WO2024048308A1 - Metal-organic framework dispersion production method, metal-organic framework dispersion, and metal-organic framework composition including metal-organic framework dispersion - Google Patents

Metal-organic framework dispersion production method, metal-organic framework dispersion, and metal-organic framework composition including metal-organic framework dispersion Download PDF

Info

Publication number
WO2024048308A1
WO2024048308A1 PCT/JP2023/029742 JP2023029742W WO2024048308A1 WO 2024048308 A1 WO2024048308 A1 WO 2024048308A1 JP 2023029742 W JP2023029742 W JP 2023029742W WO 2024048308 A1 WO2024048308 A1 WO 2024048308A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
dispersion
organic
component
organic framework
Prior art date
Application number
PCT/JP2023/029742
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 脇田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024048308A1 publication Critical patent/WO2024048308A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines

Definitions

  • the present invention relates to a method for producing a metal-organic framework (MOF) dispersion having excellent dispersion stability, a metal-organic framework dispersion, and a metal-organic framework composition containing the metal-organic framework dispersion.
  • MOF metal-organic framework
  • a metal-organic framework is a porous coordination compound obtained by self-assembly of a metal ion and an organic ligand having a site that coordinates with the metal ion. They are bonded by positional bonds and have both inorganic and organic parts. Metal-organic frameworks have excellent porosity and excellent ability to adsorb and desorb molecules into pores, and are therefore being considered for a variety of applications such as gas separation membranes, gas storage, liquid adsorption, and catalysts.
  • metal-organic structures examples include tablets formed from powder, and the range of practical applications is limited. The reason for this is that the metal-organic structure has a crystal size on the order of ⁇ m due to crystal growth due to rapid self-organization, and also has the property of easily agglomerating.
  • Patent Document 1 For example, in gas separation applications, when a polymer and gas molecules are combined, non-selective pores are created between the polymers due to agglomeration of the metal-organic framework, resulting in a decrease in gas selectivity (Patent Document 1) ).
  • Patent Document 1 if the dispersion stability is poor, during the composition preparation process or film formation process, formation of coarse particles due to agglomeration of the metal-organic framework or deterioration of the degree of dispersion of the metal-organic framework may result in film defects or property deterioration. Variations occur.
  • Patent Document 1 and Patent Document 2 when synthesizing a metal-organic structure by the solvothermal method, for the purpose of suppressing crystal growth, a large amount of a chemical regulator or surfactant is added to the nanometer level by adding a large amount of chemical regulator or surfactant that is about the same amount as the raw material.
  • a large amount of a chemical regulator or surfactant is added to the nanometer level by adding a large amount of chemical regulator or surfactant that is about the same amount as the raw material.
  • Patent Document 3 reports that a composite composition can be obtained by coexisting a polymer that serves as a matrix when producing a metal-organic structure by solid-phase synthesis, but there are no specific details regarding dispersion stability. Not shown.
  • metal-organic structure powder is mixed with a resin or solvent, and the metal-organic structure is agglomerated by mixing using an ultrasonic homogenizer, a rotational stirring degassing device, etc.
  • There are methods to obtain a dispersion liquid by relaxing the state and methods to obtain a dispersion liquid by relaxing the agglomerated state using a mechanical grinding method such as a ball mill or a bead mill.
  • mechanical crushing methods such as ball mills and bead mills create conditions that generate strong physical force and shear stress, which causes the problem that the crystal structure of the metal-organic structure is broken (Patent Document 4).
  • An object of the present invention is to obtain a metal-organic structure dispersion having good dispersion stability and a metal-organic structure composition containing the metal-organic structure dispersion.
  • a solid powder of a metal-organic structure is reduced in crystal size by mechanical pulverization to produce a dispersion, it is necessary to maintain the crystal structure of the metal-organic structure in terms of properties.
  • mechanical crushing changes the crystal structure of the metal-organic framework.
  • the inventor focused on the crystal size of the metal-organic structure and attempted to increase the crystal size from ⁇ m to nm.
  • mechanical crushing methods with weak shear stress do not reduce the crystal size
  • mechanical crushing methods with strong shear stress such as ball mills and bead mills, reduce the crystal size but change the crystal structure.
  • the inventor discovered that the crystal size of the metal-organic structure can be reduced without changing the crystal structure of the metal-organic structure by adding a suitable dispersant in a ball mill or bead mill.
  • the metal-organic structure can be aggregated by appropriately selecting and combining the metal ions and organic ligands that make up the metal-organic structure, as well as the dispersant and dispersion medium. I discovered that it is possible to avoid this. That is, the inventor found an appropriate mechanical crushing method, metal-organic structure, dispersant, and dispersion medium, and completed the invention.
  • the present invention is a method for producing a metal-organic structure dispersion, comprising: (a) Component: a metal-organic structure containing a metal ion and an organic ligand coordinated to the metal ion, where the metal ion is at least one selected from the group consisting of Zr ions, Al ions, and Zn ions. a solid powder of (b) Component: As a dispersant, it is a primary amine, secondary amine, or tertiary amine having one amino group represented by the following formula (1) in the molecule, and (c1) a dispersion medium.
  • step (1) of mixing with a dispersion medium, and step (2) of preparing a dispersion liquid by a mechanical pulverization method using the resulting mixture (however, the mechanical pulverization method A method for producing a dispersion of a metal-organic structure, provided that the crystal structure of the metal-organic structure does not change and maintains the crystal structure of a solid powder.
  • the metal-organic structure dispersion liquid is such that the Z-average particle size of the solid powder of the metal-organic structure in the dispersion liquid is 10 nm or more and less than 1000 nm, and the metal-organic structure is A method for producing a metal-organic structure dispersion, wherein the sedimentation rate of solid powder particles is 100 ⁇ m/s or less.
  • organic ligand is at least one selected from the group consisting of fumaric acid, terephthalic acid, isophthalic acid, 2-aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole.
  • a method for producing a metal-organic structure dispersion wherein the metal-organic structure is MIL-53, CAU-10, ZIF-8, MOF-801, MOF-303, UiO-66, or UiO-NH2-66.
  • the method for producing a metal-organic structure dispersion wherein the mechanical pulverization method is a pulverization method using a ball mill or a bead mill.
  • the ball mill or bead mill has a ball or bead diameter of 0.01 mm or more and 10 mm or less, and the material of the balls or beads is at least one selected from the group consisting of metal and glass, for producing a metal-organic structure dispersion. Method.
  • Component a metal-organic structure containing a metal ion and an organic ligand coordinated to the metal ion, where the metal ion is at least one selected from the group consisting of Zr ions, Al ions, and Zn ions.
  • R 1 and R 2 each independently represent a hydrogen atom or an aliphatic hydrocarbon group, and * represents a bond with a carbon atom.
  • Component A dispersion liquid containing a dispersion medium, The Z-average particle size of the solid powder of the metal-organic structure in the dispersion is 10 nm or more and less than 1000 nm, and the sedimentation rate of the solid powder particles of the metal-organic structure in an environment with a centrifugal force of 470 G or less is 100 ⁇ m/ s or less.
  • a dispersion of a metal-organic structure wherein the organic ligand is at least one selected from the group consisting of fumaric acid, terephthalic acid, isophthalic acid, 2-aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole.
  • a metal-organic framework dispersion wherein the metal-organic framework is MIL-53, CAU-10, ZIF-8, MOF-801, MOF-303, UiO-66, or UiO-NH2-66.
  • a metal-organic structure composition comprising at least one of the metal-organic structure dispersion liquid, a dispersion medium (c2) component different from the dispersion medium (c1) component in the dispersion liquid, and an additive (d) component.
  • the method for producing a metal-organic structure dispersion of the present invention it is possible to provide a method for producing a metal-organic structure dispersion with excellent dispersion stability without changing the crystal structure of the metal-organic structure.
  • the metal-organic structure dispersion and the metal-organic structure composition containing the metal-organic structure dispersion have the effect of exhibiting excellent dispersion stability without changing the crystal structure of the metal-organic structure. .
  • the metal-organic structure dispersion liquid has a Z-average particle size of the solid powder of the metal-organic structure of 10 nm or more and less than 1000 nm, and a solid powder of the metal-organic structure in an environment with a centrifugal force of 470 G or less. It has the effect of exhibiting excellent dispersion stability with a sedimentation rate of powder particles of 100 ⁇ m/s or less.
  • FIG. 1 is an X-ray diffraction pattern showing the crystal structure analysis results of the powder of Production Example 1, the powder obtained from the dispersion of Example 1, and the powder obtained from the dispersion of Comparative Example 1.
  • FIG. 2 is a photograph of the SEM-EDX analysis results of the powder of Production Example 1, the powder obtained from the dispersion of Example 1, and the powder obtained from the dispersion of Comparative Example 1.
  • FIG. 3 is an X-ray diffraction pattern showing the crystal structure analysis results of the powder of Production Example 2, the powder of Production Example 3, the powder obtained from the dispersion of Example 11, and the powder obtained from the dispersion of Example 15. It is.
  • a metal-organic framework is a crystalline porous material consisting of metal ions and organic ligands coordinated to the metal ions.
  • the metal ion is at least one selected from the group consisting of Mg, V, Cr, Nb, Mo, Zr, Hf, Mn, Fe, Co, Cu, Ni, Zn, Cd, Ru, Al, Ti, V, and Ga. It is an ion of two metals.
  • Component (a) of the present invention is a solid powder of a metal-organic framework.
  • the organic ligand is a compound having two or more functional groups (coordination functional groups) capable of coordinating with metal ions.
  • coordinating functional groups include carboxyl groups, pyridinyl groups, cyano groups, amino groups, sulfonyl groups, porphyrinyl groups, acetylacetonate groups, hydroxyl groups, Schiff bases, amino acid residues, and the like.
  • the coordination functional group is preferably one that can form a strong coordination bond with a metal ion.
  • the organic ligand can preferably have two or more coordinating functional groups at any position on the organic ligand.
  • Organic ligand having a coordinating functional group at the end of the organic ligand is preferable from the viewpoint of easily controlling the structure of the metal-organic structure and obtaining a metal-organic structure having relatively large pores.
  • Organic ligands include oxalic acid, malonic acid, succinic acid, glutaric acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, citric acid, trimesic acid, squaric acid, imidazole, pyrazole, diazole, triazole, tetrazole, and azole. and mixtures thereof.
  • fumaric acid, terephthalic acid, isophthalic acid, -At least one selected from the group consisting of aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole is preferable.
  • Dispersant examples include aliphatic amine compounds such as primary amines, secondary amines, or tertiary amines having one amino group in the molecule. Note that the aliphatic amine compound shown in the present invention has solubility in component (c1) and component (c2). Aliphatic amines include primary amines, secondary amines, and tertiary amines.
  • Examples of primary amines include propylamine, butylamine, hexylamine, pentylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine (aminundecane), dodecylamine, tridecylamine, tetradecylamine, and pentadecylamine.
  • Examples include saturated aliphatic monoamines having a linear aliphatic hydrocarbon group such as decylamine, hexadecylamine, heptadecylamine, and octadecylamine.
  • saturated aliphatic amines include, in addition to the above-mentioned straight-chain aliphatic amines, branched aliphatic amines such as isohexylamine, 2-ethylhexylamine, and tert-octylamine. Further examples include unsaturated aliphatic amines such as cyclohexylamine and oleylamine. Furthermore, in addition to these aliphatic amines, primary amines also include those in which hydrogen atoms are replaced with hydroxyl groups, such as propanolamine.
  • secondary amines include linear ones such as dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, octylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ethylmethylamine, Examples include dialkyl monoamines such as methylpropylamine, ethylpropylamine, and propylbutylamine. Examples of branched secondary amines include diisohexylamine and di(2-ethylhexyl)amine.
  • secondary amines include those in which hydrogen atoms are replaced with hydroxyl groups, such as methylaminoethanol.
  • examples of the tertiary amine include tributylamine, tripentylamine, trihexylamine, and the like.
  • Examples of branched tertiary amines include triisohexylamine, tri(2-ethylhexyl)amine, and tridodecylamine.
  • tertiary amines also include those in which hydrogen atoms are replaced with hydroxyl groups.
  • the number of nitrogen atoms in the aliphatic amine (compound) is 1, and the group bonded to the nitrogen atom is a straight chain aliphatic amine having 1 to 15 carbon atoms. It is a hydrocarbon group, and a hydroxyl group is preferable as a substituent for the aliphatic hydrocarbon group.
  • (c1) component The aliphatic amines including the primary amines, secondary amines, and tertiary amines have solubility in component (c1) of the dispersion medium of the present invention.
  • Component types include solvents, crosslinkable monomers, and polymers. These can be used alone or in combination of two or more. Specific examples of the component (c1) of the present invention are listed below, but the invention is not limited to these examples as long as the effects of the present invention are not lost.
  • the solvent include methanol, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl -1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3- Methylcyclohexanol, 1,2-ethanediol,
  • a (meth)acrylate compound is mentioned as a specific example of a crosslinkable monomer.
  • examples of (meth)acrylate compounds include glycol-based compounds such as polyethylene glycol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol dimethacrylate, and neopentyl glycol dimethacrylate. , tripropylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, and mixtures thereof.
  • other (meth)acrylate compounds include, for example, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, Glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, dimethylol-tricyclodecane diacrylate, 2-hydroxy-3-acryloyloxy Bifunctional (meth)acrylates such as propyl methacrylate, trifunctional (meth)acrylates such as pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol hexamethylene diisocyanate urethane prepolymer
  • Component (c2) of the present invention may be any compound as long as it dissolves aliphatic amines, and may be a compound different from component (c1).
  • Component types include solvents, crosslinking monomers, and polymers, and are used when adjusting the solid content concentration, viscosity, coating properties, etc. of the resulting dispersion, and when forming a film from the dispersion. Can be added to adjust strength.
  • Specific examples of component (c2) of the present invention include those described as specific examples of component (c1), but are not limited to these examples as long as the effects of the present invention are not lost.
  • the aliphatic amines including the primary amines, secondary amines, and tertiary amines have solubility in the components (c1) and (c2) of the dispersion medium of the present invention. Therefore, regarding this solubility, the present inventor confirmed that the solubility parameter SP value of the (c1) component and (c2) component of the dispersion medium serves as an index.
  • the SP value of the dispersion medium used in the examples of the present invention is shown in the column of component (c1) in the examples.
  • the dispersion medium used in the examples of the present invention for example, methanol (MeOH) has an SP value of 30, and propylene glycol monomethyl ether acetate (PGMEA) has an SP value of 18.
  • the SP value of the dispersion medium it is not particularly limited as long as the effect of the present invention is not lost, but from the viewpoint of dispersion stability, the SP value should be in the range of 5 to 50, and preferably the SP value is 10. 40, more preferably an SP value of 15 to 35.
  • Component (d) of the present invention includes additives that are generally added as necessary, such as inorganic fillers, leveling agents, polymerization initiators, polymerization inhibitors, photosensitizers, adhesion agents, and plasticizers. , ultraviolet absorbers, conductive agents, and pigments. As long as the effects of the present invention are not impaired, they may be used alone or in combination of two or more.
  • Step (1) is a step of mixing component (a), component (b), and component (c1).
  • step (2) the mixture mixed in step (1) is subjected to the condition that the crystal structure (crystalline state) of the metal-organic structure of component (a) does not change and maintains its crystal structure (crystalline state).
  • Step (3) is a step of mixing the metal-organic structure dispersion prepared in step (2) with at least one of the components (c2) and (d) to produce a metal-organic structure composition.
  • ⁇ Mechanical crushing method> In order to obtain a dispersion liquid in which the metal-organic structure in the dispersion medium is mechanically pulverized and the crystal size of the metal-organic structure is reduced from ⁇ m size to nm size, stirring blades, ultrasonic stirring, homogenizer, ultra Techniques such as sonic homogenizers, hammer mills, vibrating mills, high speed rotary mills, etc. can be used.
  • stirring methods that generate strong physical force or shearing force may change the crystals of the metal-organic structure, resulting in unfavorable results.
  • one of the objects of the present invention is to obtain a nanometer-sized metal-organic structure while maintaining the crystal structure without changing the crystal of the metal-organic structure. Therefore, in the present invention, it is possible to control the material, size, and number of media to be placed in the container, as well as the rotation speed and rotation time of the container, and it is possible to suppress changes in the crystals of the metal-organic structure.
  • a ball mill and a bead mill were used.
  • changes in the crystals of the metal-organic structure were suppressed by selecting an appropriate dispersant in addition to the metal-organic structure to be placed in the containers of the ball mill and bead mill.
  • One of the mechanical grinding techniques used in the present invention is a ball mill and a bead mill.
  • the difference between a ball mill and a bead mill is the mechanism of rotational movement: in a ball mill, the container rotates, whereas in a bead mill, a mixer inside the container rotates.
  • the media placed in both containers is the same, and the rotation speed and rotation time can be adjusted. Therefore, similar effects can be expected no matter which method is used.
  • Media materials for ball mills and bead mills include (high) alumina, natural silica, silicon carbide, silicon nitride, glass, iron-cored nylon, zirconia, stainless steel, steel, carbon steel, and chrome steel.
  • a media having a diameter of 0.01 mm or more and 10 mm or less can be used. From the above point of view, preferred sizes include diameters of 0.03 mm to 5.0 mm, more preferably diameters of 0.1 mm to 2.0 mm.
  • Ultrasonic generator Ultrasonic cleaner (US CLEANER) manufactured by As One Co., Ltd. Frequency: 40kHz
  • the Z-average particle diameter of the solid powder of the metal-organic framework can be calculated, for example, by a dynamic light scattering method.
  • the metal-organic structure dispersion can be placed in a measurement cell, irradiated with light, and the Z average particle diameter can be calculated from the solution viscosity and temperature based on the principle of Brownian motion.
  • the Z average particle diameter is preferably less than 1000 nm, more preferably 800 nm or less, and more preferably 600 nm or less.
  • the apparatus used in the present invention, measurement conditions, etc. are shown. Equipment: Spectris Co., Ltd.
  • the sedimentation velocity of the solid powder particles of the metal-organic framework was measured using a centrifugal sedimentation type device.
  • the sedimentation velocity of the particles was calculated by forcibly causing the particles to sediment using the centrifugal force of the device, and by optically capturing and analyzing the changes.
  • the sedimentation rate was calculated using the time change of the cell position at which the transmittance was 50%.
  • the apparatus used in the present invention, measurement conditions, etc. are shown.
  • Dispersion stability indicates that the lower the sedimentation rate, the better the dispersibility. From the viewpoint of handling properties and quality stabilization, it can be said that dispersion stability is good if the sedimentation velocity is 100 ⁇ m/s or less in an environment with a centrifugal force of 470 G or less.
  • the sedimentation rate is preferably 90 ⁇ m/s or less, preferably 80 ⁇ m/s or less, and more preferably 70 ⁇ m/s or less.
  • X-ray diffraction device X-ray diffraction device
  • the measurement principle of an X-ray diffractometer is to analyze the diffraction that occurs as a result of X-rays scattering and interfering with electrons around atoms when a sample is irradiated with X-rays.
  • XRD X-ray diffraction device
  • the apparatus used in the present invention is shown.
  • SEM scanning electron microscopy
  • SEM/EDX energy dispersive X-ray spectroscopy
  • the apparatus used in the present invention is a high-performance field emission scanning electron microscope that can obtain high resolution at an extremely low accelerating voltage of 1 kV or less in order to observe information on the surface of a sample.
  • the apparatus used in the present invention, measurement conditions, etc. are shown.
  • the reaction solution was heated to 130°C using an oil bath, and reacted at 130°C for 24 hours.
  • a white powder formed and precipitated in the reaction solution was collected on a filter paper by Kiriyama filtration, and after washing with 300 ml of DMF and 300 ml of MeOH, the obtained metal-organic framework powder was vacuum-dried at 150° C. for 5 hours.
  • the obtained powder was observed using a SEM, it was found to have a polyhedral shape close to a sphere with a primary particle size of about 1 ⁇ m, and secondary agglomeration to a size of about 5 to 50 ⁇ m.
  • the reaction solution was heated to 120°C using an oil bath and reacted at 120°C for 6 hours.
  • a yellowish white powder formed and precipitated in the reaction solution was collected on a filter paper by Kiriyama filtration, and after washing with 300 ml of MeOH and 300 ml of acetone, the obtained metal organic framework powder was vacuum dried at 120° C. for 5 hours.
  • the obtained powder was observed using a SEM, it was found to be spherical with a primary particle size of about 0.6 to 1.0 ⁇ m, and secondary agglomeration to a size of about 20 to 50 ⁇ m.
  • ⁇ MIL-53 Basolite (registered trademark) A100 (metal species: Al, organic ligand: terephthalic acid) [Sigma-Aldrich] From SEM observation, the primary particle size is approximately 1.0 to 1.5 ⁇ m in length and approximately 1.5 ⁇ m in width. It is acicular with a size of 15 to 30 nm, and the secondary aggregate is spherical with a size of about 20 to 40 ⁇ m.
  • CAU-10 Aluminum isophthalic acid hydroxide MOF (metal species: Al, organic ligand: isophthalic acid) [Fujifilm Wa Hikari Pure Chemical Industries, Ltd.] From SEM observation, the primary particle size was cubic with a side of approximately 3.0 to 7.0 ⁇ m.
  • ZIF-8 Zinc 2-methylimidazole MOF (metal species: Zn, organic ligand: 2- Methylimidazole) [Fujifilm Wako Pure Chemical Industries, Ltd.] From SEM observation, the primary particle size is spherical with a size of about 0.2 to 0.3 ⁇ m, and the secondary aggregate is elliptical with a size of about 10 ⁇ m.
  • UiO-66 Zirconium 1,4-dicarboxybenzene MOF (metal type: Zr, organic ligand: 1,4-dicarboxybenzene) [Fujifilm Wako Pure Chemical Industries, Ltd.]
  • ⁇ Dispersant, component (b)> The dispersants used in the present invention are shown together with abbreviations.
  • ⁇ AM-2: Propanolamine [Tokyo Kasei Kogyo Co., Ltd.]
  • ⁇ AM-4 1-Aminoundecane [Tokyo Kasei Kogyo Co., Ltd.]
  • ⁇ AM-6: Trimethylstearylammonium chloride [Tokyo Kasei Kogyo Co., Ltd.]
  • ⁇ AM-7: N,N-bis(3-aminopropyl)ethylenediamine [Tokyo Kasei Kogyo Co., Ltd
  • ⁇ (c1) component> The component (c1) used in the present invention is shown together with abbreviations.
  • ⁇ Homogeneity> The appearance of the prepared dispersion liquid was visually confirmed and evaluated according to the criteria shown below. It is preferable to use "A" as the dispersion liquid. A: No aggregated particles can be visually confirmed in the solution, and a colloidal color is observed. C: Agglomerated particles are visible, but no colloidal color is observed.
  • the metal species constituting the metal-organic structure was Zr, and the dispersant was a polymer having one amino group in the molecule. It includes aliphatic amine compounds that are primary amines, secondary amines, or tertiary amines.
  • the metal-organic framework is dispersed in a small size on the order of nm. , and a dispersion liquid exhibiting excellent dispersion stability was obtained.
  • the metal species constituting the metal-organic structure was Zr, and the dispersant was a quaternary aliphatic amine compound having one amino group in the molecule. It includes. As shown in Table 2, compared to Examples 1 to 9, the metal-organic structures were aggregated in a large size on the ⁇ m order, and the dispersion stability was inferior.
  • the metal species constituting the metal-organic structure was Zr, and the dispersant was a primary amine having a plurality of amino groups in the molecule, It includes an aliphatic amine compound that is a secondary amine or a tertiary amine.
  • the metal-organic structures were aggregated in a large size on the ⁇ m order, and the dispersion stability was inferior.
  • the metal species constituting the metal-organic structure was Zr, and the dispersant was a primary amine having one amino group in the molecule; It contains aromatic amine compounds that are secondary amines or tertiary amines.
  • the metal-organic structures were aggregated in a large size on the ⁇ m order, and the dispersion stability was inferior.
  • the metal species constituting the metal-organic structure was Zr, and the dispersant contained monocarboxylic acid or phosphonic acid.
  • the metal-organic structures were aggregated in a large size on the ⁇ m order, and the dispersion stability was inferior.
  • the metal species constituting the metal-organic framework was Al, and the dispersant contained one amino acid in the molecule. It contains an aliphatic amine compound which is a tertiary amine having a group.
  • the metal-organic framework is on the order of nm. A dispersion liquid was obtained which was dispersed in a small size and showed excellent dispersion stability.
  • the metal species constituting the metal-organic structure was Zn, and the dispersant was an aliphatic amine, which was a tertiary amine having one amino group in the molecule. It contains compounds.
  • a dispersion liquid was obtained in which the metal-organic framework was dispersed in a small size on the nanometer order and had excellent dispersion stability.
  • the metal species constituting the metal-organic framework was Zr, and the dispersant had one nitrogen atom in the molecule. It contains an aliphatic amine compound which is a tertiary amine.
  • dispersions were obtained in which the metal-organic structures were dispersed in small sizes on the order of nanometers, and showed excellent dispersion stability, although the media types and sizes were different. .
  • the metal species constituting the metal-organic structure was Zr, and the dispersant was an aliphatic amine, which was a tertiary amine having one amino group in the molecule.
  • the processing method was ultrasonic treatment, and compared to the one that was mechanically pulverized in a ball mill in Example 1, the metal organic structure was aggregated in a large size on the ⁇ m order, It also showed that the dispersion stability was poor.
  • the metal species constituting the metal-organic framework was Zr
  • the dispersant was a tertiary amine having one nitrogen atom in the molecule. It contains a certain aliphatic amine compound, and the dispersion medium is crosslinking monomers D-1 and D-2.
  • Examples 19 and 20 compared to Comparative Example 1 which does not contain a dispersant, Examples 19 and 20 have metal-organic structures dispersed in a small size on the order of nm, and have excellent A dispersion exhibiting dispersion stability was obtained.
  • the metal species constituting the metal-organic structure was Al, and the dispersant was an aliphatic amine, which was a tertiary amine having one nitrogen atom in the molecule. It contains a compound, and the solid content concentration is higher than that of Examples 1 to 20 (15% by mass).
  • a dispersion liquid was obtained in which the metal-organic framework was dispersed in a small size on the nanometer order and had excellent dispersion stability.
  • the crystal structure of the white powder obtained by the above treatment and the powder obtained in Production Example 1 before the ball milling treatment was analyzed using XRD.
  • the diffraction peak of the powder obtained from Comparative Example 1 which did not contain a dispersant and was subjected to ball milling, is different from the diffraction peak of the powder obtained from Production Example 1 and Example 1. It was suggested that the crystal structure had changed. From this result, in order to form a dispersion liquid while maintaining the crystal structure through mechanical pulverization, it is necessary to use a primary amine, secondary amine, or tertiary amine that has one amino group in the molecule as a dispersant. It was suggested that inclusion of aliphatic amine compounds is important.
  • the white powder obtained by the above treatment and the powder obtained in Production Example 1 before the ball mill treatment were analyzed by SEM-EDX.
  • the elemental composition of the powder obtained from Comparative Example 1 which did not contain a dispersant and was subjected to ball milling, was different from the elemental composition of the powder obtained from Production Example 1 and Example 1. It was suggested that the structure had changed. From this result, in order to form a dispersion liquid while maintaining the crystal structure through mechanical pulverization, it is necessary to use a primary amine, secondary amine, or tertiary amine that has one amino group in the molecule as a dispersant. It was suggested that it is important to include aliphatic amine compounds.
  • the precipitated metal-organic framework white powder was collected on a filter paper by Kiriyama filtration, and DMF and MeOH were collected. After washing, the obtained metal-organic structure powder was vacuum-dried at 150° C. for 5 hours to obtain a powder.
  • the crystal structures of the obtained powder and the powders obtained in Production Example 2 and Production Example 3 before ball milling were analyzed using XRD. As shown in FIG. 3, it was suggested that the crystal structure was maintained before and after the ball milling treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

