.98 (±537.35) 14.94%14.94%
니클로사미드를 정맥주사(Intraveneous, IV) 투여한 대조군 1** 니클로사미드를 경구투여(per oral, PO)한 대조군 2 Control group 1, administered niclosamide intravenously (IV)** Control group 2, administered niclosamide per oral (PO)
도 5 및 표 5에 나타낸 바와 같이, 본 발명에 따른 니클로사미드 분자회합체를 포함하는 조성물(실시예 3)은 상업적 공급원으로부터 쉽게 이용 가능한 니클로사미드를 경구투여한 대조군 2에 비해 생체이용률이 3.14%에서 15.72% 로 약 5배정도 크게 증가하였다.As shown in Figure 5 and Table 5, the composition containing the niclosamide molecular complex according to the present invention (Example 3) has a bioavailability compared to Control Group 2, which was orally administered niclosamide, which is easily available from commercial sources. It increased significantly by about 5 times from 3.14% to 15.72%.
이러한 결과로부터, 본 발명에 따른 니클로사미드 제형들은 COVID-19의 원인 바이러스인 SARS-CoV-2를 비롯한 다양한 바이러스 치료제로서 유용하게 사용될 수 있음을 알 수 있다.From these results, it can be seen that the niclosamide formulations according to the present invention can be useful as a treatment for various viruses, including SARS-CoV-2, the virus that causes COVID-19.
실험예 4. 니클로사미드 분자회합체를 포함하는 조성물(실시예 4)의 생체이용률 평가 2Experimental Example 4. Bioavailability evaluation 2 of a composition containing niclosamide molecular complex (Example 4)
상기 니클로사미드 분자회합체를 포함하는 조성물(실시예 4) 및 상업적 공급원으로부터 쉽게 이용 가능한 니클로사미드(대조군)에 대해서 흰쥐(ICR-mouse, 30±2g)에서의 생체이용률을 측정하였다. 구체적으로, 각 화합물에 대하여 10mg/kg 용량 및 10 ml/kg의 용적으로 흰쥐에 경구 투여하였다. 하기 표 6에 각 화합물에 사용된 투여용제에 대하여 정리하였다.The bioavailability of the composition containing the niclosamide molecular complex (Example 4) and niclosamide (control group), which is readily available from commercial sources, was measured in rats (ICR-mouse, 30 ± 2 g). Specifically, each compound was orally administered to rats at a dose of 10 mg/kg and a volume of 10 ml/kg. Table 6 below summarizes the administration solvents used for each compound.
실험군experimental group 투여경로Route of administration 용량 (mg/kg)Dosage (mg/kg) 투여용제Administration solvent
니클로사미드
(대조군)
Niclosamide
(Control group)
경구oral- 1010 Niclosamide 1 mg/ml
Normal saline 25%: PEG400 25%: DMSO 50%
Niclosamide 1 mg/ml
Normal saline 25%: PEG400 25%: DMSO 50%
실시예 4 (HW96)Example 4 (HW96) 경구oral- 1010 Niclosamide 1 mg/ml
100% DW
Niclosamide 1 mg/ml
100% D.W.
각 경구 투여 전, 흰쥐는 미리 12시간 전부터 절식시킨 후 각 실험군에 따라 분류한 후, 스트레스를 최소화하기 위하여 충분히 휴식시간을 갖게 하였다. 각 실험군의 n수는 정확한 통계처리를 위하여 각각 n=3로 하였다. 약물의 투여 후 2, 5, 15, 30, 60, 120, 180, 240, 360, 720분에 혈액 약 0.1ml씩을 채혈하였고 이것을 원심분리 한 뒤 혈장 50㎕를 취해 검체로 하였다. 검체 20㎕에 내부표준물질인 케토프로펜(ketoprofen) 표준품을 2㎍/ml의 농도로 함유하고 있는 아세토니트릴(acetonitrile) 200 ㎕를 가하여 충분히 혼합 후 원심분리를 통해 취한 상층액 50㎕를 물 200㎕과 혼합 후 이를 검액으로 하였다. 검액의 분석은 LC-qTOF-MS(Liquid chromatography-quadrupole Time of Flight Mass spectrometry) 법으로 수행하였으며, 사용한 액체크로마토그래피 장비는 UFLC LC-20AD (Shimadzu, 일본)이고, 질량분석기는 Triple TOF 5600 (Sciex, 미국)을 사용하였다. 컬럼은 내경 2.1mm, 길이 50mm인 C18 컬럼 (Kinetex XB-C18 column, Phenomenex, 미국)을 사용하였으며, 이동상으로 아세토니트릴(0.1% 포름산 완충액)과 물(0.1% 포름산 완충액)을 사용하였다. 유속은 0.4ml/min, 컬럼의 온도는 55℃로, 검액주입량은 10㎕로 하였다. 대조군 혹은 시험 처리군 흰쥐에서 약물 경구 투여 후 각 시간 별로 얻은 혈장 내 약물 주성분의 농도 분석 결과에 대해 Pharsight WinNonlin 8.1 프로그램 (Certara, USA)을 사용해 약동학 분석을 진행하였다. 두 제제에 대하여 비교 평가한 약물동태학적 변수는 AUClast(시간-혈중농도 곡선하면적), Tmax(최고혈중농도 도달시간), 및 Cmax(최고혈중농도)을 사용하였으며, AUClast 값을 이용하여 생체이용률을 비교하였다. 