WO2024049124A1 - Capacitor module and inverter module - Google Patents

Capacitor module and inverter module Download PDF

Info

Publication number
WO2024049124A1
WO2024049124A1 PCT/KR2023/012678 KR2023012678W WO2024049124A1 WO 2024049124 A1 WO2024049124 A1 WO 2024049124A1 KR 2023012678 W KR2023012678 W KR 2023012678W WO 2024049124 A1 WO2024049124 A1 WO 2024049124A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
receiving groove
inductor
module
substrate
Prior art date
Application number
PCT/KR2023/012678
Other languages
French (fr)
Korean (ko)
Inventor
박성준
정태복
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024049124A1 publication Critical patent/WO2024049124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/106Fixing the capacitor in a housing

Definitions

  • the present invention relates to a capacitor module and an inverter module including the same, and more specifically, to a capacitor module that forms a link capacitor as a separate module and an inverter module including the same.
  • Solar power generation is an eco-friendly energy generation method that is becoming widely used, replacing existing chemical or nuclear power generation.
  • stand-alone power generation consists of solar cells, storage batteries, power conversion devices, etc., and power grid-connected systems are connected to commercial power sources. It is configured to allow mutual exchange of power with the load system line.
  • the power generated by solar panels is difficult to use directly in homes or buildings, so it is converted into usable power through a power conversion device such as an inverter.
  • the link capacitor component is large in size and has a large mounting quantity, so it takes up a large area on the PCB, which leads to a shortage of PCB mounting space, and there is a problem that the product size increases as the PCB size increases.
  • the mounting space for PCBs stacked in two layers on the main PCB is insufficient, and there are restrictions on the shape of the stacked PCBs, resulting in restrictions on the mounting location of connectors between the stacked PCBs and the main PCB.
  • the technical problem to be solved by the present invention is to provide a capacitor module that forms a link capacitor as a separate module and an inverter module including the same.
  • a capacitor module includes a housing including a receiving groove in which a capacitor is disposed; A substrate disposed above the receiving groove; and at least one capacitor mounted on one surface of the substrate and accommodated in the receiving groove.
  • a plurality of first connectors electrically connected to the capacitor may be disposed on the other side of the substrate.
  • the capacitor may include a link capacitor.
  • it may include a plurality of heat dissipation fins extending from the outer surface of the receiving groove.
  • the receiving groove includes a base; first and second side walls extending from the base and facing each other; And it may include a third side wall and a fourth side wall that are perpendicular to the first side wall and the second side wall and face each other.
  • the receiving groove includes: a first receiving groove in which the capacitor is accommodated; and an inductor disposed therein, including a second receiving groove spaced apart from the first receiving groove, electrically connected to one surface of the substrate, and at least one inductor received in the second receiving groove. there is.
  • the second receiving groove includes a base; and a fifth side wall extending from the base and having a circular shape.
  • the inductor may include two inductors, and the two inductors may be stacked in two layers in the depth direction of the second receiving groove and connected to one surface of the substrate with a wire.
  • a plurality of second connectors electrically connected to the inductor may be disposed on the other side of the substrate.
  • a capacitor or an inductor may be accommodated and molded in the receiving groove.
  • an inverter module includes a first housing including a base including a first hole and a main board disposed therein; a cover covering the first housing; a heat dissipation plate coupled to the first housing in response to the first hole and including a plurality of heat dissipation fins extending in an outward direction; and a capacitor module disposed on a portion of an outer surface of the heat sink, the capacitor module comprising: a second housing including a receiving groove in which a capacitor is disposed; a first substrate disposed above the receiving groove; and at least one capacitor mounted on one surface of the first substrate and accommodated in the receiving groove.
  • a plurality of first connectors electrically connected to the capacitor are disposed on the other surface of the first substrate, and the heat sink may include a through hole in an area corresponding to the plurality of first connectors.
  • the plurality of first connectors may pass through the through hole and be connected to the main board.
  • the first connector may include at least one of an SMD spacer, a wire connector, and a bus bar terminal block.
  • the main substrate may include a first main substrate and a second main substrate that is stacked and spaced apart from the first main substrate.
  • the receiving groove of the capacitor module includes: a first receiving groove in which the capacitor is accommodated; and an inductor disposed therein, including a second receiving groove spaced apart from the first receiving groove, electrically connected to one surface of the substrate, and including at least one first inductor accommodated in the second receiving groove. can do.
  • the first inductor includes two first inductors, and the two first inductors are stacked in two layers in the depth direction of the second receiving groove, and may be connected to one surface of the first substrate with a wire. .
  • the inductor module includes an inductor module disposed in another portion of the outer surface of the heat sink, wherein the inductor module includes a third housing including a third receiving groove in which the second inductor is disposed; And it may include at least one second inductor accommodated in the third receiving groove.
  • the link capacitor it is possible to minimize the product size by securing the main PCB mounting area as much as possible. Additionally, efficient heat dissipation is possible by placing the link capacitor externally as a separate module. Furthermore, by separating and fastening it into a separate module, the weight of the link capacitor can be stably supported.
  • FIG. 1 is a perspective view of a capacitor module according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view of a capacitor module according to an embodiment of the present invention.
  • 3 to 5 are diagrams for explaining each configuration of a capacitor module according to an embodiment of the present invention.
  • Figure 6 is a perspective view of an inverter module according to an embodiment of the present invention.
  • Figure 7 is a cross-sectional view of an inverter module according to an embodiment of the present invention.
  • 8 to 16 are diagrams for explaining each configuration of an inverter module according to an embodiment of the present invention.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, order, or order of the component.
  • a component when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
  • top or bottom means that the two components are directly adjacent to each other. This includes not only the case of contact, but also the case where one or more other components are formed or disposed between the two components.
  • top or bottom when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
  • FIG. 1 is a perspective view of a capacitor module according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a capacitor module according to an embodiment of the present invention
  • FIGS. 3 to 5 are diagrams of a capacitor module according to an embodiment of the present invention.
  • Figure 6 is a perspective view of an inverter module according to an embodiment of the present invention
  • Figure 7 is a cross-sectional view of the inverter module according to an embodiment of the present invention
  • Figures 8 to 16 are angle views of the inverter module according to an embodiment of the present invention. This is a drawing to explain the configuration.
  • the capacitor module 100 is composed of a housing 110, a substrate 120, and a capacitor 130.
  • the housing 110 includes a receiving groove in which the capacitor 130 is disposed, the substrate 120 is disposed on the upper part of the receiving groove, and the capacitor 130 is mounted on one surface of the substrate 120. Accepted into a receiving home.
  • the housing 110 includes a receiving groove in which at least one capacitor 130 is disposed.
  • the receiving home inverter module 200 may be formed in a shape corresponding to the shape of the capacitor 130 so as to accommodate the capacitor 130 disposed therein.
  • the receiving groove may be composed of a base on which the inductor is placed and a side wall that forms an internal space.
  • the internal space of the receiving groove may be hexahedral, cylindrical, or polygonal.
  • the receiving groove may include a base, first and second side walls extending from the base and facing each other, and third and fourth side walls facing each other and perpendicular to the first and second side walls.
  • a hexahedral shape can be formed through the base and four side walls. It is natural that the shape of the receiving groove can be formed in various shapes depending on the shape or size of the part accommodated therein.
  • a capacitor 130 or an inductor 140 may be accommodated in the receiving groove.
  • the receiving groove may include a first receiving groove 111 in which the capacitor 130 is placed and a second receiving groove 112 in which the inductor 140 is placed.
  • the first receiving groove 111 and the second receiving groove 112 may have different areas or shapes.
  • a capacitor 130 may be accommodated in the first receiving groove, and an inductor 140 may be accommodated in the second receiving groove 112.
  • components mounted together with the inductor 140 may be accommodated.
  • the size of the first receiving groove 111 may be larger than the second receiving groove 112.
  • the first receiving groove 111 and the second receiving groove 112 may have different lengths in directions perpendicular to the first direction and the second direction.
  • a partition is formed between the first receiving groove 111 and the second receiving groove 112 so that they can be independently separated from each other. It is possible to prevent them from being electrically connected to each other, and also to prevent the heat generated from each of them from affecting each other.
  • the first receiving groove 111 includes a base corresponding to the capacitor 130 to be accommodated, a first side wall and a second side wall extending from the base and facing each other, and the first side wall and the second side wall. It may include a third side wall and a fourth side wall that are perpendicular to and face each other.
  • the capacitor 130 may include a link capacitor.
  • the link capacitor is a capacitor connected to DC-Link and is a capacitor to stabilize the voltage of DC-Link by eliminating or minimizing noise.
  • the capacitor 130 may have a rectangular parallelepiped shape, and a plurality of capacitors may be connected in parallel to form the required capacitor capacity. Alternatively, it is natural that they can be connected in series or in parallel.
  • the capacitor 130 has a large component size and a large mounting quantity, so the size of the device containing it can be minimized by forming the capacitor 130 as a separate module, and the space where the capacitor 130 is mounted can be utilized. there is.
  • the capacitor 130 is disposed inside the first receiving groove 111.
  • the capacitor 130 may include at least one capacitor or a plurality of capacitors.
  • the capacitor module 100 is a capacitor module applied to a three-phase inverter module, it may include four capacitors, and the four capacitors may be arranged in line and placed in the first receiving groove 111. there is. In the case of a single-phase inverter module, it may contain 10 or more capacitors.
  • the capacitor 130 may be mounted on one side of the substrate 120. 2 and 4, the capacitor 130 may be mounted on one side of the substrate 120 opposite the housing 110. At this time, a plurality of holes are formed in the substrate 120, a plurality of connection pins are formed in the capacitor 130, and the connection pins are soldered through the plurality of holes formed in the substrate 120 to form the substrate 120. It can be mounted on one side of .
  • the capacitor 130 is electrically connected to the substrate 120, and a plurality of first connectors electrically connected to the capacitor 130 may be disposed on the other side of the substrate 120.
  • the connection pin of the capacitor 130 and the first connector may be electrically connected through the board 120.
  • the second receiving groove 112 may include a base, a fifth side wall extending from the base, and having a circular shape, corresponding to the inductor 140 being received. Alternatively, it may include a base and first to fourth side walls, corresponding to the first receiving groove. This may vary depending on the shape of the inductor 140 and the arrangement direction of the inductor 140 when a plurality of inductors 140 are included.
  • the inductor 140 includes two inductors 141 and 142, and the two inductors may be stacked in two layers in the depth direction of the second receiving groove. At this time, the two inductors 141 and 142 may be stacked and insulated from each other. To be placed in the capacitor module 100 together with the capacitor 130, the inductor 140 may be stacked. The size of the capacitor 130 is larger than the inductor 140, and when placed in line with the capacitor 130, there may be insufficient space to place the inductor 140. To solve this problem, the inductor 140 can be stacked in the depth direction of the second receiving groove 112 perpendicular to the arrangement direction of the capacitor 130, and through this, space can be utilized efficiently.
  • the inductor 140 is formed by winding a coil in a circular shape, and may be formed by being wrapped around a bobbin that includes a hole therein. At this time, the inductor 140 may be connected to one surface of the substrate 120 through a wire led out into the hole. A plurality of second connectors electrically connected to the inductor 140 may be disposed on the other side of the substrate 120. The wire of the ductor inverter module 200 and the second connector may be electrically connected through the board 120.
  • the inductor 140 is an element formed of a coil.
  • the inductor is relatively large in size compared to other elements, and generates more heat than other elements when performing power conversion.
  • the inductor 140 may be an inductor 140 that constitutes a DC-DC converter.
  • the inductor 140 may be disposed in the second receiving groove 112.
  • the inductor 140 generates a lot of heat, and the heat generated from the inductor 140 may affect not only the inductor itself but also other elements affected by heat, which may result in deterioration of the power conversion function or failure, etc. This can happen. Therefore, it is necessary to dissipate heat by dissipating heat from the inductor 140 to the outside.
  • the capacitor 130 may be mounted and molded in the first receiving groove 111, and the inductor 140 may be accommodated and molded in the second receiving groove 112. there is.
  • molding is performed to increase thermal conductivity. Molding is a process of filling and solidifying a liquid material in a frame of a predetermined shape. The heat generated from the capacitor 130 or the inductor 140 is transferred to the housing 110 along the molded material, and the housing ( 110), the heat dissipation effect can be increased by being released to the outside.
  • the inductor 140 is placed in the second receiving groove 112 and fixed through molding, so the inductor can be fixed inside the housing 110 without a separate coupling member for fixing the inductor 140. .
  • the outside of the housing 110 may include a plurality of heat dissipation fin inverter modules 200 extending from the outer surface of the receiving groove.
  • Heat dissipation fin The inverter module 200 may include first to third heat dissipation fins extending from the housing 110 .
  • the first heat dissipation fin extends in a first direction downward from the base of the housing 110
  • the second heat dissipation fin extends in a second direction perpendicular to the first direction
  • the third heat dissipation fin is perpendicular to the first direction. It may extend in the opposite direction of the second direction.
  • the first heat dissipation fin extends from the base of the housing 110 in a first downward direction.
  • the first direction may be the downward direction of the housing 110. It may extend in a first direction from the rear surface, which is the outer surface of the base. Heat generated from the capacitor 130 or the inductor 140 may be conducted along the extension direction of the first heat dissipation fin and discharged to the outside.
  • the first heat dissipation fin extends from the outer surface of the base in the first direction, and extends from the outer surface of the first side wall in a third direction perpendicular to the first direction and the second direction, and may be formed integrally.
  • the first heat dissipation fin may not extend only in the first direction toward the bottom of the base, but may extend in three directions.
  • it may not only extend from the outer surface of the base in a first direction, but may also extend from the outer surface of the first side wall in a third direction perpendicular to the first direction and the second direction. Alternatively, it may extend in only one of the first direction or the third direction. Heat generated from the capacitor or inductor 140 is not only emitted in the first direction, but is also emitted in the third direction or in a direction opposite to the third direction, thereby increasing the heat dissipation effect.
  • the first heat dissipation fin may include a plurality of heat dissipation fins spaced apart at predetermined intervals in the second direction.
  • the direction in which the first heat dissipation fin is disposed may vary depending on the heat conduction direction.
  • the first heat dissipation fin may be formed to have a plate shape in a third direction and may include a plurality of heat dissipation fins spaced apart at a preset interval in the second direction.
  • the spacing between adjacent heat dissipation fins may be set in consideration of heat dissipation efficiency.
  • each heat dissipation fin is a heat sink, and may be formed as a thin plate with a structure for dissipating heat and spaced apart from each other.
  • the second heat dissipation fin may extend in a second direction perpendicular to the first direction, and the third heat dissipation fin may be perpendicular to the first direction and extend in an opposite direction to the second direction.
  • the second heat dissipation fin may extend from the outer surface of the third side wall, and the third heat dissipation fin may extend from the outer surface of the fourth side wall.
  • the second heat dissipation fin and the third heat dissipation fin may include a plurality of heat dissipation fins spaced apart at predetermined intervals in the first direction. The detailed description of the shape and spacing of the plurality of heat dissipation fins corresponds to the detailed description of the first heat dissipation fin.
  • Each of the first heat dissipation fins, the second heat dissipation fin, and the third heat dissipation fin has a plate shape erected in the same third direction, and when coupled to the inverter module, the third direction becomes the up and down direction, so heat is transferred smoothly. It can be done.
  • the capacitor module 100 may be coupled to the inverter module 200.
  • the inverter module 200 includes a first housing 210, a cover 220, a heat sink 230, a main board 241 and 242, and a capacitor module 100. It is composed of and may include an inductor module 250.
  • the detailed description of the capacitor module 100 constituting the inverter module 200 corresponds to the detailed description of the capacitor module 100 of FIGS. 1 to 5, and redundant description will be omitted below.
  • the inverter module 200 may be a PV inverter module.
  • a PV inverter module is a device that receives power from a PV panel or PV MLPE and converts it into power that can be used in a home or building. It receives DC power from a PV converter, converts it to AC power, and outputs it. At this time, DC power is transmitted to the inverter driver through a wire, the inverter driver converts the power, and the converted power can be transmitted to the load through the wire.
  • the inverter driver may include a power conversion element and a switching element or MCU that controls the same.
  • the power conversion element may include passive elements such as inductors or capacitors, may include switching elements implemented with FETs or diodes, and may include an MCU that controls the switching elements.
  • passive elements such as inductors or capacitors
  • switching elements implemented with FETs or diodes
  • MCU that controls the switching elements.
  • various elements for converting power may be included, or elements for implementing functions other than power conversion may be included.
  • the first housing 210 includes a base including a first hole, and a main board is disposed therein.
  • the cover 220 may cover the first housing 210 .
  • the first housing 210 may form an internal space and the cover 220 may cover it, or the cover 220 may form an internal space and cover the first housing 210.
  • it can be formed in various forms to form the internal space.
  • the main board may include a printed circuit board (PCB). It is natural that various types of boards other than printed circuit boards may be included.
  • the main substrate 241 may be formed as a single layer or a double layer.
  • the main substrate may include a first main substrate 241 and a second main substrate 242 that is stacked and spaced apart from the first main substrate 241.
  • the capacitor 130 which has a large component size, may interfere with stacking the substrate, but it is possible to stack the main substrate by using a separate capacitor module 100 to place it outside the first housing 210 rather than inside it. Space can be secured.
  • the heat sink 230 is coupled to the first housing 210 in correspondence with the first hole of the first housing 210 and includes a plurality of heat dissipation fins extending in an outward direction.
  • the main board 241 is disposed inside the first hole, and heat generated from the main board 241 is transferred to the heat sink 230 and discharged to the outside through a plurality of heat dissipation fins.
  • the capacitor module 100 is disposed in the lower part of the first housing 210, that is, in a partial area of the outer surface of the heat sink 230.
  • the capacitor module 100 includes a second housing 110 including a receiving groove in which the capacitor 130 is disposed, a first substrate 120 disposed on the receiving groove, and one surface of the first substrate 120. It is mounted and includes at least one capacitor 130 accommodated in the receiving groove.
  • the receiving groove of the capacitor module 100 includes a first receiving groove 111 in which the capacitor 130 is accommodated, an inductor 140 disposed therein, and a second receiving groove spaced apart from the first receiving groove 111. It may include a receiving groove 112, be electrically connected to one surface of the substrate 120, and include at least one first inductor 140 accommodated in the second receiving groove.
  • the first inductor 140 includes two first inductors 141 and 142, and the two first inductors 141 and 142 are stacked in two layers in the depth direction of the second receiving groove, It may be connected to one side of the first substrate 120 with a wire.
  • the first substrate 120 may include a plurality of first connectors on the other side electrically connected to the capacitor 130 and a plurality of second connectors electrically connected to the first inductors 141 and 142. .
  • the heat sink may include a through hole in an area corresponding to the first connector or the second connector, and the first connector or the second connector may pass through the through hole and be connected to the main board.
  • the capacitor module 100 includes a main board 241 and a separate first board 120, and the capacitor 130 or inductor 140 can be connected to the main board 241 through the first board 120. there is.
  • the capacitor module 100 is disposed under a portion of the heat sink 230 and its position is fixed, but the capacitor module 100 is connected to the main board 241 through the first connector or the second connector of the first board 120. ), the connection position of the capacitor 130 or the inductor 140 with the main board 241 is not limited and can be changed to various positions. Through this, the degree of freedom in design can be increased in the arrangement of devices placed on the main board 241. In addition, by combining the capacitor module 100 on the outside of the heat sink 230, space within the housing can be secured, thereby securing sufficient space to implement the main board 241 as a multi-layer.
  • the inductor module 250 may be placed in another area of the outer surface of the heat sink 230.
  • the inductor module 250 may be arranged to be spaced apart from the capacitor module 100, and by being spaced apart, heat generated from the capacitor module 100 may not affect each other.
  • the inductor module 250 includes a third housing 251 including a third receiving groove in which the second inductor 252 is disposed, and at least one second inductor 252 accommodated in the third receiving groove. can do.
  • the inductor module 250 may include an inverter side inductor, and the second inductor 252 disposed in the inductor module 250 is an inductor 140 disposed in the second receiving groove 112 of the capacitor module 100. It is a different inductor.
  • the second inductor 252 includes a plurality of second inductors, and the plurality of second inductors 252 may be arranged in the inductor module 250 in a row rather than in a stack, as shown in FIG. 10 .
  • the inductor module 250 may have a separate heat dissipation structure. Like the capacitor module 100, it may include first to third heat dissipation fins so that heat can be dissipated in three different directions. Efficient heat dissipation is possible by placing the second inductor 252 outside the first housing 210.
  • the capacitor module 100 or the inductor module 250 may be coupled to the heat sink 230 through a fastening portion, and the heat sink 230 may be coupled to the first housing 210 through a fastening portion.
  • the capacitor module 100 or the inductor module 250 may be coupled to the heat sink 230 and the first housing 210 through a fastening part.
  • bolt connection is possible.
  • a coupling hole may be formed on the surface of the capacitor module 100 or the inductor module 250 in contact with the heat sink 230, and a coupling groove may be formed at a position of the heat sink 230 corresponding to the coupling hole.
  • the coupling groove is not open for waterproofing, but is formed as a threaded groove, and can be coupled with a bolt inserted through the coupling hole of the inductor heat dissipation module inverter module 200.
  • a sealing structure such as a sealing member may be formed.
  • the first substrate 120 of the capacitor module 100 is connected to the main substrate 241 and the heat sink 230 through a through hole.
  • the first connector or the first connector of the capacitor module 100 2 The connector may include at least one of an SMD spacer, a wire connector, and a busbar terminal block.
  • the first connector or the second connector may be formed of an SMD spacer 151.
  • the connection between the first board 120 and the main board 241 is supported by an SMD spacer 151 with an empty space formed inside, and a bus bar or harness penetrating the SMD spacer 151 is installed. You can connect through.
  • a separate through hole 231 may not be formed.
  • the first connector or the second connector may be formed as a wire connector 152.
  • the wire connector 152 which has a wire through-hole formed inside, passes through the through-hole 231 of the heat sink 230 to support the connection between the first board 120 and the main board 241, and the wire connector 152 It can be connected through a wire that passes through.
  • the first connector or the second connector may be formed as a bus bar terminal block 153.
  • a bus bar terminal block 153 is placed on the main board 241 and the first board 120, respectively, passes through the through hole 231 of the heat sink 230 through the bus bar 153, and is fixed with a screw 155. By doing so, it can be connected through the bus bar 153.
  • first substrate 120 which is a separate substrate
  • main substrate 241 can be connected in various ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

A capacitor module according to an embodiment of the present invention comprises: a housing including an accommodation groove in which a capacitor is disposed; a substrate disposed above the accommodation groove; and at least one capacitor mounted to the one surface and accommodated in the accommodation groove.

