JP4580359B2 - Magnetic nanoparticle composite - Google Patents

Magnetic nanoparticle composite Download PDF

Info

Publication number
JP4580359B2
JP4580359B2 JP2006084371A JP2006084371A JP4580359B2 JP 4580359 B2 JP4580359 B2 JP 4580359B2 JP 2006084371 A JP2006084371 A JP 2006084371A JP 2006084371 A JP2006084371 A JP 2006084371A JP 4580359 B2 JP4580359 B2 JP 4580359B2
Authority
JP
Japan
Prior art keywords
group
magnetic nanoparticle
protective agent
magnetic
nanoparticle composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006084371A
Other languages
Japanese (ja)
Other versions
JP2007258622A (en
Inventor
靖泰 都藤
裕之 田中
建介 中
善樹 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Sanyo Chemical Industries Ltd
Original Assignee
Kyoto University
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Sanyo Chemical Industries Ltd filed Critical Kyoto University
Priority to JP2006084371A priority Critical patent/JP4580359B2/en
Publication of JP2007258622A publication Critical patent/JP2007258622A/en
Application granted granted Critical
Publication of JP4580359B2 publication Critical patent/JP4580359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は磁性ナノ粒子複合体に関する。 The present invention relates to a magnetic nanoparticle composite.

酸化鉄などの強磁性(フェリ磁性)ナノ粒子は、磁気記録媒体、静電画像のトナーなどの広範な用途に利用されている。マグネタイトをナノ粒子としてその表面積を増大させれば、高密度データ蓄積材料、フェロフルイド、磁気共鳴材料、バイオ分離技術、磁性塗料、医薬等の広範な分野において有用である。具体的には、医薬分野においてマグネタイトナノ粒子の応用例が紹介されている(非特許文献1参照)。 Ferromagnetic nanoparticles such as iron oxide are used in a wide range of applications such as magnetic recording media and electrostatic imaging toners. Increasing the surface area of magnetite as nanoparticles is useful in a wide range of fields such as high-density data storage materials, ferrofluids, magnetic resonance materials, bioseparation techniques, magnetic paints, and pharmaceuticals. Specifically, application examples of magnetite nanoparticles have been introduced in the pharmaceutical field (see Non-Patent Document 1).

しかし、磁性ナノ粒子は、水、有機溶媒、モノマー、液状ポリマーなどの様々な液体へは溶解しないため、低分子系界面活性剤、高分子系分散剤などを用いて液体中へ分散させていたが、本質的に凝集しやすいため、強制的に分散させて液状材料を調製することは困難であった。このためマグネタイト粒子の溶媒への溶解性を付与するため、種々の方法にて表面処理したものが知られている。しかし、このような表面処理マグネタイト粒子は、溶液中で経時的に沈降して、相分離してしまい、分散状態を保持することは困難である。特に、ナノレベルで均質分散した成形材料を調製・保持することは困難である。(特許文献1参照) However, since magnetic nanoparticles do not dissolve in various liquids such as water, organic solvents, monomers, and liquid polymers, they were dispersed in liquids using low molecular surfactants, polymer dispersants, etc. However, since it inherently easily aggregates, it has been difficult to prepare a liquid material by forcibly dispersing it. For this reason, what surface-treated by various methods is known in order to provide solubility of magnetite particles in a solvent. However, such surface-treated magnetite particles settle in the solution over time and phase separate, and it is difficult to maintain a dispersed state. In particular, it is difficult to prepare and maintain a molding material uniformly dispersed at the nano level. (See Patent Document 1)

特開平8−31629JP-A-8-31629 友廣,「ナノ粒子を利用した生体分子の検出と精製」,オレオサイエンス,第4巻第1号(2004)Tomoaki, “Detection and purification of biomolecules using nanoparticles”, Oreoscience, Vol. 4, No. 1 (2004)

本発明の課題は、水、有機溶媒、他の有機系液体等の分散媒にナノレベルで分散することができ、かつ長期に渡り、ナノレベルの分散が持続する磁性ナノ粒子を提供することである。 An object of the present invention is to provide magnetic nanoparticles that can be dispersed at a nano level in a dispersion medium such as water, an organic solvent, and other organic liquids and that can be dispersed at a nano level for a long time. is there.

本発明者らは上記のような磁性ナノ粒子を得るべく鋭意検討した結果、磁性ナノ粒子表面をカチオン性複素環構造を有する保護剤で被覆することにより様々な分散媒への分散性、分散媒中での分散安定性が飛躍的に向上する性質を見出し、上記課題を解決できると考え、本発明に到達した。 As a result of intensive studies to obtain the magnetic nanoparticles as described above, the present inventors have found that dispersibility in various dispersion media can be achieved by coating the surface of the magnetic nanoparticles with a protective agent having a cationic heterocyclic structure. As a result, the inventors have found a property that the dispersion stability in the medium can be drastically improved.

すなわち本発明は、磁性ナノ粒子(P)の表面が複素環型カチオン性基(a)を有する保護剤(A)で被覆されてなる磁性ナノ粒子複合体であって、前記複素環型カチオン性基(a)がイミダゾリウム基又はピリジニウム基であり、前記磁性ナノ粒子(P)と前記保護剤(A)がFe−O−Si結合で結合されてなる磁性ナノ粒子複合体(C)である。
That is, the present invention provides a magnetic nanoparticle composite in which the surface of a magnetic nanoparticle (P) is coated with a protective agent (A) having a heterocyclic cationic group (a) , the heterocyclic cationic The magnetic nanoparticle composite (C) in which the group (a) is an imidazolium group or a pyridinium group, and the magnetic nanoparticles (P) and the protective agent (A) are bonded by a Fe—O—Si bond. .

本発明の磁性ナノ粒子複合体は、水、有機溶媒、他の有機系液体への分散性に優れ、かつその分散安定性が高い。本発明の磁性ナノ粒子複合体は磁性ナノ粒子分散液体、磁性ナノ粒子分散ペースト、及び磁性ナノ粒子分散固体を提供することができる。 The magnetic nanoparticle composite of the present invention is excellent in dispersibility in water, organic solvents, and other organic liquids, and has high dispersion stability. The magnetic nanoparticle composite of the present invention can provide a magnetic nanoparticle dispersion liquid, a magnetic nanoparticle dispersion paste, and a magnetic nanoparticle dispersion solid.

本発明における磁性ナノ粒子(P)は、鉄族又はマンガン族元素を必須成分とする金属又は合金類又は鉄族元素酸化物(p)を含有するナノサイズの粒子からなる。
(p)としては、具体的には、Fe,Co,Niの金属類、又はFePt、CoPt、FePd、MnAl、FePtM、CoPtM、FePdM、MnAlMからなる群から選択される合金類(化学式中、Mは金属元素を表し、MとしてはLi、Mg、Al、Si、P、S、Mn、Ni、Cu、Zn、Ga、Ge、As、Se、Ag、Cd、In、Sn、Sb、Te、I、Au、Tl、Bi、Po、Atが含まれる。)又は、酸化鉄Fe23を含有する金属酸化物があげられる。これらの中でも酸化鉄Fe23を含有する金属酸化物が好ましい。金属酸化物としては、例えば一般式: (NO)m・Fe23(式中、Nは2価の金属原子を表し、mは0≦m≦1の数である。)で表されるフェライトがあげられ、2価の金属原子Nとしては、例えばマグネシウム、カルシウム、マンガン、鉄、ニッケル、コバルト、銅、亜鉛、ストロンチウム、バリウム等があげられる。とくにNが2価の鉄である場合の磁性酸化鉄(例えばマグネタイトFe34、γ-Fe23など)は本発明において好適に使用される。なお、磁性ナノ粒子(P)は(p)の他に結晶水を含んでいてもよい。
The magnetic nanoparticles (P) in the present invention are composed of nano-sized particles containing a metal or alloy containing an iron group or manganese group element as an essential component or an iron group element oxide (p).
As (p), specifically, Fe, Co, Ni metals or alloys selected from the group consisting of FePt, CoPt, FePd, MnAl, FePtM, CoPtM, FePdM, and MnAlM (in the chemical formula, M Represents a metal element, and M is Li, Mg, Al, Si, P, S, Mn, Ni, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb, Te, I , Au, Tl, Bi, Po, and At.) Or a metal oxide containing iron oxide Fe 2 O 3 . Among these, metal oxides containing iron oxide Fe 2 O 3 are preferable. Examples of the metal oxide are represented by the general formula: (NO) m · Fe 2 O 3 (wherein N represents a divalent metal atom and m is a number of 0 ≦ m ≦ 1). Examples of the divalent metal atom N include magnesium, calcium, manganese, iron, nickel, cobalt, copper, zinc, strontium, barium and the like. In particular, magnetic iron oxide (for example, magnetite Fe 3 O 4 , γ-Fe 2 O 3 etc.) when N is divalent iron is preferably used in the present invention. The magnetic nanoparticles (P) may contain crystal water in addition to (p).