계산한 변수값과 그래프를 상기 표 5와 도 6에 각각 나타내었다.Before each oral administration, rats were fasted for 12 hours in advance, sorted into each experimental group, and allowed sufficient rest time to minimize stress. The n number of each experimental group was set to n = 3 for accurate statistical processing. Approximately 0.1 ml of blood was collected at 2, 5, 15, 30, 60, 120, 180, 240, 360, and 720 minutes after drug administration. This was centrifuged, and 50 μl of plasma was taken as a sample. To 20 ㎕ of the sample, add 200 ㎕ of acetonitrile containing the internal standard, ketoprofen standard at a concentration of 2 ㎍/ml, mix thoroughly, and then centrifuge. 50 ㎕ of the supernatant is mixed with 200 mL of water. After mixing with ㎕, this was used as the sample solution. Analysis of the sample solution was performed using LC-qTOF-MS (Liquid chromatography-quadrupole Time of Flight Mass spectrometry). The liquid chromatography equipment used was UFLC LC-20AD (Shimadzu, Japan), and the mass spectrometer was Triple TOF 5600 (Sciex). , USA) was used. The column used was a C18 column (Kinetex The flow rate was 0.4 ml/min, the column temperature was 55°C, and the sample solution injection volume was 10 μl. Pharmacokinetic analysis was performed using the Pharsight WinNonlin 8.1 program (Certara, USA) on the concentration analysis results of the main drug components in plasma obtained at each hour after oral drug administration in rats in the control or test treatment group. The pharmacokinetic variables compared and evaluated for the two agents were AUClast (area under the time-blood concentration curve), Tmax (time to reach peak blood concentration), and Cmax (peak blood concentration), and the bioavailability rate was calculated using the AUClast value. was compared. The calculated variable values and graphs are shown in Table 5 and Figure 6, respectively.
상기 표 5에 나타낸 바와 같이, 니클로사미드 분자회합체를 포함하는 조성물(실시예 4)은 상업적 공급원으로부터 쉽게 이용 가능한 니클로사미드(대조군)에 비해 Cmax에 도달하기 위한 시간인 Tmax의 증가와 Tmax 도달 이후 체내에서 제거되는 속도가 현저히 감소하여 AUClast가 증가하였으며, 이로 인해 기존의 니클로사미드의 생체이용률인 3.14%에서 14.94%로 약 4배 이상 생체이용률이 크게 증가하였다.As shown in Table 5 above, the composition comprising the niclosamide molecular complex (Example 4) increased Tmax, the time to reach Cmax, and Tmax compared to niclosamide (control), which is readily available from commercial sources. After reaching the body, the rate of elimination from the body was significantly reduced, resulting in an increase in AUClast, which significantly increased the bioavailability by more than four times from 3.14%, the existing bioavailability of niclosamide, to 14.94%.
이러한 결과로부터, 본 발명에 따른 니클로사미드 분자회합체를 포함하는 조성물은 COVID-19의 원인 바이러스인 SARS-CoV-2를 비롯한 다양한 바이러스 치료제로서 유용하게 사용될 수 있음을 알 수 있다.From these results, it can be seen that the composition containing the niclosamide molecular complex according to the present invention can be useful as a treatment for various viruses, including SARS-CoV-2, the virus that causes COVID-19.

Claims (31)

  1. 니클로사미드의 염으로서,As a salt of niclosamide,
    6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖는 1H NMR 스펙트럼을 가지는 것을 특징으로 하는, 니클로사미드의 염. Characterized by having a 1 H NMR spectrum with a chemical shift difference of 6.5, 7.0, 7.6, 8.1, 8.2, 8.9 ± 0.1 ppm between the signal showing the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm. A salt of niclosamide.