Description

커패시터 모듈 및 인버터 모듈Capacitor module and inverter module
본 발명은 커패시터 모듈 및 이를 포함하는 인버터 모듈에 관한 것으로, 보다 구체적으로 링크 커패시터를 별도의 모듈로 형성하는 커패시터 모듈 및 이를 포함하는 인버터 모듈에 관한 발명이다. The present invention relates to a capacitor module and an inverter module including the same, and more specifically, to a capacitor module that forms a link capacitor as a separate module and an inverter module including the same.
태양광 발전은 친환경 에너지 발전 방식으로 기존 화학발전이나 원자력 발전을 대체하여 널리 보급되고 있다. 태양광 발전은 컨버터에 배터리가 접속되는 독립형과 전력계통과 연계되는 연계형태가 있고, 일반적으로 독립형 발전은 태양전지, 축전지, 전력변환 장치 등으로 구성되고 전력계통 연계형 시스템은 상용 전원과 연결하여 부하계통선과 전력을 상호 교류할 수 있도록 구성된다. Solar power generation is an eco-friendly energy generation method that is becoming widely used, replacing existing chemical or nuclear power generation. There are two types of solar power generation: stand-alone, where a battery is connected to a converter, and connected, which is connected to the power system. In general, stand-alone power generation consists of solar cells, storage batteries, power conversion devices, etc., and power grid-connected systems are connected to commercial power sources. It is configured to allow mutual exchange of power with the load system line.
태양광 패널을 생성된 전력은 바로 가정 또는 건물 내 사용하기 어려워 인버터 등의 전력변환장치를 통해 사용 가능한 전력으로 변환을 수행한다.The power generated by solar panels is difficult to use directly in homes or buildings, so it is converted into usable power through a power conversion device such as an inverter.
인버터에 있어서, 링크(Link) 커패시터 부품은 사이즈가 크고 실장수량이 많아 PCB에서 차지하는 면적이 크고, 이는 PCB 실장공간 부족으로 이어지며, PCB 사이즈 증가로 제품 사이즈가 커지는 문제가 있다. 또한, Main PCB 위에 2단으로 적층하고 있는 PCB들의 실장공간도 부족해지고, 적층된 PCB의 형상 제약이 발생하고 그에 따라 적층된 PCB와 Main PCB간 커넥터 실장위치에 제약이 발생하는 문제가 있다. In the inverter, the link capacitor component is large in size and has a large mounting quantity, so it takes up a large area on the PCB, which leads to a shortage of PCB mounting space, and there is a problem that the product size increases as the PCB size increases. In addition, there is a problem that the mounting space for PCBs stacked in two layers on the main PCB is insufficient, and there are restrictions on the shape of the stacked PCBs, resulting in restrictions on the mounting location of connectors between the stacked PCBs and the main PCB.
본 발명이 해결하고자 하는 기술적 과제는, 링크 커패시터를 별도의 모듈로 형성하는 커패시터 모듈 및 이를 포함하는 인버터 모듈을 제공하는 것이다.The technical problem to be solved by the present invention is to provide a capacitor module that forms a link capacitor as a separate module and an inverter module including the same.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 커패시터 모듈은 내부에 커패시터가 배치되는 수용홈을 포함하는 하우징; 상기 수용홈 상부에 배치되는 기판; 및 상기 기판의 일면에 실장되고, 상기 수용홈에 수용되는 적어도 하나의 커패시터를 포함한다.In order to solve the above technical problem, a capacitor module according to an embodiment of the present invention includes a housing including a receiving groove in which a capacitor is disposed; A substrate disposed above the receiving groove; and at least one capacitor mounted on one surface of the substrate and accommodated in the receiving groove.
또한, 상기 기판은 타면에 상기 커패시터와 전기적으로 연결되는 복수의 제1 커넥터가 배치될 수 있다.Additionally, a plurality of first connectors electrically connected to the capacitor may be disposed on the other side of the substrate.
또한, 상기 커패시터는 링크(Link) 커패시터를 포함할 수 있다.Additionally, the capacitor may include a link capacitor.
또한, 상기 수용홈 외면으로부터 연장되는 복수의 방열핀을 포함할 수 있다.Additionally, it may include a plurality of heat dissipation fins extending from the outer surface of the receiving groove.
또한, 상기 수용홈은, 베이스; 상기 베이스로부터 연장되고 서로 마주보는 제1 측벽과 제2 측벽; 및 상기 제1 측벽 및 상기 제2 측벽과 수직이고 서로 마주보는 제3 측벽과 제4 측벽을 포함할 수 있다.Additionally, the receiving groove includes a base; first and second side walls extending from the base and facing each other; And it may include a third side wall and a fourth side wall that are perpendicular to the first side wall and the second side wall and face each other.
또한, 상기 수용홈은, 상기 커패시터가 내부에 수용되는 제1 수용홈; 및 내부에 인덕터가 배치되고, 상기 제1 수용홈과 이격되는 제2 수용홈을 포함하고, 상기 기판의 일면과 전기적으로 연결되고, 상기 제2 수용홈에 수용되는 적어도 하나의 인덕터를 포함할 수 있다.Additionally, the receiving groove includes: a first receiving groove in which the capacitor is accommodated; and an inductor disposed therein, including a second receiving groove spaced apart from the first receiving groove, electrically connected to one surface of the substrate, and at least one inductor received in the second receiving groove. there is.
또한, 상기 제2 수용홈은, 베이스; 및 상기 베이스로부터 연장되고, 원형인 제5 측벽을 포함할 수 있다.Additionally, the second receiving groove includes a base; and a fifth side wall extending from the base and having a circular shape.
또한, 상기 인덕터는 두 개의 인덕터를 포함하고, 상기 두 개의 인덕터는 상기 제2 수용홈의 깊이 방향으로 2층으로 적층되고, 상기 기판의 일면과 와이어로 연결될 수 있다.Additionally, the inductor may include two inductors, and the two inductors may be stacked in two layers in the depth direction of the second receiving groove and connected to one surface of the substrate with a wire.
또한, 상기 기판은 타면에 상기 인덕터와 전기적으로 연결되는 복수의 제2 커넥터가 배치될 수 있다.Additionally, a plurality of second connectors electrically connected to the inductor may be disposed on the other side of the substrate.
또한, 상기 수용홈에는 커패시터 또는 인덕터가 수용되어 몰딩될 수 있다.Additionally, a capacitor or an inductor may be accommodated and molded in the receiving groove.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 인버터 모듈은 제1홀을 포함하는 베이스를 포함하고, 내부에 메인 기판이 배치되는 제1 하우징; 상기 제1 하우징을 덮는 커버; 상기 제1홀에 대응되어 상기 제1 하우징과 결합되고, 외부 방향으로 연장되는 복수의 방열핀을 포함하는 방열판; 및 상기 방열판의 외면의 일부 영역에 배치되는 커패시터 모듈을 포함하고, 상기 커패시터 모듈은, 내부에 커패시터가 배치되는 수용홈을 포함하는 제2 하우징; 상기 수용홈 상부에 배치되는 제1 기판; 및 상기 제1 기판의 일면에 실장되고, 상기 수용홈에 수용되는 적어도 하나의 커패시터를 포함한다.In order to solve the above technical problem, an inverter module according to an embodiment of the present invention includes a first housing including a base including a first hole and a main board disposed therein; a cover covering the first housing; a heat dissipation plate coupled to the first housing in response to the first hole and including a plurality of heat dissipation fins extending in an outward direction; and a capacitor module disposed on a portion of an outer surface of the heat sink, the capacitor module comprising: a second housing including a receiving groove in which a capacitor is disposed; a first substrate disposed above the receiving groove; and at least one capacitor mounted on one surface of the first substrate and accommodated in the receiving groove.
또한, 상기 제1 기판은 타면에 상기 커패시터와 전기적으로 연결되는 복수의 제1 커넥터가 배치되고, 상기 방열판은 상기 복수의 제1 커넥터에 대응하는 영역에 관통홀을 포함할 수 있다.Additionally, a plurality of first connectors electrically connected to the capacitor are disposed on the other surface of the first substrate, and the heat sink may include a through hole in an area corresponding to the plurality of first connectors.
또한, 상기 복수의 제1 커넥터는 상기 관통홀을 통과하여 상기 메인 기판과 연결될 수 있다.Additionally, the plurality of first connectors may pass through the through hole and be connected to the main board.
또한, 상기 제1 커넥터는 SMD 스페이서, 와이어 커넥터, 및 버스바 단자대 중 적어도 하나를 포함할 수 있다.Additionally, the first connector may include at least one of an SMD spacer, a wire connector, and a bus bar terminal block.
또한, 상기 메인 기판은 제1 메인 기판 및 상기 제1 메인 기판과 이격되어 적층되는 제2 메인 기판을 포함할 수 있다.Additionally, the main substrate may include a first main substrate and a second main substrate that is stacked and spaced apart from the first main substrate.
또한, 상기 커패시터 모듈의 수용홈은, 상기 커패시터가 내부에 수용되는 제1 수용홈; 및 내부에 인덕터가 배치되고, 상기 제1 수용홈과 이격되는 제2 수용홈을 포함하고, 상기 기판의 일면과 전기적으로 연결되고, 상기 제2 수용홈에 수용되는 적어도 하나의 제1 인덕터를 포함할 수 있다.Additionally, the receiving groove of the capacitor module includes: a first receiving groove in which the capacitor is accommodated; and an inductor disposed therein, including a second receiving groove spaced apart from the first receiving groove, electrically connected to one surface of the substrate, and including at least one first inductor accommodated in the second receiving groove. can do.
또한, 상기 제1 인덕터는 두 개의 제1 인덕터를 포함하고, 상기 두 개의 제1 인덕터는 상기 제2 수용홈의 깊이 방향으로 2층으로 적층되고, 상기 제1 기판의 일면과 와이어로 연결될 수 있다.In addition, the first inductor includes two first inductors, and the two first inductors are stacked in two layers in the depth direction of the second receiving groove, and may be connected to one surface of the first substrate with a wire. .
또한, 상기 방열판의 외면의 다른 일부 영역에 배치되는 인덕터 모듈을 포함하고, 상기 인덕터 모듈은, 내부에 제2 인덕터가 배치되는 제3 수용홈을 포함하는 제3 하우징; 및 상기 제3 수용홈에 수용되는 적어도 하나의 제2 인덕터를 포함할 수 있다.In addition, it includes an inductor module disposed in another portion of the outer surface of the heat sink, wherein the inductor module includes a third housing including a third receiving groove in which the second inductor is disposed; And it may include at least one second inductor accommodated in the third receiving groove.
본 발명의 실시예들에 따르면, Main PCB 실장면적을 최대한 확보해 제품 사이즈 최소화가 가능하다. 또한, 링크(Link) 커패시터를 별도 모듈로 외부에 위치시켜 효율적인 방열이 가능하다. 나아가, 별도 모듈로 분리해 체결함으로 링크 머패시터의 무게를 안정적으로 지지할 수 있다.According to embodiments of the present invention, it is possible to minimize the product size by securing the main PCB mounting area as much as possible. Additionally, efficient heat dissipation is possible by placing the link capacitor externally as a separate module. Furthermore, by separating and fastening it into a separate module, the weight of the link capacitor can be stably supported.