磁性ナノ粒子(P)の体積平均粒径は3〜1000nmが好ましく、4〜500nmがより好ましく、5〜100nmがさらに好ましい。磁性ナノ粒子(P)が3nm以上であると、熱揺らぎによる減磁現象の影響を小さく抑えることができ、また1000nmより小さいと長期の分散性をさらに向上させることができる。体積平均粒径の測定は、透過型電子顕微鏡での観察を行い、100個の粒子の粒径を測定した結果から計算により算出した。
(P)の形状としては、特に制限はなく、真球状、紡錘状、板状、針状、等が挙げられる。これらのなかで真球状が好ましい。
The volume average particle size of the magnetic nanoparticles (P) is preferably from 3 to 1000 nm, more preferably from 4 to 500 nm, still more preferably from 5 to 100 nm. When the magnetic nanoparticles (P) are 3 nm or more, the influence of the demagnetization phenomenon due to thermal fluctuation can be suppressed to a small value, and when the magnetic nanoparticles (P) are smaller than 1000 nm, long-term dispersibility can be further improved. The measurement of the volume average particle size was performed by calculation from the result of measuring the particle size of 100 particles by observing with a transmission electron microscope.
There is no restriction | limiting in particular as a shape of (P), A perfect spherical shape, spindle shape, plate shape, needle shape, etc. are mentioned. Among these, a true spherical shape is preferable.

磁性ナノ粒子(P)が金属または合金類の場合は、粒子表面に官能基を有しないため、保護剤(A)と磁性ナノ粒子(P)の結合は共有結合ではなく、静電的相互作用、ファンデアワールス力による物理吸着となる。
磁性ナノ粒子(P)が酸化鉄を含有する場合は、酸化鉄は表面に水酸基を持っていることから、様々な保護剤(A)と共有結合を形成することができるため、保護剤(A)による分散安定効果が大きい。酸化鉄の等電位点はpH=5.7〜6.9であり、これより高いpH領域では粒子表面に水酸基が存在する。この水酸基と保護剤(A)の官能基とが共有結合を形成することにより、保護剤が酸化鉄ナノ粒子表面を被覆するため、分散安定性が酸化鉄以外のナノ粒子と比較して向上する。
When the magnetic nanoparticle (P) is a metal or an alloy, since there is no functional group on the particle surface, the bond between the protective agent (A) and the magnetic nanoparticle (P) is not a covalent bond but an electrostatic interaction. , Physical adsorption by van der Waals force.
When the magnetic nanoparticles (P) contain iron oxide, since iron oxide has a hydroxyl group on the surface, it can form covalent bonds with various protective agents (A). ) Has a large dispersion stabilizing effect. The equipotential point of iron oxide is pH = 5.7 to 6.9, and a hydroxyl group exists on the particle surface in a pH range higher than this. Since the hydroxyl group and the functional group of the protective agent (A) form a covalent bond, the protective agent coats the surface of the iron oxide nanoparticles, so that the dispersion stability is improved as compared with nanoparticles other than iron oxide. .

本発明の磁性ナノ粒子複合体の製造には、磁性ナノ粒子のみからなる水性ゾルを調製する。この水性ゾルの調製法は特に定めないが、酸化鉄の場合、アルカリ共沈法やイオン交換樹脂法などを例示することができる。また金属、合金類の場合、液相還元法などを例示することができる。アルカリ共沈法では、例えば塩化鉄(III)と塩化鉄(II)とをモル比で1:3〜2:1程度の比率で含む約0.1〜2モルの水溶液と、NaOH,KOH,NH4OH等の塩基とをpHが約7〜12になるように混合し、必要に応じて加熱熟成し、ついで生成した磁性酸化鉄を分離、水洗した後、水、または水と水溶性溶剤の混合物に再分散し、保護剤を加え、場合により保護剤と酸化鉄表面との反応を行うことで、保護剤に被覆された酸化鉄ナノ粒子を得る。この水性ゾルは、必要に応じて透析、限外ろ過、遠心分離などにより精製または濃縮してもよい。
液相還元法では、例えば酢酸鉄、白金アセチルアセトナートなどの金属塩の水溶液に保護剤をあらかじめ溶解させておき、これに水素化ホウ素ナトリウムなどの還元剤を投入して、金属イオンを還元することにより、保護剤に被覆された金属ナノ粒子を得る。合金の場合は溶解させておく金属イオン種を複数にすることにより合金ナノ粒子を得ることができる。この水性ゾルもまた、酸化鉄の場合と同様に必要に応じて透析、限外ろ過、遠心分離などにより精製または濃縮してもよい。
For the production of the magnetic nanoparticle composite of the present invention, an aqueous sol consisting only of magnetic nanoparticles is prepared. The method for preparing this aqueous sol is not particularly defined. In the case of iron oxide, examples include an alkali coprecipitation method and an ion exchange resin method. In the case of metals and alloys, a liquid phase reduction method can be exemplified. In the alkali coprecipitation method, for example, about 0.1 to 2 mol of an aqueous solution containing iron chloride (III) and iron chloride (II) in a molar ratio of about 1: 3 to 2: 1, NaOH, KOH, A base such as NH 4 OH is mixed so as to have a pH of about 7 to 12, and heated and aged as necessary. Then, the produced magnetic iron oxide is separated, washed with water, and then water or water and a water-soluble solvent. The mixture is re-dispersed, a protective agent is added, and optionally, the reaction between the protective agent and the iron oxide surface is performed to obtain iron oxide nanoparticles coated with the protective agent. This aqueous sol may be purified or concentrated by dialysis, ultrafiltration, centrifugation or the like, if necessary.
In the liquid phase reduction method, for example, a protective agent is dissolved in advance in an aqueous solution of a metal salt such as iron acetate or platinum acetylacetonate, and a reducing agent such as sodium borohydride is added thereto to reduce metal ions. Thus, metal nanoparticles coated with a protective agent are obtained. In the case of an alloy, alloy nanoparticles can be obtained by using a plurality of metal ion species to be dissolved. This aqueous sol may also be purified or concentrated by dialysis, ultrafiltration, centrifugation or the like, if necessary, as in the case of iron oxide.

磁性ナノ粒子(P)表面への保護剤(A)の被覆は、静電的相互作用などの分子間相互作用を利用するもの、保護剤(A)の磁性ナノ粒子(P)表面への共有結合を利用するものなどがあげられるが、粒子の保護力の観点から保護剤の粒子表面への共有結合しているものがより好ましい。保護剤(A)は一般に知られた界面活性剤などを使用することができるが、前述の観点から磁性ナノ粒子表面の官能基と反応により共有結合を形成する官能基を分子内に1つ以上含有しているものが望ましい。例えば酸化鉄ナノ粒子(P)の表面と反応する官能基としてエポキシ基、アミノ基、スルホン基、スルホニル基、ホスホリル基、アルコキシシラン基、カルボキシル基、イソシアネート基などが好ましい。ただしアミノ基、カルボキシル基などのように、磁性ナノ粒子が酸化鉄の場合反応により共有結合を形成するが、磁性ナノ粒子がFePtなどの合金の場合は吸着により被覆するような、両方の性質を持つものも含まれる。また、磁性ナノ粒子(P)表面と反応せず静電的相互作用などの分子間相互作用する官能基としてはチオール基の他に、前述のカルボキシル基、アミノ基などが挙げられる。保護剤(A)の分子量は、好ましくは50〜100万、さらに好ましくは100〜10万、より好ましくは500〜1万である。
保護剤(A)としては、磁性ナノ粒子(P)の表面と共有結合を形成しない保護剤(A1)と共有結合を形成する保護剤(A2)が挙げられる。
The surface of the magnetic nanoparticle (P) is coated with the protective agent (A) using an intermolecular interaction such as electrostatic interaction, and the protective agent (A) is shared on the surface of the magnetic nanoparticle (P). Among them, those utilizing bonding are preferred, but those in which a protective agent is covalently bonded to the particle surface are more preferred from the viewpoint of the protective power of the particles. As the protective agent (A), generally known surfactants and the like can be used. From the above viewpoint, at least one functional group that forms a covalent bond by reaction with a functional group on the surface of the magnetic nanoparticle is included in the molecule. What is contained is desirable. For example, an epoxy group, an amino group, a sulfone group, a sulfonyl group, a phosphoryl group, an alkoxysilane group, a carboxyl group, an isocyanate group, or the like is preferable as a functional group that reacts with the surface of the iron oxide nanoparticles (P). However, when the magnetic nanoparticles are iron oxide, such as amino groups and carboxyl groups, a covalent bond is formed by reaction, but when the magnetic nanoparticles are an alloy such as FePt, both properties are covered by adsorption. Also includes what you have. In addition to the thiol group, examples of the functional group that does not react with the surface of the magnetic nanoparticle (P) and interacts between molecules such as electrostatic interaction include the carboxyl group and amino group described above. The molecular weight of the protective agent (A) is preferably 500 to 1,000,000, more preferably 100 to 100,000, and more preferably 500 to 10,000.
Examples of the protective agent (A) include a protective agent (A2) that forms a covalent bond with a protective agent (A1) that does not form a covalent bond with the surface of the magnetic nanoparticle (P).