[Problem] To provide a method for using a mechanical pulverization technique to produce a dispersion comprising a nm-size metal-organic framework which has good dispersion stability while maintaining a crystal structure. [Solution] A metal-organic framework dispersion production method comprising: a step (1) for mixing a component (a), which is a solid powder of a metal-organic framework that contains metal ions and organic ligands coordinated to the metal ions, said metal ions being at least one type selected from the group consisting of Zr ions, Al ions, and Zn ions, a component (b), which is a dispersant and which is an aliphatic amine compound that is a primary amine, a secondary amine, or a tertiary amine having one amino group in a molecule thereof, and which is soluble in a dispersion medium (c1), and a component (c1), which is said dispersion medium; and a step (2) for using the obtained mixture to produce a dispersion via a mechanical pulverization technique (wherein in the mechanical pulverization technique, the crystal structure of the metal-organic framework (a) does not change, and the crystal structure of the solid powder is maintained).

Description

金属有機構造体分散液の製造方法、金属有機構造体分散液及び金属有機構造体分散液を含む金属有機構造体組成物Method for producing a metal-organic structure dispersion, metal-organic structure dispersion, and metal-organic structure composition containing the metal-organic structure dispersion
本発明は、分散安定性に優れた金属有機構造体(MOF)分散液の製造方法、金属有機構造体分散液及び金属有機構造体分散液を含む金属有機構造体組成物に関する。 The present invention relates to a method for producing a metal-organic framework (MOF) dispersion having excellent dispersion stability, a metal-organic framework dispersion, and a metal-organic framework composition containing the metal-organic framework dispersion.
金属有機構造体は、金属イオンとその金属イオンに配位する部位を有する有機配位子が自己組織化して得られる多孔質配位化合物であり、金属イオンと有機配位子が周期的に配位結合により結合しており、無機部分及び有機部分の両方を有する。
金属有機構造体は、優れた多孔性及び細孔への分子の吸脱着能に優れることから、ガス分離膜、気体貯蔵、液体の吸着、触媒などの多様な用途において検討されている。
A metal-organic framework is a porous coordination compound obtained by self-assembly of a metal ion and an organic ligand having a site that coordinates with the metal ion. They are bonded by positional bonds and have both inorganic and organic parts.
Metal-organic frameworks have excellent porosity and excellent ability to adsorb and desorb molecules into pores, and are therefore being considered for a variety of applications such as gas separation membranes, gas storage, liquid adsorption, and catalysts.
金属有機構造体の実用化例としては、粉末を成形した錠剤などが主であり、実用化範囲が限られている。この理由として、金属有機構造体は、急激な自己組織化による結晶成長によりその結晶サイズがμmオーダーの大サイズとなることに加えて、容易に凝集する性質を有するためである。 Examples of practical applications of metal-organic structures include tablets formed from powder, and the range of practical applications is limited. The reason for this is that the metal-organic structure has a crystal size on the order of μm due to crystal growth due to rapid self-organization, and also has the property of easily agglomerating.
金属有機構造体は、その結晶構造を維持したまま溶媒やポリマーに溶解することは一般に困難である。そのため、近年、溶媒やポリマーに金属有機構造体を分散させた分散液を調製し、複合膜として用いる検討がなされている。ところが、μmオーダーの金属有機構造体は分散液中で沈降しやすく、かつ金属有機構造体は容易に凝集する性質を有するため、複合化の際、金属有機構造体の分散安定性が課題となる。分散安定性が悪い場合は、金属有機構造体の分散状態が安定しないことからハンドリング性に難があり、かつ性能や膜質が安定しない。したがって、量産化に際し、分散安定性は大きな課題であるとともに非常に重要な要素である。例えば、ガス分離用途では、ポリマーとガス分子を複合化させた際に、金属有機構造体の凝集によりポリマー間に非選択的な空孔を生じさせて、ガス選択性が低下する(特許文献1)。加えて、分散安定性が悪い場合、組成物作製プロセスや成膜プロセスの際に、金属有機構造体の凝集による粗大粒子の生成や金属有機構造体の分散度の悪化により、膜欠陥や特性のばらつきが生じる。 It is generally difficult to dissolve a metal-organic framework in a solvent or polymer while maintaining its crystal structure. Therefore, in recent years, studies have been made to prepare dispersions in which metal-organic structures are dispersed in solvents or polymers, and to use them as composite films. However, metal-organic structures on the order of μm tend to settle in dispersion liquids, and metal-organic structures also tend to aggregate easily, so the dispersion stability of metal-organic structures becomes an issue when composited. . If the dispersion stability is poor, the dispersion state of the metal-organic structure is not stable, resulting in difficulty in handling and unstable performance and film quality. Therefore, dispersion stability is a major issue and a very important factor in mass production. For example, in gas separation applications, when a polymer and gas molecules are combined, non-selective pores are created between the polymers due to agglomeration of the metal-organic framework, resulting in a decrease in gas selectivity (Patent Document 1) ). In addition, if the dispersion stability is poor, during the composition preparation process or film formation process, formation of coarse particles due to agglomeration of the metal-organic framework or deterioration of the degree of dispersion of the metal-organic framework may result in film defects or property deterioration. Variations occur.
特許文献1及び特許文献2では、ソルボサーマル法で金属有機構造体を合成する際、結晶成長抑制を目的に、原料と同量程度の多量の化学調整剤や界面活性剤を加えることで、nmオーダーの小サイズ化した金属有機構造体の粉末を得ている。しかし、前記文献に、得られた粉末の分散安定性に関する記載はない。そのため、例えば、分散液作製、組成物調製、及び組成物の塗布・加熱による乾燥といった成膜プロセス後にも良好な分散状態を保っているか、不明瞭である。また、ソルボサーマル法では、多量の添加剤や原料が存在するため、分散液を作製するためには再沈殿や濾過といった原料及び添加剤除去工程の後、さらに溶媒等に再分散させる工程が必要となる場合が多い。したがって、同法は、製造プロセスコストに課題を抱える。 In Patent Document 1 and Patent Document 2, when synthesizing a metal-organic structure by the solvothermal method, for the purpose of suppressing crystal growth, a large amount of a chemical regulator or surfactant is added to the nanometer level by adding a large amount of chemical regulator or surfactant that is about the same amount as the raw material. We have obtained powders of metal-organic structures that are down to an order of magnitude. However, there is no description in the above literature regarding the dispersion stability of the obtained powder. Therefore, it is unclear whether a good dispersion state is maintained even after a film forming process such as dispersion preparation, composition preparation, application of the composition, and drying by heating. In addition, in the solvothermal method, a large amount of additives and raw materials are present, so in order to create a dispersion, it is necessary to remove the raw materials and additives such as reprecipitation and filtration, and then redisperse them in a solvent etc. In many cases. Therefore, the law poses challenges to manufacturing process costs.
特許文献3では、金属有機構造体を固相合成法で作製する際にマトリックスとなるポリマーを共存させることで複合組成物が得られる事が報告されているが、分散安定性に関しては、具体的に示されていない。
金属有機構造体分散液を得る手法として、金属有機構造体の粉末を樹脂や溶媒と混合し、超音波ホモジナイザー、自公転式攪拌脱泡装置などを用いて混合することで金属有機構造体の凝集状態を緩和させ分散液を得る手法や、ボールミル、ビーズミルなどの機械的粉砕手法を用いて凝集状態を緩和させ分散液を得る手法がある。しかし、ボールミルやビーズミルといった機械的粉砕手法では、強い物理力やせん断応力が発生する条件となり、金属有機構造体の結晶構造が壊れる課題がある(特許文献4)。
Patent Document 3 reports that a composite composition can be obtained by coexisting a polymer that serves as a matrix when producing a metal-organic structure by solid-phase synthesis, but there are no specific details regarding dispersion stability. Not shown.
As a method to obtain a metal-organic structure dispersion, metal-organic structure powder is mixed with a resin or solvent, and the metal-organic structure is agglomerated by mixing using an ultrasonic homogenizer, a rotational stirring degassing device, etc. There are methods to obtain a dispersion liquid by relaxing the state, and methods to obtain a dispersion liquid by relaxing the agglomerated state using a mechanical grinding method such as a ball mill or a bead mill. However, mechanical crushing methods such as ball mills and bead mills create conditions that generate strong physical force and shear stress, which causes the problem that the crystal structure of the metal-organic structure is broken (Patent Document 4).
特表2021-526962号公報Special Publication No. 2021-526962 特開2018-118929号公報Japanese Patent Application Publication No. 2018-118929 特表2021-523823号公報Special Publication No. 2021-523823 特開2019-56055号公報JP 2019-56055 Publication
金属有機構造体分散液において分散安定性を高めるためには、金属有機構造体の一次粒子径を小さくする必要がある。機械的粉砕手法により一次粒子径を小さくするためには、一次粒子が凝集している状態を解く応力よりもより強い応力が必要とされ、その場合、金属有機構造体の結晶構造が変化するという課題が生じる。よって、分散安定性と結晶構造の維持のトレードオフとなると想定される。 In order to improve dispersion stability in a metal-organic structure dispersion, it is necessary to reduce the primary particle size of the metal-organic structure. In order to reduce the primary particle size by mechanical crushing, a stress stronger than that required to break up the agglomeration of the primary particles is required, and in this case, the crystal structure of the metal-organic framework changes. Challenges arise. Therefore, it is assumed that there is a trade-off between dispersion stability and maintenance of crystal structure.
本発明では、良好な分散安定性を有する金属有機構造体分散液、及び金属有機構造体分散液を含む金属有機構造体組成物を得ることを課題とする。加えて、金属有機構造体の固体粉末を機械的粉砕手法により、結晶サイズを小サイズ化し、分散液を作製する場合、特性面において金属有機構造体の結晶構造を維持する必要がある。しかし、機械的粉砕により金属有機構造体の結晶構造が変化するという課題がある。 An object of the present invention is to obtain a metal-organic structure dispersion having good dispersion stability and a metal-organic structure composition containing the metal-organic structure dispersion. In addition, when a solid powder of a metal-organic structure is reduced in crystal size by mechanical pulverization to produce a dispersion, it is necessary to maintain the crystal structure of the metal-organic structure in terms of properties. However, there is a problem in that mechanical crushing changes the crystal structure of the metal-organic framework.
発明者は、上記課題を解決し、良好な分散安定性を有する分散液を得るため金属有機構造体の結晶サイズに着目し、そのサイズをμmからnmにすることを試みた。しかし、せん断応力が弱い機械的粉砕手法では、結晶サイズが小さくならず、せん断応力が強いボールミル・ビーズミルといった機械的粉砕手法では、結晶サイズは小さくなるものの結晶構造が変化してしまうこととなった。発明者は、ボールミル・ビーズミルにて適した分散剤を加えることで金属有機構造体の結晶構造が変化せずに結晶サイズを小さくできる点を見出した。さらに、結晶サイズを小さくした後も金属有機構造体を構成する金属イオンや有機配位子の組み合わせ、加えて分散剤及び分散媒の選定・組合せを適宜創作することにより、金属有機構造体が凝集しないようにすることができるという事実を見出した。すなわち、発明者は、適切な機械的粉砕手法、金属有機構造体、分散剤及び分散媒を見出し、発明を完成するに至った。 In order to solve the above problems and obtain a dispersion liquid having good dispersion stability, the inventor focused on the crystal size of the metal-organic structure and attempted to increase the crystal size from μm to nm. However, mechanical crushing methods with weak shear stress do not reduce the crystal size, while mechanical crushing methods with strong shear stress, such as ball mills and bead mills, reduce the crystal size but change the crystal structure. . The inventor discovered that the crystal size of the metal-organic structure can be reduced without changing the crystal structure of the metal-organic structure by adding a suitable dispersant in a ball mill or bead mill. Furthermore, even after reducing the crystal size, the metal-organic structure can be aggregated by appropriately selecting and combining the metal ions and organic ligands that make up the metal-organic structure, as well as the dispersant and dispersion medium. I discovered that it is possible to avoid this. That is, the inventor found an appropriate mechanical crushing method, metal-organic structure, dispersant, and dispersion medium, and completed the invention.
すなわち、本発明は、金属有機構造体分散液の製造方法であって、
(a)成分:金属イオンと、該金属イオンに配位した有機配位子を含み、該金属イオンがZrイオン、Alイオン及びZnイオンからなる群から選ばれる少なくとも1種である金属有機構造体の固体粉末と、
(b)成分:分散剤として、分子中に下記式(1)で表されるアミノ基を1つ有する第一級アミン、第二級アミン、又は第三級アミンであり、(c1)分散媒に対し溶解性を有する脂肪族アミン化合物と、
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRはそれぞれ独立に、水素原子又は脂肪族炭化水素基を表し、*は炭素原子との結合手を表す。)
(c1)成分:分散媒とを混合する工程(1)、及び得られた混合物を用い機械的粉砕手法により分散液を作製する工程(2)(但し、該機械的粉砕手法は、(a)金属有機構造体の結晶構造が変化せず、固体粉末の結晶構造を保持していることを条件とする)を含む金属有機構造体分散液の製造方法。
That is, the present invention is a method for producing a metal-organic structure dispersion, comprising:
(a) Component: a metal-organic structure containing a metal ion and an organic ligand coordinated to the metal ion, where the metal ion is at least one selected from the group consisting of Zr ions, Al ions, and Zn ions. a solid powder of
(b) Component: As a dispersant, it is a primary amine, secondary amine, or tertiary amine having one amino group represented by the following formula (1) in the molecule, and (c1) a dispersion medium. an aliphatic amine compound having solubility in
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an aliphatic hydrocarbon group, and * represents a bond with a carbon atom.)
(c1) component: step (1) of mixing with a dispersion medium, and step (2) of preparing a dispersion liquid by a mechanical pulverization method using the resulting mixture (however, the mechanical pulverization method A method for producing a dispersion of a metal-organic structure, provided that the crystal structure of the metal-organic structure does not change and maintains the crystal structure of a solid powder.
前記金属有機構造体分散液は、該分散液中における前記金属有機構造体の固体粉末のZ平均粒子径が10nm以上1000nm未満であり、かつ遠心力470G以下の環境下での金属有機構造体の固体粉末粒子の沈降速度が100μm/s以下である、金属有機構造体分散液の製造方法。 The metal-organic structure dispersion liquid is such that the Z-average particle size of the solid powder of the metal-organic structure in the dispersion liquid is 10 nm or more and less than 1000 nm, and the metal-organic structure is A method for producing a metal-organic structure dispersion, wherein the sedimentation rate of solid powder particles is 100 μm/s or less.
前記金属有機構造体分散液と、該分散液中の分散媒(c1)成分とは異なる分散媒(c2)成分及び添加剤(d)成分のうち少なくとも1つとを混合する工程(3)を含む、金属有機構造体組成物の製造方法。 A step (3) of mixing the metal-organic structure dispersion liquid with at least one of a dispersion medium (c2) component and an additive (d) component different from the dispersion medium (c1) component in the dispersion liquid. , a method for producing a metal-organic framework composition.