도 1은 본 발명의 일 실시예에 따른 커패시터 모듈의 사시도이다.1 is a perspective view of a capacitor module according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 커패시터 모듈의 분해 사시도이다.Figure 2 is an exploded perspective view of a capacitor module according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 실시예에 따른 커패시터 모듈의 각 구성을 설명하기 위한 도면이다.3 to 5 are diagrams for explaining each configuration of a capacitor module according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 인버터 모듈의 사시도이다.Figure 6 is a perspective view of an inverter module according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 인버터 모듈의 단면도이다.Figure 7 is a cross-sectional view of an inverter module according to an embodiment of the present invention.
도 8 내지 도 16은 본 발명의 실시예에 따른 인버터 모듈의 각 구성을 설명하기 위한 도면이다.8 to 16 are diagrams for explaining each configuration of an inverter module according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.However, the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention, unless explicitly specifically defined and described, are generally understood by those skilled in the art to which the present invention pertains. It can be interpreted as meaning, and the meaning of commonly used terms, such as terms defined in a dictionary, can be interpreted by considering the contextual meaning of the related technology.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. Additionally, the terms used in the embodiments of the present invention are for describing the embodiments and are not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In this specification, the singular may also include the plural unless specifically stated in the phrase, and when described as “at least one (or more than one) of A and B and C”, it is combined with A, B, and C. It can contain one or more of all possible combinations.
또한, 본 발명의 실시 예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.Additionally, in describing the components of the embodiments of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, order, or order of the component.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.And, when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다. Additionally, when described as being formed or disposed “on top” or “bottom” of each component, “top” or “bottom” means that the two components are directly adjacent to each other. This includes not only the case of contact, but also the case where one or more other components are formed or disposed between the two components. In addition, when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
도 1은 본 발명의 일 실시예에 따른 커패시터 모듈의 사시도이고, 도 2는 본 발명의 실시예에 따른 커패시터 모듈의 분해 사시도이고, 도 3 내지 도 5는 본 발명의 실시예에 따른 커패시터 모듈의 각 구성을 설명하기 위한 도면이다. 도 6은 본 발명의 일 실시예에 따른 인버터 모듈의 사시도이고, 도 7은 본 발명의 실시예에 따른 인버터 모듈의 단면도이고, 도 8 내지 도 16은 본 발명의 실시예에 따른 인버터 모듈의 각 구성을 설명하기 위한 도면이다.1 is a perspective view of a capacitor module according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a capacitor module according to an embodiment of the present invention, and FIGS. 3 to 5 are diagrams of a capacitor module according to an embodiment of the present invention. This is a drawing to explain each configuration. Figure 6 is a perspective view of an inverter module according to an embodiment of the present invention, Figure 7 is a cross-sectional view of the inverter module according to an embodiment of the present invention, and Figures 8 to 16 are angle views of the inverter module according to an embodiment of the present invention. This is a drawing to explain the configuration.
본 발명의 일 실시예에 따른 커패시터 모듈(100)은 하우징(110), 기판(120), 및 커패시터(130)로 구성된다. The capacitor module 100 according to an embodiment of the present invention is composed of a housing 110, a substrate 120, and a capacitor 130.
하우징(110)은 내부에 커패시터(130)가 배치되는 수용홈을 포함하고, 기판(120)은 상기 수용홈 상부에 배치되고, 커패시터(130)는 상기 기판(120)의 일면에 실장되고, 상기 수용홈에 수용된다.The housing 110 includes a receiving groove in which the capacitor 130 is disposed, the substrate 120 is disposed on the upper part of the receiving groove, and the capacitor 130 is mounted on one surface of the substrate 120. Accepted into a receiving home.
하우징(110)는 내부에 적어도 하나 이상의 커패시터(130)가 배치되는 수용홈을 포함한다. 수용홈인버터 모듈(200)은 내부에 배치되는 커패시터(130)를 수용할 수 있도록 커패시터(130)의 형상에 대응하는 형상으로 형성될 수 있다. 수용홈은 인덕터가 배치되는 베이스와 내부 공간을 형성하는 측벽으로 구성될 수 있다. 수용홈의 내부공간은 육면체 형상이거나, 원기둥 형상 또는 다각면체 형상일 수 있다. 수용홈은 베이스, 상기 베이스로부터 연장되고 서로 마주보는 제1 측벽과 제2 측벽, 및 상기 제1 측벽 및 상기 제2 측벽과 수직이고 서로 마주보는 제3 측벽과 제4 측벽을 포함할 수 있다. 베이스와 4개의 측벽을 통해 육면체 형상을 형성할 수 있다. 수용홈의 형상은 내부에 수용되는 부품의 형상이나 크기에 따라 다양한 형상으로 형성될 수 있음은 당연하다.The housing 110 includes a receiving groove in which at least one capacitor 130 is disposed. The receiving home inverter module 200 may be formed in a shape corresponding to the shape of the capacitor 130 so as to accommodate the capacitor 130 disposed therein. The receiving groove may be composed of a base on which the inductor is placed and a side wall that forms an internal space. The internal space of the receiving groove may be hexahedral, cylindrical, or polygonal. The receiving groove may include a base, first and second side walls extending from the base and facing each other, and third and fourth side walls facing each other and perpendicular to the first and second side walls. A hexahedral shape can be formed through the base and four side walls. It is natural that the shape of the receiving groove can be formed in various shapes depending on the shape or size of the part accommodated therein.
수용홈에는 커패시터(130) 또는 인덕터(140)가 수용될 수 있다. 수용홈은 커패시터(130)가 배치되는 제1 수용홈(111) 및 인덕터(140)가 배치되는 제2 수용홈(112)을 포함할 수 있다.A capacitor 130 or an inductor 140 may be accommodated in the receiving groove. The receiving groove may include a first receiving groove 111 in which the capacitor 130 is placed and a second receiving groove 112 in which the inductor 140 is placed.
제1 수용홈(111)과 제2 수용홈(112)은 서로 면적이나 형상이 상이할 수 있다. 제1 수용홈에는 커패시터(130)가 내부에 수용되고, 제2 수용홈(112)에는 인덕터(140)가 내부에 수용될 수 있다. 또는 인덕터(140)와 함께 실장되는 부품들이 수용될 수도 있다. 제1 수용홈(111)의 크기가 제2 수용홈(112)보다 클 수 있다. 상기 제1 수용홈(111) 및 상기 제2 수용홈(112)은 상기 제1 방향 및 상기 제2 방향과 수직인 방향으로 길이가 상이할 수 있다. 제1 수용홈(111)과 제2 수용홈(112) 사이에는 격벽이 형성되어 서로 독립적으로 분리될 수 있다. 서로 전기적으로 연결되는 것을 방지할 수 있고, 또한, 각각 발생하는 열이 서로에 영향을 미치는 것을 방지할 수 있다.The first receiving groove 111 and the second receiving groove 112 may have different areas or shapes. A capacitor 130 may be accommodated in the first receiving groove, and an inductor 140 may be accommodated in the second receiving groove 112. Alternatively, components mounted together with the inductor 140 may be accommodated. The size of the first receiving groove 111 may be larger than the second receiving groove 112. The first receiving groove 111 and the second receiving groove 112 may have different lengths in directions perpendicular to the first direction and the second direction. A partition is formed between the first receiving groove 111 and the second receiving groove 112 so that they can be independently separated from each other. It is possible to prevent them from being electrically connected to each other, and also to prevent the heat generated from each of them from affecting each other.
제1 수용홈(111)은 앞서 설명한 바와 같이, 수용되는 커패시터(130)에 대응하여 베이스, 상기 베이스로부터 연장되고 서로 마주보는 제1 측벽과 제2 측벽, 및 상기 제1 측벽 및 상기 제2 측벽과 수직이고 서로 마주보는 제3 측벽과 제4 측벽을 포함할 수 있다. As described above, the first receiving groove 111 includes a base corresponding to the capacitor 130 to be accommodated, a first side wall and a second side wall extending from the base and facing each other, and the first side wall and the second side wall. It may include a third side wall and a fourth side wall that are perpendicular to and face each other.
커패시터(130)는 링크(Link) 커패시터를 포함할 수 있다. 링크 커패시터는 DC-Link에 연결되는 커패시터로, 노이즈를 제거하거나 최소화하여 DC-Link의 전압을 안정화시키기 위한 커패시터이다. 커패시터(130)는 직육면체 형상을 가질 수 있고, 복수의 커패시터는 서로 병렬연결되어 필요로 하는 커패시터 용량을 형성할 수 있다. 또는 직렬연결, 직병렬 연결될 수 있음은 당연하다. 커패시터(130)는 부품의 사이즈가 크고, 실장수량이 많아, 커패시터(130)를 별도의 모듈로 형성하여 이를 포함하는 장치의 사이즈를 최소화할 수 있고, 커패시터(130)가 실장되는 공간을 활용할 수 있다. The capacitor 130 may include a link capacitor. The link capacitor is a capacitor connected to DC-Link and is a capacitor to stabilize the voltage of DC-Link by eliminating or minimizing noise. The capacitor 130 may have a rectangular parallelepiped shape, and a plurality of capacitors may be connected in parallel to form the required capacitor capacity. Alternatively, it is natural that they can be connected in series or in parallel. The capacitor 130 has a large component size and a large mounting quantity, so the size of the device containing it can be minimized by forming the capacitor 130 as a separate module, and the space where the capacitor 130 is mounted can be utilized. there is.
커패시터(130)는 제1 수용홈(111) 내부에 배치된다. 커패시터(130)는 적어도 하나의 커패시터를 포함할 수 있고, 복수의 커패시터를 포함할 수 있다. 예를 들어, 커패시터 모듈(100)이 3상 인버터 모듈에 적용되는 커패시터 모듈인 경우, 4 개의 커패시터를 포함할 수 있고, 4 개의 커패시터는 일렬로 배열되어 제1 수용홈(111)에 배치될 수 있다. 단상 인버터 모듈인 경우, 10 개 이상의 커패시터를 포함할 수도 있다.The capacitor 130 is disposed inside the first receiving groove 111. The capacitor 130 may include at least one capacitor or a plurality of capacitors. For example, if the capacitor module 100 is a capacitor module applied to a three-phase inverter module, it may include four capacitors, and the four capacitors may be arranged in line and placed in the first receiving groove 111. there is. In the case of a single-phase inverter module, it may contain 10 or more capacitors.