磁性ナノ粒子(P)表面への保護剤(A1)の被覆は、物理的吸着、または共有結合を除く化学的吸着を利用するものである。被覆を行うには磁性ナノ粒子(P)と保護剤(A1)をこれらを所定比で混合し、通常は常温で、場合により加熱を行いながら攪拌する。磁性ナノ粒子(P)と保護剤(A)との割合は重量比で好ましくは1:0.01〜1:6、さらに好ましくは1:0.1〜1:1である。 The surface of the magnetic nanoparticle (P) is coated with the protective agent (A1) using physical adsorption or chemical adsorption excluding covalent bonds. In order to coat, the magnetic nanoparticles (P) and the protective agent (A1) are mixed in a predetermined ratio, and are usually stirred at room temperature and optionally with heating. The ratio between the magnetic nanoparticles (P) and the protective agent (A) is preferably 1: 0.01 to 1: 6, more preferably 1: 0.1 to 1: 1 by weight.

磁性ナノ粒子(P)表面への保護剤(A2)の被覆は、通常これらを所定比で混合し、加熱することにより行われる。磁性ナノ粒子(P)と保護剤(A)との割合は重量比で好ましくは1:0.01〜1:6、さらに好ましくは1:0.1〜1:1である。反応は、室温ないし120℃の温度で10分〜10時間行えばよく、通常は約1時間程度加熱還流すれば十分である。反応液中の磁性ナノ粒子複合体(C)の濃度は、通常、金属として0.1〜20重量%、好ましくは1〜10重量%の範囲であるのが適当である。 The coating of the protective agent (A2) on the surface of the magnetic nanoparticles (P) is usually performed by mixing these at a predetermined ratio and heating. The ratio between the magnetic nanoparticles (P) and the protective agent (A) is preferably 1: 0.01 to 1: 6, more preferably 1: 0.1 to 1: 1 by weight. The reaction may be performed at a temperature of room temperature to 120 ° C. for 10 minutes to 10 hours, and usually it is sufficient to heat and reflux for about 1 hour. The concentration of the magnetic nanoparticle composite (C) in the reaction solution is usually in the range of 0.1 to 20% by weight, preferably 1 to 10% by weight as a metal.

被覆後、限外ろ過などの公知の手段を用いて、未反応の多糖類や低分子化合物を分離する精製操作を行い、所定の純度および濃度を有する水性ゾルを得る。これに、メタノール、エタノール、テトラヒドロフラン、アセトンなどの溶媒を添加し、磁性ナノ粒子複合体(C)を優先的に沈澱析出させ、これを分離し、ついで折出物を水に再溶解し、流水透析し、必要に応じて減圧濃縮し、上記複合体(C)の水性ゾルを得る。ついで、必要に応じて、遠心分離、ろ過、pH調整などを行ってもよい。 After coating, a known operation such as ultrafiltration is used to carry out a purification operation for separating unreacted polysaccharides and low-molecular compounds to obtain an aqueous sol having a predetermined purity and concentration. To this, a solvent such as methanol, ethanol, tetrahydrofuran, or acetone is added to preferentially precipitate and precipitate the magnetic nanoparticle composite (C), which is separated, and then the precipitate is redissolved in water. Dialyze, and if necessary, concentrate under reduced pressure to obtain an aqueous sol of the complex (C). Then, if necessary, centrifugation, filtration, pH adjustment and the like may be performed.

磁性ナノ粒子(P)の表面と結合する保護剤(A)は前述のような官能基を持つ分子が望ましいが、なかでもアルコキシシラン基をもつ分子は、水中での反応が容易に進行する、1分子当たりの酸化鉄表面との結合サイト数が多いなどの観点からより好ましい。アルコキシシラン基との反応で、酸化鉄表面と保護剤との間にFe−O−Si結合が形成され、この結合が水中でも比較的安定であるからである。 The protective agent (A) that binds to the surface of the magnetic nanoparticle (P) is preferably a molecule having a functional group as described above. Among them, a molecule having an alkoxysilane group easily proceeds in water. This is more preferable from the viewpoint of a large number of binding sites with the iron oxide surface per molecule. This is because an Fe—O—Si bond is formed between the iron oxide surface and the protective agent by the reaction with the alkoxysilane group, and this bond is relatively stable in water.

保護剤(A)は、磁性ナノ粒子(P)の表面との結合部位とともに、媒体中への分散性を向上させるため、保護剤の排除体積効果による影響だけでなく、静電反発の大きい複素環型カチオン性基(a)を分子内に有している。具体的にはカチオン性基(a)は、イミダゾリウム基(a1)、ピリジニウム基、イミダゾリニウム基、チアゾリウム基、ピラゾリウム基などを例示することができる。特にイミダゾリウム基(a1)、は代表的な有機系の強塩基であるイミダゾールの塩であり、分散媒への溶解性を、イミダゾリウム基の1位、もしくは3位の置換基を変えることや、対イオンのアニオン種を変えることで調整することができる。このようにイミダゾリウム基を分子内に導入した保護剤は磁性ナノ粒子の様々な分散媒への分散性を分子構造の調整により容易に調整し高めることができる。またイミダゾリウムは複素環内に共鳴構造を有しているため、カチオンの安定性が非常に高いため、イミダゾリウム基が特に好ましい。 Since the protective agent (A) improves the dispersibility in the medium together with the binding site with the surface of the magnetic nanoparticles (P), the protective agent (A) is not only influenced by the excluded volume effect of the protective agent, but also has a complex electrostatic repulsion. It has a cyclic cationic group (a) in the molecule. Specifically, examples of the cationic group (a) include an imidazolium group (a1), a pyridinium group, an imidazolinium group, a thiazolium group, and a pyrazolium group. In particular, the imidazolium group (a1) is a salt of imidazole, which is a typical organic strong base, and the solubility in the dispersion medium can be changed by changing the substituent at the 1-position or 3-position of the imidazolium group. It can be adjusted by changing the anion species of the counter ion. Thus, a protective agent having an imidazolium group introduced into the molecule can easily adjust and enhance the dispersibility of magnetic nanoparticles in various dispersion media by adjusting the molecular structure. Moreover, since imidazolium has a resonance structure in the heterocyclic ring and the stability of the cation is very high, an imidazolium group is particularly preferable.

イミダゾリウム基(a1)、は下記一般式(1)により表される構造であり、一般式(1)において、Rは炭素数1〜15のアルキル基、またはエーテル結合を含み炭素と酸素の合計数が15以下のアルキル基を表わし、Qは炭素数1〜4のアルキル基または水素原子を表わし、Sは前述の磁性ナノ粒子表面へ結合する部位に直接、またはアルキル鎖、ポリエーテル鎖などのスペーサーを介して結合する部位である。 The imidazolium group (a1) is a structure represented by the following general formula (1). In the general formula (1), R is an alkyl group having 1 to 15 carbon atoms, or a total of carbon and oxygen including an ether bond. Represents an alkyl group having a number of 15 or less, Q represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and S represents an alkyl chain, a polyether chain or the like directly at a site bonded to the surface of the magnetic nanoparticle. This is a site that binds via a spacer.

Rの炭素数1〜15のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基等が挙げられる。エーテル結合を含み炭素と酸素の合計数が15以下のアルキル基としては、例えば−(CH2)n−(OCH2CH2)mOH(nは4以下の整数、mは7以下の整数)で示される基が挙げられる。Qの炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、tert−ブチル基が挙げられる。 Examples of the alkyl group having 1 to 15 carbon atoms of R include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, an n-octyl group, and a 2-ethylhexyl group. Is mentioned. Examples of the alkyl group containing an ether bond and having a total number of carbon and oxygen of 15 or less include a group represented by-(CH2) n- (OCH2CH2) mOH (n is an integer of 4 or less, m is an integer of 7 or less). Can be mentioned. Examples of the alkyl group having 1 to 4 carbon atoms of Q include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, and a tert-butyl group.

Rの炭素数を調整することにより、分散媒への溶解性を調整することができる。例えば水系分散媒への分散を目的とする場合、Qが水素原子の場合、Rは水素原子、メチル基、エチル基、プロピル基であることが好ましく、水素原子、メチル基であることがより好ましい。有機溶媒への分散を目的とする場合、Rを炭素数4以上のアルキル基とすることで、有機溶媒への分散性は高められ、アルキル鎖はより長い方が好ましい。 By adjusting the carbon number of R, the solubility in the dispersion medium can be adjusted. For example, when aiming at dispersion in an aqueous dispersion medium, when Q is a hydrogen atom, R is preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom or a methyl group. . When aiming at dispersion in an organic solvent, dispersibility in an organic solvent is enhanced by making R an alkyl group having 4 or more carbon atoms, and the longer alkyl chain is preferred.