前記有機配位子が、フマル酸、テレフタル酸、イソフタル酸、2-アミノテレフタル酸、2-メチルイミダゾール及びジカルボキシピラゾールからなる群から選ばれる少なくとも1種である、金属有機構造体分散液の製造方法。 Production of a metal organic framework dispersion, wherein the organic ligand is at least one selected from the group consisting of fumaric acid, terephthalic acid, isophthalic acid, 2-aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole. Method.
前記金属有機構造体が、MIL-53、CAU-10、ZIF-8、MOF-801、MOF-303、UiO-66、又はUiO-NH2-66である、金属有機構造体分散液の製造方法。 A method for producing a metal-organic structure dispersion, wherein the metal-organic structure is MIL-53, CAU-10, ZIF-8, MOF-801, MOF-303, UiO-66, or UiO-NH2-66.
前記機械的粉砕手法はボールミル又はビーズミルによる粉砕手法である、金属有機構造体分散液の製造方法。 The method for producing a metal-organic structure dispersion, wherein the mechanical pulverization method is a pulverization method using a ball mill or a bead mill.
前記ボールミル又はビーズミルはボール径又はビーズ径が直径0.01mm以上10mm以下であり、ボール又はビーズの材質が金属及びガラスからなる群から選ばれる少なくとも1種である、金属有機構造体分散液の製造方法。 The ball mill or bead mill has a ball or bead diameter of 0.01 mm or more and 10 mm or less, and the material of the balls or beads is at least one selected from the group consisting of metal and glass, for producing a metal-organic structure dispersion. Method.
(a)成分:金属イオンと、該金属イオンに配位した有機配位子を含み、該金属イオンがZrイオン、Alイオン及びZnイオンからなる群から選ばれる少なくとも1種である金属有機構造体の固体粉末と、
(b)成分:分散剤として、分子中に下記式(1)で表されるアミノ基を1つ有する第一級アミン、第二級アミン、又は第三級アミンであり、(c1)分散媒に対し溶解性を有する脂肪族アミン化合物と、
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRはそれぞれ独立に、水素原子又は脂肪族炭化水素基を表し、*は炭素原子との結合手を表す。)
(c1)成分:分散媒とを含む分散液であって、
該分散液中における前記金属有機構造体の固体粉末のZ平均粒子径が10nm以上1000nm未満であり、かつ遠心力470G以下の環境下での金属有機構造体の固体粉末粒子の沈降速度が100μm/s以下である金属有機構造体分散液。
(a) Component: a metal-organic structure containing a metal ion and an organic ligand coordinated to the metal ion, where the metal ion is at least one selected from the group consisting of Zr ions, Al ions, and Zn ions. a solid powder of
(b) Component: As a dispersant, it is a primary amine, secondary amine, or tertiary amine having one amino group represented by the following formula (1) in the molecule, and (c1) a dispersion medium. an aliphatic amine compound having solubility in
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an aliphatic hydrocarbon group, and * represents a bond with a carbon atom.)
(c1) Component: A dispersion liquid containing a dispersion medium,
The Z-average particle size of the solid powder of the metal-organic structure in the dispersion is 10 nm or more and less than 1000 nm, and the sedimentation rate of the solid powder particles of the metal-organic structure in an environment with a centrifugal force of 470 G or less is 100 μm/ s or less.
前記有機配位子が、フマル酸、テレフタル酸、イソフタル酸、2-アミノテレフタル酸、2-メチルイミダゾール及びジカルボキシピラゾールからなる群から選ばれる少なくとも1種である、金属有機構造体分散液。 A dispersion of a metal-organic structure, wherein the organic ligand is at least one selected from the group consisting of fumaric acid, terephthalic acid, isophthalic acid, 2-aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole.
前記金属有機構造体が、MIL-53、CAU-10、ZIF-8、MOF-801、MOF-303、UiO-66、又はUiO-NH2-66である、金属有機構造体分散液。 A metal-organic framework dispersion, wherein the metal-organic framework is MIL-53, CAU-10, ZIF-8, MOF-801, MOF-303, UiO-66, or UiO-NH2-66.
前記金属有機構造体分散液、並びに該分散液中の分散媒(c1)成分とは異なる分散媒(c2)成分及び添加剤(d)成分のうち少なくとも1つを含む金属有機構造体組成物。 A metal-organic structure composition comprising at least one of the metal-organic structure dispersion liquid, a dispersion medium (c2) component different from the dispersion medium (c1) component in the dispersion liquid, and an additive (d) component.
本発明の金属有機構造体分散液の製造方法によれば、金属有機構造体の結晶構造を変化させず優れた分散安定性の金属有機構造体分散液等を製造する方法を提供することができる。本発明によれば、金属有機構造体分散液及び金属有機構造体分散液を含む金属有機構造体組成物は、金属有機構造体の結晶構造を変化させず優れた分散安定性を示す効果を有する。
本発明によれば、金属有機構造体分散液は、金属有機構造体の固体粉末のZ平均粒子径が10nm以上1000nm未満であり、かつ遠心力470G以下の環境下での金属有機構造体の固体粉末粒子の沈降速度が100μm/s以下である優れた分散安定性を示す効果を有する。
According to the method for producing a metal-organic structure dispersion of the present invention, it is possible to provide a method for producing a metal-organic structure dispersion with excellent dispersion stability without changing the crystal structure of the metal-organic structure. . According to the present invention, the metal-organic structure dispersion and the metal-organic structure composition containing the metal-organic structure dispersion have the effect of exhibiting excellent dispersion stability without changing the crystal structure of the metal-organic structure. .
According to the present invention, the metal-organic structure dispersion liquid has a Z-average particle size of the solid powder of the metal-organic structure of 10 nm or more and less than 1000 nm, and a solid powder of the metal-organic structure in an environment with a centrifugal force of 470 G or less. It has the effect of exhibiting excellent dispersion stability with a sedimentation rate of powder particles of 100 μm/s or less.
図1は、製造例1の粉末、実施例1の分散液より得られた粉末及び比較例1の分散液より得られた粉末の結晶構造解析結果を示すX線回折パターンである。FIG. 1 is an X-ray diffraction pattern showing the crystal structure analysis results of the powder of Production Example 1, the powder obtained from the dispersion of Example 1, and the powder obtained from the dispersion of Comparative Example 1. 図2は、製造例1の粉末、実施例1の分散液より得られた粉末及び比較例1の分散液より得られた粉末のSEM―EDX解析結果の写真等である。FIG. 2 is a photograph of the SEM-EDX analysis results of the powder of Production Example 1, the powder obtained from the dispersion of Example 1, and the powder obtained from the dispersion of Comparative Example 1. 図3は、製造例2の粉末、製造例3の粉末、実施例11の分散液より得られた粉末及び実施例15の分散液より得られた粉末の結晶構造解析結果を示すX線回折パターンである。FIG. 3 is an X-ray diffraction pattern showing the crystal structure analysis results of the powder of Production Example 2, the powder of Production Example 3, the powder obtained from the dispersion of Example 11, and the powder obtained from the dispersion of Example 15. It is.
本発明の金属有機構造体分散液の製造方法、金属有機構造体分散液及び金属有機構造体分散液を含む金属有機構造体組成物について、以下に説明する。
<金属有機構造体>
金属有機構造体は、金属イオンと、該金属イオンに配位した有機配位子からなる結晶性の多孔質材料である。金属イオンは、Mg、V、Cr、Nb、Mo、Zr、Hf、Mn、Fe、Co、Cu、Ni、Zn、Cd、Ru、Al、Ti、VおよびGaからなる群から選択される少なくとも1つの金属のイオンである。これらの金属イオンのなかでは、Zrイオン、Alイオン及びZnイオンが好ましく、水に対する構造安定性の観点から、Zrイオン及びAlイオンがより好ましい。
本発明の(a)成分は、金属有機構造体の固体粉末である。
The method for producing a metal-organic structure dispersion, the metal-organic structure dispersion, and the metal-organic structure composition containing the metal-organic structure dispersion according to the present invention will be described below.
<Metal-organic structure>
A metal-organic framework is a crystalline porous material consisting of metal ions and organic ligands coordinated to the metal ions. The metal ion is at least one selected from the group consisting of Mg, V, Cr, Nb, Mo, Zr, Hf, Mn, Fe, Co, Cu, Ni, Zn, Cd, Ru, Al, Ti, V, and Ga. It is an ion of two metals. Among these metal ions, Zr ions, Al ions and Zn ions are preferred, and from the viewpoint of structural stability against water, Zr ions and Al ions are more preferred.
Component (a) of the present invention is a solid powder of a metal-organic framework.
<有機配位子>
有機配位子は、金属イオンに配位可能な官能基(配位官能基)を2以上有する化合物である。配位官能基の例には、カルボキシル基、ピリジニル基、シアノ基、アミノ基、スルホニル基、ポルフィリニル基、アセチルアセトナート基、水酸基、シッフ塩基、アミノ酸残基などが含まれる。配位官能基は、金属イオンとの間で強固な配位結合を形成することができるものがよい。有機配位子は、好ましくは、2個以上の配位官能基を有機配位子のいずれかの位置に有することができる。配位官能基を有機配位子の末端に有するものは、金属有機構造体の構造の制御が容易であり、かつ比較的大きな空孔を有する金属有機構造体を得るという観点からは好ましい。
有機配位子は、シュウ酸、マロン酸、コハク酸、グルタル酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、クエン酸、トリメシン酸、スクアリン酸、イミダゾール、ピラゾール、ジアゾール、トリアゾール、テトラゾール、アゾールおよびそれらの混合物が含まれるが、これらに限定されない。
金属有機構造体の構造の制御が容易であり、かつ比較的大きな空孔を有する金属有機構造体を得るために、これらの有機配位子のなかでは、フマル酸、テレフタル酸、イソフタル酸、2-アミノテレフタル酸、2-メチルイミダゾール及びジカルボキシピラゾールからなる群から選ばれる少なくとも1種であることが好ましい。
<Organic ligand>
The organic ligand is a compound having two or more functional groups (coordination functional groups) capable of coordinating with metal ions. Examples of coordinating functional groups include carboxyl groups, pyridinyl groups, cyano groups, amino groups, sulfonyl groups, porphyrinyl groups, acetylacetonate groups, hydroxyl groups, Schiff bases, amino acid residues, and the like. The coordination functional group is preferably one that can form a strong coordination bond with a metal ion. The organic ligand can preferably have two or more coordinating functional groups at any position on the organic ligand. An organic ligand having a coordinating functional group at the end of the organic ligand is preferable from the viewpoint of easily controlling the structure of the metal-organic structure and obtaining a metal-organic structure having relatively large pores.
Organic ligands include oxalic acid, malonic acid, succinic acid, glutaric acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, citric acid, trimesic acid, squaric acid, imidazole, pyrazole, diazole, triazole, tetrazole, and azole. and mixtures thereof.
Among these organic ligands, fumaric acid, terephthalic acid, isophthalic acid, -At least one selected from the group consisting of aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole is preferable.
<分散剤、(b)成分>
分散剤としては、分子中にアミノ基を1つ有する第一級アミン、第二級アミン、又は第三級アミンの脂肪族アミン化合物が挙げられる。なお本発明で示す脂肪族アミン化合物は、(c1)成分及び(c2)成分及びに対し溶解性を有する。
脂肪族アミンは、第一級アミン、第二級アミン、及び第三級アミンを含む。
第一級アミンとしては、例えば、プロピルアミン、ブチルアミン、ヘキシルアミン、ペンチルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン(アミノウンデカン)、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の直鎖状脂肪族炭化水素基を有する飽和脂肪族モノアミンが挙げられる。飽和脂肪族アミンとして、上記の直鎖脂肪族アミンの他に、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の分枝脂肪族アミンが挙げられる。また、シクロヘキシルアミン、オレイルアミン等の不飽和脂肪族アミンが挙げられる。さらに、これら脂肪族アミンに加え、水素原子を水酸基に置換した、例えばプロパノールアミン等も第一級アミンに含まれる。
第二級アミンとしては、直鎖状のものとして、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、オクチルアミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、エチルメチルアミン、メチルプロピルアミン、エチルプロピルアミン、プロピルブチルアミン等のジアルキルモノアミンが挙げられる。分枝状の第二級アミンとして、ジイソヘキシルアミン、ジ(2-エチルヘキシル)アミン等が挙げられる。さらに、これら脂肪族アミンに加え、水素原子を水酸基に置換した、例えばメチルアミノエタノール等も第二級アミンに含まれる。
第三級アミンとしては、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン等が挙げられる。分枝状の第三級アミンとして、トリイソヘキシルアミン、トリ(2-エチルヘキシル)アミン、トリドデシルアミンが挙げられる。これら脂肪族アミンに加え、水素原子を水酸基に置換したものも第三級アミンに含まれる。
ボールミル・ビーズミルに適し結晶構造変化を抑制するためには、脂肪族アミン(化合物)の窒素原子数は、1であり、窒素原子に結合する基は、炭素原子数1乃至15の直鎖脂肪族炭化水素基であり、脂肪族炭化水素基の置換基としては水酸基が好ましい。
<Dispersant, component (b)>
Examples of the dispersant include aliphatic amine compounds such as primary amines, secondary amines, or tertiary amines having one amino group in the molecule. Note that the aliphatic amine compound shown in the present invention has solubility in component (c1) and component (c2).
Aliphatic amines include primary amines, secondary amines, and tertiary amines.
Examples of primary amines include propylamine, butylamine, hexylamine, pentylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine (aminundecane), dodecylamine, tridecylamine, tetradecylamine, and pentadecylamine. Examples include saturated aliphatic monoamines having a linear aliphatic hydrocarbon group such as decylamine, hexadecylamine, heptadecylamine, and octadecylamine. Examples of saturated aliphatic amines include, in addition to the above-mentioned straight-chain aliphatic amines, branched aliphatic amines such as isohexylamine, 2-ethylhexylamine, and tert-octylamine. Further examples include unsaturated aliphatic amines such as cyclohexylamine and oleylamine. Furthermore, in addition to these aliphatic amines, primary amines also include those in which hydrogen atoms are replaced with hydroxyl groups, such as propanolamine.
Examples of secondary amines include linear ones such as dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, octylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ethylmethylamine, Examples include dialkyl monoamines such as methylpropylamine, ethylpropylamine, and propylbutylamine. Examples of branched secondary amines include diisohexylamine and di(2-ethylhexyl)amine. Furthermore, in addition to these aliphatic amines, secondary amines include those in which hydrogen atoms are replaced with hydroxyl groups, such as methylaminoethanol.
Examples of the tertiary amine include tributylamine, tripentylamine, trihexylamine, and the like. Examples of branched tertiary amines include triisohexylamine, tri(2-ethylhexyl)amine, and tridodecylamine. In addition to these aliphatic amines, tertiary amines also include those in which hydrogen atoms are replaced with hydroxyl groups.
In order to suppress crystal structure changes suitable for ball mills and bead mills, the number of nitrogen atoms in the aliphatic amine (compound) is 1, and the group bonded to the nitrogen atom is a straight chain aliphatic amine having 1 to 15 carbon atoms. It is a hydrocarbon group, and a hydroxyl group is preferable as a substituent for the aliphatic hydrocarbon group.
<分散媒、(c1)成分>
上記第一級アミン、第二級アミン、及び第三級アミンを含む脂肪族アミンは、本発明の分散媒の(c1)成分に対し溶解性を有するものである。(c1)成分種として、溶媒、架橋性モノマー及びポリマーが挙げられる。これらは、単独で又は2種以上を組み合わせて用いることができる。
