WO2024048285A1 - 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法 - Google Patents

多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法 Download PDF

Info

Publication number
WO2024048285A1
WO2024048285A1 PCT/JP2023/029628 JP2023029628W WO2024048285A1 WO 2024048285 A1 WO2024048285 A1 WO 2024048285A1 JP 2023029628 W JP2023029628 W JP 2023029628W WO 2024048285 A1 WO2024048285 A1 WO 2024048285A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
axis
rotates
robot
joint mechanism
Prior art date
Application number
PCT/JP2023/029628
Other languages
English (en)
French (fr)
Inventor
知秀 繁田
真一 稲田
亮 田中
Original Assignee
ローレルバンクマシン株式会社
ローレル機械株式会社
ローレル精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022136863A external-priority patent/JP7352267B1/ja
Application filed by ローレルバンクマシン株式会社, ローレル機械株式会社, ローレル精機株式会社 filed Critical ローレルバンクマシン株式会社
Publication of WO2024048285A1 publication Critical patent/WO2024048285A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the present invention relates to an articulated robot, a method for controlling an articulated robot, a robot system, and a method for manufacturing articles.
  • Articulated robots are known as robots that perform actions similar to humans (see, for example, Patent Document 1).
  • the arms of the robots interfere with each other, so there is a limit to the area that the tip of the robot can reach, which narrows the workable area of the articulated robot.
  • the arms tend to interfere with each other and there are many areas outside the workable area. That is, in the case of a robot having two arms, the angle between the two arms approaches 0°, so the arms interfere with each other.
  • the control of the tip is performed via two arms, so there is a limit to how much accuracy can be improved. Therefore, it is desired to control the distal end of the robot with high precision without narrowing the workable area of the articulated robot even around the base.
  • An articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link. Rotating the second link with respect to the first link using an axis connecting the second link and making an angle with the first direction in which the first link extends that is larger than a predetermined angle as a first rotation axis. a first driving mechanism that moves the first driving mechanism relative to the first link along the first direction; and a second direction in which the second link extends. and a second moving mechanism that moves the second link relative to the first drive mechanism along.
  • a method for controlling an articulated robot includes, in the articulated robot described above, a first motor that drives the first drive mechanism, a second motor that drives the first movement mechanism, and a second motor that drives the first movement mechanism; a third motor that drives a second moving mechanism, the first moving mechanism being disposed inside the first link, extending in the first direction, and responding to rotation of the second motor.
  • a first threaded part that rotates about an axis along the first direction is connected to the first drive mechanism, the first threaded part is inserted, and as the first threaded part rotates, the a first moving part that moves relative to the first threaded part, the second moving mechanism is disposed inside the second link, extends in the second direction, and is arranged in the second link; 3.
  • a second threaded part rotates about an axis along the second direction as a rotational axis as the motor rotates, and the second threaded part is connected to the first drive mechanism, the second threaded part is inserted, and and a second moving part that moves relative to the second threaded part as the first drive mechanism moves relative to the first link as the first moving part moves.
  • the second link moves relative to the first drive mechanism as the second moving unit moves, the method for controlling an articulated robot comprising: A control device that controls the operation of the robot controls the operation of the articulated robot by controlling the first motor, the second motor, and the third motor.
  • a first motor that drives the first drive mechanism, a second motor that drives the first movement mechanism, and a second motor that drives the first movement mechanism are provided.
  • the first moving mechanism is disposed inside the first link and extends in the first direction, and as the second motor rotates, the first moving mechanism drives the third motor.
  • a first threaded part that rotates about an axis along one direction as a rotational axis; a first threaded part that is connected to the first drive mechanism, through which the first threaded part is inserted; a first moving part that moves relative to the second link, the second moving mechanism is disposed inside the second link, extends in the second direction, and rotates the third motor.
  • a second threaded part that rotates about an axis along the second direction is connected to the first drive mechanism, the second threaded part is inserted, and as the second threaded part rotates, a second moving part that moves relative to the second screw part, and the first drive mechanism moves relative to the first link as the first moving part moves.
  • a method for manufacturing an article according to a preferred embodiment of the present invention involves assembling or removing parts using the above-mentioned robot system.
  • An articulated robot includes a base, a tip, a first link, and a second link, and a plurality of links connecting the base and the tip, and the first
  • the second link is connected to the first link with an axis that connects the link and the second link and has an angle larger than a predetermined angle with the first direction in which the first link extends as a first rotation axis.
  • a first drive mechanism that moves the first drive mechanism relative to the first link along the first direction; and a first movement mechanism that moves the first drive mechanism relative to the first link along the first direction; a second moving mechanism that moves the second link relative to the first drive mechanism along two directions, and an axis in which an angle formed by a direction perpendicular to the bottom surface of the base is equal to or less than the predetermined angle; a second drive mechanism that connects the base and the first link with a second drive mechanism that rotates at least a portion of the base using a second rotation axis, and the angle between the base and the first link is the predetermined angle.
  • a third drive mechanism that rotates the first link using a larger axis as a third rotation axis, and in a plan view from the first direction, a direction along the first rotation axis and a third rotation axis.
  • the directions intersect at a first angle that is greater than or equal to the predetermined angle.
  • a method for controlling an articulated robot includes, in the above-mentioned articulated robot, a first motor that drives the first drive mechanism; a second motor that drives the first movement mechanism; , further comprising: a third motor that drives the second movement mechanism; a fourth motor that drives the second drive mechanism; and a fifth motor that drives the third drive mechanism; a first screw portion that is disposed inside the first link, extends in the first direction, and rotates about an axis along the first direction as the second motor rotates; a first moving part connected to a first drive mechanism, into which the first threaded part is inserted, and which moves relative to the first threaded part as the first threaded part rotates; The second moving mechanism is disposed inside the second link, extends in the second direction, and rotates about an axis along the second direction as the third motor rotates.
  • a second moving part connected to the first drive mechanism, into which the second threaded part is inserted, and which moves relative to the second threaded part as the second threaded part rotates; , the first drive mechanism moves relative to the first link as the first moving section moves, and the second link moves as the second moving section moves.
  • a control method for an articulated robot that moves relative to the first drive mechanism, and the first angle is substantially 90 degrees, the control device controlling the operation of the articulated robot. controls the operation of the articulated robot such that the tip of the articulated robot moves along a predetermined plane by controlling the first motor, the second motor, and the third motor; do.
  • a first motor that drives the first drive mechanism, a second motor that drives the first movement mechanism, and a second motor that drives the first movement mechanism are provided.
  • the first moving mechanism further includes a third motor that drives the moving mechanism, a fourth motor that drives the second driving mechanism, and a fifth motor that drives the third driving mechanism.
  • a first screw portion disposed inside one link, extending in the first direction, and rotating about an axis along the first direction as the second motor rotates; and the first drive mechanism.
  • the mechanism includes a second screw portion disposed inside the second link, extending in the second direction, and rotating about an axis along the second direction as the third motor rotates; a second moving part connected to the first drive mechanism, into which the second threaded part is inserted, and which moves relative to the second threaded part as the second threaded part rotates; , the first drive mechanism moves relative to the first link as the first moving section moves, and the second link moves relative to the first link as the second moving section moves.
  • an articulated robot that moves relative to a drive mechanism, and the first angle is substantially 90 degrees; an end effector attached to the distal end; a control device that controls the operation of the articulated robot, the control device controlling the first motor, the second motor, the third motor, the fourth motor, and the fifth motor. control the behavior of
  • a method for manufacturing an article according to another preferred embodiment of the present invention involves assembling or removing parts using the above-mentioned robot system.
  • the tip of the robot can be moved around the base with simple control.
  • FIG. 1 is an explanatory diagram for explaining an overview of a robot system according to a first embodiment. It is an explanatory view for explaining an example of a joint mechanism.
  • 2 is an explanatory diagram for explaining an example of the state of the robot shown in FIG. 1.
  • FIG. 2 is an explanatory diagram for explaining another example of the state of the robot shown in FIG. 1.
  • FIG. FIG. 2 is an explanatory diagram for explaining an operation representing an advantageous feature of the robot shown in FIG. 1;
  • 2 is a diagram showing an example of the hardware configuration of the robot controller shown in FIG. 1.
  • FIG. It is an explanatory view for explaining an outline of a robot system concerning a 2nd embodiment. It is an explanatory view for explaining an example of a joint mechanism.
  • FIG. 1 is an explanatory diagram for explaining an overview of a robot system according to a first embodiment. It is an explanatory view for explaining an example of a joint mechanism.
  • FIG. 1 is an explanatory diagram for explaining an overview of a robot system according
  • FIG. 6 is an explanatory diagram for explaining an example of an operation of moving the tip of the robot in a horizontal direction with respect to a ground plane.
  • 10 is an explanatory diagram for explaining a continuation of the robot operation shown in FIG. 9.
  • FIG. FIG. 3 is an explanatory diagram for explaining an example of an operation realized by driving only two joint mechanisms corresponding to translational joints among a plurality of joint mechanisms.
  • 8 is a diagram showing an example of the hardware configuration of the robot controller shown in FIG. 7.
  • FIG. It is an explanatory view for explaining an example of a tip part concerning a 1st modification. It is an explanatory view for explaining an example of turning.
  • FIG. 1 is an explanatory diagram for explaining an overview of a robot system 1 according to the first embodiment.
  • the robot system 1 includes, for example, a robot 10, an end effector 20 that is detachably attached to the robot 10, and a robot controller 30 that controls the operations of the robot 10 and the end effector 20.
  • the robot 10 is an example of an "articulated robot," and the robot controller 30 is an example of a "control device.”
  • the robot 10 and the robot controller 30 are communicably connected to each other, for example, by a wired connection.
  • the connection between the robot 10 and the robot controller 30 may be a wireless connection, or may be a wired and wireless connection.
  • the robot controller 30 is capable of communicating with an end effector 20 attached to the robot 10.
  • any information processing device that can communicate with other devices can be employed. Note that the configuration of the robot controller 30 will be explained in FIG. 6, which will be described later.
  • the robot 10 is, for example, an articulated robot used for work in farms, factories, warehouses, and the like.
  • the robot 10 is a six-axis multi-joint robot having six joint mechanisms JEr (JEr1, JEr2, JEr3, JEr4, JEr5, and JEr6) corresponding to rotary joints, and two joints corresponding to prismatic joints.
  • It is an 8-axis articulated robot with additional mechanisms JEp (JEp1 and JEp2).
  • the robot 10 includes six joint mechanisms JEr, two joint mechanisms JEp, a body part BDP, two links LK (LK1 and LK2), and a tip part TP1.
  • the joint mechanism JEr1 is included in the body part BDP, and the joint mechanisms JEr5 and JEr6 are included in the tip part TP1. Furthermore, the joint mechanism JEp1 is provided on the link LK1, and the joint mechanism JEp2 is provided on the link LK2. In the following, the joint mechanisms JEr and JEp are also referred to as joint mechanisms JE without particular distinction.
  • the robot 10 further includes a plurality of motors that drive the plurality of joint mechanisms JE. In FIG. 1, in order to make the diagram easier to read, descriptions of a plurality of motors that drive a plurality of joint mechanisms JE, reduction gears, encoders, etc. provided in each of the plurality of motors are omitted.
  • the body part BDP is an example of a "base”. Further, the link LK1 is an example of a “first link”, and the link LK2 is an example of a "second link”. Therefore, links LK1 and LK2 correspond to "a plurality of links”. For example, links LK1 and LK2 connect body portion BDP and tip portion TP1.
  • connection of members includes both a case where two members are directly connected and a case where two members are indirectly connected.
  • Two members being directly connected includes a state in which the two members are in contact with each other, and a state in which the two members are in contact with each other.
  • a state that can be considered the same as a state in which two members are in contact with each other is, for example, a state in which one of the two members is fixed to the other with an adhesive or the like.
  • two members being indirectly connected means that another member is arranged between the two members.
  • the joint mechanism JEr1 is an example of a "second drive mechanism," and the joint mechanism JEr2 is an example of a "third drive mechanism.”
  • the joint mechanism JEr3 is an example of a "first drive mechanism”
  • the joint mechanism JEr4 is an example of a "fourth drive mechanism.”
  • the joint mechanism JEr5 is an example of a "fifth drive mechanism”
  • the joint mechanism JEr6 is an example of a "sixth drive mechanism”.
  • the joint mechanism JEp1 is an example of a "first movement mechanism”
  • the joint mechanism JEp2 is an example of a "second movement mechanism”.
  • the body part BDP includes, for example, a base part BDPba fixed to a predetermined location such as a floor, and a joint mechanism JEr1 connected to a joint mechanism JEr2.
  • the joint mechanism JEr1 rotates a portion of the body part BDP about an axis Ax1 perpendicular to the bottom surface BDPbt of the body part BDP as a rotation axis.
  • the joint mechanism JEr1 rotates an outer wall of the joint mechanism JEr1, including a portion connected to the joint mechanism JEr2, with respect to the base portion BDPba about the axis Ax1. That is, the joint mechanism JEr1 rotates the joint mechanism JEr2 with respect to the body portion BDP using the axis Ax1 as a rotation axis.
  • the axis Ax1 is an example of a "second rotation axis.”
  • a rotation direction Dr1 in FIG. 1 indicates a rotation direction of a portion of the body portion BDP when the portion of the body portion BDP rotates about the axis Ax1.
  • the joint mechanism JEr2 connects the body part BDP and the link LK1, and rotates the link LK1 with respect to the body part BDP using an axis Ax2 parallel to the bottom surface BDPbt of the body part BDP as a rotation axis.
  • the rotation direction Dr2 in FIG. 1 indicates the rotation direction of the link LK1 when the link LK1 rotates about the axis Ax2.
  • the axis Ax2 is an example of a "third rotation axis.”
  • the link LK1 is, for example, hollow and long. Further, the link LK1 has an opening Hlk1 extending in the direction De1 in which the link LK1 extends. Note that the direction De1 is an example of a "first direction.”
  • the opening Hlk1 is formed, for example, on a surface of the link LK1 that includes a portion that faces the link LK2.
  • a part of the joint mechanism JEr3 and the joint mechanism JEp1 are provided inside the link LK1.
  • a part of the joint mechanism JEr3 is located inside the link LK1, and another part of the joint mechanism JEr3 comes out from the opening Hlk1 to the outside of the link LK1.
  • the part of the joint mechanism JEr3 that protrudes to the outside of the link LK1, or a part of the part that protrudes to the outside of the link LK1 passes through an opening Hlk2 of the link LK2, which will be described later, and is located inside the link LK2. do.
  • link LK1 rotates with respect to the body part BDP with the axis Ax1 as the rotation axis by the joint mechanism JEr1, and rotates with respect to the body part BDP with the axis Ax2 as the rotation axis with the joint mechanism JEr2.
  • the joint mechanism JEr3 connects the link LK1 and the link LK2, and rotates the link LK2 with respect to the link LK1 using an axis Ax3 perpendicular to the direction De1 in which the link LK1 extends as a rotation axis.
  • the rotation direction Dr3 in FIG. 1 indicates the rotation direction of the link LK2 when the link LK2 rotates about the axis Ax3.
  • the axis Ax3 is an example of a "first rotation axis.”
  • the joint mechanism JEp1 moves the joint mechanism JEr3 relative to the link LK1 along the direction De1.
  • the link LK2 moves along the direction De1 relative to the link LK1.
  • the opening Hlk1 of the link LK1 corresponds to the movement area ARmv1 in which the joint mechanism JEr3 can move.
  • the link LK2 is, for example, hollow and long. Further, the link LK2 has an opening Hlk2 extending in the direction De2 in which the link LK2 extends. Note that the direction De2 is an example of a "second direction.”
  • the opening Hlk2 is formed, for example, on a surface of the link LK2 that includes a portion that faces the link LK1.
  • a part of the joint mechanism JEr3 and a joint mechanism JEp2 are provided inside the link LK2.
  • a part of the joint mechanism JEr3 is located inside the link LK2, and another part of the joint mechanism JEr3 comes out from the opening Hlk2 to the outside of the link LK2.
  • the joint mechanism JEp2 moves the link LK2 relative to the joint mechanism JEr3 along the direction De2 in which the link LK2 extends.
  • the link LK2 moves along the direction De2 relative to the joint mechanism JEr3. That is, the link LK2 moves relative to the link LK1 along the direction De2.
  • the link LK2 is moved relative to the link LK1 along the direction De1 by the joint mechanism JEp1, and the link LK2 is moved relative to the link LK1 along the direction De2 by the joint mechanism JEp2. do.
  • the movement of the link LK2 relative to the joint mechanism JEr3 can also be interpreted as the movement of the joint mechanism JEr3 relative to the link LK2. Therefore, the joint mechanism JEp2 can also be considered as a joint mechanism JE that moves the joint mechanism JEr3 relative to the link LK2 along the direction De2.
  • the opening Hlk2 of the link LK2 corresponds to the movable movement area ARmv2 of the joint mechanism JEr3.
  • the joint mechanism JEr4 connects the link LK2 and the tip TP1, and rotates the tip TP1 with respect to the link LK2 about an axis Ax4 perpendicular to the direction De2 as a rotation axis.
  • the rotation direction Dr4 in FIG. 1 indicates the rotation direction of the tip portion TP1 when the tip portion TP1 rotates about the axis Ax4.
  • the axis Ax4 is an example of a "fourth rotation axis.”
  • an end effector 20 that grips an article is attached to the tip portion TP1.
  • the end effector 20 is attached to the end surface TP1sf of the tip portion TP1.
  • the distal end portion TP1 includes a first portion TP11 connected to the link LK2, a second portion TP12 connected to the first portion TP11, a joint mechanism JEr5, and a joint mechanism JEr6.
  • the first portion TP11 is connected to the link LK2 via a joint mechanism JEr4, for example. Therefore, the first portion TP11 rotates with respect to the link LK2 using the axis Ax4 as the rotation axis.
  • the joint mechanism JEr5 connects the first part TP11 and the second part TP12, and rotates the second part TP12 with respect to the first part TP11 about an axis Ax5 perpendicular to the axis Ax4 as a rotation axis.
  • the rotation direction Dr5 in FIG. 1 indicates the rotation direction of the second portion TP12 when the second portion TP12 rotates about the axis Ax5.
  • the axis Ax5 is an example of a "fifth rotation axis.”
  • the joint mechanism JEr6 rotates at least a portion of the distal end portion TP1 about an axis Ax6 perpendicular to the axis Ax5 as a rotation axis.
  • the joint mechanism JEr6 rotates the end surface TP1sf of the distal end portion TP1 about the axis Ax6 as the rotation axis. That is, the joint mechanism JEr6 rotates the portion (end surface TP1sf) of the distal end portion TP1 to which the end effector 20 is attached about the axis Ax6 as a rotation axis.
  • the rotation direction Dr6 in FIG. 1 indicates the rotation direction of the end surface TP1sf when the end surface TP1sf rotates about the axis Ax6.
  • the axis Ax6 is an example of a "sixth rotation axis.”
  • the surface of the joint mechanism JEr6 corresponds to the end surface TP1sf. Note that in a configuration in which the joint mechanism JEr6 is included in the second portion TP12, the end surface of the second portion TP12 may be the end surface TP1sf.
  • the work performed by the end effector 20 is not limited to gripping an article.
  • appropriate parts for example, a robot hand, a robot finger, etc.
  • an end effector 20 suitable for various types of work is attached to the tip portion TP1.
  • rotation about an axis whose angle with a specific direction is larger than a predetermined angle is rotation axis, and rotation about an axis whose angle with a specific direction is less than or equal to a predetermined angle as a rotation axis. It is sometimes referred to as a "swivel" to distinguish it from this.
  • the predetermined angle may be, for example, 45°. Note that the predetermined angle is not limited to 45°.
  • the direction Dv1 perpendicular to the bottom surface BDPbt of the body portion BDP corresponds to the specific direction.
  • the axis Ax1 corresponds to an axis whose angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP is less than or equal to a predetermined angle
  • the axis Ax2 corresponds to an axis whose angle with the direction Dv1 is larger than the predetermined angle. Applies to. Therefore, the rotation of the link LK1 about the axis Ax2 corresponds to turning.
  • the direction Deb in which the body portion BDP extends may be a specific direction.
  • the direction De1 in which the link LK1 extends corresponds to a specific direction
  • the direction De2 in which the link LK2 extends corresponds to a specific direction.
  • the axis Ax3 corresponds to an axis whose angle with the direction De1 in which the link LK1 extends is larger than a predetermined angle
  • the axis Ax4 corresponds to an axis whose angle with the direction De2 in which the link LK2 extends is a predetermined angle. Applies to larger axes. Therefore, the rotation of the link LK2 about the axis Ax3 and the rotation of the first portion TP11 about the axis Ax4 correspond to turning.
  • the direction De11 corresponds to a specific direction
  • the direction De12 corresponds to the specific direction.
  • the direction De11 is a direction from the end of the first portion TP11 opposite to the predetermined end to which the joint mechanism JEr5 is connected to the predetermined end.
  • the direction De11 may be regarded as the direction in which the first portion TP11 extends.
  • the direction De12 is a direction from the end of the second portion TP12 opposite to the predetermined end to which the joint mechanism JEr6 is connected (the end including the end surface TP1sf) toward the predetermined end. be.
  • the direction De12 may be regarded as the direction in which the second portion TP12 extends.
  • the axis Ax5 corresponds to an axis whose angle with the direction De11 is less than or equal to a predetermined angle.
  • the axis Ax6 corresponds to an axis whose angle with the direction De12 is equal to or less than a predetermined angle.
  • the direction De11 is a direction perpendicular to the axis Ax4
  • the direction De12 is a direction perpendicular to the axis Ax5.
  • the axis Ax5 whose angle with the direction De11 is less than or equal to a predetermined angle corresponds to an axis whose angle with the axis Ax4 is greater than the predetermined angle
  • the axis Ax6 whose angle with the direction De12 is less than or equal to the predetermined angle. corresponds to an axis whose angle with axis Ax5 is larger than a predetermined angle.
  • each of the plurality of parts of the robot 10 (body part BDP, link LK1, link LK2, tip part TP1, etc.) rotates each of the axes Ax1, Ax2, Ax3, Ax4, Ax5, and Ax6. It is rotatable as an axis.
  • the robot 10 can perform actions similar to humans.
  • the link LK1 between the joint mechanisms JEr2 and JEr3 corresponds to the upper arm
  • the link LK2 between the joint mechanisms JEr3 and JEr4 corresponds to the forearm.
  • the robot 10 can use the joint mechanism JEr1 to perform a motion that simulates the twisting of a human's waist
  • the joint mechanism JEr2 can perform a motion that simulates the turning of the shoulder.
  • the robot 10 can perform an action simulating turning an elbow using the joint mechanism JEr3, and can perform an action simulating turning a wrist using the joint mechanism JEr4.
  • the robot 10 can perform a motion that simulates twisting the wrist using the joint mechanism JEr5, and can perform a motion that simulates twisting the fingertips using the joint mechanism JEr6.
  • the joint mechanism JEp1 provided within the link LK1 allows the link LK2 to be moved relative to the link LK1 along the direction De1 in which the link LK1 extends.
  • the joint mechanism JEp2 provided in the link LK2 allows the link LK2 to be moved relative to the link LK1 along the direction De2 in which the link LK2 extends. Therefore, in this embodiment, the tip portion TP1 of the robot 10 can be easily moved to the vicinity of the body portion BDP by the joint mechanisms JEp1 and JEp2.
  • the joint mechanisms JEp1 and JEp2 can widen the reachable area of the tip portion TP1 (more specifically, the end surface TP1sf), so that the end effector 20 attached to the robot 10 can reach it.
  • the area can be expanded.
  • the configuration of the robot system 1 is not limited to the example shown in FIG. 1.
  • the robot controller 30 may be built into the robot 10.
  • FIG. 1 assumes that the robot 10 is fixed to a predetermined location such as the floor, the robot 10 itself may be movable without being fixed to a predetermined location.
  • the base portion BDPba of the body portion BDP may be fixed to a predetermined location such as the floor via the joint mechanism JEr1.
  • the body part BDP may be defined without including the joint mechanism JEr1.
  • the joint mechanism JEr1 may rotate the base portion BDPba about the axis Ax1 as a rotation axis.
  • the base portion BDPba may be connected to the joint mechanism JEr2.
  • FIG. 2 is an explanatory diagram for explaining an example of the joint mechanism JE.
  • the joint mechanisms JEp1 and JEp2 and the joint mechanism JEr3 will be mainly described.
  • the motor MOr3 that drives the joint mechanism JEr3 moves integrally with the joint mechanism JEr3.
  • the motor MOr3 may be fixed to the joint mechanism JEr3.
  • Motor MOr3 is an example of a "first motor”. First, the joint mechanism JEp1 will be explained.
  • the joint mechanism JEp1 and the motor MOp1 that drives the joint mechanism JEp1 are arranged inside the link LK1.
  • the motor MOp1 is attached inside the link LK1 at the end LK1ed1, which is closer to the body part BDP, of the two ends LK1ed (LK1ed1 and LK1ed2) of the link LK1.
  • Motor MOp1 is an example of a "second motor.”
  • the end portion LK1ed2 is the end portion LK1ed farther from the body portion BDP among the two end portions LK1ed of the link LK1.
  • the joint mechanism JEp1 includes, for example, a threaded portion JEp11 extending along the direction De1, a nut JEp12, a connecting portion JEp13, and a rail JEp14.
  • the threaded part JEp11 is an example of a "first threaded part”
  • the nut JEp12 is an example of a "first moving part”.
  • One end of the threaded portion JEp11 is attached to the motor MOp1.
  • the threaded portion JEp11 is attached to the motor MOp1 so that the central axis of the threaded portion JEp11 (the central axis along the direction De1) coincides with the rotational axis of the motor MOp1, and is inserted through the nut JEp12.
  • the threaded portion JEp11 rotates about the central axis along the direction De1 as the motor MOp1 rotates.
  • the connecting portion JEp13 includes, for example, a slider portion JEp13a that is movably connected to the rail JEp14 along the direction De1, and a support portion JEp13b that supports the nut JEp12 and the motor MOr3.