また本発明の磁性ナノ粒子複合体は特に対アニオン種を指定していないが、対アニオンの選択により、分散媒への保護剤の溶解度が変化するため、イミダゾリウム基のアルキル鎖長同様、分散媒への溶解性を調整することができる。具体的にアニオンとしては、公知のアニオンが使用でき、下記に例示するような酸からプロトンを除いたアニオンが挙げられる。
HCl、HBr、HClO4、HBF4、HPF6、HAsF6、HSbF6等の無機強酸;酢酸、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、トリクロロメタンスルホン酸、ペンタクロロプロパンスルホン酸、ヘプタクロロブタンスルホン酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、ペンタフルオロブタン酸、トリクロロ酢酸、ペンタクロロプロピオン酸、ヘプタクロロブタン酸等の炭素数1〜30のハロゲン含有スルホン酸;ビス(トリフルオロメチルスルホニル)イミド等の炭素数1〜30のハロゲン含有スルホニルイミド;トリス(トリフルオロメチルスルホニル)メチド等の炭素数1〜30のハロゲン含有スルホニルメチド;等。 分散性について、分散媒が水系の場合、アニオンとしてはHCl、HClO4、HBF4、酢酸などが好ましく、分散媒が有機溶媒の場合、HPF6、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ビス(トリフルオロメチルスルホニル)イミドなどが好ましい。
In addition, the magnetic nanoparticle composite of the present invention does not particularly specify the counter anion species, but the solubility of the protective agent in the dispersion medium changes depending on the selection of the counter anion, so that the dispersion is similar to the alkyl chain length of the imidazolium group. The solubility in the medium can be adjusted. Specifically as an anion, a well-known anion can be used and the anion remove | excluding the proton from the acid which is illustrated below is mentioned.
Inorganic strong acids such as HCl, HBr, HClO 4 , HBF 4 , HPF 6 , HAsF 6 , HSbF 6 ; acetic acid, trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, trichloromethanesulfonic acid, pentachloropropanesulfone Acid, heptachlorobutanesulfonic acid, trifluoroacetic acid, pentafluoropropionic acid, pentafluorobutanoic acid, trichloroacetic acid, pentachloropropionic acid, heptachlorobutanoic acid and the like halogen-containing sulfonic acids having 1 to 30 carbon atoms; bis (tri C1-C30 halogen-containing sulfonylimides such as fluoromethylsulfonyl) imide; C1-C30 halogen-containing sulfonylmethides such as tris (trifluoromethylsulfonyl) methide; and the like. Regarding the dispersibility, when the dispersion medium is aqueous, the anion is preferably HCl, HClO 4 , HBF 4 , acetic acid or the like, and when the dispersion medium is an organic solvent, HPF 6 , trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, hepta. Fluoropropanesulfonic acid, bis (trifluoromethylsulfonyl) imide and the like are preferable.

磁性ナノ粒子(P)の表面と共有結合を形成しない保護剤(A1)と共有結合を形成する保護剤(A2)の具体例としては以下のものが挙げられる。
(A1)の具体例としては、カルボキシル基含有イミダゾリウム塩化合物(1−メチル−3−カルボキシヘキシルイミダゾリウムクロライド等)、カルボキシル基含有ピリジニウム塩化合物(N−カルボキシヘキシルピリジニウムクロライド等)、カルボキシル基含有イミダゾリニウム塩化合物(1−メチル−3−カルボキシヘキシルイミダゾリニウムクロライド等)、カルボキシル基含有チアゾリウム塩化合物、カルボキシル基含有ピラゾリウム塩化合物、アミノ基含有イミダゾリウム塩化合物(1−メチル−3−アミノヘキシルイミダゾリウムクロライド等)、アミノ基含有ピリジニウム塩化合物(N−アミノヘキシルピリジニウムクロライド等)、アミノ基含有イミダゾリニウム塩化合物(1−メチル−3−アミノヘキシルイミダゾリニウムクロライド等)、アミノ基含有チアゾリウム塩化合物、アミノ基含有ピラゾリウム塩化合物、チオール基含有イミダゾリウム塩化合物(1−メチル−3−メルカプトヘキシルイミダゾリウムクロライド等)、チオール基含有ピリジニウム塩化合物(N−メルカプトヘキシルピリジニウムクロライド等)、チオール基含有イミダゾリニウム塩化合物(1−メチル−3−メルカプトヘキシルイミダゾリニウムクロライド等)、チオール基含有チアゾリウム塩化合物、チオール基含有ピラゾリウム塩化合物、などが挙げられる。
Specific examples of the protective agent (A2) that forms a covalent bond with the protective agent (A1) that does not form a covalent bond with the surface of the magnetic nanoparticle (P) include the following.
Specific examples of (A1) include carboxyl group-containing imidazolium salt compounds (such as 1-methyl-3-carboxyhexylimidazolium chloride), carboxyl group-containing pyridinium salt compounds (such as N-carboxyhexyl pyridinium chloride), and carboxyl group-containing compounds. Imidazolinium salt compounds (1-methyl-3-carboxyhexylimidazolinium chloride, etc.), carboxyl group-containing thiazolium salt compounds, carboxyl group-containing pyrazolium salt compounds, amino group-containing imidazolium salt compounds (1-methyl-3-amino Hexylimidazolium chloride), amino group-containing pyridinium salt compound (N-aminohexylpyridinium chloride, etc.), amino group-containing imidazolinium salt compound (1-methyl-3-aminohexylimidazolium chloride) Um chloride), amino group-containing thiazolium salt compound, amino group-containing pyrazolium salt compound, thiol group-containing imidazolium salt compound (1-methyl-3-mercaptohexylimidazolium chloride, etc.), thiol group-containing pyridinium salt compound (N- Mercaptohexylpyridinium chloride, etc.), thiol group-containing imidazolinium salt compounds (1-methyl-3-mercaptohexylimidazolinium chloride, etc.), thiol group-containing thiazolium salt compounds, thiol group-containing pyrazolium salt compounds, and the like.

(A2)の具体例としては、アルコキシシラン基含有イミダゾリウム塩(1−メチル−3−トリメトキシシランヘキシルイミダゾリウムクロライド等)、アルコキシシラン基含有ピリジニウム塩化合物(N−トリメトキシシランヘキシルピリジニウムクロライド等)、アルコキシシラン基含有イミダゾリニウム塩化合物(1−メチル−3−トリメトキシシランヘキシルイミダゾリニウムクロライド等)、アルコキシシラン基含有チアゾリウム塩化合物、アルコキシシラン基含有ピラゾリウム塩化合物、エポキシ基含有イミダゾリウム塩化合物(1−メチル−3−ヘキシルオキサイドイミダゾリウムクロライド等)、エポキシ基含有ピリジニウム塩化合物(N−ヘキシルオキサイドピリジニウムクロライド等)、エポキシ基含有イミダゾリニウム塩化合物(1−メチル−3−ヘキシルオキサイドイミダゾリニウムクロライド等)、エポキシ基含有チアゾリウム塩化合物、エポキシ基含有ピラゾリウム塩化合物、イソシアネート基含有イミダゾリウム塩化合物、イソシアネート基含有ピリジニウム塩化合物、イソシアネート基含有イミダゾリニウム塩化合物、イソシアネート基含有ピリジニウム塩化合物などが挙げられる。 Specific examples of (A2) include alkoxysilane group-containing imidazolium salts (1-methyl-3-trimethoxysilane hexylimidazolium chloride, etc.), alkoxysilane group-containing pyridinium salt compounds (N-trimethoxysilane hexyl pyridinium chloride, etc.) ), Alkoxysilane group-containing imidazolinium salt compound (1-methyl-3-trimethoxysilane hexylimidazolinium chloride, etc.), alkoxysilane group-containing thiazolium salt compound, alkoxysilane group-containing pyrazolium salt compound, epoxy group-containing imidazolium Salt compounds (1-methyl-3-hexyl oxide imidazolium chloride, etc.), epoxy group-containing pyridinium salt compounds (N-hexyl oxide pyridinium chloride, etc.), epoxy group-containing imidazolinium Salt compounds (1-methyl-3-hexyl oxide imidazolinium chloride, etc.), epoxy group-containing thiazolium salt compounds, epoxy group-containing pyrazolium salt compounds, isocyanate group-containing imidazolium salt compounds, isocyanate group-containing pyridinium salt compounds, isocyanate group-containing Examples include imidazolinium salt compounds and isocyanate group-containing pyridinium salt compounds.

以上保護剤(A1),(A2)について具体的に例示したが、磁性ナノ粒子と反応させる前に塩であるものだけではなく、磁性ナノ粒子(P)と複合体(C)を形成させた後、塩にして例示したような分子になるものも含まれる。つまり塩基性分子の状態で磁性ナノ粒子(P)と複合体(C)を形成させた後、酸性分子により中和させた塩の状態が、先に例示したような化合物であるものも含まれる。 Specific examples of the protective agents (A1) and (A2) have been described above, but before reacting with the magnetic nanoparticles, not only the salt but also the magnetic nanoparticles (P) and the composite (C) were formed. Thereafter, a molecule that is exemplified as a salt is also included. In other words, after the formation of the magnetic nanoparticles (P) and the complex (C) in the state of basic molecules, the state of the salt neutralized with acidic molecules is a compound as exemplified above. .