  2. 제1항에 있어서,According to paragraph 1,
    상기 니클로사미드의 염은 [도 2]의 상단의 붉은 색으로 표시된 1H NMR 스펙트럼을 나타내는 것을 특징으로 하는 니클로사미드의 염.The salt of niclosamide is characterized in that it exhibits a 1 H NMR spectrum indicated in red at the top of [Figure 2].
  3. 제1항에 있어서,According to paragraph 1,
    상기 니클로사미드의 염은 정제수에서의 용해도가 0.10 mg/mL 이상인 것을 특징으로 하는 니클로사미드의 염.The salt of niclosamide is characterized in that the salt of niclosamide has a solubility of 0.10 mg/mL or more in purified water.
  4. 제1항에 있어서,According to paragraph 1,
    상기 니클로사미드의 염은 소듐, 바이카보네이트 및 설페이트 중 어느 하나의 염인 것을 특징으로 하는 니클로사미드의 염.A salt of niclosamide, characterized in that the salt of niclosamide is any one of sodium, bicarbonate and sulfate.
  5. 제1항에 있어서,According to paragraph 1,
    상기 니클로사미드의 염은 소듐 바이카보네이트 및 소듐 설페이트의 염인 것을 특징으로 하는 니클로사미드의 염.A salt of niclosamide, characterized in that the salt of niclosamide is a salt of sodium bicarbonate and sodium sulfate.
  6. 제5항에 있어서,According to clause 5,
    상기 니클로사미드의 염은 소듐 바이카보네이트 0.5 내지 1.5 당량 및 소듐 설페이트 0.1 내지 0.5 당량으로 포함되는 염인 것을 특징으로 하는 니클로사미드의 염.A salt of niclosamide, characterized in that the salt of niclosamide is a salt containing 0.5 to 1.5 equivalents of sodium bicarbonate and 0.1 to 0.5 equivalents of sodium sulfate.
  7. 니클로사미드의 분자회합체로서,As a molecular complex of niclosamide,
    6.5 내지 9.5 ppm의 화학 이동 범위에서 최저 화학 이동을 나타내는 신호와 또 다른 신호 사이에 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm의 화학 이동 차이를 갖는 1H NMR 스펙트럼을 가지는 것을 특징으로 하는, 분자회합체.Characterized by having a 1 H NMR spectrum with a chemical shift difference of 6.6, 7.1, 7.7, 8.1, 8.2, 8.9 ± 0.1 ppm between the signal showing the lowest chemical shift and another signal in the chemical shift range of 6.5 to 9.5 ppm. A molecular assembly.
  8. 제7항에 있어서,In clause 7,
    상기 분자회합체는 [도 2]의 하단의 푸른색으로 표시된 1H NMR 스펙트럼을 나타내는 니클로사미드의 분자회합체인 것을 특징으로 하는 분자회합체.The molecular assembly is characterized in that it is a molecular assembly of niclosamide, which exhibits a 1 H NMR spectrum indicated in blue at the bottom of [Figure 2].
  9. 제7항에 있어서,In clause 7,
    상기 분자회합체는 정제수에서의 용해도가 0.10 mg/mL 이상인 것을 특징으로 하는 분자회합체.The molecular assembly is characterized in that the solubility in purified water is 0.10 mg/mL or more.
  10. 제7항에 있어서,In clause 7,
    상기 니클로사미드는 소듐, 바이카보네이트 및 설페이트 중 어느 하나의 염의 형태인 것을 특징으로 하는 분자회합체.The niclosamide is a molecular complex characterized in that it is in the form of a salt of any one of sodium, bicarbonate, and sulfate.
  11. 제7항에 있어서,In clause 7,
    상기 니클로사미드의 염은 소듐 바이카보네이트 및 소듐 설페이트의 염인 것을 특징으로 하는 분자회합체.A molecular complex characterized in that the salt of niclosamide is a salt of sodium bicarbonate and sodium sulfate.
  12. 제11항에 있어서,According to clause 11,
    상기 니클로사미드의 염은 소듐 바이카보네이트 0.5 내지 1.5 당량 및 소듐 설페이트 0.1 내지 0.5 당량으로 포함되는 염인 것을 특징으로 하는 분자회합체.The salt of niclosamide is a molecular complex characterized in that it is a salt containing 0.5 to 1.5 equivalents of sodium bicarbonate and 0.1 to 0.5 equivalents of sodium sulfate.