커패시터(130)는 기판(120)의 일면에 실장될 수 있다. 도 2 및 도 4와 같이, 커패시터(130)는 하우징(110)에 대향하는 기판(120)의 일면에 실장될 수 있다. 이때, 기판(120)에는 복수의 홀이 형성되고, 커패시터(130)에는 복수의 연결핀이 형성되고, 상기 기판(120)에 형성된 복수의 홀에 상기 연결핀이 관통하여 솔더링됨으로써 기판(120)의 일면에 실장될 수 있다. 커패시터(130)는 기판(120)과 전기적으로 연결되고, 기판(120)의 타면에 상기 커패시터(130)와 전기적으로 연결되는 복수의 제1 커넥터가 배치될 수 있다. 커패시터(130)의 연결핀과 제1 커넥터는 기판(120)을 통해 전기적으로 연결될 수 있다.The capacitor 130 may be mounted on one side of the substrate 120. 2 and 4, the capacitor 130 may be mounted on one side of the substrate 120 opposite the housing 110. At this time, a plurality of holes are formed in the substrate 120, a plurality of connection pins are formed in the capacitor 130, and the connection pins are soldered through the plurality of holes formed in the substrate 120 to form the substrate 120. It can be mounted on one side of . The capacitor 130 is electrically connected to the substrate 120, and a plurality of first connectors electrically connected to the capacitor 130 may be disposed on the other side of the substrate 120. The connection pin of the capacitor 130 and the first connector may be electrically connected through the board 120.
제2 수용홈(112)은 수용되는 인덕터(140)에 대응하여, 베이스, 상기 베이스로부터 연장되고, 원형인 제5 측벽을 포함할 수 있다. 또는, 제1 수용홈에 대응하여, 베이스, 제1 내지 제4 측벽을 포함할 수도 있다. 이는 인덕터(140)의 형상 및 복수의 인덕터(140)를 포함시, 인덕터(140)의 배열 방향에 따라 달라질 수 있다.The second receiving groove 112 may include a base, a fifth side wall extending from the base, and having a circular shape, corresponding to the inductor 140 being received. Alternatively, it may include a base and first to fourth side walls, corresponding to the first receiving groove. This may vary depending on the shape of the inductor 140 and the arrangement direction of the inductor 140 when a plurality of inductors 140 are included.
인덕터(140)는 두 개의 인덕터(141, 142)를 포함하고, 상기 두 개의 인덕터는 상기 제2 수용홈의 깊이 방향으로 2층으로 적층될 수 있다. 이때, 두 개의 인덕터(141, 142)는 서로 절연되어 적층될 수 있다. 커패시터(130)와 함께 커패시터 모듈(100)에 배치되기 위하여, 인덕터(140)는 적층될 수 있다. 커패시터(130)의 사이즈가 인덕터(140)에 비해 크고, 커패시터(130)와 일렬로 배치시 인덕터(140)를 배치할 공간의 여유가 부족할 수 있다. 이를 해결하기 위하여, 인덕터(140)는 커패시터(130)의 배열방향과 수직인 제2 수용홈(112)의 깊이 방향으로 적층할 수 있고, 이를 통해, 공간을 효율적으로 활용할 수 있다.The inductor 140 includes two inductors 141 and 142, and the two inductors may be stacked in two layers in the depth direction of the second receiving groove. At this time, the two inductors 141 and 142 may be stacked and insulated from each other. To be placed in the capacitor module 100 together with the capacitor 130, the inductor 140 may be stacked. The size of the capacitor 130 is larger than the inductor 140, and when placed in line with the capacitor 130, there may be insufficient space to place the inductor 140. To solve this problem, the inductor 140 can be stacked in the depth direction of the second receiving groove 112 perpendicular to the arrangement direction of the capacitor 130, and through this, space can be utilized efficiently.
인덕터(140)는 원형으로 코일이 감겨져 형성되며, 내부에 홀을 포함하는 보빈에 감싸져 형성될 수 있다. 이때, 인덕터(140)는 상기 홀로 인출되는 와이어를 통해 상기 기판(120)의 일면과 와이어로 연결될 수 있다. 상기 기판(120)은 타면에 상기 인덕터(140)와 전기적으로 연결되는 복수의 제2 커넥터가 배치될 수 있다. 익덕터인버터 모듈(200)의 와이어 및 제2 커넥터는 기판(120)을 통해 전기적으로 연결될 수 있다.The inductor 140 is formed by winding a coil in a circular shape, and may be formed by being wrapped around a bobbin that includes a hole therein. At this time, the inductor 140 may be connected to one surface of the substrate 120 through a wire led out into the hole. A plurality of second connectors electrically connected to the inductor 140 may be disposed on the other side of the substrate 120. The wire of the ductor inverter module 200 and the second connector may be electrically connected through the board 120.
인덕터(140)는 코일로 형성되는 소자로, 인덕터는 다른 소자에 비해 상대적으로 크기가 크고, 전력변환을 수행함에 있어서, 다른 소자에 비해 열이 많이 발생한다. 인덕터(140)는 DC-DC 컨버터를 구성하는 인덕터(140)일 수 있다. 인덕터(140)는 제2 수용홈(112)에 배치될 수 있다. 인덕터(140)는 열이 많이 발생하고, 인덕터(140)에서 발생하는 열은 인덕터 자체뿐만 아니라, 열에 영향을 받는 다른 소자에도 영향을 미칠 수 있고, 그로 인해, 전력변환 기능이 저하되거나, 고장 등이 발생할 수 있다. 따라서, 인덕터(140)의 열을 외부로 방출하여 방열을 수행할 필요가 있다. The inductor 140 is an element formed of a coil. The inductor is relatively large in size compared to other elements, and generates more heat than other elements when performing power conversion. The inductor 140 may be an inductor 140 that constitutes a DC-DC converter. The inductor 140 may be disposed in the second receiving groove 112. The inductor 140 generates a lot of heat, and the heat generated from the inductor 140 may affect not only the inductor itself but also other elements affected by heat, which may result in deterioration of the power conversion function or failure, etc. This can happen. Therefore, it is necessary to dissipate heat by dissipating heat from the inductor 140 to the outside.
커패시터(130) 및 인덕터(140)의 방열을 위하여, 제1 수용홈(111)에는 커패시터(130)가 실장되어 몰딩되고, 제2 수용홈(112)에는 인덕터(140)가 수용되어 몰딩될 수 있다. 커패시터(130) 및 인덕터(140)를 수용홈에 배치시킨 후, 열 전도율을 높이기 위하여 몰딩을 수행한다. 몰딩(molding)은 소정 형상의 틀 안에 액체 상태의 물질을 채워 응고시키는 과정으로, 커패시터(130) 또는 인덕터(140)에서 발생하는 열은 몰딩된 물질을 따라 하우징(110)으로 전달되고, 하우징(110)을 통해 외부로 방출되어 방열 효과가 높아질 수 있다. 또한, 인덕터(140)는 제2 수용홈(112)에 배치되어 몰딩을 통해 고정되는바, 인덕터(140)를 고정하기 위한 별도의 결합부재 없이, 하우징(110) 내부에 인덕터를 고정할 수 있다. In order to dissipate heat from the capacitor 130 and the inductor 140, the capacitor 130 may be mounted and molded in the first receiving groove 111, and the inductor 140 may be accommodated and molded in the second receiving groove 112. there is. After the capacitor 130 and the inductor 140 are placed in the receiving groove, molding is performed to increase thermal conductivity. Molding is a process of filling and solidifying a liquid material in a frame of a predetermined shape. The heat generated from the capacitor 130 or the inductor 140 is transferred to the housing 110 along the molded material, and the housing ( 110), the heat dissipation effect can be increased by being released to the outside. In addition, the inductor 140 is placed in the second receiving groove 112 and fixed through molding, so the inductor can be fixed inside the housing 110 without a separate coupling member for fixing the inductor 140. .
상기 하우징(110) 외부에는 상기 수용홈 외면으로부터 연장되는 복수의 방열핀인버터 모듈(200)을 포함할 수 있다. 방열핀인버터 모듈(200)은 하우징(110)에서 연장되는 제1 내지 제3 방열핀을 포함할 수 있다. 제1 방열핀은 하우징(110)의 베이스로부터 하부 방향인 제1 방향으로 연장되고, 제2 방열핀은 상기 제1 방향과 수직인 제2 방향으로 연장되고, 제3 방열핀은 상기 제1 방향과 수직이고 상기 제2 방향의 반대 반향으로 연장될 수 있다. The outside of the housing 110 may include a plurality of heat dissipation fin inverter modules 200 extending from the outer surface of the receiving groove. Heat dissipation fin The inverter module 200 may include first to third heat dissipation fins extending from the housing 110 . The first heat dissipation fin extends in a first direction downward from the base of the housing 110, the second heat dissipation fin extends in a second direction perpendicular to the first direction, and the third heat dissipation fin is perpendicular to the first direction. It may extend in the opposite direction of the second direction.
제1 방열핀은 상기 하우징(110)의 베이스로부터 하부 방향인 제1 방향으로 연장된다. 여기서, 제1 방향은 하우징(110)의 하부 방향일 수 있다. 베이스의 외면인 배면으로부터 제1 방향으로 연장될 수 있다. 커패시터(130) 또는 인덕터(140)에서 발생하는 열은 제1 방열핀의 연장 방향을 따라 열전도되어 외부로 방출될 수 있다. 제1 방열핀은 상기 베이스의 외면으로부터 상기 제1 방향으로 연장되고, 상기 제1 측벽의 외면으로부터 상기 제1 방향 및 상기 제2 방향과 수직인 제3 방향으로 연장되되, 일체로 형성될 수 있다. 제1 방열핀은 베이스의 하부방향인 제1 방향으로만 연장되지 않고, 3방향으로 연장되어 형성될 수 있다. 도 3과 같이, 베이스의 외면으로부터 제1 방향으로 연장될 뿐만 아니라, 제1 측벽의 외면으로부터 상기 제1 방향 및 상기 제2 방향과 수직인 제3 방향으로 연장될 수 있다. 또는, 제1방향 또는 제3 방향 중 하나의 방향으로만 연장될 수 있다. 커패시 또는 인덕터(140)에서 발생하는 열이 제1 방향으로만 방출되지 않고, 제3 방향 또는 제3 방향의 반대 방향으로도 방출되어 방열효과를 높일 수 있다. The first heat dissipation fin extends from the base of the housing 110 in a first downward direction. Here, the first direction may be the downward direction of the housing 110. It may extend in a first direction from the rear surface, which is the outer surface of the base. Heat generated from the capacitor 130 or the inductor 140 may be conducted along the extension direction of the first heat dissipation fin and discharged to the outside. The first heat dissipation fin extends from the outer surface of the base in the first direction, and extends from the outer surface of the first side wall in a third direction perpendicular to the first direction and the second direction, and may be formed integrally. The first heat dissipation fin may not extend only in the first direction toward the bottom of the base, but may extend in three directions. As shown in FIG. 3, it may not only extend from the outer surface of the base in a first direction, but may also extend from the outer surface of the first side wall in a third direction perpendicular to the first direction and the second direction. Alternatively, it may extend in only one of the first direction or the third direction. Heat generated from the capacitor or inductor 140 is not only emitted in the first direction, but is also emitted in the third direction or in a direction opposite to the third direction, thereby increasing the heat dissipation effect.