磁性ナノ粒子複合体(C)の体積平均粒径は、好ましくは4〜1100nmであり、より好ましくは5〜600nm、さらに好ましくは6〜110nmである。 The volume average particle diameter of the magnetic nanoparticle composite (C) is preferably 4 to 1100 nm, more preferably 5 to 600 nm, and still more preferably 6 to 110 nm.

磁性ナノ粒子複合体(C)の使用例としては、磁性ナノ粒子複合体(C)を、分散媒(S)に分散させることで、分散媒(S)に磁性等の機能を付与するための添加剤としての利用が考えられる。分散媒(S)はそのまま液体のまま使用しても、硬化させることにより、磁性ナノ粒子が分散した固体として使用しても構わない。用途として、液体に分散してそのまま使用するものとして、シーリング剤、ダンパー、スピーカー等に使用される磁性流体、薬物輸送システム基材、核磁気共鳴イメージング剤などが挙げられる。また液体に分散した後、分散媒を除去することで固体化し使用するものとしては、高密度磁気記録媒体、高周波電磁波遮蔽などに使用される磁性塗料、樹脂ビーズ中に分散させた後、硬化させることで得られる磁性トナーなどが挙げられる。 As an example of use of the magnetic nanoparticle composite (C), the magnetic nanoparticle composite (C) is dispersed in the dispersion medium (S), thereby imparting a function such as magnetism to the dispersion medium (S). Use as an additive is considered. The dispersion medium (S) may be used as it is, or may be used as a solid in which magnetic nanoparticles are dispersed by curing. Examples of applications include magnetic fluids used for sealing agents, dampers, speakers, etc., drug transport system base materials, nuclear magnetic resonance imaging agents, and the like that are dispersed in a liquid and used as they are. Also, after being dispersed in a liquid, it is solidified by removing the dispersion medium and used for high-density magnetic recording media, magnetic coating materials used for high-frequency electromagnetic wave shielding, etc., dispersed in resin beads, and then cured. Magnetic toners obtained by this method.

分散媒(S)としては液状のもの、例えば水、有機溶剤、モノマー、液状ポリマーなどが挙げられる。各分散媒に対して溶解しやすい保護剤を選択し、磁性ナノ粒子(P)の表面を被覆した磁性ナノ粒子複合体(C)とすることで、易分散、かつ、経時の分散安定性の高い、磁性ナノ粒子分散液体を得ることができる。有機溶媒としては特に指定はないが、通常よく用いられるものがあげられ、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸イソブチル、セロソルブアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、ヘプタン、シクロヘキサン、シクロヘキサノン、ジオキサン、イソホロン、テトラヒドロフラン、トルエン、キシレン、ジメチルホルムアミド、ピリジンなどが挙げられる。モノマーとしては、特に指定されないが、スチレン、塩化ビニル、アクリル酸メチル、メタクリル酸メチル、ブタジエンなどのビニル系モノマーや、ε−カプロラクトン、ε−カプロラクタムなどの環状モノマー、その他分子内に官能基を2つ以上もつ、重付加、重縮合系ポリマーの前駆体モノマー、例えば、1,4ブタンジオール、ビスフェノールA、アジピン酸、テレフタル酸、ヘキサメチレンジアミン、イソホロンジアミン、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネートなどが挙げられる。これらは単独で使用しても、複数を混合して使用してもよい。液状ポリマーとしてはポリエチレングリコール、ポリプロピレングリコール、パーフルオロエーテル、ポリジメチルシロキサンなどが挙げられる。 Examples of the dispersion medium (S) include liquid materials such as water, organic solvents, monomers, and liquid polymers. By selecting a protective agent that easily dissolves in each dispersion medium and making the magnetic nanoparticle composite (C) coated with the surface of the magnetic nanoparticle (P), it is easy to disperse and has a stable dispersion over time. A high magnetic nanoparticle dispersion liquid can be obtained. Although there is no specific designation as an organic solvent, those commonly used are mentioned, such as methanol, ethanol, propanol, isopropyl alcohol, butanol, isobutyl alcohol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, methyl acetate, acetic acid Examples include ethyl, propyl acetate, isopropyl acetate, isobutyl acetate, cellosolve acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane, cyclohexane, cyclohexanone, dioxane, isophorone, tetrahydrofuran, toluene, xylene, dimethylformamide, pyridine and the like. The monomer is not particularly specified, but vinyl monomers such as styrene, vinyl chloride, methyl acrylate, methyl methacrylate, and butadiene, cyclic monomers such as ε-caprolactone and ε-caprolactam, and other functional groups in the molecule. One or more polyaddition and polycondensation polymer precursor monomers such as 1,4 butanediol, bisphenol A, adipic acid, terephthalic acid, hexamethylenediamine, isophoronediamine, hexamethylene diisocyanate, diphenylmethane diisocyanate, etc. . These may be used alone or in combination. Examples of the liquid polymer include polyethylene glycol, polypropylene glycol, perfluoroether, and polydimethylsiloxane.

本発明において好ましい実施形態では、磁性ナノ粒子複合体(C)は、分散液、ペーストとして水、有機溶媒に分散させて使用する場合、磁性ナノ粒子複合体(C)と分散媒体(S)との量比は分散媒体100重量部に対し、磁性ナノ粒子複合体を0.01〜150重量部含有することが好ましい。使用濃度は用途にもよるが、0.01%以上であれば、医療用イメージング剤などに使用する場合でも、十分な検出感度があり、ポリマーなどに磁性を付与する目的で使用する場合は、できるだけ濃度は高い方が良いが、150%以下であると分散性が良好である。 In a preferred embodiment of the present invention, when the magnetic nanoparticle composite (C) is used as a dispersion, paste, water, or an organic solvent, the magnetic nanoparticle composite (C) and the dispersion medium (S) are used. Is preferably 0.01 to 150 parts by weight of the magnetic nanoparticle composite with respect to 100 parts by weight of the dispersion medium. The concentration used depends on the application, but if it is 0.01% or more, even when used for medical imaging agents, etc., it has sufficient detection sensitivity, and when used for the purpose of imparting magnetism to polymers, The concentration should be as high as possible, but if it is 150% or less, the dispersibility is good.

本発明の磁性ナノ粒子複合体(C)を分散媒体(S)に分散させる方法は、5%以下程度の低濃度であれば、簡単な攪拌により分散が可能だが、それ以上の高濃度で分散を行いたい場合は、サンドミル、コロイドミル、ビスコミル、モーターミル、ダイノミル、スパイクミル、コスモミル等の顔料などを分散させる器具を用いるなどして、効率的に分散を行うことも可能である。 The method of dispersing the magnetic nanoparticle composite (C) of the present invention in the dispersion medium (S) can be dispersed by simple stirring at a low concentration of about 5% or less, but can be dispersed at a higher concentration than that. In the case where it is desired to carry out the dispersion, it is also possible to carry out the dispersion efficiently, for example, by using a tool such as a sand mill, a colloid mill, a visco mill, a motor mill, a dyno mill, a spike mill, or a cosmo mill.

以下、本発明を実施例によって具体的に説明するが、本趣旨の主旨を逸脱しないかぎり、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention.

(酸化鉄ナノ粒子の製造方法)
541mgの塩化鉄(III)六水和物および397mgの塩化鉄(II)4水和物を150mlのイオン交換水に溶解させた。これを窒素気流下40℃に温調し、25%のアンモニア水16mlを加え、30分間反応させた。得られた黒色沈殿を磁気的に分別し、水を用いて数回洗浄することにより酸化鉄ナノ粒子(P−1)を得た。体積平均粒径は8.5nmであった。
(Method for producing iron oxide nanoparticles)
541 mg of iron (III) chloride hexahydrate and 397 mg of iron (II) chloride tetrahydrate were dissolved in 150 ml of ion-exchanged water. The temperature was adjusted to 40 ° C. under a nitrogen stream, 16 ml of 25% aqueous ammonia was added, and the mixture was reacted for 30 minutes. The resulting black precipitate was magnetically separated and washed several times with water to obtain iron oxide nanoparticles (P-1). The volume average particle diameter was 8.5 nm.

(保護剤(A−1)の製造方法)
2雰囲気下で以下の操作を行った。
1−メチルイミダゾールを60.4mmolと3−クロロプロピルトリメトキシシランを54.9mmolを混合し、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧で除去し、53.1mmolの下記分子式(2)で示される1−メチル−3−トリメトキシシランプロピルイミダゾリウムクロライド(A−1)を得た。
(Method for producing protective agent (A-1))
The following operation was performed under N 2 atmosphere.
60.4 mmol of 1-methylimidazole and 54.9 mmol of 3-chloropropyltrimethoxysilane were mixed and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, the ethyl acetate was removed under reduced pressure to obtain 53.1 mmol of 1-methyl-3-trimethoxysilanepropylimidazolium chloride (A-1) represented by the following molecular formula (2). .