  13. 니클로사미드 또는 니클로사미드의 염을 포함한 용액에 전단응력을 가하는 단계;를 포함하는, 분자회합체의 제조방법.A method for producing a molecular assembly comprising: applying shear stress to a solution containing niclosamide or a salt of niclosamide.
  14. 제13항에 있어서,According to clause 13,
    상기 전단응력을 가하는 단계에 앞서, 니클로사미드과 의약적으로 허용가능한 염을 유기용매 중에서 반응시키는 단계;를 더 포함하는, 분자회합체의 제조방법.A method for producing a molecular assembly, further comprising reacting niclosamide with a pharmaceutically acceptable salt in an organic solvent prior to applying the shear stress.
  15. 제13항에 있어서,According to clause 13,
    상기 전단응력은, 니클로사미드 또는 니클로사미드의 염을 포함한 용액을 실리카가 충진된 컬럼에 통과시켜 가하는 것을 특징으로 하는, 분자회합체의 제조방법.The shear stress is applied by passing a solution containing niclosamide or a salt of niclosamide through a column filled with silica.
  16. 제13항에 있어서,According to clause 13,
    상기 전단응력은, 니클로사미드 또는 니클로사미드의 염을 포함한 용액을 하나 이상의 필터 페이퍼에 통과시켜 가하는 것을 특징으로 하는, 분자회합체의 제조방법.A method for producing a molecular assembly, characterized in that the shear stress is applied by passing a solution containing niclosamide or a salt of niclosamide through one or more filter papers.
  17. 제15항에 있어서,According to clause 15,
    상기 실리카가 충진된 컬럼에 통과시킬 때, 유출 유속이 1 mL/min*5,000 mm2 내지 10 mL/min*10,000mm2 인 것을 특징으로 하는, 분자회합체의 제조방법.A method for producing a molecular assembly, characterized in that when passing through the column filled with silica, the outlet flow rate is 1 mL/min*5,000 mm 2 to 10 mL/min*10,000 mm 2 .
  18. 제1항의 니클로사미드의 염 또는 제7항의 분자회합체를 포함하는 코로나 바이러스 감염으로 인한 질병의 치료 또는 방지용 약학 조성물.A pharmaceutical composition for the treatment or prevention of disease caused by coronavirus infection, comprising the niclosamide salt of claim 1 or the molecular complex of claim 7.
  19. 제1 항의 니클로사미드의 염 또는 제7항의 분자회합체를 포함하는 피부건선 치료용 약학 조성물.A pharmaceutical composition for treating psoriasis, comprising the salt of niclosamide of claim 1 or the molecular complex of claim 7.
  20. 제18항 또는 제19항에 있어서, According to claim 18 or 19,
    상기 니클로사미드의 염 또는 분자회합체를 1 내지 2 중량%로 포함하는, 약학 조성물.A pharmaceutical composition comprising 1 to 2% by weight of a salt or molecular complex of niclosamide.
  21. 제18항 또는 제19항에 있어서, According to claim 18 or 19,
    상기 약학 조성물은 산제, 과립제, 정제, 캡슐제 및 액체 형태로 이루어진 군으로부터 선택되는 어느 하나의 제형으로 투여가능한 것을 특징으로 하는, 약학 조성물. The pharmaceutical composition is characterized in that it can be administered in any one dosage form selected from the group consisting of powder, granule, tablet, capsule, and liquid form.
  22. 제18항 또는 제19항에 있어서, According to claim 18 or 19,
    상기 약학 조성물은 적어도 하나의 약제학적으로 허용 가능한 매개체 또는 적어도 하나의 약학적으로 허용 가능한 첨가제를 포함하는 것을 특징으로 하는, 약학 조성물.The pharmaceutical composition is characterized in that it contains at least one pharmaceutically acceptable vehicle or at least one pharmaceutically acceptable additive.
  23. 제22항에 있어서, According to clause 22,
    상기 첨가제는 유/무기 담체, 안정화제, 계면활성제, 표면 개질제, 용해도 향상제, 완충제, 캡슐화제, 항산화제, 방부제, 비이온성 습윤제, 투명화제, 점도 증가제, 및 흡수 증진제로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는, 약학 조성물.The additive is selected from the group consisting of organic/inorganic carriers, stabilizers, surfactants, surface modifiers, solubility enhancers, buffers, encapsulants, antioxidants, preservatives, nonionic wetting agents, clarifying agents, viscosity increasers, and absorption enhancers. A pharmaceutical composition, characterized in that it contains one or more of the following.