제1 방열핀은 상기 제2 방향으로 소정의 간격으로 이격되는 복수의 방열핀을 포함할 수 있다. 제1 방열핀은 열전도 방향에 따라 배치되는 방향이 달라질 수 있다. 예를 들어, 제1 방열핀은 제3 방향으로 판 형상을 가지도록 형성될 수 있고, 제2 방향으로 미리 설정된 간격으로 이격된 복수의 방열핀을 포함할 수 있다. 이웃한 방열핀 사이의 간격은 방열의 효율을 고려하여 설정될 수 있다. 이때, 각 방열핀은 히트싱크(heat sink)로, 방열을 수행하는 구조로 얇은 판으로 형성되어 서로 이격되어 형성될 수 있다.The first heat dissipation fin may include a plurality of heat dissipation fins spaced apart at predetermined intervals in the second direction. The direction in which the first heat dissipation fin is disposed may vary depending on the heat conduction direction. For example, the first heat dissipation fin may be formed to have a plate shape in a third direction and may include a plurality of heat dissipation fins spaced apart at a preset interval in the second direction. The spacing between adjacent heat dissipation fins may be set in consideration of heat dissipation efficiency. At this time, each heat dissipation fin is a heat sink, and may be formed as a thin plate with a structure for dissipating heat and spaced apart from each other.
제2 방열핀은 상기 제1 방향과 수직인 제2 방향으로 연장되고, 제3 방열핀은 상기 제1 방향과 수직이고 상기 제2 방향의 반대 반향으로 연장될 수 있다. 제2 방열핀은 제3 측벽의 외면으로부터 연장되고, 제3 방열핀은 제4 측벽의 외면으로부터 연장될 수 있다. 제2 방열핀 및 제3 방열핀은 상기 제1 방향으로 소정의 간격으로 이격되는 복수의 방열핀을 포함할 수 있다. 복수의 방열핀의 형상 내지 간격에 대한 상세한 설명은 제1 방열핀에 대한 상세한 설명에 대응한다. 제1 방열핀, 제2 방열핀, 및 제3 방열핀의 각 방열핀은 동일 방향인 제3 방향으로 세워지는 판 형상을 가지고, 인버터 모듈에 결합시, 제3 방향이 상하 방향이 되기 때문에, 열의 전달이 원활히 이루어질 수 있다.The second heat dissipation fin may extend in a second direction perpendicular to the first direction, and the third heat dissipation fin may be perpendicular to the first direction and extend in an opposite direction to the second direction. The second heat dissipation fin may extend from the outer surface of the third side wall, and the third heat dissipation fin may extend from the outer surface of the fourth side wall. The second heat dissipation fin and the third heat dissipation fin may include a plurality of heat dissipation fins spaced apart at predetermined intervals in the first direction. The detailed description of the shape and spacing of the plurality of heat dissipation fins corresponds to the detailed description of the first heat dissipation fin. Each of the first heat dissipation fins, the second heat dissipation fin, and the third heat dissipation fin has a plate shape erected in the same third direction, and when coupled to the inverter module, the third direction becomes the up and down direction, so heat is transferred smoothly. It can be done.
제1 방열핀의 제1 방향, 제3 방향, 및 제3 방향의 반대 방향, 제2 방열핀의 제2 방향, 제3 방열핀의 제2 방향의 반대 방향으로 연장으로 인해, 5방향으로 열이 전달될 수 있어, 인버터 모듈(200)과 결합되어야 하는 상면을 제외한 5 면 방향으로 방열이 가능해지고, 이를 통해, 방열의 효과를 높일 수 있다.Due to the extension of the first heat dissipation fin in the first direction, the third direction, and the direction opposite to the third direction, the second heat dissipation fin in the second direction, and the direction opposite to the second direction of the third heat dissipation fin, heat is transferred in five directions. This makes it possible to dissipate heat in five directions excluding the top surface that must be coupled to the inverter module 200, thereby increasing the effectiveness of heat dissipation.
본 발명의 실시예에 따른 커패시터 모듈(100)은 인버터 모듈(200)에 결합될 수 있다. 본 발명의 일 실시예에 따른 인버터 모듈(200)은 도 6과 같이, 제1 하우징(210), 커버(220), 방열판(230), 및 메인기판(241, 242), 커패시터 모듈(100)로 구성되고, 인덕터 모듈(250)을 포함할 수 있다. 인버터 모듈(200)을 구성하는 커패시터 모듈(100)에 대한 상세한 설명은 도 1 내지 도 5의 커패시터 모듈(100)에 대한 상세한 설명에 대응하는바, 이하 중복되는 설명은 생략하도록 한다. The capacitor module 100 according to an embodiment of the present invention may be coupled to the inverter module 200. As shown in FIG. 6, the inverter module 200 according to an embodiment of the present invention includes a first housing 210, a cover 220, a heat sink 230, a main board 241 and 242, and a capacitor module 100. It is composed of and may include an inductor module 250. The detailed description of the capacitor module 100 constituting the inverter module 200 corresponds to the detailed description of the capacitor module 100 of FIGS. 1 to 5, and redundant description will be omitted below.
인버터 모듈(200)은 PV 인버터 모듈일 수 있다. PV 인버터 모듈은 PV 패널 또는 PV MLPE로부터 전력을 전달받아, 가정 또는 건물 내에 사용가능한 전력으로 변환하는 장치로, PV 컨버터 등 DC 전력을 입력받아, AC 전력으로 변환하여 출력한다. 이때, DC 전력은 와이어를 통해 인버터 구동부로 전달되고, 인버터 구동부에서 전력을 변환하고, 다시 와이어를 통해 부하로 변환된 전력을 전송할 수 있다. 인버터 구동부는 전력을 변환하기 위하여, 전력변환 소자 및 이를 제어하는 스위칭 소자 내지 MCU 등을 포함할 수 있다. 전력변환 소자로 인덕터 또는 커패시터 등의 수동소자를 포함하고, FET 또는 다이오드 등으로 구현되는 스위칭 소자를 포함하고, 스위칭 소자를 제어하는 MCU를 포함할 수 있다. 이외에 전력을 변환하기 위한 다양한 소자들이 포함되거나, 전력 변환 이외의 기능을 구현하기 위한 소자들을 포함할 수 있다.The inverter module 200 may be a PV inverter module. A PV inverter module is a device that receives power from a PV panel or PV MLPE and converts it into power that can be used in a home or building. It receives DC power from a PV converter, converts it to AC power, and outputs it. At this time, DC power is transmitted to the inverter driver through a wire, the inverter driver converts the power, and the converted power can be transmitted to the load through the wire. In order to convert power, the inverter driver may include a power conversion element and a switching element or MCU that controls the same. The power conversion element may include passive elements such as inductors or capacitors, may include switching elements implemented with FETs or diodes, and may include an MCU that controls the switching elements. In addition, various elements for converting power may be included, or elements for implementing functions other than power conversion may be included.
제1 하우징(210)은 제1홀을 포함하는 베이스를 포함하고, 내부에 메인 기판이 배치된다. 커버(220)는 제1 하우징(210)을 덮을 수 있다. 이때, 제1 하우징(210)이 내부 공간을 형성하고, 커버(220)가 이를 덮는 형태이거나, 커버(220)가 내부 공간을 형성하며 제1 하우징(210)을 덮는 형태일 수 있다. 이외에 내부 공간을 형성하는 다양한 형태로 형성될 수 있다.The first housing 210 includes a base including a first hole, and a main board is disposed therein. The cover 220 may cover the first housing 210 . At this time, the first housing 210 may form an internal space and the cover 220 may cover it, or the cover 220 may form an internal space and cover the first housing 210. In addition, it can be formed in various forms to form the internal space.
메인 기판에는 커패시터 모듈(100) 또는 인덕터 모듈(250)에 배치되는 소자 이외의 다른 소자들이 배치될 수 있다. 메인 기판은 인쇄회로기판(PCB)을 포함할 수 있다. 인쇄회로기판 이외에 댜앙한 종류의 기판을 포함할 수 있음은 당연하다. 메인 기판(241)은 단층 또는 복층으로 형성될 수 있다. 메인 기판은 제1 메인 기판(241) 및 상기 제1 메인 기판(241)과 이격되어 적층되는 제2 메인 기판(242)을 포함할 수 있다. 인버터 모듈인버터 모듈(200) 용량 및 기능의 다양화에 따라 더 많은 수의 소자들이 배치되거나, 인버터 모듈인버터 모듈(200)의 사이즈를 줄이는 과정에서 메인 기판이 복층으로 형성될 수 있다. 이때, 부품 사이즈가 큰 커패시터(130)가 기판을 적층하는데 방해가 될 수 있으나, 별도의 커패시터 모듈(100)을 이용하여 제1 하우징(210) 내부가 아닌 외부에 위치하도록 함으로써 메인 기판을 적층할 공간을 확복할 수 있다.Elements other than those disposed in the capacitor module 100 or the inductor module 250 may be disposed on the main board. The main board may include a printed circuit board (PCB). It is natural that various types of boards other than printed circuit boards may be included. The main substrate 241 may be formed as a single layer or a double layer. The main substrate may include a first main substrate 241 and a second main substrate 242 that is stacked and spaced apart from the first main substrate 241. As the capacity and functions of the inverter module 200 are diversified, a greater number of elements may be placed, or the main board may be formed as a multi-layer in the process of reducing the size of the inverter module 200. At this time, the capacitor 130, which has a large component size, may interfere with stacking the substrate, but it is possible to stack the main substrate by using a separate capacitor module 100 to place it outside the first housing 210 rather than inside it. Space can be secured.
방열판(230)은 제1 하우징(210)의 제1홀에 대응되어 제1 하우징(210)과 결합되고, 외부 방향으로 연장되는 복수의 방열핀을 포함한다. 제1홀의 내측에는 메인 기판(241)이 배치되어, 메인 기판(241)에서 발생하는 열은 방열판(230)으로 전달되고, 복수의 방열핀을 통해 외부로 방출된다. The heat sink 230 is coupled to the first housing 210 in correspondence with the first hole of the first housing 210 and includes a plurality of heat dissipation fins extending in an outward direction. The main board 241 is disposed inside the first hole, and heat generated from the main board 241 is transferred to the heat sink 230 and discharged to the outside through a plurality of heat dissipation fins.
커패시터 모듈(100)은 제1 하우징(210)의 하부, 즉 방열판(230)의 외면의 일부 영역에 배치된다. 커패시터 모듈(100)은 내부에 커패시터(130)가 배치되는 수용홈을 포함하는 제2 하우징(110), 상기 수용홈 상부에 배치되는 제1 기판(120) 및 제1 기판(120)의 일면에 실장되고, 상기 수용홈에 수용되는 적어도 하나의 커패시터(130)를 포함한다. The capacitor module 100 is disposed in the lower part of the first housing 210, that is, in a partial area of the outer surface of the heat sink 230. The capacitor module 100 includes a second housing 110 including a receiving groove in which the capacitor 130 is disposed, a first substrate 120 disposed on the receiving groove, and one surface of the first substrate 120. It is mounted and includes at least one capacitor 130 accommodated in the receiving groove.
커패시터 모듈(100)의 수용홈은 상기 커패시터(130)가 내부에 수용되는 제1 수용홈(111) 및 내부에 인덕터(140)가 배치되고, 상기 제1 수용홈(111)과 이격되는 제2 수용홈(112)을 포함하고, 상기 기판(120)의 일면과 전기적으로 연결되고, 상기 제2 수용홈에 수용되는 적어도 하나의 제1 인덕터(140)를 포함할 수 있다.The receiving groove of the capacitor module 100 includes a first receiving groove 111 in which the capacitor 130 is accommodated, an inductor 140 disposed therein, and a second receiving groove spaced apart from the first receiving groove 111. It may include a receiving groove 112, be electrically connected to one surface of the substrate 120, and include at least one first inductor 140 accommodated in the second receiving groove.