(保護剤(A−2)の製造方法)
ボルハルト・ショアー 現代有機化学 p816の方法に準じて、ドデカン二酸より、10−ブロモデカン酸を合成し、精製する。合成した10−ブロモデカン酸を50mmolと1−メチルイミダゾール40mmolを混合し、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧で除去し、37mmolの下記分子式(3)で示される1−メチル−3−カルボキシデシルイミダゾリウムブロマイド(A−2)を得た。
(Method for producing protective agent (A-2))
Borhard Shore Modern organic chemistry According to the method of p816, 10-bromodecanoic acid is synthesized from dodecanedioic acid and purified. 50 mmol of synthesized 10-bromodecanoic acid and 40 mmol of 1-methylimidazole were mixed and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, ethyl acetate was removed under reduced pressure to obtain 37 mmol of 1-methyl-3-carboxydecylimidazolium bromide (A-2) represented by the following molecular formula (3).

(保護剤(A−3)の製造方法)
2雰囲気下で以下の操作を行った。
1−ブチルイミダゾールを60.4mmolと3−クロロプロピルトリメトキシシランを54.9mmolを混合し、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧で除去し、53.1mmolの1−ブチル−3−トリメトキシシランプロピルイミダゾリウムクロライドを得た。合成した1−ブチル−3−トリメトキシシランプロピルイミダゾリウムクロライド(50mmol) 、ナトリウム ヘキサフルオロホスフェート(50mmol)およびアセトン50gを、還流管を有した反応容器に入れ、27℃で24時間攪拌した。得られた反応混合物をろ過し、析出物を除去した後、減圧下にアセトンを留去した。残渣にトルエン20gを加えて、15分間攪拌し、トルエンを分液除去する操作を2回行った。次いで70℃で、1Paの減圧下に乾燥することにより、下記分子式(4)で示される1−ブチル−3−トリメトキシシランプロピルイミダゾリウムヘキサフルオロホスフェート(A−3)を42.5mmol得た。
(Method for producing protective agent (A-3))
The following operation was performed under N 2 atmosphere.
60.4 mmol of 1-butylimidazole and 54.9 mmol of 3-chloropropyltrimethoxysilane were mixed and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, the ethyl acetate was removed under reduced pressure to obtain 53.1 mmol of 1-butyl-3-trimethoxysilanepropylimidazolium chloride. The synthesized 1-butyl-3-trimethoxysilanepropyl imidazolium chloride (50 mmol), sodium hexafluorophosphate (50 mmol) and 50 g of acetone were put into a reaction vessel having a reflux tube and stirred at 27 ° C. for 24 hours. The resulting reaction mixture was filtered to remove precipitates, and then acetone was distilled off under reduced pressure. 20 g of toluene was added to the residue, and the mixture was stirred for 15 minutes, and toluene was separated and removed twice. Subsequently, it dried under reduced pressure of 1 Pa at 70 ° C., thereby obtaining 42.5 mmol of 1-butyl-3-trimethoxysilanepropylimidazolium hexafluorophosphate (A-3) represented by the following molecular formula (4).

(保護剤(A−4)の製造方法)
10−ブロモデカン酸を50mmolと1−ブチルイミダゾール40mmolを混合し、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧で除去し、37mmolの1−ブチル−3−カルボキシノニルイミダゾリウムブロマイドを得た。この1−ブチル−3−カルボキシノニルイミダゾリウムブロマイド(50mmol)と、ナトリウム ヘキサフルオロホスフェート(50mmol)およびアセトン50gを還流管を有した反応容器に入れ、27℃で24時間攪拌した。得られた反応混合物をろ過し、析出物を除去した後、減圧下にアセトンを留去した。残渣にトルエン20gを加えて、15分間攪拌し、トルエンを分液除去する操作を2回行った。次いで、イオン交換水200gを加えて、15分間攪拌し、水を分液除去する操作を2回行った。これを70℃で、1Paの減圧下に乾燥することにより、下記分子式(5)で示される1−ブチル−3−カルボキシデシルイミダゾリウムヘキサフルオロホスフェート(A−4)を44mmol得た。
(Method for producing protective agent (A-4))
50 mmol of 10-bromodecanoic acid and 40 mmol of 1-butylimidazole were mixed and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, the ethyl acetate was removed under reduced pressure to obtain 37 mmol of 1-butyl-3-carboxynonylimidazolium bromide. This 1-butyl-3-carboxynonylimidazolium bromide (50 mmol), sodium hexafluorophosphate (50 mmol) and 50 g of acetone were put in a reaction vessel having a reflux tube and stirred at 27 ° C. for 24 hours. The resulting reaction mixture was filtered to remove precipitates, and then acetone was distilled off under reduced pressure. 20 g of toluene was added to the residue, and the mixture was stirred for 15 minutes, and toluene was separated and removed twice. Subsequently, 200 g of ion-exchanged water was added, and the mixture was stirred for 15 minutes to separate and remove water twice. This was dried at 70 ° C. under reduced pressure of 1 Pa to obtain 44 mmol of 1-butyl-3-carboxydecylimidazolium hexafluorophosphate (A-4) represented by the following molecular formula (5).

(保護剤(A−5)の製造方法)
ピリジン(60.4mmol)と3−クロロプロピルトリメトキシシラン(54.9mmol)を混合し、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧で除去し、53.1mmolの下記分子式(6)で示されるN−トリメトキシシランプロピルピリジニウムクロライド(A−5)を得た。
(Method for producing protective agent (A-5))
Pyridine (60.4 mmol) and 3-chloropropyltrimethoxysilane (54.9 mmol) were mixed and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, ethyl acetate was removed under reduced pressure to obtain 53.1 mmol of N-trimethoxysilanepropylpyridinium chloride (A-5) represented by the following molecular formula (6).

(保護剤(A−6)の製造方法)
10−ブロモデカン酸を50mmolとピリジン40mmolを混合し、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧で除去し、37mmolの下記分子式(7)で示されるN−カルボキシデシルピリジニウムブロマイド(A−6)を得た。
(Method for producing protective agent (A-6))
50 mmol of 10-bromodecanoic acid and 40 mmol of pyridine were mixed and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, ethyl acetate was removed under reduced pressure to obtain 37 mmol of N-carboxydecylpyridinium bromide (A-6) represented by the following molecular formula (7).

実施例1
作製した酸化鉄ナノ粒子(P−1)300mgを水/エタノール=1/1の混合溶媒150mlに超音波をかけて分散させ、保護剤(A−1)200mgを加え80℃で10時間反応させることにより表面を(A−1)の分子で被覆させた。この分散液を、アドバンテック社製のウルトラフィルターユニット USY−1.5−2.0を用いて、イオン交換水による洗浄を5回行った後、減圧乾燥を行うことで磁性ナノ粒子複合体(C−1)を得た。
Example 1
300 mg of the prepared iron oxide nanoparticles (P-1) are dispersed in 150 ml of a mixed solvent of water / ethanol = 1/1 by applying ultrasonic waves, and 200 mg of the protective agent (A-1) is added and reacted at 80 ° C. for 10 hours. Thus, the surface was coated with the molecule (A-1). The dispersion was washed with ion-exchanged water five times using an ultra filter unit USY-1.5-2.0 manufactured by Advantech, and then dried under reduced pressure to obtain a magnetic nanoparticle composite (C -1) was obtained.

実施例2
保護剤として(A−1)200mgの代わりに保護剤(A−2)200mgを使用し、室温で保護剤(A−2)と酸化鉄ナノ粒子(P−1)との混合を行った。それ以降を、実施例1と同様に行うことで磁性ナノ粒子複合体(C−2)を得た。
Example 2
200 mg of protective agent (A-2) was used in place of 200 mg of (A-1) as the protective agent, and the protective agent (A-2) and iron oxide nanoparticles (P-1) were mixed at room temperature. Thereafter, magnetic nanoparticle composite (C-2) was obtained in the same manner as in Example 1.

実施例3
作製した酸化鉄ナノ粒子(P−1)300mgを水/エタノール=1/9の混合溶媒150mlに超音波をかけて分散させ、保護剤(A−3)200mgを加え80℃で10時間反応させることにより表面を(A−3)の分子で被覆させた。それ以降を、実施例1と同様に行うことで磁性ナノ粒子複合体(C−3)を得た。
Example 3
300 mg of the produced iron oxide nanoparticles (P-1) are dispersed in 150 ml of a mixed solvent of water / ethanol = 1/9 by applying ultrasonic waves, and 200 mg of the protective agent (A-3) is added and reacted at 80 ° C. for 10 hours. Thus, the surface was coated with the molecule (A-3). Thereafter, the same procedure as in Example 1 was performed to obtain a magnetic nanoparticle composite (C-3).