  24. 제23항에 있어서,According to clause 23,
    상기 유/무기 담체는 글루코스, 락토스, 만노스, 아카시아 검, 젤라틴, 만니톨, 전분 페이스트, 삼규산마그네슘, 탈크, 옥수수 전분, 케라틴, 실리카, 감자 전분, 요소, 중간쇄 길이의 트리글리세리드, 덱스트란로 선택되어지는 어느 하나 이상인 것을 특징으로 하는, 약학 조성물.The organic/inorganic carrier is selected from glucose, lactose, mannose, acacia gum, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, silica, potato starch, urea, medium chain length triglyceride, and dextran. A pharmaceutical composition, characterized in that it contains one or more of the following.
  25. 제23항에 있어서,According to clause 23,
    상기 계면활성제는 폴리옥시에틸렌-폴리옥시프로필렌 공중합체(poloxamer), 솔비탄 에스테르(Span), 폴리옥시에틸렌솔비탄(Tween) 및 폴리옥시에틸렌에테르(Brij)로 이루어진 군에서 어느 하나 이상인 것을 특징으로 하는, 약학 조성물.The surfactant is characterized in that it is at least one from the group consisting of polyoxyethylene-polyoxypropylene copolymer (poloxamer), sorbitan ester (Span), polyoxyethylene sorbitan (Tween), and polyoxyethylene ether (Brij). A pharmaceutical composition.
  26. 제18항에 있어서,According to clause 18,
    상기 코로나 바이러스 감염으로 인한 질병은 코로나바이러스 균(coronavirus strains), 메르스(MERS-CoV) 및 사스-코브-2(SARS-CoV-2)로 이루어지는 군에서 선택되는 어느 하나의 질병인 것을 특징으로 하는, 약학 조성물.The disease caused by the coronavirus infection is characterized in that it is any one disease selected from the group consisting of coronavirus strains, MERS-CoV, and SARS-CoV-2. A pharmaceutical composition.
  27. 제18항 또는 제19항에 있어서, According to claim 18 or 19,
    상기 조성물은 경구 및 흡입 중 어느 하나 이상의 제형으로 사용되는 것을 특징으로 하는, 약학 조성물.A pharmaceutical composition, characterized in that the composition is used in one or more of oral and inhalation dosage forms.
  28. 제18항 또는 제19항에 있어서, According to claim 18 or 19,
    상기 조성물은 경피(transdermal) 제형으로 사용되는 것을 특징으로 하는, 약학 조성물.A pharmaceutical composition, characterized in that the composition is used as a transdermal formulation.
  29. 제18항 또는 제19항의 약학 조성물을 포함하는, 흡입 장치.An inhalation device comprising the pharmaceutical composition of claim 18 or 19.
  30. 제29항에 있어서,According to clause 29,
    상기 흡입 장치는 소형 휴대용 장치 형태인 흡입기(inhaler) 및 네뷸라이저(nebulizer)로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는, 흡입 장치.The suction device is any one selected from the group consisting of an inhaler and a nebulizer in the form of a small portable device.
  31. 제29항에 있어서,According to clause 29,
    상기 흡입 장치는 조성물의 치료 용량이 코로 흡입되어 이루어지는 코분무 형태인 것을 특징으로 하는, 흡입 장치.The inhalation device is characterized in that the therapeutic dose of the composition is in the form of a nasal spray in which the therapeutic dose is inhaled into the nose.