本発明の(c1)成分の具体例を下記に挙げるが、本発明の効果が失われない限り、これらの例に限定されない。溶媒の具体例として、例えば、メタノール、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール等のヒドロキシ基を含むもの、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘプタノン、4-メチル-2-ペンタノール、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、エトキシ酢酸エチル、酢酸2-ヒドロキシエチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸ブチル、2-ヘプタノン、メトキシシクロペンタン、アニソールが挙げられる。これらは、単独で又は2種以上を組み合わせて用いることができる。また、架橋性モノマーの具体例として、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物としては、グリコール系と称される、例えば、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエチレングリコールジメタクレート、ネオペンチルグリコールジメタクリレート、トリプロピレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート等及びこれらの混合物が挙げられる。また、その他の(メタ)アクリレート化合物としては、例えば、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、グリセリンジメタクリレート、2ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ジメチロール-トリシクロデカンジアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート等の2官能(メタ)アクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールヘキサメチレンジイソシアネートウレタンプレポリマー等の3官能(メタ)アクリレート、ペンタエリストールテトラアクリレート等の4官能(メタ)アクリレート、ジペンタエリスルトールヘキサアクリレート等の6官能(メタ)アクリレート及びこれらの混合物が挙げられる。
<Dispersion medium, (c1) component>
The aliphatic amines including the primary amines, secondary amines, and tertiary amines have solubility in component (c1) of the dispersion medium of the present invention. (c1) Component types include solvents, crosslinkable monomers, and polymers. These can be used alone or in combination of two or more.
Specific examples of the component (c1) of the present invention are listed below, but the invention is not limited to these examples as long as the effects of the present invention are not lost. Specific examples of the solvent include methanol, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl -1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3- Methylcyclohexanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3- Those containing hydroxy groups such as butanediol and 1,5-pentanediol, amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, and ethylene glycol Monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, xylene, methyl ethyl ketone , methyl isobutyl ketone, cycloheptanone, 4-methyl-2-pentanol, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate, ethyl ethoxy acetate, 2-hydroxyethyl acetate, methyl 3-methoxypropionate, 3 - Ethyl methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, butyl lactate, 2-heptanone, methoxycyclopentane, and anisole. These can be used alone or in combination of two or more. Moreover, a (meth)acrylate compound is mentioned as a specific example of a crosslinkable monomer. Examples of (meth)acrylate compounds include glycol-based compounds such as polyethylene glycol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol dimethacrylate, and neopentyl glycol dimethacrylate. , tripropylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, and mixtures thereof. In addition, other (meth)acrylate compounds include, for example, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, Glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, dimethylol-tricyclodecane diacrylate, 2-hydroxy-3-acryloyloxy Bifunctional (meth)acrylates such as propyl methacrylate, trifunctional (meth)acrylates such as pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol hexamethylene diisocyanate urethane prepolymer, pentaerythritol tetraacrylate Examples include tetrafunctional (meth)acrylates such as, hexafunctional (meth)acrylates such as dipentaerythritol hexaacrylate, and mixtures thereof.
<分散媒、(c2)成分>
本発明の(c2)成分は、脂肪族アミンを溶解するものであればよいことと、(c1)成分とは異なる化合物であることが挙げられる。(c2)成分種として、溶媒、架橋性モノマー及びポリマーが挙げられ、得られる分散液の固形分濃度、粘度、塗布性等を調整する際や、分散液を成膜することで得られる膜の強度を調整するために添加することができる。本発明の(c2)成分の具体例は、(c1)成分の具体例として記載したものが挙げられるが、本発明の効果が失われない限り、これらの例に限定されない。
<Dispersion medium, (c2) component>
Component (c2) of the present invention may be any compound as long as it dissolves aliphatic amines, and may be a compound different from component (c1). (c2) Component types include solvents, crosslinking monomers, and polymers, and are used when adjusting the solid content concentration, viscosity, coating properties, etc. of the resulting dispersion, and when forming a film from the dispersion. Can be added to adjust strength. Specific examples of component (c2) of the present invention include those described as specific examples of component (c1), but are not limited to these examples as long as the effects of the present invention are not lost.
<SP値>
上記第一級アミン、第二級アミン、及び第三級アミンを含む脂肪族アミンは、本発明の分散媒の(c1)成分及び(c2)成分に対し溶解性を有するものである。そこで、この溶解性に関して、本発明者は分散媒の(c1)成分及び(c2)成分の溶解度パラメーターSP値が指標となることを確認した。
本発明の実施例で用いた分散媒のSP値は実施例の(c1)成分の欄に示される。本発明の実施例で用いた分散媒として、例えばメタノール(MeOH)のSP値は30、プロピレングリコールモノメチルエーテルアセテート(PGMEA)のSP値は18である。分散媒のSP値に関し、本発明の効果が失われない限り特に限定されるものではないが、分散安定性の観点からSP値は5~50の範囲にあるものとし、好ましくはSP値が10~40の範囲であり、より好ましくはSP値が15~35の範囲である。
<SP value>
The aliphatic amines including the primary amines, secondary amines, and tertiary amines have solubility in the components (c1) and (c2) of the dispersion medium of the present invention. Therefore, regarding this solubility, the present inventor confirmed that the solubility parameter SP value of the (c1) component and (c2) component of the dispersion medium serves as an index.
The SP value of the dispersion medium used in the examples of the present invention is shown in the column of component (c1) in the examples. As the dispersion medium used in the examples of the present invention, for example, methanol (MeOH) has an SP value of 30, and propylene glycol monomethyl ether acetate (PGMEA) has an SP value of 18. Regarding the SP value of the dispersion medium, it is not particularly limited as long as the effect of the present invention is not lost, but from the viewpoint of dispersion stability, the SP value should be in the range of 5 to 50, and preferably the SP value is 10. 40, more preferably an SP value of 15 to 35.
<(d)成分>
本発明の(d)成分は、必要に応じて一般的に添加される添加剤、例えば無機充填剤、レベリング剤、重合開始剤、重合禁止剤、光増感剤、密着性付与剤、可塑剤、紫外線吸収剤、導電剤、顔料が挙げられる。本発明の効果を損なわない限り、単独で、或いは2種以上を組み合わせて適宜配合してよい。
<(d) component>
Component (d) of the present invention includes additives that are generally added as necessary, such as inorganic fillers, leveling agents, polymerization initiators, polymerization inhibitors, photosensitizers, adhesion agents, and plasticizers. , ultraviolet absorbers, conductive agents, and pigments. As long as the effects of the present invention are not impaired, they may be used alone or in combination of two or more.
<工程(1)、工程(2)及び工程(3)>
工程(1)は、(a)成分、(b)成分及び(c1)成分を混合する工程である。
工程(2)は、工程(1)で混合した混合物を(a)成分の金属有機構造体の結晶構造(結晶状態)が変化せず、結晶構造(結晶状態)を保持していることを条件とする下記に示す機械的粉砕手法により金属有機構造体分散液を製造する工程である。
工程(3)は、工程(2)で製造した金属有機構造体分散液と、(c2)成分及び(d)成分のうち少なくとも1つとを混合し金属有機構造組成物を製造する工程である。
<Step (1), Step (2) and Step (3)>
Step (1) is a step of mixing component (a), component (b), and component (c1).
In step (2), the mixture mixed in step (1) is subjected to the condition that the crystal structure (crystalline state) of the metal-organic structure of component (a) does not change and maintains its crystal structure (crystalline state). This is a process of producing a metal-organic structure dispersion liquid by the mechanical pulverization method shown below.
Step (3) is a step of mixing the metal-organic structure dispersion prepared in step (2) with at least one of the components (c2) and (d) to produce a metal-organic structure composition.
<機械的粉砕手法>
分散媒中の金属有機構造体を機械的に粉砕し、該金属有機構造体の結晶サイズをμmサイズからnmサイズに減少させた分散液を得るには、撹拌羽根、超音波撹拌、ホモジナイザー、超音波ホモジナイザー、ハンマーミル、振動ミル、高速回転粉砕機等の手法を用いることができる。ただし、分散液を得る際、これらの手法において、強い物理力や剪断力を発生する撹拌手法は、金属有機構造体の結晶が変化することがあり好ましくない結果となることがある。
ここで、本発明の目的の一つは、金属有機構造体の結晶を変化させず、結晶構造は維持したままでnmサイズの金属有機構造体を得ることである。
したがって、本発明では、容器内に入れるメディアの材質、大きさ、数、さらには、容器の回転速度及び回転時間の調節が可能で金属有機構造体の結晶が変化することの抑制が可能であるボールミル及びビーズミルを使用した。さらに、本発明では、ボールミル及びビーズミルの容器に入れる金属有機構造体以外に適切な分散剤を選択することにより金属有機構造体の結晶が変化することの抑制を行った。
<Mechanical crushing method>
In order to obtain a dispersion liquid in which the metal-organic structure in the dispersion medium is mechanically pulverized and the crystal size of the metal-organic structure is reduced from μm size to nm size, stirring blades, ultrasonic stirring, homogenizer, ultra Techniques such as sonic homogenizers, hammer mills, vibrating mills, high speed rotary mills, etc. can be used. However, when obtaining a dispersion liquid, in these methods, stirring methods that generate strong physical force or shearing force may change the crystals of the metal-organic structure, resulting in unfavorable results.
Here, one of the objects of the present invention is to obtain a nanometer-sized metal-organic structure while maintaining the crystal structure without changing the crystal of the metal-organic structure.
Therefore, in the present invention, it is possible to control the material, size, and number of media to be placed in the container, as well as the rotation speed and rotation time of the container, and it is possible to suppress changes in the crystals of the metal-organic structure. A ball mill and a bead mill were used. Furthermore, in the present invention, changes in the crystals of the metal-organic structure were suppressed by selecting an appropriate dispersant in addition to the metal-organic structure to be placed in the containers of the ball mill and bead mill.
<ボールミル・ビーズミルによる粉砕>
本発明において用いた機械的粉砕手法の一つは、ボールミル及びビーズミルである。ボールミル及びビーズミルの違いは、回転運動の機構の差で、ボールミルは容器が自転するのに対し、ビーズミルは容器内のミキサーを回転させる。両者とも容器内に入れるメディアは同様であり、回転速度及び回転時間を調整することができる。したがって、どちらの手法を使用しても同様な効果を期待できる。
ボールミル及びビーズミルのメディアの材質は、(高)アルミナ、天然ケイ石、炭化ケイ素、窒化ケイ素、ガラス、鉄芯入りナイロン、ジルコニア、ステンレス、スチール、カーボンスチール及びクロムスチール等がある。機械的粉砕手法を施しても金属有機構造体の結晶構造を変化させない観点から、メディアのサイズは直径0.01mm以上10mm以下のものを使用できる。前記観点から好ましいサイズとしては直径0.03mm~5.0mm、さらに好ましくは直径0.1mm~2.0mmの範囲のものが挙げられる。
<Crushing by ball mill/bead mill>
One of the mechanical grinding techniques used in the present invention is a ball mill and a bead mill. The difference between a ball mill and a bead mill is the mechanism of rotational movement: in a ball mill, the container rotates, whereas in a bead mill, a mixer inside the container rotates. The media placed in both containers is the same, and the rotation speed and rotation time can be adjusted. Therefore, similar effects can be expected no matter which method is used.
Media materials for ball mills and bead mills include (high) alumina, natural silica, silicon carbide, silicon nitride, glass, iron-cored nylon, zirconia, stainless steel, steel, carbon steel, and chrome steel. From the viewpoint of not changing the crystal structure of the metal-organic structure even when mechanically pulverized, a media having a diameter of 0.01 mm or more and 10 mm or less can be used. From the above point of view, preferred sizes include diameters of 0.03 mm to 5.0 mm, more preferably diameters of 0.1 mm to 2.0 mm.
<超音波による粉砕>
本発明において用いた機械的粉砕手法の一つは、超音波処理である。本発明で用いた装置及び処理条件等を示す。
超音波発生装置:アズワン(株)製 超音波洗浄機(US CLEANER)
周波数:40kHz
<Crushing by ultrasonic wave>
One of the mechanical crushing techniques used in the present invention is ultrasonication. The apparatus, processing conditions, etc. used in the present invention are shown.
Ultrasonic generator: Ultrasonic cleaner (US CLEANER) manufactured by As One Co., Ltd.
Frequency: 40kHz
<Z平均粒子径>
本発明において、金属有機構造体の固体粉末のZ平均粒子径は、例えば、動的光散乱法により算出することができる。具体的には、例えば、金属有機構造体分散液を測定セルに入れ、光を照射し、ブラウン運動の原理に基づき、溶液粘度及び温度からZ平均粒子径を算出することができる。
良好な分散安定性を得るために、Z平均粒子径は1000nm未満であることが好ましく、さらに800nm以下、600nm以下であることが好ましい。本発明で用いた装置及び測定条件等を示す。
装置:スペクトリス株式会社 マルバーン ゼータサイザNanoZS
測定条件:後方散乱 (角度173°)
測定温度:25℃
測定濃度:0.005質量%
測定位置:4.2mm
粘度パラメーター:各分散媒の25℃条件での粘度を使用
<Z average particle diameter>
In the present invention, the Z-average particle diameter of the solid powder of the metal-organic framework can be calculated, for example, by a dynamic light scattering method. Specifically, for example, the metal-organic structure dispersion can be placed in a measurement cell, irradiated with light, and the Z average particle diameter can be calculated from the solution viscosity and temperature based on the principle of Brownian motion.
In order to obtain good dispersion stability, the Z average particle diameter is preferably less than 1000 nm, more preferably 800 nm or less, and more preferably 600 nm or less. The apparatus used in the present invention, measurement conditions, etc. are shown.
Equipment: Spectris Co., Ltd. Malvern Zetasizer NanoZS
Measurement conditions: Backscatter (angle 173°)
Measurement temperature: 25℃
Measured concentration: 0.005% by mass
Measurement position: 4.2mm
Viscosity parameter: Use the viscosity of each dispersion medium at 25°C
<沈降速度>
本発明において、金属有機構造体の固体粉末粒子の沈降速度は、遠心沈降式の装置を使用することで測定した。粒子の沈降速度の算出は、装置による遠心力で強制的に粒子を沈降させ、その変化を光学的に捉え解析することにより行った。解析条件は、透過率50%となるセルポジションの時間変化を用いて沈降速度を算出した。本発明で用いた装置及び測定条件等を示す。
装置:LUM社製 ルミサイザー(LUMISIZER)
回転最大半径:105mm
回転速度:2000rpm
遠心力:470G(下記式に従い算出)
遠心力=(回転速度/1000)×回転最大半径(mm)×1.118
測定セル:ポリアミドセル光路長2mm
測定温度:25℃
解析モード:フロントトラッキング(Front Tracking)
<Sedimentation velocity>
In the present invention, the sedimentation velocity of the solid powder particles of the metal-organic framework was measured using a centrifugal sedimentation type device. The sedimentation velocity of the particles was calculated by forcibly causing the particles to sediment using the centrifugal force of the device, and by optically capturing and analyzing the changes. As for the analysis conditions, the sedimentation rate was calculated using the time change of the cell position at which the transmittance was 50%. The apparatus used in the present invention, measurement conditions, etc. are shown.
Equipment: LUMISIZER manufactured by LUM
Maximum radius of rotation: 105mm
Rotation speed: 2000rpm
Centrifugal force: 470G (calculated according to the formula below)
Centrifugal force = (rotation speed/1000) 2 x maximum radius of rotation (mm) x 1.118