実施例4
保護剤として(A−2)200mgの代わりに保護剤(A−4)200mgを使用した以外は、実施例2と同様にして磁性ナノ粒子複合体(C−4)を得た。
Example 4
A magnetic nanoparticle composite (C-4) was obtained in the same manner as in Example 2 except that 200 mg of the protective agent (A-4) was used instead of 200 mg of (A-2) as the protective agent.

実施例5
保護剤(A−1)の代わりに保護剤(A−5)を用いた以外は、実施例1と同様にして、磁性ナノ粒子複合体(C−5)を得た。
Example 5
A magnetic nanoparticle composite (C-5) was obtained in the same manner as in Example 1 except that the protective agent (A-5) was used instead of the protective agent (A-1).

実施例6
保護剤として(A−2)200mgの代わりに保護剤(A−6)200mgを使用した以外は、実施例2と同様にして磁性ナノ粒子複合体(C−6)を得た。
Example 6
A magnetic nanoparticle composite (C-6) was obtained in the same manner as in Example 2 except that 200 mg of the protective agent (A-6) was used instead of 200 mg of (A-2) as the protective agent.

実施例7
微粒子酸化鉄(FRO−20 、堺化学工業(株)製、平均粒子径200nm)25部、分散剤(A−1)2.5部に、水72.1部を配合し、ガラスビーズと共にペイントシェイカーで6時間分散して、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧留去することで磁性ナノ粒子複合体(C−7)を得た。
Example 7
Particulate iron oxide (FRO-20, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 200 nm) 25 parts, dispersing agent (A-1) 2.5 parts, 72.1 parts of water is blended and painted with glass beads The mixture was dispersed with a shaker for 6 hours and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, ethyl acetate was distilled off under reduced pressure to obtain a magnetic nanoparticle composite (C-7).

実施例8
微粒子酸化鉄(BIO−MAG 、ニップンテクノクラスタ(株)製、平均粒子径1000nm)25部、分散剤(A−1)0.1部に、水72.1部を配合し、ガラスビーズと共にペイントシェイカーで6時間分散して、90℃で72時間反応させた。酢酸エチルで数回洗浄した後、酢酸エチルを減圧留去することで磁性ナノ粒子複合体(C−8)を得た。
Example 8
Fine iron oxide (BIO-MAG, manufactured by NIPPN Technocluster Co., Ltd., average particle diameter 1000 nm) 25 parts, dispersant (A-1) 0.1 part, 72.1 parts of water are blended and painted with glass beads The mixture was dispersed with a shaker for 6 hours and reacted at 90 ° C. for 72 hours. After washing several times with ethyl acetate, ethyl acetate was distilled off under reduced pressure to obtain a magnetic nanoparticle composite (C-8).

実施例9
2雰囲気下で以下の操作を行った。
2PtCl6の6水和物を93mg、FeCl2の4水和物を59.7mg、保護剤(A−2)0.2gを蒸留水:エタノール=1:1の溶液100mlに溶解した後、100℃で5時間還流した。次にFeSO4の7水和物の12μmol/ml水溶液を10ml加えた。その後0.07gのNaBH4を50mlの蒸留水に溶解したものを添加した。これによりFePtナノ粒子複合体(C−9)を得た。体積平均粒径は3.9nmであった。
Example 9
The following operation was performed under N 2 atmosphere.
After dissolving 93 mg of H 2 PtCl 6 hexahydrate, 59.7 mg of FeCl 2 tetrahydrate and 0.2 g of the protective agent (A-2) in 100 ml of distilled water: ethanol = 1: 1 solution. And refluxed at 100 ° C. for 5 hours. Next, 10 ml of a 12 μmol / ml aqueous solution of FeSO 4 heptahydrate was added. Thereafter, 0.07 g NaBH 4 dissolved in 50 ml distilled water was added. This obtained the FePt nanoparticle composite (C-9). The volume average particle diameter was 3.9 nm.

比較例1
酸化鉄である磁性ナノ粒子をデキストランで被覆した商品名フェリデックス[田辺製薬(株)製]を比較例1の磁性ナノ粒子複合体(C−1’)とした。
Comparative Example 1
The trade name Feridex [manufactured by Tanabe Seiyaku Co., Ltd.] obtained by coating magnetic nanoparticles that are iron oxide with dextran was used as the magnetic nanoparticle composite (C-1 ′) of Comparative Example 1.

比較例2
フェライト用のポリカルボン酸型高分子分散剤、ポイズ520[花王(株)製]で酸化鉄ナノ粒子(体積平均粒径8.5nm)の表面を水中で被覆した後、乾燥し磁性ナノ粒子複合体を得た。これを比較例2の磁性ナノ粒子複合体(C−2’)とした。
Comparative Example 2
The surface of iron oxide nanoparticles (volume average particle size 8.5 nm) is coated with water with Poise 520 [manufactured by Kao Corporation], a polycarboxylic acid type polymer dispersant for ferrite, then dried and magnetic nanoparticle composites Got the body. This was designated as the magnetic nanoparticle composite (C-2 ′) of Comparative Example 2.

実施例1〜9の磁性ナノ粒子複合体(C−1)〜(C−9)、比較例1〜2の磁性ナノ粒子複合体(C−1’)、(C−2’)について、以下の評価方法で分散性、及び分散安定性を評価した。(C−1)、(C−2)、(C−5)〜(C−9)は水(イオン交換水、塩酸でpHを2に調整した水、水酸化ナトリウムでpHを10に調整した水)中における分散性の評価、(C−3)、(C−4)は有機溶媒(エタノール、アセトン)、有機系液体[ポリエチレングリコール(重量平均分子量=2000)]中における分散性の評価、(C−1’)、(C−2’)は水中及び有機溶媒、有機系液体中における分散性の評価を以下の方法で行った。結果を表1及び表2に示した。 The magnetic nanoparticle composites (C-1) to (C-9) of Examples 1 to 9 and the magnetic nanoparticle composites (C-1 ′) and (C-2 ′) of Comparative Examples 1 and 2 are as follows. The dispersibility and the dispersion stability were evaluated by the evaluation methods described above. (C-1), (C-2), (C-5) to (C-9) are water (ion-exchanged water, water adjusted to pH 2 with hydrochloric acid, pH adjusted to 10 with sodium hydroxide). Evaluation of dispersibility in water), (C-3) and (C-4) are evaluations of dispersibility in organic solvents (ethanol, acetone) and organic liquid [polyethylene glycol (weight average molecular weight = 2000)], (C-1 ′) and (C-2 ′) were evaluated for dispersibility in water, organic solvents, and organic liquids by the following method. The results are shown in Tables 1 and 2.

<分散性の評価>
スクリュー管に、各媒体に対して磁性ナノ粒子複合体が1.0質量%となるように、媒体と磁性ナノ粒子複合体を入れ、1分間手で振り混ぜ、30分間静置した後、ミリポア社製のポアサイズ5μmのフィルターでろ過を行い、フィルター上に黒い塊の有無により判定した。塊が認められない場合○とし、それ以外は×とした。
<Evaluation of dispersibility>
The medium and the magnetic nanoparticle composite are placed in a screw tube so that the magnetic nanoparticle composite is 1.0% by mass with respect to each medium. The medium and the magnetic nanoparticle composite are shaken by hand for 1 minute and allowed to stand for 30 minutes. Filtration was performed with a filter having a pore size of 5 μm manufactured by the company, and the determination was made based on the presence or absence of black lumps on the filter. In the case where no lump was observed, it was marked as ◯, and in other cases, it was marked as x.

<分散安定性の評価方法>
上記分散性の評価試験で、分散が確認されたものについては、経時の分散安定性を評価した。25℃で1ヶ月放置後、、50℃で1ヶ月後放置後、放置前のそれぞれの体積平均粒径を測定し比較を行うことで評価した。 体積平均粒径はいずれも粒径測定前に1分間手で振り混ぜた後に測定した。
<Method for evaluating dispersion stability>
With respect to those in which dispersion was confirmed in the dispersibility evaluation test, the dispersion stability over time was evaluated. After leaving at 25 ° C. for 1 month, after leaving at 50 ° C. for 1 month, each volume average particle size before standing was measured and evaluated. The volume average particle size was measured after shaking for 1 minute by hand before measuring the particle size.

<体積平均粒径の測定方法>
磁性ナノ粒子(P)、及び磁性ナノ粒子複合体(C)の体積平均粒径は、それぞれ以下のように測定した。磁性ナノ粒子(P)の測定は透過型電子顕微鏡(日立製作所、H−7100)で観察を行い100個の粒子の粒径を測定した結果から計算により算出した。測定サンプルはコロジオン膜処理した銅メッシュ上に、磁性ナノ粒子(P)を含有する分散液をスポイトで一滴垂らし、そのまま風乾することで調整した。
磁性ナノ粒子複合体(C)は動的光散乱粒径測定装置(堀場製作所、LB−550)を用いて、希釈溶媒を試料それぞれを分散させている溶媒と同一のものを用い、磁性ナノ粒子の濃度が0.1重量%となるように希釈した分散液を測定セルに注入し、測定を行った。
<Measurement method of volume average particle diameter>
The volume average particle diameters of the magnetic nanoparticles (P) and the magnetic nanoparticle composite (C) were measured as follows. The magnetic nanoparticles (P) were calculated by calculation from the results of observation with a transmission electron microscope (Hitachi, H-7100) and measurement of the particle size of 100 particles. The measurement sample was prepared by dropping a drop of the dispersion containing the magnetic nanoparticles (P) with a dropper on a copper mesh treated with a collodion film and air-drying it as it was.
The magnetic nanoparticle composite (C) is a magnetic nanoparticle using a dynamic light scattering particle size measuring device (Horiba, LB-550) and the same solvent as the solvent in which each of the samples is dispersed. The dispersion liquid diluted so as to have a concentration of 0.1% by weight was injected into the measurement cell and measured.