PCT/KR2023/012799 2022-09-02 2023-08-29 Novel salt of niclosamide, molecular aggregate thereof, and pharmaceutical composition containing same WO2024049167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220111388A KR20240032430A (en) 2022-09-02 2022-09-02 A niclosamide salt, a molecule aggregates composite of niclosamide and a pharmaceutical composition comprising the same
KR10-2022-0111388 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024049167A1 true WO2024049167A1 (en) 2024-03-07

Family

ID=90098299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012799 WO2024049167A1 (en) 2022-09-02 2023-08-29 Novel salt of niclosamide, molecular aggregate thereof, and pharmaceutical composition containing same

Country Status (2)

Country Link
KR (1) KR20240032430A (en)
WO (1) WO2024049167A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857515A (en) * 2014-02-25 2015-08-26 中国科学院上海药物研究所 Controlled release dosing medicine core composition and osmotic pump preparation comprising medicine core composition
CN110833623A (en) * 2019-12-20 2020-02-25 沈阳药科大学 Niclosamide ethanolamine-hydroxypropyl- β -cyclodextrin inclusion compound and preparation thereof
WO2021040337A1 (en) * 2019-08-23 2021-03-04 주식회사 대웅테라퓨틱스 Niclosamide delayed-release composition and antiviral use thereof
WO2021198115A1 (en) * 2020-04-01 2021-10-07 UNION therapeutics A/S Treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857515A (en) * 2014-02-25 2015-08-26 中国科学院上海药物研究所 Controlled release dosing medicine core composition and osmotic pump preparation comprising medicine core composition
WO2021040337A1 (en) * 2019-08-23 2021-03-04 주식회사 대웅테라퓨틱스 Niclosamide delayed-release composition and antiviral use thereof
CN110833623A (en) * 2019-12-20 2020-02-25 沈阳药科大学 Niclosamide ethanolamine-hydroxypropyl- β -cyclodextrin inclusion compound and preparation thereof
WO2021198115A1 (en) * 2020-04-01 2021-10-07 UNION therapeutics A/S Treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANCESCA GRIFASI, MICHELE R. CHIEROTTI, KATIA GAGLIOTI, ROBERTO GOBETTO, LUCIA MAINI, DARIO BRAGA, ELENA DICHIARANTE, MARCO CURZI: "Using Salt Cocrystals to Improve the Solubility of Niclosamide", CRYSTAL GROWTH & DESIGN, ASC WASHINGTON DC, US, vol. 15, no. 4, 1 April 2015 (2015-04-01), US , pages 1939 - 1948, XP055244077, ISSN: 1528-7483, DOI: 10.1021/acs.cgd.5b00106 *

Also Published As

Publication number Publication date
KR20240032430A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2018186725A1 (en) Pharmaceutical composition for cancer treatment
WO2010059001A2 (en) Polymer micelle composition for treatment of resistant cancer cells
AU2018289188B2 (en) Particle and pharmaceutical composition comprising an insoluble camptothecin compound with double core-shell structure and method for manufacturing the same
WO2019103541A1 (en) Anti-inflammatory composition comprising graphene nano-structure
WO2019078611A1 (en) Nanoliposome-microbubble conjugate having cas9 protein, guide rna for inhibiting expression of srd5a2 gene and cationic polymer complex encapsulated therein, and hair loss relieving or treating composition containing same
WO2024049167A1 (en) Novel salt of niclosamide, molecular aggregate thereof, and pharmaceutical composition containing same
KR20220008264A (en) Compounds and methods for treating inflammatory disorders
WO2020032365A1 (en) Composition, comprising ginsenoside compound, for preventing or treating inflammasome-mediated inflammatory disease
WO2019151744A1 (en) Adult stem cell-derived nanovesicles and use thereof for targeted therapy
WO2023136688A1 (en) Ionizable lipid containing biodegradable disulfide bond and lipid nanoparticles comprising same
WO2024029981A1 (en) Lipid nanoparticles comprising long-chain ceramide and composition for cell death comprising same
WO2020180093A2 (en) Oseltamivir-containing pharmaceutical composition
WO2023027460A1 (en) Sonosensitive polymersome and fabrication method therefor
WO2023172065A1 (en) Antiviral or anticancer composition containing niclosamide or pharmaceutically acceptable salt thereof, and method for preparing same
WO2023136689A1 (en) Ionizable lipid containing biodegradable ester bond and lipid nanoparticles comprising same
WO2014030975A1 (en) Method for manufacturing carbon nanotube-based anti-cancer agent suppressing cancer cell resistance
WO2022169329A1 (en) Composition for penetrating blood-brain barrier, containing sonosensitive liposomes as active ingredients
WO2018159941A1 (en) Stable pharmaceutical composition comprising zanamivir
WO2013115559A1 (en) Method for preparing albumin nanoparticles containing poorly water soluble drug therein
WO2021141319A2 (en) Nanoparticles for drug delivery surface-modified with peptide for targeting brain cancer cells, method for preparing same, and use thereof
WO2021221330A1 (en) Sonosensitive liposome and method for preparing same
WO2020036266A1 (en) Nanoliposome preparation method using horse oil and nanodiamonds and composition thereof
WO2021221472A1 (en) Micelle particles comprising amphipathic ginsenoside, composition comprising same, and preparation method thereof
WO2014200215A1 (en) Antiviral agent composition containing boric acid, citric acid, and zinc
WO2024090652A1 (en) Water-soluble milk thistle and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860843

Country of ref document: EP

Kind code of ref document: A1