Measurement cell: Polyamide cell optical path length 2mm
Measurement temperature: 25℃
Analysis mode: Front Tracking
<分散安定性>
分散安定性は、沈降速度が小さいほど分散性が良いことを示す。ハンドリング性や品質安定化の観点から、遠心力470G以下の環境下での沈降速度が100μm/s以下であれば分散安定性がよいと云える。より良好な分散安定性のためには、沈降速度が90μm/s以下、好ましくは80μm/s以下、さらに70μm/s以下とすることが好ましい。
<Dispersion stability>
Dispersion stability indicates that the lower the sedimentation rate, the better the dispersibility. From the viewpoint of handling properties and quality stabilization, it can be said that dispersion stability is good if the sedimentation velocity is 100 μm/s or less in an environment with a centrifugal force of 470 G or less. For better dispersion stability, the sedimentation rate is preferably 90 μm/s or less, preferably 80 μm/s or less, and more preferably 70 μm/s or less.
<結晶構造解析>
本発明において、結晶構造解析は、X線回折装置(XRD)を用いた。X線回折装置は、試料にX線を照射した際、X線が原子の周りにある電子によって散乱、干渉した結果起こる回折を解析することを測定原理としている。一般にこの回折情報を用いることで、試料の結晶相同定と定量、結晶化度、結晶サイズとひずみ、及び分子構造を解析できる。本発明で用いた装置を示す。
装置:リガク社製 ミニフレックス(MiniFlex)600
<Crystal structure analysis>
In the present invention, an X-ray diffraction device (XRD) was used for crystal structure analysis. The measurement principle of an X-ray diffractometer is to analyze the diffraction that occurs as a result of X-rays scattering and interfering with electrons around atoms when a sample is irradiated with X-rays. Generally, by using this diffraction information, it is possible to identify and quantify the crystal phase of a sample, analyze the degree of crystallinity, crystal size and strain, and molecular structure. The apparatus used in the present invention is shown.
Equipment: Rigaku MiniFlex 600
<SEM及びSEM・EDX>
本発明において、結晶状態の観察及び元素分析に走査電子顕微鏡法(SEM)、エネルギー分散型X線分光法(SEM・EDX)を使用した。SEMは、電子線を試料に当てた際に試料から出てくる電子の情報を基に、試料の凹凸や組成の違いによるコントラストを得ることができる手法であり、EDXは、電子線照射により発生する特性X線を検出し、エネルギーで分光することによって、元素分析や組成分析を行う手法である。EDXは、SEMに付属している。本発明で用いた装置は、試料の表面の情報を観察するために、1kV以下の極低加速電圧で高い分解能が得られる高性能電界放出形走査電子顕微鏡である。本発明で用いた装置及び測定条件等を示す。
装置:日本電子株式会社 JSM-7400F
加速電圧:SEM 1.0kV、SEM-EDX 5.0kV
エミッション電流:10μA
<SEM and SEM/EDX>
In the present invention, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (SEM/EDX) were used for crystal state observation and elemental analysis. SEM is a method that can obtain contrast based on the unevenness of the sample and differences in composition based on information on the electrons emitted from the sample when the sample is irradiated with an electron beam. This is a method of performing elemental and compositional analysis by detecting characteristic X-rays and performing spectroscopy based on energy. EDX is attached to SEM. The apparatus used in the present invention is a high-performance field emission scanning electron microscope that can obtain high resolution at an extremely low accelerating voltage of 1 kV or less in order to observe information on the surface of a sample. The apparatus used in the present invention, measurement conditions, etc. are shown.
Equipment: JEOL Ltd. JSM-7400F
Acceleration voltage: SEM 1.0kV, SEM-EDX 5.0kV
Emission current: 10μA
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
<金属有機構造体の固体粉末>
本発明で用いた、金属有機構造体の固体粉末について略記号とともに示す。
[製造例1]MOF-801の製造
500mlの4つ口フラスコに、金属成分として塩化ジルコニウム8水和物 11.1g (34.5mmol)、有機配位子としてフマル酸 4.00g(34.5mmol)、触媒としてギ酸 38.9ml、及び溶媒としてジメチルホルムアミド 110.1mlを仕込んだ。塩化ジルコニウム8水和物及びフマル酸を溶媒へ溶解させた後、オイルバスを用いて130℃まで反応液を昇温させ、24時間130℃下で反応させた。反応液中にて生成沈降した白色粉末を、桐山濾過にて濾紙上に回収し、DMF300ml及びMeOH300mlにて洗浄後、得られた金属有機構造体粉末を150℃5時間真空乾燥した。得られた粉末をSEMにて観察したところ、一次粒子サイズが約1μmの球状に近しい多面体形状であり、二次凝集して約5~50μmサイズとなっていた。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<Solid powder of metal-organic structure>
The solid powder of the metal-organic structure used in the present invention is shown together with abbreviations.
[Production Example 1] Production of MOF-801 In a 500 ml four-necked flask, 11.1 g (34.5 mmol) of zirconium chloride octahydrate as a metal component and 4.00 g (34.5 mmol) of fumaric acid as an organic ligand were added. ), 38.9 ml of formic acid as a catalyst, and 110.1 ml of dimethylformamide as a solvent were charged. After dissolving zirconium chloride octahydrate and fumaric acid in a solvent, the reaction solution was heated to 130°C using an oil bath, and reacted at 130°C for 24 hours. A white powder formed and precipitated in the reaction solution was collected on a filter paper by Kiriyama filtration, and after washing with 300 ml of DMF and 300 ml of MeOH, the obtained metal-organic framework powder was vacuum-dried at 150° C. for 5 hours. When the obtained powder was observed using a SEM, it was found to have a polyhedral shape close to a sphere with a primary particle size of about 1 μm, and secondary agglomeration to a size of about 5 to 50 μm.
[製造例2]MOF粉末UiO-NH2-66の製造
500mlの4つ口フラスコに、金属成分として塩化ジルコニウム 1.88g (8.1mmol)、有機配位子として2-アミノ-1,4-ベンゼンジカルボン酸 2.04g (11.3mmol)、触媒として塩酸 7.5ml、及び溶媒としてジメチルホルムアミド 150mlを仕込んだ。塩化ジルコニウム及び2-アミノ-1,4-ベンゼンジカルボン酸を溶媒へ溶解させた後、オイルバスを用いて120℃まで反応液を昇温させ、6時間120℃下で反応させた。反応液中にて生成沈降した黄白色粉末を、桐山濾過にて濾紙上に回収し、MeOH300ml及びアセトン300mlにて洗浄後、得られた金属有機構造体粉末を120℃5時間真空乾燥した。得られた粉末をSEMにて観察したところ、一次粒子サイズが約0.6~1.0μmの球状であり、二次凝集して約20~50μmサイズとなっていた。
[Production Example 2] Production of MOF powder UiO-NH2-66 In a 500 ml four-neck flask, 1.88 g (8.1 mmol) of zirconium chloride as a metal component and 2-amino-1,4-benzene as an organic ligand were placed in a 500 ml four-necked flask. 2.04 g (11.3 mmol) of dicarboxylic acid, 7.5 ml of hydrochloric acid as a catalyst, and 150 ml of dimethylformamide as a solvent were charged. After dissolving zirconium chloride and 2-amino-1,4-benzenedicarboxylic acid in a solvent, the reaction solution was heated to 120°C using an oil bath and reacted at 120°C for 6 hours. A yellowish white powder formed and precipitated in the reaction solution was collected on a filter paper by Kiriyama filtration, and after washing with 300 ml of MeOH and 300 ml of acetone, the obtained metal organic framework powder was vacuum dried at 120° C. for 5 hours. When the obtained powder was observed using a SEM, it was found to be spherical with a primary particle size of about 0.6 to 1.0 μm, and secondary agglomeration to a size of about 20 to 50 μm.
[製造例3]MOF粉末MOF-303の製造
1000mlのナスフラスコに、金属成分として塩化アルミ二ウム6水和物 10.4g (43.1mmol)、有機配位子として3,5-ピラゾールジカルボン酸1水和物 7.50g (43.1mmol)、及び溶媒として水720mLを仕込み、室温下にて、塩化アルミ二ウム6水和物及び3,5-ピラゾールジカルボン酸1水和物を溶解させた。その後、反応液を攪拌させながら、水酸化ナトリウム 2.60gを水 30mlで希釈した水酸化ナトリウム溶液を反応溶液中に滴下し、オイルバスを用いて100℃まで反応液を昇温させ、24時間100℃下で反応させた。反応液中にて生成沈降した白色粉末を、濾過にて濾紙上に回収し、水500ml及びメタノール500mlにて洗浄後、得られた金属有機構造体粉末を70℃9時間真空乾燥したのち、150℃9時間真空乾燥した。得られた粉末をSEMにて観察したところ、一次粒子サイズが約50~150nmの四角柱形状の結晶が二次凝集して約2μmの球状を形成していた。
[Production Example 3] Production of MOF powder MOF-303 In a 1000 ml eggplant flask, 10.4 g (43.1 mmol) of aluminum chloride hexahydrate was added as a metal component, and 3,5-pyrazoledicarboxylic acid was added as an organic ligand. 7.50 g (43.1 mmol) of monohydrate and 720 mL of water as a solvent were charged, and aluminum chloride hexahydrate and 3,5-pyrazoledicarboxylic acid monohydrate were dissolved at room temperature. . Then, while stirring the reaction solution, a sodium hydroxide solution prepared by diluting 2.60 g of sodium hydroxide with 30 ml of water was added dropwise into the reaction solution, and the temperature of the reaction solution was raised to 100°C using an oil bath for 24 hours. The reaction was carried out at 100°C. The white powder produced and precipitated in the reaction solution was collected on a filter paper by filtration, washed with 500 ml of water and 500 ml of methanol, and the obtained metal-organic framework powder was vacuum-dried at 70° C. for 9 hours. It was vacuum dried at ℃ for 9 hours. When the obtained powder was observed using a SEM, it was found that quadrangular prism-shaped crystals with a primary particle size of about 50 to 150 nm were secondary agglomerated to form a spherical shape of about 2 μm.
本発明で用いた他の金属有機構造体について略記号とともに示す。
・MIL-53:Basolite(登録商標) A100(金属種:Al、有機配位子:テレフタル酸)[Sigma-Aldrich]SEM観察より、一次粒子サイズが縦約1.0~1.5μm、横約15~30nmの針状であり、二次凝集体は約20~40μmサイズの球状
・CAU-10:イソフタル酸水酸化アルミニウムMOF(金属種:Al、有機配位子:イソフタル酸)[富士フイルム 和光純薬(株)]SEM観察より、一次粒子サイズが一辺約3.0~7.0μmの立方体形状
・ZIF-8:亜鉛2-メチルイミダゾールMOF(金属種:Zn、有機配位子:2-メチルイミダゾール)[富士フイルム 和光純薬(株)]SEM観察より、一次粒子サイズが約0.2~0.3μmの球状であり、二次凝集体は、約10μmサイズの楕円形状
・UiO-66:ジルコニウム1,4-ジカルボキシベンゼンMOF(金属種:Zr、有機配位子:1,4-ジカルボキシベンゼン)[富士フイルム 和光純薬(株)]
Other metal-organic structures used in the present invention are shown with abbreviations.
・MIL-53: Basolite (registered trademark) A100 (metal species: Al, organic ligand: terephthalic acid) [Sigma-Aldrich] From SEM observation, the primary particle size is approximately 1.0 to 1.5 μm in length and approximately 1.5 μm in width. It is acicular with a size of 15 to 30 nm, and the secondary aggregate is spherical with a size of about 20 to 40 μm. CAU-10: Aluminum isophthalic acid hydroxide MOF (metal species: Al, organic ligand: isophthalic acid) [Fujifilm Wa Hikari Pure Chemical Industries, Ltd.] From SEM observation, the primary particle size was cubic with a side of approximately 3.0 to 7.0 μm. ZIF-8: Zinc 2-methylimidazole MOF (metal species: Zn, organic ligand: 2- Methylimidazole) [Fujifilm Wako Pure Chemical Industries, Ltd.] From SEM observation, the primary particle size is spherical with a size of about 0.2 to 0.3 μm, and the secondary aggregate is elliptical with a size of about 10 μm. UiO-66 : Zirconium 1,4-dicarboxybenzene MOF (metal type: Zr, organic ligand: 1,4-dicarboxybenzene) [Fujifilm Wako Pure Chemical Industries, Ltd.]
<分散剤、(b)成分>
本発明で用いた分散剤について略記号とともに示す。
・AM-1:トリペンチルアミン [東京化成工業(株)]
・AM-2:プロパノールアミン [東京化成工業(株)]
・AM-3:メチルアミノエタノール[東京化成工業(株)]
・AM-4:1-アミノウンデカン [東京化成工業(株)]
・AM-5:トリドデシルアミン [東京化成工業(株)]
・AM-6:トリメチルステアリルアンモニウムクロリド[東京化成工業(株)]
・AM-7:N,N-ビス(3-アミノプロピル)エチレンジアミン[東京化成工業(株)]
・AM-8:1,6-ジアミノヘキサン [東京化成工業(株)]
・AM-9:N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン[東京化成工業(株)]
・AM-10:ピロール[東京化成工業(株)]
・AM-11:ピリジン[東京化成工業(株)]
・AM-12:アニリン[東京化成工業(株)]
・AC-1:ギ酸 [東京化成工業(株)]
・AC-2:ステアリル酸 [東京化成工業(株)]
・AC-3:フォスファノールRS-710 (ポリオキシエチレンアルキル(12~15)エーテルリン酸)[東邦化学工業(株)]
<Dispersant, component (b)>
The dispersants used in the present invention are shown together with abbreviations.
・AM-1: Tripentylamine [Tokyo Kasei Kogyo Co., Ltd.]
・AM-2: Propanolamine [Tokyo Kasei Kogyo Co., Ltd.]
・AM-3: Methylaminoethanol [Tokyo Kasei Kogyo Co., Ltd.]
・AM-4:1-Aminoundecane [Tokyo Kasei Kogyo Co., Ltd.]
・AM-5: Tridodecylamine [Tokyo Kasei Kogyo Co., Ltd.]
・AM-6: Trimethylstearylammonium chloride [Tokyo Kasei Kogyo Co., Ltd.]
・AM-7: N,N-bis(3-aminopropyl)ethylenediamine [Tokyo Kasei Kogyo Co., Ltd.]
・AM-8: 1,6-diaminohexane [Tokyo Kasei Kogyo Co., Ltd.]
・AM-9: N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine [Tokyo Kasei Kogyo Co., Ltd.]
・AM-10: Pyrrole [Tokyo Kasei Kogyo Co., Ltd.]
・AM-11: Pyridine [Tokyo Kasei Kogyo Co., Ltd.]
・AM-12: Aniline [Tokyo Kasei Kogyo Co., Ltd.]
・AC-1: Formic acid [Tokyo Chemical Industry Co., Ltd.]
・AC-2: Stearic acid [Tokyo Kasei Kogyo Co., Ltd.]
・AC-3: Phosphanol RS-710 (polyoxyethylene alkyl (12-15) ether phosphoric acid) [Toho Chemical Industry Co., Ltd.]
<(c1)成分>
本発明で用いた(c1)成分について略記号とともに示す。
・DMF:N,N-ジメチルホルムアミド[関東化学(株)]、粘度(25℃):0.8mPa・s、屈折率(25℃):1.428、SP値:25(Winmostar(登録商標)を用いて算出)
・MeOH:メタノール[関東化学(株)]、粘度(25℃):0.5mPa・s、屈折率(25℃):1.329、SP値:30(Winmostar(登録商標)を用いて算出)
・PGME:プロピレングリコールモノメチルエーテル[東京化成工業(株)]、粘度(25℃):1.9mPa・s、屈折率(25℃):1.404、SP値:20(Winmostar(登録商標)を用いて算出)
・PGMEA:プロピレングリコールモノメチルエーテルアセテート[東京化成工業(株)]、粘度(25℃):1.1mPa・s、屈折率(25℃):1.404、SP値:18(Winmostar(登録商標)を用いて算出)
・D-1:ポリエチレングリコールジアクリレート[新中村化学工業(株)A-200]、粘度(25℃):25mPa・s、屈折率(25℃):1.463、SP値:19(Winmostar(登録商標)を用いて算出)
・D-2:1,6-ヘキサンジオールジアクリレート[大阪有機化学工業(株)ビスコート#230]、粘度(25℃):7mPa・s、屈折率(25℃):1.456、SP値:18(Winmostar(登録商標)を用いて算出)
<(c1) component>
The component (c1) used in the present invention is shown together with abbreviations.
・DMF: N,N-dimethylformamide [Kanto Kagaku Co., Ltd.], viscosity (25°C): 0.8 mPa・s, refractive index (25°C): 1.428, SP value: 25 (Winmostar (registered trademark) )
・MeOH: methanol [Kanto Kagaku Co., Ltd.], viscosity (25°C): 0.5 mPa・s, refractive index (25°C): 1.329, SP value: 30 (calculated using Winmostar (registered trademark))
・PGME: Propylene glycol monomethyl ether [Tokyo Kasei Kogyo Co., Ltd.], viscosity (25°C): 1.9 mPa・s, refractive index (25°C): 1.404, SP value: 20 (Winmostar (registered trademark)) (calculated using)
・PGMEA: Propylene glycol monomethyl ether acetate [Tokyo Kasei Kogyo Co., Ltd.], viscosity (25°C): 1.1 mPa・s, refractive index (25°C): 1.404, SP value: 18 (Winmostar (registered trademark)) )
・D-1: Polyethylene glycol diacrylate [Shin Nakamura Chemical Co., Ltd. A-200], viscosity (25°C): 25 mPa・s, refractive index (25°C): 1.463, SP value: 19 (Winmostar ( Calculated using registered trademark)
・D-2: 1,6-hexanediol diacrylate [Osaka Organic Chemical Industry Co., Ltd. Viscoat #230], viscosity (25°C): 7 mPa・s, refractive index (25°C): 1.456, SP value: 18 (calculated using Winmostar (registered trademark))
<機械的に粉砕する工程>
・手法:ボールミル
スクリュー管に、表1記載の成分を所定量比となるよう仕込んだ。その後、メディアであるボールを体積が液量の半分程度になるまでスクリュー管に加えた。その後、ミックスロータで70rpmの回転速度で所定の時間スクリュー管を攪拌させ粉砕処理を行った。使用したメディア種に関し、以降、下記略記号にて表す。
 M-1:(株)ニッカトー製ジルコニアボールYTZ-1(サイズ:φ1mm)
 M-2:(株)ニッカトー製ジルコニアボールYTZ-0.2(サイズ:φ0.2mm)
 M-3:アズワン(株) ガラスビーズBZ-1(サイズ:φ0.99~1.40mm)
 M-4:アズワン(株) 高純度アルミナボールAL9-1(サイズ:φ1mm)
<Mechanical crushing process>
・Method: The components listed in Table 1 were charged into a ball mill screw tube in a predetermined ratio. Thereafter, balls as media were added to the screw tube until the volume became about half of the liquid volume. Thereafter, the screw tube was stirred with a mixing rotor at a rotation speed of 70 rpm for a predetermined period of time to carry out pulverization. The media types used are hereinafter expressed using the abbreviations below.
M-1: Zirconia ball YTZ-1 manufactured by Nikkato Co., Ltd. (Size: φ1mm)
M-2: Zirconia ball YTZ-0.2 (size: φ0.2mm) manufactured by Nikkato Co., Ltd.
M-3: As One Co., Ltd. Glass beads BZ-1 (Size: φ0.99-1.40mm)
M-4: AS ONE Co., Ltd. High purity alumina ball AL9-1 (Size: φ1mm)
・手法:超音波処理
本発明では、上記ボールミル以外の手法として、上述した超音波処理でも実施した。超音波による処理は、スクリュー管に、表1記載の成分を所定量比となるよう仕込み、表1記載の時間で処理を行った。
- Method: Ultrasonic treatment In the present invention, the above-mentioned ultrasonic treatment was also carried out as a method other than the above-mentioned ball mill. For the ultrasonic treatment, the components listed in Table 1 were charged into a screw tube in a predetermined ratio, and the treatment was carried out for the time listed in Table 1.
<均質性>
調製した分散液の外観を目視で確認し、以下に示す基準に従い評価した。分散液として「A」であることが好ましい。
 A:溶液中に、目視で凝集粒子が確認できず、コロイド色がみられる
 C:目視で凝集粒子が確認でき、コロイド色がみられない
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<Homogeneity>
The appearance of the prepared dispersion liquid was visually confirmed and evaluated according to the criteria shown below. It is preferable to use "A" as the dispersion liquid.
A: No aggregated particles can be visually confirmed in the solution, and a colloidal color is observed. C: Agglomerated particles are visible, but no colloidal color is observed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
表1に示すように、実施例1乃至実施例9及び実施例11の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に1つのアミノ基を有する第一級アミン、第二級アミン又は第三級アミンである脂肪族アミン化合物を含むものである。そして、表2に示すように、分散剤を含まない比較例1と比較して、実施例1乃至実施例9及び実施例11は、金属有機構造体がnmオーダーの小サイズで分散しており、かつ優れた分散安定性を示す分散液が得られた。 As shown in Table 1, in the dispersions of Examples 1 to 9 and 11, the metal species constituting the metal-organic structure was Zr, and the dispersant was a polymer having one amino group in the molecule. It includes aliphatic amine compounds that are primary amines, secondary amines, or tertiary amines. As shown in Table 2, compared to Comparative Example 1 which does not contain a dispersant, in Examples 1 to 9 and 11, the metal-organic framework is dispersed in a small size on the order of nm. , and a dispersion liquid exhibiting excellent dispersion stability was obtained.
表1に示すように、比較例2の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に1つのアミノ基を有する第四級の脂肪族アミン化合物を含むものである。そして、表2に示すように、実施例1乃至実施例9と比較して、金属有機構造体がμmオーダーの大サイズで凝集しており、かつ分散安定性に劣ることを示した。 As shown in Table 1, in the dispersion liquid of Comparative Example 2, the metal species constituting the metal-organic structure was Zr, and the dispersant was a quaternary aliphatic amine compound having one amino group in the molecule. It includes. As shown in Table 2, compared to Examples 1 to 9, the metal-organic structures were aggregated in a large size on the μm order, and the dispersion stability was inferior.
表1に示すように、比較例3乃至比較例5の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に複数のアミノ基を有する第一級アミン、第二級アミン又は第三級アミンである脂肪族アミン化合物を含むものである。そして、表2に示すように、実施例1乃至実施例9と比較して、金属有機構造体がμmオーダーの大サイズで凝集しており、かつ分散安定性に劣ることを示した。 As shown in Table 1, in the dispersions of Comparative Examples 3 to 5, the metal species constituting the metal-organic structure was Zr, and the dispersant was a primary amine having a plurality of amino groups in the molecule, It includes an aliphatic amine compound that is a secondary amine or a tertiary amine. As shown in Table 2, compared to Examples 1 to 9, the metal-organic structures were aggregated in a large size on the μm order, and the dispersion stability was inferior.
表1に示すように、比較例6乃至比較例8の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に1つのアミノ基を有する第一級アミン、第二級アミン又は第三級アミンである芳香族アミン化合物を含むものである。そして、表2に示すように、実施例1乃至実施例9と比較して、金属有機構造体がμmオーダーの大サイズで凝集しており、かつ分散安定性に劣ることを示した。 As shown in Table 1, in the dispersions of Comparative Examples 6 to 8, the metal species constituting the metal-organic structure was Zr, and the dispersant was a primary amine having one amino group in the molecule; It contains aromatic amine compounds that are secondary amines or tertiary amines. As shown in Table 2, compared to Examples 1 to 9, the metal-organic structures were aggregated in a large size on the μm order, and the dispersion stability was inferior.
表1に示すように、比較例9乃至比較例12の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤がモノカルボン酸やホスホン酸を含むものである。そして、表2に示すように、実施例1乃至実施例9と比較して、金属有機構造体がμmオーダーの大サイズで凝集しており、かつ分散安定性に劣ることを示した。 As shown in Table 1, in the dispersions of Comparative Examples 9 to 12, the metal species constituting the metal-organic structure was Zr, and the dispersant contained monocarboxylic acid or phosphonic acid. As shown in Table 2, compared to Examples 1 to 9, the metal-organic structures were aggregated in a large size on the μm order, and the dispersion stability was inferior.
表1に示すように、実施例10、実施例12、実施例13及び実施例15の分散液は、金属有機構造体を構成する金属種がAlであり、分散剤が分子中に1つのアミノ基を有する第三級アミンである脂肪族アミン化合物を含むものである。そして、表2に示すように、分散剤がモノカルボン酸を含む比較例13と比較して、実施例10、実施例12、実施例13及び実施例15は、金属有機構造体がnmオーダーの小サイズで分散しており、かつ優れた分散安定性を示す分散液が得られた。 As shown in Table 1, in the dispersions of Examples 10, 12, 13, and 15, the metal species constituting the metal-organic framework was Al, and the dispersant contained one amino acid in the molecule. It contains an aliphatic amine compound which is a tertiary amine having a group. As shown in Table 2, in comparison with Comparative Example 13 in which the dispersant contains a monocarboxylic acid, in Examples 10, 12, 13, and 15, the metal-organic framework is on the order of nm. A dispersion liquid was obtained which was dispersed in a small size and showed excellent dispersion stability.
表1に示すように、実施例14の分散液は、金属有機構造体を構成する金属種がZnであり、分散剤が分子中に1つのアミノ基を有する第三級アミンである脂肪族アミン化合物を含むものである。そして、表2に示すように、金属有機構造体がnmオーダーの小サイズで分散しており、かつ優れた分散安定性を示す分散液が得られた。 As shown in Table 1, in the dispersion of Example 14, the metal species constituting the metal-organic structure was Zn, and the dispersant was an aliphatic amine, which was a tertiary amine having one amino group in the molecule. It contains compounds. As shown in Table 2, a dispersion liquid was obtained in which the metal-organic framework was dispersed in a small size on the nanometer order and had excellent dispersion stability.
表1に示すように、実施例1、及び実施例16乃至実施例18の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に1つの窒素原子を有する第三級アミンである脂肪族アミン化合物を含むものである。そして、表2に示すように、いずれもメディア種の材質及びサイズが異なるものの金属有機構造体がnmオーダーの小サイズで分散しており、かつ優れた分散安定性を示す分散液が得られた。 As shown in Table 1, in the dispersions of Example 1 and Examples 16 to 18, the metal species constituting the metal-organic framework was Zr, and the dispersant had one nitrogen atom in the molecule. It contains an aliphatic amine compound which is a tertiary amine. As shown in Table 2, dispersions were obtained in which the metal-organic structures were dispersed in small sizes on the order of nanometers, and showed excellent dispersion stability, although the media types and sizes were different. .
表1に示すように、比較例14の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に1つのアミノ基を有する第三級アミンである脂肪族アミン化合物を含むものであるが、処理方法が超音波処理であり、実施例1のボールミルでの機械的粉砕処理をしたものと比較して、金属有機構造体がμmオーダーの大サイズで凝集しており、かつ分散安定性に劣ることを示した。 As shown in Table 1, in the dispersion of Comparative Example 14, the metal species constituting the metal-organic structure was Zr, and the dispersant was an aliphatic amine, which was a tertiary amine having one amino group in the molecule. Although it contains a compound, the processing method was ultrasonic treatment, and compared to the one that was mechanically pulverized in a ball mill in Example 1, the metal organic structure was aggregated in a large size on the μm order, It also showed that the dispersion stability was poor.
表1に示すように、実施例19及び実施例20の分散液は、金属有機構造体を構成する金属種がZrであり、分散剤が分子中に1つの窒素原子を有する第三級アミンである脂肪族アミン化合物を含むものであり、分散媒が架橋性モノマーD-1、D-2である。そして、表2に示すように、分散剤を含まない比較例1と比較して、実施例19及び実施例20は、金属有機構造体がnmオーダーの小サイズで分散しており、かつ優れた分散安定性を示す分散液が得られた。 As shown in Table 1, in the dispersions of Examples 19 and 20, the metal species constituting the metal-organic framework was Zr, and the dispersant was a tertiary amine having one nitrogen atom in the molecule. It contains a certain aliphatic amine compound, and the dispersion medium is crosslinking monomers D-1 and D-2. As shown in Table 2, compared to Comparative Example 1 which does not contain a dispersant, Examples 19 and 20 have metal-organic structures dispersed in a small size on the order of nm, and have excellent A dispersion exhibiting dispersion stability was obtained.
表1に示すように、実施例21の分散液は、金属有機構造体を構成する金属種がAlであり、分散剤が分子中に1つの窒素原子を有する第三級アミンである脂肪族アミン化合物を含むものであり、固形分濃度が実施例1乃至実施例20よりも高濃度(15質量%)である。そして、表2に示すように、金属有機構造体がnmオーダーの小サイズで分散しており、かつ優れた分散安定性を示す分散液が得られた。 As shown in Table 1, in the dispersion of Example 21, the metal species constituting the metal-organic structure was Al, and the dispersant was an aliphatic amine, which was a tertiary amine having one nitrogen atom in the molecule. It contains a compound, and the solid content concentration is higher than that of Examples 1 to 20 (15% by mass). As shown in Table 2, a dispersion liquid was obtained in which the metal-organic framework was dispersed in a small size on the nanometer order and had excellent dispersion stability.
[ボールミル処理による結晶構造への影響]
実施例1及び比較例1で得られた分散液をトルエンにて10倍希釈することで、沈降した金属有機構造体白色粉末を、桐山濾過にて濾紙上に回収し、DMF及びMeOHにて洗浄後、得られた金属有機構造体粉末を150℃、5時間真空乾燥し、白色粉末を得た。
[Effect on crystal structure due to ball milling]
By diluting the dispersions obtained in Example 1 and Comparative Example 1 10 times with toluene, the precipitated metal-organic framework white powder was collected on a filter paper by Kiriyama filtration, and washed with DMF and MeOH. Thereafter, the obtained metal-organic structure powder was vacuum-dried at 150° C. for 5 hours to obtain a white powder.
ボールミル処理による結晶構造への影響を確認するため、上記処理で得られた白色粉末と、ボールミル処理する前の製造例1で得られた粉末を、XRDを用いて結晶構造を解析した。図1に示すように、分散剤を含まずボールミル処理をした比較例1から得られる粉末の回折ピークは、製造例1及び実施例1から得られる粉末の回折ピークと異なっており、ボールミル処理により結晶構造が変化したことが示唆された。この結果より、機械的粉砕処理により結晶構造を維持しつつ分散液化するためには、分散剤として分子中に1つのアミノ基を有する第一級アミン、第二級アミン又は第三級アミンである脂肪族アミン化合物が含まれることが重要であることが示唆された。 In order to confirm the influence of the ball milling treatment on the crystal structure, the crystal structure of the white powder obtained by the above treatment and the powder obtained in Production Example 1 before the ball milling treatment was analyzed using XRD. As shown in Figure 1, the diffraction peak of the powder obtained from Comparative Example 1, which did not contain a dispersant and was subjected to ball milling, is different from the diffraction peak of the powder obtained from Production Example 1 and Example 1. It was suggested that the crystal structure had changed. From this result, in order to form a dispersion liquid while maintaining the crystal structure through mechanical pulverization, it is necessary to use a primary amine, secondary amine, or tertiary amine that has one amino group in the molecule as a dispersant. It was suggested that inclusion of aliphatic amine compounds is important.
ボールミル処理による結晶構造への影響を確認するため、上記処理で得られた白色粉末と、ボールミル処理する前の製造例1で得られた粉末をSEM-EDXで解析した。図2に示すように、分散剤を含まずボールミル処理をした比較例1から得られる粉末の元素組成は製造例1及び実施例1から得られる粉末の元素組成と異なっており、ボールミル処理により結晶構造が変化したことが示唆された。この結果より、機械的粉砕処理により結晶構造を維持しつつ分散液化するためには、分散剤として分子中に1つのアミノ基を有する第一級アミン、第二級アミン又は第三級アミンである脂肪族アミン化合物が含まれることが重要であることが示唆された。 In order to confirm the influence of the ball mill treatment on the crystal structure, the white powder obtained by the above treatment and the powder obtained in Production Example 1 before the ball mill treatment were analyzed by SEM-EDX. As shown in Figure 2, the elemental composition of the powder obtained from Comparative Example 1, which did not contain a dispersant and was subjected to ball milling, was different from the elemental composition of the powder obtained from Production Example 1 and Example 1. It was suggested that the structure had changed. From this result, in order to form a dispersion liquid while maintaining the crystal structure through mechanical pulverization, it is necessary to use a primary amine, secondary amine, or tertiary amine that has one amino group in the molecule as a dispersant. It was suggested that it is important to include aliphatic amine compounds.
同様に、実施例11及び実施例15で得られた分散液をトルエンにて10倍希釈することで、沈降した金属有機構造体白色粉末を、桐山濾過にて濾紙上に回収し、DMF及びMeOHにて洗浄後、得られた金属有機構造体粉末を150℃、5時間真空乾燥し、粉末を得た。得られた粉末と、ボールミル処理する前の製造例2及び製造例3で得られた粉末とを、XRDを用いて結晶構造を解析した。図3に示すように、ボールミル処理前後で結晶構造が維持できていることが示唆された。 Similarly, by diluting the dispersion liquid obtained in Example 11 and Example 15 10 times with toluene, the precipitated metal-organic framework white powder was collected on a filter paper by Kiriyama filtration, and DMF and MeOH were collected. After washing, the obtained metal-organic structure powder was vacuum-dried at 150° C. for 5 hours to obtain a powder. The crystal structures of the obtained powder and the powders obtained in Production Example 2 and Production Example 3 before ball milling were analyzed using XRD. As shown in FIG. 3, it was suggested that the crystal structure was maintained before and after the ball milling treatment.

Claims (11)

  1. 金属有機構造体分散液の製造方法であって、
    (a)成分:金属イオンと、該金属イオンに配位した有機配位子を含み、該金属イオンがZrイオン、Alイオン及びZnイオンからなる群から選ばれる少なくとも1種である金属有機構造体の固体粉末と、
    (b)成分:分散剤として、分子中に下記式(1)で表されるアミノ基を1つ有する第一級アミン、第二級アミン、又は第三級アミンであり、(c1)分散媒に対し溶解性を有する脂肪族アミン化合物と、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立に、水素原子又は脂肪族炭化水素基を表し、*は炭素原子との結合手を表す。)
    (c1)成分:分散媒とを混合する工程(1)、及び得られた混合物を用い機械的粉砕手法により分散液を作製する工程(2)(但し、該機械的粉砕手法は、(a)金属有機構造体の結晶構造が変化せず、固体粉末の結晶構造を保持していることを条件とする)を含む金属有機構造体分散液の製造方法。
    A method for producing a metal-organic structure dispersion, the method comprising:
    (a) Component: a metal-organic structure containing a metal ion and an organic ligand coordinated to the metal ion, where the metal ion is at least one selected from the group consisting of Zr ions, Al ions, and Zn ions. a solid powder of
    (b) Component: As a dispersant, it is a primary amine, secondary amine, or tertiary amine having one amino group represented by the following formula (1) in the molecule, and (c1) a dispersion medium. an aliphatic amine compound having solubility in
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom or an aliphatic hydrocarbon group, and * represents a bond with a carbon atom.)
    (c1) component: step (1) of mixing with a dispersion medium, and step (2) of preparing a dispersion liquid by a mechanical pulverization method using the resulting mixture (however, the mechanical pulverization method A method for producing a dispersion of a metal-organic structure, provided that the crystal structure of the metal-organic structure does not change and maintains the crystal structure of a solid powder.
  2. 前記金属有機構造体分散液は、該分散液中における前記金属有機構造体の固体粉末のZ平均粒子径が10nm以上1000nm未満であり、かつ遠心力470G以下の環境下での金属有機構造体の固体粉末粒子の沈降速度が100μm/s以下である、請求項1に記載の金属有機構造体分散液の製造方法。 The metal-organic structure dispersion liquid is such that the Z-average particle size of the solid powder of the metal-organic structure in the dispersion liquid is 10 nm or more and less than 1000 nm, and the metal-organic structure is The method for producing a metal-organic structure dispersion according to claim 1, wherein the solid powder particles have a sedimentation rate of 100 μm/s or less.
  3. 請求項1又は請求項2に記載の方法で製造された金属有機構造体分散液と、該分散液中の分散媒(c1)成分とは異なる分散媒(c2)成分及び添加剤(d)成分のうち少なくとも1つとを混合する工程(3)を含む、金属有機構造体組成物の製造方法。 A metal-organic structure dispersion produced by the method according to claim 1 or 2, and a dispersion medium (c2) component and an additive (d) component different from the dispersion medium (c1) component in the dispersion. A method for producing a metal-organic framework composition, comprising a step (3) of mixing at least one of the following.
  4. 前記有機配位子が、フマル酸、テレフタル酸、イソフタル酸、2-アミノテレフタル酸、2-メチルイミダゾール及びジカルボキシピラゾールからなる群から選ばれる少なくとも1種である、請求項1又は請求項2に記載の金属有機構造体分散液の製造方法。 Claim 1 or Claim 2, wherein the organic ligand is at least one selected from the group consisting of fumaric acid, terephthalic acid, isophthalic acid, 2-aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole. A method for producing the metal-organic framework dispersion described above.
  5. 前記金属有機構造体が、MIL-53、CAU-10、ZIF-8、MOF-801、MOF-303、UiO-66、又はUiO-NH2-66である、請求項1又は請求項2に記載の金属有機構造体分散液の製造方法。 3. The metal-organic framework according to claim 1 or 2, wherein the metal-organic framework is MIL-53, CAU-10, ZIF-8, MOF-801, MOF-303, UiO-66, or UiO-NH2-66. A method for producing a metal-organic framework dispersion.
  6. 前記機械的粉砕手法はボールミル又はビーズミルによる粉砕手法である、請求項1又は請求項2に記載の金属有機構造体分散液の製造方法。 3. The method for producing a metal-organic structure dispersion according to claim 1, wherein the mechanical pulverization method is a pulverization method using a ball mill or a bead mill.
  7. 前記ボールミル又はビーズミルはボール径又はビーズ径が直径0.01mm以上10mm以下であり、ボール又はビーズの材質が金属及びガラスからなる群から選ばれる少なくとも1種である、請求項6に記載の金属有機構造体分散液の製造方法。 The metal organic according to claim 6, wherein the ball mill or bead mill has a ball diameter or bead diameter of 0.01 mm or more and 10 mm or less, and the material of the balls or beads is at least one selected from the group consisting of metal and glass. Method for producing a structure dispersion.
  8. (a)成分:金属イオンと、該金属イオンに配位した有機配位子を含み、該金属イオンがZrイオン、Alイオン及びZnイオンからなる群から選ばれる少なくとも1種である金属有機構造体の固体粉末と、
    (b)成分:分散剤として、分子中に下記式(1)で表されるアミノ基を1つ有する第一級アミン、第二級アミン、又は第三級アミンであり、(c1)分散媒に対し溶解性を有する脂肪族アミン化合物と、
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRはそれぞれ独立に、水素原子又は脂肪族炭化水素基を表し、*は炭素原子との結合手を表す。)
    (c1)成分:分散媒とを含む分散液であって、
    該分散液中における前記金属有機構造体の固体粉末のZ平均粒子径が10nm以上1000nm未満であり、かつ遠心力470G以下の環境下での金属有機構造体の固体粉末粒子の沈降速度が100μm/s以下である金属有機構造体分散液。
    (a) Component: a metal-organic structure containing a metal ion and an organic ligand coordinated to the metal ion, where the metal ion is at least one selected from the group consisting of Zr ions, Al ions, and Zn ions. a solid powder of
    (b) Component: As a dispersant, it is a primary amine, secondary amine, or tertiary amine having one amino group represented by the following formula (1) in the molecule, and (c1) a dispersion medium. an aliphatic amine compound having solubility in
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom or an aliphatic hydrocarbon group, and * represents a bond with a carbon atom.)
    (c1) Component: A dispersion liquid containing a dispersion medium,
    The Z-average particle size of the solid powder of the metal-organic structure in the dispersion is 10 nm or more and less than 1000 nm, and the sedimentation rate of the solid powder particles of the metal-organic structure in an environment with a centrifugal force of 470 G or less is 100 μm/ A metal-organic structure dispersion liquid having a temperature of s or less.
  9. 前記有機配位子が、フマル酸、テレフタル酸、イソフタル酸、2-アミノテレフタル酸、2-メチルイミダゾール及びジカルボキシピラゾールからなる群から選ばれる少なくとも1種である、請求項8に記載の金属有機構造体分散液。 The metal organic according to claim 8, wherein the organic ligand is at least one selected from the group consisting of fumaric acid, terephthalic acid, isophthalic acid, 2-aminoterephthalic acid, 2-methylimidazole, and dicarboxypyrazole. Structure dispersion liquid.
  10. 前記金属有機構造体が、MIL-53、CAU-10、ZIF-8、MOF-801、MOF-303、UiO-66、又はUiO-NH2-66である、請求項8又は請求項9に記載の金属有機構造体分散液。 10. The metal-organic framework according to claim 8 or 9, wherein the metal-organic framework is MIL-53, CAU-10, ZIF-8, MOF-801, MOF-303, UiO-66, or UiO-NH2-66. Metal-organic framework dispersion liquid.
  11. 請求項8又は請求項9に記載の金属有機構造体分散液、並びに該分散液中の分散媒(c1)成分とは異なる分散媒(c2)成分及び添加剤(d)成分のうち少なくとも1つを含む金属有機構造体組成物。 At least one of the metal-organic structure dispersion liquid according to claim 8 or 9, and a dispersion medium (c2) component different from the dispersion medium (c1) component and an additive (d) component in the dispersion liquid. A metal-organic framework composition comprising:
PCT/JP2023/029742 2022-09-01 2023-08-17 Metal-organic framework dispersion production method, metal-organic framework dispersion, and metal-organic framework composition including metal-organic framework dispersion WO2024048308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-139317 2022-09-01
JP2022139317 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024048308A1 true WO2024048308A1 (en) 2024-03-07

Family

ID=90099431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029742 WO2024048308A1 (en) 2022-09-01 2023-08-17 Metal-organic framework dispersion production method, metal-organic framework dispersion, and metal-organic framework composition including metal-organic framework dispersion

Country Status (1)

Country Link
WO (1) WO2024048308A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109248571A (en) * 2018-10-19 2019-01-22 天津大学 Method by the preparation of chemical bridging for the mixed substrate membrane containing nano-grade molecular sieve of carbon dioxide separation
JP2019056055A (en) * 2017-09-21 2019-04-11 積水化学工業株式会社 Molded body, and production method of the same
CN111346525A (en) * 2020-03-17 2020-06-30 中国科学技术大学 Thin film composite membrane with metal organic framework as functional layer, preparation method of thin film composite membrane and preparation method of metal organic framework
JP2021527074A (en) * 2018-06-11 2021-10-11 マサチューセッツ インスティテュート オブ テクノロジー Branched Metal-Organic Framework Nanoparticles and Related Methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056055A (en) * 2017-09-21 2019-04-11 積水化学工業株式会社 Molded body, and production method of the same
JP2021527074A (en) * 2018-06-11 2021-10-11 マサチューセッツ インスティテュート オブ テクノロジー Branched Metal-Organic Framework Nanoparticles and Related Methods
CN109248571A (en) * 2018-10-19 2019-01-22 天津大学 Method by the preparation of chemical bridging for the mixed substrate membrane containing nano-grade molecular sieve of carbon dioxide separation
CN111346525A (en) * 2020-03-17 2020-06-30 中国科学技术大学 Thin film composite membrane with metal organic framework as functional layer, preparation method of thin film composite membrane and preparation method of metal organic framework

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANG DONGMEI, BURROWS ANDREW D., XIONG YULI, EDLER KAREN J.: "Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 1, no. 18, 5 April 2013 (2013-04-05), GB , pages 5497, XP093143854, ISSN: 2050-7488, DOI: 10.1039/c3ta10766c *
JIAO CHENGLI, SONG XIANGJU, ZHANG XIAOQIAN, SUN LIXIAN, JIANG HEQING: "MOF-Mediated Interfacial Polymerization to Fabricate Polyamide Membranes with a Homogeneous Nanoscale Striped Turing Structure for CO 2 /CH 4 Separation", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 15, 21 April 2021 (2021-04-21), US , pages 18380 - 18388, XP093143852, ISSN: 1944-8244, DOI: 10.1021/acsami.1c03737 *
XU XIAOQING, WU PENG, LI CHANGYONG, ZHAO KEYONG, WANG CHIRAN, DENG RENPAN, ZHANG JINLI: "Reversible Removal of SO 2 with Amine-Functionalized ZIF8 Dispersed in n -Heptanol", ENERGY & FUELS, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US., vol. 35, no. 6, 18 March 2021 (2021-03-18), WASHINGTON, DC, US. , pages 5110 - 5121, XP093143859, ISSN: 0887-0624, DOI: 10.1021/acs.energyfuels.0c04271 *
YASSARI MEHRASA; SHAKERI ALIREZA; SALEHI HASAN: "ZIF-67 templated thin-film composite forward osmosis membrane: Importance of incorporation method on morphology and performance", CHEMICAL ENGINEERING RESEARCH AND DESIGN, ELSEVIER, AMSTERDAM, NL, vol. 180, 7 March 2022 (2022-03-07), AMSTERDAM, NL, pages 369 - 378, XP087055987, ISSN: 0263-8762, DOI: 10.1016/j.cherd.2022.03.005 *

Similar Documents

Publication Publication Date Title
US20210246148A1 (en) Nanoreactors for the synthesis of porous crystalline materials
Burgaz et al. Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods
Wu et al. Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions
JP4580359B2 (en) Magnetic nanoparticle composite
Johan et al. Synthesis and characterization of copper (I) iodide nanoparticles via chemical route
TW200831412A (en) Liquid suspension and powder of cerium oxide particles, processes for the preparation thereof and use in polishing
Slostowski et al. CeO2 nanocrystals from supercritical alcohols: new opportunities for versatile functionalizations?
Long et al. Novel issues of morphology, size, and structure of Pt nanoparticles in chemical engineering: surface attachment, aggregation or agglomeration, assembly, and structural changes
Choi et al. Nanocrystalline MOFs embedded in the crystals of other MOFs and their multifunctional performance for molecular encapsulation and energy-carrier storage
CN102166658B (en) Methods for preparing hydrophobic metal nanoparticles and precursors used therein
JP5643155B2 (en) Hard coat dispersion composition, hard coat coating composition and hard coat coating
Yang et al. Self-assembly montmorillonite nanosheets supported hierarchical MoS2 as enhanced catalyst toward methyl orange degradation
Petrakli et al. α‐Alumina nanospheres from nano‐dispersed boehmite synthesized by a wet chemical route
JP2009024068A (en) Method for producing resin particles containing zirconium oxide nanoparticles and resin particles
JP2012214339A (en) Inorganic nano particle dispersion liquid
JP2004232012A (en) Method for producing high-concentration metal microparticle dispersion
Li et al. Fabrication of zinc–histidine-functionalized graphene quantum dot framework amphiphilic nanoparticles and application in the synthesis of polystyrene microspheres for adsorption of Cu 2+ by Pickering emulsion polymerization
CN115975208B (en) Metal-organic framework nano hybrid, preparation method and application
WO2024048308A1 (en) Metal-organic framework dispersion production method, metal-organic framework dispersion, and metal-organic framework composition including metal-organic framework dispersion
Kang et al. Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport
Khodami et al. Preparation, characterization, and performance evaluation of sepiolite-based nanocomposite membrane for desalination
JP2006097116A (en) High concentration metal particulate-dispersed liquid and its production method
Ozeiry et al. Multi-walled CNT decoration by ZIF-8 nanoparticles: O-MWCNT@ ZIF-8/epoxy interfacial, thermal–mechanical properties analysis via combined DFT-D computational/experimental approaches
JP5177970B2 (en) Method for producing metal oxide nanoparticles, metal nanoparticles, treated metal nanoparticles and uses thereof
CN112778878B (en) Modified graphene oxide water-based anticorrosive paint and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860071

Country of ref document: EP

Kind code of ref document: A1