WO2024048680A1 - Geopolymer composition, production method therefor, and concrete structure - Google Patents

Geopolymer composition, production method therefor, and concrete structure Download PDF

Info

Publication number
WO2024048680A1
WO2024048680A1 PCT/JP2023/031620 JP2023031620W WO2024048680A1 WO 2024048680 A1 WO2024048680 A1 WO 2024048680A1 JP 2023031620 W JP2023031620 W JP 2023031620W WO 2024048680 A1 WO2024048680 A1 WO 2024048680A1
Authority
WO
WIPO (PCT)
Prior art keywords
geopolymer composition
geopolymer
concrete structure
concrete
less
Prior art date
Application number
PCT/JP2023/031620
Other languages
French (fr)
Japanese (ja)
Inventor
友亮 木作
茂光 知念
照夫 小森
有希 山村
広友 伊藤
由貴子 齋藤
菁 聶
幸宏 倉田
隼人 丸山
美希 磯部
健二 笠原
Original Assignee
株式会社Ihi
株式会社Ihi建材工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi建材工業 filed Critical 株式会社Ihi
Priority claimed from JP2023140114A external-priority patent/JP2024035202A/en
Publication of WO2024048680A1 publication Critical patent/WO2024048680A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment

Definitions

  • the present invention relates to a geopolymer composition used for forming structures in civil engineering, architecture, etc., a method for producing the same, and a concrete structure.
  • the geopolymer composition consists of an amorphous powder (active filler) that is active in alkali, such as fly ash (coal ash), metakaolin, and blast furnace slag, and an alkaline solution (aqueous sodium silicate solution, aqueous potassium silicate solution) to activate it. , sodium hydroxide aqueous solution, and potassium hydroxide aqueous solution) and react with the mixture.
  • Geopolymer concrete has the same strength as cement concrete by adding fine aggregate, coarse aggregate, etc. (see Table 1) in the same way as cement concrete.
  • FA JIS Class 1 fly ash
  • BS pulverized blast furnace slag powder (plain value 4000 cm 2 /g)
  • produced water glass is produced by mixing and melting KOH, SiO 2 and water.
  • the conventional manufacturing method for geopolymer concrete involves first adding powders (active fillers) such as coal ash, blast furnace slag, and metakaolin, aggregates (fine aggregates, coarse aggregates), etc. to a kneading mixer. Add the ingredients (S1), stir for a predetermined time (e.g. 2 minutes) (S2), add an alkaline solution such as water glass (S3), and mix with a mixer for a predetermined time (e.g. 5 minutes). After mixing (S4), kneading is generally completed. Thereafter, the kneaded material is put into a mold, cured for several hours, and then removed from the mold after hardening to form a structure (see, for example, Patent Document 1).
  • active fillers such as coal ash, blast furnace slag, and metakaolin
  • aggregates fine aggregates, coarse aggregates
  • a feature of the geopolymer composition is that it does not contain calcium and has higher acid resistance than cement, and is used, for example, as a material for pedestrian and vehicle boundary blocks in hot spring towns.
  • geopolymer compositions have higher acid resistance than cement, but depending on the combination of composition, raw material conditions, aggregate mixing conditions, etc., geopolymer compositions may have superior acid resistance compared to cement concrete. There is a possibility that it has no gender. For this reason, there has been a problem in that even geopolymer compositions may not be suitable for structures that require acid resistance.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to provide a geopolymer composition, a method for producing the same, and a concrete structure that has consistently superior acid resistance compared to cement concrete. It is in.
  • the present invention provides a geopolymer composition containing an active filler and an alkaline activator as raw materials, the molar ratio of the sum of sodium and potassium to aluminum ((Na+K) /Al) is greater than 0.5 and less than 1.4, the molar ratio of silicon to aluminum (Si/Al) is greater than 1.5 and less than 2.8, and the weight ratio of the total aggregate is made geopolymer.
  • the molar ratio of water to alumina (H 2 O/Al 2 O 3 ) is 15 or less.
  • the applicant's tests confirmed that the geopolymer composition had stable and high acid resistance.
  • the present invention provides the method for producing the geopolymer composition, in which heating curing is carried out at a cumulative temperature (temperature x time) of 180°C/Hr or more in an environment of 50°C or higher, and Applicant's tests have confirmed that in an environment of less than 30°C, high acid resistance can be maintained even at a short age by heating and curing at a cumulative temperature of 14,400°C/Hr or more or for 30 days or more.
  • the present invention provides a concrete structure using the geopolymer composition, in which the portions that come into contact with the acidic solution are formed using the geopolymer composition, and the portions that do not come into contact with the acidic solution are formed using cement concrete. is forming.
  • the geopolymer composition of the present invention always has stable and high acid resistance, so it has a longer service life in an acidic environment than conventional cement concrete compositions or geopolymer concrete that has unstable acid resistance. This reduces the number of times the structure needs to be replaced or repaired. Thereby, it is possible to reduce the environmental load by reducing the amount of materials used, reduce working time, and lower costs. Further, by reducing the corrosion allowance, it is possible to reduce the time and cost required for excavation work at the product installation site, and it is also possible to reduce material costs.
  • the geopolymer composition of the present invention high acid resistance can be maintained even during a short material age, so that the construction period can be shortened. Furthermore, according to the concrete structure using the geopolymer composition of this embodiment, the amount of acid-resistant geopolymer composition used can be minimized, and the cost of the entire concrete structure can be reduced. .
  • Diagram showing a manufacturing process of a geopolymer composition according to an embodiment of the present invention Diagram showing the manufacturing process of conventional geopolymer compositions