上表の結果から本発明の磁性ナノ粒子複合体は、保護剤を選択することで、水、有機溶媒への分散性を飛躍的に向上させることができる。また経時での分散安定性も従来品に比較して、非常に優れていることが分かる。 From the results in the above table, the magnetic nanoparticle composite of the present invention can drastically improve the dispersibility in water and organic solvents by selecting a protective agent. It can also be seen that the dispersion stability over time is very excellent compared to the conventional products.

本発明の磁性ナノ粒子複合体は、水、有機溶媒、他の有機系液体への分散性に優れ、かつその分散安定性が高い、新しい磁性材料、特に電子材料用、記録用、シーリング用、医療用の磁性材料として有用である。

The magnetic nanoparticle composite of the present invention is excellent in dispersibility in water, organic solvents, and other organic liquids, and has high dispersion stability. New magnetic materials, particularly for electronic materials, for recording, for sealing, It is useful as a medical magnetic material.

Claims (3)

磁性ナノ粒子(P)の表面が複素環型カチオン性基(a)を有する保護剤(A)で被覆されてなる磁性ナノ粒子複合体であって、前記複素環型カチオン性基(a)がイミダゾリウム基又はピリジニウム基であり、前記磁性ナノ粒子(P)と前記保護剤(A)がFe−O−Si結合で結合されてなる磁性ナノ粒子複合体(C)。 A magnetic nanoparticle composite in which the surface of a magnetic nanoparticle (P) is coated with a protective agent (A) having a heterocyclic cationic group (a) , wherein the heterocyclic cationic group (a) is A magnetic nanoparticle composite (C) which is an imidazolium group or a pyridinium group, and is formed by binding the magnetic nanoparticles (P) and the protective agent (A) with Fe—O—Si bonds . 磁性ナノ粒子(P)の体積平均粒径が3〜1000nmである請求項1に記載の磁性ナノ粒子複合体(C)。 The magnetic nanoparticle composite (C) according to claim 1, wherein the magnetic nanoparticle (P) has a volume average particle diameter of 3 to 1000 nm. 磁性ナノ粒子(P)が酸化鉄を含有する粒子である請求項1又は2に記載の磁性ナノ粒子複合体(C)。 The magnetic nanoparticle composite (C) according to claim 1 or 2, wherein the magnetic nanoparticle (P) is a particle containing iron oxide.
JP2006084371A 2006-03-27 2006-03-27 Magnetic nanoparticle composite Expired - Fee Related JP4580359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084371A JP4580359B2 (en) 2006-03-27 2006-03-27 Magnetic nanoparticle composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084371A JP4580359B2 (en) 2006-03-27 2006-03-27 Magnetic nanoparticle composite

Publications (2)

Publication Number Publication Date
JP2007258622A JP2007258622A (en) 2007-10-04
JP4580359B2 true JP4580359B2 (en) 2010-11-10

Family

ID=38632528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084371A Expired - Fee Related JP4580359B2 (en) 2006-03-27 2006-03-27 Magnetic nanoparticle composite

Country Status (1)

Country Link
JP (1) JP4580359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277131A (en) * 2006-04-05 2007-10-25 Sanyo Chem Ind Ltd Contrast medium for magnetic resonance image

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090056B2 (en) * 2007-05-08 2012-12-05 国立大学法人京都大学 Nucleic acid-binding magnetic carrier dispersion and nucleic acid isolation method using the same
CN101946209B (en) 2008-02-18 2014-01-22 日产化学工业株式会社 Silicon-containing resist underlayer film-forming composition containing cyclic amino group
JP5244474B2 (en) * 2008-06-27 2013-07-24 株式会社東芝 Functional particles and water treatment method using the same
KR101749604B1 (en) 2008-08-18 2017-06-21 닛산 가가쿠 고교 가부시키 가이샤 Composition for Forming Silicon-Containing Resist Underlayer Film With Onium Group
JP5175671B2 (en) * 2008-09-25 2013-04-03 株式会社東芝 Functional particles and water treatment method using the same
JP5319223B2 (en) * 2008-09-25 2013-10-16 株式会社東芝 Functional powder and water treatment method using the same
EP2372458A4 (en) 2008-12-19 2012-06-06 Nissan Chemical Ind Ltd Silicon-containing resist underlayer film formation composition having anion group
CN102460301B (en) 2009-06-02 2014-08-06 日产化学工业株式会社 Composition for forming silicon-containing resist underlayer film having sulfide bond
KR101749601B1 (en) 2009-09-16 2017-06-21 닛산 가가쿠 고교 가부시키 가이샤 Silicon-containing composition having sulfonamide group for forming resist underlayer film
KR101947105B1 (en) 2010-02-19 2019-02-13 닛산 가가쿠 가부시키가이샤 Composition for formation of resist underlayer film containing silicon having nitrogen-containing ring
JP5920820B2 (en) * 2012-03-05 2016-05-18 国立研究開発法人産業技術総合研究所 Magnetic nanoparticles fixed osmium oxide
CN104525061B (en) * 2014-11-07 2016-08-24 陕西师范大学 Based on ionic liquid and the magnetic responsiveness pickering emulsion of amphipathic Fe3O4 nano particle
CN111326309B (en) * 2020-02-13 2022-09-13 中北大学 Magnetorheological fluid based on dual-magnetic ionic liquid and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232402A (en) * 1987-03-20 1988-09-28 Nippon Seiko Kk Conductive magnetic fluid composition and manufacture thereof
JPH05175031A (en) * 1991-12-25 1993-07-13 Tokuyama Soda Co Ltd Magnetic composite material and manufacture thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132252A1 (en) * 2005-06-07 2006-12-14 Sanyo Chemical Industries, Ltd. Magnetic fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232402A (en) * 1987-03-20 1988-09-28 Nippon Seiko Kk Conductive magnetic fluid composition and manufacture thereof
JPH05175031A (en) * 1991-12-25 1993-07-13 Tokuyama Soda Co Ltd Magnetic composite material and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277131A (en) * 2006-04-05 2007-10-25 Sanyo Chem Ind Ltd Contrast medium for magnetic resonance image

Also Published As

Publication number Publication date
JP2007258622A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4580359B2 (en) Magnetic nanoparticle composite
Bloemen et al. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Chen et al. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA
Wang et al. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition
Gnanaprakash et al. Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles
Zhang et al. Preparation of IDA-Cu functionalized core–satellite Fe 3 O 4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood
Zhang et al. A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution
Ma et al. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption
Zhang et al. Magnetic silica‐coated sub‐microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood
JP5569837B2 (en) Method for producing surface-coated inorganic particles
Marcelo et al. Magnetite–polypeptide hybrid materials decorated with gold nanoparticles: study of their catalytic activity in 4-nitrophenol reduction
Xia et al. Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe 3 O 4 nanocrystals: their high saturation magnetizations and excellent water treatment properties
Shabanian et al. New PLA/PEI-functionalized Fe3O4 nanocomposite: Preparation and characterization
EP2804186B1 (en) Coated magnetic nanoparticles
Hu et al. Magnetic nanoparticle sorbents
Karaoglu et al. Synthesis and characterization of catalytically activity Fe 3 O 4–3-Aminopropyl-Triethoxysilane/Pd nanocomposite
Jiang et al. A magnetic hydrazine-functionalized dendrimer embedded with TiO2 as a novel affinity probe for the selective enrichment of low-abundance phosphopeptides from biological samples
Sánchez-Ferrer et al. Inorganic–organic elastomer nanocomposites from integrated ellipsoidal silica-coated hematite nanoparticles as crosslinking agents
Bilgic et al. Two novel BODIPY-functional magnetite fluorescent nano-sensors for detecting of Cr (VI) Ions in aqueous solutions
Bastami et al. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium
El-Kharrag et al. Synthesis and characterization of mesoporous sodium dodecyl sulfate-coated magnetite nanoparticles
Khodadadi et al. Effect of PVA/PEG-coated Fe3O4 nanoparticles on the structure, morphology and magnetic properties
Culita et al. Detailed characterization of functionalized magnetite and ascertained effects
JP4894332B2 (en) Contrast agent for magnetic resonance imaging
Pires et al. Luminescent and magnetic materials with a high content of Eu 3+-EDTA complexes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees