WO2024048573A1 - Method for producing positive electrode active material - Google Patents

Method for producing positive electrode active material Download PDF

Info

Publication number
WO2024048573A1
WO2024048573A1 PCT/JP2023/031198 JP2023031198W WO2024048573A1 WO 2024048573 A1 WO2024048573 A1 WO 2024048573A1 JP 2023031198 W JP2023031198 W JP 2023031198W WO 2024048573 A1 WO2024048573 A1 WO 2024048573A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid component
active material
electrode active
liquid
Prior art date
Application number
PCT/JP2023/031198
Other languages
French (fr)
Japanese (ja)
Inventor
竹元 毬恵 滝口
哲 島野
Original Assignee
住友化学株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人京都大学 filed Critical 住友化学株式会社
Priority to JP2023552366A priority Critical patent/JP7394268B1/en
Publication of WO2024048573A1 publication Critical patent/WO2024048573A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material.
  • the positive electrode active materials of batteries contain rare metal components such as cobalt, nickel, manganese, and lithium.
  • the positive electrode active materials of non-aqueous electrolyte secondary batteries contain compounds whose main components are the rare metal components mentioned above. is being used. In order to conserve the resources of rare metal components, there is a need for a method of reproducing rare metal components from secondary battery waste materials.
  • Patent Document 1 discloses that an electrode mixture and an activation treatment agent containing an alkali metal compound are mixed, the mixture is heated to decompose the binder, and the decomposed products and the activation treatment agent are removed with water or the like.
  • a method for recovering a positive electrode active material is disclosed. This method is cost-effective in that the positive electrode active material is directly recovered from battery waste material without using organic solvents.
  • the recycled positive electrode active material in order to suitably reuse the recycled positive electrode active material, it is required to suppress the deterioration of the positive electrode active material before and after the recycling process. Deterioration of the positive electrode active material is undesirable because it leads to a decrease in the performance of a battery using the recycled positive electrode active material, such as a decrease in charge/discharge capacity and an increase in internal resistance.
  • An object of the present invention is to provide a method for producing an active material that can suppress deterioration of the active material.
  • a method for producing a positive electrode active material including the following steps. (1) An electrode composite material containing a positive electrode active material, a binder material, and an electrolyte, from which at least a portion of the electrolyte has been removed by contact with an electrolyte cleaning solvent, contains a potassium compound and a sodium compound selected from the group consisting of a potassium compound and a sodium compound. Step (2) of mixing an activating agent containing at least one compound contained in the mixture by heating the resulting mixture to a holding temperature equal to or higher than the melting start temperature of the activating agent.
  • Step (3) of activating the positive electrode active material Bringing the heated mixture into contact with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then converting the slurry into a solid component and a liquid component.
  • This is a separation step in which the total content of potassium and sodium in the liquid component after separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after separation is 1.0% by mass.
  • the positive electrode active material is a composite oxide containing one or more elements selected from element group 1 below and one or more elements selected from element group 2 below. the method of.
  • Element group 1 Ni, Co, Mn, Fe, Al, P
  • Element group 2 Li, Na, K, Ca, Sr, Ba, Mg
  • step (3) the heated mixture is brought into contact with a liquid containing water such that the concentration of the solid component relative to the volume of the slurry is 12 to 1000 g/L, [1] to [ 3].
  • step (3) The method according to any one of [1] to [4], wherein in step (3), the contact time between the solid component and the liquid component is 4 minutes or more and less than 24 hours.
  • step (3) The method according to any one of [1] to [5], wherein in step (3), the heated mixture and the water-containing liquid are stirred to obtain the slurry.
  • This is a step in which a slurry containing a solid component and a liquid component is obtained by contacting with a liquid component, and then the slurry is separated into a solid component and a liquid component, and the amount of P in the liquid component after separation is 0.0020 to 2. .0% by mass, the amount of F is 0.01 to 7.0% by mass, and the amount of P remaining in the solid component after separation is 0.7% by mass or less.
  • step (4) The method according to [7] or [8], wherein in step (4), the contact time between the solid component and the liquid component is 1 minute or more and less than 25 hours.
  • step (4) The method according to any one of [7] to [9], wherein in step (4), the electrode mixture and the electrolyte cleaning solvent are stirred to obtain the slurry.
  • (5) A step of removing water from the solid component obtained in step (3) by exposing it to a heating and/or reduced pressure environment, and separating the slurry into the solid component and the liquid component. Within 24 hours after changing the environmental pressure and/or the temperature of the solid component so that the ratio of the saturated water vapor pressure at the temperature of the solid component to the environmental pressure at which the solid component exists is 80% or more.
  • the process of (6) A step of heat treating the solid component after the step (5) above at less than 900°C
  • a positive electrode active material can be produced from an electrode mixture while suppressing deterioration of the positive electrode active material.
  • a method for manufacturing a positive electrode active material includes the following steps.
  • Step (3) The heated mixture is brought into contact with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then the slurry is converted into a solid
  • the total content of potassium and sodium in the liquid component after separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after separation is A process in which the total content is 1.2% by mass or less
  • Step (1) Activation treatment agent mixing step
  • the electrode composite material and the alkali metal compound are mixed to obtain a mixture.
  • an electrode composite material containing a positive electrode active material, a binding material, and an electrolyte from which at least a portion of the electrolyte has been removed by contact with an electrolyte cleaning solvent is prepared.
  • the electrode composite material before contact includes a positive electrode active material, a binding material, and an electrolyte, and the positive electrode active materials are bound to each other by the binding material.
  • the electrode composite material may further include a conductive material, in which case the positive electrode active material and the conductive material are bound to each other by a binder.
  • the electrolyte is a component derived from the electrolyte of the battery and impregnated into the electrode mixture.
  • ⁇ Cathode active material> examples of positive electrode active materials are lithium, oxygen, fluorine, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, and yttrium. It is a composite compound whose constituent elements are niobium, molybdenum, silver, indium, tungsten, etc.
  • the positive electrode active material may be composed of only a single compound, or may be composed of a plurality of compounds.
  • An example of a suitable positive electrode active material is a composite oxide containing one or more elements selected from element group 1 below and one or more elements selected from element group 2 below.
  • Element group 1 Ni, Co, Mn, Fe, Al
  • Element group 2 Li, Na, K, Ca, Sr, Ba, Mg
  • the positive electrode active material is preferably represented by the following chemical formula (Formula A).
  • M2 represents at least one element selected from the group consisting of Na, K, Ca, Sr, Ba, and Mg
  • M1 represents at least one element selected from the group consisting of Ni, Co, Mn, Fe, Al, and P
  • M T represents at least one element selected from the group consisting of Ni, Co, Mn, and transition metal elements other than Fe
  • X represents at least one element selected from the group consisting of nonmetallic elements excluding O and P, Satisfies -0.4 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, -0.5 ⁇ d ⁇ 1.5, 0 ⁇ e ⁇ 0.5.
  • MT is Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, Ca, Sr, Ba, Ge, Cr, Sc, Y, La, Ta, Preferably, it is at least one element selected from the group consisting of Tc, Ru, Rh, Pd, Ag, Cd, and In.
  • X are F, S, Cl, Br, I, Se, Te, N.
  • the positive electrode active material is preferably a composite oxide containing at least Li and Ni.
  • the mole fraction of Ni in M 1 is more preferably 0.3 to 0.95.
  • the crystal structure of the composite oxide as an active material is not particularly limited, but a layered structure is preferable, and a hexagonal or monoclinic crystal structure is more preferable.
  • the hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
  • the crystal structure of the monoclinic type is from P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c and C2/c. belongs to any one space group selected from the group .
  • the crystal structure of the positive electrode active material is identified from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement using CuK ⁇ radiation as a radiation source.
  • the particle size of the positive electrode active material in the electrode mixture is usually about 0.001 to 100 ⁇ m.
  • the particle size distribution of the positive electrode active material can be measured using a laser diffraction scattering particle size distribution measuring device (for example, Mastersizer 2000 manufactured by Malvern). From the obtained particle size distribution, a volume-based cumulative particle size distribution curve can be created, and the value of the particle size (D50) at 50% accumulation from the fine particle side can be taken as the average particle size of the powder. Further, the particle size of the primary particles of the positive electrode active material can be measured as the arithmetic mean of equivalent circle diameters in an electron micrograph.
  • the conductive material examples include a metal-based conductive material such as metal particles, and a carbon-based conductive material made of a carbon material.
  • carbon-based conductive materials are specifically graphite powder, carbon black (eg, acetylene black), and fibrous carbon materials (eg, graphitized carbon fibers, carbon nanotubes).
  • the carbon-based conductive material may be a single carbon material or may be composed of multiple carbon materials.
  • the specific surface area of the carbon material used as the carbon-based conductive material can generally be 0.1 to 500 m 2 /g.
  • the conductive material may consist only of carbon-based conductive material with an area of 30 m 2 /g or more, carbon black with an area of 30 m 2 /g or more, or acetylene black with an area of 30 m 2 /g or more.
  • the speed of oxidation treatment of the carbon-based conductive material can be increased, and even carbon materials with a small specific surface area can be oxidized. may be possible.
  • binding material (binding material before activation treatment) included in the electrode composite material
  • thermoplastic resins and specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluorocarbon Ethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene/propylene hexafluoride/vinylidene fluoride copolymer, propylene hexafluoride/vinylidene fluoride copolymer, and tetrafluoroethylene/perfluoride
  • fluororesins such as vinyl ether copolymers
  • polyolefin resins such as polyethylene and polypropylene
  • SBR styrene-butadiene copolymers
  • the amounts of the positive electrode active material, conductive material, and binder in the electrode mixture there are no particular limitations on the amounts of the positive electrode active material, conductive material, and binder in the electrode mixture.
  • the blending amount of the binder may be 0.5 to 30 parts by weight, and may be 1 to 5 parts by weight, based on 100 parts by weight of the positive electrode active material.
  • the amount of the conductive material may be 0, but may be 0 to 50 parts by weight, or 1 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material.
  • electrolytes are LiPF6 , LiBF4 , LiClO4 , LiN( SO2CF3 ) 2 , LiN( SO2F ) 2 , LiCF3SO3 .
  • electrolytes There is no limit to the amount of electrolyte contained in the electrode mixture, but it can be from 0.0005 to 7% by mass.
  • the electrode mixture may contain a solvent derived from the electrolyte.
  • solvents are dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate.
  • Such an electrode mixture can be obtained by separating and recovering the electrode mixture from a waste electrode having a current collector and an electrode mixture layer.
  • “Waste electrodes” can be electrodes recovered from discarded batteries and electrode waste generated during the manufacturing process of electrodes and batteries.
  • the discarded battery may be a used battery or an unused but substandard battery.
  • the electrode waste may be electrode ends generated during the battery manufacturing process and non-standard electrodes. Further, it is also possible to use a waste product of the electrode composite material that is not attached to the current collector and is generated in the electrode composite material manufacturing process.
  • the electrode has a current collector that is a metal foil such as aluminum foil or copper foil, and an electrode mixture layer provided on the current collector.
  • the electrode mixture layer may be provided on one side or both sides of the current collector.
  • a method for separating an electrode having an electrode mixture layer and a current collector from the electrode mixture is to mechanically peel off the electrode mixture layer from the current collector (for example, by scraping the electrode mixture from the current collector).
  • Method of peeling the electrode composite material layer from the current collector by infiltrating the interface between the electrode composite material layer and the current collector A method of dissolving the current collector using an alkaline or acidic aqueous solution.
  • the method involves mechanically peeling off the electrode mixture layer from the current collector.
  • the prepared electrode mixture is brought into contact with an electrolyte cleaning solvent to remove at least a portion of the electrolyte from the electrode mixture.
  • an electrode mixture containing a positive electrode active material, a binder, and an electrolyte is brought into contact with an electrolyte cleaning solvent to obtain a slurry containing a solid component and a liquid component, and then the slurry is mixed with a solid component. Separates into liquid component.
  • Solid-liquid separation is a process of separating slurry into a liquid component and a solid component.
  • the solid-liquid separation method may be any conventionally known method, such as filtration or centrifugation.
  • electrolyte cleaning solvent there are no particular limitations on the electrolyte cleaning solvent.
  • carbonate esters such as ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and propylene carbonate
  • water ketones such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone
  • examples include alcohols.
  • the electrolyte cleaning solvent can be brought into contact with the electrode mixture using a known powder-liquid contact device, such as a stirring tank.
  • the slurry concentration that is, the concentration of the solid component relative to the volume of the slurry, is 3 to 2000 g/L.
  • the step of bringing the electrode mixture into contact with the electrolyte cleaning solvent it is preferable to stir the electrode mixture and the electrolyte cleaning solvent to obtain a slurry.
  • the peripheral speed of the tip of the stirring blade can be 0.1 to 1.0 m/s.
  • Step (4): Cleaning of electrolyte-containing electrode mixture A step of obtaining an electrode mixture from which at least a portion of the electrolyte in step (1) has been removed, which includes a positive electrode active material, a binder, and an electrolyte. This is a process in which the electrode mixture is brought into contact with an electrolyte cleaning solvent to obtain a slurry containing a solid component and a liquid component, and then the slurry is separated into a solid component and a liquid component.
  • the amount of P is 0.0020 to 2.0% by mass
  • the amount of F is 0.01 to 7.0% by mass
  • the amount of P remaining in the solid component after separation is 0.7% by mass or less. .
  • the obtained solid component may be rinsed.
  • Rinsing is an operation in which the obtained solid component is brought into contact with an electrolyte cleaning solvent again to obtain a slurry, and then the slurry is again separated into a solid component and a liquid component.
  • rinsing may be performed multiple times.
  • the slurry concentration in rinsing can also be the same as above.
  • the slurry can be stirred as described above.
  • the contact time between the solid component and the liquid component is 1 minute or more and less than 25 hours.
  • the contact time between the solid component and the liquid component in the step of cleaning the electrode composite material is the time during which the electrode composite material and the electrolyte cleaning solvent are in contact with each other.
  • the contact time between the solid component and the liquid component is such that the electrode mixture (solid component) containing the electrolyte starts contacting with the electrolyte cleaning solvent, and then the slurry is mixed with the solid component and the liquid component. This is the time A required to complete the operation of solid-liquid separation into liquid components.
  • the contact time between the solid component and the liquid component is the above-mentioned time A, and in each rinsing process, the contact time between the solid component after separation and the electrolyte cleaning solvent is started, and then the solid component is This is the sum of the time B required to complete solid-liquid separation between the components and the liquid component.
  • the completion time of solid-liquid separation is the end time of filtration.
  • the amount of P in the liquid component after solid-liquid separation is 0.0020 to 2.0% by mass
  • the amount of F is 0.01 to 7.0% by mass
  • the amount of P remaining in the subsequent solid component is 0.7% by mass or less.
  • the electrolyte can be sufficiently removed from the electrode mixture.
  • the electrolyte remains, the following reaction occurs, and the structure of the positive electrode active material changes from a layered rock salt structure to a spinel structure.
  • lithium carbonate is included as an activator, lithium is also consumed by the following reaction.
  • all the liquid components obtained in the first solid-liquid separation and the liquid components obtained in the subsequent solid-liquid separation in one or more rinses are The contents of P and F in the total mixed liquid components satisfy 0.0020 to 2.0% by mass and 0.01 to 7.0% by mass, respectively.
  • the P content in the solid component obtained in the final solid-liquid separation satisfies 0.7% by mass or less.
  • the contents of P and F in the liquid components continuously discharged from the apparatus may fall within the above range.
  • the P content in the liquid component obtained in the final solid-liquid separation is 2. It is preferable that the content of F is 0% by mass or less, and the content of F is 7.0% by mass or less, the content of P is 0.0020% by mass or more, and the content of F is 0.01% by mass or more. It is also preferable that there be.
  • the amount of P and the amount of F relative to the liquid components discharged from the device are in the range of 0.0020 to 2.0 mass% and 0.01 to 7.0 mass%, respectively. All you have to do is enter.
  • the amount of P remaining in the solid component after solid-liquid separation can be 0.0001% by mass or more of the amount of P remaining in the solid component after solid-liquid separation.
  • the amount of F remaining in the solid component after solid-liquid separation can be 3.5% by mass or less, and may be 0.0001% by mass or more.
  • the electrolyte cleaning solvent of the separated solid component can be dried by reducing pressure and/or heating, if necessary.
  • the heating temperature can be 50 to 200°C.
  • an activation treatment agent containing at least one compound selected from the group consisting of potassium compounds and sodium compounds is mixed into the prepared electrode mixture after the electrolyte has been removed to obtain a mixture.
  • the mixing method of the electrode mixture and the activation treatment agent may be either dry mixing or wet mixing, or a combination of these mixing methods, and the mixing order is not particularly limited.
  • a mixing device equipped with mixing media such as balls to perform a pulverizing and mixing step, which can improve mixing efficiency.
  • dry mixing is preferable because mixing can be performed more easily.
  • a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a powder mixer equipped with an internal stirring blade, a ball mill, a vibration mill, or a combination of these devices can be used.
  • a powder mixer equipped with an internal stirring blade is preferable, and a specific example is a Loedige mixer (manufactured by Matsubo Co., Ltd.).
  • the activation treatment agent contains at least one compound selected from the group consisting of potassium compounds and sodium compounds.
  • potassium and/or sodium may be referred to as alkali metal element X.
  • the activation treatment agent may contain, in addition to the potassium compound and/or the sodium compound, an alkali metal compound containing another alkali metal such as Li.
  • the positive electrode active material When the activation treatment agent comes into contact with the positive electrode active material, the positive electrode active material can be activated.
  • the alkali metal compound in the activation treatment agent includes a molten portion, the contact between the molten portion and the positive electrode active material is improved, thereby further promoting activation of the positive electrode active material.
  • the electrode mixture may contain a fluorine-containing compound derived from the binder and/or electrolyte, but by bringing the fluorine-containing compound into contact with the activation treatment agent, the fluorine component can be removed. Since it is stabilized as an alkali metal fluoride, generation of corrosive gases such as hydrogen fluoride can be suppressed. Note that it is desirable to prevent the generation of hydrogen fluoride because it reduces the activity of the positive electrode active material.
  • the proportion of the total alkali metal compound in the activation treatment agent is set appropriately taking into account the type of alkali metal compound and the type of target positive electrode active material. , 50% by weight or more, preferably 70% by weight or more (including 100% by weight).
  • the concentration of at least one alkali metal selected from the group consisting of potassium and sodium among the alkali metals contained in the alkali metal compound can be arbitrarily adjusted from 0 to 100 mol%, but preferably 10 mol% or more, More preferably, it is 20 mol% or more, preferably 90 mol% or less, and even more preferably 80 mol% or less.
  • Alkali metal compounds that are components of the activation treatment agent include hydroxides, borates, carbonates, oxides, peroxides, superoxides, nitrates, phosphates, sulfates, and chlorides of alkali metals. vanadate, bromate, molybdate, and tungstate. These can be used alone or in combination as a component of the activation treatment agent.
  • alkali metal compounds include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH; Boric oxides such as LiBO2 , NaBO2 , KBO2 , RbBO2 , CsBO2 ; Carbonates such as Li2CO3 , Na2CO3 , K2CO3 , RbCO3 , CsCO3 ; Oxides such as Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O; Peroxides such as Li2O2 , Na2O2 , K2O2 , Rb2O2 , Cs2O2 ; Superoxides such as LiO2 , NaO2 , KO2 , RbO2 , CsO2 ; Nitrates such as LiNO3 , NaNO3 , KNO3 , RbNO3 , CsNO3 ; Phosphates such as Li 3 PO 4 , Na 3 PO 4 , K 3 PO 4 , R
  • the activation treatment agent is added to the positive electrode active material in the electrode mixture in addition to at least one compound selected from the group consisting of potassium compounds and sodium compounds.
  • the same alkali metal element as the alkali metal element contained can be contained.
  • the activation treatment agent contains a lithium compound in addition to at least one compound selected from the group consisting of potassium compounds and sodium compounds.
  • Suitable lithium compounds include LiOH, LiBO2 , Li2CO3 , Li2O , Li2O2 , LiO2 , LiNO3 , Li3PO4 , Li2SO4 , LiCl , LiVO3 , LiBr, Li Examples include 2MoO4 and Li2WO4 .
  • the activation treatment agent may contain compounds other than the alkali metal compound as necessary.
  • compounds other than alkali metal compounds include alkaline earth metal compounds containing alkaline earth metal elements such as magnesium, calcium, and barium.
  • the alkaline earth metal compound is contained in the activation treatment agent together with the alkali metal compound for the purpose of controlling the melting start temperature of the activation treatment agent.
  • the content of compounds other than the alkali metal compound in the activation treatment agent is selected within a range that does not significantly inhibit the effects derived from the above-mentioned molten alkali metal compound, and is less than 50% by weight of the total weight of the activation treatment agent. can be.
  • the amount of the activation treatment agent added in the mixture of the electrode mixture and the activation treatment agent is preferably 0.001 to 100 times, more preferably 0.001 to 100 times the weight of the positive electrode active material contained in the electrode mixture. , 0.05 to 1 times.
  • the number of moles of the alkali metal compound in the activation treatment agent in the mixture of the electrode mixture and the activation treatment agent is 1 when the number of moles of the positive electrode active material (for example, formula A) contained in the electrode mixture is 1. It can be added so that the number of moles of the element becomes 0.001 to 200 times as much.
  • the ratio of the activation treatment agent in the mixture it is possible to reduce the cost of recovering the positive electrode active material from the electrode mixture, and to increase the rate of oxidative decomposition of the carbon-based conductive material and binder. can be increased. Further, the effect of preventing the generation of corrosive gas during the heating process can be improved, and furthermore, the discharge capacity of a battery manufactured using the obtained positive electrode active material can be further increased.
  • At least one kind of alkali metal compound contained in the activation treatment agent is an alkali metal compound that exhibits alkalinity when dissolved in water.
  • an activation treatment agent containing such an alkali metal compound is dissolved in pure water, the pH of the solution becomes higher than 7.
  • such an activation treatment agent may be referred to as an "alkaline activation treatment agent.”
  • an alkaline activation treatment agent By using an alkaline activation treatment agent, it is possible to further suppress the generation of corrosive gas during the heating process, thereby further increasing the discharge capacity of batteries manufactured using the recovered positive electrode active material. can. Further, by using an alkaline activation treatment agent, the processing speed of the carbon-based conductive material and the binder can be increased.
  • Alkali metal compounds that exhibit alkalinity when dissolved in water contained in alkaline activation treatment agents include alkali metal hydroxides, carbonates, hydrogen carbonates, oxides, peroxides, and superoxides. Can be mentioned. Specifically, LiOH, NaOH, KOH , RbOH, CsOH; Li2CO3 , Na2CO3 , K2CO3 , RbCO3 , CsCO3 ; LiHCO3 , NaHCO3 , KHCO3 , RbHCO3 , CsHCO3 ; Li2O , Na2O , K2O , Rb2O , Cs2O ; Li2O2, Na2O2 , K2O2 , Rb2O2 , Cs2O2 ; LiO2 , NaO 2 , KO2 , RbO2 , CsO2 ; One or more of these may be included in the activation treatment agent.
  • the conductive material contained in the electrode mixture is a carbon-based conductive material
  • at least one kind of alkali metal compound contained in the activation treatment agent may cause the carbon-based conductive material to react at the temperature of the heating process. It may also be an alkali metal compound having oxidizing power for oxidative decomposition. Note that an activation treatment agent containing such an alkali metal compound may be hereinafter referred to as an "activation treatment agent having oxidizing power.”
  • an activation treatment agent having such oxidizing power when used, it can promote the oxidation of the conductive material, which is a carbon material, to carbon dioxide, and the oxidation of the binding material, which is a hydrocarbon material, to carbon dioxide and water vapor. It is particularly effective in improving the discharge capacity of batteries manufactured using the obtained positive electrode active material, and may also be able to improve the effect of preventing the generation of corrosive gas during the heating process. be.
  • alkali metal compounds having the oxidizing power necessary to oxidize carbon-based conductive materials and hydrocarbons into carbon dioxide and water vapor include alkali metal peroxides, superoxides, nitrates, sulfates, vanadates, Mention may be made of molybdates. These may be used alone or in combination of two or more.
  • Step (2) Heating step The heating step is to heat the mixture obtained in step (1) (hereinafter sometimes referred to as "mixture before heating") to a temperature higher than the melting start temperature of the activation treatment agent. This is the process of heating to .
  • the mixture obtained in this heating step may be referred to as a “mixture after heating.”
  • melting start temperature (Tmp) of the activation treatment agent means the lowest temperature at which a part of the activation treatment agent exhibits a liquid phase.
  • the melting start temperature (Tmp) of the activation treatment agent is a value determined by differential thermal measurement (DTA). That is, 5 mg of the mixture before heating is subjected to differential thermal measurement (DTA, measurement conditions: heating rate: 10° C./min), and the temperature at which the DTA signal shows an endothermic peak is defined as the melting start temperature (Tmp).
  • DTA differential thermal measurement
  • the melting start temperature (Tmp) of the activation treatment agent is preferably 700°C or lower, more preferably 600°C or lower. Although there is no lower limit to the melting start temperature (Tmp) of the activation treatment agent, it may be, for example, 150°C.
  • the melting point of the activation treatment agent means the lowest temperature at which a part of the activation treatment agent exhibits a liquid phase when only the activation treatment agent is heated.
  • the melting start temperature (Tmp) of the activation treatment agent becomes lower than the melting point of the activation treatment agent.
  • the melting point of the activation treatment agent is a value determined by differential thermal analysis (DTA). Specifically, 5 mg of the activation treatment agent was subjected to differential thermal measurement (DTA, measurement conditions: heating rate: 10°C/min), and the temperature at which the DTA signal shows the endothermic peak was determined as the melting point of the activation treatment agent. do.
  • DTA differential thermal analysis
  • the atmosphere for heating is not particularly limited, and may be an oxygen-containing gas such as air, nitrogen, argon, or carbon dioxide.
  • the pressure of the atmosphere is not particularly limited, and may be atmospheric pressure, but may also be a reduced pressure atmosphere or a pressurized atmosphere.
  • step (2) the following effects occur by heating the mixture before heating to a temperature equal to or higher than the melting start temperature (Tmp) of the activation treatment agent as described above.
  • Tmp melting start temperature
  • the rate of oxidative decomposition of the conductive material and the binder increases, and furthermore, the molten activation treatment agent contacts the binder and the binder.
  • the fluorine component is stabilized as an alkali metal fluoride, preventing the generation of hydrogen fluoride, a corrosive gas, and suppressing deterioration of the crystal structure of the positive electrode active material.
  • the activation treatment agent contains the same alkali metal as the positive electrode active material, it is also possible to supply the insufficient alkali metal to the positive electrode active material.
  • the temperature of the heating process and the holding time at that temperature depend on the types of alkali metal compounds and other compounds contained in the positive electrode active material, conductive material, binding material, and activation treatment agent that make up the electrode mixture. It can be adjusted as appropriate depending on the combination. Usually, the temperature is in the range of 100 to 1500°C, and the holding time is about 10 minutes to 24 hours.
  • the temperature of the heating step is preferably higher than the melting point of the alkali metal compound contained in the activation treatment agent. Note that the melting point of the alkali metal compound may be lower than the melting point of each compound alone by mixing multiple types of compounds.
  • the eutectic point is the melting point of the alkali metal compounds.
  • the mixture After the heating step, the mixture can be cooled to an arbitrary temperature, such as room temperature, if necessary.
  • Step (3) Solid-liquid separation step (alkali metal removal) Step (3) is a step of contacting the heated mixture with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then separating the slurry into a solid component and a liquid component.
  • the mixture after heating contains, in addition to the positive electrode active material, components derived from the activation treatment agent (alkali metal compounds, etc.), undecomposed conductive materials and binding materials, and other undecomposed electrode composite materials. . Furthermore, when the electrode mixture contains an electrolytic solution containing a fluorine component, it may contain a fluorine component derived from the electrolyte.
  • a water-containing liquid (liquid) is added to the mixture to form a slurry, followed by solid-liquid separation to separate it into a solid component and a liquid component.
  • the liquid used in the slurry forming process is not particularly limited as long as it contains water.
  • the amount of water in the liquid may be 50% by weight or more.
  • components other than water may be added to the liquid to adjust the pH.
  • Preferred examples of liquids containing water include pure water and alkaline cleaning liquid.
  • the alkaline cleaning liquid for example, an aqueous solution of one or more anhydrides and hydrates thereof selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, and ammonium carbonate. can be mentioned. Ammonia can also be used as the alkali.
  • the resulting slurry contains a solid component mainly containing the positive electrode active material and a liquid component containing water-soluble components other than the positive electrode active material.
  • the liquid component includes an alkali metal component derived from the activation treatment agent and/or a fluorine component derived from the binder and the electrolyte.
  • the amount of liquid added to the mixture is appropriately determined in consideration of the respective amounts of the positive electrode active material and water-soluble components other than the positive electrode active material contained in the mixture.
  • step (3) it is preferable to bring the heated mixture into contact with a liquid containing water such that the slurry concentration, that is, the concentration of solid components relative to the volume of the slurry, is 12 to 1000 g/L.
  • step (3) it is preferable to stir the heated mixture and a liquid containing water to obtain a slurry. This promotes dissolution of water-soluble components.
  • the peripheral speed of the tip of the stirring blade is preferably 0.1 to 0.9 m/s.
  • Solid-liquid separation is a process of separating a slurry into a liquid component and a solid component.
  • the solid-liquid separation method may be any conventionally known method, such as filtration or centrifugation.
  • step (3) after solid-liquid separation, the obtained solid component may be rinsed.
  • Rinsing is an operation in which the obtained solid component is brought into contact with a water-containing liquid again to obtain a slurry, and then the slurry is again separated into a solid component and a liquid component.
  • rinsing may be performed multiple times.
  • the slurry concentration in rinsing can also be the same as above.
  • the rinse magnification can be 1-80.
  • the rinsing ratio is the ratio of the weight of the added water-containing liquid to the weight of the solid component. Also during rinsing, the slurry can be stirred as described above.
  • the contact time between the solid component and the liquid component is preferably 4 minutes or more and less than 24 hours.
  • the contact time between the solid component and the liquid component in step (3) is the time during which the positive electrode active material and the water-containing liquid are in contact. For example, if rinsing is not performed, the contact time between the solid component and the liquid component is determined by starting the contact between the solid component, such as a heated mixture, and the liquid containing water, and then adding the slurry to the solid component and the liquid component. This is the time C required to complete the operation of separating solid and liquid components.
  • the contact time between the solid component and the liquid component is the above-mentioned time C, and in each rinsing step, after the separation of the solid component and the liquid containing water starts contacting, This is the sum of the time D required to complete solid-liquid separation between the solid component and the liquid component.
  • the completion time of solid-liquid separation is the end time of filtration.
  • the total content of potassium and sodium in the liquid component obtained by solid-liquid separation is 0.090 to 2.0% by mass
  • the potassium and sodium content in the solid component obtained by solid-liquid separation is 0.090 to 2.0% by mass.
  • the total content of is 1.2% by mass or less. Since the total content of potassium and sodium in the liquid component after solid-liquid separation and the total content of potassium and sodium in the solid component are not too high, alkali metal components from the electrode mixture can be sufficiently removed. . On the other hand, since the total content of potassium and sodium in the liquid component is not too low, deterioration of the positive electrode active material due to excessive washing is suppressed.
  • all the liquid components obtained in the first solid-liquid separation and the liquid components obtained in the subsequent one or more rinsing solid-liquid separations are The total content of potassium and sodium in the total mixed liquid components satisfies 0.090 to 2.0% by mass.
  • the total content of potassium and sodium in the solid component obtained in the final solid-liquid separation satisfies 1.2% by mass or less.
  • the total content of potassium and sodium in the liquid component continuously discharged from the apparatus may be in the range of 0.090 to 2.0% by mass.
  • the total content of potassium and sodium in the liquid component obtained in the final solid-liquid separation when cleaning the electrode composite material is preferably 0.090 to 2.0% by mass.
  • the lower limit of the total content of potassium and sodium in the separated solid component may be 0.001% by mass.
  • An embodiment of the present invention may include the following step (5) and/or step (6).
  • Step (5) Drying Step Step (5) is a step of exposing the solid component obtained in step (3) to a heating and/or reduced pressure environment to remove water from the solid component.
  • the ratio of the saturated water vapor pressure at the temperature of the solid component to the environmental pressure where the solid component is present is 80% or more. It is preferred to vary the ambient pressure and/or the temperature of the solid components. When the ratio of the saturated water vapor pressure at the temperature of the solid component to the ambient pressure at which the solid component exists is 80% or more, water is sufficiently removed from the solid component.
  • the following reactions can proceed in a humid environment.
  • conditions may be reached where water is sufficiently removed from the solid component only by reduced pressure, conditions may be reached where water is sufficiently removed from the solid component only by heating, and conditions may be reached where water is sufficiently removed from the solid component by heating and reduced pressure. Conditions may be reached that sufficiently remove water from the components.
  • the time required for the ratio of the saturated water vapor pressure at the temperature of the solid component to the ambient pressure where the solid component exists to reach 80% or more is measured by monitoring the environmental pressure where the solid component exists and the temperature of the solid component.
  • sensors such as a pressure gauge and a hygrometer provided in the dryer may be used.
  • the heating temperature is preferably 100°C or higher in order to remove water. Furthermore, in order to sufficiently remove water, the temperature is preferably 150°C or higher. In particular, a temperature of 250° C. or higher is preferable because the discharge capacity of a battery manufactured using the obtained positive electrode active material further increases.
  • the temperature in the drying step may be constant or may be changed stepwise or continuously.
  • the temperature range reached by heating can be, for example, 10°C or more and less than 900°C.
  • the ultimate pressure range of the reduced pressure can be, for example, 1.0 ⁇ 10 ⁇ 10 to 1.0 ⁇ 10 3 Pa.
  • Step (6) Annealing (re-firing) step Step (6) is preferably a step of heat-treating the solid component after step (5) at less than 900°C.
  • the atmosphere for heat treatment is preferably in an oxygen-containing atmosphere such as air.
  • the temperature of the heat treatment can be 100° C. or higher.
  • the holding time of the heat treatment can be from 1 minute to 24 hours. In particular, it is preferable to heat at a holding temperature of 350° C. or higher for 0.1 hour or more and 5 hours or less.
  • a positive electrode active material obtained from a battery composite material by using the method for producing a positive electrode active material of the present invention can be reused in the same way as an unused active material. Methods of manufacturing electrodes and batteries using positive electrode active materials are well known.
  • the finally obtained discharge capacity of the positive electrode active material according to the embodiment of the present invention can be 150 mAh/g or more.
  • the alkali contained in the solution and the powder was measured using an ICP emission spectrometer (for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.) for the acid solution in which the solution and the powder were dissolved.
  • the content of metal elements was analyzed.
  • the binder and conductive material were mixed in a weight ratio of 92:3:5.
  • the binder PVdF a binder solution in which PVdF was dissolved in NMP in advance was used.
  • NMP was added and adjusted so that the total weight of the positive electrode active material, conductive material, and binder was 50% by weight.Kneaded with a rotation/revolution mixer (ARE-310, manufactured by Shinky Co., Ltd.), A positive electrode composite paste was manufactured.
  • an NMP solution in which PVdF as a binder is dissolved is used, and NMP is added so that the total weight of the positive electrode active material, conductive material, and binder in the positive electrode composite paste is 50% by weight. Adjusted by adding.
  • the positive electrode mixture paste was applied to aluminum foil 1085 for lithium ion secondary battery positive electrode current collector (manufactured by Nihon Seifu Co., Ltd.) with a thickness of 20 ⁇ m as a current collector, and the amount of positive electrode active material was 3.0 ⁇ 0.1 mg/cm. 2 and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode.
  • the electrode area of this positive electrode was 1.65 cm 2 .
  • a non-aqueous electrolyte secondary battery (coin-type battery R2032) was manufactured by combining the above-described positive electrode, electrolyte, separator, and negative electrode. Note that the battery was assembled in a glove box with an argon atmosphere.
  • electrolytic solution a solution was used in which LiPF 6 was dissolved at a ratio of 1.0 mol/L in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate.
  • a laminated film separator in which a heat-resistant porous layer was laminated on a polyethylene porous film was used as a separator.
  • metallic lithium was used as the negative electrode.
  • the first discharge capacity recovery rate is as follows. It is determined by the formula (a).
  • ⁇ Internal resistance measurement Perform constant current and constant voltage charging at maximum charging voltage: 4.3 V and charging current: 0.2 C, and use an AC impedance measuring device (frequency response analyzer solartron 1260, potentio/galvanostat solartron 1287) at a frequency of 1 MHz.
  • a Cole-Cole plot was created by scanning up to 0.1 Hz and showing the imaginary part on the vertical axis and the real part on the horizontal axis. Subsequently, in this Cole-Cole plot, the arc portion included in the range of 100 Hz to 1 Hz was fitted with a circle, and the diameter of the circle was taken as the resistance value, which was taken as the internal resistance of the positive electrode active material.
  • the positive electrode active material a positive electrode active material having a composition of Li 1.04 Ni 0.60 Co 0.20 Mn 0.20 O 2 and a crystal structure of R-3m was used.
  • the rated capacity of this positive electrode active material was 160 mAh/g, and the 1C current was 160 mA/g.
  • the 0.2C initial discharge capacity measured in a charge/discharge test using a coin-type battery using this positive electrode active material (unused active material) as the positive electrode active material was 183 mAh/g.
  • Acetylene black HS100 (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the conductive material.
  • an NMP solvent was added to an NMP solution (manufactured by Kureha Co., Ltd.) containing 12% by weight of PVdF #1100 as a binder to obtain a predetermined ratio.
  • the mass ratio of the positive electrode active material, binder, and conductive material in the positive electrode composite material was 92:3:5.
  • the blending amount of the solvent was 50% by mass based on the entire positive electrode composite paste.
  • the positive electrode mixture paste was applied onto a 20 ⁇ m thick lithium ion secondary battery positive electrode current collector aluminum foil 1085 (manufactured by Nihon Seifaku Co., Ltd.) using a doctor blade coater, and dried to obtain positive electrode A. Ta.
  • the amount of positive electrode active material on the aluminum foil was 20 mg/cm 2 .
  • Electrolyte immersion process The peeled electrode composite material was pulverized into powder. An electrolytic solution was added to the powder of the electrode mixture so that the slurry concentration was 1500 g/L to form a slurry.
  • the electrolyte a solution was used in which LiPF 6 was dissolved as an electrolyte in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a ratio of 1.0 mol/L. .
  • the slurry of the electrode mixture was stirred for 1 minute at a maximum flow rate of 0.550 m/sec. Thereafter, the solid phase was separated by filtering the slurry, and the solid phase was further dried under reduced pressure for 24 hours to obtain an electrolyte-containing electrode composite material.
  • the electrolyte immersion process was performed in a glove box with an argon atmosphere.
  • the amount of P in the liquid component after separation was 0.0059% by mass, the amount of F was 0.024% by mass, and the amount of P remaining in the solid component after separation was less than 0.0050% by mass. .
  • the obtained solid component was dried under reduced pressure at 100° C. for 1 hour, and the washed electrode mixture was collected.
  • Activation treatment agent mixing process (corresponding to process (1)) After cleaning, Li 2 CO 3 and K 2 SO 4 were mixed into the electrode mixture as activation treatment agents so that the amounts were 0.15 mol and 0.15 mol per 1 mol of the positive electrode active material in the electrode mixture. A mixture (mixture before heating) was obtained. The melting start temperature of the activation treatment agent was 550°C.
  • Heating process (corresponding to process (2)) The obtained mixture before heating was placed in an alumina firing container and placed in an electric furnace. The mixture was activated under atmospheric pressure at a holding temperature of 700° C. and a holding time of 3 hours. The heating rate was 300° C./hour, and cooling to room temperature was performed naturally. After cooling to room temperature, the heated mixture was collected.
  • Table 1 shows the type of alkali metal element X, the amount of alkali metal element X in the solid component, the amount of Li in the liquid component, and the amount of alkali metal element X.
  • ICP elemental analysis was performed on the recovered reactivated positive electrode active material.
  • the amounts of elements in the reactivated cathode active material are shown in Table 1.
  • a coin-type battery was manufactured using the recovered reactivated positive electrode active material, and a charge/discharge test was conducted. The discharge capacity and internal resistance were measured by a charge/discharge test, and the initial discharge capacity recovery rate and internal resistance recovery rate were determined.
  • Example 2 and 3 were the same as Example 1 except that the slurry concentration in the alkali metal removal step of G was changed to 200 g/L and 333 g/L, respectively.
  • Example 4 in the alkali metal removal step of G, the heated mixture is pulverized, water is added and stirred for 20 minutes to form a slurry, and the slurry is filtered for 3 minutes using a filter.
  • the solid on the vessel was rinsed twice with water for 3 minutes each time, and the contact time with water was changed to 29 minutes.
  • the procedure was the same as in Example 1 except for the step of removing the alkali metal of G.
  • Rinsing is to supply water again to the solid residue after filtration on the filter to filter it.
  • the rinsing ratio is also shown in Table 1.
  • the rinsing ratio is the ratio of the weight of the added water-containing liquid to the weight of the solid component. In the case of rinsing, the concentration of alkali metal element X in all liquid components obtained in all separation steps in the alkali metal removal step was measured.
  • Example 5 In Example 5, water was added and stirred for 5 minutes to form a slurry, and the slurry was then filtered through a filter for 3 minutes. The solids on the filter were then rinsed twice with water each time. The procedure was the same as in Example 1 except that the contact time with water was changed to 14 minutes.
  • Comparative Example 1 was the same as Example 1 except that the alkali metal removal step of G was not performed.
  • Comparative example 2 In Comparative Example 2, in the alkali metal removal step of G, the heated mixture is pulverized, water is added for 0.5 minutes to form a slurry without stirring, and the slurry is then filtered for 3 minutes. The procedure was the same as in Example 2 except that the contact time with water was changed to 3.5 minutes.
  • Comparative Example 3 was the same as Example 1 except that the electrode mixture D was not cleaned.
  • Comparative Example 4 was the same as Example 1 except that the slurry concentration was 1250 g/L in the step of removing the alkali metal of G.
  • Comparative Example 5 was the same as Example 1 except that the slurry concentration was 10 g/L in the step of removing the alkali metal of G.
  • Comparative example 6 In Comparative Example 6, in the alkali metal removal step of G, the stirring time for slurrying was 1437 minutes, and the contact time between the solid component and the liquid component (total of filtration time and stirring time) was 1440 minutes, or 24 hours. The procedure was the same as in Comparative Example 5 except that the circumferential speed of the tip of the stirring blade was changed.
  • Tables 1 and 2 show the conditions, initial discharge capacity recovery rate, and internal resistance recovery rate in each Example and Comparative Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This method for producing a positive electrode active material comprises the following steps. (1) a step in which an activation agent containing at least one compound that is selected from the group consisting of a potassium compound and a sodium compound is mixed into an electrode mixture which contains a positive electrode active material, a binder and an electrolyte, and from which at least some of the electrolyte is removed by means of a contact with an electrolyte cleaning solvent (2) a step in which the thus-obtained mixture is heated to a retention temperature that is not less than the melting initiation temperature of the activation agent, so that the positive electrode active material contained in the mixture is activated (3) a step in which the mixture after heating is brought into contact with a liquid that contains water, thereby obtaining a slurry that contains a solid component and a liquid component, and subsequently, the slurry is separated into the solid component and the liquid component, wherein the total content of potassium and sodium in the liquid component after the separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after the separation is 1.2% by mass or less