  • FIG. 1 shows one embodiment of the present invention, and shows a method for producing a geopolymer composition used for structures in civil engineering, architecture, etc., for example.
  • the geopolymer composition of this embodiment includes an active filler, an alkali activator, and aggregate as raw materials, and after adding and mixing the active filler to an alkaline solution prepared by mixing the alkali activator and water, the aggregate It is produced by adding and mixing.
  • the active filler is a powder that is activated and solidified by mixing with an alkali activator, and is made of amorphous powder active in alkali, such as fly ash (coal ash), metakaolin, and blast furnace slag.
  • Powders of potassium silicate, sodium metasilicate, sodium hydroxide, potassium hydroxide, etc. are used as the alkali activator.
  • Aggregate consists of sand, gravel, artificial aggregate, etc., and is classified into fine aggregate and coarse aggregate depending on the particle size.
  • an alkaline solution is generated by melting an alkaline activator in water (S10).
  • an active filler is added to the alkaline solution produced in step S10 (S11), and mixed with a mixer to produce a geopolymer slurry (S12).
  • aggregate is added to the geopolymer slurry generated in step S12 (S13), and mixed with a mixer (S14) to complete the kneading (S15).
  • Geopolymer concrete is formed by curing and curing at a temperature higher than 0.degree. C. (preferably 60.degree. C.) for 24 hours (preferably 68 hours) or more.
  • the molar ratio of the sum of sodium and potassium to aluminum ((Na+K)/Al) is greater than 0.5 and 1.4 or less
  • silicon and aluminum are (3) the molar ratio of water to alumina (H 2 O/Al 2 O 3 ) in the entire geopolymer composition is 15
  • the geopolymer composition is cured at a cumulative temperature of 180°C/Hr or more in a temperature environment of 50°C or higher, and at a cumulative temperature of 14,400°C/Hr or more in a temperature environment of less than 50°C. Applicant's tests have confirmed that by heating and curing for 30 days, high acid resistance can be maintained even at a short age of 10 days or less.
  • the geopolymer composition of this embodiment always has stable and high acid resistance by satisfying the conditions (1) to (3) above, so it is better than conventional cement concrete compositions or unstable Compared to geopolymer concrete, which has strong acid resistance, it has a longer service life in acidic environments, reducing the number of times structures need to be replaced or repaired. Thereby, it is possible to reduce the environmental load by reducing the amount of materials used, reduce working time, and lower costs. Further, by reducing the corrosion allowance, it is possible to reduce the time and cost required for excavation work at the product installation site, and it is also possible to reduce material costs.
  • a concrete structure using the geopolymer composition of this embodiment a concrete structure in which the part that comes into contact with the acidic solution is formed of the geopolymer composition, and the part that does not come into contact with the acidic solution is made of relatively inexpensive cement concrete.
  • the amount of acid-resistant geopolymer composition used can be minimized, and the cost of the entire concrete structure can be reduced.
  • the geopolymer compositions (paste solidified bodies) of Examples 7 to 11 and Comparative Example 2 used methakarion and silica fume as the binder (active filler).
  • Examples 1 to 11 and Comparative Examples 1 and 2 potassium silicate, sodium metasilicate, and sodium hydroxide were used as the alkaline solution, and pure water was used as the water.
  • H 2 O / Al 2 O 3 in Examples 1 to 11 and Comparative Examples 1 and 2 was 10 in Examples 1 to 3, 6, 7, 9 to 11 and Comparative Examples 1 and 2, 13 in Example 4, In Example 5, it was 12.4, and in Example 8, it was 11.6.
  • Heating curing conditions The heating curing temperature was 60°C in Examples 1 to 10, 45°C in Comparative Example 1, 20°C in Example 11, and 30°C in Comparative Example 2. Further, the heating curing time was 68 hours in Examples 1 to 10 and Comparative Examples 1 and 2, and 3 hours in Example 10. Further, in Example 11, the sample was left at room temperature (20° C.).
  • Test material age The test material age was 10 days or less in Examples 1, 3 to 9 and Comparative Examples 1 and 2, 20 days or more in Example 2, 28 days in Example 10, and 36 days in Example 11.
  • Geopolymer compositions (concrete solidified bodies) of Examples 1 to 6 and Comparative Example 1 were produced by the methods shown in steps (1) to (7) below, and performance tests were conducted.
  • Potassium silicate, sodium metasilicate, and sodium hydroxide are dissolved in pure water and cooled to 20°C or lower.
  • Geopolymer compositions (paste solidified bodies) of Examples 7 to 11 and Comparative Example 2 were produced by the methods shown in steps (1) to (5) below, and performance tests were conducted.
  • Potassium silicate, sodium metasilicate, and sodium hydroxide are dissolved in pure water and cooled to 20°C or lower.
  • Seal and heat cure in a thermostatic chamber Example 11 only was left at room temperature). (5) Curing at room temperature until the test day.
  • Examples 1 to 11 had higher acid resistance than cement concrete.
  • Comparative Examples 1 and 2 which have an integrated temperature of 14,400°C/Hr or more or less than 30 days of heating curing, have low acid resistance. was gotten.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided are: a geopolymer composition which is always superior in acid resistance to cement concrete; a method for producing the geopolymer composition; and a concrete structure. The geopolymer composition is configured so that the molar ratio of the sum of sodium and potassium to aluminum, (Na+K)/Al, in the whole geopolymer composition is higher than 0.5 but not higher than 1.4, the molar ratio of silicon to aluminum, Si/Al, therein is higher than 1.5 but not higher than 2.8, and the molar ratio of water to alumina, H2O/Al2O3, in the whole geopolymer composition is 15 or less. Thus, the geopolymer composition can have stably high acid resistance.

Description

ジオポリマー組成物及びその製造方法並びにコンクリート構造物Geopolymer composition, method for producing the same, and concrete structure
 本発明は、例えば土木、建築等における構造体の形成に用いられるジオポリマー組成物及びその製造方法並びにコンクリート構造物に関するものである。 The present invention relates to a geopolymer composition used for forming structures in civil engineering, architecture, etc., a method for producing the same, and a concrete structure.
 従来、土木、建築等における構造体はコンクリートやモルタルによって形成されるのが一般的であるが、近年、コンクリートやモルタルに代わる材料としてジオポリマー組成物が注目されており、ジオポリマーコンクリートとして鉄道用まくら木、建築物の壁材等、各種構造物への適用が検討されている。 Conventionally, structures in civil engineering, architecture, etc. have generally been made of concrete or mortar, but in recent years, geopolymer compositions have been attracting attention as an alternative material to concrete and mortar, and geopolymer concrete has been used for railways. Application to various structures such as sleepers and building wall materials is being considered.
 ジオポリマー組成物は、フライアッシュ(石炭灰)、メタカオリン、高炉スラグ等、アルカリに活性な非晶質粉体(活性フィラー)とそれを活性化させるアルカリ溶液(ケイ酸ナトリウム水溶液、ケイ酸カリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液)を混合させ、反応させることにより得られる固化体である。ジオポリマーコンクリートは、セメントコンクリートと同様に細骨材、粗骨材等を加えることにより(表1参照)、セメントコンクリートと同等の強度を発現するものである。 The geopolymer composition consists of an amorphous powder (active filler) that is active in alkali, such as fly ash (coal ash), metakaolin, and blast furnace slag, and an alkaline solution (aqueous sodium silicate solution, aqueous potassium silicate solution) to activate it. , sodium hydroxide aqueous solution, and potassium hydroxide aqueous solution) and react with the mixture. Geopolymer concrete has the same strength as cement concrete by adding fine aggregate, coarse aggregate, etc. (see Table 1) in the same way as cement concrete.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、表1において、FAはJIS1種フライアッシュ、BSは高炉スラグ微粉末(プレーン値4000cm2/g)、製作水ガラスはKOH、SiO2及び水を混合溶解して作製したものである。 In Table 1, FA is JIS Class 1 fly ash, BS is pulverized blast furnace slag powder (plain value 4000 cm 2 /g), and produced water glass is produced by mixing and melting KOH, SiO 2 and water.
 ジオポリマーコンクリートの従来の製造方法としては、図2に示すように、まず混練ミキサに石炭灰、高炉スラグ、メタカオリン等の粉体(活性フィラー)、骨材(細骨材,粗骨材)等の材料を投入するとともに(S1)、所定時間(例えば2分間)だけ攪拌した後(S2)、水ガラス等のアルカリ溶液を加え(S3)、所定時間(例えば5分間)だけミキサで練混ぜを行った後(S4)、練混ぜを完了するようにしたものが一般的である。この後、混練物を型枠に投入し、数時間の養生を経て混練物の硬化後に脱型することにより構造体を形成するようにしている(例えば、特許文献1参照。)。 As shown in Figure 2, the conventional manufacturing method for geopolymer concrete involves first adding powders (active fillers) such as coal ash, blast furnace slag, and metakaolin, aggregates (fine aggregates, coarse aggregates), etc. to a kneading mixer. Add the ingredients (S1), stir for a predetermined time (e.g. 2 minutes) (S2), add an alkaline solution such as water glass (S3), and mix with a mixer for a predetermined time (e.g. 5 minutes). After mixing (S4), kneading is generally completed. Thereafter, the kneaded material is put into a mold, cured for several hours, and then removed from the mold after hardening to form a structure (see, for example, Patent Document 1).
 ジオポリマー組成物の特徴はカルシウムを含まないことでセメントよりも耐酸性が高いことであり、例えば温泉街での歩車境界ブロックの材料等に採用されている。 A feature of the geopolymer composition is that it does not contain calcium and has higher acid resistance than cement, and is used, for example, as a material for pedestrian and vehicle boundary blocks in hot spring towns.
特許第5091519号公報Patent No. 5091519
 前述のように、ジオポリマー組成物がセメントよりも高い耐酸性を有することは知られているが、組成、原料条件、骨材配合条件等の組み合わせによっては、セメントコンクリートと比較して優れた耐酸性を有しない可能性がある。このため、ジオポリマー組成物であっても耐酸性を要求される構造物に適さない場合があるという課題があった。 As mentioned above, it is known that geopolymer compositions have higher acid resistance than cement, but depending on the combination of composition, raw material conditions, aggregate mixing conditions, etc., geopolymer compositions may have superior acid resistance compared to cement concrete. There is a possibility that it has no gender. For this reason, there has been a problem in that even geopolymer compositions may not be suitable for structures that require acid resistance.
 本発明は前記課題に鑑みてなされたものであり、その目的とするところは、セメントコンクリートと比較して常に優れた耐酸性を有するジオポリマー組成物及びその製造方法並びにコンクリート構造物を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a geopolymer composition, a method for producing the same, and a concrete structure that has consistently superior acid resistance compared to cement concrete. It is in.
 本発明は前記目的を達成するために、原料に活性フィラーとアルカリ活性剤とを含むジオポリマー組成物において、ジオポリマー組成物全体における、ナトリウム及びカリウムの合計とアルミニウムとのモル比((Na+K)/Al)を0.5よりも大きく1.4以下とし、ケイ素とアルミニウムとのモル比(Si/Al)を1.5よりも大きく2.8以下とし、総骨材の重量比率をジオポリマースラリーに対して0.6以上であって且つ細骨材の最密充填比率が粗骨材の最密充填比率よりも大きくし、ジオポリマー組成物全体における水とアルミナとのモル比(H2O/Al23)を15以下としている。 In order to achieve the above object, the present invention provides a geopolymer composition containing an active filler and an alkaline activator as raw materials, the molar ratio of the sum of sodium and potassium to aluminum ((Na+K) /Al) is greater than 0.5 and less than 1.4, the molar ratio of silicon to aluminum (Si/Al) is greater than 1.5 and less than 2.8, and the weight ratio of the total aggregate is made geopolymer. The molar ratio of water to alumina (H 2 O/Al 2 O 3 ) is 15 or less.
 これにより、前記ジオポリマー組成物が安定して高い耐酸性を有することが出願人の試験により確認された。 As a result, the applicant's tests confirmed that the geopolymer composition had stable and high acid resistance.
 また、本発明は前記目的を達成するために、前記ジオポリマー組成物の製造方法において、50℃以上の環境では積算温度(温度×時間)で180℃・Hr以上の加温養生をし、50℃未満の環境では積算温度で14400℃・Hr以上または30日以上の加温養生をすることにより、短期材齢でも高い耐酸性を保持することが出願人の試験により確認された。 Further, in order to achieve the above object, the present invention provides the method for producing the geopolymer composition, in which heating curing is carried out at a cumulative temperature (temperature x time) of 180°C/Hr or more in an environment of 50°C or higher, and Applicant's tests have confirmed that in an environment of less than 30°C, high acid resistance can be maintained even at a short age by heating and curing at a cumulative temperature of 14,400°C/Hr or more or for 30 days or more.
 また、本発明は前記目的を達成するために、前記ジオポリマー組成物を用いたコンクリート構造物において、酸性溶液に触れる部分をジオポリマー組成物によって形成し、酸性溶液に触れない部分をセメントコンクリートによって形成している。 Further, in order to achieve the above object, the present invention provides a concrete structure using the geopolymer composition, in which the portions that come into contact with the acidic solution are formed using the geopolymer composition, and the portions that do not come into contact with the acidic solution are formed using cement concrete. is forming.
 これにより、酸性溶液に触れる部分のみがジオポリマー組成物によって形成されることから、耐酸性ジオポリマー組成物の使用量を最小限にすることが可能となる。 As a result, only the portion that comes into contact with the acidic solution is formed of the geopolymer composition, making it possible to minimize the amount of acid-resistant geopolymer composition used.
 本発明のジオポリマー組成物によれば、常に安定して高い耐酸性を有するので、従来のセメントコンクリート組成物、または不安定な耐酸性を有するジオポリマーコンクリートに比べ、酸性環境下での使用寿命が長く、構造物の交換や修繕の回数を減らすことができる。これにより、材料使用量削減による環境負荷の低減、作業時間の削減、及び低コスト化を図ることができる。また、腐食代を削減することにより、製品設置場所での掘削作業に要する時間及びコストを低減することができるとともに、材料コストの低減も図ることができる。 The geopolymer composition of the present invention always has stable and high acid resistance, so it has a longer service life in an acidic environment than conventional cement concrete compositions or geopolymer concrete that has unstable acid resistance. This reduces the number of times the structure needs to be replaced or repaired. Thereby, it is possible to reduce the environmental load by reducing the amount of materials used, reduce working time, and lower costs. Further, by reducing the corrosion allowance, it is possible to reduce the time and cost required for excavation work at the product installation site, and it is also possible to reduce material costs.
 また、本発明のジオポリマー組成物によれば、短期材齢でも高い耐酸性を保持することができるので、工期の短縮化を図ることができる。
 また、本実施形態のジオポリマー組成物を用いたコンクリート構造物によれば、耐酸性ジオポリマー組成物の使用量を最小限にすることができ、コンクリート構造物全体のコストを削減することができる。
Further, according to the geopolymer composition of the present invention, high acid resistance can be maintained even during a short material age, so that the construction period can be shortened.
Furthermore, according to the concrete structure using the geopolymer composition of this embodiment, the amount of acid-resistant geopolymer composition used can be minimized, and the cost of the entire concrete structure can be reduced. .
本発明の一実施形態に係るジオポリマー組成物の製造工程を示す図Diagram showing a manufacturing process of a geopolymer composition according to an embodiment of the present invention 従来のジオポリマー組成物の製造工程を示す図Diagram showing the manufacturing process of conventional geopolymer compositions
 図1は本発明の一実施形態を示すもので、例えば土木、建築等における構造体に用いられるジオポリマー組成物の製造方法を示すものである。 FIG. 1 shows one embodiment of the present invention, and shows a method for producing a geopolymer composition used for structures in civil engineering, architecture, etc., for example.
 本実施形態のジオポリマー組成物は、原料に活性フィラーとアルカリ活性剤と骨材とを含み、アルカリ活性剤と水とを混合してなるアルカリ溶液に活性フィラーを加えて混合した後、骨材を加えて練り混ぜることにより生成される。 The geopolymer composition of this embodiment includes an active filler, an alkali activator, and aggregate as raw materials, and after adding and mixing the active filler to an alkaline solution prepared by mixing the alkali activator and water, the aggregate It is produced by adding and mixing.
 活性フィラーは、アルカリ活性剤と混合することにより活性化されて固化する粉体であり、例えばフライアッシュ(石炭灰)、メタカオリン、高炉スラグ等、アルカリに活性な非晶質粉体からなる。 The active filler is a powder that is activated and solidified by mixing with an alkali activator, and is made of amorphous powder active in alkali, such as fly ash (coal ash), metakaolin, and blast furnace slag.
 アルカリ活性剤には、ケイ酸カリウム、メタケイ酸ナトリウム、水酸化ナトリウム、水酸化カリウム等の粉体が用いられる。 Powders of potassium silicate, sodium metasilicate, sodium hydroxide, potassium hydroxide, etc. are used as the alkali activator.
 骨材は、砂、砂利または人工骨材等からなり、粒子の大きさに応じて細骨材と粗骨材に分類される。 Aggregate consists of sand, gravel, artificial aggregate, etc., and is classified into fine aggregate and coarse aggregate depending on the particle size.
 以下、図1を参照し、本実施形態におけるジオポリマー組成物の製造方法について説明する。 Hereinafter, with reference to FIG. 1, a method for producing a geopolymer composition in this embodiment will be described.
 まず、アルカリ活性剤を水に溶融させることによりアルカリ溶液を生成する(S10)。次に、工程S10で生成したアルカリ溶液に活性フィラーを投入し(S11)、ミキサで練り混ぜることによりジオポリマースラリーを生成する(S12)。続いて、工程S12で生成したジオポリマースラリーに骨材を投入し(S13)、ミキサで練り混ぜることにより(S14)、練混ぜを完了させ(S15)、これを型枠等に注入し、45℃(好ましくは60℃)よりも高い温度で24時間(好ましくは68時間)以上、加温養生して硬化させることにより、ジオポリマーコンクリートが形成される。 First, an alkaline solution is generated by melting an alkaline activator in water (S10). Next, an active filler is added to the alkaline solution produced in step S10 (S11), and mixed with a mixer to produce a geopolymer slurry (S12). Subsequently, aggregate is added to the geopolymer slurry generated in step S12 (S13), and mixed with a mixer (S14) to complete the kneading (S15). Geopolymer concrete is formed by curing and curing at a temperature higher than 0.degree. C. (preferably 60.degree. C.) for 24 hours (preferably 68 hours) or more.
 この場合、ジオポリマー組成物全体において、(1)ナトリウム及びカリウムの合計とアルミニウムとのモル比((Na+K)/Al)を0.5よりも大きく1.4以下とし、(2)ケイ素とアルミニウムとのモル比(Si/Al)を1.5よりも大きく2.8以下とし、(3)ジオポリマー組成物全体における水とアルミナとのモル比(H2O/Al23)を15以下とすることにより、ジオポリマー組成物が安定して高い耐酸性を有することが出願人の試験により確認された。 In this case, in the entire geopolymer composition, (1) the molar ratio of the sum of sodium and potassium to aluminum ((Na+K)/Al) is greater than 0.5 and 1.4 or less, and (2) silicon and aluminum are (3) the molar ratio of water to alumina (H 2 O/Al 2 O 3 ) in the entire geopolymer composition is 15 The applicant's tests have confirmed that the geopolymer composition has stable and high acid resistance when the following conditions are met.
 また、ジオポリマー組成物を、原料の練混ぜ後に、50℃以上の温度環境では積算温度で180℃・Hr以上加温養生し、50℃未満の温度環境では積算温度で14400℃・Hr以上または30日の加温養生をすることにより、10日以下のような短期材齢でも高い耐酸性を保持することが出願人の試験により確認された。 In addition, after kneading the raw materials, the geopolymer composition is cured at a cumulative temperature of 180°C/Hr or more in a temperature environment of 50°C or higher, and at a cumulative temperature of 14,400°C/Hr or more in a temperature environment of less than 50°C. Applicant's tests have confirmed that by heating and curing for 30 days, high acid resistance can be maintained even at a short age of 10 days or less.
 このように、本実施形態のジオポリマー組成物は、前記(1)~(3)の条件を満たすことにより、常に安定して高い耐酸性を有するので、従来のセメントコンクリート組成物、または不安定な耐酸性を有するジオポリマーコンクリートに比べ、酸性環境下での使用寿命が長く、構造物の交換や修繕の回数を減らすことができる。これにより、材料使用量削減による環境負荷の低減、作業時間の削減、及び低コスト化を図ることができる。また、腐食代を削減することにより、製品設置場所での掘削作業に要する時間及びコストを低減することができるとともに、材料コストの低減も図ることができる。 In this way, the geopolymer composition of this embodiment always has stable and high acid resistance by satisfying the conditions (1) to (3) above, so it is better than conventional cement concrete compositions or unstable Compared to geopolymer concrete, which has strong acid resistance, it has a longer service life in acidic environments, reducing the number of times structures need to be replaced or repaired. Thereby, it is possible to reduce the environmental load by reducing the amount of materials used, reduce working time, and lower costs. Further, by reducing the corrosion allowance, it is possible to reduce the time and cost required for excavation work at the product installation site, and it is also possible to reduce material costs.
 更に、原料の練混ぜ後に加温養生することにより、短期材齢でも高い耐酸性を保持することができるので、工期の短縮化を図ることができる。 Furthermore, by heating and curing the raw materials after kneading, it is possible to maintain high acid resistance even during a short material age, thereby shortening the construction period.
 また、本実施形態のジオポリマー組成物を用いたコンクリート構造物として、酸性溶液に触れる部分をジオポリマー組成物によって形成し、酸性溶液に触れない部分を比較的安価なセメントコンクリートによって形成したコンクリート構造物を用いることにより、耐酸性ジオポリマー組成物の使用量を最小限にすることができ、コンクリート構造物全体のコストを削減することができる。 In addition, as a concrete structure using the geopolymer composition of this embodiment, a concrete structure in which the part that comes into contact with the acidic solution is formed of the geopolymer composition, and the part that does not come into contact with the acidic solution is made of relatively inexpensive cement concrete. By using this material, the amount of acid-resistant geopolymer composition used can be minimized, and the cost of the entire concrete structure can be reduced.
 尚、前記実施形態は本発明の一実施形態であり、本発明は前記実施形態に記載されたものに限定されない。 Note that the above embodiment is one embodiment of the present invention, and the present invention is not limited to what is described in the above embodiment.
 以下、本発明の実施例1~6及び比較例1、2を示す。尚、本発明はこれら実施例に限定されない。 Examples 1 to 6 of the present invention and Comparative Examples 1 and 2 are shown below. Note that the present invention is not limited to these examples.
 [使用材料]
 実施例1~6及び比較例1のジオポリマー組成物(コンクリート固化体)は、結合材(活性フィラー)にメタカリオン及びシリカフュームを用い、骨材に細骨材及び粗骨材を用いた。
[Materials used]
In the geopolymer compositions (concrete solidified bodies) of Examples 1 to 6 and Comparative Example 1, methakarion and silica fume were used as the binder (active filler), and fine aggregate and coarse aggregate were used as the aggregate.
 実施例7~11及び比較例2のジオポリマー組成物(ペースト固化体)は、結合材(活性フィラー)にメタカリオン及びシリカフュームを用いた。 The geopolymer compositions (paste solidified bodies) of Examples 7 to 11 and Comparative Example 2 used methakarion and silica fume as the binder (active filler).
 また、実施例1~11及び比較例1、2では、アルカリ溶液として、ケイ酸カリウム、メタケイ酸ナトリウム及び水酸化ナトリウムを用い、水には純水を用いた。 Furthermore, in Examples 1 to 11 and Comparative Examples 1 and 2, potassium silicate, sodium metasilicate, and sodium hydroxide were used as the alkaline solution, and pure water was used as the water.
 [原子量のモル比]
 実施例1~11及び比較例1、2におけるSi/Alは、実施例1~4、6、7、9~11及び比較例1、2では2.2、実施例5では2.8、実施例8では1.8とした。
[Mole ratio of atomic weight]
Si/Al in Examples 1 to 11 and Comparative Examples 1 and 2 was 2.2 in Examples 1 to 4, 6, 7, 9 to 11 and Comparative Examples 1 and 2, 2.8 in Example 5, and In Example 8, it was set to 1.8.
 実施例1~11及び比較例1、2における(Na+K)/Alは、実施例1、2、4、5、7、10、11及び比較例1、2では1、実施例3、9では1.2、実施例6では0.6、実施例8では0.8とした。 (Na+K)/Al in Examples 1 to 11 and Comparative Examples 1 and 2 was 1 in Examples 1, 2, 4, 5, 7, 10, 11 and Comparative Examples 1 and 2, and 1 in Examples 3 and 9. .2, 0.6 in Example 6, and 0.8 in Example 8.
 実施例1~11及び比較例1、2におけるH2O/Al23は、実施例1~3、6、7、9~11及び比較例1、2では10、実施例4では13、実施例5では12.4、実施例8では11.6とした。 H 2 O / Al 2 O 3 in Examples 1 to 11 and Comparative Examples 1 and 2 was 10 in Examples 1 to 3, 6, 7, 9 to 11 and Comparative Examples 1 and 2, 13 in Example 4, In Example 5, it was 12.4, and in Example 8, it was 11.6.
 [骨材の割合]
 実施例1~6及び比較例1におけるジオポリマースラリーに対する総骨材の重量比率は、何れも0.70とした。
[Ratio of aggregate]
The weight ratio of total aggregate to geopolymer slurry in Examples 1 to 6 and Comparative Example 1 was 0.70.
 [加温養生条件]
 加温養生の温度は、実施例1~10では60℃、比較例1では45℃、実施例11では20℃、比較例2では30℃とした。また、加温養生の時間は、実施例1~10及び比較例1、2では68時間、実施例10では3時間とした。また、実施例11では常温(20℃)で放置した。
[Heating curing conditions]
The heating curing temperature was 60°C in Examples 1 to 10, 45°C in Comparative Example 1, 20°C in Example 11, and 30°C in Comparative Example 2. Further, the heating curing time was 68 hours in Examples 1 to 10 and Comparative Examples 1 and 2, and 3 hours in Example 10. Further, in Example 11, the sample was left at room temperature (20° C.).
 [試験材齢]
 試験材齢は、実施例1、3~9及び比較例1、2では10日以下、実施例2では20日以上、実施例10では28日、実施例11では36日とした。
[Test material age]
The test material age was 10 days or less in Examples 1, 3 to 9 and Comparative Examples 1 and 2, 20 days or more in Example 2, 28 days in Example 10, and 36 days in Example 11.
 [作製方法1]
 実施例1~6及び比較例1のジオポリマー組成物(コンクリート固化体)を以下の工程(1)~(7)に示す方法により作製し、性能試験を行った。
(1)純水にケイ酸カリウム、メタケイ酸ナトリウム、水酸化ナトリウムを溶解させ、20℃以下まで冷却する。
(2)スタンドミキサを用いて、前記工程(1)の冷却アルカリ溶液と結合材(活性フィラー)とを混合する。
(3)パン型ミキサを用いて、前記工程(2)のジオポリマースラリーと予め空練りした骨材とを混合する。
(4)練り終わったジオポリマーコンクリートをモールドに充填する。
脱気を行う。
(5)恒温器により封緘加温養生を行う。
(7)自然冷却の後、試験日まで室温養生を行う。
[Preparation method 1]
Geopolymer compositions (concrete solidified bodies) of Examples 1 to 6 and Comparative Example 1 were produced by the methods shown in steps (1) to (7) below, and performance tests were conducted.
(1) Potassium silicate, sodium metasilicate, and sodium hydroxide are dissolved in pure water and cooled to 20°C or lower.
(2) Using a stand mixer, mix the cooled alkaline solution from step (1) and the binder (active filler).
(3) Using a pan-type mixer, mix the geopolymer slurry from step (2) with the pre-mixed aggregate.
(4) Fill the mold with the geopolymer concrete that has been kneaded.
Perform deaeration.
(5) Seal and heat cure using a thermostat.
(7) After natural cooling, cure at room temperature until the test day.
 [作製方法2]
 実施例7~11及び比較例2のジオポリマー組成物(ペースト固化体)を以下の工程(1)~(5)に示す方法により作製し、性能試験を行った。
(1)純水にケイ酸カリウム、メタケイ酸ナトリウム、水酸化ナトリウムを溶解させ、20℃以下まで冷却する。
(2)スタンドミキサを用いて、前記工程(1)の冷却アルカリ溶液と結合材(活性フィラー)とを混合する。
(3)練り終わったジオポリマーペーストをモールドに充填する。
脱気を行う。
(4)恒温器により封緘加温養生を行う(実施例11のみ常温で放置)。
(5)試験日まで室温養生を行う。
[Preparation method 2]
Geopolymer compositions (paste solidified bodies) of Examples 7 to 11 and Comparative Example 2 were produced by the methods shown in steps (1) to (5) below, and performance tests were conducted.
(1) Potassium silicate, sodium metasilicate, and sodium hydroxide are dissolved in pure water and cooled to 20°C or lower.
(2) Using a stand mixer, mix the cooled alkaline solution from step (1) and the binder (active filler).
(3) Fill the mold with the kneaded geopolymer paste.
Perform deaeration.
(4) Seal and heat cure in a thermostatic chamber (Example 11 only was left at room temperature).
(5) Curing at room temperature until the test day.
 [試験結果]
 実施例1~6及び比較例1、実施例7~11及び比較例2について硫酸浸漬試験を行った結果を以下の表2及び表3にそれぞれ示す。硫酸浸漬試験には直径50mm、厚さ10mmのサンプルを用いた。
[Test results]
The results of the sulfuric acid immersion test for Examples 1 to 6, Comparative Example 1, Examples 7 to 11, and Comparative Example 2 are shown in Tables 2 and 3 below, respectively. A sample with a diameter of 50 mm and a thickness of 10 mm was used for the sulfuric acid immersion test.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験結果によれば、実施例1~11はセメントコンクリートよりも高い耐酸性を有することが確認された。また、ジオポリマー固化体であっても、50℃未満の温度環境の場合、積算温度で14400℃・Hr以上または30日の加温養生に満たない比較例1及び2は耐酸性が低いという結果が得られた。 According to the test results, it was confirmed that Examples 1 to 11 had higher acid resistance than cement concrete. In addition, even with geopolymer solidification, in a temperature environment of less than 50°C, Comparative Examples 1 and 2, which have an integrated temperature of 14,400°C/Hr or more or less than 30 days of heating curing, have low acid resistance. was gotten.

Claims (4)

  1.  原料に活性フィラーとアルカリ活性剤とを含むジオポリマー組成物において、
     ジオポリマー組成物全体におけるナトリウム及びカリウムの合計とアルミニウムとのモル比((Na+K)/Al)が0.5よりも大きく1.4以下であり、
     ジオポリマー組成物全体におけるケイ素とアルミニウムとのモル比(Si/Al)が1.5よりも大きく2.8以下であり、
     ジオポリマー組成物全体における水とアルミナとのモル比(H2O/Al23)が15以下である
     ことを特徴とするジオポリマー組成物。
    In a geopolymer composition containing an active filler and an alkaline activator as raw materials,
    The molar ratio ((Na+K)/Al) of the sum of sodium and potassium to aluminum in the entire geopolymer composition is greater than 0.5 and less than or equal to 1.4,
    The molar ratio of silicon to aluminum (Si/Al) in the entire geopolymer composition is greater than 1.5 and less than or equal to 2.8,
    A geopolymer composition characterized in that the molar ratio of water to alumina (H 2 O/Al 2 O 3 ) in the entire geopolymer composition is 15 or less.
  2.  前記原料は骨材を含む
     ことを特徴とする請求項1記載のジオポリマー組成物。
    The geopolymer composition according to claim 1, wherein the raw material includes aggregate.
  3.  請求項1または2記載のジオポリマー組成物を原料の練混ぜ後に、50℃以上の温度環境では積算温度で180℃・Hr以上の加温養生をし、50℃未満の温度環境では積算温度で14400℃・Hr以上または30日以上の加温養生をする
     ことを特徴とするジオポリマー組成物の製造方法。
    After kneading the raw materials, the geopolymer composition according to claim 1 or 2 is heated and cured at a cumulative temperature of 180°C/Hr or more in a temperature environment of 50°C or higher, and at a cumulative temperature of 180°C/Hr or higher in a temperature environment of less than 50°C. A method for producing a geopolymer composition, which comprises heating and curing at 14,400° C./Hr or more or for 30 days or more.
  4.  請求項1または2記載のジオポリマー組成物を用いたコンクリート構造物において、
     酸性溶液に触れる部分をジオポリマー組成物によって形成し、酸性溶液に触れない部分をセメントコンクリートによって形成した
     ことを特徴とするコンクリート構造物。
    A concrete structure using the geopolymer composition according to claim 1 or 2,
    A concrete structure characterized in that a part that comes into contact with an acidic solution is made of a geopolymer composition, and a part that does not come into contact with an acidic solution is made of cement concrete.
PCT/JP2023/031620 2022-08-31 2023-08-30 Geopolymer composition, production method therefor, and concrete structure WO2024048680A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022137976 2022-08-31
JP2022-137976 2022-08-31
JP2023-140114 2023-08-30
JP2023140114A JP2024035202A (en) 2022-08-31 2023-08-30 Geopolymer composition, method for producing the same, and concrete structure

Publications (1)

Publication Number Publication Date
WO2024048680A1 true WO2024048680A1 (en) 2024-03-07

Family

ID=90099705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031620 WO2024048680A1 (en) 2022-08-31 2023-08-30 Geopolymer composition, production method therefor, and concrete structure

Country Status (1)

Country Link
WO (1) WO2024048680A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280850A (en) * 1990-06-21 1992-10-06 Suzuki Sangyo Kk Cementing composition and its use
JP2008239446A (en) * 2007-03-28 2008-10-09 Railway Technical Res Inst Geopolymer composition and its production method
JP2011088823A (en) * 2007-02-23 2011-05-06 Doboku Chishitsu Kk Method for producing hydraulic solidifying material, and acid resistant concrete
WO2011072777A1 (en) * 2009-12-16 2011-06-23 Outotec Oyj Process for producing geopolymers
JP2022062487A (en) * 2020-10-08 2022-04-20 アドバンエンジ株式会社 Geopolymer composition for solidifying radioactive waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280850A (en) * 1990-06-21 1992-10-06 Suzuki Sangyo Kk Cementing composition and its use
JP2011088823A (en) * 2007-02-23 2011-05-06 Doboku Chishitsu Kk Method for producing hydraulic solidifying material, and acid resistant concrete
JP2008239446A (en) * 2007-03-28 2008-10-09 Railway Technical Res Inst Geopolymer composition and its production method
WO2011072777A1 (en) * 2009-12-16 2011-06-23 Outotec Oyj Process for producing geopolymers
JP2022062487A (en) * 2020-10-08 2022-04-20 アドバンエンジ株式会社 Geopolymer composition for solidifying radioactive waste

Similar Documents

Publication Publication Date Title
CN107265937B (en) Geopolymer composite for ultra-high performance concrete
JP5733531B2 (en) Alkali active binder containing no cement, method for producing mortar using the same, and method for producing alkali active reinforced mortar containing no cement
JP2019521059A (en) Pumpable geopolymer composition for well sealing applications
JP4677824B2 (en) Acid resistant grout composition
US10494300B2 (en) Concrete compositions and method for making same
AU2010323416A1 (en) Inorganic binder system for the production of chemically resistant construction chemistry products
CN105073681A (en) Composition for use as a two component back filled grout comprising extracted silicate
JP2004168640A (en) Water glass for water glass-slag concrete, its manufacturing method, and water glass-slag concrete
JP2013001580A (en) Geopolymer composition and method for producing the same
CN114230249B (en) Inorganic polymer mortar and preparation method thereof
JP6408454B2 (en) Geopolymer composition and method for producing the same
JP4616112B2 (en) Cement quick setting material and cement composition
WO2024048680A1 (en) Geopolymer composition, production method therefor, and concrete structure
JP3382754B2 (en) Cement composition, hardened cement body using the same, and method for producing the same
CN112159130A (en) Geopolymer cementing material for temporary spray anchor support engineering and preparation method thereof
JP2024035202A (en) Geopolymer composition, method for producing the same, and concrete structure
WO2023186344A1 (en) Supplementary cementitious materials from recycled cement paste
JP2004210557A (en) Grout composition
CN110885204B (en) Anti-cracking reinforcing material for long-life concrete product and preparation method and application thereof
CN110698088B (en) Retarded portland cement and preparation method thereof
JP4616111B2 (en) Quick setting material for cement and quick hardening cement composition
JP6831976B2 (en) Shrinkage reducing agent for geopolymer and cured geopolymer
JP2012240852A (en) Method for producing geopolymer cured body having controlled coagulation start time
JP6729875B2 (en) Construction method of support structure
JP2018177599A (en) Cement mortal/concrete composition and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860442

Country of ref document: EP

Kind code of ref document: A1