이때, 제1 인덕터(140)는 두 개의 제1 인덕터(141, 142)를 포함하고, 상기 두 개의 제1 인덕터(141, 142)는 상기 제2 수용홈의 깊이 방향으로 2층으로 적층되고, 상기 제1 기판(120)의 일면과 와이어로 연결될 수 있다.At this time, the first inductor 140 includes two first inductors 141 and 142, and the two first inductors 141 and 142 are stacked in two layers in the depth direction of the second receiving groove, It may be connected to one side of the first substrate 120 with a wire.
상기 제1 기판(120)은 타면에 상기 커패시터(130)와 전기적으로 연결되는 복수의 제1 커넥터 및 상기 제1 인덕터(141, 142)와 전기적으로 연결되는 복수의 제2 커넥터를 포함할 수 있다.The first substrate 120 may include a plurality of first connectors on the other side electrically connected to the capacitor 130 and a plurality of second connectors electrically connected to the first inductors 141 and 142. .
이때, 상기 방열판은 상기 제1 커넥터 또는 제2 커넥터에 대응하는 영역에 관통홀을 포함할 수 있고, 상기 제1 커넥터 또는 제2 커넥터는 상기 관통홀을 통과하여 상기 메인 기판과 연결될 수 있다. At this time, the heat sink may include a through hole in an area corresponding to the first connector or the second connector, and the first connector or the second connector may pass through the through hole and be connected to the main board.
커패시터 모듈(100)은 메인 기판(241)과 별도의 제1 기판(120)을 포함하고, 제1 기판(120)을 통해 커패시터(130) 또는 인덕터(140)를 메인 기판(241)과 연결할 수 있다. The capacitor module 100 includes a main board 241 and a separate first board 120, and the capacitor 130 or inductor 140 can be connected to the main board 241 through the first board 120. there is.
커패시터 모듈(100)은 도 7 내지 도 9와 같이, 방열판(230)의 일부 영역 하부에 배치되어 위치가 고정되더라도, 제1 기판(120)의 제1 커넥터 또는 제2 커넥터를 통해 메인 기판(241)과 연결됨으로써 커패시터(130) 또는 인덕터(140)의 메인 기판(241)과의 연결위치가 제한적이지 않고 다양한 위치로 변경이 가능하다. 이를 통해, 메인 기판(241)에 배치되는 소자의 배치에도 설계의 자유도가 높아질 수 있다. 또한, 커패시터 모듈(100)이 방열판(230)의 외부에서 결합됨으로써 하우징 내 공간을 확보할 수 있어, 메인 기판(241)을 복층으로 구현하는데 충분한 공간을 확보할 수 있다.As shown in FIGS. 7 to 9 , the capacitor module 100 is disposed under a portion of the heat sink 230 and its position is fixed, but the capacitor module 100 is connected to the main board 241 through the first connector or the second connector of the first board 120. ), the connection position of the capacitor 130 or the inductor 140 with the main board 241 is not limited and can be changed to various positions. Through this, the degree of freedom in design can be increased in the arrangement of devices placed on the main board 241. In addition, by combining the capacitor module 100 on the outside of the heat sink 230, space within the housing can be secured, thereby securing sufficient space to implement the main board 241 as a multi-layer.
또한, 커패시터 모듈(100)을 별도의 모듈로 분리하여 체결결합함으로써 하우징 외부에서 방열이 가능하여 효율적인 방열이 가능하고, 커패시터 무게에 대한 안정적인 지지가 가능하다.In addition, by separating the capacitor module 100 into a separate module and fastening it together, heat can be dissipated outside the housing, enabling efficient heat dissipation and stable support for the weight of the capacitor.
인덕터 모듈(250)은 방열판(230)의 외면의 다른 일부 영역에 배치될 수 있다. 인덕터 모듈(250)은 커패시터 모듈(100)과 이격되어 배치될 수 있고, 이격됨으로써 서로 발생하는 열이 영향을 미치지 않도록 할 수 있다. 인덕터 모듈(250)은 내부에 제2 인덕터(252)가 배치되는 제3 수용홈을 포함하는 제3 하우징(251) 및 상기 제3 수용홈에 수용되는 적어도 하나의 제2 인덕터(252)를 포함할 수 있다. 인덕터 모듈(250)은 인버터 사이드 인덕터를 포함할 수 있고, 인덕터 모듈(250)에 배치되는 제2 인덕터(252)는 커패시터 모듈(100)의 제2 수용홈(112)에 배치되는 인덕터(140)와 상이한 인덕터이다. 이때, 제2 인덕터(252)는 복수의 제2 인덕터를 포함하고, 복수의 제2 인덕터(252)는 도 10과 같이, 적층이 아닌 일렬로 세워져 인덕터 모듈(250)에 배치될 수 있다. 인덕터 모듈(250)은 별도의 방열 구조를 가질 수 있다. 서로 다른 3 방향으로 방열이 이루어지도록 커패시터 모듈(100)과 같이, 제1 내지 제3 방열핀을 포함할 수 있다. 제1 하우징(210) 외부에 제2 인덕터(252)를 배치시킴으로써 효율적인 방열이 가능하다.The inductor module 250 may be placed in another area of the outer surface of the heat sink 230. The inductor module 250 may be arranged to be spaced apart from the capacitor module 100, and by being spaced apart, heat generated from the capacitor module 100 may not affect each other. The inductor module 250 includes a third housing 251 including a third receiving groove in which the second inductor 252 is disposed, and at least one second inductor 252 accommodated in the third receiving groove. can do. The inductor module 250 may include an inverter side inductor, and the second inductor 252 disposed in the inductor module 250 is an inductor 140 disposed in the second receiving groove 112 of the capacitor module 100. It is a different inductor. At this time, the second inductor 252 includes a plurality of second inductors, and the plurality of second inductors 252 may be arranged in the inductor module 250 in a row rather than in a stack, as shown in FIG. 10 . The inductor module 250 may have a separate heat dissipation structure. Like the capacitor module 100, it may include first to third heat dissipation fins so that heat can be dissipated in three different directions. Efficient heat dissipation is possible by placing the second inductor 252 outside the first housing 210.
커패시터 모듈(100) 또는 인덕터 모듈(250)은 방열판(230)과 체결부를 통해 결합될 수 있고, 방열판(230)은 제1 하우징(210)과 체결부를 통해 결합될 수 있다. 커패시터 모듈(100) 또는 인덕터 모듈(250)은 방열판(230) 및 제1 하우징(210)과 체결부를 통해 결합될 수도 있다. 이때, 볼트 결합할 수 있다. 이를 위하여, 커패시터 모듈(100) 또는 인덕터 모듈(250)의 방열판(230)과 접하는 면에는 결합홀이 형성되고, 결합홀에 대응하는 방열판(230)의 위치에는 결합홈이 형성될 수 있다. 결합홈은 방수를 위하여 뚫려있지 않고, 나사산이 형성된 홈으로 형성되고, 인덕터 방열 모듈인버터 모듈(200)의 결합홀을 통과하여 삽입되는 볼트와 결합될 수 있다. 결합시 방수 방진을 위하여, 실링부재 등 실링구조가 형성될 수 있다.The capacitor module 100 or the inductor module 250 may be coupled to the heat sink 230 through a fastening portion, and the heat sink 230 may be coupled to the first housing 210 through a fastening portion. The capacitor module 100 or the inductor module 250 may be coupled to the heat sink 230 and the first housing 210 through a fastening part. At this time, bolt connection is possible. To this end, a coupling hole may be formed on the surface of the capacitor module 100 or the inductor module 250 in contact with the heat sink 230, and a coupling groove may be formed at a position of the heat sink 230 corresponding to the coupling hole. The coupling groove is not open for waterproofing, but is formed as a threaded groove, and can be coupled with a bolt inserted through the coupling hole of the inductor heat dissipation module inverter module 200. For waterproofing and dustproofing when combined, a sealing structure such as a sealing member may be formed.
앞서 설명한 바와 같이, 커패시터 모듈(100)의 제1 기판(120)은 메인 기판(241)과 방열판(230)의 관통홀을 통과하여 연결되는데, 이때, 커패시터 모듈(100)의 제1 커넥터 또는 제2 커넥터는 SMD 스페이서, 와이어 커넥터, 및 버스바 단자대 중 적어도 하나를 포함할 수 있다. As described above, the first substrate 120 of the capacitor module 100 is connected to the main substrate 241 and the heat sink 230 through a through hole. In this case, the first connector or the first connector of the capacitor module 100 2 The connector may include at least one of an SMD spacer, a wire connector, and a busbar terminal block.
도 11 및 도 12와 같이, 제1 커넥터 또는 제2 커넥터는 SMD 스페이서(151)로 형성될 수 있다. 내부에 빈 공간이 형성되는 SMD 스페이서(151)로 제1 기판(120)과 메인 기판(241)의 연결을 지지하고, SMD 스페이서(151)를 관통하는 버스바(BusBar) 또는 하네스(Harness)를 통해 연결할 수 있다. SMD 스페이서(151)를 이용하는 경우, 별도의 관통홀(231)이 형성되지 않을 수 있다.11 and 12, the first connector or the second connector may be formed of an SMD spacer 151. The connection between the first board 120 and the main board 241 is supported by an SMD spacer 151 with an empty space formed inside, and a bus bar or harness penetrating the SMD spacer 151 is installed. You can connect through. When using the SMD spacer 151, a separate through hole 231 may not be formed.
또는, 도 13 및 도 14와 같이, 제1 커넥터 또는 제2 커넥터는 와이어 커넥터(152)로 형성될 수 있다. 내부에 와이어 관통홀이 형성되는 와이어 커넥터(152)로 방열판(230)의 관통홀(231)을 통과하여 제1 기판(120)과 메인 기판(241)의 연결을 지지하고, 와이어 커넥터(152)를 관통하는 와이어를 통해 연결할 수 있다.Alternatively, as shown in FIGS. 13 and 14, the first connector or the second connector may be formed as a wire connector 152. The wire connector 152, which has a wire through-hole formed inside, passes through the through-hole 231 of the heat sink 230 to support the connection between the first board 120 and the main board 241, and the wire connector 152 It can be connected through a wire that passes through.
또는, 도 15 및 도 16과 같이, 제1 커넥터 또는 제2 커넥터는 버스바 단자대(153)로 형성될 수 있다. 메인 기판(241)과 제1 기판(120)에 각각 버스바 단자대(153)를 배치하고, 방열판(230)의 관통홀(231)을 버스바(153)로 통과하고, 나사(155)로 고정함으로써 버스바(153)를 통해 연결할 수 있다.Alternatively, as shown in FIGS. 15 and 16, the first connector or the second connector may be formed as a bus bar terminal block 153. A bus bar terminal block 153 is placed on the main board 241 and the first board 120, respectively, passes through the through hole 231 of the heat sink 230 through the bus bar 153, and is fixed with a screw 155. By doing so, it can be connected through the bus bar 153.
이외에 다양한 방식으로 별도의 기판인 제1 기판(120)과 메인 기판(241)을 연결할 수 있다.In addition, the first substrate 120, which is a separate substrate, and the main substrate 241 can be connected in various ways.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details such as specific components and limited embodiments and drawings, but this is only provided to facilitate a more general understanding of the present invention, and the present invention is not limited to the above embodiments. , those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (10)