Description

正極活物質の製造方法Manufacturing method of positive electrode active material
 本発明は、正極活物質の製造方法に関する。 The present invention relates to a method for producing a positive electrode active material.
 電池の正極活物質にはコバルト、ニッケル、マンガン、リチウムなどの希少金属成分が含有されており、特に非水電解質二次電池の正極活物質には、上記の希少金属成分を主成分とする化合物が利用されている。希少金属成分の資源を保全するために、二次電池の電池廃材から、希少金属成分を再生産する方法が求められている。 The positive electrode active materials of batteries contain rare metal components such as cobalt, nickel, manganese, and lithium. In particular, the positive electrode active materials of non-aqueous electrolyte secondary batteries contain compounds whose main components are the rare metal components mentioned above. is being used. In order to conserve the resources of rare metal components, there is a need for a method of reproducing rare metal components from secondary battery waste materials.
 例えば、特許文献1には、電極合材とアルカリ金属化合物を含有する活性化処理剤とを混合し、混合物を加熱してバインダーを分解し、水などにより分解物や活性化処理剤を除去して正極活物質を回収する方法が開示されている。この方法では、有機溶剤を使用せずに、電池廃材から正極活物質を直接回収する点でコスト的に優れている。 For example, Patent Document 1 discloses that an electrode mixture and an activation treatment agent containing an alkali metal compound are mixed, the mixture is heated to decompose the binder, and the decomposed products and the activation treatment agent are removed with water or the like. A method for recovering a positive electrode active material is disclosed. This method is cost-effective in that the positive electrode active material is directly recovered from battery waste material without using organic solvents.
特開2012-186150号公報Japanese Patent Application Publication No. 2012-186150
 ところで、再生産後の正極活物質を好適に再利用するに当たり、再生産工程前後での正極活物質の劣化を抑制することが求められる。正極活物質が劣化すると、再生後の正極活物質を使用した電池の性能、例えば、充放電容量の低下、内部抵抗の増大につながり好ましくない。 By the way, in order to suitably reuse the recycled positive electrode active material, it is required to suppress the deterioration of the positive electrode active material before and after the recycling process. Deterioration of the positive electrode active material is undesirable because it leads to a decrease in the performance of a battery using the recycled positive electrode active material, such as a decrease in charge/discharge capacity and an increase in internal resistance.
 本発明の課題は、活物質の劣化を抑えることが可能な、活物質の製造方法を提供することにある。 An object of the present invention is to provide a method for producing an active material that can suppress deterioration of the active material.
[1]下記工程を含む正極活物質の製造方法。
(1)正極活物質、結着材、及び、電解質を含み、電解質洗浄溶媒との接触により前記電解質の少なくとも一部が除去された電極合材に、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物を含有する活性化処理剤を混合する工程
(2)得られた混合物を、前記活性化処理剤の溶融開始温度以上の保持温度に加熱して、前記混合物中に含まれる正極活物質を活性化する工程
(3)前記加熱後の混合物を、水を含む液体と接触させて固体成分及び液体成分を含むスラリーを得て、その後、前記スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のカリウム及びナトリウムの合計含有量が0.090~2.0質量%であり、分離後の固体成分中のカリウム及びナトリウムの合計含有量が1.2質量%以下である工程
[1] A method for producing a positive electrode active material including the following steps.
(1) An electrode composite material containing a positive electrode active material, a binder material, and an electrolyte, from which at least a portion of the electrolyte has been removed by contact with an electrolyte cleaning solvent, contains a potassium compound and a sodium compound selected from the group consisting of a potassium compound and a sodium compound. Step (2) of mixing an activating agent containing at least one compound contained in the mixture by heating the resulting mixture to a holding temperature equal to or higher than the melting start temperature of the activating agent. Step (3) of activating the positive electrode active material: Bringing the heated mixture into contact with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then converting the slurry into a solid component and a liquid component. This is a separation step in which the total content of potassium and sodium in the liquid component after separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after separation is 1.0% by mass. A process in which the amount is 2% by mass or less
[2] 前記正極活物質が、下記の元素群1から選ばれる1種以上の元素と、元素群2から選ばれる1種以上の元素とを含有する複合酸化物である、[1]に記載の方法。
 元素群1:Ni、Co、Mn、Fe、Al、P
 元素群2:Li、Na、K、Ca、Sr、Ba、Mg
[2] The positive electrode active material is a composite oxide containing one or more elements selected from element group 1 below and one or more elements selected from element group 2 below. the method of.
Element group 1: Ni, Co, Mn, Fe, Al, P
Element group 2: Li, Na, K, Ca, Sr, Ba, Mg
[3]前記正極活物質が、下式のように表される請求項[1]又は[2]に記載の方法。
 Li1+a 2+d
 ただし、Mは、Na、K、Ca、Sr、Ba、及び、Mgからなる群から選択される少なくとも1種の元素を表し、
 Mは、Ni、Co、Mn、Fe、Al、及び、Pからなる群から選択される少なくとも1種の元素を表し、
 Mは、Ni、Co、Mn、及び、Fe以外の遷移金属元素からなる群から選択される少なくとも1種の元素を表し、
 XはO及びPを除く非金属元素からなる群から選択される少なくとも1種の元素を表し、
 -0.4<a<1.5,0≦b<0.5,0≦c<0.5,-0.5<d<1.5,0≦e<0.5を満たす。
[3] The method according to claim [1] or [2], wherein the positive electrode active material is represented by the following formula.
Li 1+a M 2 b M 1 M T c O 2+d X e
However, M2 represents at least one element selected from the group consisting of Na, K, Ca, Sr, Ba, and Mg,
M1 represents at least one element selected from the group consisting of Ni, Co, Mn, Fe, Al, and P;
M T represents at least one element selected from the group consisting of Ni, Co, Mn, and transition metal elements other than Fe,
X represents at least one element selected from the group consisting of nonmetallic elements excluding O and P,
Satisfies -0.4<a<1.5, 0≦b<0.5, 0≦c<0.5, -0.5<d<1.5, 0≦e<0.5.
[4]工程(3)において、前記スラリーの体積に対する前記固体成分の濃度が12~1000g/Lとなるように、前記加熱後の混合物と水を含む液体とを接触させる、[1]~[3]のいずれか一項に記載の方法。 [4] In step (3), the heated mixture is brought into contact with a liquid containing water such that the concentration of the solid component relative to the volume of the slurry is 12 to 1000 g/L, [1] to [ 3].
[5]工程(3)において、前記固体成分と前記液体成分との接触時間が、4分間以上24時間未満である、[1]~[4]のいずれか一項に記載の方法。 [5] The method according to any one of [1] to [4], wherein in step (3), the contact time between the solid component and the liquid component is 4 minutes or more and less than 24 hours.
[6] 工程(3)において、前記加熱後の混合物と前記水を含む液体とを攪拌して前記スラリーを得る、[1]~[5]のいずれか一項に記載の方法。 [6] The method according to any one of [1] to [5], wherein in step (3), the heated mixture and the water-containing liquid are stirred to obtain the slurry.
[7]さらに、下記の工程を備える、[1]~[6]のいずれか一項に記載の方法。
 (4)前記工程(1)の前記電解質の少なくとも一部が除去された電極合材を得る工程であって、正極活物質、結着材、及び、電解質を含む電極合材を、電解質洗浄溶媒と接触させて固体成分と液体成分とを含むスラリーを得て、その後、前記スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のP量が0.0020~2.0質量%、F量が0.01~7.0質量%であり、かつ、分離後の固体成分中に残存するP量が0.7質量%以下である、工程
[7] The method according to any one of [1] to [6], further comprising the following steps.
(4) A step of obtaining an electrode composite material from which at least a portion of the electrolyte in step (1) has been removed, the electrode composite material containing a positive electrode active material, a binding material, and an electrolyte being washed with an electrolyte cleaning solvent. This is a step in which a slurry containing a solid component and a liquid component is obtained by contacting with a liquid component, and then the slurry is separated into a solid component and a liquid component, and the amount of P in the liquid component after separation is 0.0020 to 2. .0% by mass, the amount of F is 0.01 to 7.0% by mass, and the amount of P remaining in the solid component after separation is 0.7% by mass or less.
[8]工程(4)において、前記スラリーの体積に対する前記固体成分の濃度が3~2000g/Lである[7]に記載の方法。 [8] The method according to [7], wherein in step (4), the concentration of the solid component relative to the volume of the slurry is 3 to 2000 g/L.
[9]工程(4)において、前記固体成分と前記液体成分との接触時間が、1分間以上25時間未満である、[7]又は[8]に記載の方法。 [9] The method according to [7] or [8], wherein in step (4), the contact time between the solid component and the liquid component is 1 minute or more and less than 25 hours.
[10]工程(4)において、前記電極合材と前記電解質洗浄溶媒とを攪拌して前記スラリーを得る、[7]~[9]のいずれか一項に記載の方法。 [10] The method according to any one of [7] to [9], wherein in step (4), the electrode mixture and the electrolyte cleaning solvent are stirred to obtain the slurry.
[11]さらに、下記工程を含む、[1]~[11]のいずれか一項に記載の正極活物質の製造方法。
(5)前記工程(3)で得られた固体成分を加熱及び/又は減圧環境に曝して前記固体成分から水を除去する工程であり、前記スラリーを前記固体成分と前記液体成分とに分離してから24時間以内に、前記固体成分が存在する環境気圧に対する、前記固体成分の温度における飽和水蒸気圧の比が80%以上となるように、前記環境気圧及び/又は前記固体成分の温度を変更する工程、
(6)前記工程(5)後の固体成分を900℃未満で熱処理する工程
[11] The method for producing a positive electrode active material according to any one of [1] to [11], further comprising the following steps.
(5) A step of removing water from the solid component obtained in step (3) by exposing it to a heating and/or reduced pressure environment, and separating the slurry into the solid component and the liquid component. Within 24 hours after changing the environmental pressure and/or the temperature of the solid component so that the ratio of the saturated water vapor pressure at the temperature of the solid component to the environmental pressure at which the solid component exists is 80% or more. The process of
(6) A step of heat treating the solid component after the step (5) above at less than 900°C
 正極活物質の劣化を抑えつつ、電極合材から正極活物質を生産することができる。 A positive electrode active material can be produced from an electrode mixture while suppressing deterioration of the positive electrode active material.
 (正極活物質の製造方法)
 以下、リサイクルに係る正極活物質の製造方法について説明する。
(Method for producing positive electrode active material)
Hereinafter, a method for producing a positive electrode active material related to recycling will be explained.
 本発明の実施形態に係る正極活物質の製造方法は、下記工程を含む。
 工程(1):正極活物質、結着材、及び、電解質を含み、電解質洗浄溶媒との接触により前記電解質の少なくとも一部が除去された電極合材に、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物を含有する活性化処理剤を混合する工程
 工程(2):得られた混合物を、前記活性化処理剤の溶融開始温度以上の保持温度に加熱して、前記混合物中に含まれる正極活物質を活性化する工程
 工程(3):前記加熱後の混合物を、水を含む液体と接触させて固体成分及び液体成分を含むスラリーを得て、その後、前記スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のカリウム及びナトリウムの合計含有量が0.090~2.0質量%であり、分離後の固体成分中のカリウム及びナトリウムの合計含有量が1.2質量%以下である工程
A method for manufacturing a positive electrode active material according to an embodiment of the present invention includes the following steps.
Step (1): An electrode mixture containing a positive electrode active material, a binder, and an electrolyte, from which at least a portion of the electrolyte has been removed by contact with an electrolyte cleaning solvent, is added with a compound selected from the group consisting of a potassium compound and a sodium compound. Step (2) of mixing an activation treatment agent containing at least one selected compound: heating the obtained mixture to a holding temperature equal to or higher than the melting start temperature of the activation treatment agent to mix the mixture. Activating the positive electrode active material contained therein Step (3): The heated mixture is brought into contact with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then the slurry is converted into a solid The total content of potassium and sodium in the liquid component after separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after separation is A process in which the total content is 1.2% by mass or less
 以下、本実施形態における各工程について詳細に説明する。 Hereinafter, each step in this embodiment will be explained in detail.
 工程(1):活性化処理剤混合工程
 工程(1)では、電極合材とアルカリ金属化合物とを混合して混合物を得る。
 まず、正極活物質、結着材、及び、電解質を含み、電解質洗浄溶媒との接触により電解質の少なくとも一部が除去された電極合材を準備する。
Step (1): Activation treatment agent mixing step In step (1), the electrode composite material and the alkali metal compound are mixed to obtain a mixture.
First, an electrode composite material containing a positive electrode active material, a binding material, and an electrolyte from which at least a portion of the electrolyte has been removed by contact with an electrolyte cleaning solvent is prepared.
<電解質洗浄溶媒との接触前の電極合材>
 接触前の電極合材は、正極活物質、結着材、及び、電解質を含み、正極活物質が結着材により互いに結着されている。電極合材は、さらに、導電材を含んでもよく、その場合、正極活物質及び導電材が互いに結着剤により結着されている。電解質は、電池の電解液に由来して電極合材に含浸される成分である。
<Electrode mixture before contact with electrolyte cleaning solvent>
The electrode composite material before contact includes a positive electrode active material, a binding material, and an electrolyte, and the positive electrode active materials are bound to each other by the binding material. The electrode composite material may further include a conductive material, in which case the positive electrode active material and the conductive material are bound to each other by a binder. The electrolyte is a component derived from the electrolyte of the battery and impregnated into the electrode mixture.
<正極活物質>
 正極活物質の例は、リチウム、酸素、フッ素、ナトリウム、マグネシウム、アルミニウム、ケイ素、リン、硫黄、カリウム、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ニオブ、モリブデン、銀、インジウム、タングステン、などを構成元素とする複合化合物である。
<Cathode active material>
Examples of positive electrode active materials are lithium, oxygen, fluorine, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, and yttrium. It is a composite compound whose constituent elements are niobium, molybdenum, silver, indium, tungsten, etc.
 なお、正極活物質は単一の化合物のみからなってもよいし、複数の化合物から構成されていてもよい。 Note that the positive electrode active material may be composed of only a single compound, or may be composed of a plurality of compounds.
 好適な正極活物質の例は、下記の元素群1から選ばれる1種以上の元素と、元素群2から選ばれる1種以上の元素とを含有する複合酸化物である。
 元素群1:Ni、Co、Mn、Fe、Al、P
 元素群2:Li、Na、K、Ca、Sr、Ba、Mg
An example of a suitable positive electrode active material is a composite oxide containing one or more elements selected from element group 1 below and one or more elements selected from element group 2 below.
Element group 1: Ni, Co, Mn, Fe, Al, P
Element group 2: Li, Na, K, Ca, Sr, Ba, Mg
 中でも、正極活物質は、以下の化学式(A式)で表されることが好適である。 Among these, the positive electrode active material is preferably represented by the following chemical formula (Formula A).
  Li1+a 2+d
 ただし、Mは、Na、K、Ca、Sr、Ba、及び、Mgからなる群から選択される少なくとも1種の元素を表し、
 Mは、Ni、Co、Mn、Fe、Al、及び、Pからなる群から選択される少なくとも1種の元素を表し、
 Mは、Ni、Co、Mn、及び、Fe以外の遷移金属元素からなる群から選択される少なくとも1種の元素を表し、
 Xは、O及びPを除く非金属元素からなる群から選択される少なくとも1種の元素を表し、
 -0.4<a<1.5,0≦b<0.5,0≦c<0.5,-0.5<d<1.5,0≦e<0.5を満たす。
Li 1+a M 2 b M 1 M T c O 2+d X e
However, M2 represents at least one element selected from the group consisting of Na, K, Ca, Sr, Ba, and Mg,
M1 represents at least one element selected from the group consisting of Ni, Co, Mn, Fe, Al, and P;
M T represents at least one element selected from the group consisting of Ni, Co, Mn, and transition metal elements other than Fe,
X represents at least one element selected from the group consisting of nonmetallic elements excluding O and P,
Satisfies -0.4<a<1.5, 0≦b<0.5, 0≦c<0.5, -0.5<d<1.5, 0≦e<0.5.
 Mは、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、V、B、Si、Ca、Sr、Ba、Ge、Cr、Sc、Y、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、及びInからなる群から選択される少なくとも1種の元素であることが好ましい。Xの例は、F、S、Cl、Br、I、Se、Te、Nである。 MT is Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, Ca, Sr, Ba, Ge, Cr, Sc, Y, La, Ta, Preferably, it is at least one element selected from the group consisting of Tc, Ru, Rh, Pd, Ag, Cd, and In. Examples of X are F, S, Cl, Br, I, Se, Te, N.
 正極活物質は、LiとNiを少なくとも含む複合酸化物であることが好ましい。 The positive electrode active material is preferably a composite oxide containing at least Li and Ni.
 また、正極活物質において、MにおけるNiのモル分率は0.3~0.95であることがより好ましい。 Further, in the positive electrode active material, the mole fraction of Ni in M 1 is more preferably 0.3 to 0.95.
 活物質としての上記複合酸化物の結晶構造には、特に制限はないが、層状構造が好ましく、六方晶型または単斜晶型の結晶構造がより好ましい。 The crystal structure of the composite oxide as an active material is not particularly limited, but a layered structure is preferable, and a hexagonal or monoclinic crystal structure is more preferable.
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcmおよびP6/mmcからなる群より選ばれるいずれか一つの空間群に帰属する。 The hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
 単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/cおよびC2/cからなる群より選ばれるいずれか一つの空間群に帰属する。 The crystal structure of the monoclinic type is from P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c and C2/c. belongs to any one space group selected from the group .
 さらには、六方晶型の結晶構造に含まれるR-3mまたは単斜晶型の結晶構造に含まれるC2/mの空間群に帰属することが好ましい。 Furthermore, it is preferable to belong to the space group R-3m included in a hexagonal crystal structure or C2/m included in a monoclinic crystal structure.
 なお、正極活物質の結晶構造はCuKα線を線源とする粉末エックス線回折測定により得られる粉末X線回折図形から同定される。 Note that the crystal structure of the positive electrode active material is identified from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement using CuKα radiation as a radiation source.
 電極合材中の正極活物質の粒子径には特に制限はないが、通常、0.001~100μm程度である。なお、正極活物質の粒度分布はレーザー回折散乱粒度分布測定装置(例えば、マルバーン社製マスターサイザー2000)を用いて測定できる。得られた粒度分布から、体積基準の累積粒度分布曲線を作成し、微小粒子側から50%累積時の粒子径(D50)の値を粉末の平均粒子径とすることができる。また、正極活物質の一次粒子の粒径は、電子顕微鏡写真において円相当径の算術平均として測定できる。 There is no particular restriction on the particle size of the positive electrode active material in the electrode mixture, but it is usually about 0.001 to 100 μm. Note that the particle size distribution of the positive electrode active material can be measured using a laser diffraction scattering particle size distribution measuring device (for example, Mastersizer 2000 manufactured by Malvern). From the obtained particle size distribution, a volume-based cumulative particle size distribution curve can be created, and the value of the particle size (D50) at 50% accumulation from the fine particle side can be taken as the average particle size of the powder. Further, the particle size of the primary particles of the positive electrode active material can be measured as the arithmetic mean of equivalent circle diameters in an electron micrograph.
<導電材>
 導電材の例は、金属粒子等の金属系導電材、及び、炭素材料からなる炭素系導電材である。
<Conductive material>
Examples of the conductive material are a metal-based conductive material such as metal particles, and a carbon-based conductive material made of a carbon material.
 炭素系導電材の例は、具体的には黒鉛粉末、カーボンブラック(例えば、アセチレンブラック)および繊維状炭素材料(例えば黒鉛化炭素繊維、カーボンナノチューブ)である。 Examples of carbon-based conductive materials are specifically graphite powder, carbon black (eg, acetylene black), and fibrous carbon materials (eg, graphitized carbon fibers, carbon nanotubes).
 炭素系導電材は、単一の炭素材料でもよいし、複数の炭素材料から構成されていてもよい。 The carbon-based conductive material may be a single carbon material or may be composed of multiple carbon materials.
 また、炭素系導電材として用いられる炭素材料の比表面積は、通常0.1~500m/gであることができる。 Further, the specific surface area of the carbon material used as the carbon-based conductive material can generally be 0.1 to 500 m 2 /g.
 その場合、導電材は30m/g以上の炭素系導電材のみからなることができ、30m/g以上のカーボンブラックであってもよく、30m/g以上のアセチレンブラックであってもよい。 In that case, the conductive material may consist only of carbon-based conductive material with an area of 30 m 2 /g or more, carbon black with an area of 30 m 2 /g or more, or acetylene black with an area of 30 m 2 /g or more. .
 なお、後述する酸化力のあるアルカリ金属化合物を含む活性化処理剤を用いる場合、炭素系導電材の酸化処理の速度を高めることができ、比表面積が小さい炭素材料であっても酸化処理することができる場合がある。 In addition, when using an activation treatment agent containing an alkali metal compound with oxidizing power, which will be described later, the speed of oxidation treatment of the carbon-based conductive material can be increased, and even carbon materials with a small specific surface area can be oxidized. may be possible.
<結着材>
 電極合材に含まれる結着材(活性化処理前結着材)の例は、熱可塑性樹脂であり、具体的には、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体および四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;スチレンブタジエン共重合体(以下、SBRということがある。);が挙げられ、これらの二種以上の混合物であってもよい。
<Binder>
Examples of the binding material (binding material before activation treatment) included in the electrode composite material are thermoplastic resins, and specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluorocarbon Ethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene/propylene hexafluoride/vinylidene fluoride copolymer, propylene hexafluoride/vinylidene fluoride copolymer, and tetrafluoroethylene/perfluoride Examples include fluororesins such as vinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene; and styrene-butadiene copolymers (hereinafter sometimes referred to as SBR); mixtures of two or more of these may also be used. .
 電極合材中の正極活物質、導電材及び結着材の配合量に特段の限定はない。結着材の配合量は、正極活物質100重量部に対し、0.5~30重量部であることができ、1~5重量部であってもよい。導電材の配合量は、0であってもよいが、正極活物質100重量部に対し、0~50重量部であることができ、1~10重量部であってもよい。 There are no particular limitations on the amounts of the positive electrode active material, conductive material, and binder in the electrode mixture. The blending amount of the binder may be 0.5 to 30 parts by weight, and may be 1 to 5 parts by weight, based on 100 parts by weight of the positive electrode active material. The amount of the conductive material may be 0, but may be 0 to 50 parts by weight, or 1 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material.
<電解質>
 電解質の例は、LiPF、LiBF、LiClO、LiN(SOCF、LiN(SOF)、LiCFSOである。電極合材に含まれる電解質の量に限定はないが0.0005~7質量%であることができる。
<Electrolyte>
Examples of electrolytes are LiPF6 , LiBF4 , LiClO4 , LiN( SO2CF3 ) 2 , LiN( SO2F ) 2 , LiCF3SO3 . There is no limit to the amount of electrolyte contained in the electrode mixture, but it can be from 0.0005 to 7% by mass.
 電極合材は、電解液に由来する溶媒を含んでいてもよい。溶媒の例は、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。 The electrode mixture may contain a solvent derived from the electrolyte. Examples of solvents are dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate.
 このような電極合材は、集電体と電極合材層とを有する廃電極から電極合材を分離して回収することにより得ることができる。 Such an electrode mixture can be obtained by separating and recovering the electrode mixture from a waste electrode having a current collector and an electrode mixture layer.
 「廃電極」とは、廃棄された電池から回収された電極、及び、電極及び電池の製造の過程で発生する電極の廃棄物であることができる。廃棄された電池は、使用済みの電池であってもよく、未使用であるが規格外品の電池であってもよい。また、電極の廃棄物は、電池の製造工程で発生する電極の端部、及び、規格外品の電極であることができる。また、電極合材製造工程で生じる、集電体に貼り付けられていない電極合材の廃棄品を用いることもできる。 "Waste electrodes" can be electrodes recovered from discarded batteries and electrode waste generated during the manufacturing process of electrodes and batteries. The discarded battery may be a used battery or an unused but substandard battery. In addition, the electrode waste may be electrode ends generated during the battery manufacturing process and non-standard electrodes. Further, it is also possible to use a waste product of the electrode composite material that is not attached to the current collector and is generated in the electrode composite material manufacturing process.
 電極は、アルミニウム箔及び銅箔などの金属箔である集電体と、当該集電体上に設けられた電極合材層とを有する。電極合材層は、集電体の片面に設けられてもよく、両面に設けられていてもよい。 The electrode has a current collector that is a metal foil such as aluminum foil or copper foil, and an electrode mixture layer provided on the current collector. The electrode mixture layer may be provided on one side or both sides of the current collector.
 電極合材層と集電体とを有する電極から電極合材から分離する方法としては、集電体から電極合材層を機械的に剥離する方法(例えば、集電体から電極合材を掻き落とす方法)、電極合材層と集電体との界面に溶剤を浸透させて集電体から電極合材層を剥離する方法、アルカリ性もしくは酸性の水溶液を用いて、集電体を溶解して電極合材層を分離する方法などがある。好ましくは、集電体から電極合材層を機械的に剥離する方法である。 A method for separating an electrode having an electrode mixture layer and a current collector from the electrode mixture is to mechanically peel off the electrode mixture layer from the current collector (for example, by scraping the electrode mixture from the current collector). Method of peeling off the electrode composite material layer from the current collector by infiltrating the interface between the electrode composite material layer and the current collector; Method of peeling the electrode composite material layer from the current collector by infiltrating the interface between the electrode composite material layer and the current collector; A method of dissolving the current collector using an alkaline or acidic aqueous solution. There are methods such as separating the electrode mixture layer. Preferably, the method involves mechanically peeling off the electrode mixture layer from the current collector.
 (電極合材の洗浄)
 つづいて、準備した電極合材に対して、電解質洗浄溶媒を接触させて、電極合材から電解質の少なくとも一部を除去する。具体的には、正極活物質、結着材、及び、電解質を含む電極合材を、電解質洗浄溶媒と接触させて固体成分と液体成分とを含むスラリーを得て、その後、スラリーを固体成分と液体成分とに分離する。
(Cleaning of electrode mixture)
Subsequently, the prepared electrode mixture is brought into contact with an electrolyte cleaning solvent to remove at least a portion of the electrolyte from the electrode mixture. Specifically, an electrode mixture containing a positive electrode active material, a binder, and an electrolyte is brought into contact with an electrolyte cleaning solvent to obtain a slurry containing a solid component and a liquid component, and then the slurry is mixed with a solid component. Separates into liquid component.
 固液分離とは、スラリーを液体成分と固体成分とに分離する工程である。固液分離の方法としては、従来公知の方法でよく、例えば、ろ過や遠心分離法が挙げられる。 Solid-liquid separation is a process of separating slurry into a liquid component and a solid component. The solid-liquid separation method may be any conventionally known method, such as filtration or centrifugation.
 電解質洗浄溶媒に特に限定はない。例えば、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等の炭酸エステル類;水;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン類;エタノール、メタノール、プロパノール、イソプロピルアルコール等のアルコール類が挙げられる。 There are no particular limitations on the electrolyte cleaning solvent. For example, carbonate esters such as ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and propylene carbonate; water; ketones such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone; ethanol, methanol, propanol, isopropyl alcohol, etc. Examples include alcohols.
 電極合材に対して電解質洗浄溶媒を接触させることは、公知の粉体と液体との接触装置、例えば、攪拌槽等で行うことができる。 The electrolyte cleaning solvent can be brought into contact with the electrode mixture using a known powder-liquid contact device, such as a stirring tank.
 電極合材を電解質洗浄溶媒と接触させる工程において、スラリー濃度、すなわち、スラリーの体積に対する固体成分の濃度が3~2000g/Lであることが好適である。 In the step of bringing the electrode mixture into contact with the electrolyte cleaning solvent, it is preferable that the slurry concentration, that is, the concentration of the solid component relative to the volume of the slurry, is 3 to 2000 g/L.
 電極合材を電解質洗浄溶媒と接触させる工程において、電極合材と電解質洗浄溶媒とを攪拌してスラリーを得ることが好適である。攪拌翼の先端の周速は0.1~1.0m/sとすることができる。 In the step of bringing the electrode mixture into contact with the electrolyte cleaning solvent, it is preferable to stir the electrode mixture and the electrolyte cleaning solvent to obtain a slurry. The peripheral speed of the tip of the stirring blade can be 0.1 to 1.0 m/s.
 接触方法に特に限定はないが、以下の(4)工程により行うことが好適である。 There is no particular limitation on the contact method, but it is preferable to carry out the following step (4).
 工程(4):電解質含有電極合材の洗浄工程
 工程(1)の電解質の少なくとも一部が除去された電極合材を得る工程であって、正極活物質、結着材、及び、電解質を含む電極合材を、電解質洗浄溶媒と接触させて固体成分と液体成分とを含むスラリーを得て、その後、前記スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のP量が0.0020~2.0質量%、F量が0.01~7.0質量%であり、かつ、分離後の固体成分中に残存するP量が0.7質量%以下である。
Step (4): Cleaning of electrolyte-containing electrode mixture A step of obtaining an electrode mixture from which at least a portion of the electrolyte in step (1) has been removed, which includes a positive electrode active material, a binder, and an electrolyte. This is a process in which the electrode mixture is brought into contact with an electrolyte cleaning solvent to obtain a slurry containing a solid component and a liquid component, and then the slurry is separated into a solid component and a liquid component. The amount of P is 0.0020 to 2.0% by mass, the amount of F is 0.01 to 7.0% by mass, and the amount of P remaining in the solid component after separation is 0.7% by mass or less. .
 電極合材の洗浄工程において、固液分離した後、得られた固体成分のリンスを実施してもよい。リンスとは、得られた固体成分に再び電解質洗浄溶媒を接触させてスラリーを得て、その後、スラリーを再び固体成分と液体成分とに分離する操作である。電極合材の洗浄では、リンスを複数回実施してもよい。リンスにおけるスラリー濃度も上記と同様にすることができる。リンスにおいても、上述のようにスラリーの攪拌を行うことができる。 In the step of cleaning the electrode composite material, after solid-liquid separation, the obtained solid component may be rinsed. Rinsing is an operation in which the obtained solid component is brought into contact with an electrolyte cleaning solvent again to obtain a slurry, and then the slurry is again separated into a solid component and a liquid component. In cleaning the electrode mixture, rinsing may be performed multiple times. The slurry concentration in rinsing can also be the same as above. Also during rinsing, the slurry can be stirred as described above.
 電極合材の洗浄工程において、固体成分と液体成分との接触時間が、1分間以上25時間未満であることも好適である。電極合材の洗浄工程における固体成分と液体成分との接触時間とは、電極合材と電解質洗浄溶媒とが接触している時間である。例えば、リンスを行わない場合には、固体成分と液体成分との接触時間は、電解質を含む電極合材(固体成分)と、電解質洗浄溶媒との接触を開始してから、スラリーを固体成分及び液体成分に固液分離する操作が完了するまでに要した時間Aである。リンスを行う場合には、固体成分と液体成分との接触時間は、上記の時間Aと、各リンスの工程において、分離後の固体成分と、電解質洗浄溶媒との接触を開始してから、固体成分と液体成分との固液分離が完了するまでに要した時間Bとの和である。固液分離をろ過で行う場合には、固液分離の完了時刻は、ろ過の終了時刻となる。 In the step of cleaning the electrode mixture, it is also preferable that the contact time between the solid component and the liquid component is 1 minute or more and less than 25 hours. The contact time between the solid component and the liquid component in the step of cleaning the electrode composite material is the time during which the electrode composite material and the electrolyte cleaning solvent are in contact with each other. For example, when rinsing is not performed, the contact time between the solid component and the liquid component is such that the electrode mixture (solid component) containing the electrolyte starts contacting with the electrolyte cleaning solvent, and then the slurry is mixed with the solid component and the liquid component. This is the time A required to complete the operation of solid-liquid separation into liquid components. When rinsing is performed, the contact time between the solid component and the liquid component is the above-mentioned time A, and in each rinsing process, the contact time between the solid component after separation and the electrolyte cleaning solvent is started, and then the solid component is This is the sum of the time B required to complete solid-liquid separation between the components and the liquid component. When solid-liquid separation is performed by filtration, the completion time of solid-liquid separation is the end time of filtration.
 上記の工程(4)では、固液分離後の液体成分中のP量が0.0020~2.0質量%、F量が0.01~7.0質量%であり、かつ、固液分離後の固体成分中に残存するP量が0.7質量%以下である。 In the above step (4), the amount of P in the liquid component after solid-liquid separation is 0.0020 to 2.0% by mass, the amount of F is 0.01 to 7.0% by mass, and The amount of P remaining in the subsequent solid component is 0.7% by mass or less.
 固液分離後の液体成分中のPの量及びFの量、及び、固液分離後の固体成分中のPの量が高すぎないことにより、電極合材から電解質を十分に除去できる。例えば、電解質が残っていると以下の反応が起こり、正極活物質の構造が層状岩塩構造からスピネル構造に変化してしまう。
 LiPF+16LiMO+2O→6LiF+LiPO+8LiM
 また、活性化剤として炭酸リチウムを含む場合、以下の反応によるリチウムの消費も起こる。
 LiPF+4LiCO→6LiF+LiPO+4CO
 一方、固液分離後の液体成分中のPの量及びFの量が低すぎないことにより、過度な洗浄による正極活物質の劣化が抑制される。
When the amount of P and the amount of F in the liquid component after solid-liquid separation and the amount of P in the solid component after solid-liquid separation are not too high, the electrolyte can be sufficiently removed from the electrode mixture. For example, if the electrolyte remains, the following reaction occurs, and the structure of the positive electrode active material changes from a layered rock salt structure to a spinel structure.
LiPF 6 +16LiMO 2 +2O 2 →6LiF+Li 3 PO 4 +8LiM 2 O 4
Furthermore, when lithium carbonate is included as an activator, lithium is also consumed by the following reaction.
LiPF 6 +4Li 2 CO 3 →6LiF+Li 3 PO 4 +4CO 2
On the other hand, since the amount of P and the amount of F in the liquid component after solid-liquid separation are not too low, deterioration of the positive electrode active material due to excessive washing is suppressed.
 なお、1又は複数回のリンス工程を行う場合には、最初の固液分離で得られた液体成分と、その後の1又は複数回のリンスの固液分離で得られた液体成分とを、すべて混合した合計液体成分におけるP及びFの含有量が、順に0.0020~2.0質量%、及び、0.01~7.0質量%を満たす。1又は複数回のリンス工程を行う場合には、最後の固液分離で得られた固体成分におけるPの含有量が0.7質量%以下を満たす。また、洗浄を連続式で行う場合には、装置から連続的に排出される液体成分に対するP及びFの含有量が上記の範囲に入ればよい。 In addition, when performing one or more rinsing steps, all the liquid components obtained in the first solid-liquid separation and the liquid components obtained in the subsequent solid-liquid separation in one or more rinses are The contents of P and F in the total mixed liquid components satisfy 0.0020 to 2.0% by mass and 0.01 to 7.0% by mass, respectively. When performing one or more rinsing steps, the P content in the solid component obtained in the final solid-liquid separation satisfies 0.7% by mass or less. Furthermore, when the cleaning is performed continuously, the contents of P and F in the liquid components continuously discharged from the apparatus may fall within the above range.
 また、リンスを行わない場合、及び、1又は複数回のリンスを行う場合のいずれにおいても、電極合材の洗浄において、最後の固液分離で得られた液体成分におけるPの含有量は2.0質量%以下、および、Fの含有量は7.0質量%以下に入ることが好適であり、Pの含有量は0.0020質量%以上、Fの含有量が0.01質量%以上であることも好適である。また、洗浄を連続式で行う場合には、装置から排出される液体成分に対するP量およびF量が順に0.0020~2.0質量%、及び、0.01~7.0質量%の範囲に入ればよい。 In addition, in both cases where rinsing is not performed and when rinsing is performed once or multiple times, the P content in the liquid component obtained in the final solid-liquid separation is 2. It is preferable that the content of F is 0% by mass or less, and the content of F is 7.0% by mass or less, the content of P is 0.0020% by mass or more, and the content of F is 0.01% by mass or more. It is also preferable that there be. In addition, when cleaning is performed continuously, the amount of P and the amount of F relative to the liquid components discharged from the device are in the range of 0.0020 to 2.0 mass% and 0.01 to 7.0 mass%, respectively. All you have to do is enter.
 固液分離後の固体成分中に残存するP量の0.0001質量%以上であってもよい。固液分離後の固体成分中に残存するF量は、3.5質量%以下とすることができ、0.0001質量%以上であってもよい。 It may be 0.0001% by mass or more of the amount of P remaining in the solid component after solid-liquid separation. The amount of F remaining in the solid component after solid-liquid separation can be 3.5% by mass or less, and may be 0.0001% by mass or more.
 分離された固体成分は、必要に応じて、減圧及び/または加熱により電解質洗浄溶媒の乾燥を行うことができる。加熱温度は、50~200℃とすることができる。 The electrolyte cleaning solvent of the separated solid component can be dried by reducing pressure and/or heating, if necessary. The heating temperature can be 50 to 200°C.
 (電解質の少なくとも一部が除去された電極合材と活性化処理剤との混合)
 次に、準備した電解質の除去後の電極合材に、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物を含有する活性化処理剤を混合して混合物を得る。
(Mixing the electrode mixture from which at least a portion of the electrolyte has been removed and the activation treatment agent)
Next, an activation treatment agent containing at least one compound selected from the group consisting of potassium compounds and sodium compounds is mixed into the prepared electrode mixture after the electrolyte has been removed to obtain a mixture.
 電極合材と活性化処理剤との混合方法は、乾式混合又は、湿式混合のいずれでもよく、これらの混合方法の組み合わせでもよく、その混合順序も特に制限されない。 The mixing method of the electrode mixture and the activation treatment agent may be either dry mixing or wet mixing, or a combination of these mixing methods, and the mixing order is not particularly limited.
 混合の際には、ボールなどの混合メディアを備えた混合装置を用いて、粉砕混合する工程を経ることが好ましく、これにより混合効率を向上させることができる。 During mixing, it is preferable to use a mixing device equipped with mixing media such as balls to perform a pulverizing and mixing step, which can improve mixing efficiency.
 混合方法としては、より簡便に混合が行える点で乾式混合が好ましい。乾式混合においては、V型混合機、W型混合機、リボン混合機、ドラムミキサー、攪拌翼を内部に備えた粉体混合機、ボールミル、振動ミルまたはこれらの装置の組み合わせを用いることができる。 As for the mixing method, dry mixing is preferable because mixing can be performed more easily. In the dry mixing, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a powder mixer equipped with an internal stirring blade, a ball mill, a vibration mill, or a combination of these devices can be used.
 乾式混合に用いる混合装置としては、攪拌翼を内部に備えた粉体混合機が好ましく、具体的には、レーディゲミキサー(株式会社マツボー製)を挙げることができる。 As the mixing device used for dry mixing, a powder mixer equipped with an internal stirring blade is preferable, and a specific example is a Loedige mixer (manufactured by Matsubo Co., Ltd.).
 以下、本工程で使用される活性化処理剤について詳細に説明する。 Hereinafter, the activation treatment agent used in this step will be explained in detail.
<活性化処理剤>
 活性化処理剤は、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物を含有する。ここで、カリウムおよび/又はナトリウムをアルカリ金属元素Xとよぶことがある。活性化処理剤は、カリウム化合物及び/又はナトリウム化合物以外に、Liなどの他のアルカリ金属を含むアルカリ金属化合物を含有してもよい。
<Activation treatment agent>
The activation treatment agent contains at least one compound selected from the group consisting of potassium compounds and sodium compounds. Here, potassium and/or sodium may be referred to as alkali metal element X. The activation treatment agent may contain, in addition to the potassium compound and/or the sodium compound, an alkali metal compound containing another alkali metal such as Li.
 活性化処理剤が正極活物質と接触すると、正極活物質を活性化させることができる。活性化処理剤におけるアルカリ金属化合物が特に溶融部分を含む場合には、該溶融部分と正極活物質との接触性が向上することで、正極活物質の活性化がより促進される。 When the activation treatment agent comes into contact with the positive electrode active material, the positive electrode active material can be activated. In particular, when the alkali metal compound in the activation treatment agent includes a molten portion, the contact between the molten portion and the positive electrode active material is improved, thereby further promoting activation of the positive electrode active material.
 また、電極合材は、結着材及び/又は電解液に由来してフッ素を含む化合物を含むことがあるが、該フッ素を含む化合物と活性化処理剤とを接触させることで、フッ素成分がアルカリ金属フッ化物として安定化するため、フッ化水素などの腐食性ガスが発生することを抑制することができる。なお、フッ化水素は正極活物質の活性を落とすことからも発生を防止することが望ましい。 In addition, the electrode mixture may contain a fluorine-containing compound derived from the binder and/or electrolyte, but by bringing the fluorine-containing compound into contact with the activation treatment agent, the fluorine component can be removed. Since it is stabilized as an alkali metal fluoride, generation of corrosive gases such as hydrogen fluoride can be suppressed. Note that it is desirable to prevent the generation of hydrogen fluoride because it reduces the activity of the positive electrode active material.
 活性化処理剤における全アルカリ金属化合物の割合は、アルカリ金属化合物の種類や、対象となる正極活物質の種類等に考慮して適宜設定されるが、活性化処理剤全重量に対して、通常、50重量%以上、好ましくは70重量%以上(100重量%含む)である。
 アルカリ金属化合物中に含まれるアルカリ金属のうちカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属の濃度は、0~100モル%で任意に調整できるが、好ましくは10モル%以上、より好ましくは20モル%以上であり、好ましくは90モル%以下であり、より好ましくは80モル%以下である。
The proportion of the total alkali metal compound in the activation treatment agent is set appropriately taking into account the type of alkali metal compound and the type of target positive electrode active material. , 50% by weight or more, preferably 70% by weight or more (including 100% by weight).
The concentration of at least one alkali metal selected from the group consisting of potassium and sodium among the alkali metals contained in the alkali metal compound can be arbitrarily adjusted from 0 to 100 mol%, but preferably 10 mol% or more, More preferably, it is 20 mol% or more, preferably 90 mol% or less, and even more preferably 80 mol% or less.
 活性化処理剤の成分となるアルカリ金属化合物としては、アルカリ金属の、水酸化物、ホウ酸塩、炭酸塩、酸化物、過酸化物、超酸化物、硝酸塩、リン酸塩、硫酸塩、塩化物、バナジウム酸塩、臭酸塩、モリブデン酸塩、タングステン酸塩が挙げられる。これらは活性化処理剤の成分として、単独でも複数を組み合わせて使用することができる。 Alkali metal compounds that are components of the activation treatment agent include hydroxides, borates, carbonates, oxides, peroxides, superoxides, nitrates, phosphates, sulfates, and chlorides of alkali metals. vanadate, bromate, molybdate, and tungstate. These can be used alone or in combination as a component of the activation treatment agent.
 好適なアルカリ金属化合物の具体例としては、LiOH、NaOH、KOH、RbOH、CsOH等の水酸化物;
LiBO、NaBO、KBO、RbBO、CsBO等のホウ酸化物;
LiCO、NaCO、KCO、RbCO、CsCO等の炭酸塩;
LiO、NaO、KO、RbO、CsO等の酸化物;
Li、Na、K、Rb、Cs等の過酸化物;
LiO、NaO、KO、RbO、CsO等の超酸化物;
LiNO、NaNO、KNO、RbNO、CsNO等の硝酸塩;
LiPO、NaPO、KPO、RbPO、CsPO等のリン酸塩;
LiSO、NaSO、KSO、RbSO、CsSO等の硫酸塩;
LiCl、NaCl、KCl、RbCl、CsCl等の塩化物;
LiBr、NaBr、KBr、RbBr、CsBr等の臭化物;
LiVO、NaVO、KVO、RbVO、CsVO等のバナジウム酸塩;
LiMoO、NaMoO、KMoO、RbMoO、CsMoO等のモリブデン酸塩;
LiWO、NaWO、KWO、RbWO、CsWO等のタングステン酸塩;が挙げられる。
Specific examples of suitable alkali metal compounds include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH;
Boric oxides such as LiBO2 , NaBO2 , KBO2 , RbBO2 , CsBO2 ;
Carbonates such as Li2CO3 , Na2CO3 , K2CO3 , RbCO3 , CsCO3 ;
Oxides such as Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O;
Peroxides such as Li2O2 , Na2O2 , K2O2 , Rb2O2 , Cs2O2 ;
Superoxides such as LiO2 , NaO2 , KO2 , RbO2 , CsO2 ;
Nitrates such as LiNO3 , NaNO3 , KNO3 , RbNO3 , CsNO3 ;
Phosphates such as Li 3 PO 4 , Na 3 PO 4 , K 3 PO 4 , Rb 3 PO 4 , Cs 3 PO 4 ;
Sulfates such as Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , Rb 2 SO 4 , Cs 2 SO 4 ;
Chlorides such as LiCl, NaCl, KCl, RbCl, CsCl;
Bromides such as LiBr, NaBr, KBr, RbBr, CsBr;
Vanadates such as LiVO3 , NaVO3 , KVO3 , RbVO3 , CsVO3 ;
Molybdates such as Li2MoO4 , Na2MoO4 , K2MoO4 , Rb2MoO4 , CsMoO4 ;
Examples include tungstates such as Li 2 WO 4 , Na 2 WO 4 , K 2 WO 4 , Rb 2 WO 4 and CsWO 4 .
 ここで、より正極活物質の活性化効果を高めるため、活性化処理剤は、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物以外に、電極合材中の正極活物質に含まれるアルカリ金属元素と同一のアルカリ金属元素を含むことができる。 Here, in order to further enhance the activation effect of the positive electrode active material, the activation treatment agent is added to the positive electrode active material in the electrode mixture in addition to at least one compound selected from the group consisting of potassium compounds and sodium compounds. The same alkali metal element as the alkali metal element contained can be contained.
 すなわち、電極合材中の正極活物質がリチウム複合酸化物の場合には、活性化処理剤は、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物以外に、リチウム化合物を含むことが好適である。好適なリチウム化合物としては、LiOH、LiBO、LiCO、LiO、Li、LiO、LiNO、LiPO、LiSO、LiCl、LiVO、LiBr、LiMoO、LiWOが挙げられる。 That is, when the positive electrode active material in the electrode mixture is a lithium composite oxide, the activation treatment agent contains a lithium compound in addition to at least one compound selected from the group consisting of potassium compounds and sodium compounds. It is preferable that Suitable lithium compounds include LiOH, LiBO2 , Li2CO3 , Li2O , Li2O2 , LiO2 , LiNO3 , Li3PO4 , Li2SO4 , LiCl , LiVO3 , LiBr, Li Examples include 2MoO4 and Li2WO4 .
 活性化処理剤は、必要に応じてアルカリ金属化合物以外の化合物を含んでいてもよい。アルカリ金属化合物以外の化合物として、例えば、マグネシウム、カルシウム、バリウム等のアルカリ土類金属元素を含有するアルカリ土類金属化合物が挙げられる。アルカリ土類金属化合物は、活性化処理剤の溶融開始温度をコントロールする目的で、アルカリ金属化合物と共に活性化処理剤中に含有される。 The activation treatment agent may contain compounds other than the alkali metal compound as necessary. Examples of compounds other than alkali metal compounds include alkaline earth metal compounds containing alkaline earth metal elements such as magnesium, calcium, and barium. The alkaline earth metal compound is contained in the activation treatment agent together with the alkali metal compound for the purpose of controlling the melting start temperature of the activation treatment agent.
 また、活性化処理剤中のアルカリ金属化合物以外の化合物の含有量は、上述の溶融したアルカリ金属化合物に由来する効果を著しく抑制しない範囲で選択され、活性化処理剤全重量の50重量%未満であることができる。 In addition, the content of compounds other than the alkali metal compound in the activation treatment agent is selected within a range that does not significantly inhibit the effects derived from the above-mentioned molten alkali metal compound, and is less than 50% by weight of the total weight of the activation treatment agent. can be.
 電極合材及び活性化処理剤の混合物中における活性化処理剤の添加量は、電極合材が含む正極活物質の重量に対して、0.001~100倍であることが好ましく、より好ましくは、0.05~1倍である。 The amount of the activation treatment agent added in the mixture of the electrode mixture and the activation treatment agent is preferably 0.001 to 100 times, more preferably 0.001 to 100 times the weight of the positive electrode active material contained in the electrode mixture. , 0.05 to 1 times.
 電極合材及び活性化処理剤の混合物における活性化処理剤中のアルカリ金属化合物のモル数は、電極合材が含む正極活物質(例えばA式)のモル数を1としたときに、アルカリ金属元素のモル数が0.001~200倍となるように添加することができる。 The number of moles of the alkali metal compound in the activation treatment agent in the mixture of the electrode mixture and the activation treatment agent is 1 when the number of moles of the positive electrode active material (for example, formula A) contained in the electrode mixture is 1. It can be added so that the number of moles of the element becomes 0.001 to 200 times as much.
 混合物中の活性化処理剤の割合を適切に制御することで、電極合材からの正極活物質の回収にかかる費用を低減できることができ、炭素系導電材や結着材の酸化分解処理速度を高めることができる。また、加熱工程における腐食性ガスの発生を防止する効果を向上させることができ、さらには得られる正極活物質を用いて製造される電池の放電容量をより高めることができる。 By appropriately controlling the ratio of the activation treatment agent in the mixture, it is possible to reduce the cost of recovering the positive electrode active material from the electrode mixture, and to increase the rate of oxidative decomposition of the carbon-based conductive material and binder. can be increased. Further, the effect of preventing the generation of corrosive gas during the heating process can be improved, and furthermore, the discharge capacity of a battery manufactured using the obtained positive electrode active material can be further increased.
 また、活性化処理剤に含有されるアルカリ金属化合物の少なくとも1種が、水に溶解させた場合にアルカリ性を示すアルカリ金属化合物であることが好ましい。このようなアルカリ金属化合物を含む活性化処理剤は、純水に溶解した際に、該溶液のpHが7よりも大きくなる。以下、このような活性化処理剤を「アルカリ性の活性化処理剤」と称す場合がある。 Furthermore, it is preferable that at least one kind of alkali metal compound contained in the activation treatment agent is an alkali metal compound that exhibits alkalinity when dissolved in water. When an activation treatment agent containing such an alkali metal compound is dissolved in pure water, the pH of the solution becomes higher than 7. Hereinafter, such an activation treatment agent may be referred to as an "alkaline activation treatment agent."
 アルカリ性の活性化処理剤を使用することにより、加熱工程における腐食性ガスの発生をより抑制することができるため、回収される正極活物質を用いて製造される電池の放電容量をより高めることができる。また、アルカリ性の活性化処理剤を使用することにより、炭素系導電材や結着材の処理速度を高めることもできる。 By using an alkaline activation treatment agent, it is possible to further suppress the generation of corrosive gas during the heating process, thereby further increasing the discharge capacity of batteries manufactured using the recovered positive electrode active material. can. Further, by using an alkaline activation treatment agent, the processing speed of the carbon-based conductive material and the binder can be increased.
 アルカリ性の活性化処理剤に含まれる水に溶解させた場合にアルカリ性を示すアルカリ金属化合物としては、アルカリ金属の水酸化物、炭酸塩、炭酸水素塩、酸化物、過酸化物、超酸化物が挙げられる。具体的には、LiOH、NaOH、KOH、RbOH、CsOH;LiCO、NaCO、KCO、RbCO、CsCO;LiHCO、NaHCO、KHCO、RbHCO、CsHCO;LiO、NaO、KO、RbO、CsO;Li、Na、K、Rb、Cs;LiO、NaO、KO、RbO、CsO;が挙げられる。これらは、1種又は2種以上を活性化処理剤に含ませてもよい。 Alkali metal compounds that exhibit alkalinity when dissolved in water contained in alkaline activation treatment agents include alkali metal hydroxides, carbonates, hydrogen carbonates, oxides, peroxides, and superoxides. Can be mentioned. Specifically, LiOH, NaOH, KOH , RbOH, CsOH; Li2CO3 , Na2CO3 , K2CO3 , RbCO3 , CsCO3 ; LiHCO3 , NaHCO3 , KHCO3 , RbHCO3 , CsHCO3 ; Li2O , Na2O , K2O , Rb2O , Cs2O ; Li2O2, Na2O2 , K2O2 , Rb2O2 , Cs2O2 ; LiO2 , NaO 2 , KO2 , RbO2 , CsO2 ; One or more of these may be included in the activation treatment agent.
 また、電極合材に含まれる導電材が、炭素系導電材である場合には、活性化処理剤に含有されるアルカリ金属化合物の少なくとも1種が、加熱工程の温度において、炭素系導電材を酸化分解する酸化力を有するアルカリ金属化合物であってもよい。なお、このようなアルカリ金属化合物を含有する活性化処理剤を、以下、「酸化力を有する活性化処理剤」と称す場合がある。 In addition, when the conductive material contained in the electrode mixture is a carbon-based conductive material, at least one kind of alkali metal compound contained in the activation treatment agent may cause the carbon-based conductive material to react at the temperature of the heating process. It may also be an alkali metal compound having oxidizing power for oxidative decomposition. Note that an activation treatment agent containing such an alkali metal compound may be hereinafter referred to as an "activation treatment agent having oxidizing power."
 このような酸化力を有する活性化処理剤を用いると、炭素材料である導電材の二酸化炭素へ酸化を促進し、炭化水素材料である結着材の二酸化炭素と水蒸気へと酸化を促進することに特に効果を発揮し、得られる正極活物質を用いて製造される電池の放電容量をより高めることができ、さらに加熱工程における腐食性ガスの発生を防止する効果を向上させることができる場合がある。 When an activation treatment agent having such oxidizing power is used, it can promote the oxidation of the conductive material, which is a carbon material, to carbon dioxide, and the oxidation of the binding material, which is a hydrocarbon material, to carbon dioxide and water vapor. It is particularly effective in improving the discharge capacity of batteries manufactured using the obtained positive electrode active material, and may also be able to improve the effect of preventing the generation of corrosive gas during the heating process. be.
 炭素系導電材および炭化水素を二酸化炭素と水蒸気へと酸化するために必要な酸化力を有するアルカリ金属化合物としては、アルカリ金属の過酸化物、超酸化物、硝酸塩、硫酸塩、バナジウム酸塩、モリブデン酸塩を挙げられる。これらは、1種あるいは2種以上を混合して使用してもよい。 Examples of alkali metal compounds having the oxidizing power necessary to oxidize carbon-based conductive materials and hydrocarbons into carbon dioxide and water vapor include alkali metal peroxides, superoxides, nitrates, sulfates, vanadates, Mention may be made of molybdates. These may be used alone or in combination of two or more.
 具体的には、Li、Na、K、Rb、Cs;LiO、NaO、KO、RbO、CsO;LiNO、NaNO、KNO、RbNO、CsNO;LiSO、NaSO、KSO、RbSO、CsSO;LiVO、NaVO、KVO、RbVO、CsVO;LiMoO、NaMoO、KMoO、RbMoO、CsMoO;が挙げられる。 Specifically , Li2O2 , Na2O2 , K2O2 , Rb2O2 , Cs2O2 ; LiO2 , NaO2 , KO2 , RbO2 , CsO2 ; LiNO3 , NaNO3 , KNO3 , RbNO3 , CsNO3 ; Li2SO4 , Na2SO4 , K2SO4 , Rb2SO4 , Cs2SO4 ; LiVO3 , NaVO3 , KVO3 , RbVO3 , CsVO3 ; Examples include Li 2 MoO 4 , Na 2 MoO 4 , K 2 MoO 4 , Rb 2 MoO 4 and CsMoO 4 .
 これらのアルカリ金属化合物の酸化力の詳細については、特開2012-186150号公報に記載されている。 Details of the oxidizing power of these alkali metal compounds are described in JP-A-2012-186150.
 工程(2):加熱工程
 加熱工程は、工程(1)にて得られた混合物(以下、「加熱前の混合物」と呼ぶ場合がある。)を、活性化処理剤の溶融開始温度以上の温度に加熱する工程である。本加熱工程で得られた混合物を「加熱後の混合物」と呼ぶことがある。
Step (2): Heating step The heating step is to heat the mixture obtained in step (1) (hereinafter sometimes referred to as "mixture before heating") to a temperature higher than the melting start temperature of the activation treatment agent. This is the process of heating to . The mixture obtained in this heating step may be referred to as a "mixture after heating."
 なお、「活性化処理剤の溶融開始温度(Tmp)」は、活性化処理剤の一部が液相を呈する最も低い温度を意味する。 Note that the "melting start temperature (Tmp) of the activation treatment agent" means the lowest temperature at which a part of the activation treatment agent exhibits a liquid phase.
 活性化処理剤の溶融開始温度(Tmp)は、示差熱測定(DTA)により求めた値である。すなわち、上記加熱前の混合物5mgを示差熱測定(DTA,測定条件:昇温速度:10℃/min)にて、DTAシグナルが吸熱のピークを示す温度を溶融開始温度(Tmp)とする。 The melting start temperature (Tmp) of the activation treatment agent is a value determined by differential thermal measurement (DTA). That is, 5 mg of the mixture before heating is subjected to differential thermal measurement (DTA, measurement conditions: heating rate: 10° C./min), and the temperature at which the DTA signal shows an endothermic peak is defined as the melting start temperature (Tmp).
 活性化処理剤の溶融開始温度(Tmp)は、700℃以下であることが好ましく、600℃以下であることがより好ましい。活性化処理剤の溶融開始温度(Tmp)に下限はないが、例えば、150℃であってもよい。 The melting start temperature (Tmp) of the activation treatment agent is preferably 700°C or lower, more preferably 600°C or lower. Although there is no lower limit to the melting start temperature (Tmp) of the activation treatment agent, it may be, for example, 150°C.
 また、活性化処理剤の融点は、活性化処理剤のみを加熱したときに、活性化処理剤の一部が液相を呈する最も低い温度を意味する。電極合材と活性化処理剤とを混合することで、活性化処理剤の溶融開始温度(Tmp)は、活性化処理剤の融点より低くなる。 Furthermore, the melting point of the activation treatment agent means the lowest temperature at which a part of the activation treatment agent exhibits a liquid phase when only the activation treatment agent is heated. By mixing the electrode mixture and the activation treatment agent, the melting start temperature (Tmp) of the activation treatment agent becomes lower than the melting point of the activation treatment agent.
 活性化処理剤の融点は、示差熱測定(DTA)により求めた値である。具体的には、当該活性化処理剤5mgを示差熱測定(DTA,測定条件:昇温速度:10℃/min)にて、DTAシグナルが吸熱のピークを示す温度を活性化処理剤の融点とする。 The melting point of the activation treatment agent is a value determined by differential thermal analysis (DTA). Specifically, 5 mg of the activation treatment agent was subjected to differential thermal measurement (DTA, measurement conditions: heating rate: 10°C/min), and the temperature at which the DTA signal shows the endothermic peak was determined as the melting point of the activation treatment agent. do.
 加熱における雰囲気に特に限定はなく、空気などの酸素含有ガス、窒素、アルゴン、二酸化炭素であってよい。雰囲気の圧力に特に限定はないが、大気圧とすることができるが、減圧雰囲気でもよく、加圧雰囲気でもよい。 The atmosphere for heating is not particularly limited, and may be an oxygen-containing gas such as air, nitrogen, argon, or carbon dioxide. The pressure of the atmosphere is not particularly limited, and may be atmospheric pressure, but may also be a reduced pressure atmosphere or a pressurized atmosphere.
 工程(2)では、上述のように加熱前の混合物を活性化処理剤の溶融開始温度(Tmp)以上の温度に加熱することにより、以下の作用が生じる。 In step (2), the following effects occur by heating the mixture before heating to a temperature equal to or higher than the melting start temperature (Tmp) of the activation treatment agent as described above.
 融解状態の活性化処理剤が正極活物質と接触することにより、正極活物質の結晶構造の劣化を抑制することができる。また、場合によっては、結晶構造の修復作用を得ることもできる。 By contacting the activation treatment agent in a molten state with the positive electrode active material, deterioration of the crystal structure of the positive electrode active material can be suppressed. In some cases, it is also possible to obtain a crystal structure repair effect.
 融解状態の活性化処理剤が炭素系導電材や結着材と接触することにより導電材及び結着材の酸化分解の速度が向上し、さらに、融解状態の活性化処理剤が結着材及び電解液に由来するフッ素化合物と接触することにより、フッ素成分がアルカリ金属フッ化物として安定化され、腐食性ガスであるフッ化水素の発生を防止し、正極活物質の結晶構造の劣化が抑制される。 When the molten activation treatment agent comes into contact with the carbon-based conductive material and the binder, the rate of oxidative decomposition of the conductive material and the binder increases, and furthermore, the molten activation treatment agent contacts the binder and the binder. By contacting the fluorine compound derived from the electrolyte, the fluorine component is stabilized as an alkali metal fluoride, preventing the generation of hydrogen fluoride, a corrosive gas, and suppressing deterioration of the crystal structure of the positive electrode active material. Ru.
 さらに、活性化処理剤が、正極活物質と同じアルカリ金属を含有する場合には、正極活物質に対して不足するアルカリ金属を供給することも可能となる。 Furthermore, when the activation treatment agent contains the same alkali metal as the positive electrode active material, it is also possible to supply the insufficient alkali metal to the positive electrode active material.
 加熱工程の温度及び、当該温度における保持時間は、電極合材を構成する正極活物質、導電材、結着材、および活性化処理剤に含有されるアルカリ金属化合物やその他の化合物におけるそれぞれの種類や組み合わせにより適宜調節することができる。通常、温度は100~1500℃の範囲であり、保持時間は、10分~24時間程度である。 The temperature of the heating process and the holding time at that temperature depend on the types of alkali metal compounds and other compounds contained in the positive electrode active material, conductive material, binding material, and activation treatment agent that make up the electrode mixture. It can be adjusted as appropriate depending on the combination. Usually, the temperature is in the range of 100 to 1500°C, and the holding time is about 10 minutes to 24 hours.
 加熱工程の温度は、活性化処理剤が含有するアルカリ金属化合物の融点よりも高い温度であることが好ましい。なお、アルカリ金属化合物の融点は複数種の化合物を混合することで、各化合物の単体の融点よりも下がることがある。活性化処理剤が2種以上のアルカリ金属化合物を含む場合には、共晶点をアルカリ金属化合物の融点とする。 The temperature of the heating step is preferably higher than the melting point of the alkali metal compound contained in the activation treatment agent. Note that the melting point of the alkali metal compound may be lower than the melting point of each compound alone by mixing multiple types of compounds. When the activation treatment agent contains two or more types of alkali metal compounds, the eutectic point is the melting point of the alkali metal compounds.
 加熱工程後には、必要に応じて、混合物を、例えば、室温程度など、任意の温度にまで冷却することができる。 After the heating step, the mixture can be cooled to an arbitrary temperature, such as room temperature, if necessary.
 工程(3):固液分離工程(アルカリ金属の除去)
 工程(3)は、加熱後の混合物を、水を含む液体と接触させて固体成分及び液体成分を含むスラリーを得て、その後、スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のカリウムおよびナトリウムの合計含有量が0.090~2.0質量%であり、分離後の固体成分中のカリウムおよびナトリウムの合計含有量が1.2質量%以下である工程
Step (3): Solid-liquid separation step (alkali metal removal)
Step (3) is a step of contacting the heated mixture with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then separating the slurry into a solid component and a liquid component. A step in which the total content of potassium and sodium in the liquid component after separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after separation is 1.2% by mass or less
 加熱後の混合物には、正極活物質の他、活性化処理剤に由来する成分(アルカリ金属化合物等)、未分解の導電材や結着材、その他の電極合材の未分解物が含まれる。また、電極合材にフッ素成分を含有する電解液が含まれている場合には、電解質に由来するフッ素成分を含む場合もある。 The mixture after heating contains, in addition to the positive electrode active material, components derived from the activation treatment agent (alkali metal compounds, etc.), undecomposed conductive materials and binding materials, and other undecomposed electrode composite materials. . Furthermore, when the electrode mixture contains an electrolytic solution containing a fluorine component, it may contain a fluorine component derived from the electrolyte.
 加熱後の混合物から正極活物質を分離回収するために、該混合物に水を含む液体(液体)を加えてスラリー化させた後に固液分離して、固体成分と液体成分とに分離する。 In order to separate and recover the positive electrode active material from the heated mixture, a water-containing liquid (liquid) is added to the mixture to form a slurry, followed by solid-liquid separation to separate it into a solid component and a liquid component.
 スラリー化工程に用いる液体は、水を含む限り特に制限はない。液体における水の量は50質量%以上であってよい。水溶性成分の溶解度を高めたり、処理速度を高めたりするために液体に水以外の成分を添加して、pHを調整してもよい。
 水を含む液体の好適例としては、純水やアルカリ性洗浄液があげられる。アルカリ性洗浄液としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム及び炭酸アンモニウムからなる群より選ばれる1種以上の無水物並びにその水和物の水溶液を挙げることができる。また、アルカリとして、アンモニアを使用することもできる。
The liquid used in the slurry forming process is not particularly limited as long as it contains water. The amount of water in the liquid may be 50% by weight or more. In order to increase the solubility of water-soluble components or increase the processing speed, components other than water may be added to the liquid to adjust the pH.
Preferred examples of liquids containing water include pure water and alkaline cleaning liquid. As the alkaline cleaning liquid, for example, an aqueous solution of one or more anhydrides and hydrates thereof selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, and ammonium carbonate. can be mentioned. Ammonia can also be used as the alkali.
 得られるスラリーは、正極活物質を主として含む固体成分と、正極活物質以外の水溶性成分を含む液体成分とを含む。なお、液体成分には、活性化処理剤に由来するアルカリ金属成分、及び/又は、結着材及び電解液に由来するフッ素成分が含まれる。 The resulting slurry contains a solid component mainly containing the positive electrode active material and a liquid component containing water-soluble components other than the positive electrode active material. Note that the liquid component includes an alkali metal component derived from the activation treatment agent and/or a fluorine component derived from the binder and the electrolyte.
 混合物に添加される液体の量は、混合物に含まれる正極活物質と、正極活物質以外の水溶性成分のそれぞれの量を考慮して適宜決定される。 The amount of liquid added to the mixture is appropriately determined in consideration of the respective amounts of the positive electrode active material and water-soluble components other than the positive electrode active material contained in the mixture.
 工程(3)において、スラリー濃度、すなわち、スラリーの体積に対する固体成分の濃度が12~1000g/Lとなるように、加熱後の混合物と水を含む液体とを接触させることが好適である。 In step (3), it is preferable to bring the heated mixture into contact with a liquid containing water such that the slurry concentration, that is, the concentration of solid components relative to the volume of the slurry, is 12 to 1000 g/L.
 工程(3)において、加熱後の混合物と水を含む液体とを攪拌してスラリーを得ることが好適である。これにより、水溶性成分の溶解が促進される。攪拌翼の先端の周速は0.1~0.9m/sとすることが好ましい。 In step (3), it is preferable to stir the heated mixture and a liquid containing water to obtain a slurry. This promotes dissolution of water-soluble components. The peripheral speed of the tip of the stirring blade is preferably 0.1 to 0.9 m/s.
 スラリー化工程で形成されたスラリーは、次いで、固液分離に供される。固液分離とは、スラリーを液体成分と固体成分とに分離する工程である。固液分離の方法としては、従来公知の方法でよく、例えば、ろ過や遠心分離法が挙げられる。 The slurry formed in the slurrying step is then subjected to solid-liquid separation. Solid-liquid separation is a process of separating a slurry into a liquid component and a solid component. The solid-liquid separation method may be any conventionally known method, such as filtration or centrifugation.
 工程(3)において、固液分離した後、得られた固体成分のリンスを実施してもよい。リンスとは、得られた固体成分に再び水を含む液体を接触させてスラリーを得て、その後、スラリーを再び固体成分と液体成分とに分離する操作である。工程(3)では、リンスを複数回実施してもよい。リンスにおけるスラリー濃度も上記と同様にすることができる。リンス倍率は、1~80とすることができる。リンス倍率とは、固体成分の重量に対して添加した水を含む液体の重量の比である。リンスにおいても、上述のようにスラリーの攪拌を行うことができる。 In step (3), after solid-liquid separation, the obtained solid component may be rinsed. Rinsing is an operation in which the obtained solid component is brought into contact with a water-containing liquid again to obtain a slurry, and then the slurry is again separated into a solid component and a liquid component. In step (3), rinsing may be performed multiple times. The slurry concentration in rinsing can also be the same as above. The rinse magnification can be 1-80. The rinsing ratio is the ratio of the weight of the added water-containing liquid to the weight of the solid component. Also during rinsing, the slurry can be stirred as described above.
 工程(3)において、固体成分と液体成分との接触時間が、4分間以上24時間未満であることが好適である。工程(3)における固体成分と液体成分との接触時間とは、正極活物質と水を含む液体とが接触している時間である。例えば、リンスを行わない場合には、固体成分と液体成分との接触時間は、加熱後の混合物などの固体成分と、水を含む液体との接触を開始してから、スラリーを固体成分及び液体成分に固液分離する操作が完了するまでに要した時間Cである。リンスを行う場合には、固体成分と液体成分との接触時間は、上記の時間Cと、各リンスの工程において、分離後の固体成分と、水を含む液体との接触を開始してから、固体成分と液体成分との固液分離が完了するまでに要した時間Dとの和である。固液分離をろ過で行う場合には、固液分離の完了時刻は、ろ過の終了時刻となる。 In step (3), the contact time between the solid component and the liquid component is preferably 4 minutes or more and less than 24 hours. The contact time between the solid component and the liquid component in step (3) is the time during which the positive electrode active material and the water-containing liquid are in contact. For example, if rinsing is not performed, the contact time between the solid component and the liquid component is determined by starting the contact between the solid component, such as a heated mixture, and the liquid containing water, and then adding the slurry to the solid component and the liquid component. This is the time C required to complete the operation of separating solid and liquid components. When rinsing is performed, the contact time between the solid component and the liquid component is the above-mentioned time C, and in each rinsing step, after the separation of the solid component and the liquid containing water starts contacting, This is the sum of the time D required to complete solid-liquid separation between the solid component and the liquid component. When solid-liquid separation is performed by filtration, the completion time of solid-liquid separation is the end time of filtration.
 本実施形態では、固液分離により得られた液体成分中のカリウム及びナトリウムの合計含有量が0.090~2.0質量%であり、固液分離により得られた固体成分中のカリウム及びナトリウムの合計含有量が1.2質量%以下である。
 固液分離後の液体成分中のカリウム及びナトリウムの合計含有量、及び、固体成分中のカリウム及びナトリウムの合計含有量が高すぎないことにより、電極合材からのアルカリ金属成分を十分に除去できる。一方、液体成分中のカリウム及びナトリウムの合計含有量が低すぎないことにより、過度な洗浄による正極活物質の劣化が抑制される。
In this embodiment, the total content of potassium and sodium in the liquid component obtained by solid-liquid separation is 0.090 to 2.0% by mass, and the potassium and sodium content in the solid component obtained by solid-liquid separation is 0.090 to 2.0% by mass. The total content of is 1.2% by mass or less.
Since the total content of potassium and sodium in the liquid component after solid-liquid separation and the total content of potassium and sodium in the solid component are not too high, alkali metal components from the electrode mixture can be sufficiently removed. . On the other hand, since the total content of potassium and sodium in the liquid component is not too low, deterioration of the positive electrode active material due to excessive washing is suppressed.
 なお、1又は複数回のリンス工程を行う場合には、最初の固液分離で得られた液体成分と、その後の1又は複数回のリンスの固液分離で得られた液体成分とを、すべて混合した合計液体成分におけるカリウム及びナトリウムの合計含有量が、0.090~2.0質量%を満たす。1又は複数回のリンス工程を行う場合には、最後の固液分離で得られた固体成分におけるカリウム及びナトリウムの合計含有量が1.2質量%以下を満たす。また、洗浄を連続式で行う場合には、装置から連続的に排出される液体成分に対するカリウム及びナトリウムの合計含有量が0.090~2.0質量%の範囲に入ればよい。また、リンスを行わない場合、及び、1又は複数回のリンスを行う場合のいずれにおいても、電極合材の洗浄において、最後の固液分離で得られた液体成分におけるカリウム及びナトリウムの合計含有量は0.090~2.0質量%であることが好適である。 In addition, when performing one or more rinsing steps, all the liquid components obtained in the first solid-liquid separation and the liquid components obtained in the subsequent one or more rinsing solid-liquid separations are The total content of potassium and sodium in the total mixed liquid components satisfies 0.090 to 2.0% by mass. When performing one or more rinsing steps, the total content of potassium and sodium in the solid component obtained in the final solid-liquid separation satisfies 1.2% by mass or less. Further, when the cleaning is carried out continuously, the total content of potassium and sodium in the liquid component continuously discharged from the apparatus may be in the range of 0.090 to 2.0% by mass. In addition, in both cases where rinsing is not performed and when rinsing is performed once or multiple times, the total content of potassium and sodium in the liquid component obtained in the final solid-liquid separation when cleaning the electrode composite material. is preferably 0.090 to 2.0% by mass.
 分離された固体成分中のカリウム及びナトリウムの合計含有量の下限は0.001質量%であってよい。 The lower limit of the total content of potassium and sodium in the separated solid component may be 0.001% by mass.
 本発明の実施形態では以下の工程(5)及び/又は工程(6)を有していることができる。 An embodiment of the present invention may include the following step (5) and/or step (6).
 工程(5):乾燥工程
 工程(5)では、前記工程(3)で得られた固体成分を加熱及び/又は減圧環境に曝して固体成分から水を除去する工程である。ここでは、スラリーを固体成分と液体成分とに分離してから24時間以内に、固体成分が存在する環境気圧に対する、固体成分の温度における飽和水蒸気圧の比が80%以上となるように、前記環境気圧及び/又は前記固体成分の温度を変更することが好適である。
 固体成分が存在する環境気圧に対する、固体成分の温度における飽和水蒸気圧の比が80%以上にすれば、固体成分から十分に水が除去される条件となる。
Step (5): Drying Step Step (5) is a step of exposing the solid component obtained in step (3) to a heating and/or reduced pressure environment to remove water from the solid component. Here, within 24 hours after separating the slurry into a solid component and a liquid component, the ratio of the saturated water vapor pressure at the temperature of the solid component to the environmental pressure where the solid component is present is 80% or more. It is preferred to vary the ambient pressure and/or the temperature of the solid components.
When the ratio of the saturated water vapor pressure at the temperature of the solid component to the ambient pressure at which the solid component exists is 80% or more, water is sufficiently removed from the solid component.
 このように、スラリーを液体成分と固体成分とに分離してから、24時間以内にこのような条件に到達させることにより、固体成分が湿潤環境にさらされる時間を短くし、これにより、正極活物質の劣化を抑制できる。 Thus, by achieving these conditions within 24 hours after separating the slurry into liquid and solid components, the time that the solid components are exposed to the humid environment is shortened, thereby increasing the positive electrode activity. Deterioration of substances can be suppressed.
 具体的には、例えば、湿潤環境下では以下の反応が進行しうる。 Specifically, for example, the following reactions can proceed in a humid environment.
 2LiMO+HO→2LiOH+M
 また、空気中など二酸化炭素を含有する湿潤環境下では以下の反応も進行しうる。
2LiMO2 + H2O →2LiOH + M2O3
Furthermore, the following reactions can also proceed in a humid environment containing carbon dioxide, such as in the air.
 2LiMO+CO→LiCO+M 2LiMO 2 +CO 2 →Li 2 CO 3 +M 2 O 3
 具体的には、減圧のみによって固体成分から十分に水が除去される条件に到達させてもよく、加熱のみによって固体成分から十分に水が除去される到達させてもよく、加熱及び減圧によって固体成分から十分に水が除去される条件に到達させてもよい。 Specifically, conditions may be reached where water is sufficiently removed from the solid component only by reduced pressure, conditions may be reached where water is sufficiently removed from the solid component only by heating, and conditions may be reached where water is sufficiently removed from the solid component by heating and reduced pressure. Conditions may be reached that sufficiently remove water from the components.
 固体成分が存在する環境気圧に対する、固体成分の温度における飽和水蒸気圧の比が80%以上となるまでの時間は、固体成分が存在する環境圧力と、固体成分の温度とをモニタすることにより測定できる。具体的には、例えば、乾燥器に設けられた圧力計及び湿度計等のセンサを利用すればよい。 The time required for the ratio of the saturated water vapor pressure at the temperature of the solid component to the ambient pressure where the solid component exists to reach 80% or more is measured by monitoring the environmental pressure where the solid component exists and the temperature of the solid component. can. Specifically, for example, sensors such as a pressure gauge and a hygrometer provided in the dryer may be used.
 加熱の温度としては水を除去するために100℃以上が好ましい。さらに十分に水を除去するために150℃以上とすることが好ましい。特に250℃以上の温度では、得られる正極活物質を用いて製造される電池の放電容量がさらに高まることから好ましい。乾燥工程における温度は、一定でもよく、また段階的もしくは連続的に変化させてもよい。加熱の到達温度範囲は、例えば、10℃以上900℃未満であることができる。 The heating temperature is preferably 100°C or higher in order to remove water. Furthermore, in order to sufficiently remove water, the temperature is preferably 150°C or higher. In particular, a temperature of 250° C. or higher is preferable because the discharge capacity of a battery manufactured using the obtained positive electrode active material further increases. The temperature in the drying step may be constant or may be changed stepwise or continuously. The temperature range reached by heating can be, for example, 10°C or more and less than 900°C.
 減圧の到達圧力範囲は、例えば、1.0×10-10~1.0×10Paであることができる。 The ultimate pressure range of the reduced pressure can be, for example, 1.0×10 −10 to 1.0×10 3 Pa.
 工程(6):アニール(再焼成)工程
 工程(6)は、好ましくは、前記工程(5)後の固体成分を900℃未満で熱処理する工程である。
Step (6): Annealing (re-firing) step Step (6) is preferably a step of heat-treating the solid component after step (5) at less than 900°C.
 熱処理の雰囲気に限定はないが、空気などの酸素含有雰囲気下であることが好適である。また、熱処理の温度は、100℃以上であることができる。また、熱処理の保持時間は、1分~24時間とすることができる。特に、350℃以上の保持温度にて、0.1時間以上5時間以下で加熱することが好適である。 There is no limitation on the atmosphere for heat treatment, but it is preferably in an oxygen-containing atmosphere such as air. Further, the temperature of the heat treatment can be 100° C. or higher. Further, the holding time of the heat treatment can be from 1 minute to 24 hours. In particular, it is preferable to heat at a holding temperature of 350° C. or higher for 0.1 hour or more and 5 hours or less.
 本発明の正極活物質の製造方法を用いることで電池合材から得られた正極活物質は、未使用活物質と同様に再利用することができる。正極活物質を用いて、電極及び電池を製造する方法は周知である。 A positive electrode active material obtained from a battery composite material by using the method for producing a positive electrode active material of the present invention can be reused in the same way as an unused active material. Methods of manufacturing electrodes and batteries using positive electrode active materials are well known.
 最終的に得られる、本発明の実施形態に係る正極活物質の放電容量は、150mAh/g以上であることができる。 The finally obtained discharge capacity of the positive electrode active material according to the embodiment of the present invention can be 150 mAh/g or more.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is changed.
 正極活物質の物性の測定、該正極活物質として用いた電池による充放電試験は、次のようにして行った。 Measurement of the physical properties of the positive electrode active material and a charge/discharge test using the battery used as the positive electrode active material were performed as follows.
(1)元素の含有量
 溶液、及び、粉末を溶解させた酸溶液について、ICP発光分析装置(例えばエスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて該溶液及び該粉末中に含まれるアルカリ金属元素の含有量の分析を行った。
(1) Content of elements The alkali contained in the solution and the powder was measured using an ICP emission spectrometer (for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.) for the acid solution in which the solution and the powder were dissolved. The content of metal elements was analyzed.
(2)充放電試験
 1.電極(正極)の製造
 正極活物質の放電容量の測定のために、下記の手順に従って電極(正極)を製造した。
(2) Charge/discharge test 1. Manufacture of Electrode (Positive Electrode) In order to measure the discharge capacity of the positive electrode active material, an electrode (positive electrode) was manufactured according to the following procedure.
 各正極活物質と、結着材(PVdF#1100(株式会社クレハ社製))と、導電材(アセチレンブラック(電気化学工業株式会社製、品番:デンカブラック HS100)とを、正極活物質:結着材:導電材の重量比がそれぞれ92:3:5となるように混合した。ここで結着材であるPVdFは、予めPVdFをNMPに溶解したバインダー溶液を用いた。正極合材ペースト中の正極活物質と導電材と結着材の重量の合計が50重量%となるようにNMPを添加して調整した。自転・公転方式ミキサー(株式会社シンキー製 ARE-310)で混練して、正極合材ペーストを製造した。 Each positive electrode active material, a binder (PVdF#1100 (manufactured by Kureha Corporation)), and a conductive material (acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product number: Denka Black HS100)) The binder and conductive material were mixed in a weight ratio of 92:3:5.Here, as the binder PVdF, a binder solution in which PVdF was dissolved in NMP in advance was used.In the positive electrode composite paste NMP was added and adjusted so that the total weight of the positive electrode active material, conductive material, and binder was 50% by weight.Kneaded with a rotation/revolution mixer (ARE-310, manufactured by Shinky Co., Ltd.), A positive electrode composite paste was manufactured.
 なお、バインダー溶液としては、結着材であるPVdFを溶解したNMP溶液を使用し、正極合材ペースト中の正極活物質と導電材とバインダーの重量の合計が50重量%となるようにNMPを添加して調整した。 As the binder solution, an NMP solution in which PVdF as a binder is dissolved is used, and NMP is added so that the total weight of the positive electrode active material, conductive material, and binder in the positive electrode composite paste is 50% by weight. Adjusted by adding.
 正極合材ペーストを集電体となる厚さ20μmのリチウムイオン二次電池正極集電体用アルミニウム箔1085(日本製箔社製)に、正極活物質量が3.0±0.1mg/cmとなるように塗布した後、150℃で8時間真空乾燥して、正極を得た。この正極の電極面積は1.65cmとした。 The positive electrode mixture paste was applied to aluminum foil 1085 for lithium ion secondary battery positive electrode current collector (manufactured by Nihon Seifu Co., Ltd.) with a thickness of 20 μm as a current collector, and the amount of positive electrode active material was 3.0 ± 0.1 mg/cm. 2 and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode. The electrode area of this positive electrode was 1.65 cm 2 .
2.電池の製造
 上述の正極と、電解液と、セパレータと、負極とを組み合わせて、非水電解質二次電池(コイン型電池R2032)を製造した。なお、電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
2. Manufacture of Battery A non-aqueous electrolyte secondary battery (coin-type battery R2032) was manufactured by combining the above-described positive electrode, electrolyte, separator, and negative electrode. Note that the battery was assembled in a glove box with an argon atmosphere.
 電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)混合液に、LiPFを1.0mol/Lとなる割合で溶解した溶液を用いた。 As the electrolytic solution, a solution was used in which LiPF 6 was dissolved at a ratio of 1.0 mol/L in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate.
 セパレータとしてポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層した積層フィルムセパレータを使用した。また、負極として金属リチウムを使用した。 A laminated film separator in which a heat-resistant porous layer was laminated on a polyethylene porous film was used as a separator. In addition, metallic lithium was used as the negative electrode.
3.充放電試験
 製造したコイン型電池を用いて、25℃保持下で、初回充放電後、内部抵抗測定を実施した。
・初回充放電
 充電最大電圧:4.3V、充電電流:0.2C、定電流定電圧充電
 放電最小電圧:2.5V、放電電流:0.2C、定電流放電
3. Charge/Discharge Test Using the manufactured coin-type battery, internal resistance was measured after initial charge/discharge at 25°C.
・Initial charge/discharge Maximum charging voltage: 4.3V, charging current: 0.2C, constant current constant voltage charging Minimum discharge voltage: 2.5V, discharge current: 0.2C, constant current discharge
(初回放電容量回復率)
 再活性化正極活物質の初回充放電における0.2C放電容量をXmAh/g、未使用活物質の初回充放電における0.2C放電容量をYmAh/gとしたとき、初回放電容量回復率は以下の式(a)で求められる。
(Initial discharge capacity recovery rate)
When the 0.2C discharge capacity in the first charge and discharge of the reactivated positive electrode active material is XmAh/g, and the 0.2C discharge capacity in the first charge and discharge of the unused active material is YmAh/g, the first discharge capacity recovery rate is as follows. It is determined by the formula (a).
 初回放電容量回復率(%)=X/Y×100 (a) Initial discharge capacity recovery rate (%) = X/Y x 100 (a)
・内部抵抗測定
 充電最大電圧:4.3V、充電電流:0.2Cにて定電流定電圧充電を行い、交流インピーダンス測定装置(周波数応答アナライザsolartron1260、ポテンショ/ガルバノスタットsolartron1287)を用いて、周波数1MHz~0.1Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール-コールプロットを作成した。つづいて、このコール-コールプロットにおいて、100Hz~1Hzに含まれる円弧部分を円でフィッティングし、円の直径を抵抗値とし、正極活物質の内部抵抗とした。
・Internal resistance measurement Perform constant current and constant voltage charging at maximum charging voltage: 4.3 V and charging current: 0.2 C, and use an AC impedance measuring device (frequency response analyzer solartron 1260, potentio/galvanostat solartron 1287) at a frequency of 1 MHz. A Cole-Cole plot was created by scanning up to 0.1 Hz and showing the imaginary part on the vertical axis and the real part on the horizontal axis. Subsequently, in this Cole-Cole plot, the arc portion included in the range of 100 Hz to 1 Hz was fitted with a circle, and the diameter of the circle was taken as the resistance value, which was taken as the internal resistance of the positive electrode active material.
(内部抵抗回復率)
 再活性化正極活物質の内部抵抗をxΩ、未使用活物質の内部抵抗をyΩとしたとき、内部抵抗回復率は以下の式(b)で求められる。
(internal resistance recovery rate)
When the internal resistance of the reactivated positive electrode active material is xΩ and the internal resistance of the unused active material is yΩ, the internal resistance recovery rate is determined by the following equation (b).
 内部抵抗回復率(%)=y/x×100 (b) Internal resistance recovery rate (%) = y/x x 100 (b)
 (実施例1)
 A.正極Aの製造
(Example 1)
A. Manufacture of positive electrode A
 正極活物質としては、組成がLi1.04Ni0.60Co0.20Mn0.20であり、結晶構造がR-3mである正極活物質を用いた。この正極活物質の定格容量は160mAh/g、1C電流は160mA/gとした。この正極活物質(未使用活物質)を正極活物質として用いたコイン型電池による充放電試験で測定された0.2C初回放電容量は183mAh/gであった。 As the positive electrode active material, a positive electrode active material having a composition of Li 1.04 Ni 0.60 Co 0.20 Mn 0.20 O 2 and a crystal structure of R-3m was used. The rated capacity of this positive electrode active material was 160 mAh/g, and the 1C current was 160 mA/g. The 0.2C initial discharge capacity measured in a charge/discharge test using a coin-type battery using this positive electrode active material (unused active material) as the positive electrode active material was 183 mAh/g.
 導電材としては、アセチレンブラックHS100(電気化学工業株式会社製)を使用した。 Acetylene black HS100 (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the conductive material.
 結着材と溶媒としては、結着材であるPVdF#1100を12重量%含むNMP溶液(株式会社クレハ製)にさらにNMP溶媒を追加投入して所定の比率とした。 As the binder and solvent, an NMP solvent was added to an NMP solution (manufactured by Kureha Co., Ltd.) containing 12% by weight of PVdF #1100 as a binder to obtain a predetermined ratio.
 正極合材における正極活物質と、結着剤と、導電材との質量比は、92:3:5とした。溶媒の配合量は、正極合材ペースト全体に対して50質量%とした。 The mass ratio of the positive electrode active material, binder, and conductive material in the positive electrode composite material was 92:3:5. The blending amount of the solvent was 50% by mass based on the entire positive electrode composite paste.
 正極合材ペーストを厚さ20μmのリチウムイオン2次電池正極集電体用アルミニウム箔1085(日本製箔社製)上に,ドクターブレード方式コーターを用いて塗工し、乾燥し、正極Aを得た。アルミニウム箔上の正極活物質量は20mg/cmであった。 The positive electrode mixture paste was applied onto a 20 μm thick lithium ion secondary battery positive electrode current collector aluminum foil 1085 (manufactured by Nihon Seifaku Co., Ltd.) using a doctor blade coater, and dried to obtain positive electrode A. Ta. The amount of positive electrode active material on the aluminum foil was 20 mg/cm 2 .
 B.正極Aからの電極合材の回収
 正極Aから、電極合材を集電体から機械的に剥離した。
B. Recovery of electrode mixture from positive electrode A From positive electrode A, the electrode mixture was mechanically peeled off from the current collector.
 C.電解液浸漬工程
  剥離した電極合材を粉砕して粉末化した。電極合材の粉末にスラリー濃度が1500g/Lとなるよう電解液を加えてスラリー化した。ここで電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)混合液に、電解質としてLiPFを1.0mol/Lとなる割合で溶解した溶液を用いた。電極合材のスラリーを最大流速0.550m/secで1分間攪拌した。その後、該スラリーをろ過することで固相を分離し、さらに固相を24時間減圧乾燥することで、電解質含有電極合材を得た。なお、電解液浸漬工程はアルゴン雰囲気のグローブボックス内で行った
C. Electrolyte immersion process The peeled electrode composite material was pulverized into powder. An electrolytic solution was added to the powder of the electrode mixture so that the slurry concentration was 1500 g/L to form a slurry. Here, as the electrolyte, a solution was used in which LiPF 6 was dissolved as an electrolyte in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a ratio of 1.0 mol/L. . The slurry of the electrode mixture was stirred for 1 minute at a maximum flow rate of 0.550 m/sec. Thereafter, the solid phase was separated by filtering the slurry, and the solid phase was further dried under reduced pressure for 24 hours to obtain an electrolyte-containing electrode composite material. The electrolyte immersion process was performed in a glove box with an argon atmosphere.
 D.電解質含有電極合材の洗浄工程(工程(4)に対応)
 得られた電解質含有電極合材に、電解質洗浄溶媒として水をスラリー濃度が5g/Lとなるよう加えてスラリー化し、攪拌翼の先端の周速を0.942m/sとして1437分間攪拌した後、該スラリーを3分かけてろ過することで、固体成分と液体成分とに分離した。電極合材と電解質洗浄溶媒との接触時間、すなわち、固体成分と液体成分との接触時間は1440分すなわち24時間となった。
分離後の液体成分中のP量が0.0059質量%、F量が0.024質量%であり、かつ、分離後の固体成分中に残存するP量が0.0050質量%未満であった。
 得られた固体成分を100℃で1時間減圧乾燥し、洗浄後の電極合材を回収した。
D. Cleaning process for electrode mixture containing electrolyte (corresponding to process (4))
To the obtained electrolyte-containing electrode mixture, water was added as an electrolyte cleaning solvent so that the slurry concentration was 5 g/L to form a slurry, and after stirring for 1437 minutes at a circumferential speed of the tip of a stirring blade of 0.942 m/s, The slurry was filtered for 3 minutes to separate it into a solid component and a liquid component. The contact time between the electrode mixture and the electrolyte cleaning solvent, that is, the contact time between the solid component and the liquid component was 1440 minutes, or 24 hours.
The amount of P in the liquid component after separation was 0.0059% by mass, the amount of F was 0.024% by mass, and the amount of P remaining in the solid component after separation was less than 0.0050% by mass. .
The obtained solid component was dried under reduced pressure at 100° C. for 1 hour, and the washed electrode mixture was collected.
 E.活性化処理剤混合工程(工程(1)に対応)
 洗浄後電極合材に、活性化処理剤としてLiCOとKSOを、電極合材中の正極活物質1モルに対して0.15モルと0.15モルとなるよう混合して混合物(加熱前の混合物)を得た。活性化処理剤の溶融開始温度は550℃であった。
E. Activation treatment agent mixing process (corresponding to process (1))
After cleaning, Li 2 CO 3 and K 2 SO 4 were mixed into the electrode mixture as activation treatment agents so that the amounts were 0.15 mol and 0.15 mol per 1 mol of the positive electrode active material in the electrode mixture. A mixture (mixture before heating) was obtained. The melting start temperature of the activation treatment agent was 550°C.
 F.加熱工程(工程(2)に対応)
 得られた加熱前の混合物をアルミナ製焼成容器に入れて電気炉に設置した。大気圧下、該混合物を保持温度700℃、保持時間3時間で活性化処理した。加熱速度は300℃/時間とし、室温までの冷却は自然冷却とした。室温まで冷却された後に、加熱後の混合物を回収した。
F. Heating process (corresponding to process (2))
The obtained mixture before heating was placed in an alumina firing container and placed in an electric furnace. The mixture was activated under atmospheric pressure at a holding temperature of 700° C. and a holding time of 3 hours. The heating rate was 300° C./hour, and cooling to room temperature was performed naturally. After cooling to room temperature, the heated mixture was collected.
 G.アルカリ金属の除去工程(工程(3)の水洗及び固液分離に対応)
 加熱後の混合物を粉砕し、水を加えて1分間攪拌して20g/Lの濃度でスラリー化した。その後、該スラリーを3分間かけてろ過することで、固体成分と液体成分とに分離した。固体成分と液体成分(水)との接触時間は4分となった。スラリー濃度、固体成分と液体成分(水)との接触時間、攪拌翼の先端の周速(最大流速)を表1に示す。
G. Alkali metal removal process (corresponds to water washing and solid-liquid separation in step (3))
The heated mixture was pulverized, water was added, and the mixture was stirred for 1 minute to form a slurry at a concentration of 20 g/L. Thereafter, the slurry was filtered for 3 minutes to separate it into a solid component and a liquid component. The contact time between the solid component and the liquid component (water) was 4 minutes. Table 1 shows the slurry concentration, the contact time between the solid component and the liquid component (water), and the circumferential velocity (maximum flow velocity) at the tip of the stirring blade.
 H.正極活物質の乾燥工程(工程(5)に対応)
 得られた固体成分を100℃で1時間減圧乾燥した。スラリーを固体成分と液体成分とに分離してから、固体成分が存在する環境気圧に対する、固体成分の温度における水の飽和水蒸気圧の比が80%に到達するのに要した時間は20分間であった。
H. Drying process of positive electrode active material (corresponding to process (5))
The obtained solid component was dried under reduced pressure at 100°C for 1 hour. After separating the slurry into solid and liquid components, it took 20 minutes for the ratio of the saturated water vapor pressure of water at the temperature of the solid components to the ambient pressure at which the solid components existed to reach 80%. there were.
 乾燥後の固体成分、及び、液体成分について、ICP元素分析を実施した。アルカリ金属元素Xの種類、固体成分中のアルカリ金属元素Xの量、液体成分のLi量及びアルカリ金属元素X量を表1に示す。 ICP elemental analysis was performed on the solid component and liquid component after drying. Table 1 shows the type of alkali metal element X, the amount of alkali metal element X in the solid component, the amount of Li in the liquid component, and the amount of alkali metal element X.
 H.正極活物質の再焼成工程(工程(6)に対応)
 回収した水洗後正極活物質を、アルミナ製焼成容器に入れて電気炉に設置した。大気圧下、該混合物を保持温度700℃、保持時間1時間で加熱した。加熱速度は300℃/時間とし、室温までの冷却は自然冷却とした。室温まで冷却された後に、再活性化正極活物質を回収した。
H. Re-firing process of positive electrode active material (corresponding to process (6))
The recovered positive electrode active material after washing with water was placed in an alumina firing container and placed in an electric furnace. The mixture was heated under atmospheric pressure with a holding temperature of 700°C and a holding time of 1 hour. The heating rate was 300° C./hour, and cooling to room temperature was performed naturally. After cooling to room temperature, the reactivated cathode active material was collected.
 回収された再活性化正極活物質について、ICP元素分析を実施した。再活性化正極活物質中の元素の量を表1に示す。 ICP elemental analysis was performed on the recovered reactivated positive electrode active material. The amounts of elements in the reactivated cathode active material are shown in Table 1.
 回収された再活性化正極活物質について、コイン型電池を製造し、充放電試験を実施した。充放電試験による放電容量及び内部抵抗を測定し、初回放電容量回復率及び内部抵抗回復率を求めた。 A coin-type battery was manufactured using the recovered reactivated positive electrode active material, and a charge/discharge test was conducted. The discharge capacity and internal resistance were measured by a charge/discharge test, and the initial discharge capacity recovery rate and internal resistance recovery rate were determined.
 (実施例2、3)
 実施例2、3では、Gのアルカリ金属の除去工程においてスラリー濃度を、それぞれ200g/L、333g/Lの濃度に変更する以外は実施例1と同様とした。
(Examples 2 and 3)
Examples 2 and 3 were the same as Example 1 except that the slurry concentration in the alkali metal removal step of G was changed to 200 g/L and 333 g/L, respectively.
 (実施例4)
 実施例4では、Gのアルカリ金属の除去工程において、加熱後の混合物を粉砕し、水を加えて20分間攪拌してスラリー化し、該スラリーを3分間かけてろ過器でろ過し、その後、ろ過器上の固体に対して水で2回のリンスを各回3分かけて行い、水との接触時間を29分に変更した。Gのアルカリ金属の除去工程以外は実施例1と同様とした。リンスとは、ろ過器上でろ過後の固体残渣に対して再度水を供給してろ過することである。
 リンス倍率も表1に示す。リンス倍率とは、固体成分の重量に対して添加した水を含む液体の重量の比である。リンスをした場合、アルカリ金属の除去工程における全ての分離工程で得られた全液体成分におけるアルカリ金属元素Xの濃度を測定した。
(Example 4)
In Example 4, in the alkali metal removal step of G, the heated mixture is pulverized, water is added and stirred for 20 minutes to form a slurry, and the slurry is filtered for 3 minutes using a filter. The solid on the vessel was rinsed twice with water for 3 minutes each time, and the contact time with water was changed to 29 minutes. The procedure was the same as in Example 1 except for the step of removing the alkali metal of G. Rinsing is to supply water again to the solid residue after filtration on the filter to filter it.
The rinsing ratio is also shown in Table 1. The rinsing ratio is the ratio of the weight of the added water-containing liquid to the weight of the solid component. In the case of rinsing, the concentration of alkali metal element X in all liquid components obtained in all separation steps in the alkali metal removal step was measured.
 (実施例5)
 実施例5では、水を加えて5分攪拌してスラリー化し、その後、該スラリーを3分間かけてろ過器でろ過した、その後、ろ過器上の固体に対して水で2回のリンスを各回3分かけて行い、水との接触時間を14分に変更した以外は実施例1と同様とした。
(Example 5)
In Example 5, water was added and stirred for 5 minutes to form a slurry, and the slurry was then filtered through a filter for 3 minutes.The solids on the filter were then rinsed twice with water each time. The procedure was the same as in Example 1 except that the contact time with water was changed to 14 minutes.
 (比較例1)
 比較例1では、Gのアルカリ金属の除去工程を行わない以外は実施例1と同様とした。
(Comparative example 1)
Comparative Example 1 was the same as Example 1 except that the alkali metal removal step of G was not performed.
 (比較例2)
 比較例2では、Gのアルカリ金属の除去工程において、加熱後の混合物を粉砕し、0.5分間かけて水を加えて攪拌することなくスラリー化し、その後、該スラリーを3分間かけてろ過することで水との接触時間を3.5分に変更した以外は実施例2と同様とした。
(Comparative example 2)
In Comparative Example 2, in the alkali metal removal step of G, the heated mixture is pulverized, water is added for 0.5 minutes to form a slurry without stirring, and the slurry is then filtered for 3 minutes. The procedure was the same as in Example 2 except that the contact time with water was changed to 3.5 minutes.
 (比較例3)
 比較例3では、Dの電極合材の洗浄を行わない以外は実施例1と同様とした。
(Comparative example 3)
Comparative Example 3 was the same as Example 1 except that the electrode mixture D was not cleaned.
 (比較例4)
 比較例4では、Gのアルカリ金属の除去工程において、スラリー濃度を1250g/Lにする以外は実施例1と同様とした。
(Comparative example 4)
Comparative Example 4 was the same as Example 1 except that the slurry concentration was 1250 g/L in the step of removing the alkali metal of G.
 (比較例5)
 比較例5では、Gのアルカリ金属の除去工程において、スラリー濃度を10g/Lにする以外は実施例1と同様とした。
(Comparative example 5)
Comparative Example 5 was the same as Example 1 except that the slurry concentration was 10 g/L in the step of removing the alkali metal of G.
 (比較例6)
 比較例6では、Gのアルカリ金属の除去工程において、スラリー化での攪拌時間を1437分とし、固体成分と液体成分との接触時間(ろ過時間及び攪拌時間の合計)を1440分すなわち24時間とし、及び、攪拌翼先端周速を変更する以外は比較例5と同様とした。
(Comparative example 6)
In Comparative Example 6, in the alkali metal removal step of G, the stirring time for slurrying was 1437 minutes, and the contact time between the solid component and the liquid component (total of filtration time and stirring time) was 1440 minutes, or 24 hours. The procedure was the same as in Comparative Example 5 except that the circumferential speed of the tip of the stirring blade was changed.
 各実施例及び比較例における、条件及び初回放電容量回復率及び内部抵抗回復率を表1及び表2に示す。 Tables 1 and 2 show the conditions, initial discharge capacity recovery rate, and internal resistance recovery rate in each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 工程(3)で固体成分中の元素のX量及びLi量及び液体成分中のX量を所定の範囲とした実施例1~5では、比較例1~4及び実施例6,7に比べて、初回放電容量の維持率が高く、内部抵抗の増加も抑えられた。

 
In Examples 1 to 5, in which the amount of X and Li of the element in the solid component and the amount of , the initial discharge capacity retention rate was high, and the increase in internal resistance was also suppressed.

Claims (11)

  1.  下記工程を含む正極活物質の製造方法。
    (1)正極活物質、結着材、及び、電解質を含み、電解質洗浄溶媒との接触により前記電解質の少なくとも一部が除去された電極合材に、カリウム化合物及びナトリウム化合物からなる群から選択される少なくとも1種の化合物を含有する活性化処理剤を混合する工程
    (2)得られた混合物を、前記活性化処理剤の溶融開始温度以上の保持温度に加熱して、前記混合物中に含まれる正極活物質を活性化する工程
    (3)前記加熱後の混合物を、水を含む液体と接触させて固体成分及び液体成分を含むスラリーを得て、その後、前記スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のカリウム及びナトリウムの合計含有量が0.090~2.0質量%であり、分離後の固体成分中のカリウム及びナトリウムの合計含有量が1.2質量%以下である工程
    A method for producing a positive electrode active material including the following steps.
    (1) An electrode composite material containing a positive electrode active material, a binder material, and an electrolyte, from which at least a portion of the electrolyte has been removed by contact with an electrolyte cleaning solvent, contains a potassium compound and a sodium compound selected from the group consisting of a potassium compound and a sodium compound. Step (2) of mixing an activating agent containing at least one compound contained in the mixture by heating the resulting mixture to a holding temperature equal to or higher than the melting start temperature of the activating agent. Step (3) of activating the positive electrode active material: Bringing the heated mixture into contact with a liquid containing water to obtain a slurry containing a solid component and a liquid component, and then converting the slurry into a solid component and a liquid component. This is a separation step in which the total content of potassium and sodium in the liquid component after separation is 0.090 to 2.0% by mass, and the total content of potassium and sodium in the solid component after separation is 1.0% by mass. A process in which the amount is 2% by mass or less
  2.  前記正極活物質が、下記の元素群1から選ばれる1種以上の元素と、元素群2から選ばれる1種以上の元素とを含有する複合酸化物である、請求項1に記載の方法。
     元素群1:Ni、Co、Mn、Fe、Al、P
     元素群2:Li、Na、K、Ca、Sr、Ba、Mg
    The method according to claim 1, wherein the positive electrode active material is a composite oxide containing one or more elements selected from element group 1 below and one or more elements selected from element group 2 below.
    Element group 1: Ni, Co, Mn, Fe, Al, P
    Element group 2: Li, Na, K, Ca, Sr, Ba, Mg
  3.  前記正極活物質が、下式のように表される請求項1又は2に記載の方法。
     Li1+a 2+d
     ただし、Mは、Na、K、Ca、Sr、Ba、及び、Mgからなる群から選択される少なくとも1種の元素を表し、
     Mは、Ni、Co、Mn、Fe、Al、及び、Pからなる群から選択される少なくとも1種の元素を表し、
     Mは、Ni、Co、Mn、及び、Fe以外の遷移金属元素からなる群から選択される少なくとも1種の元素を表し、
     XはO及びPを除く非金属元素からなる群から選択される少なくとも1種の元素を表し、
     -0.4<a<1.5,0≦b<0.5,0≦c<0.5,-0.5<d<1.5,0≦e<0.5を満たす。
    The method according to claim 1 or 2, wherein the positive electrode active material is represented by the following formula.
    Li 1+a M 2 b M 1 M T c O 2+d X e
    However, M2 represents at least one element selected from the group consisting of Na, K, Ca, Sr, Ba, and Mg,
    M1 represents at least one element selected from the group consisting of Ni, Co, Mn, Fe, Al, and P;
    M T represents at least one element selected from the group consisting of Ni, Co, Mn, and transition metal elements other than Fe,
    X represents at least one element selected from the group consisting of nonmetallic elements excluding O and P,
    Satisfies -0.4<a<1.5, 0≦b<0.5, 0≦c<0.5, -0.5<d<1.5, 0≦e<0.5.
  4.  工程(3)において、前記スラリーの体積に対する前記固体成分の濃度が12~1000g/Lとなるように、前記加熱後の混合物と水を含む液体とを接触させる、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein in step (3), the heated mixture is brought into contact with a liquid containing water so that the concentration of the solid component with respect to the volume of the slurry is 12 to 1000 g/L. Method.
  5.  工程(3)において、前記固体成分と前記液体成分との接触時間が、4分間以上24時間未満である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein in step (3), the contact time between the solid component and the liquid component is 4 minutes or more and less than 24 hours.
  6.  工程(3)において、前記加熱後の混合物と前記水を含む液体とを攪拌して前記スラリーを得る、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein in step (3), the heated mixture and the water-containing liquid are stirred to obtain the slurry.
  7.  さらに、下記の工程を備える、請求項1又は2に記載の方法。
     (4)前記工程(1)の前記電解質の少なくとも一部が除去された電極合材を得る工程であって、正極活物質、結着材、及び、電解質を含む電極合材を、電解質洗浄溶媒と接触させて固体成分と液体成分とを含むスラリーを得て、その後、前記スラリーを固体成分と液体成分とに分離する工程であり、分離後の液体成分中のP量が0.0020~2.0質量%、F量が0.01~7.0質量%であり、かつ、分離後の固体成分中に残存するP量が0.7質量%以下である、工程
    The method according to claim 1 or 2, further comprising the following steps.
    (4) A step of obtaining an electrode mixture from which at least a portion of the electrolyte in step (1) has been removed, the electrode mixture containing a positive electrode active material, a binder, and an electrolyte being washed with an electrolyte cleaning solvent. This is a step of contacting with a solid component to obtain a slurry containing a solid component and a liquid component, and then separating the slurry into a solid component and a liquid component, and the amount of P in the liquid component after separation is 0.0020 to 2. .0% by mass, the amount of F is 0.01 to 7.0% by mass, and the amount of P remaining in the solid component after separation is 0.7% by mass or less.
  8.  工程(4)において、前記スラリーの体積に対する前記固体成分の濃度が3~2000g/Lである請求項7に記載の方法。 The method according to claim 7, wherein in step (4), the concentration of the solid component with respect to the volume of the slurry is 3 to 2000 g/L.
  9.  工程(4)において、前記固体成分と前記液体成分との接触時間が、1分間以上25時間未満である、請求項7に記載の方法。 The method according to claim 7, wherein in step (4), the contact time between the solid component and the liquid component is 1 minute or more and less than 25 hours.
  10.  工程(4)において、前記電極合材と前記電解質洗浄溶媒とを攪拌して前記スラリーを得る、請求項7に記載の方法。 The method according to claim 7, wherein in step (4), the electrode mixture and the electrolyte cleaning solvent are stirred to obtain the slurry.
  11.  さらに、下記工程を含む、請求項1または2に記載の正極活物質の製造方法。
    (5)前記工程(3)で得られた固体成分を加熱及び/又は減圧環境に曝して前記固体成分から水を除去する工程であり、前記スラリーを前記固体成分と前記液体成分とに分離してから24時間以内に、前記固体成分が存在する環境気圧に対する、前記固体成分の温度における飽和水蒸気圧の比が80%以上となるように、前記環境気圧及び/又は前記固体成分の温度を変更する工程、
    (6)前記工程(5)後の固体成分を900℃未満で熱処理する工程

     
    The method for producing a positive electrode active material according to claim 1 or 2, further comprising the following steps.
    (5) A step of removing water from the solid component obtained in step (3) by exposing it to a heating and/or reduced pressure environment, and separating the slurry into the solid component and the liquid component. Within 24 hours after changing the environmental pressure and/or the temperature of the solid component so that the ratio of the saturated water vapor pressure at the temperature of the solid component to the environmental pressure at which the solid component exists is 80% or more. The process of
    (6) A step of heat treating the solid component after the step (5) above at less than 900°C

PCT/JP2023/031198 2022-08-31 2023-08-29 Method for producing positive electrode active material WO2024048573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552366A JP7394268B1 (en) 2022-08-31 2023-08-29 Manufacturing method of positive electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137693 2022-08-31
JP2022137693 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048573A1 true WO2024048573A1 (en) 2024-03-07

Family

ID=90099522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031198 WO2024048573A1 (en) 2022-08-31 2023-08-29 Method for producing positive electrode active material

Country Status (1)

Country Link
WO (1) WO2024048573A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353584A (en) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
JP2012186150A (en) * 2011-02-15 2012-09-27 Sumitomo Chemical Co Ltd Method for recovering active material from discarded battery material
JP2021140996A (en) * 2020-03-06 2021-09-16 住友化学株式会社 Method of manufacturing active material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353584A (en) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
JP2012186150A (en) * 2011-02-15 2012-09-27 Sumitomo Chemical Co Ltd Method for recovering active material from discarded battery material
JP2021140996A (en) * 2020-03-06 2021-09-16 住友化学株式会社 Method of manufacturing active material

Similar Documents

Publication Publication Date Title
JP7474607B2 (en) Method for producing active material
JP6394754B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery
US9394585B2 (en) Method for recovering active material from waste battery material
JP4417267B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US11239463B2 (en) Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
WO2006036360A2 (en) Battery cathodes
JP5986836B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
JP2014127313A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the battery
Matsuhara et al. Synthesis and electrode performance of Li4MoO5-LiFeO2 binary system as positive electrode materials for rechargeable lithium batteries
JP2022542637A (en) Relithiation under oxidizing conditions
JP7394268B1 (en) Manufacturing method of positive electrode active material
JP7119783B2 (en) Method for producing transition metal composite hydroxide, transition metal composite hydroxide, method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery
JP7394267B1 (en) Manufacturing method of positive electrode active material
JP7394269B1 (en) Manufacturing method of positive electrode active material
JP6357978B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7498375B1 (en) Positive electrode active material
WO2024048573A1 (en) Method for producing positive electrode active material
WO2024048589A1 (en) Production method for positive electrode active material
WO2024048590A1 (en) Method for producing positive electrode active material
WO2024048574A1 (en) Positive electrode active material
WO2024048591A1 (en) Positive electrode active material
JP6857752B1 (en) Method for producing lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery and lithium metal composite oxide
JP7498374B1 (en) Positive electrode active material
EP1878074A2 (en) Battery cathodes
JP2001257003A (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860335

Country of ref document: EP

Kind code of ref document: A1