  1. 내부에 커패시터가 배치되는 수용홈을 포함하는 하우징;A housing including a receiving groove in which a capacitor is disposed;
    상기 수용홈 상부에 배치되는 기판; 및A substrate disposed above the receiving groove; and
    상기 기판의 일면에 실장되고, 상기 수용홈에 수용되는 적어도 하나의 커패시터를 포함하는 커패시터 모듈.A capacitor module mounted on one surface of the substrate and including at least one capacitor accommodated in the receiving groove.
  2. 제1항에 있어서,According to paragraph 1,
    상기 기판은 타면에 상기 커패시터와 전기적으로 연결되는 복수의 제1 커넥터가 배치되는 커패시터 모듈.A capacitor module in which a plurality of first connectors electrically connected to the capacitor are disposed on the other side of the substrate.
  3. 제1항에 있어서, According to paragraph 1,
    상기 커패시터는 링크(Link) 커패시터를 포함하는 커패시터 모듈.The capacitor is a capacitor module including a link capacitor.
  4. 제1항에 있어서,According to paragraph 1,
    상기 수용홈 외면으로부터 연장되는 복수의 방열핀을 포함하는 커패시터 모듈.A capacitor module including a plurality of heat dissipation fins extending from an outer surface of the receiving groove.
  5. 제1항에 있어서,According to paragraph 1,
    상기 수용홈은,The receiving groove is,
    베이스;Base;
    상기 베이스로부터 연장되고 서로 마주보는 제1 측벽과 제2 측벽; 및first and second side walls extending from the base and facing each other; and
    상기 제1 측벽 및 상기 제2 측벽과 수직이고 서로 마주보는 제3 측벽과 제4 측벽을 포함하는 커패시터 모듈.A capacitor module including a third side wall and a fourth side wall that are perpendicular to the first side wall and the second side wall and face each other.
  6. 제1항에 있어서,According to paragraph 1,
    상기 수용홈은,The receiving groove is,
    상기 커패시터가 내부에 수용되는 제1 수용홈; 및a first receiving groove in which the capacitor is accommodated; and
    내부에 인덕터가 배치되고, 상기 제1 수용홈과 이격되는 제2 수용홈을 포함하고,An inductor is disposed therein, and includes a second receiving groove spaced apart from the first receiving groove,
    상기 기판의 일면과 전기적으로 연결되고, 상기 제2 수용홈에 수용되는 적어도 하나의 인덕터를 포함하는 커패시터 모듈.A capacitor module electrically connected to one surface of the substrate and including at least one inductor accommodated in the second receiving groove.
  7. 제6항에 있어서,According to clause 6,
    상기 제2 수용홈은,The second receiving groove is,
    베이스; 및Base; and
    상기 베이스로부터 연장되고, 원형인 제5 측벽을 포함하는 커패시터 모듈.A capacitor module extending from the base and including a fifth sidewall that is circular.
  8. 제6항에 있어서,According to clause 6,
    상기 인덕터는 두 개의 인덕터를 포함하고,The inductor includes two inductors,
    상기 두 개의 인덕터는 상기 제2 수용홈의 깊이 방향으로 2층으로 적층되고,The two inductors are stacked in two layers in the depth direction of the second receiving groove,
    상기 기판의 일면과 와이어로 연결되는 커패시터 모듈.A capacitor module connected to one side of the board with a wire.
  9. 제6항에 있어서,According to clause 6,
    상기 기판은 타면에 상기 인덕터와 전기적으로 연결되는 복수의 제2 커넥터가 배치되는 커패시터 모듈.A capacitor module in which a plurality of second connectors electrically connected to the inductor are disposed on the other side of the substrate.
  10. 제1항에 있어서,According to paragraph 1,
    상기 수용홈에는 커패시터 또는 인덕터가 수용되어 몰딩되는 커패시터 모듈.A capacitor module in which a capacitor or inductor is accommodated and molded in the receiving groove.
PCT/KR2023/012678 2022-08-30 2023-08-25 Capacitor module and inverter module WO2024049124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0109518 2022-08-30
KR1020220109518A KR20240030454A (en) 2022-08-30 2022-08-30 Capacitor module and inverter module

Publications (1)

Publication Number Publication Date
WO2024049124A1 true WO2024049124A1 (en) 2024-03-07

Family

ID=90098285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012678 WO2024049124A1 (en) 2022-08-30 2023-08-25 Capacitor module and inverter module

Country Status (2)

Country Link
KR (1) KR20240030454A (en)
WO (1) WO2024049124A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041191A (en) * 1996-07-19 1998-02-13 Murata Mfg Co Ltd Variable capacitor and lc composite device employing it
JP2002015950A (en) * 2000-06-30 2002-01-18 Denso Corp Flat capacitor and capacitor device
KR20050094331A (en) * 2004-03-22 2005-09-27 미츠비시덴키 가부시키가이샤 Capacitor mounting structure
JP2015211101A (en) * 2014-04-25 2015-11-24 株式会社指月電機製作所 Electric component
JP2016046861A (en) * 2014-08-20 2016-04-04 株式会社デンソー Power conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043445B3 (en) 2010-11-05 2012-04-19 Semikron Elektronik Gmbh & Co. Kg Capacitor assembly for power electronic apparatus, has spacer and electrical isolating capping material that are arranged such that capacitor is in non contact with metal structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041191A (en) * 1996-07-19 1998-02-13 Murata Mfg Co Ltd Variable capacitor and lc composite device employing it
JP2002015950A (en) * 2000-06-30 2002-01-18 Denso Corp Flat capacitor and capacitor device
KR20050094331A (en) * 2004-03-22 2005-09-27 미츠비시덴키 가부시키가이샤 Capacitor mounting structure
JP2015211101A (en) * 2014-04-25 2015-11-24 株式会社指月電機製作所 Electric component
JP2016046861A (en) * 2014-08-20 2016-04-04 株式会社デンソー Power conversion device

Also Published As

Publication number Publication date
KR20240030454A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2015152637A1 (en) Battery pack comprising tension bar
WO2015152638A1 (en) Battery module array comprising under-base bar
WO2020138821A1 (en) Battery module structured so as to prevent entry of foreign substances, and battery pack and motor vehicle comprising same
WO2012070782A2 (en) Battery pack having a compact structure
WO2011040784A2 (en) Solar photovoltaic device
WO2015026103A1 (en) Battery pack for power storage device
WO2019083149A1 (en) Battery pack and vehicle including same
WO2021002619A2 (en) Battery module and battery pack including same
WO2018159911A1 (en) Inverter device
WO2011002261A2 (en) Solar energy ac generating apparatus
WO2018080181A1 (en) Connector for printed circuit board and battery system comprising printed circuit board and connector
WO2022158662A1 (en) Formation equipment for activating cylindrical secondary battery having cathode and anode on upper surface thereof
WO2020175749A1 (en) Electric motor driving device
WO2024049124A1 (en) Capacitor module and inverter module
WO2014003443A1 (en) Battery module
WO2020256264A1 (en) Battery module and battery pack comprising same
WO2021071053A1 (en) Battery module and battery pack including same
WO2022086075A1 (en) Battery module and battery pack including same
WO2022065672A1 (en) Battery module and battery pack including same
WO2021075689A1 (en) Battery module and battery pack including same
WO2017175966A1 (en) Ultra-capacitor module and printed circuit board module
WO2021075690A1 (en) Battery module
WO2024123094A1 (en) Inverter module
WO2024123093A1 (en) Inverter module
WO2022025735A1 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860801

Country of ref document: EP

Kind code of ref document: A1