  • the nut JEp12 is fixed to the support part JEp13b so as not to rotate together with the threaded part JEp11.
  • the motor MOr3 is fixed to the support part JEp13b so that the motor MOr3 itself does not rotate.
  • the slider portion JEp13a and the support portion JEp13b do not need to be strictly distinguished.
  • the motor MOr3 may be fixed to the slider portion JEp13a.
  • the nut JEp12 may be fixed to the motor MOr3 without using the support part JEp13b. That is, the nut JEp12 only needs to be connected to the connecting portion JEp13 or the like so that the relative position of the nut JEp12 with respect to the joint mechanism JEr3 does not change. In this way, the nut JEp12 is connected to the joint mechanism JEr3 via the connecting portion JEp13 and the like.
  • the rail JEp14 extends along the direction De1 and includes two rod-shaped members JEp14a and JEp14b arranged parallel to each other.
  • the shapes of the rod-like members JEp14a and JEp14b and the slider portion JEp13a are not particularly limited as long as the rod-like members JEp14a and JEp14b can support the slider portion JEp13a.
  • the rail JEp14 is disposed between the opening Hlk1 and the threaded portion JEp11 in the direction along the axis Ax3, and is attached inside the link LK1.
  • the nut JEp12 Since the nut JEp12 is fixed to the connecting portion JEp13 so as not to rotate together with the threaded portion JEp11, it moves relative to the threaded portion JEp11 along the direction De1 as the threaded portion JEp11 rotates. As described above, the nut JEp12 is fixed to the connecting portion JEp13 and the like so that its position relative to the joint mechanism JEr3 does not change. That is, the joint mechanism JEr3 moves along the direction De1 together with the nut JEp12. For example, the joint mechanism JEr3 moves relative to the link LK1 as the nut JEp12 moves. In this way, the joint mechanism JEp1 movably supports the joint mechanism JEr3.
  • the movement area ARmv1 (movement range) of the joint mechanism JEr3 is such that the joint mechanism JEr3 can move from an area closer to the end LK1ed1 than the end LK1ed2 of the link LK1 to an area closer to the end LK1ed2 than the end LK1ed1. is preferred. This makes it possible to change the actual length (control length) of the link LK1 from less than half the length of the link LK1 to more than half the length of the link LK1.
  • the substantial length of the link LK1 is, for example, the length along the direction De1 from the end LK1ed1 (for example, the intersection of the link LK1 and the axis Ax2) to the joint mechanism JEr3 (more precisely, the axis Ax3). .
  • the moving direction of the nut JEp12 that is, the moving direction of the joint mechanism JEr3 is switched between the direction De1 and the opposite direction to the direction De1 by switching the rotation direction of the motor MOp1.
  • the rotation direction of the motor MOp1 is in the first rotational direction
  • the nut JEp12 moves in the direction De1
  • the rotation of the motor MOp1 is in the second rotational direction opposite to the rotation in the first rotational direction.
  • the nut JEp12 moves in the opposite direction to the direction De1.
  • the joint mechanism JEp2 will be explained.
  • the joint mechanism JEp2 and the motor MOp2 that drives the joint mechanism JEp2 are arranged inside the link LK2.
  • the motor MOp2 is attached inside the link LK2 at the end LK2ed1 far from the tip TP1 among the two ends LK2ed (LK2ed1 and LK2ed2) of the link LK2.
  • Motor MOp2 is an example of a "third motor.” Note that the end portion LK2ed2 is the end portion LK2ed that is closer to the tip portion TP1 among the two end portions LK2ed of the link LK2.
  • the joint mechanism JEp2 includes, for example, a threaded portion JEp21 extending along the direction De2, a nut JEp22, a connecting portion JEp23, and a rail JEp24.
  • the threaded part JEp21 is an example of a "second threaded part”
  • the nut JEp22 is an example of a "second moving part”.
  • One end of the threaded portion JEp21 is attached to the motor MOp2.
  • the threaded portion JEp21 is attached to the motor MOp2 so that the central axis of the threaded portion JEp21 (the central axis along the direction De2) coincides with the rotational axis of the motor MOp2, and is inserted through the nut JEp22.
  • the threaded portion JEp21 rotates about the central axis along the direction De2 as the motor MOp2 rotates.
  • the connecting portion JEp23 includes, for example, a slider portion JEp23a that is movably connected to the rail JEp24 along the direction De2, and a support portion JEp23b that supports the nut JEp22 and the joint mechanism JEr3.
  • the nut JEp22 is fixed to the support part JEp23b so as not to rotate together with the threaded part JEp21.
  • the support part JEp23b is connected to the joint mechanism JEr3 so as to rotate about an axis Ax3 (not shown in FIG. 2) as a rotation axis as the motor MOr3 rotates. That is, the joint mechanism JEr3 rotates the support part JEp23b with the axis Ax3 as the rotation axis in accordance with the rotation of the motor MOr3.
  • the slider portion JEp23a and the support portion JEp23b do not need to be strictly distinguished.
  • a joint mechanism JEr3 may be connected to the slider portion JEp23a.
  • the nut JEp22 may be fixed to the slider portion JEp23a. That is, the nut JEp22 only needs to be connected to the connecting portion JEp23 or the like so that its position relative to the joint mechanism JEr3 does not change. In this way, the nut JEp22 is connected to the joint mechanism JEr3 via the connecting portion JEp23 and the like.
  • the rail JEp24 extends along the direction De2 and includes two rod-shaped members JEp24a and JEp24b arranged parallel to each other.
  • the shapes of the rod-like members JEp24a and JEp24b and the slider portion JEp23a are not particularly limited as long as the rod-like members JEp24a and JEp24b can support the slider portion JEp23a.
  • the rail JEp24 is disposed between the opening Hlk2 and the threaded portion JEp21 in the direction along the axis Ax3, and is attached inside the link LK2.
  • the nut JEp22 Since the nut JEp22 is fixed to the connecting portion JEp23 so as not to rotate together with the threaded portion JEp21, it moves relative to the threaded portion JEp21 along the direction De2 as the threaded portion JEp21 rotates. As described above, the nut JEp22 is fixed to the connecting portion JEp23 and the like so that its position relative to the joint mechanism JEr3 does not change. Furthermore, when the screw portion JEp11 is not rotating, that is, when the motor MOp1 is not rotating, the joint mechanism JEp1 supports the joint mechanism JEr3 so that the relative position of the joint mechanism JEr3 with respect to the link LK1 does not change. be done.
  • the link LK2 moves relative to the joint mechanism JEr3 along the direction De2 as the nut JEp22 moves relative to the threaded portion JEp21.
  • the joint mechanism JEp2 movably supports the link LK2.
  • the movement area ARmv2 (movement range) of the joint mechanism JEr3 is such that the joint mechanism JEr3 can move from an area closer to the end LK2ed1 than the end LK2ed2 of the link LK2 to an area closer to the end LK2ed2 than the end LK2ed1. is preferred. This makes it possible to change the actual length (controlled length) of the link LK2 from less than half the length of the link LK2 to more than half the length of the link LK2.
  • the substantial length of the link LK2 is, for example, the length along the direction De2 from the joint mechanism JEr3 (more precisely, the axis Ax3) to the end LK2ed2 (for example, the intersection of the link LK2 and the axis Ax4). .
  • joint mechanism JEr3 is supported by the joint mechanism JEp2 so that its position relative to the link LK2 does not change when the screw portion JEp21 is not rotating, that is, when the motor MOp2 is not rotating.
  • the joint mechanism JEr3 is capable of rotating the link LK2 with respect to the link LK1, regardless of its relative position with the link LK1. Further, the joint mechanism JEr3 is capable of rotating the link LK2 with respect to the link LK1 regardless of its relative position with the link LK2.
  • the moving direction of the nut JEp22 with respect to the threaded portion JEp21 is switched between the direction De2 and the opposite direction of the direction De2 by switching the rotation direction of the motor MOp2.
  • the link LK2 moves in the opposite direction to the direction De2
  • the motor MOp2 rotates in the opposite direction to the first rotational direction.
  • the link LK2 moves in the direction De2.
  • the configuration of the joint mechanism JEp is not limited to the example shown in FIG. 2.
  • a ball screw in which a plurality of balls are present between the screw portion JEp11 and the nut JEp12 may be employed as an element of the joint mechanism JEp1.
  • a ball screw in which a plurality of balls are present between the threaded portion JEp21 and the nut JEp22 may be employed as an element of the joint mechanism JEp2.
  • the joint mechanism JEr3 may have a storage section that stores the motor MOr3. That is, the motor MOr3 may be provided within the joint mechanism JEr3. Alternatively, the motor MOr3 may be regarded as one element of the joint mechanism JEr3. Similarly, the motor MOp1 may be regarded as an element of the joint mechanism JEp1, and the motor MOp2 may be regarded as an element of the joint mechanism JEp2.
  • the joint mechanism JEr1 includes, for example, a rotating part JEr11 and a casing JEr12 that houses the rotating part JEr11.
  • the rotating part JEr11 rotates about the axis Ax1 as a rotation axis of the motor MOr1 that drives the joint mechanism JEr1.
  • the rotating part JEr11 is attached to the motor MOr1 so as to be rotatable with respect to the base part BDPba about the axis Ax1.
  • the housing JEr12 rotates together with the rotating part JEr11 with respect to the base part BDPba about the axis Ax1.
  • the housing JEr12 is connected to the base portion BDPba so as to be rotatable relative to the base portion BDPba about the axis Ax1 as a rotation axis. Furthermore, the housing JEr12 is connected to the joint mechanism JEr2. As a result, the joint mechanism JEr2 rotates with respect to the base portion BDPba with the axis Ax1 as the rotation axis as the rotating portion JEr11 rotates.
  • Motor MOr1 is an example of a "fourth motor.”
  • the motor MOr1 may be regarded as one element of the joint mechanism JEr1.
  • the casing JEr12 may be fixed to the base portion BDPba, and the joint mechanism JEr2 may be attached to the rotating portion JEr11 so as to be rotatable with respect to the casing JEr12 about the axis Ax1.
  • the housing JEr12 may be regarded as one element of the base portion BDPba.
  • the joint mechanism JEr2 includes, for example, a rotating part JEr21 and a casing JEr22 that houses a motor MOr2 that drives the joint mechanism JEr2.
  • the rotating part JEr21 rotates about the axis Ax2 as the motor MOr2 rotates.
  • the rotating part JEr21 is attached to the motor MOr2 so as to be rotatable with respect to the housing JEr22 about the axis Ax2.
  • the rotating part JEr21 is connected to the link LK1.
  • the link LK1 is rotatably connected to the housing JEr22 with respect to the housing JEr22.
  • the link LK1 rotates with respect to the housing JEr22 with the axis Ax2 as the rotation axis as the rotating part JEr21 rotates. Furthermore, a motor MOr2 is attached inside the housing JEr22. Motor MOr2 is an example of a "fifth motor”.
  • the motor MOr2 may be regarded as one element of the joint mechanism JEr2. Further, in the example shown in FIG. 2, a part of the rotating part JEr21 is located inside the link LK1, and another part of the rotating part JEr21 is located inside the casing JEr22, but the entire rotating part JEr21 is located inside the casing JEr22. It may be located inside the link LK1 or inside the housing JEr22.
  • the joint mechanism JEr4 includes, for example, a rotating part JEr41 and a housing JEr42 that houses the rotating part JEr41.
  • the rotating part JEr41 rotates about the axis Ax4 as a rotation axis of the motor MOr4 that drives the joint mechanism JEr4.
  • the rotating part JEr41 is attached to the motor MOr4 so as to be rotatable with respect to the link LK2 about the axis Ax4. Note that the motor MOr4 is attached inside the link LK2.
  • the casing JEr42 rotates together with the rotating part JEr41 with respect to the link LK2 using the axis Ax4 as the rotation axis.
  • the housing JEr42 is connected to the link LK2 so as to be rotatable with respect to the link LK2 about the axis Ax4.
  • the housing JEr42 is connected to the first portion TP11.
  • the first portion TP11 rotates about the axis Ax4 together with the housing JEr42 as the rotating part JEr41 rotates.
  • the motor MOr4 may be regarded as one element of the joint mechanism JEr4. Further, in the example shown in FIG. 2, the entire rotating part JEr41 is located inside the housing JEr42, but the entire rotating part JEr41 may be located inside the link LK2. Alternatively, a part of the rotating part JEr41 may be located inside the housing JEr42, and another part of the rotating part JEr41 may be located inside the link LK2.
  • the joint mechanism JEr5 includes, for example, a rotating part JEr51 and a housing JEr52 that accommodates a part of the rotating part JEr51.
  • the rotating part JEr51 rotates about the axis Ax5 as a rotation axis of the motor MOr5 that drives the joint mechanism JEr5.
  • the rotating part JEr51 is attached to the motor MOr5 so as to be rotatable with respect to the first portion TP11 about the axis Ax5.
  • the motor MOr5 is attached inside the casing JEr42 of the joint mechanism JEr4.
  • the housing JEr52 rotates with the rotating part JEr51 relative to the first portion TP11 using the axis Ax5 as the rotation axis.
  • the housing JEr52 is connected to the first portion TP11 so as to be rotatable relative to the first portion TP11 about the axis Ax5.
  • the housing JEr52 is connected to the second portion TP12. Thereby, the second portion TP12 rotates together with the casing JEr52 about the axis Ax5 as the rotating part JEr51 rotates.
  • the motor MOr5 may be regarded as one element of the joint mechanism JEr5. Further, in the example shown in FIG. 2, a part of the rotating part JEr51 is located inside the housing JEr52, and another part of the rotating part JEr51 is located inside the first part TP11. The entirety may be located inside the housing JEr52 or inside the first portion TP11.
  • the joint mechanism JEr6 includes, for example, a rotating part JEr61 and a housing JEr62 that accommodates a part of the rotating part JEr61.
  • the rotating part JEr61 rotates about the axis Ax6 as a rotation axis of the motor MOr6 that drives the joint mechanism JEr6.
  • the rotating part JEr61 is attached to the motor MOr6 so as to be rotatable with respect to the second portion TP12 about the axis Ax6.
  • the housing JEr62 rotates with the rotating part JEr61 relative to the second portion TP12 about the axis Ax6.
  • the housing JEr62 is connected to the second portion TP12 so as to be rotatable relative to the second portion TP12 about the axis Ax6. Furthermore, the housing JEr62 includes an end surface TP1sf. For example, the end surface TP1sf rotates with respect to the second portion TP12 with the axis Ax6 as the rotation axis as the rotating part JEr61 rotates.
  • the motor MOr6 may be regarded as one element of the joint mechanism JEr6.
  • the housing JEr62 may be fixed to the second portion TP12, and the end effector 20 may be rotatably attached to the surface of the rotating part JEr61 with respect to the housing JEr62.
  • the surface of the rotating part JEr61 corresponds to the end surface TP1sf.
  • the housing JEr62 when the housing JEr62 is fixed to the second portion TP12, the housing JEr62 may be regarded as one element of the second portion TP12.
  • each of the plurality of joint mechanisms JEr is not limited to the example shown in FIG. 2.
  • each of the plurality of joint mechanisms JEr may have a configuration similar to a mechanism corresponding to each joint of a known multi-joint robot.
  • the states of the links LK1 and LK2 in the robot 10 can transition to a plurality of unique states including a first state, a second state, and a third state shown below. Note that the states (postures) representing the characteristics of the robot 10 in this embodiment are not limited to the first state, the second state, and the third state.
  • FIG. 3 is an explanatory diagram for explaining an example of the state of the robot 10 shown in FIG. 1.
  • the states of links LK1 and LK2 shown in FIG. 3 are the first state.
  • the same members as in FIGS. 1 and 2 are given the same reference numerals.
  • some of the plurality of elements for example, the rail JEp14, etc. that are not used in the explanation of the first state are omitted.
  • the direction De1 is parallel to the axis Ax1, the axis Ax3 is located closer to the end LK1ed1 than the end LK1ed2 of the link LK1, and the end LK2ed2 of the link LK2 is closer to the end LK2ed2 than the end LK2ed1 of the link LK2.
  • the actual link length (arm length) of the link LK1 which is the length from the end LK1ed1 to the axis Ax3, becomes less than half the length of the link LK1.
  • the length of the end LK2ed2 from the axis Ax3, which is the substantial link length (arm length) of the link LK2, is less than half the length of the link LK2. Therefore, the area where links LK1 and LK2 interfere is very small, and the tip portion TP1 can be easily moved around the body portion BDP, making it easy to work around the body portion BDP of the robot 10. becomes possible.
  • the joint mechanisms JEr2, JEr3, and JEr4 do not approach each other in a straight line, so work around the body part BDP can be performed without worrying about singular points.
  • the singularity is, for example, when the posture of the robot 10 becomes such that the robot 10 cannot be controlled. In this way, in the present embodiment, there is no need to consider the singularity, so when the robot 10 performs work in which the tip portion TP1 is located around the body portion BDP, the robot 10 can be operated safely. .
  • the control accuracy depends on the actual link length of the link LK1 and the link LK2. Depends on it. The shorter the actual link lengths of the link LK1 and the link LK2, the more accurate the control is possible, and the better the damping performance when the tip portion TP1 is stopped. In the first state of the present embodiment, the actual link lengths of the link LK1 and the link LK2 are short, so that the positional accuracy and vibration damping performance of the tip portion TP1 can be improved.
  • the direction De1 is not necessarily parallel to the axis Ax1, and if the tip portion TP1 can be located around the body portion BDP, the link LK1 may be inclined with respect to the axis Ax1. It doesn't matter if you stay there.
  • the postures of the links LK1 and LK2 are maintained so that they extend along the axis Ax1.
  • the robot 10 The inertial force when rotating can be reduced.
  • the robot 10 by setting the links LK1 and LK2 to the second state, it is possible to reduce the inertia force caused by the physical length and weight of the robot arms (links LK1 and LK2). Thereby, in this embodiment, the robot 10 can be precisely controlled. For example, in this embodiment, the influence of vibration (vibration damping) when the operation of the robot 10 is stopped can be reduced. Therefore, in this embodiment, it is possible to reduce the total operating time of the robot 10 when the robot 10 performs a predetermined task, and to improve the operating accuracy.
  • the joint mechanism JEr3 (more To be precise, the position of the axis Ax3) is not particularly limited.
  • the position of the joint mechanism JEr3 in the second state is closer to the end LK1ed1 than the end LK1ed2 of the link LK1, and closer to the end LK1ed1 than the end LK1ed2 of the link LK2. But that's fine.
  • the position of the joint mechanism JEr3 in the second state may be closer to the end LK1ed2 of the link LK1 than the end LK1ed1, and closer to the end LK1ed2 of the link LK2 than the end LK1ed1.
  • the state of the links LK1 and LK2 that reduces the inertia force when the robot 10 is rotated about the axis Ax1 is the second state if the links LK1 and LK2 are in a posture extending along the axis Ax1.
  • the states of links LK1 and LK2 may be close to the second state.
  • a state close to the second state is, for example, a state in which the directions De1 and De2 are parallel to the axis Ax1, and the end LK2ed1 of the link LK2 is located closer to the end LK1ed2 than the end LK1ed1 of the link LK1. Good too.
  • the link LK2 is positioned such that the links LK1 and LK2 extend along the axis Ax1, and the tip portion TP1 moves away from the link LK1. That is, in this embodiment, by setting the links LK1 and LK2 to the second state or a state close to the second state, it is possible to reduce the inertial force when rotating the robot 10 using the axis Ax1 as the rotation axis. . However, the robot 10 is more stable when the tip TP1 is closer to the link LK1 than when the tip TP1 is farther from the link LK1.
  • the state of the robot 10 can be made compact, and the robot 10 can be easily carried. Therefore, in this embodiment, it is possible to facilitate the installation work when installing the robot 10 in a factory, or the work to change the installation of the robot 10 due to equipment changes in the factory, etc.
  • FIG. 4 is an explanatory diagram for explaining another example of the state of the robot 10 shown in FIG. 1.
  • the state of links LK1 and LK2 shown in FIG. 4 is the third state.
  • the third state is a state in which the directions De1 and De2 are perpendicular to the axis Ax1, and the end LK2ed1 of the link LK2 is located closer to the end LK1ed1 than the end LK1ed2 of the link LK1. That is, in the third state, the postures of the links LK1 and LK2 are maintained such that they extend along a direction perpendicular to the axis Ax1 (a direction parallel to the bottom surface BDPbt of the body portion BDP).
  • the state of the robot 10 becomes compact, similar to the second state. Furthermore, when the links LK1 and LK2 are in the third state, the robot 10 can be easily packed by using a buffer member or the like having a recess corresponding to the portion protruding from the links LK1 and LK2 in the direction along the axis Ax1. can do.
  • the portions protruding from the links LK1 and LK2 in the direction along the axis Ax1 are, for example, a portion of the tip portion TP1 and the body portion BDP.
  • the state of the robot 10 can be made compact, and the robot 10 can be easily carried.
  • the position of the joint mechanism JEr3 (more precisely, the axis Ax3) is not particularly limited.
  • FIG. 5 is an explanatory diagram for explaining operations representing advantageous features of the robot 10 shown in FIG. 1.
  • FIG. 5 illustrates, as an example of an operation representing an advantageous feature of the robot 10, the operation of the robot 10 when performing a task of moving an article GD placed on the lower stage WBL of the workbench WB to the upper stage WBu of the workbench WB.
  • FIG. 5(a) is an explanatory diagram for explaining the operation when performing work on the article GD placed on the lower stage WBl of the workbench WB
  • FIG. FIG. 6 is an explanatory diagram for explaining the operation when performing work on the article GD placed in WBu.
  • FIGS. 5(a) and 5(b) for convenience of explanation, a three-axis orthogonal coordinate system having an X axis, a Y axis, and a Z axis that are orthogonal to each other is introduced.
  • the direction pointed by the X-axis arrow will be referred to as the +X direction
  • the direction opposite to the +X direction will be referred to as the -X direction.
  • the direction pointed by the Y-axis arrow is called the +Y direction
  • the opposite direction to the +Y direction is called the -Y direction.
  • the direction pointed by the Z-axis arrow is called the +Z direction
  • the opposite direction to the +Z direction is called the -Z direction.
  • the +Y direction and the -Y direction may be referred to as the Y direction without any particular distinction
  • the +X direction and the -X direction may be referred to as the X direction without any particular distinction
  • the +Z direction and the -Z direction may be referred to as the Z direction without any particular distinction
  • the ⁇ Z direction may be referred to as downward.
  • FIGS. 5(a) and 5(b) the advantages of the robot 10 will be explained using as an example the task of moving the article GD placed on the lower stage WBL of the workbench WB to the upper stage WBu of the workbench WB, as described above.
  • the workbench WB is arranged around the body part BDP of the robot 10.
  • FIG. 5A assumes the operation from the first state in which the tip portion TP1 is located around the body portion BDP of the robot 10, which was explained using FIG. 3 above.
  • a robot 10Z which is a first comparison example compared to the robot 10, will be described. Note that the robot 10Z is indicated by a dotted line in FIG. 5(a) for easy understanding.
  • the robot 10Z is the same as the robot 10 except that the joint mechanisms JEp1 and JEp2 are omitted from the robot 10, it has links LK1z and LK2z instead of links LK1 and LK2, and it has a joint mechanism JEr3z instead of joint mechanism JEr3.
  • the joint mechanism JEr3z connects one end of the link LK1z and one end of the link LK2z, and rotates the link LK2z with respect to the link LK1z using an axis Ax3z perpendicular to the direction in which the link LK1z extends as a rotation axis. Note that the relative position of the joint mechanism JEr3z with respect to each of the links LK1z and LK2z does not change.
  • the minimum value of the angle between link LK1z and link LK2z is limited to, for example, about 30 degrees because links LK1z and LK2z interfere with each other. Therefore, in the robot 10Z, even if an attempt is made to reduce the angle formed by the link LK1z and the link LK2z and move the tip portion TP1 closer to the body portion BDP, the link LK1z and the link LK2z will interfere and the tip portion TP1 will be moved. An area that cannot be moved occurs near the body part BDP. Therefore, the robot 10Z cannot work or cannot perform desired work on the article GD placed on the workbench WB around the body part BDP.
  • the robot 10 moves the distal end portion TP1 near the body portion BDP as in the first state by controlling the joint mechanisms JEr2 and JEr3 and the joint mechanisms JEp1 and JEp2. It can be moved.
  • the joint mechanism JEr2 rotates the link LK1 and supports the link LK1 at a position where the direction De1 in which the link LK1 extends is parallel to the axis Ax1. Further, the joint mechanism JEp1 moves the joint mechanism JEr3 along the direction De1, and supports the joint mechanism JEr3 at a position closer to the end LK1ed1 than the end LK1ed2 of the link LK1. That is, the joint mechanism JEr3 is located below (-Z direction) within the link LK1. Further, the joint mechanism JEp2 moves the link LK2 along the direction De2 and supports the link LK2 at a position where a movable space for the link LK2 and the tip portion TP1 can be secured.
  • the joint mechanism JEp2 moves the link LK2 along the direction De2 such that the joint mechanism JEr3 is located closer to the end LK2ed2 than the end LK2ed1 of the link LK2. Then, the joint mechanism JEr3 rotates the link LK2 so that the tip portion TP1 is located around the body portion BDP.
  • the tip portion TP1 enters the state shown in the first state and moves to the periphery of the body portion BDP.
  • the robot 10 can be caused to perform various tasks around the body portion BDP.
  • one or both of the joint mechanisms JEp1 and JEp2 is controlled even in the area where the movement of the tip end TP1 is hindered by the links LK1 and LK2 in the robot 10Z of the first comparative example. By doing so, it is possible to easily reach and perform work, and it is possible to set a wide workable area.
  • a configuration in which the central axis of the link LK1z and the central axis of the link LK2z of the robot 10Z in the direction along the axis Ax3z are different from each other (hereinafter referred to as a two-comparison example) can be considered.
  • the configuration of the robot 10Z of the second comparative example is, for example, similar to the configuration in which the joint mechanism JEr3 of the robot 10 is fixed to the end LK1ed2 of the link LK1 and the end LK2ed1 of the link LK2.
  • the center axis of link LK1z and the center axis of link LK2z are offset, interference between link LK1z and link LK2z can be eliminated.
  • the control for moving the tip portion TP1 near the body portion BDP and the control of the tip portion TP1 around the body portion BDP in the second comparative example are controlled by turning the entire link LK1z and link LK2z. become.
  • the substantial link lengths of the link LK1 and the link LK2 are short, the positional accuracy and vibration damping performance of the tip portion TP1 can be improved.
  • the joint mechanism JEr2 rotates the link LK1z so that the joint mechanism JEr3z moves away from the workbench WB in the ⁇ Y direction. Then, the joint mechanism JEr3z turns the link LK2z so that the tip end TP1 is located near the joint mechanism JEr2. Thereafter, the joint mechanisms JEr2 and JEr3z rotate the links LK1z and LK2z, respectively, so that the tip portion TP1 is located near the body portion BDP. Thereby, the tip portion TP1 can be moved to the periphery of the body portion BDP.
  • the joint mechanism JEr2 rotates the link LK1z so that the joint mechanism JEr3z moves away from the workbench WB in the -Y direction with the end effector 20 gripping the article GD. Then, the joint mechanism JEr3z turns the link LK2z so that the tip end TP1 moves away from the joint mechanism JEr2. Thereafter, the joint mechanisms JEr2 and JEr3z rotate the links LK1z and LK2z, respectively, so that the article GD gripped by the end effector 20 is placed on the upper stage WBu of the workbench WB.
  • the length from the joint mechanism JEr3 to the tip TP1 can be shortened because the joint mechanism JEp2 moves the link LK2 relative to the joint mechanism JEr3. can. Therefore, for example, when the tip part TP1 is moved from the far right side in FIG. Even when moving to the upper stage WBu of the table WB, there is no need to rotate the link LK1 using the joint mechanism JEr2, and by using the joint mechanism JE on the distal side of the joint mechanism JEr3, the distal end portion TP1 etc. can be moved. Can be done.
  • the direction De2 in which the link LK2 extends is perpendicular to the axis Ax1 (the upper stage WBu of the workbench WB
  • the link LK2 is rotated so that it is parallel to the plane of
  • the joint mechanism JEp2 moves the link LK2 relative to the joint mechanism JEr3 so that the article GD gripped by the end effector 20 overlaps the upper stage WBu of the workbench WB in plan view from the Z direction.
  • a planar view means, for example, viewing an object from a specific direction.
  • the joint mechanism JEp1 moves the joint mechanism JEr3 along the direction De1, and places the article GD gripped by the end effector 20 on the upper stage WBu of the workbench WB. Thereby, the article GD placed on the lower stage WBL of the workbench WB can be moved to the upper stage WBu of the workbench WB.
  • the robot 10 can be easily driven even if the space around the robot 10 is narrow. As a result, in this embodiment, the robot 10 can be made to efficiently perform work on the article GD placed near the body part BDP.
  • the joint mechanism JEp2 when the article GD placed on the upper stage WBu of the workbench WB is further moved in the +Y direction (moved to the back), the joint mechanism JEp2 The link LK2 may be moved relative to the joint mechanism JEr3.
  • the direction De2 in which the link LK2 extends is perpendicular to the Z direction (direction along the axis Ax1)
  • the distal end portion TP1 is moved straight in the Y direction by driving only the joint mechanism JEp2. be able to.
  • the tip portion TP1 can be moved straight with simple control.
  • the operation of moving the tip portion TP1 straight in the Y direction may be performed in the third state described in FIG. 4. Even in this case, the tip portion TP1 can be moved straight in the Y direction with simple control.
  • the tip portion TP1 in the third state (third state shown in FIG. 4) in which the joint mechanism JEr3 is located at the end LK1ed1 of the link LK1, the tip portion TP1 can be moved straight in the Y direction by driving only the joint mechanism JRp1.
  • the distal end portion TP1 can be moved straight in the Y direction by driving only the joint mechanism JRp2.
  • the distal end portion TP1 may be moved straight in the Y direction by driving both the joint mechanisms JRp1 and JEp2.
  • both the joint mechanisms JRp1 and JEp2 are driven to move the tip end TP1 in the Y direction so that the joint mechanism JEr3 is located near the middle between the end LK1ed1 of the link LK1 and the end LK2ed2 of the link LK2. It may be moved straight ahead.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the robot controller 30 shown in FIG. 1.
  • the robot controller 30 includes a processing device 32 that controls each part of the robot controller 30, a memory 33 that stores various information, a communication device 34, an operating device 35 that accepts operations by an operator, a display device 36, and a driver. It has a circuit 37.
  • the memory 33 includes, for example, a volatile memory such as a RAM (Random Access Memory) that functions as a work area of the processing device 32, and an EEPROM (Electrically Erasable Programmable Read-Only) that stores various information such as a control program PGr. Memory) etc. This includes one or both of non-volatile memory.
  • the memory 33 may be removably attached to the robot controller 30.
  • the memory 33 may be a storage medium such as a memory card that is detachable from the robot controller 30.
  • the memory 33 may be, for example, a storage device (for example, online storage) that is communicably connected to the robot controller 30 via a network or the like.
  • the memory 33 shown in FIG. 6 stores a control program PGr.
  • the control program PGr includes, for example, an application program for the robot controller 30 to control the operation of the robot 10.
  • the control program PGr may include, for example, an operating robot system program for the processing device 32 to control each part of the robot controller 30.
  • the processing device 32 is a processor that controls the entire robot controller 30, and includes, for example, one or more CPUs (Central Processing Units).
  • the processing device 32 controls the operation of the robot 10 by, for example, executing a control program PGr stored in the memory 33 and operating according to the control program PGr.
  • the control program PGr may be transmitted from another device via a network or the like.
  • the processing device 32 when the processing device 32 is configured to include a plurality of CPUs, some or all of the functions of the processing device 32 may be performed by the plurality of CPUs working together according to a program such as the control program PGr. It may be realized by In addition to one or more CPUs, or in place of a part or all of one or more CPUs, the processing device 32 may include a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or an FPGA ( It may be configured to include hardware such as Field, Programmable, Gate, Array. In this case, part or all of the functions of the processing device 32 may be realized by hardware such as a DSP.
  • a DSP Digital Signal Processor
  • the communication device 34 is hardware for communicating with an external device existing outside the robot controller 30.
  • the communication device 34 has a function of communicating with an external device by short-range wireless communication.
  • the communication device 34 may further have a function of communicating with an external device via a mobile communication network or a network.
  • the operating device 35 is an input device (eg, keyboard, mouse, switch, button, sensor, etc.) that accepts input from the outside.
  • the operating device 35 receives an operation from a worker and outputs operation information corresponding to the operation to the processing device 32.
  • a touch panel that detects contact with the display surface of the display device 36 may be employed as the operating device 35.
  • the display device 36 is an output device such as a display that performs output to the outside.
  • the display device 36 displays images under the control of the processing device 32, for example.
  • the operating device 35 and the display device 36 may have an integrated configuration (for example, a touch panel).
  • the driver circuit 37 is hardware that outputs signals for driving the robot 10 to the robot 10 under the control of the processing device 32.
  • the driver circuit 37 outputs signals for driving the motors MOr1, MOr2, MOr3, MOr4, MOr5, MOr6, MOp1, MOp2, etc. to the robot 10.
  • the motors MOr1, MOr2, MOr3, MOr4, MOr5, and MOr6 are motors that drive the joint mechanisms JEr1, JEr2, JEr3, JEr4, JEr5, and JEr6, respectively.
  • motors MOp1 and MOp2 are motors that drive joint mechanisms JEp1 and JEp2, respectively.
  • the robot controller 30 controls the operation of the robot 10 by controlling the motors MOr1, MOr2, MOr3, MOr4, MOr5, MOr6, MOp1, and MOp2.
  • the robot 10 includes the body portion BDP, the tip portion TP1, the links LK1 and LK2 (a plurality of links LK) connecting the body portion BDP and the tip portion TP1, the joint mechanism JEr3, and the joint mechanism JEr3. It has a mechanism JEp1 and a joint mechanism JEp2.
  • the joint mechanism JEr3 connects the link LK1 and the link LK2, and rotates the link LK2 with respect to the link LK1 using an axis Ax3 that is larger than a predetermined angle with the direction De1 in which the link LK1 extends as a first rotation axis.
  • the joint mechanism JEp1 moves the joint mechanism JEr3 relative to the link LK1 along the direction De1.
  • the joint mechanism JEp2 moves the link LK2 relative to the joint mechanism JEr3 along the direction De2 in which the link LK2 extends.
  • the joint mechanism JEp1 moves the joint mechanism JEr3 relative to the link LK1 along the direction De1, and the joint mechanism JEp2 jointly moves the link LK2 along the direction De2. It is moved relative to the mechanism JEr3.
  • the tip portion TP1 of the robot 10 can be moved to the vicinity of the body portion BDP by simple control.
  • the robot 10 further includes joint mechanisms JEr1, JEr2, and JEr3.
  • the joint mechanism JEr1 rotates at least a portion of the body part BDP about an axis Ax1, which has a predetermined angle or less with respect to a direction perpendicular to the bottom surface BDPbt of the body part BDP, as a second rotation axis.
  • the joint mechanism JEr2 connects the body part BDP and the link LK1, and rotates the link LK1 about an axis Ax2, which is larger than a predetermined angle with a direction perpendicular to the bottom surface BDPbt of the body part BDP, as a third rotation axis.
  • the joint mechanism JEr4 connects the link LK2 and the distal end TP1, and rotates the distal end TP1 with respect to the link LK2. Thereby, in this embodiment, the tip portion TP1 connected to the link LK2 can be moved to the vicinity of the body portion BDP connected to the link LK1 by simple control.
  • the joint mechanism JEr4 rotates the distal end portion TP1 with respect to the link LK2 using the axis Ax4, which forms an angle with the direction De2 that is larger than a predetermined angle, as the fourth rotation axis.
  • the distal end portion TP1 includes a first portion TP11 connected to the link LK2, a second portion TP12 connected to the first portion TP11, a joint mechanism JEr5, and a joint mechanism JEr6.
  • the joint mechanism JEr5 connects the first part TP11 and the second part TP12, and sets the axis Ax5, which forms an angle with the fourth rotation axis (axis Ax4) larger than a predetermined angle, as the fifth rotation axis, to connect the second part TP12 to the second part TP12. is rotated with respect to the first portion TP11.
  • the joint mechanism JEr6 has an axis Ax6, which forms an angle larger than a predetermined angle with the fifth rotation axis (Ax5), as the sixth rotation axis, and a portion of the tip portion TP1 to which the end effector 20 is attached (for example, the end surface TP1sf). Rotate.
  • the present embodiment may be realized by adding the joint mechanisms JEp1 and JEp2 to the vertical six-axis articulated robot.
  • the robot 10 since the distal end portion TP1 includes the joint mechanisms JEr5 and JEr6, the robot 10 can be caused to perform various tasks around the body portion BDP using the joint mechanisms JEr4, JEr5, JEr6, and the like.
  • the states of links LK1 and LK2 can transition to the first state.
  • the first rotation axis (axis Ax3) is located closer to the end LK1ed1 which is closer to the body part BDP than the end LK1ed2 which is farther from the body part BDP among the two ends LK1ed of the link LK1,
  • the end LK1ed2 which is closer to the tip TP1 is located closer to the end LK2ed1, which is farther from the tip TP1.
  • the axis Ax3 is located near the body part BDP.
  • the length from the axis Ax3 to the tip portion TP1 when the tip portion TP1 is located around the body portion BDP can be shortened.
  • the robot 10 can be easily driven even when the space around the robot 10 is narrow.
  • the robot 10 can be made to efficiently perform work on the article GD placed near the body part BDP.
  • the states of links LK1 and LK2 can transition to the second state.
  • the direction De1 and the direction De2 are parallel to the second rotation axis (axis Ax1), and the end LK2ed1 far from the tip TP1 of the two ends LK2ed of the link LK2 is In this state, among the end portions LK1ed, the end portion LK1ed1, which is closer to the body portion BDP, is located closer to the end portion LK1ed2, which is farther from the body portion BDP.
  • the links LK1 and LK2 extend along the axis Ax1, so that the inertial force when rotating the robot 10 about the axis Ax1 can be reduced.
  • the robot 10 further includes a motor MOr3 that drives the joint mechanism JEr3, a motor MOp1 that drives the joint mechanism JEp1, and a motor MOp2 that drives the joint mechanism JEp2.
  • the joint mechanism JEp1 has a threaded portion JEp11 and a nut JEp12.
  • the threaded portion JEp11 is disposed inside the link LK1, extends in the direction De1, and rotates about an axis along the direction De1 as the motor MOp1 rotates.
  • the nut JEp12 is connected to the joint mechanism JEr3, the threaded portion JEp11 is inserted therethrough, and the nut JEp12 moves relative to the threaded portion JEp11 as the threaded portion JEp11 rotates.
  • the joint mechanism JEp2 has a threaded portion JEp21 and a nut JEp22.
  • the threaded portion JEp21 is disposed inside the link LK2, extends in the direction De2, and rotates about an axis along the direction De2 as the motor MOp2 rotates.
  • the nut JEp22 is connected to the joint mechanism JEr3, the threaded portion JEp21 is inserted therethrough, and the nut JEp22 moves relative to the threaded portion JEp21 as the threaded portion JEp21 rotates.
  • the joint mechanism JEr3 moves relative to the link LK1 as the nut JEp12 moves.
  • the link LK2 moves relative to the joint mechanism JEr3 as the nut JEp22 moves. In this way, in this embodiment, the joint mechanisms JEp1 and JEp2 can be realized with a simple configuration.
  • the robot controller 30 controls the operation of the robot 10 by controlling the motor MOr3, the motor MOp1, and the motor MOp2. In this manner, in this embodiment, the robot controller 30 can easily control the operation of the robot 10.
  • the robot system 1 includes a robot 10, an end effector 20 attached to the tip portion TP1, and a robot controller 30 that controls the operations of the robot 10 and the end effector 20.
  • the robot system 1 uses the robot 10 that can move the tip portion TP1 to the vicinity of the body portion BDP by simple control. Therefore, in this embodiment, complex work and simple work can be efficiently performed even in a narrow space around the body part BDP.
  • the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
  • FIG. 7 is an explanatory diagram for explaining an overview of the robot system 1 according to the second embodiment. Elements similar to those described in FIGS. 1 to 6 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the robot system 1 shown in FIG. 7 is the same as the robot system 1 shown in FIG. 1 except that it has a robot 10A instead of the robot 10 shown in FIG.
  • the robot system 1 shown in FIG. 7 includes a robot 10A, an end effector 20 that is detachably attached to the robot 10A, and a robot controller 30 that controls the operations of the robot 10A and the end effector 20.
  • the robot 10A is another example of an "articulated robot.”
  • FIG. 7 in order to make the diagram easier to read, descriptions of the plurality of motors MO that drive the plurality of joint mechanisms JE, the reducers and encoders provided in each of the plurality of motors MO, etc. are omitted.
  • the robot 10A is similar to the robot 10 shown in FIG. 1, except that the straight line along the axis Ax3 and the straight line along the axis Ax2 are perpendicular to each other when viewed in plan from the direction De1.
  • the joint mechanism JEr2 and the link LK1 are connected to each other such that a straight line along the axis Ax3 and a straight line along the axis Ax2 are parallel to each other in a plan view from the direction De1. I am assuming that.
  • the joint mechanism JEr2 and the link LK1 are connected to each other so that the straight line along the axis Ax3 and the straight line along the axis Ax2 are perpendicular to each other in a plan view from the direction De1.
  • the joint mechanisms JEr2 and JEr3 will be mainly explained.
  • the joint mechanism JEr2 connects the body part BDP and the link LK1, and rotates the link LK1 with respect to the body part BDP using an axis Ax2 parallel to the bottom surface BDPbt of the body part BDP as a rotation axis.
  • the rotation direction Dr2 in FIG. 7 indicates the rotation direction of the link LK1 when the link LK1 rotates about the axis Ax2.
  • the direction Dax2 is a direction from the joint mechanism JEr2 toward the link LK1 among the directions along the axis Ax2, which is the rotation axis of the joint mechanism JEr2.
  • the link LK1 rotates with respect to the body part BDP with the axis Ax1 as the rotation axis by the joint mechanism JEr1, and rotates with respect to the body part BDP with the axis Ax2 as the rotation axis with the joint mechanism JEr2. do.
  • the joint mechanism JEr3 connects the link LK1 and the link LK2, and rotates the link LK2 with respect to the link LK1 using an axis Ax3 perpendicular to the direction De1 in which the link LK1 extends as a rotation axis.
  • the rotation direction Dr3 in FIG. 7 indicates the rotation direction of the link LK2 when the link LK2 rotates about the axis Ax3.
  • the direction Dax3 is a direction from the link LK1 toward the link LK2 among the directions along the axis Ax3, which is the rotation axis of the joint mechanism JEr3.
  • the axis Ax3 is an axis perpendicular to the directions De1 and Dax2.
  • the straight line along the axis Ax3 and the straight line along the axis Ax2 intersect at 90 degrees. That is, in a plan view from the direction De1, the direction Dax3 along the axis Ax3 and the direction Dax2 along the axis Ax2 intersect at 90 degrees.
  • crossing at 90 degrees includes not only crossing at exactly 90 degrees but also crossing at substantially 90 degrees (for example, an angle within an error range that can be considered as 90 degrees).
  • 90 degrees is an example of a "first angle.”
  • the direction Dax3 along the axis Ax3 and the direction Dax2 along the axis Ax2 intersect at 90 degrees, so the turning plane of the link LK2 is the same as the link LK1.
  • the rotation surface of the link LK2 is a surface that includes a locus of a predetermined position of the link LK2 when the link LK2 rotates about the axis Ax3 as the rotation axis.
  • the rotation surface of the link LK1 is a surface that includes a locus of a predetermined position of the link LK1 when the link LK1 rotates about the axis Ax2.
  • the state (posture) of the robot 10A shown in FIG. 7 is one of the states representing the characteristics of the robot 10A in this embodiment.
  • the link LK1 is tilted down by the joint mechanism JEr2 until it becomes horizontal with respect to the bottom surface BDPbt of the body part BDP, that is, horizontal with the ground plane of the robot 10A.
  • the joint mechanism JEr3 is located in the movement area ARmv1 at a position closer to the end LK1ed2 of the link LK1 than the intermediate area ARmd1 (see FIG. 8) excluding both ends of the movement area ARmv1.
  • the joint mechanism JEr3 is located in the movement area ARmv2 at a position closer to the end LK2ed1 of the link LK2 than the intermediate area ARmd2 (see FIG. 8) excluding both ends of the movement area ARmv2.
  • the joint mechanism JEr3 rotates (swivels) the link LK2 with respect to the link LK1 from the posture shown in FIG. 7, thereby making it possible to rotate the distal end portion TP1 in the horizontal direction with respect to the ground plane.
  • the joint mechanism JEp1 moves the joint mechanism JEr3 along the direction De1 from the posture shown in FIG. 7, thereby making it possible to move the distal end portion TP1 along the direction De1.
  • the joint mechanism JEp2 moves the joint mechanism JEr3 along the direction De2 from the posture shown in FIG. 7, thereby making it possible to move the distal end portion TP1 along the direction De2.
  • the tip portion TP1 can be moved in the horizontal direction with respect to the ground plane from the posture shown in FIG. Note that a specific example of the operation of moving the tip portion TP1 in the horizontal direction with respect to the ground plane will be explained in FIGS. 9 and 10, which will be described later.
  • the joint mechanism JEp1 allows the link LK2 to be moved relative to the link LK1 along the direction De1
  • the joint mechanism JEp2 allows the link LK2 to be moved relative to the link LK1 along the direction De2. can be moved relative to.
  • the area reachable by the end effector 20 attached to the robot 10A can be expanded.
  • the joint mechanisms JEp1 and JEp2 can easily move the tip portion TP1 of the robot 10A to the vicinity of the body portion BDP.
  • the robot controller 30 sets the joint mechanism so that the axis Ax3 is located closer to the end LK1ed1 of the link LK1 than the end LK1ed2, and is located closer to the end LK2ed2 of the link LK2 than the end LK2ed1.
  • the length from the end LK1ed1 to the axis Ax3, which is the substantial link length (arm length) of the link LK1 is less than half the length of the link LK1.
  • the length of the end LK2ed2 from the axis Ax3, which is the substantial link length (arm length) of the link LK2, is less than half the length of the link LK2. Therefore, the area where the link LK1 and the link LK2 interfere is very small, and the tip part TP1 can be easily moved to the vicinity of the body part BDP, and the work around the body part BDP of the robot 10A can be easily performed. becomes possible.
  • the tip of the robot can be moved with high precision without narrowing the workable area of the articulated robot even around the base. can be controlled.
  • the configuration of the robot system 1 is not limited to the example shown in FIG. 7.
  • the angle at which the direction Dax3 along the axis Ax3 and the direction Dax2 along the axis Ax2 intersect is not limited to 90 degrees.
  • the direction Dax3 along the axis Ax3 and the direction Dax2 along the axis Ax2 may intersect at a first angle that is greater than or equal to a predetermined angle.
  • FIG. 8 is an explanatory diagram for explaining an example of the joint mechanism JE.
  • Each joint mechanism JE is similar to each joint mechanism JE shown in FIG. However, as described above, the joint mechanism JEr2 and the link LK1 are connected to each other such that the straight line along the axis Ax3 and the straight line along the axis Ax2 are perpendicular to each other when viewed in plan from the direction De1. In FIG. 8, the joint mechanism JEr2 will be mainly explained.
  • the joint mechanism JEr2 includes, for example, a rotating part JEr21 and a casing JEr22 that houses a motor MOr2 that drives the joint mechanism JEr2.
  • the rotating part JEr21 rotates about the axis Ax2 as the motor MOr2 rotates.
  • the rotating part JEr21 is attached to the motor MOr2 so as to be rotatable with respect to the housing JEr22 about the axis Ax2.
  • the rotating part JEr21 is connected to the link LK1.
  • the link LK1 is rotatably connected to the housing JEr22 with respect to the housing JEr22.
  • the link LK1 rotates with respect to the housing JEr22 with the axis Ax2 as the rotation axis as the rotating part JEr21 rotates.
  • a motor MOr2 is attached inside the housing JEr22.
  • the rotating part JEr21 is located outside the link LK1, but a part of the rotating part JEr21 is located inside the link LK1, and the other part of the rotating part JEr21 is located outside the casing JEr22. It may be located inside. Alternatively, the entire rotating part JEr21 may be located inside the link LK1 or inside the housing JEr22.
  • the joint mechanism JEr3 is located in the intermediate region ARmd1 excluding both ends of the movement region ARmv1, and in the intermediate region ARmd2 excluding both ends of the movement region ARmv2.
  • the position of the joint mechanism JEr3 is not particularly limited.
  • the position of the joint mechanism JEr3 may be closer to the end LK1ed1 than the end LK1ed2 of the link LK1, and closer to the end LK1ed1 than the end LK1ed2 of the link LK2.
  • the position of the joint mechanism JEr3 may be closer to the end LK1ed2 than the end LK1ed1 of the link LK1, and closer to the end LK1ed2 than the end LK1ed1 of the link LK2.
  • FIG. 9 is an explanatory diagram for explaining an example of the operation of moving the tip end TP1 of the robot 10A in the horizontal direction with respect to the ground surface.
  • FIG. 10 is an explanatory diagram for explaining a continuation of the operation of the robot 10A shown in FIG. 9.
  • the XY plane is parallel to the bottom surface BDPbt of the body part BDP, that is, parallel to the ground plane of the robot 10A.
  • the direction De1 is parallel to the Y direction
  • the direction Dax2 is parallel to the X direction
  • the direction Dax3 is parallel to the Z direction.
  • the top view of the figure schematically shows the state of the robot 10A seen from the +Z direction
  • the XZ side view of the figure schematically shows the state of the robot 10A seen from the -Y direction
  • the YZ side view of the figure schematically shows the state of the robot 10A seen from the -Y direction.
  • schematically shows the state of the robot 10A viewed from the -X direction.
  • the link LK1 is moved by the joint mechanism JEr2 until it becomes horizontal to the bottom surface BDPbt of the body part BDP, that is, to the horizontal state to the ground plane of the robot 10A. Being defeated.
  • the link LK2 is maintained by the joint mechanism JEr3 in a state in which the extending direction (direction De2) of the link LK2 is perpendicular to the extending direction (direction De1) of the link LK1 in a plan view from the +Z direction. There is.
  • the joint mechanism JEr3 is located at a position closer to the end LK1ed1 than the end LK1ed2 of the link LK1, and near the middle between the ends LK2ed1 and LK2ed2 of the link LK2 (for example, the intermediate region ARmd2 shown in FIG. 8). ) is located in
  • the robot controller 30 moves the link LK2 in the ⁇ X direction with respect to the joint mechanism JEr3 by controlling the joint mechanism JEp2. That is, by controlling the joint mechanism JEp2, the robot controller 30 moves the tip TP1 in the ⁇ X direction while maintaining the end surface TP1sf of the tip TP1 in the horizontal direction with respect to the ground plane. Thereby, the posture of the robot 10A changes from the first posture shown in FIG. 9(a) to the second posture shown in FIG. 9(b).
  • the robot controller 30 controls the joint mechanism JEp1 to move the joint mechanism JEr3 in the ⁇ Y direction along the extending direction (direction De1) of the link LK1. move it. That is, by controlling the joint mechanism JEp1, the robot controller 30 moves the tip TP1 in the -Y direction while maintaining the end surface TP1sf of the tip TP1 in the horizontal direction with respect to the ground plane. Thereby, the posture of the robot 10A changes from the second posture shown in FIG. 9(b) to the third posture shown in FIG. 10(c).
  • the robot controller 30 moves the link LK2 in the +X direction with respect to the joint mechanism JEr3 by controlling the joint mechanism JEp2. That is, by controlling the joint mechanism JEp2, the robot controller 30 moves the tip TP1 in the +X direction while maintaining the end surface TP1sf of the tip TP1 in the horizontal direction with respect to the ground plane. Thereby, the posture of the robot 10A changes from the third posture shown in FIG. 10(c) to the fourth posture shown in FIG. 10(d).
  • the tip portion TP1 is moved to a plane horizontal to the ground plane. can be moved to follow the three sides of a rectangle with .
  • the distal end portion TP1 is moved along each side of the rectangle. It can be moved by Thereby, in this embodiment, it is possible to suppress a decrease in operating speed or operating accuracy. That is, in this embodiment, the tip portion TP1 of the robot 10A can be moved with high accuracy and high speed along each side of the rectangle.
  • the robot 10A can perform a welding operation along each side of a rectangle, an operation of applying adhesive along each side of a rectangle, etc. with high accuracy and high speed.
  • the distal end portion TP1 can be moved on a predetermined plane without driving the joint mechanism JEr corresponding to the rotary joint, so it is not affected by torque limitations of the rotary joint. Therefore, in this embodiment, when moving the distal end portion TP1 on a predetermined plane, the distal end portion TP1 can be moved at high speed and the payload can be increased.
  • the operation is not limited to an operation in which the tip portion TP1 moves along each side of a rectangle, but any operation in which the tip portion TP1 moves on a plane (XY plane) horizontal to the ground plane.
  • This can be realized by driving only the joint mechanisms JEp1 and JEp2 among the plurality of joint mechanisms JE.
  • the conventional six-axis articulated robot even when moving the tip TP1 on a plane horizontal to the ground plane, there is a problem similar to that when moving the tip TP1 along each side of a rectangle.
  • the tip portion TP1 can be moved with high precision and high speed. Moreover, in this embodiment, even when moving the tip portion TP1 on a plane horizontal to the ground plane, the payload can be increased.
  • the distal end portion TP1 can be rotated in the horizontal direction with respect to the ground plane.
  • the tip portion TP1 can be moved with high precision and high speed, and the payload can be increased.
  • the operation is not limited to the movement of the distal end portion TP1 on a plane (XY plane) horizontal to the ground plane, but is realized by driving only the joint mechanisms JEp1 and JEp2 among the plurality of joint mechanisms JE.
  • the same effects as those described above can also be obtained in the operations performed.
  • the movement in which the distal end portion TP1 moves on a plane (XZ plane, YZ plane) perpendicular to the ground plane is This can be realized by driving only the joint mechanisms JEp1 and JEp2.
  • the operation of moving the distal end portion TP1 on a plane that is inclined with respect to the ground plane is performed using the joint mechanism JEp1 of the plurality of joint mechanisms JE. This can be realized by driving only JEp2.
  • FIG. 11 is an explanatory diagram for explaining an example of an operation realized by driving only two joint mechanisms JEp1 and JEp2 corresponding to translational joints among the plurality of joint mechanisms JE. Note that FIG. 11 schematically shows the state (posture) of the robot 10A viewed from the -X direction.
  • FIG. 11(a) schematically shows the state (posture) of the robot 10A when the tip portion TP1 moves on a plane SF1 (XY plane) that is horizontal to the ground plane.
  • the posture of the robot 10A shown in FIG. 11(a) is the same as the first posture shown in FIG. It is.
  • by setting the posture of the robot 10A to the posture shown in FIG. can be easily executed.
  • FIG. 11(b) schematically shows the state (posture) of the robot 10A when the tip portion TP1 moves on the plane SF2 (XZ plane) perpendicular to the ground plane.
  • the posture of the robot 10A can be changed from the posture shown in FIG. 11(a) to the posture shown in FIG. 11(b) by driving the joint mechanism JEr2 so that the link LK1 is perpendicular to the ground plane. Transition to.
  • this embodiment by setting the posture of the robot 10A to the posture shown in FIG. It can be easily executed.
  • FIG. 11(c) schematically shows the state (posture) of the robot 10A when the tip portion TP1 moves on the plane SF3 that is inclined with respect to the ground plane.
  • the plane SF3 is inclined with respect to the plane SF1 shown in FIG. 11(a) and the plane SF2 shown in FIG. 11(b).
  • the posture of the robot 10A can be changed from the posture shown in FIG. 11A by driving the joint mechanism JEr2 so that the extending direction (direction De1) of the link LK1 is parallel to the plane SF3. Transition to the posture shown in (c).
  • by setting the posture of the robot 10A to the posture shown in FIG. can be done.
  • a plane SF1 that is horizontal to the ground plane, a plane SF2 that is perpendicular to the ground plane, and a plane SF3 that is inclined to the ground plane are examples of "predetermined planes.”
  • the tip portion TP1 can be rotated on a predetermined plane such as the plane SF1 by driving the joint mechanism JEr3 so that the link LK2 rotates (swivels) with respect to the link LK1. Can be done. Also in this case, the tip portion TP1 can be moved with high precision and high speed, and the payload can be increased.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the robot controller 30 shown in FIG. 7.
  • the robot controller 30 shown in FIG. 12 is the same as the robot controller 30 shown in FIG. 6 except that the control program PGr2 is stored in the memory 33 instead of the control program PGr shown in FIG.
  • the robot controller 30 includes a processing device 32 that controls each part of the robot controller 30, a memory 33 that stores various information, a communication device 34, an operating device 35 that accepts operations by a worker, etc., and a display device 36. , and a driver circuit 37.
  • the memory 33 shown in FIG. 12 stores a control program PGr2.
  • the control program PGr2 includes, for example, an application program for the robot controller 30 to control the operation of the robot 10A.
  • the control program PGr2 may include, for example, an operating robot system program for the processing device 32 to control each part of the robot controller 30.
  • the processing device 32 controls the operation of the robot 10A by, for example, executing the control program PGr2 stored in the memory 33 and operating according to the control program PGr2.
  • the control program PGr2 may be transmitted from another device via a network or the like.
  • the driver circuit 37 is hardware that outputs a signal to the robot 10A to drive the robot 10A under the control of the processing device 32. For example, under the control of the processing device 32, the driver circuit 37 outputs signals for driving the motors MOr1, MOr2, MOr3, MOr4, MOr5, MOr6, MOp1, MOp2, etc. to the robot 10A.
  • the robot controller 30 controls the operation of the robot 10A by controlling the motors MOr1, MOr2, MOr3, MOr4, MOr5, MOr6, MOp1, and MOp2.
  • the robot controller 30 controls the operation of the robot 10A by controlling the motors MOr3, MOp1, and MOp2 so that the tip TP1 of the robot 10A moves along a predetermined plane.
  • the robot 10A includes a body part BDP, a tip part TP1, a link LK1, and a link LK2, and a plurality of links LK connecting the body part BDP and the tip part TP1, and a link LK1 and a link.
  • a joint mechanism JEr3 that rotates the link LK2 with respect to the link LK1 using an axis Ax3 that is larger than a predetermined angle with the direction De1 in which the link LK1 extends as a first rotation axis; a joint mechanism JEp1 that moves the joint mechanism JEr3 relative to the link LK1 along the direction De2 in which the link LK2 extends, and a joint mechanism that moves the link LK2 relatively to the joint mechanism JEr3 along the direction De2 in which the link LK2 extends.
  • a joint mechanism JEr1 that rotates at least a portion of the body part BDP about an axis Ax1, in which an angle between JEp2 and a direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP is a predetermined angle or less, as a second rotation axis; and link LK1, and a joint mechanism JEr2 that rotates link LK1 about an axis Ax2 that is larger than a predetermined angle at an angle with a direction Dv1 perpendicular to the bottom surface BDPbt of body part BDP as a third rotation axis.
  • the direction Dax3 along the first rotation axis (axis Ax3) and the direction Dax2 along the third rotation axis (axis Ax2) intersect at a first angle that is greater than or equal to a predetermined angle.
  • the joint mechanism JEp1 moves the joint mechanism JEr3 relative to the link LK1 along the direction De1
  • the joint mechanism JEp2 jointly moves the link LK2 along the direction De2. It is moved relative to the mechanism JEr3.
  • the tip portion TP1 of the robot 10A can be moved to the periphery of the body portion BDP by simple control.
  • the distal end of the robot can be moved with high precision without narrowing the workable area of the articulated robot even around the base. can be controlled.
  • the direction Dax3 along the first rotation axis (axis Ax3) and the direction Dax2 along the third rotation axis (axis Ax2) intersect at a first angle.
  • the angle formed by the turning surface of the link LK2 and the turning surface of the link LK1 is the first angle.
  • the movement of the distal end portion TP1 on a plane having the first angle with the rotation surface of the link LK1 is performed by the joint mechanism corresponding to the translational joint among the plurality of joint mechanisms JE. This can be achieved by driving only JEp1 and JEp2.
  • the tip portion TP1 can be moved with high accuracy and high speed on a plane where the angle between the link LK1 and the turning surface is the first angle. Furthermore, in the present embodiment, by driving only the joint mechanisms JEp1 and JEp2 of the plurality of joint mechanisms JE, it is possible to move the distal end portion TP1 on a plane where the angle with the turning surface of the link LK1 is the first angle. Therefore, the payload of the tip portion TP1 can be increased.
  • the first angle is substantially 90 degrees. Therefore, in this embodiment, the tip portion TP1 is placed on a plane SF1 that is horizontal to the ground plane of the robot 10A, a plane SF2 that is perpendicular to the ground plane, or a plane SF3 that is inclined to the ground plane. It can be moved with high precision and high speed. Furthermore, in this embodiment, the distal end portion TP1 can be moved on the above-mentioned surface SF1, surface SF2, or plane SF3 by driving only the joint mechanisms JEp1 and JEp2 among the plurality of joint mechanisms JE. The payload of the tip portion TP1 can be increased.
  • the robot 10A further includes a joint mechanism JEr4 that connects the link LK2 and the tip TP1 and rotates the tip TP1 with respect to the link LK2.
  • the joint mechanism JEr4 rotates the distal end portion TP1 with respect to the link LK2 using the axis Ax4, which forms an angle larger than a predetermined angle with the direction De2, as a fourth rotation axis.
  • the tip portion TP1 connects the first portion TP11 connected to the link LK2, the second portion TP12 connected to the first portion TP11, the first portion TP11 and the second portion TP12, and connects the fourth rotation shaft ( A joint mechanism JEr5 that rotates the second portion TP12 with respect to the first portion TP11 using an axis Ax5 whose angle with the axis Ax4) is larger than a predetermined angle as a fifth rotation axis, and a fifth rotation axis (axis Ax5).
  • a joint mechanism JEr6 that rotates a portion of the distal end portion TP1 to which the end effector 20 is attached is included, with an axis Ax6 having an angle larger than a predetermined angle as a sixth rotation axis.
  • the robot 10A may be realized by adding the joint mechanisms JEp1 and JEp2 to a six-axis articulated robot.
  • the robot 10A since the distal end portion TP1 includes the joint mechanisms JEr5 and JEr6, the robot 10A can perform various tasks around the body portion BDP or on a predetermined plane using the joint mechanisms JEr4, JEr5, JEr6, etc. can be executed.
  • the robot 10A also includes a motor MOr3 that drives the joint mechanism JEr3, a motor MOp1 that drives the joint mechanism JEp1, a motor MOp2 that drives the joint mechanism JEp2, and a motor MOr1 that drives the joint mechanism JEr1. , a motor MOr2 that drives the joint mechanism JEr2.
  • the joint mechanism JEp1 is arranged inside the link LK1, extends in the direction De1, and is connected to the screw portion JEp11 that rotates about an axis along the direction De1 as a rotation axis as the motor MOp1 rotates, and the joint mechanism JEr3, It has a nut JEp12 into which the threaded part JEp11 is inserted and which moves relative to the threaded part JEp11 as the threaded part JEp11 rotates.
  • the joint mechanism JEp2 is disposed inside the link LK2, extends in the direction De2, and is connected to a screw portion JEp21 that rotates about an axis along the direction De2 as a rotation axis as the motor MOp2 rotates, and the joint mechanism JEr3, It has a nut JEp22 through which the threaded part JEp21 is inserted and which moves relative to the threaded part JEp21 as the threaded part JEp21 rotates.
  • Joint mechanism JEr3 moves relative to link LK1 as nut JEp12 moves, and link LK2 moves relative to joint mechanism JEr3 as nut JEp22 moves. In this way, in this embodiment, the joint mechanisms JEp1 and JEp2 can be realized with a simple configuration.
  • the robot controller 30 that controls the operation of the robot 10A controls the robot 10A so that the tip TP1 of the robot 10A moves along a predetermined plane by controlling the motors MOr3, MOp1, and MOp2. Controls the operation of 10A. In this manner, in this embodiment, the robot controller 30 can easily control the operation of the robot 10A so that the tip portion TP1 of the robot 10A moves along a predetermined plane.
  • the robot system 1 includes a robot 10A, an end effector 20 attached to the tip portion TP1, and a robot controller 30 that controls the operations of the robot 10A and the end effector 20.
  • the robot controller 30 controls the operation of the robot 10A by controlling motors MOr3, MOp1, MOp2, MOr1, and MOr2.
  • the robot 10A is capable of moving the tip portion TP1 along a predetermined plane with simple control and moving the tip portion TP1 to the periphery of the body portion BDP with simple control. is used in the robot system 1. Therefore, in this embodiment, work performed on a predetermined plane can be performed efficiently.
  • the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
  • the joint mechanism JEr4 rotates the distal end portion TP1 with respect to the link LK2 using the axis Ax4 perpendicular to the direction De2 in which the link LK2 extends as the rotation axis. It is not limited to this embodiment.
  • the joint mechanism JEr4 may rotate the distal end portion TP1 with respect to the link LK2 using an axis that is less than or equal to a predetermined angle at an angle with the direction De2 in which the link LK2 extends.
  • FIG. 13 is an explanatory diagram for explaining an example of the tip portion TP1A according to the first modification. Elements similar to those described in FIGS. 1 to 6 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the robot 10 or 10A according to this modification has a link LK2A, a joint mechanism JEr4A, and a tip end TP1A instead of the link LK2, joint mechanism JEr4, and tip end TP1 shown in FIG. 1 or FIG. , is similar to the robot 10 shown in FIG. 1 or the robot 10A shown in FIG.
  • Link LK2A is similar to link LK2 except that joint mechanism JEr4A is connected instead of joint mechanism JEr4.
  • the link LK2A is another example of the "second link”
  • the joint mechanism JEr4A is another example of the "fourth drive mechanism".
  • the joint mechanism JEr4A connects the link LK2A and the tip TP1A, and rotates the tip TP1A with respect to the link LK2A about an axis Ax4A parallel to the direction De2 as a rotation axis.
  • the rotation direction Dr4 in FIG. 13 indicates the rotation direction of the tip portion TP1A when rotating around the axis Ax4A.
  • the axis Ax4A is another example of the "fourth rotation axis" and corresponds to an axis whose angle with the direction De2 in which the link LK2A extends is less than or equal to a predetermined angle.
  • the end effector 20 is attached to the end surface TP1sf similarly to the tip portion TP1 shown in FIGS. 1 and 7.
  • the distal end portion TP1A includes a first portion TP11A connected to the link LK2A, a second portion TP12A connected to the first portion TP11A, a joint mechanism JEr5A, and a joint mechanism JEr6.
  • the first portion TP11A is connected to the link LK2A via a joint mechanism JEr4A, for example. Therefore, the first portion TP11A rotates with respect to the link LK2A using the axis Ax4A as the rotation axis.
  • the joint mechanism JEr5A connects the first part TP11A and the second part TP12A, and rotates the second part TP12A with respect to the first part TP11A about an axis Ax5 perpendicular to the axis Ax4A as a rotation axis.
  • the rotation direction Dr5 in FIG. 13 indicates the rotation direction of the second portion TP12A when rotating around the axis Ax5. Note that the joint mechanism JEr5A is another example of the "fifth drive mechanism".
  • the joint mechanism JEr6 is similar to the joint mechanism JEr6 shown in FIGS. 1 and 7.
  • the joint mechanism JEr6 rotates at least a portion of the tip portion TP1A (for example, the end surface TP1sf) about an axis Ax6 perpendicular to the axis Ax5 as a rotation axis.
  • the surface of the joint mechanism JEr6 corresponds to the end surface TP1sf.
  • the end surface of the second portion TP12A may be the end surface TP1sf.
  • the joint mechanism JEr4A rotates the distal end portion TP1A with respect to the link LK2A using the axis Ax4A whose angle with the direction De2 is less than or equal to a predetermined angle as the fourth rotation axis.
  • the distal end portion TP1A includes a first portion TP11A connected to the link LK2A, a second portion TP12A connected to the first portion TP11A, a joint mechanism JEr5A, and a joint mechanism JEr6.
  • the joint mechanism JEr5A connects the first portion TP11A and the second portion TP12A, and sets the axis Ax5, which forms an angle with the fourth rotation axis (axis Ax4A) larger than a predetermined angle, as the fifth rotation axis, to connect the second portion TP12A to the second portion TP12A. is rotated relative to the first portion TP11A.
  • the joint mechanism JEr6 has an axis Ax6, which forms an angle with the fifth rotation axis (axis Ax5) larger than a predetermined angle, as the sixth rotation axis, and a portion of the distal end TP1A to which the end effector 20 is attached (for example, the end surface TP1sf). Rotate.
  • the robot 10 performs various operations around the body portion BDP or on a predetermined plane by the joint mechanisms JEr4, JEr5A, JEr6, etc.
  • 10A can be executed.
  • the robot 10 or 10A may have a configuration in which two joint mechanisms JEp1 and JEp2 are added to an articulated robot having seven or more axes.
  • one or more links LK different from links LK1 and LK2 may be arranged between the body part BDP and the joint mechanism JEr2.
  • one or more links LK different from the links LK1 and LK2 may be arranged between the joint mechanism JEr4 and the distal end portion TP1.
  • the robot 10 or 10A may have three or more links LK that connect the body part BDP and the tip part TP1.
  • the three or more links LK that the robot 10 has corresponds to a plurality of links LK including links LK1 and LK2.
  • the robot system 1 including the robot 10 described in the embodiments and modifications described above may be used in an article manufacturing method that includes assembling parts or removing parts.
  • FIG. 14 is an explanatory diagram for explaining an example of turning.
  • the extending direction Dei in FIG. 14 indicates the direction in which the link LKi extends
  • the extending direction Dej indicates the direction in which the link LKj extends.
  • the joint mechanism JEri in FIG. 14 connects the link LKi and the link LKj, and rotates the link LKj with respect to the link LKi using the axis Axi as a rotation axis.
  • the angle ⁇ between the extending direction Dei and the axis Axi can be understood as the angle of the axis Axi with respect to the extending direction Dei (for example, 4 angles for two straight lines that intersect with each other, or 4 angles for two parallel lines) (0° and 180° in a straight line), the angle is 0° or more and 90° or less.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 90°, which is larger than the predetermined angle (45°). Therefore, in the first pattern, the rotation of the link LKj about the axis Axi is a turn. Further, in the first pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the first pattern, when the link LKj rotates (swivels) about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 0°, which is less than or equal to a predetermined angle (45°). Therefore, in the second pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the second pattern, the extending direction Dej of the link LKj is parallel to the extending direction Dei of the link LKi and the axis Axi. That is, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 0°.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 0°, which is less than or equal to a predetermined angle (45°). Therefore, in the third pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the third pattern, the extending direction Dej of the link LKj is perpendicular to the extending direction Dei of the link LKi and the axis Axi. That is, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 90°.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 10°, which is less than or equal to a predetermined angle (45°). Therefore, in the fourth pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the fourth pattern, the extending direction Dej of the link LKj is parallel to the axis Axi, and the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 10°.
  • the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is maintained at 10 degrees and is always constant. .
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 70°, which is larger than the predetermined angle (45°). Therefore, in the fifth pattern, the rotation of the link LKj with the axis Axi as the rotation axis is a turn. Furthermore, in the fifth pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the fifth pattern, when the link LKj rotates (turns) about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 10°, which is less than or equal to a predetermined angle (45°). Therefore, in the sixth pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Furthermore, in the sixth pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the sixth pattern, when the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 70°, which is larger than the predetermined angle (45°). Therefore, in the seventh pattern, the rotation of the link LKj with the axis Axi as the rotation axis is a turn. Further, in the seventh pattern, the extending direction Dej of the link LKj is parallel to the axis Axi, and the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 70°.
  • the rotation about the axis Axi that is larger than the predetermined angle with the extending direction Dei of the link LKi is Also called turning.
  • the definition of "turning" is not limited to the above example.
  • the first definition in which rotation is defined as rotation around axis Axi whose angle with the extending direction Dei of link LKi is larger than a predetermined angle is used as the first definition, then instead of the first definition, the following The second or third definition of may be adopted.
  • the rotation corresponds to turning. Therefore, in the second definition, if the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is always constant even when rotated, the rotation corresponds to a rotation other than turning.
  • the first pattern, fifth pattern, and sixth pattern shown in FIG. 14 correspond to turning
  • the second pattern, third pattern, fourth pattern, and seventh pattern correspond to turning. Corresponds to rotation.
  • the rotation corresponds to turning. Therefore, in the third definition, if the angle between the extending direction Dej of the rotating link LKj and the rotation axis (axis Axi) of the link LKj is larger than a predetermined angle, the rotation corresponds to turning. Therefore, in the third definition, if the angle between the extending direction Dej of the link LKj and the rotation axis (axis Axi) of the link LKj is less than or equal to a predetermined angle, the rotation corresponds to a rotation other than turning.
  • the first pattern, third pattern, fifth pattern, and sixth pattern shown in FIG. 14 correspond to turning
  • the second pattern, fourth pattern, and seventh pattern correspond to turning. Corresponds to rotation.
  • first, second, and third definitions focusing on the relationship between the respective rotation axes of two joint mechanisms JEr that are adjacent to each other, You may also define relationships. Specifically, if the angle between the two rotation axes is less than or equal to a predetermined angle (typically, when they are parallel), the two rotations are considered to be the same type of rotation, and the angle between the two rotation axes is equal to or smaller than the predetermined angle. If the angle is greater than the angle (typically orthogonal), the two rotations may be dissimilar rotations.
  • the same type of rotation means that both of the two rotations are turning, or both of the two rotations are rotations other than turning, and the different types of rotation are rotations where one of the two rotations is turning and the other is rotation other than turning.
  • the rotation that is the starting point of the relative relationship may be determined based on, for example, any one of the above-mentioned first definition, second definition, and third definition.
  • the first pattern shown in FIG. 14 corresponds to turning in any of the first, second, and third definitions
  • the second pattern corresponds to turning in any of the first, second, and third definitions. This also applies to rotations other than turning. Therefore, it is preferable that the first pattern or the second pattern be the rotation that becomes the starting point of the relative relationship.
  • a definition that is a combination of two or more of the above-mentioned first definition, second definition, and third definition may be used.
  • the rotation that corresponds to turning in all of the two or more definitions that are combined may be regarded as turning, or the rotation that corresponds to turning in at least one of the two or more definitions that are combined may be regarded as turning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、基部と先端部とを接続する複数のリンクと、第1リンクと第2リンクとを接続し、第1リンクが延在する第1方向とのなす角度が所定の角度より大きい軸を第1回転軸として第2リンクを第1リンクに対して回転させる第1駆動機構と、第1方向に沿って、第1駆動機構を第1リンクに対して相対的に移動させる第1移動機構と、第2リンクが延在する第2方向に沿って、第2リンクを第1駆動機構に対して相対的に移動させる第2移動機構とを含む。

Description

多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
 本発明は、多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法に関する。
 人と同様の動作を行うロボットとして、多関節ロボットが知られている(例えば、特許文献1参照)。
特開昭61-136782号公報
 ところで、従来の多関節ロボットの場合、ロボットのアーム同士が干渉するため、ロボットの先端部が到達できる領域に制限があり、多関節ロボットの作業可能領域を狭めていた。特にロボットの根本側に位置する、アームが取り付けられている基部の周辺は、アーム同士が干渉しやすく作業可能領域外となる領域が多くなる。すなわち、2つのアームを有するロボットの場合、2つのアームのなす角が0°に近づくためアーム同士が干渉してしまう。また、作業可能領域内であった場合でも、先端部の制御は2つのアームを介して行われるため、精度を高めるにも限界があった。このため、基部の周辺であっても多関節ロボットの作業可能領域を狭めることなく、高精度にロボットの先端部を制御することが望まれている。
 本発明の好適な態様に係る多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続し、前記第1リンクが延在する第1方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1 駆動機構と、前記第1方向に沿って、前記第1駆動機構を前記第1リンクに対して相対的に移動させる第1移動機構と、前記第2リンクが延在する第2方向に沿って、前記第2リンクを前記第1駆動機構に対して相対的に移動させる第2移動機構と、を備えている。
 本発明の好適な態様に係る多関節ロボットの制御方法は、上述の多関節ロボットにおいて、前記第1駆動機構を駆動する第1モータと、前記第1移動機構を駆動する第2モータと、前記第2移動機構を駆動する第3モータと、をさらに有し、前記第1移動機構は、前記第1リンクの内部に配置され、前記第1方向に延在し、前記第2モータの回転に伴い、前記第1方向に沿う軸を回転軸として回転する第1ねじ部と、前記第1駆動機構に接続され、前記第1ねじ部が挿通され、前記第1ねじ部の回転に伴い、前記第1ねじ部に対して相対的に移動する第1移動部と、を有し、前記第2移動機構は、前記第2リンクの内部に配置され、前記第2方向に延在し、前記第3モータの回転に伴い、前記第2方向に沿う軸を回転軸として回転する第2ねじ部と、前記第1駆動機構に接続され、前記第2ねじ部が挿通され、前記第2ねじ部の回転に伴い、前記第2ねじ部に対して相対的に移動する第2移動部と、を有し、前記第1駆動機構は、前記第1移動部の移動に伴い、前記第1リンクに対して相対的に移動し、前記第2リンクは、前記第2移動部の移動に伴い、前記第1駆動機構に対して相対的に移動する、多関節ロボットの制御方法であって、前記多関節ロボットの動作を制御する制御装置は、前記第1モータ、前記第2モータ及び前記第3モータを制御することにより、前記多関節ロボットの動作を制御する。
 本発明の好適な態様に係るロボットシステムは、上述の多関節ロボットにおいて、前記第1駆動機構を駆動する第1モータと、前記第1移動機構を駆動する第2モータと、前記第2移動機構を駆動する第3モータと、をさらに有し、前記第1移動機構は、前記第1リンクの内部に配置され、前記第1方向に延在し、前記第2モータの回転に伴い、前記第1方向に沿う軸を回転軸として回転する第1ねじ部と、前記第1駆動機構に接続され、前記第1ねじ部が挿通され、前記第1ねじ部の回転に伴い、前記第1ねじ部に対して相対的に移動する第1移動部と、を有し、前記第2移動機構は、前記第2リンクの内部に配置され、前記第2方向に延在し、前記第3モータの回転に伴い、前記第2方向に沿う軸を回転軸として回転する第2ねじ部と、前記第1駆動機構に接続され、前記第2ねじ部が挿通され、前記第2ねじ部の回転に伴い、前記第2ねじ部に対して相対的に移動する第2移動部と、を有し、前記第1駆動機構は、前記第1移動部の移動に伴い、前記第1リンクに対して相対的に移動し、前記第2リンクは、前記第2移動部の移動に伴い、前記第1駆動機構に対して相対的に移動する、多関節ロボットと、前記先端部に取り付けられたエンドエフェクタと、前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、を備え、前記制御装置は、前記第1モータ、前記第2モータ及び前記第3モータを制御することにより、前記多関節ロボットの動作を制御する。
 本発明の好適な態様に係る物品の製造方法は、上述のロボットシステムにより、部品を組み付ける、又は、部品を取り除く。
 本発明の好適な他の態様に係る多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続し、前記第1リンクが延在する第1方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記第1方向に沿って、前記第1駆動機構を前記第1リンクに対して相対的に移動させる第1移動機構と、前記第2リンクが延在する第2方向に沿って、前記第2リンクを前記第1駆動機構に対して相対的に移動させる第2移動機構と、前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第2回転軸として、前記基部の少なくとも一部分を回転させる第2駆動機構と、前記基部と前記第1リンクとを接続し、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第3回転軸として前記第1リンクを回転させる第3駆動機構と、を備え、前記第1方向からの平面視において、前記第1回転軸に沿う方向と前記第3回転軸に沿う方向は、前記所定の角度以上の第1角度で交差している。
 本発明の好適な他の態様に係る多関節ロボットの制御方法は、上述の多関節ロボットにおいて、前記第1駆動機構を駆動する第1モータと、前記第1移動機構を駆動する第2モータと、前記第2移動機構を駆動する第3モータと、前記第2駆動機構を駆動する第4モータと、前記第3駆動機構を駆動する第5モータと、をさらに有し、前記第1移動機構は、前記第1リンクの内部に配置され、前記第1方向に延在し、前記第2モータの回転に伴い、前記第1方向に沿う軸を回転軸として回転する第1ねじ部と、前記第1駆動機構に接続され、前記第1ねじ部が挿通され、前記第1ねじ部の回転に伴い、前記第1ねじ部に対して相対的に移動する第1移動部と、を有し、前記第2移動機構は、前記第2リンクの内部に配置され、前記第2方向に延在し、前記第3モータの回転に伴い、前記第2方向に沿う軸を回転軸として回転する第2ねじ部と、前記第1駆動機構に接続され、前記第2ねじ部が挿通され、前記第2ねじ部の回転に伴い、前記第2ねじ部に対して相対的に移動する第2移動部と、を有し、前記第1駆動機構は、前記第1移動部の移動に伴い、前記第1リンクに対して相対的に移動し、前記第2リンクは、前記第2移動部の移動に伴い、前記第1駆動機構に対して相対的に移動し、前記第1角度は、実質的に90度である、多関節ロボットの制御方法であって、前記多関節ロボットの動作を制御する制御装置は、前記第1モータ、前記第2モータ及び前記第3モータを制御することにより、前記多関節ロボットの前記先端部が所定の平面に沿って移動するように、前記多関節ロボットの動作を制御する。
 本発明の好適な他の態様に係るロボットシステムは、上述の多関節ロボットにおいて、前記第1駆動機構を駆動する第1モータと、前記第1移動機構を駆動する第2モータと、前記第2移動機構を駆動する第3モータと、前記第2駆動機構を駆動する第4モータと、前記第3駆動機構を駆動する第5モータと、をさらに有し、前記第1移動機構は、前記第1リンクの内部に配置され、前記第1方向に延在し、前記第2モータの回転に伴い、前記第1方向に沿う軸を回転軸として回転する第1ねじ部と、前記第1駆動機構に接続され、前記第1ねじ部が挿通され、前記第1ねじ部の回転に伴い、前記第1ねじ部に対して相対的に移動する第1移動部と、を有し、前記第2移動機構は、前記第2リンクの内部に配置され、前記第2方向に延在し、前記第3モータの回転に伴い、前記第2方向に沿う軸を回転軸として回転する第2ねじ部と、前記第1駆動機構に接続され、前記第2ねじ部が挿通され、前記第2ねじ部の回転に伴い、前記第2ねじ部に対して相対的に移動する第2移動部と、を有し、前記第1駆動機構は、前記第1移動部の移動に伴い、前記第1リンクに対して相対的に移動し、前記第2リンクは、前記第2移動部の移動に伴い、前記第1駆動機構に対して相対的に移動し、前記第1角度は、実質的に90度である、多関節ロボットと、前記先端部に取り付けられたエンドエフェクタと、前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、を備え、前記制御装置は、前記第1モータ、前記第2モータ、前記第3モータ、前記第4モータ及び前記第5モータを制御することにより、前記多関節ロボットの動作を制御する。
 本発明の好適な他の態様に係る物品の製造方法は、上述のロボットシステムにより、部品を組み付ける、又は、部品を取り除く。
 本発明によれば、簡易な制御で基部の周辺にロボットの先端部を移動させることができる。
第1実施形態に係るロボットシステムの概要を説明するための説明図である。 関節機構の一例を説明するための説明図である。 図1に示したロボットの状態の一例を説明するための説明図である。 図1に示したロボットの状態の別の例を説明するための説明図である。 図1に示したロボットの利点となる特徴を表す動作を説明するための説明図である。 図1に示したロボットコントローラのハードウェア構成の一例を示す図である。 第2実施形態に係るロボットシステムの概要を説明するための説明図である。 関節機構の一例を説明するための説明図である。 ロボットの先端部を接地面に対して水平方向に移動させる動作の一例を説明するための説明図である。 図9に示したロボットの動作の続きの動作を説明するための説明図である。 複数の関節機構のうち、直動関節に対応する2つの関節機構のみを駆動することにより実現される動作の一例を説明するための説明図である。 図7に示したロボットコントローラのハードウェア構成の一例を示す図である。 第1変形例に係る先端部の一例を説明するための説明図である。 旋回の一例を説明するための説明図である。
 以下、本発明を実施するための形態について図面を参照して説明する。なお、各図において、各部の寸法及び縮尺は、実際のものと適宜に異ならせてある。また、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。
[1.第1実施形態]
 先ず、図1を参照しながら、第1実施形態に係るロボットシステム1の概要の一例について説明する。
 図1は、第1実施形態に係るロボットシステム1の概要を説明するための説明図である。
 ロボットシステム1は、例えば、ロボット10と、ロボット10に着脱可能に取り付けられるエンドエフェクタ20と、ロボット10及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。ロボット10は、「多関節ロボット」の一例であり、ロボットコントローラ30は、「制御装置」の一例である。
 ロボット10及びロボットコントローラ30は、例えば、有線を用いた接続により、互いに通信可能に接続されている。なお、ロボット10とロボットコントローラ30との接続は、無線を用いた接続であってもよいし、有線及び無線の両方を用いた接続であってもよい。また、ロボットコントローラ30は、ロボット10に取り付けられたエンドエフェクタ20と通信可能である。ロボットコントローラ30としては、他の装置と通信可能な任意の情報処理装置を採用することができる。なお、ロボットコントローラ30の構成は、後述する図6において説明される。
 ロボット10は、例えば、農場、工場及び倉庫等での作業に用いられる多関節ロボットである。具体的には、ロボット10は、回転関節に対応する6つの関節機構JEr(JEr1、JEr2、JEr3、JEr4、JEr5及びJEr6)を有する6軸多関節ロボットに、直動関節に対応する2つの関節機構JEp(JEp1及びJEp2)を追加した8軸多関節ロボットである。例えば、ロボット10は、6つの関節機構JErと、2つの関節機構JEpと、ボディ部BDPと、2つのリンクLK(LK1及びLK2)と、先端部TP1とを有する。なお、図1に示す例では、関節機構JEr1は、ボディ部BDPに含まれ、関節機構JEr5及びJEr6は、先端部TP1に含まれる。また、関節機構JEp1は、リンクLK1に設けられ、関節機構JEp2は、リンクLK2に設けられる。以下では、関節機構JEr及びJEpは、特に区別せずに、関節機構JEとも称される。例えば、ロボット10は、複数の関節機構JEを駆動する複数のモータをさらに有する。図1では、図を見やすくするために、複数の関節機構JEを駆動する複数のモータ、複数のモータの各々に設けられる減速機及びエンコーダ等の記載を省略している。
 ボディ部BDPは、「基部」の一例である。また、リンクLK1は、「第1リンク」の一例であり、リンクLK2は、「第2リンク」の一例である。従って、リンクLK1及びLK2は、「複数のリンク」に該当する。例えば、リンクLK1及びLK2は、ボディ部BDPと先端部TP1とを接続する。
 ここで、例えば、部材の接続は、2つの部材が直接的に接続される場合と、2つの部材が間接的に接続される場合との両方を含む。2つの部材が直接的に接続されるとは、2つの部材が互いに接触する状態、及び、2つの部材が互いに接触する状態と同視できる状態を含む。2つの部材が互いに接触する状態と同視できる状態とは、例えば、2つの部材の一方が他方に接着剤等により固定される状態である。また、2つの部材が間接的に接続されるとは、2つの部材の間に他の部材が配置されることを意味する。
 関節機構JEr1は、「第2駆動機構」の一例であり、関節機構JEr2は、「第3駆動機構」の一例である。関節機構JEr3は、「第1駆動機構」の一例であり、関節機構JEr4は、「第4駆動機構」の一例である。また、関節機構JEr5は、「第5駆動機構」の一例であり、関節機構JEr6は、「第6駆動機構」の一例である。また、関節機構JEp1は、「第1移動機構」の一例であり、関節機構JEp2は、「第2移動機構」の一例である。
 ボディ部BDPは、例えば、床等の所定の場所に固定される土台部BDPbaと、関節機構JEr2に接続される関節機構JEr1とを含む。関節機構JEr1は、ボディ部BDPの底面BDPbtに垂直な軸Ax1を回転軸として、ボディ部BDPの一部分を回転させる。例えば、関節機構JEr1は、関節機構JEr1のうち、関節機構JEr2と接続される部分を含む外壁を、軸Ax1を回転軸として土台部BDPbaに対して回転させる。すなわち、関節機構JEr1は、軸Ax1を回転軸として、関節機構JEr2をボディ部BDPに対して回転させる。なお、軸Ax1は、「第2回転軸」の一例である。
 ここで、「垂直」は、厳密な垂直だけではなく、実質的な垂直(例えば、誤差範囲内の垂直)も含む。同様に、後述する「平行」は、厳密な平行だけではなく、実質的な平行(例えば、誤差範囲内の平行)も含む。図1の回転方向Dr1は、ボディ部BDPの一部分が軸Ax1を回転軸として回転する場合のボディ部BDPの一部分の回転方向を示す。
 関節機構JEr2は、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに平行な軸Ax2を回転軸としてリンクLK1をボディ部BDPに対して回転させる。図1の回転方向Dr2は、リンクLK1が軸Ax2を回転軸として回転する場合のリンクLK1の回転方向を示す。なお、軸Ax2は、「第3回転軸」の一例である。
 リンクLK1は、例えば、中空であり、長尺に形成される。また、リンクLK1は、リンクLK1が延在する方向De1に延在する開口Hlk1を有する。なお、方向De1は、「第1方向」の一例である。
 開口Hlk1は、例えば、リンクLK1のうち、リンクLK2に対向する部分を含む面に形成される。リンクLK1の内部には、関節機構JEr3の一部及び関節機構JEp1が設けられる。例えば、関節機構JEr3の一部は、リンクLK1の内部に位置し、関節機構JEr3の他の部分は、開口Hlk1からリンクLK1の外部に出ている。なお、関節機構JEr3のうち、リンクLK1の外部に出ている部分、又は、リンクLK1の外部に出ている部分の一部は、後述するリンクLK2の開口Hlk2を通り、リンクLK2の内部に位置する。
 なお、リンクLK1は、関節機構JEr1により、軸Ax1を回転軸としてボディ部BDPに対して回転し、関節機構JEr2により、軸Ax2を回転軸としてボディ部BDPに対して回転する。
 関節機構JEr3は、リンクLK1とリンクLK2とを接続し、リンクLK1が延在する方向De1に垂直な軸Ax3を回転軸としてリンクLK2をリンクLK1に対して回転させる。図1の回転方向Dr3は、リンクLK2が軸Ax3を回転軸として回転する場合のリンクLK2の回転方向を示す。なお、軸Ax3は、「第1回転軸」の一例である。
 関節機構JEp1は、方向De1に沿って、関節機構JEr3をリンクLK1に対して相対的に移動させる。関節機構JEr3が方向De1に沿って移動することにより、リンクLK2は、方向De1に沿って、リンクLK1に対して相対的に移動する。なお、図1に示す例では、関節機構JEp1が関節機構JEr3を方向De1に沿って移動させる場合、リンクLK1の開口Hlk1の部分が、関節機構JEr3の移動可能な移動領域ARmv1に該当する。
 リンクLK2は、例えば、中空であり、長尺に形成される。また、リンクLK2は、リンクLK2が延在する方向De2に延在する開口Hlk2を有する。なお、方向De2は、「第2方向」の一例である。
 開口Hlk2は、例えば、リンクLK2のうち、リンクLK1に対向する部分を含む面に形成される。リンクLK2の内部には、関節機構JEr3の一部及び関節機構JEp2が設けられる。例えば、関節機構JEr3の一部は、リンクLK2の内部に位置し、関節機構JEr3の他の部分は、開口Hlk2からリンクLK2の外部に出ている。
 関節機構JEp2は、リンクLK2が延在する方向De2に沿って、リンクLK2を関節機構JEr3に対して相対的に移動させる。これにより、リンクLK2は、方向De2に沿って、関節機構JEr3に対して相対的に移動する。すなわち、リンクLK2は、方向De2に沿って、リンクLK1に対して相対的に移動する。
 このように、リンクLK2は、関節機構JEp1により、方向De1に沿って、リンクLK1に対して相対的に移動し、関節機構JEp2により、方向De2に沿って、リンクLK1に対して相対的に移動する。
 ここで、リンクLK2が関節機構JEr3に対して相対的に移動することは、関節機構JEr3がリンクLK2に対して相対的に移動することとも換言できる。従って、関節機構JEp2は、方向De2に沿って関節機構JEr3をリンクLK2に対して相対的に移動させる関節機構JEとも捉えられる。図1に示す例では、関節機構JEp2が関節機構JEr3を方向De2に沿って相対的に移動させる場合、リンクLK2の開口Hlk2の部分が、関節機構JEr3の移動可能な移動領域ARmv2に該当する。
 関節機構JEr4は、リンクLK2と先端部TP1とを接続し、方向De2に垂直な軸Ax4を回転軸として、先端部TP1をリンクLK2に対して回転させる。図1の回転方向Dr4は、先端部TP1が軸Ax4を回転軸として回転する場合の先端部TP1の回転方向を示す。なお、軸Ax4は、「第4回転軸」の一例である。
 先端部TP1には、例えば、物品を把持するエンドエフェクタ20が取り付けられる。例えば、先端部TP1の端面TP1sfにエンドエフェクタ20が取り付けられる。先端部TP1は、リンクLK2に接続される第1部分TP11と、第1部分TP11に接続される第2部分TP12と、関節機構JEr5と、関節機構JEr6とを含む。第1部分TP11は、例えば、関節機構JEr4を介してリンクLK2に接続される。従って、第1部分TP11は、軸Ax4を回転軸としてリンクLK2に対して回転する。
 関節機構JEr5は、第1部分TP11と第2部分TP12とを接続し、軸Ax4に垂直な軸Ax5を回転軸として、第2部分TP12を第1部分TP11に対して回転させる。図1の回転方向Dr5は、第2部分TP12が軸Ax5を回転軸として回転する場合の第2部分TP12の回転方向を示す。なお、軸Ax5は、「第5回転軸」の一例である。
 関節機構JEr6は、軸Ax5に垂直な軸Ax6を回転軸として、先端部TP1の少なくとも一部分を回転させる。図1に示す例では、関節機構JEr6は、軸Ax6を回転軸として、先端部TP1の端面TP1sfを回転させる。すなわち、関節機構JEr6は、軸Ax6を回転軸として、先端部TP1のうち、エンドエフェクタ20が取り付けられる部分(端面TP1sf)を回転させる。図1の回転方向Dr6は、端面TP1sfが軸Ax6を回転軸として回転する場合の端面TP1sfの回転方向を示す。なお、軸Ax6は、「第6回転軸」の一例である。
 図1に示す例では、関節機構JEr6の表面が端面TP1sfに該当する。なお、関節機構JEr6が第2部分TP12に含まれる構成等では、第2部分TP12の端面が端面TP1sfであってもよい。
 また、エンドエフェクタ20により行われる作業は、物品の把持に限定されない。エンドエフェクタ20としては、ロボット10の作業目的に応じて適切な部品(例えば、ロボットハンド及びロボットフィンガー等)を適用することができる。すなわち、各種作業に適したエンドエフェクタ20が先端部TP1に取り付けられる。
 ここで、本実施形態では、特定の方向とのなす角度が所定の角度より大きい軸を回転軸とした回転を、特定の方向とのなす角度が所定の角度以下の軸を回転軸とした回転と区別して、「旋回」と称する場合がある。所定の角度は、例えば、45°であってもよい。なお、所定の角度は、45°に限定されない。
 例えば、軸Ax1及びAx2の各々を回転軸とする回転では、ボディ部BDPの底面BDPbtに垂直な方向Dv1が特定の方向に該当する。この場合、軸Ax1は、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度以下の軸に該当し、軸Ax2は、方向Dv1とのなす角度が所定の角度より大きい軸に該当する。従って、軸Ax2を回転軸とするリンクLK1の回転は、旋回に該当する。なお、本実施形態では、ボディ部BDPが底面BDPbtに垂直な方向Dv1に沿って延在しているため、ボディ部BDPが延在する方向Debを特定の方向としてもよい。
 また、軸Ax3を回転軸とする回転では、リンクLK1が延在する方向De1が特定の方向に該当し、軸Ax4を回転軸とする回転では、リンクLK2が延在する方向De2が特定の方向に該当する。この場合、軸Ax3は、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸に該当し、軸Ax4は、リンクLK2が延在する方向De2とのなす角度が所定の角度より大きい軸に該当する。従って、軸Ax3を回転軸とするリンクLK2の回転、及び、軸Ax4を回転軸とする第1部分TP11の回転は、旋回に該当する。
 また、軸Ax5を回転軸とする回転では、方向De11が特定の方向に該当し、軸Ax6を回転軸とする回転では、方向De12が特定の方向に該当する。方向De11は、第1部分TP11の端部のうち、関節機構JEr5が接続される所定の端部の反対側の端部から所定の端部に向かう方向である。なお、方向De11は、第1部分TP11が延在する方向と捉えられてもよい。また、方向De12は、第2部分TP12の端部のうち、関節機構JEr6が接続される所定の端部(端面TP1sfを含む端部)の反対側の端部から所定の端部に向かう方向である。なお、方向De12は、第2部分TP12が延在する方向と捉えられてもよい。
 方向De11が特定の方向である場合、軸Ax5は、方向De11とのなす角度が所定の角度以下の軸に該当する。また、方向De12が特定の方向である場合、軸Ax6は、方向De12とのなす角度が所定の角度以下の軸に該当する。なお、本実施形態では、方向De11が軸Ax4に垂直な方向であり、方向De12が軸Ax5に垂直な方向である場合を想定する。この場合、方向De11とのなす角度が所定の角度以下の軸Ax5は、軸Ax4とのなす角度が所定の角度より大きい軸に該当し、方向De12とのなす角度が所定の角度以下の軸Ax6は、軸Ax5とのなす角度が所定の角度より大きい軸に該当する。
 このように、本実施形態では、ロボット10の複数の部分(ボディ部BDP、リンクLK1、リンクLK2及び先端部TP1等)の各々が軸Ax1、Ax2、Ax3、Ax4、Ax5及びAx6の各々を回転軸として回転可能である。これにより、本実施形態では、ロボット10は、人と同様の動作を実行できる。
 例えば、関節機構JEr2と関節機構JEr3との間のリンクLK1が上腕に相当し、関節機構JEr3と関節機構JEr4との間のリンクLK2が前腕に相当する。そして、ロボット10は、関節機構JEr1により、人の腰のねじりを模した動作を行うことができ、関節機構JEr2により、肩の旋回を模した動作を行うことができる。また、ロボット10は、関節機構JEr3により、肘の旋回を模した動作を行うことができ、関節機構JEr4により、手首の旋回を模した動作を行うことができる。また、ロボット10は、関節機構JEr5により、手首のねじりを模した動作を行うことができ、関節機構JEr6により、指先のねじりを模した動作を行うことができる。
 さらに、本実施形態では、リンクLK1内に設けられた関節機構JEp1により、リンクLK1が延在する方向De1に沿って、リンクLK2をリンクLK1に対して相対的に移動させることができる。また、本実施形態では、リンクLK2内に設けられた関節機構JEp2により、リンクLK2が延在する方向De2に沿って、リンクLK2をリンクLK1に対して相対的に移動させることができる。従って、本実施形態では、関節機構JEp1及びJEp2により、ロボット10の先端部TP1をボディ部BDPの周辺に容易に移動させることができる。また、本実施形態では、関節機構JEp1及びJEp2により、先端部TP1(より詳細には、端面TP1sf)が到達可能な領域を広くすることができるため、ロボット10に取り付けられるエンドエフェクタ20が到達可能な領域を広くすることができる。
 なお、ロボットシステム1の構成は、図1に示す例に限定されない。例えば、ロボットコントローラ30は、ロボット10に内蔵されてもよい。また、図1では、ロボット10が床等の所定の場所に固定される場合を想定したが、ロボット10は、所定の場所に固定されずに、ロボット10自体が移動可能であってもよい。また、ボディ部BDPの土台部BDPbaは、床等の所定の場所に関節機構JEr1を介して固定されてもよい。この場合、ボディ部BDPは、関節機構JEr1を含まずに定義されてもよい。土台部BDPbaが所定の場所に関節機構JEr1を介して固定される構成では、関節機構JEr1は、軸Ax1を回転軸として、土台部BDPbaを回転させてもよい。また、土台部BDPbaが所定の場所に関節機構JEr1を介して固定される構成では、土台部BDPbaが関節機構JEr2と接続されてもよい。
 次に、図2を参照しながら、関節機構JEp1及びJEp2の一例について説明する。
 図2は、関節機構JEの一例を説明するための説明図である。図2では、関節機構JEp1及びJEp2と関節機構JEr3とを中心に説明する。本実施形態では、関節機構JEr3を駆動するモータMOr3が関節機構JEr3と一体的に移動する場合を想定する。例えば、モータMOr3は、関節機構JEr3に固定されてもよい。モータMOr3は、「第1モータ」の一例である。先ず、関節機構JEp1について説明する。
 関節機構JEp1、及び、関節機構JEp1を駆動するモータMOp1は、リンクLK1の内部に配置される。例えば、モータMOp1は、リンクLK1の2つの端部LK1ed(LK1ed1及びLK1ed2)のうち、ボディ部BDPに近い端部LK1ed1において、リンクLK1の内部に取り付けられている。モータMOp1は、「第2モータ」の一例である。なお、端部LK1ed2は、リンクLK1の2つの端部LK1edのうち、ボディ部BDPから遠い端部LK1edである。
 関節機構JEp1は、例えば、方向De1に沿って延在するねじ部JEp11と、ナットJEp12と、接続部JEp13と、レールJEp14とを含む。ねじ部JEp11は、「第1ねじ部」の一例であり、ナットJEp12は、「第1移動部」の一例である。
 ねじ部JEp11の一端は、モータMOp1に取り付けられる。例えば、ねじ部JEp11は、ねじ部JEp11の中心軸(方向De1に沿う中心軸)がモータMOp1の回転軸と一致するようにモータMOp1に取り付けられ、ナットJEp12に挿通される。そして、ねじ部JEp11は、モータMOp1の回転に伴い、方向De1に沿う中心軸を回転軸として回転する。
 接続部JEp13は、例えば、方向De1に沿って移動可能にレールJEp14に接続されるスライダー部JEp13aと、ナットJEp12及びモータMOr3を支持する支持部JEp13bとを含む。例えば、ナットJEp12は、ねじ部JEp11と一緒に回転しないように、支持部JEp13bに固定されている。また、モータMOr3は、モータMOr3自体が回転しないように、支持部JEp13bに固定されている。
 なお、スライダー部JEp13aと支持部JEp13bとは、厳密に区別されなくてもよい。例えば、スライダー部JEp13aにモータMOr3が固定されてもよい。また、ナットJEp12は、支持部JEp13bを介さずにモータMOr3に固定されてもよい。すなわち、ナットJEp12は、関節機構JEr3に対するナットJEp12の相対的な位置が変化しないように、接続部JEp13等に接続されていればよい。このように、ナットJEp12は、接続部JEp13等を介して関節機構JEr3に接続される。
 レールJEp14は、方向De1に沿って延在し、互いに平行に配置された2つの棒状部材JEp14a及びJEp14bを含む。棒状部材JEp14a及びJEp14bとスライダー部JEp13aとの各々の形状は、棒状部材JEp14a及びJEp14bがスライダー部JEp13aを支持できれば、特に限定されない。レールJEp14は、例えば、軸Ax3に沿う方向において、開口Hlk1とねじ部JEp11との間に配置され、リンクLK1の内部に取り付けられている。なお、レールJEp14は、関節機構JEr3の一部が開口Hlk1から出ている状態で、関節機構JEr3が方向De1に沿って移動可能であれば、軸Ax3に沿う方向において、開口Hlk1とねじ部JEp11との間に配置されなくてもよい。なお、本実施形態では、方向De1からの平面視において軸Ax3に沿う直線と軸Ax2に沿う直線とが平行である場合を想定しているため、上述の“軸Ax3に沿う方向”は、“軸Ax2に沿う方向”に読み替えられてもよい。
 ナットJEp12は、ねじ部JEp11と一緒に回転しないように接続部JEp13に固定されているため、ねじ部JEp11の回転に伴い、方向De1に沿って、ねじ部JEp11に対して相対的に移動する。ナットJEp12は、上述したように、関節機構JEr3に対する相対的な位置が変化しないように、接続部JEp13等に固定されている。すなわち、関節機構JEr3は、ナットJEp12と一緒に、方向De1に沿って移動する。例えば、関節機構JEr3は、ナットJEp12の移動に伴い、リンクLK1に対して相対的に移動する。このように、関節機構JEp1は、関節機構JEr3を移動可能に支持する。関節機構JEr3の移動領域ARmv1(移動範囲)は、リンクLK1の端部LK1ed2よりも端部LK1ed1に近い領域から、端部LK1ed1よりも端部LK1ed2に近い領域まで関節機構JEr3が移動可能であることが好ましい。これにより、リンクLK1の実質的な長さ(制御上の長さ)を、リンクLK1の半分以下の長さから半分以上の長さとすることが可能となる。リンクLK1の実質的な長さは、例えば、端部LK1ed1(例えば、リンクLK1と軸Ax2との交点)から関節機構JEr3(より正確には、軸Ax3)までの方向De1に沿う長さである。
 ここで、ナットJEp12の移動方向、すなわち、関節機構JEr3の移動方向は、モータMOp1の回転方向を切り替えることにより、方向De1と方向De1の反対方向との間で切り替わる。例えば、モータMOp1の回転が第1の回転方向の回転である場合、ナットJEp12は、方向De1に移動し、モータMOp1の回転が第1の回転方向の回転に対して逆回転となる第2の回転方向の回転である場合、ナットJEp12は、方向De1の反対方向に移動する。次に、関節機構JEp2について説明する。
 関節機構JEp2、及び、関節機構JEp2を駆動するモータMOp2は、リンクLK2の内部に配置される。例えば、モータMOp2は、リンクLK2の2つの端部LK2ed(LK2ed1及びLK2ed2)のうち、先端部TP1から遠い端部LK2ed1において、リンクLK2の内部に取り付けられている。モータMOp2は、「第3モータ」の一例である。なお、端部LK2ed2は、リンクLK2の2つの端部LK2edのうち、先端部TP1に近い端部LK2edである。
 関節機構JEp2は、例えば、方向De2に沿って延在するねじ部JEp21と、ナットJEp22と、接続部JEp23と、レールJEp24とを含む。ねじ部JEp21は、「第2ねじ部」の一例であり、ナットJEp22は、「第2移動部」の一例である。
 ねじ部JEp21の一端は、モータMOp2に取り付けられる。例えば、ねじ部JEp21は、ねじ部JEp21の中心軸(方向De2に沿う中心軸)がモータMOp2の回転軸と一致するようにモータMOp2に取り付けられ、ナットJEp22に挿通される。そして、ねじ部JEp21は、モータMOp2の回転に伴い、方向De2に沿う中心軸を回転軸として回転する。
 接続部JEp23は、例えば、レールJEp24に対して方向De2に沿って相対的に移動可能に接続されるスライダー部JEp23aと、ナットJEp22及び関節機構JEr3を支持する支持部JEp23bとを含む。例えば、ナットJEp22は、ねじ部JEp21と一緒に回転しないように、支持部JEp23bに固定されている。また、支持部JEp23bは、モータMOr3の回転に伴い、軸Ax3(図2には図示せず)を回転軸として回転するように、関節機構JEr3に接続されている。すなわち、関節機構JEr3は、モータMOr3の回転に伴い、軸Ax3を回転軸として支持部JEp23bを回転させる。
 なお、スライダー部JEp23aと支持部JEp23bとは、厳密に区別されなくてもよい。例えば、スライダー部JEp23aに関節機構JEr3が接続されてもよい。また、ナットJEp22は、スライダー部JEp23aに固定されてもよい。すなわち、ナットJEp22は、関節機構JEr3に対する相対的な位置が変化しないように、接続部JEp23等に接続されていればよい。このように、ナットJEp22は、接続部JEp23等を介して関節機構JEr3に接続される。
 レールJEp24は、方向De2に沿って延在し、互いに平行に配置された2つの棒状部材JEp24a及びJEp24bを含む。棒状部材JEp24a及びJEp24bとスライダー部JEp23aとの各々の形状は、棒状部材JEp24a及びJEp24bがスライダー部JEp23aを支持できれば、特に限定されない。レールJEp24は、例えば、軸Ax3に沿う方向において、開口Hlk2とねじ部JEp21との間に配置され、リンクLK2の内部に取り付けられている。なお、レールJEp24は、関節機構JEr3の一部が開口Hlk2から出ている状態で、関節機構JEr3が方向De2に沿って移動可能であれば、軸Ax3に沿う方向において、開口Hlk2とねじ部JEp21との間に配置されなくてもよい。なお、本実施形態では、方向De1からの平面視において軸Ax3に沿う直線と軸Ax2に沿う直線とが平行である場合を想定しているため、上述の“軸Ax3に沿う方向”は、“軸Ax2に沿う方向”に読み替えられてもよい。
 ナットJEp22は、ねじ部JEp21と一緒に回転しないように接続部JEp23に固定されているため、ねじ部JEp21の回転に伴い、方向De2に沿って、ねじ部JEp21に対して相対的に移動する。ナットJEp22は、上述したように、関節機構JEr3に対する相対的な位置が変化しないように、接続部JEp23等に固定されている。また、関節機構JEr3は、ねじ部JEp11が回転していない場合、すなわち、モータMOp1が回転していない場合、関節機構JEp1により、リンクLK1に対する関節機構JEr3の相対的な位置が変化しないように支持される。このため、リンクLK2は、ナットJEp22がねじ部JEp21に対して相対的に移動することにより、方向De2に沿って、関節機構JEr3に対して相対的に移動する。このように、関節機構JEp2は、リンクLK2を移動可能に支持する。関節機構JEr3の移動領域ARmv2(移動範囲)は、リンクLK2の端部LK2ed2よりも端部LK2ed1に近い領域から、端部LK2ed1よりも端部LK2ed2に近い領域まで関節機構JEr3が移動可能であることが好ましい。これにより、リンクLK2の実質的な長さ(制御上の長さ)を、リンクLK2の半分以下の長さから半分以上の長さとすることが可能となる。リンクLK2の実質的な長さは、例えば、関節機構JEr3(より正確には、軸Ax3)から端部LK2ed2(例えば、リンクLK2と軸Ax4との交点)までの方向De2に沿う長さである。
 なお、関節機構JEr3は、ねじ部JEp21が回転していない場合、すなわち、モータMOp2が回転していない場合、関節機構JEp2により、リンクLK2に対する相対的な位置が変化しないように支持される。関節機構JEr3は、リンクLK1との相対的な位置にかかわらず、リンクLK1に対してリンクLK2を旋回可能である。また、関節機構JEr3は、リンクLK2との相対的な位置にかかわらず、リンクLK1に対してリンクLK2を旋回可能である。
 ここで、ねじ部JEp21に対するナットJEp22の移動方向、すなわち、リンクLK2の移動方向は、モータMOp2の回転方向を切り替えることにより、方向De2と方向De2の反対方向との間で切り替わる。例えば、モータMOp2の回転が第1の回転方向の回転である場合、リンクLK2は、方向De2の反対方向に移動し、モータMOp2の回転が第1の回転方向の回転に対して逆回転となる第2の回転方向の回転である場合、リンクLK2は、方向De2に移動する。
 なお、関節機構JEpの構成は、図2に示す例に限定されない。例えば、関節機構JEp1の要素として、ねじ部JEp11とナットJEp12との間に複数のボールが存在するボールねじが採用されてもよい。同様に、関節機構JEp2の要素として、ねじ部JEp21とナットJEp22との間に複数のボールが存在するボールねじが採用されてもよい。
 また、例えば、モータMOr3の一部がリンクLK1の内部に位置し、モータMOr3の他の部分が開口Hlk1からリンクLK1の外部に位置し、関節機構JEr3の全体がリンクLK2の内部に位置してもよい。また、例えば、関節機構JEr3は、モータMOr3を収納する収納部を有してもよい。すなわち、モータMOr3は、関節機構JEr3内に設けられてもよい。あるいは、モータMOr3は、関節機構JEr3の一要素として捉えられてもよい。同様に、モータMOp1は、関節機構JEp1の一要素として捉えられてもよいし、モータMOp2は、関節機構JEp2の一要素として捉えられてもよい。
 次に、関節機構JEr1、JEr2、JEr4、JEr5及びJEr6について、簡単に説明する。
 関節機構JEr1は、例えば、回転部JEr11と、回転部JEr11を収納する筐体JEr12とを有する。回転部JEr11は、関節機構JEr1を駆動するモータMOr1の回転に伴い、軸Ax1を回転軸として回転する。例えば、回転部JEr11は、軸Ax1を回転軸として土台部BDPbaに対して回転可能に、モータMOr1に取り付けられている。また、筐体JEr12は、回転部JEr11と一緒に、軸Ax1を回転軸として土台部BDPbaに対して回転する。例えば、筐体JEr12は、軸Ax1を回転軸として土台部BDPbaに対して回転可能に、土台部BDPbaに接続される。さらに、筐体JEr12は、関節機構JEr2に接続される。これにより、関節機構JEr2は、回転部JEr11の回転に伴い、軸Ax1を回転軸として土台部BDPbaに対して回転する。モータMOr1は、「第4モータ」の一例である。
 なお、モータMOr1は、関節機構JEr1の一要素として捉えられてもよい。また、筐体JEr12が土台部BDPbaに固定され、関節機構JEr2が、軸Ax1を回転軸として筐体JEr12に対して回転可能に、回転部JEr11に取り付けられてもよい。この場合、筐体JEr12は、土台部BDPbaの一要素として捉えられてもよい。
 関節機構JEr2は、例えば、回転部JEr21と、関節機構JEr2を駆動するモータMOr2を収納する筐体JEr22とを有する。回転部JEr21は、モータMOr2の回転に伴い、軸Ax2を回転軸として回転する。例えば、回転部JEr21は、軸Ax2を回転軸として筐体JEr22に対して回転可能に、モータMOr2に取り付けられている。さらに、回転部JEr21は、リンクLK1に接続される。また、リンクLK1は、筐体JEr22に対して回転可能に筐体JEr22に接続される。これにより、リンクLK1は、回転部JEr21の回転に伴い、軸Ax2を回転軸として筐体JEr22に対して回転する。また、筐体JEr22の内部には、モータMOr2が取り付けられている。モータMOr2は、「第5モータ」の一例である。
 なお、モータMOr2は、関節機構JEr2の一要素として捉えられてもよい。また、図2に示す例では、回転部JEr21の一部がリンクLK1の内部に位置し、回転部JEr21の他の部分が筐体JEr22の内部に位置しているが、回転部JEr21の全体がリンクLK1の内部又は筐体JEr22の内部に位置してもよい。
 関節機構JEr4は、例えば、回転部JEr41と、回転部JEr41を収納する筐体JEr42とを有する。回転部JEr41は、関節機構JEr4を駆動するモータMOr4の回転に伴い、軸Ax4を回転軸として回転する。例えば、回転部JEr41は、軸Ax4を回転軸としてリンクLK2に対して回転可能に、モータMOr4に取り付けられている。なお、モータMOr4は、リンクLK2の内部に取り付けられている。
 また、筐体JEr42は、回転部JEr41と一緒に、軸Ax4を回転軸としてリンクLK2に対して回転する。例えば、筐体JEr42は、軸Ax4を回転軸としてリンクLK2に対して回転可能に、リンクLK2に接続される。さらに、筐体JEr42は、第1部分TP11に接続される。これにより、第1部分TP11は、回転部JEr41の回転に伴い、筐体JEr42と一緒に、軸Ax4を回転軸として回転する。
 なお、モータMOr4は、関節機構JEr4の一要素として捉えられてもよい。また、図2に示す例では、回転部JEr41の全体が筐体JEr42の内部に位置しているが、回転部JEr41の全体がリンクLK2の内部に位置してもよい。あるいは、回転部JEr41の一部が筐体JEr42の内部に位置し、回転部JEr41の他の部分がリンクLK2の内部に位置してもよい。
 関節機構JEr5は、例えば、回転部JEr51と、回転部JEr51の一部を収納する筐体JEr52とを有する。回転部JEr51は、関節機構JEr5を駆動するモータMOr5の回転に伴い、軸Ax5を回転軸として回転する。例えば、回転部JEr51は、軸Ax5を回転軸として第1部分TP11に対して回転可能に、モータMOr5に取り付けられている。なお、モータMOr5は、関節機構JEr4の筐体JEr42の内部に取り付けられている。
 また、筐体JEr52は、回転部JEr51と一緒に、軸Ax5を回転軸として第1部分TP11に対して回転する。例えば、筐体JEr52は、軸Ax5を回転軸として第1部分TP11に対して回転可能に、第1部分TP11に接続される。さらに、筐体JEr52は、第2部分TP12に接続される。これにより、第2部分TP12は、回転部JEr51の回転に伴い、筐体JEr52と一緒に、軸Ax5を回転軸として回転する。
 なお、モータMOr5は、関節機構JEr5の一要素として捉えられてもよい。また、図2に示す例では、回転部JEr51の一部が筐体JEr52の内部に位置し、回転部JEr51の他の部分が第1部分TP11の内部に位置しているが、回転部JEr51の全体が筐体JEr52の内部又は第1部分TP11の内部に位置してもよい。
 関節機構JEr6は、例えば、回転部JEr61と、回転部JEr61の一部を収納する筐体JEr62とを有する。回転部JEr61は、関節機構JEr6を駆動するモータMOr6の回転に伴い、軸Ax6を回転軸として回転する。例えば、回転部JEr61は、軸Ax6を回転軸として第2部分TP12に対して回転可能に、モータMOr6に取り付けられている。また、筐体JEr62は、回転部JEr61と一緒に、軸Ax6を回転軸として第2部分TP12に対して回転する。例えば、筐体JEr62は、軸Ax6を回転軸として第2部分TP12に対して回転可能に、第2部分TP12に接続される。また、筐体JEr62は、端面TP1sfを含む。例えば、端面TP1sfは、回転部JEr61の回転に伴い、軸Ax6を回転軸として第2部分TP12に対して回転する。
 なお、モータMOr6は、関節機構JEr6の一要素として捉えられてもよい。また、筐体JEr62が第2部分TP12に固定され、エンドエフェクタ20が、筐体JEr62に対して回転可能に、回転部JEr61の表面に取り付けられてもよい。この場合、回転部JEr61の表面が端面TP1sfに該当する。また、筐体JEr62が第2部分TP12に固定される場合、筐体JEr62は、第2部分TP12の一要素として捉えられてもよい。
 また、複数の関節機構JErは、図2に示す例に限定されない。例えば、複数の関節機構JErの各々は、既知の多関節ロボットの各関節に対応する機構と同様の構成であってもよい。
 次に、本実施形態におけるロボット10の特徴を表す状態(姿勢)を説明する。ロボット10におけるリンクLK1及びLK2の状態は、以下に示す第1状態、第2状態及び第3状態を含む複数のユニークな状態に遷移可能である。なお、本実施形態におけるロボット10の特徴を表す状態(姿勢)は、第1状態、第2状態及び第3状態に限られない。
[第1状態]
 先ず、図3を参照しながら、第1状態について説明する。
 図3は、図1に示したロボット10の状態の一例を説明するための説明図である。なお、図3に示すリンクLK1及びLK2の状態は、第1状態である。図3において、図1及び図2と同じ部材には同じ符号を付している。また、図3では、図を見やすくするために、第1状態の説明に用いられない複数の要素の一部(例えば、レールJEp14等)の記載を省略している。
 図3に示すように、方向De1が軸Ax1に平行であり、軸Ax3がリンクLK1の端部LK1ed2よりも端部LK1ed1の近くに位置し、かつリンクLK2の端部LK2ed1よりも端部LK2ed2の近くに位置している。これにより、リンクLK1の実質的なリンク長(アーム長)である端部LK1ed1から軸Ax3の長さは、リンクLK1の長さの半分以下になる。また、リンクLK2の実質的なリンク長(アーム長)である軸Ax3から端部LK2ed2の長さは、リンクLK2の長さの半分以下になる。従って、リンクLK1とリンクLK2とが干渉する領域は非常に少なく、先端部TP1を、ボディ部BDPの周辺に容易に移動させることができ、ロボット10のボディ部BDPの周辺の作業を容易に行うことが可能となる。
 また、第1状態では、関節機構JEr2、JEr3及びJEr4が一直線上に近づくことがないため、ボディ部BDPの周辺の作業を、特異点を気にすることなく実行することができる。特異点は、例えば、ロボット10の姿勢が、ロボット10を制御できなくなる姿勢になることである。このように、本実施形態では、特異点を考慮する必要がないため、先端部TP1がボディ部BDPの周辺に位置する作業をロボット10が行う場合に、ロボット10を安全に動作させることができる。
 また、ボディ部BDPの周辺における先端部TP1の制御を、モータMOr2による関節機構JEr2、及び、モータMOr3による関節機構JEr3により行う場合、制御精度は、リンクLK1及びリンクLK2の実質的なリンク長に左右される。リンクLK1及びリンクLK2の実質的なリンク長が短ければ短いほど高精度な制御が可能であり、また、先端部TP1を停止した際の制振性も向上する。本実施形態の第1状態の場合、リンクLK1及びリンクLK2の実質的なリンク長が短いため、先端部TP1の位置精度や制振性を高めることができる。
 なお、第1状態において、必ずしも方向De1が軸Ax1に平行である必要はなく、先端部TP1がボディ部BDPの周辺に位置することができるのであれば、リンクLK1が、軸Ax1に対して傾いていても構わない。
[第2状態]
 第2状態は、前述の図2に示すように、方向De1及びDe2が軸Ax1に平行であり、リンクLK2の端部LK2ed1が、リンクLK1の端部LK1ed2よりも端部LK1ed1の近くに位置する状態である。この時、軸Ax3は、リンクLK1の端部LK1ed2よりも端部LK1ed1の近くに位置し、かつリンクLK2の端部LK2ed2よりも端部LK2ed1の近くに位置している。
 第2状態では、リンクLK1及びLK2が軸Ax1に沿って延在するように、リンクLK1及びLK2の姿勢が維持される。この場合、リンクLK1及びLK2の姿勢が、リンクLK1及びLK2の一方又は両方が軸Ax1と交差する方向に沿って延在するような姿勢である場合に比べて、軸Ax1を回転軸としてロボット10を回転させる場合の慣性力を、小さくすることができる。
 従って、本実施形態では、リンクLK1及びLK2の状態を第2状態にすることにより、ロボットアーム(リンクLK1及びLK2)の物理的長さ及び重量に起因する慣性力を小さくすることができる。これにより、本実施形態では、ロボット10を精密に制御することができる。例えば、本実施形態では、ロボット10の動作を停止した際の振動(制振性)による影響を小さくすることができる。従って、本実施形態では、ロボット10が所定の作業を行う場合のロボット10のトータルの動作時間の短縮、及び、動作精度の向上等を実現することができる。
 なお、第2状態では、方向De1及びDe2が軸Ax1に平行で、リンクLK2の端部LK2ed1がリンクLK1の端部LK1ed2よりも端部LK1ed1の近くに位置していれば、関節機構JEr3(より正確には、軸Ax3)の位置は、特に限定されない。例えば、第2状態における関節機構JEr3の位置は、図2に示すように、リンクLK1の端部LK1ed2よりも端部LK1ed1に近く、かつ、リンクLK2の端部LK1ed2よりも端部LK1ed1に近い位置でもよい。あるいは、第2状態における関節機構JEr3の位置は、リンクLK1の端部LK1ed1よりも端部LK1ed2に近く、かつ、リンクLK2の端部LK1ed1よりも端部LK1ed2に近い位置でもよい。
 また、軸Ax1を回転軸としてロボット10を回転させる場合の慣性力を小さくするリンクLK1及びLK2の状態は、リンクLK1及びLK2が軸Ax1に沿って延在するような姿勢であれば、第2状態に限定されない。例えば、リンクLK1及びLK2の状態は、第2状態に近い状態であってもよい。第2状態に近い状態は、例えば、方向De1及びDe2が軸Ax1に平行であり、リンクLK2の端部LK2ed1が、リンクLK1の端部LK1ed1よりも端部LK1ed2の近くに位置する状態であってもよい。この場合、リンクLK1及びLK2が軸Ax1に沿って延在し、かつ、先端部TP1がリンクLK1から遠ざかるように、リンクLK2が位置する。すなわち、本実施形態では、リンクLK1及びLK2の状態を第2状態又は第2状態に近い状態にすることにより、軸Ax1を回転軸としてロボット10を回転させる場合の慣性力を小さくすることができる。但し、ロボット10は、先端部TP1がリンクLK1に近い状態の方が、先端部TP1がリンクLK1から遠い状態よりも、安定する。
 また、本実施形態では、リンクLK1及びLK2の状態を第2状態にすることにより、ロボット10の状態をコンパクトにすることができ、ロボット10の持ち運びを容易にすることができる。このため、本実施形態では、ロボット10を工場に設置する場合の設置作業、又は、工場における機器変更等によるロボット10の設置の変更作業等を容易にすることができる。
[第3状態]
 なお、ロボット10の状態をコンパクトにする状態は、第2状態に限定されない。ロボット10の状態をコンパクトにする状態の別の例について、図4を参照しながら説明する。
 図4は、図1に示したロボット10の状態の別の例を説明するための説明図である。図4に示すリンクLK1及びLK2の状態は、第3状態である。
 第3状態は、方向De1及びDe2が軸Ax1に垂直であり、リンクLK2の端部LK2ed1が、リンクLK1の端部LK1ed2よりも端部LK1ed1の近くに位置する状態である。すなわち、第3状態では、リンクLK1及びLK2が軸Ax1に垂直な方向(ボディ部BDPの底面BDPbtに平行な方向)に沿って延在するように、リンクLK1及びLK2の姿勢が維持される。
 第3状態においても、第2状態と同様に、ロボット10の状態がコンパクトになる。また、リンクLK1及びLK2の状態が第3状態である場合、軸Ax1に沿う方向においてリンクLK1及びLK2からはみ出た部分に対応する凹部を有する緩衝部材等を用いることにより、ロボット10を容易に梱包することができる。軸Ax1に沿う方向においてリンクLK1及びLK2からはみ出た部分は、例えば、先端部TP1の一部及びボディ部BDP等である。
 このように、本実施形態では、リンクLK1及びLK2の状態を第3状態にすることにより、ロボット10の状態をコンパクトにすることができ、ロボット10の持ち運びを容易にすることができる。なお、第3状態においても、第2状態と同様に、関節機構JEr3(より正確には、軸Ax3)の位置は、特に限定されない。
[特徴動作]
 次に、図5(a)(b)を参照しながら、図1に示した本実施形態におけるロボット10の利点となる特徴を表す動作を説明する。なお、本実施形態におけるロボット10の特徴を表す動作は、以下に説明する動作に限定されない。
 図5は、図1に示したロボット10の利点となる特徴を表す動作を説明するための説明図である。図5では、ロボット10の利点となる特徴を表す動作として、作業台WBの下段WBlに配置された物品GDを作業台WBの上段WBuに移動する作業を行う場合のロボット10の動作を例示している。例えば、図5(a)は、作業台WBの下段WBlに配置された物品GDに対する作業を行う場合の動作を説明するための説明図であり、図5(b)は、作業台WBの上段WBuに配置された物品GDに対する作業を行う場合の動作を説明するための説明図である。
 なお、図5(a)(b)では、説明の便宜上、互いに直交するX軸、Y軸及びZ軸を有する3軸の直交座標系を導入する。以下では、X軸の矢印の指す方向は+X方向と称され、+X方向の反対方向は-X方向と称される。Y軸の矢印の指す方向は+Y方向と称され、+Y方向の反対方向は-Y方向と称される。また、Z軸の矢印の指す方向は+Z方向と称され、+Z方向の反対方向は-Z方向と称される。以下では、+Y方向及び-Y方向を特に区別することなく、Y方向と称し、+X方向及び-X方向を、特に区別することなく、X方向と称する場合がある。また、+Z方向及び-Z方向を、特に区別することなく、Z方向と称する場合がある。また、以下では、-Z方向を下方と称する場合がある。
 図5(a)(b)では、上述したように、作業台WBの下段WBlに配置された物品GDを作業台WBの上段WBuに移動する作業を例にして、ロボット10の利点を説明する。例えば、作業台WBは、ロボット10のボディ部BDPの周辺に配置されている。なお、図5(a)では、前述の図3を使って説明した、先端部TP1がロボット10のボディ部BDPの周辺に位置する第1状態からの動作を想定する。先ず、ロボット10と対比される第1対比例のロボット10Zについて説明する。なおロボット10Zは、理解を容易にするため、図5(a)において、点線で示している。
 ロボット10Zは、関節機構JEp1及びJEp2がロボット10から省かれ、リンクLK1及びLK2の代わりにリンクLK1z及びLK2zを有し、関節機構JEr3の代わりに関節機構JEr3zを有することを除いて、ロボット10と同様である。関節機構JEr3zは、リンクLK1zの一端とリンクLK2zの一端とを接続し、リンクLK1zが延在する方向に垂直な軸Ax3zを回転軸としてリンクLK2zをリンクLK1zに対して回転させる。なお、リンクLK1z及びLK2zの各々に対する関節機構JEr3zの相対的な位置は、変化しない。また、第1対比例では、リンクLK1zの中心軸とリンクLK2zの中心軸との軸Ax3zに沿う方向の位置が一致している場合を想定する。この場合、リンクLK1zとリンクLK2zとのなす角度の最小値は、リンクLK1z及びLK2zが互いに干渉するため、例えば30°程度の角度に制限される。このため、ロボット10Zでは、リンクLK1zとリンクLK2zとのなす角度を小さくして、先端部TP1をボディ部BDPの近くに移動させようとしても、リンクLK1zとリンクLK2zが干渉し、先端部TP1をボディ部BDPの近くに移動できない領域が発生する。従って、ロボット10Zでは、ボディ部BDPの周辺の作業台WBに配置された物品GDに対しては、作業できないもしくは所望の作業ができない。
 これに対し、本実施形態であるロボット10は、関節機構JEr2及びJEr3と、関節機構JEp1及びJEp2とを制御することにより、前述の第1状態のように先端部TP1をボディ部BDPの近くに移動させることができる。
 例えば、関節機構JEr2は、リンクLK1を旋回し、リンクLK1が延在する方向De1が軸Ax1に平行となる位置でリンクLK1を支持する。また、関節機構JEp1は、関節機構JEr3を方向De1に沿って移動させ、リンクLK1の端部LK1ed2よりも端部LK1ed1に近い位置で関節機構JEr3を支持する。すなわち、関節機構JEr3は、リンクLK1内において下方(-Z方向)に位置する。また、関節機構JEp2は、リンクLK2を方向De2に沿って移動させ、リンクLK2及び先端部TP1の可動スペースを確保できる位置でリンクLK2を支持する。例えば、関節機構JEp2は、関節機構JEr3がリンクLK2の端部LK2ed1よりも端部LK2ed2の近くに位置するように、リンクLK2を方向De2に沿って移動させる。そして、関節機構JEr3は、先端部TP1がボディ部BDPの周辺に位置するように、リンクLK2を旋回する。
 これにより、先端部TP1は、第1状態に示した状態となり、ボディ部BDPの周辺に移動する。例えば、本実施形態では、関節機構JEr4と、先端部TP1の関節機構JEr5及びJEr6とを制御することにより、ボディ部BDPの周辺において様々な作業をロボット10に実行させることができる。
 すなわち、本実施形態であるロボット10では、第1対比例のロボット10ZではリンクLK1及びLK2により先端部TP1の動作が妨げられる領域に対しても、関節機構JEp1及びJEp2の一方又は両方を制御することにより、容易に到達し作業を行うことができ、作業可能な領域を広く設定することができる。
 なお、先端部TP1をボディ部BDPの近くに移動可能な対比例として、ロボット10ZのリンクLK1zの中心軸とリンクLK2zの中心軸との軸Ax3zに沿う方向の位置が互いに異なる形態(以下、第2対比例とも称する)が考えられる。第2対比例のロボット10Zの構成は、例えば、ロボット10の関節機構JEr3がリンクLK1の端部LK1ed2及びリンクLK2の端部LK2ed1に固定されている構成と同様である。第2対比例の場合、リンクLK1zの中心軸とリンクLK2zの中心軸がオフセットされているため、リンクLK1zとリンクLK2zとの干渉をなくすことができる。
 しかしながら、第2対比例におけるボディ部BDPの近くに先端部TP1を移動するための制御、及び、ボディ部BDPの周辺における先端部TP1の制御は、リンクLK1z及びリンクLK2z全体を旋回することによる制御になる。これに対して、本実施形態であるロボット10の場合は、リンクLK1及びリンクLK2の実質的なリンク長が短いため、先端部TP1の位置精度や制振性を高めることができる。
 また、第2対比例では、先端部TP1を、例えば、図5(a)の右側遠方から-Y方向に移動させ、ボディ部BDPの周辺に移動させる場合、作業台WBが障害物となるため回避する必要がある。そのため、関節機構JEr3zが作業台WBから-Y方向に遠ざかるように、関節機構JEr2がリンクLK1zを旋回させる。そして、関節機構JEr3zは、先端部TP1が関節機構JEr2の近くに位置するように、リンクLK2zを旋回させる。その後、関節機構JEr2及びJEr3zは、先端部TP1がボディ部BDPの近くに位置するように、リンクLK1z及びLK2zをそれぞれ旋回する。これにより、先端部TP1を、ボディ部BDPの周辺に移動することができる。
 また、第2対比例では、作業台WBの下段WBlに配置された物品GDを作業台WBの上段WBuに移動する場合においても、作業台WBが障害物となるため、ぶつからないように回避しなければならない。このため、例えば、関節機構JEr2は、エンドエフェクタ20が物品GDを把持した状態で、関節機構JEr3zが作業台WBから-Y方向に遠ざかるように、リンクLK1zを旋回させる。そして、関節機構JEr3zは、先端部TP1が関節機構JEr2から遠ざかるように、リンクLK2zを旋回させる。その後、関節機構JEr2及びJEr3zは、エンドエフェクタ20に把持された物品GDが作業台WBの上段WBuに配置されるように、リンクLK1z及びLK2zをそれぞれ旋回する。
 このように、第2対比例では、ボディ部BDPの周辺の狭いスペースへの移動、もしくはボディ部BDPの周辺の狭いスペースからの移動を実現するためには、多くの関節機構JEを使用した複雑な制御が必要となり、ロボット全体の動作も大きくなる。
 これに対し、本実施形態であるロボット10では、関節機構JEp2がリンクLK2を関節機構JEr3に対して相対的に移動させることより、関節機構JEr3から先端部TP1までの長さを短くすることができる。そのため、先端部TP1を、例えば、図5(a)の右側遠方から-Y方向に移動させ、ボディ部BDPの周辺に移動させる場合や、作業台WBの下段WBlに配置された物品GDを作業台WBの上段WBuに移動する場合においても、関節機構JEr2によりリンクLK1を旋回させる必要はなく、関節機構JEr3よりも先端側の関節機構JEを使用することで、先端部TP1等を移動することができる。特に、関節機構JEr3から先端部TP1までの長さが短い場合、関節機構JEr3から先端部TP1までの長さが長い場合に比べて、狭い可動スペースでリンクLK及び先端部TP1を移動させることができる。
 例えば、図5(b)に示したように、関節機構JEr3は、エンドエフェクタ20が物品GDを把持した状態で、リンクLK2が延在する方向De2が軸Ax1に垂直(作業台WBの上段WBuの面に平行)となるように、リンクLK2を旋回させる。そして、関節機構JEp2は、エンドエフェクタ20に把持された物品GDがZ方向からの平面視において作業台WBの上段WBuと重なるように、リンクLK2を関節機構JEr3に対して相対的に移動させる。なお、平面視とは、例えば、特定の方向から対象物をみることである。また、関節機構JEp1は、関節機構JEr3を方向De1に沿って移動させ、エンドエフェクタ20に把持された物品GDを作業台WBの上段WBuに配置する。これにより、作業台WBの下段WBlに配置された物品GDを、作業台WBの上段WBuに移動させることができる。
 このように、本実施形態では、ロボット10の周辺のスペースが狭い場合でもロボット10を容易に駆動することができる。この結果、本実施形態では、ボディ部BDPに近い場所に配置された物品GDに対する作業をロボット10に効率よく実行させることができる。
 また、本実施形態では、図5(b)に示すように、作業台WBの上段WBuに配置された物品GDを、さらに+Y方向に移動させる(奥に移動させる)場合、関節機構JEp2が、リンクLK2を関節機構JEr3に対して相対的に移動させればよい。このように、本実施形態では、リンクLK2が延在する方向De2がZ方向(軸Ax1に沿う方向)に垂直である場合、関節機構JEp2のみの駆動により先端部TP1をY方向に直進移動させることができる。この場合、関節機構JEp2のみの駆動であるため、特異点を考慮する必要がない。このように、本実施形態では、簡易な制御で先端部TP1を直進移動させることができる。
 例えば、複数の関節機構JEの各々の動作量をエンドエフェクタ20の位置から計算する逆軌道計算では、回転動作を行う関節機構JEの数が多い場合、回転動作を行う関節機構JEの数が少ない場合に比べて、演算の負荷が増加する傾向にある。本実施形態では、エンドエフェクタ20をY方向に水平移動させるために、逆軌道計算を行う場合、Y方向(方向De2)の移動量を算出するだけでよい。このため、本実施形態では、エンドエフェクタ20をY方向に水平移動させるための逆軌道計算等を行う場合の演算の負荷を低減することができ、演算を高速に実行することができる。
 なお、先端部TP1をY方向に直進移動させる動作は、図4において説明した第3状態で行われてもよい。この場合においても、簡易な制御で先端部TP1をY方向に直進移動させることができる。例えば、関節機構JEr3がリンクLK1の端部LK1ed1に位置する第3状態(図4に示した第3状態)では、関節機構JRp1のみの駆動により先端部TP1をY方向に直進移動させることができる。また、関節機構JEr3がリンクLK1の端部LK1ed2に位置する第3状態では、関節機構JRp2のみの駆動により先端部TP1をY方向に直進移動させることができる。なお、第3状態では、関節機構JRp1及びJEp2の両方の駆動により先端部TP1をY方向に直進移動させてもよい。例えば、第3状態では、関節機構JEr3がリンクLK1の端部LK1ed1とリンクLK2の端部LK2ed2との中間付近に位置するように、関節機構JRp1及びJEp2の両方の駆動により先端部TP1をY方向に直進移動させてもよい。
 先端部TP1をY方向に直進移動させる動作が第3状態で行われる場合においても、特異点を考慮する必要がないため、ロボット10を安全に動作させることができる。なお、先端部TP1をZ方向に直進移動させる動作は、例えば、リンクLK1及びLK2の状態を図2に示した第2状態にすることにより、簡易な制御で実行される。
 次に、図6を参照しながら、ロボットコントローラ30のハードウェア構成について説明する。
 図6は、図1に示したロボットコントローラ30のハードウェア構成の一例を示す図である。
 ロボットコントローラ30は、ロボットコントローラ30の各部を制御する処理装置32と、各種情報を記憶するメモリ33と、通信装置34と、作業者等による操作を受け付ける操作装置35と、表示装置36と、ドライバ回路37とを有する。
 メモリ33は、例えば、処理装置32の作業領域として機能するRAM(Random Access Memory)等の揮発性メモリと、制御プログラムPGr等の各種情報を記憶するEEPROM(Electrically Erasable Programmable Read-Only Memory)等の不揮発性メモリとの、一方又は両方を含む。なお、メモリ33は、ロボットコントローラ30に着脱可能であってもよい。具体的には、メモリ33は、ロボットコントローラ30に着脱されるメモリカード等の記憶媒体であってもよい。また、メモリ33は、例えば、ロボットコントローラ30とネットワーク等を介して通信可能に接続された記憶装置(例えば、オンラインストレージ)であってもよい。
 図6に示すメモリ33は、制御プログラムPGrを記憶している。本実施形態では、制御プログラムPGrは、例えば、ロボットコントローラ30がロボット10の動作を制御するためのアプリケーションプログラムを含む。但し、制御プログラムPGrは、例えば、処理装置32がロボットコントローラ30の各部を制御するためのオペレーティングロボットシステムプログラムを含んでもよい。
 処理装置32は、ロボットコントローラ30の全体を制御するプロセッサであり、例えば、1又は複数のCPU(Central Processing Unit)を含んで構成される。処理装置32は、例えば、メモリ33に記憶された制御プログラムPGrを実行し、制御プログラムPGrに従って動作することで、ロボット10の動作を制御する。なお、制御プログラムPGrは、ネットワーク等を介して他の装置から送信されてもよい。
 また、例えば、処理装置32が複数のCPUを含んで構成される場合、処理装置32の機能の一部又は全部は、これら複数のCPUが制御プログラムPGr等のプログラムに従って協働して動作することで実現されてもよい。また、処理装置32は、1又は複数のCPUに加え、又は、1又は複数のCPUのうち一部又は全部に代えて、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、又は、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されるものであってもよい。この場合、処理装置32の機能の一部又は全部は、DSP等のハードウェアにより実現されてもよい。
 通信装置34は、ロボットコントローラ30の外部に存在する外部装置と通信を行うためのハードウェアである。例えば、通信装置34は、近距離無線通信によって外部装置と通信する機能を有する。なお、通信装置34は、移動体通信網又はネットワークを介して外部装置と通信する機能をさらに有してもよい。
 操作装置35は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、スイッチ、ボタン及びセンサ等)である。例えば、操作装置35は、作業者の操作を受け付け、操作に応じた操作情報を処理装置32に出力する。なお、例えば、表示装置36の表示面に対する接触を検出するタッチパネルが、操作装置35として採用されてもよい。
 表示装置36は、外部への出力を実施するディスプレイ等の出力デバイスである。表示装置36は、例えば、処理装置32による制御のもとで、画像を表示する。なお、操作装置35及び表示装置36は、一体となった構成(例えば、タッチパネル)であってもよい。
 ドライバ回路37は、処理装置32による制御のもとで、ロボット10を駆動するための信号をロボット10に出力するハードウェアである。例えば、ドライバ回路37は、処理装置32による制御のもとで、モータMOr1、MOr2、MOr3、MOr4、MOr5、MOr6、MOp1及びMOp2等を駆動する信号をロボット10に出力する。なお、モータMOr1、MOr2、MOr3、MOr4、MOr5及びMOr6は、関節機構JEr1、JEr2、JEr3、JEr4、JEr5及びJEr6をそれぞれ駆動するモータである。また、モータMOp1及びMOp2は、関節機構JEp1及びJEp2をそれぞれ駆動するモータである。
 このように、ロボットコントローラ30は、モータMOr1、MOr2、MOr3、MOr4、MOr5、MOr6、MOp1及びMOp2を制御することにより、ロボット10の動作を制御する。
 以上、本実施形態では、ロボット10は、ボディ部BDPと、先端部TP1と、ボディ部BDPと先端部TP1とを接続するリンクLK1及びLK2(複数のリンクLK)と、関節機構JEr3と、関節機構JEp1と、関節機構JEp2とを有する。関節機構JEr3は、リンクLK1とリンクLK2とを接続し、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸Ax3を第1回転軸としてリンクLK2をリンクLK1に対して回転させる。関節機構JEp1は、方向De1に沿って、関節機構JEr3をリンクLK1に対して相対的に移動させる。関節機構JEp2は、リンクLK2が延在する方向De2に沿って、リンクLK2を関節機構JEr3に対して相対的に移動させる。
 このように、本実施形態では、関節機構JEp1が、方向De1に沿って、関節機構JEr3をリンクLK1に対して相対的に移動させ、関節機構JEp2が、方向De2に沿って、リンクLK2を関節機構JEr3に対して相対的に移動させる。これにより、本実施形態では、簡易な制御によってロボット10の先端部TP1をボディ部BDPの周辺に移動させることができる。
 また、本実施形態では、ロボット10は、関節機構JEr1、JEr2及びJEr3をさらに有する。関節機構JEr1は、ボディ部BDPの底面BDPbtに垂直な方向とのなす角度が所定の角度以下の軸Ax1を第2回転軸として、ボディ部BDPの少なくとも一部分を回転させる。関節機構JEr2は、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに垂直な方向とのなす角度が所定の角度より大きい軸Ax2を第3回転軸としてリンクLK1を回転させる。関節機構JEr4は、リンクLK2と先端部TP1とを接続し、先端部TP1をリンクLK2に対して回転させる。これにより、本実施形態では、簡易な制御によって、リンクLK2に接続された先端部TP1を、リンクLK1に接続されたボディ部BDPの周辺に移動させることができる。
 また、本実施形態では、関節機構JEr4は、方向De2とのなす角度が所定の角度より大きい軸Ax4を第4回転軸として、先端部TP1をリンクLK2に対して回転させる。先端部TP1は、リンクLK2に接続される第1部分TP11と、第1部分TP11に接続される第2部分TP12と、関節機構JEr5と、関節機構JEr6とを含む。関節機構JEr5は、第1部分TP11と第2部分TP12とを接続し、第4回転軸(軸Ax4)とのなす角度が所定の角度より大きい軸Ax5を第5回転軸として、第2部分TP12を第1部分TP11に対して回転させる。関節機構JEr6は、第5回転軸(軸Ax5)とのなす角度が所定の角度より大きい軸Ax6を第6回転軸として、先端部TP1のうちエンドエフェクタ20が取り付けられる部分(例えば、端面TP1sf)を回転させる。このように、本実施形態は、関節機構JEp1及びJEp2を垂直6軸多関節ロボットに追加することによって実現されてもよい。例えば、本実施形態では、先端部TP1が関節機構JEr5及びJEr6を含むため、関節機構JEr4、JEr5及びJEr6等によって、ボディ部BDPの周辺において様々な作業をロボット10に実行させることができる。
 また、本実施形態では、リンクLK1及びLK2の状態は、第1状態に遷移可能である。第1状態は、第1回転軸(軸Ax3)が、リンクLK1の2つの端部LK1edのうち、ボディ部BDPから遠い端部LK1ed2よりもボディ部BDPに近い端部LK1ed1の近くに位置し、かつリンクLK2の2つの端部LK2edのうち、先端部TP1から遠い端部LK2ed1よりも先端部TP1に近い端部LK1ed2の近くに位置する、状態である。このように、第1状態では、軸Ax3は、ボディ部BDPの近くに位置する。これにより、第1状態では、先端部TP1がボディ部BDPの周辺に位置する場合の軸Ax3から先端部TP1までの長さを短くすることができる。例えば、軸Ax3から先端部TP1までの長さが短い場合、軸Ax3から先端部TP1までの長さが長い場合に比べて、リンクLK2及び先端部TP1の可動スペースを広くする必要がない。このため、本実施形態では、ロボット10の周辺のスペースが狭い場合でもロボット10を容易に駆動することができる。この結果、本実施形態では、ボディ部BDPに近い場所に配置された物品GDに対する作業をロボット10に効率よく実行させることができる。
 また、本実施形態では、リンクLK1及びLK2の状態は、第2状態に遷移可能である。
 第2状態は、方向De1及び方向De2が、第2回転軸(軸Ax1)に平行であり、リンクLK2の2つの端部LK2edのうち先端部TP1から遠い端部LK2ed1が、リンクLK1の2つの端部LK1edのうち、ボディ部BDPから遠い端部LK1ed2よりもボディ部BDPに近い端部LK1ed1の近くに位置する、状態である。第2状態では、リンクLK1及びLK2が軸Ax1に沿って延在するため、軸Ax1を回転軸としてロボット10を回転させる場合の慣性力を、小さくすることができる。従って、本実施形態では、リンクLK1及びLK2の状態を第2状態にすることにより、ロボットアーム(リンクLK1及びLK2)の物理的長さ及び重量に起因する慣性力を小さくすることができる。これにより、本実施形態では、軸Ax1を回転軸としてロボット10を回転させる動作を含む作業のロボット10のトータルの動作時間の短縮、及び、動作精度の向上等を実現することができる。
 また、本実施形態では、ロボット10は、関節機構JEr3を駆動するモータMOr3と、関節機構JEp1を駆動するモータMOp1と、関節機構JEp2を駆動するモータMOp2と、をさらに有する。関節機構JEp1は、ねじ部JEp11及びナットJEp12を有する。ねじ部JEp11は、リンクLK1の内部に配置され、方向De1に延在し、モータMOp1の回転に伴い、方向De1に沿う軸を回転軸として回転する。ナットJEp12は、関節機構JEr3に接続され、ねじ部JEp11が挿通され、ねじ部JEp11の回転に伴い、ねじ部JEp11に対して相対的に移動する。関節機構JEp2は、ねじ部JEp21及びナットJEp22を有する。ねじ部JEp21は、リンクLK2の内部に配置され、方向De2に延在し、モータMOp2の回転に伴い、方向De2に沿う軸を回転軸として回転する。ナットJEp22は、関節機構JEr3に接続され、ねじ部JEp21が挿通され、ねじ部JEp21の回転に伴い、ねじ部JEp21に対して相対的に移動する。関節機構JEr3は、ナットJEp12の移動に伴い、リンクLK1に対して相対的に移動する。リンクLK2は、ナットJEp22の移動に伴い、関節機構JEr3に対して相対的に移動する。このように、本実施形態では、関節機構JEp1及びJEp2を簡易な構成で実現することができる。
 また、本実施形態では、ロボットコントローラ30は、モータMOr3、モータMOp1及びモータMOp2を制御することにより、ロボット10の動作を制御する。このように、本実施形態では、ロボットコントローラ30により、ロボット10の動作を容易に制御することができる。
 また、本実施形態では、ロボットシステム1は、ロボット10と、先端部TP1に取り付けられたエンドエフェクタ20と、ロボット10及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。このように、本実施形態では、簡易な制御によって先端部TP1をボディ部BDPの周辺に移動させることができるロボット10がロボットシステム1に用いられる。このため、本実施形態では、ボディ部BDPの周辺の狭い場所においても、複雑な作業及び単純な作業を効率よく行うことができる。例えば、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法にロボットシステム1が用いられてもよい。この場合、部品を組み付ける、又は、部品を取り除く作業を効率よく実行することができる。
[2.第2実施形態]
 次に、図7を参照しながら、第2実施形態に係るロボットシステム1の概要の一例について説明する。
 図7は、第2実施形態に係るロボットシステム1の概要を説明するための説明図である。図1から図6において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。
 図7に示すロボットシステム1は、図1に示したロボット10の代わりにロボット10Aを有することを除いて、図1に示したロボットシステム1と同様である。例えば、図7に示すロボットシステム1は、ロボット10Aと、ロボット10Aに着脱可能に取り付けられるエンドエフェクタ20と、ロボット10A及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。ロボット10Aは、「多関節ロボット」の他の例である。図7においても、図を見やすくするために、複数の関節機構JEを駆動する複数のモータMO、複数のモータMOの各々に設けられる減速機及びエンコーダ等の記載を省略している。
 ロボット10Aは、方向De1からの平面視において軸Ax3に沿う直線と軸Ax2に沿う直線とが垂直になる点を除いて、図1に示したロボット10と同様である。例えば、図1に示したロボット10では、方向De1からの平面視において軸Ax3に沿う直線と軸Ax2に沿う直線とが平行になるように、関節機構JEr2及びリンクLK1が互いに接続される場合を想定している。これに対し、ロボット10Aでは、方向De1からの平面視において軸Ax3に沿う直線と軸Ax2に沿う直線とが垂直になるように、関節機構JEr2及びリンクLK1が互いに接続される場合を想定する。以下では、関節機構JEr2及びJEr3を中心に説明する。
 関節機構JEr2は、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに平行な軸Ax2を回転軸としてリンクLK1をボディ部BDPに対して回転させる。図7の回転方向Dr2は、リンクLK1が軸Ax2を回転軸として回転する場合のリンクLK1の回転方向を示す。また、方向Dax2は、関節機構JEr2の回転軸である軸Ax2に沿う方向のうち、関節機構JEr2からリンクLK1に向かう方向である。
 なお、本実施形態においても、リンクLK1は、関節機構JEr1により、軸Ax1を回転軸としてボディ部BDPに対して回転し、関節機構JEr2により、軸Ax2を回転軸としてボディ部BDPに対して回転する。
 関節機構JEr3は、リンクLK1とリンクLK2とを接続し、リンクLK1が延在する方向De1に垂直な軸Ax3を回転軸としてリンクLK2をリンクLK1に対して回転させる。図7の回転方向Dr3は、リンクLK2が軸Ax3を回転軸として回転する場合のリンクLK2の回転方向を示す。また、方向Dax3は、関節機構JEr3の回転軸である軸Ax3に沿う方向のうち、リンクLK1からリンクLK2に向かう方向である。
 本実施形態では、軸Ax3は、方向De1及びDax2に垂直な軸である。この場合、上述したように、方向De1からの平面視において、軸Ax3に沿う直線と軸Ax2に沿う直線は、90度で交差する。すなわち、方向De1からの平面視において、軸Ax3に沿う方向Dax3と軸Ax2に沿う方向Dax2は、90度で交差している。なお、「90度で交差」は、厳密に90度で交差することだけではなく、実質的に90度(例えば、90度と見なせる誤差範囲内の角度)で交差することも含む。90度は、「第1角度」の一例である。
 このように、本実施形態では、方向De1からの平面視において、軸Ax3に沿う方向Dax3と軸Ax2に沿う方向Dax2とが90度で交差しているため、リンクLK2の旋回面は、リンクLK1の旋回面に対して垂直となる。なお、リンクLK2の旋回面は、リンクLK2が軸Ax3を回転軸として回転する場合のリンクLK2の所定位置の軌跡を含む面である。同様に、リンクLK1の旋回面は、リンクLK1が軸Ax2を回転軸として回転する場合のリンクLK1の所定位置の軌跡を含む面である。
 また、図7に示すロボット10Aの状態(姿勢)は、本実施形態におけるロボット10Aの特徴を表す状態の1つである。例えば、図7に示す姿勢では、リンクLK1は、関節機構JEr2により、ボディ部BDPの底面BDPbtに対して水平な状態、すなわち、ロボット10Aの接地面に対して水平な状態になるまで倒されている。また、関節機構JEr3は、移動領域ARmv1において、移動領域ARmv1の両端部を除く中間領域ARmd1(図8参照)よりもリンクLK1の端部LK1ed2に近い位置に位置している。また、関節機構JEr3は、移動領域ARmv2において、移動領域ARmv2の両端部を除く中間領域ARmd2(図8参照)よりもリンクLK2の端部LK2ed1に近い位置に位置している。
 本実施形態では、図7に示す姿勢から、関節機構JEr3がリンクLK2をリンクLK1に対して回転(旋回)させることにより、先端部TP1を接地面に対して水平方向に回転させることができる。また、本実施形態では、図7に示す姿勢から、関節機構JEp1が関節機構JEr3を方向De1に沿って移動させることにより、先端部TP1を方向De1に沿って移動させることができる。また、本実施形態では、図7に示す姿勢から、関節機構JEp2が関節機構JEr3を方向De2に沿って移動させることにより、先端部TP1を方向De2に沿って移動させることができる。すなわち、本実施形態では、図7に示す姿勢から、先端部TP1を接地面に対して水平方向に移動させることができる。なお、先端部TP1を接地面に対して水平方向に移動させる動作の具体例については、後述する図9及び図10において説明される。
 また、本実施形態においても、関節機構JEp1により、方向De1に沿ってリンクLK2をリンクLK1に対して相対的に移動させることができ、関節機構JEp2により、方向De2に沿ってリンクLK2をリンクLK1に対して相対的に移動させることができる。これにより、本実施形態においても、先端部TP1(より詳細には、端面TP1sf)が到達可能な領域を広くすることができる。この結果、本実施形態では、ロボット10Aに取り付けられるエンドエフェクタ20が到達可能な領域を広くすることができる。
 また、本実施形態においても、関節機構JEp1及びJEp2により、ロボット10Aの先端部TP1をボディ部BDPの周辺に容易に移動させることができる。例えば、ロボットコントローラ30は、軸Ax3がリンクLK1の端部LK1ed2よりも端部LK1ed1の近くに位置し、かつ、リンクLK2の端部LK2ed1よりも端部LK2ed2の近くに位置するように、関節機構JEp1及びJEp2を制御する。この場合、リンクLK1の実質的なリンク長(アーム長)である端部LK1ed1から軸Ax3の長さは、リンクLK1の長さの半分以下になる。また、リンクLK2の実質的なリンク長(アーム長)である軸Ax3から端部LK2ed2の長さは、リンクLK2の長さの半分以下になる。従って、リンクLK1とリンクLK2とが干渉する領域は非常に少なく、先端部TP1を、ボディ部BDPの周辺に容易に移動させることができ、ロボット10Aのボディ部BDPの周辺の作業を容易に行うことが可能となる。
 また、本実施形態においても、リンクLK1及びリンクLK2の実質的なリンク長を短くすることにより、基部の周辺であっても多関節ロボットの作業可能領域を狭めることなく、高精度にロボットの先端部を制御することができる。
 なお、ロボットシステム1の構成は、図7に示す例に限定されない。例えば、方向De1からの平面視において、軸Ax3に沿う方向Dax3と軸Ax2に沿う方向Dax2とが交差する角度は、90度に限定されない。例えば、方向De1からの平面視において、軸Ax3に沿う方向Dax3と軸Ax2に沿う方向Dax2とは、所定の角度以上の第1角度で交差してもよい。
 次に、図8を参照しながら、関節機構JEr2の一例について簡単に説明する。
 図8は、関節機構JEの一例を説明するための説明図である。各関節機構JEは、図2に示した各関節機構JEと同様である。但し、関節機構JEr2及びリンクLK1は、上述したように、方向De1からの平面視において軸Ax3に沿う直線と軸Ax2に沿う直線とが垂直になるように、互いに接続される。図8では、関節機構JEr2を中心に説明する。
 本実施形態においても、関節機構JEr2は、例えば、回転部JEr21と、関節機構JEr2を駆動するモータMOr2を収納する筐体JEr22とを有する。回転部JEr21は、モータMOr2の回転に伴い、軸Ax2を回転軸として回転する。例えば、回転部JEr21は、軸Ax2を回転軸として筐体JEr22に対して回転可能に、モータMOr2に取り付けられている。さらに、回転部JEr21は、リンクLK1に接続される。また、リンクLK1は、筐体JEr22に対して回転可能に筐体JEr22に接続される。これにより、リンクLK1は、回転部JEr21の回転に伴い、軸Ax2を回転軸として筐体JEr22に対して回転する。また、筐体JEr22の内部には、モータMOr2が取り付けられている。
 なお、図8に示す例では、回転部JEr21はリンクLK1の外部に位置しているが、回転部JEr21の一部がリンクLK1の内部に位置し、回転部JEr21の他の部分が筐体JEr22の内部に位置してもよい。あるいは、回転部JEr21の全体がリンクLK1の内部又は筐体JEr22の内部に位置してもよい。
 また、図8では、関節機構JEr3が、移動領域ARmv1の両端部を除く中間領域ARmd1に位置し、かつ、移動領域ARmv2の両端部を除く中間領域ARmd2に位置する例が示されているが、関節機構JEr3の位置は、特に限定されない。例えば、図8に示す姿勢において、関節機構JEr3の位置は、リンクLK1の端部LK1ed2よりも端部LK1ed1に近く、かつ、リンクLK2の端部LK1ed2よりも端部LK1ed1に近い位置でもよい。あるいは、図8に示す姿勢において、関節機構JEr3の位置は、リンクLK1の端部LK1ed1よりも端部LK1ed2に近く、かつ、リンクLK2の端部LK1ed1よりも端部LK1ed2に近い位置でもよい。
 次に、図9及び図10を参照しながら、先端部TP1を接地面に対して水平方向に移動させる動作の一例について説明する。
 図9は、ロボット10Aの先端部TP1を接地面に対して水平方向に移動させる動作の一例を説明するための説明図である。図10は、図9に示したロボット10Aの動作の続きの動作を説明するための説明図である。
 なお、図9及び図10と後述する図11とにおいても、説明の便宜上、互いに直交するX軸、Y軸及びZ軸を有する3軸の直交座標系を導入する。
 本実施形態では、XY平面が、ボディ部BDPの底面BDPbtに対して平行、すなわち、ロボット10Aの接地面に対して平行である場合を想定する。また、図9及び図10に示す例では、方向De1は、Y方向に平行であり、方向Dax2は、X方向に平行であり、方向Dax3は、Z方向に平行である。
 図の上面図は、+Z方向から見たロボット10Aの状態を模式的に示し、図のXZ側面図は、-Y方向から見たロボット10Aの状態を模式的に示し、図のYZ側面図は、-X方向から見たロボット10Aの状態を模式的に示している。
 図9(a)に示す第1姿勢では、リンクLK1は、関節機構JEr2により、ボディ部BDPの底面BDPbtに対して水平な状態、すなわち、ロボット10Aの接地面に対して水平な状態になるまで倒されている。また、リンクLK2は、+Z方向からの平面視において、関節機構JEr3により、リンクLK2の延在方向(方向De2)がリンクLK1の延在方向(方向De1)に垂直となる状態に、維持されている。また、関節機構JEr3は、リンクLK1の端部LK1ed2よりも端部LK1ed1に近い位置に位置し、かつ、リンクLK2の端部LK2ed1及びLK2ed2間の中間付近(例えば、図8に示した中間領域ARmd2)に位置している。
 そして、図9(b)に示すように、例えば、ロボットコントローラ30は、関節機構JEp2を制御することにより、リンクLK2を関節機構JEr3に対して-X方向に移動させる。すなわち、ロボットコントローラ30は、関節機構JEp2を制御することにより、先端部TP1の端面TP1sfを接地面に対して水平方向に維持した状態で、先端部TP1を-X方向に移動させる。これにより、ロボット10Aの姿勢は、図9(a)に示す第1姿勢から図9(b)に示す第2姿勢に変化する。
 次に、図10(c)に示すように、例えば、ロボットコントローラ30は、関節機構JEp1を制御することにより、関節機構JEr3をリンクLK1の延在方向(方向De1)に沿って-Y方向に移動させる。すなわち、ロボットコントローラ30は、関節機構JEp1を制御することにより、先端部TP1の端面TP1sfを接地面に対して水平方向に維持した状態で、先端部TP1を-Y方向に移動させる。これにより、ロボット10Aの姿勢は、図9(b)に示した第2姿勢から図10(c)に示す第3姿勢に変化する。
 そして、図10(d)に示すように、例えば、ロボットコントローラ30は、関節機構JEp2を制御することにより、リンクLK2を関節機構JEr3に対して+X方向に移動させる。すなわち、ロボットコントローラ30は、関節機構JEp2を制御することにより、先端部TP1の端面TP1sfを接地面に対して水平方向に維持した状態で、先端部TP1を+X方向に移動させる。これにより、ロボット10Aの姿勢は、図10(c)に示す第3姿勢から図10(d)に示す第4姿勢に変化する。
 このように、本実施形態では、ロボット10Aの姿勢を、第1姿勢、第2姿勢、第3姿勢及び第4姿勢の順に変化させることにより、先端部TP1を、接地面に対して水平な面を有する長方形の3辺をたどるように、移動させることができる。
 ここで、例えば、従来の6軸多関節ロボットでは、先端部TP1を、接地面に対して水平な面を有する長方形の3辺をたどるように、移動させる場合、4つ又は5つの関節機構JErを正確に制御する必要がある。従って、従来の6軸多関節ロボットでは、先端部TP1を長方形の各辺に沿って移動させる場合、駆動させる関節機構JErが多くなるため、動作が複雑になる。このため、従来の6軸多関節ロボットでは、動作速度又は動作精度の低下等の問題が生じる。また、従来の6軸多関節ロボットでは、先端部TP1を長方形の各辺に沿って移動させるために駆動される複数の関節機構JErの各々のトルクが制限される場合がある。この場合、先端部TP1を高速に移動させること、又は、可搬重量を大きくすることが困難になる。
 これに対し、本実施形態では、上述したように、複数の関節機構JEのうち、直動関節に対応する関節機構JEp1及びJEp2のみを駆動することにより、先端部TP1を長方形の各辺に沿って移動させることができる。これにより、本実施形態では、動作速度又は動作精度の低下を抑制することができる。すなわち、本実施形態では、ロボット10Aの先端部TP1を長方形の各辺に沿って高精度及び高速に移動させることができる。例えば、本実施形態では、長方形の各辺に沿って溶接する作業、又は、長方形の各辺に沿って接着剤を塗布する作業等を、ロボット10Aに高精度及び高速に実行させることができる。
 また、本実施形態では、回転関節に対応する関節機構JErを駆動することなく、先端部TP1を所定の平面上で移動させることができるため、回転関節のトルクの制限等の影響を受けない。このため、本実施形態では、先端部TP1を所定の平面上で移動させる場合に、先端部TP1を高速に移動させること、及び、可搬重量を大きくすることができる。
 なお、本実施形態では、長方形の各辺に沿って先端部TP1が移動する動作に限らず、接地面に対して水平な面(XY平面)上を先端部TP1が移動する動作であれば、複数の関節機構JEのうちの関節機構JEp1及びJEp2のみの駆動により実現することができる。例えば、本実施形態では、ロボット10Aの先端部TP1に筆記具を保持させることにより、ロボット10Aに図形を描画させることも可能である。従来の6軸多関節ロボットでは、先端部TP1を接地面に対して水平な面上で移動させる場合においても、先端部TP1を長方形の各辺に沿って移動させる場合と同様の課題がある。本実施形態では、先端部TP1を接地面に対して水平な面上で移動させる場合においても、複数の関節機構JEのうち、直動関節に対応する関節機構JEp1及びJEp2のみを駆動することにより、先端部TP1を高精度及び高速に移動させることができる。また、本実施形態では、先端部TP1を接地面に対して水平な面上で移動させる場合においても、可搬重量を大きくすることができる。
 また、本実施形態では、例えば、リンクLK2がリンクLK1に対して回転(旋回)するように関節機構JEr3を駆動することにより、先端部TP1を接地面に対して水平方向に回転させることができる。この場合においても、先端部TP1を高精度及び高速に移動させること、及び、可搬重量を大きくすることができる。
 また、本実施形態では、接地面に対して水平な面(XY平面)上を先端部TP1が移動する動作に限らず、複数の関節機構JEのうちの関節機構JEp1及びJEp2のみの駆動により実現される動作においても、上述した効果と同様の効果を得ることができる。例えば、本実施形態では、図11(b)に示すように、先端部TP1が接地面に対して垂直な面(XZ平面、YZ平面)上を移動する動作を、複数の関節機構JEのうちの関節機構JEp1及びJEp2のみの駆動により実現することができる。あるいは、本実施形態では、図11(c)に示すように、先端部TP1が接地面に対して傾斜している平面上を移動する動作を、複数の関節機構JEのうちの関節機構JEp1及びJEp2のみの駆動により実現することができる。
 図11は、複数の関節機構JEのうち、直動関節に対応する2つの関節機構JEp1及びJEp2のみを駆動することにより実現される動作の一例を説明するための説明図である。なお、図11では、-X方向から見たロボット10Aの状態(姿勢)が模式的に示されている。
 図11(a)は、接地面に対して水平な面SF1(XY平面)上を先端部TP1が移動する場合のロボット10Aの状態(姿勢)を模式的に示している。なお、図11(a)に示すロボット10Aの姿勢は、エンドエフェクタ20として筆記具がロボット10Aの先端部TP1に取り付けられていることを除いて、図9(a)に示した第1姿勢と同様である。例えば、本実施形態では、ロボット10Aの姿勢を図11(a)に示す姿勢にすることにより、接地面に対して水平な面SF1(例えば、床面)に図形等を描画する作業をロボット10Aに容易に実行させることができる。
 図11(b)は、接地面に対して垂直な面SF2(XZ平面)上を先端部TP1が移動する場合のロボット10Aの状態(姿勢)を模式的に示している。ロボット10Aの姿勢は、例えば、図11(a)に示した姿勢から、リンクLK1が接地面に対して垂直になるように、関節機構JEr2を駆動することにより、図11(b)に示す姿勢に遷移する。例えば、本実施形態では、ロボット10Aの姿勢を図11(b)に示す姿勢にすることにより、接地面に対して垂直な面SF2(例えば、壁面)に図形等を描画する作業をロボット10Aに容易に実行させることができる。
 図11(c)は、接地面に対して傾斜している平面SF3上を先端部TP1が移動する場合のロボット10Aの状態(姿勢)を模式的に示している。平面SF3は、例えば、図11(a)に示した面SF1及び図11(b)に示した面SF2に対して傾斜している。ロボット10Aの姿勢は、例えば、図11(a)に示した姿勢から、リンクLK1の延在方向(方向De1)が平面SF3と平行になるように、関節機構JEr2を駆動することにより、図11(c)に示す姿勢に遷移する。例えば、本実施形態では、ロボット10Aの姿勢を図11(c)に示す姿勢にすることにより、接地面に対して傾斜している平面SF3に図形等を描画する作業をロボット10Aに容易に実行させることができる。
 接地面に対して水平な面SF1、接地面に対して垂直な面SF2、及び、接地面に対して傾斜している平面SF3は、「所定の平面」の一例である。また、図11に示す例においても、リンクLK2がリンクLK1に対して回転(旋回)するように関節機構JEr3を駆動することにより、面SF1等の所定の平面上で先端部TP1を回転させることができる。この場合においても、先端部TP1を高精度及び高速に移動させること、及び、可搬重量を大きくすることができる。
 次に、図12を参照しながら、ロボットコントローラ30のハードウェア構成について説明する。
 図12は、図7に示したロボットコントローラ30のハードウェア構成の一例を示す図である。
 図12に示すロボットコントローラ30は、図6に示した制御プログラムPGrの代わりに制御プログラムPGr2がメモリ33に記憶されることを除いて、図6に示したロボットコントローラ30と同様である。例えば、ロボットコントローラ30は、ロボットコントローラ30の各部を制御する処理装置32と、各種情報を記憶するメモリ33と、通信装置34と、作業者等による操作を受け付ける操作装置35と、表示装置36と、ドライバ回路37とを有する。
 図12に示すメモリ33は、制御プログラムPGr2を記憶している。本実施形態では、制御プログラムPGr2は、例えば、ロボットコントローラ30がロボット10Aの動作を制御するためのアプリケーションプログラムを含む。但し、制御プログラムPGr2は、例えば、処理装置32がロボットコントローラ30の各部を制御するためのオペレーティングロボットシステムプログラムを含んでもよい。
 処理装置32は、例えば、メモリ33に記憶された制御プログラムPGr2を実行し、制御プログラムPGr2に従って動作することで、ロボット10Aの動作を制御する。なお、制御プログラムPGr2は、ネットワーク等を介して他の装置から送信されてもよい。
 ドライバ回路37は、処理装置32による制御のもとで、ロボット10Aを駆動するための信号をロボット10Aに出力するハードウェアである。例えば、ドライバ回路37は、処理装置32による制御のもとで、モータMOr1、MOr2、MOr3、MOr4、MOr5、MOr6、MOp1及びMOp2等を駆動する信号をロボット10Aに出力する。
 このように、ロボットコントローラ30は、モータMOr1、MOr2、MOr3、MOr4、MOr5、MOr6、MOp1及びMOp2を制御することにより、ロボット10Aの動作を制御する。例えば、ロボットコントローラ30は、モータMOr3、MOp1及びMOp2を制御することにより、ロボット10Aの先端部TP1が所定の平面に沿って動作するように、ロボット10Aの動作を制御する。
 以上、本実施形態では、ロボット10Aは、ボディ部BDPと、先端部TP1と、リンクLK1及びリンクLK2を含み、ボディ部BDPと先端部TP1とを接続する複数のリンクLKと、リンクLK1とリンクLK2とを接続し、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸Ax3を第1回転軸としてリンクLK2をリンクLK1に対して回転させる関節機構JEr3と、方向De1に沿って、関節機構JEr3をリンクLK1に対して相対的に移動させる関節機構JEp1と、リンクLK2が延在する方向De2に沿って、リンクLK2を関節機構JEr3に対して相対的に移動させる関節機構JEp2と、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度以下の軸Ax1を第2回転軸として、ボディ部BDPの少なくとも一部分を回転させる関節機構JEr1と、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度より大きい軸Ax2を第3回転軸としてリンクLK1を回転させる関節機構JEr2と、を有する。方向De1からの平面視において、第1回転軸(軸Ax3)に沿う方向Dax3と第3回転軸(軸Ax2)に沿う方向Dax2は、所定の角度以上の第1角度で交差している。
 このように、本実施形態では、関節機構JEp1が、方向De1に沿って、関節機構JEr3をリンクLK1に対して相対的に移動させ、関節機構JEp2が、方向De2に沿って、リンクLK2を関節機構JEr3に対して相対的に移動させる。これにより、本実施形態では、簡易な制御によってロボット10Aの先端部TP1をボディ部BDPの周辺に移動させることができる。また、本実施形態では、リンクLK1及びリンクLK2の実質的なリンク長を短くすることにより、基部の周辺であっても多関節ロボットの作業可能領域を狭めることなく、高精度にロボットの先端部を制御することができる。
 また、本実施形態では、方向De1からの平面視において、第1回転軸(軸Ax3)に沿う方向Dax3と第3回転軸(軸Ax2)に沿う方向Dax2とは、第1角度で交差している。このため、本実施形態では、リンクLK2の旋回面とリンクLK1の旋回面とのなす角は、第1角度となる。これにより、本実施形態では、リンクLK1の旋回面とのなす角が第1角度の平面上を先端部TP1が移動する動作を、複数の関節機構JEのうちの直動関節に対応する関節機構JEp1及びJEp2のみの駆動により、実現することができる。この結果、本実施形態では、リンクLK1の旋回面とのなす角が第1角度の平面上で先端部TP1を高精度及び高速に移動させることができる。さらに、本実施形態では、複数の関節機構JEのうちの関節機構JEp1及びJEp2のみの駆動により、リンクLK1の旋回面とのなす角が第1角度の平面上で先端部TP1を移動させることができるため、先端部TP1の可搬重量を大きくすることができる。
 また、本実施形態では、第1角度は、実質的に90度である。このため、本実施形態では、ロボット10Aの接地面に対して水平な面SF1、接地面に対して垂直な面SF2、又は、接地面に対して傾斜している平面SF3上で先端部TP1を高精度及び高速に移動させることができる。また、本実施形態では、複数の関節機構JEのうちの関節機構JEp1及びJEp2のみの駆動により、上述の面SF1、面SF2、又は、平面SF3上で先端部TP1を移動させることができるため、先端部TP1の可搬重量を大きくすることができる。
 また、本実施形態では、ロボット10Aは、リンクLK2と先端部TP1とを接続し、先端部TP1をリンクLK2に対して回転させる関節機構JEr4をさらに有する。関節機構JEr4は、方向De2とのなす角度が所定の角度より大きい軸Ax4を第4回転軸として、先端部TP1をリンクLK2に対して回転させる。先端部TP1は、リンクLK2に接続される第1部分TP11と、第1部分TP11に接続される第2部分TP12と、第1部分TP11と第2部分TP12とを接続し、第4回転軸(軸Ax4)とのなす角度が所定の角度より大きい軸Ax5を第5回転軸として、第2部分TP12を第1部分TP11に対して回転させる関節機構JEr5と、第5回転軸(軸Ax5)とのなす角度が所定の角度より大きい軸Ax6を第6回転軸として、先端部TP1のうちエンドエフェクタ20が取り付けられる部分を回転させる関節機構JEr6と、を含む。このように、ロボット10Aは、関節機構JEp1及びJEp2を6軸多関節ロボットに追加することによって実現されてもよい。例えば、本実施形態では、先端部TP1が関節機構JEr5及びJEr6を含むため、関節機構JEr4、JEr5及びJEr6等によって、ボディ部BDPの周辺、又は、所定の平面において、様々な作業をロボット10Aに実行させることができる。
 また、本実施形態では、ロボット10Aは、関節機構JEr3を駆動するモータMOr3と、関節機構JEp1を駆動するモータMOp1と、関節機構JEp2を駆動するモータMOp2と、関節機構JEr1を駆動するモータMOr1と、関節機構JEr2を駆動するモータMOr2と、をさらに有する。関節機構JEp1は、リンクLK1の内部に配置され、方向De1に延在し、モータMOp1の回転に伴い、方向De1に沿う軸を回転軸として回転するねじ部JEp11と、関節機構JEr3に接続され、ねじ部JEp11が挿通され、ねじ部JEp11の回転に伴い、ねじ部JEp11に対して相対的に移動するナットJEp12と、を有する。関節機構JEp2は、リンクLK2の内部に配置され、方向De2に延在し、モータMOp2の回転に伴い、方向De2に沿う軸を回転軸として回転するねじ部JEp21と、関節機構JEr3に接続され、ねじ部JEp21が挿通され、ねじ部JEp21の回転に伴い、ねじ部JEp21に対して相対的に移動するナットJEp22と、を有する。関節機構JEr3は、ナットJEp12の移動に伴い、リンクLK1に対して相対的に移動し、リンクLK2は、ナットJEp22の移動に伴い、関節機構JEr3に対して相対的に移動する。このように、本実施形態では、関節機構JEp1及びJEp2を簡易な構成で実現することができる。
 また、本実施形態では、ロボット10Aの動作を制御するロボットコントローラ30は、モータMOr3、MOp1及びMOp2を制御することにより、ロボット10Aの先端部TP1が所定の平面に沿って移動するように、ロボット10Aの動作を制御する。このように、本実施形態では、ロボットコントローラ30により、ロボット10Aの先端部TP1が所定の平面に沿って移動するように、ロボット10Aの動作を容易に制御することができる。
 また、本実施形態では、ロボットシステム1は、ロボット10Aと、先端部TP1に取り付けられたエンドエフェクタ20と、ロボット10A及びエンドエフェクタ20の動作を制御するロボットコントローラ30と、を有する。ロボットコントローラ30は、モータMOr3、MOp1、MOp2、MOr1及びMOr2を制御することにより、ロボット10Aの動作を制御する。このように、本実施形態では、簡易な制御によって先端部TP1を所定の平面に沿って移動させること、及び、簡易な制御によって先端部TP1をボディ部BDPの周辺に移動させることができるロボット10Aが、ロボットシステム1に用いられる。このため、本実施形態では、所定の平面上で行われる作業を効率よく行うことができる。あるいは、本実施形態では、ボディ部BDPの周辺の狭い場所においても、複雑な作業及び単純な作業を効率よく行うことができる。例えば、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法にロボットシステム1が用いられてもよい。この場合、部品を組み付ける、又は、部品を取り除く作業を効率よく実行することができる。
[3.変形例]
 本発明は、以上に例示した実施形態に限定されない。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を併合してもよい。
[第1変形例]
 上述した実施形態では、関節機構JEr4が、リンクLK2が延在する方向De2に垂直な軸Ax4を回転軸として、先端部TP1をリンクLK2に対して回転させる場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、関節機構JEr4は、リンクLK2が延在する方向De2とのなす角度が所定の角度以下の軸を回転軸として、先端部TP1をリンクLK2に対して回転させてもよい。
 図13は、第1変形例に係る先端部TP1Aの一例を説明するための説明図である。図1から図6において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。
 例えば、本変形例に係るロボット10又は10Aは、図1又は図7に示したリンクLK2、関節機構JEr4及び先端部TP1の代わりにリンクLK2A、関節機構JEr4A及び先端部TP1Aを有することを除いて、図1に示したロボット10又は図7に示したロボット10Aと同様である。リンクLK2Aは、関節機構JEr4の代わりに関節機構JEr4Aが接続されることを除いて、リンクLK2と同様である。なお、リンクLK2Aは、「第2リンク」の他の例であり、関節機構JEr4Aは、「第4駆動機構」の他の例である。
 関節機構JEr4Aは、リンクLK2Aと先端部TP1Aとを接続し、方向De2に平行な軸Ax4Aを回転軸として、先端部TP1AをリンクLK2Aに対して回転させる。図13の回転方向Dr4は、軸Ax4Aを回転軸として回転する場合の先端部TP1Aの回転方向を示す。なお、軸Ax4Aは、「第4回転軸」の他の例であり、リンクLK2Aが延在する方向De2とのなす角度が所定の角度以下の軸に該当する。
 先端部TP1Aにおいても、図1及び図7に示した先端部TP1と同様に、エンドエフェクタ20が端面TP1sfに取り付けられる。先端部TP1Aは、リンクLK2Aに接続される第1部分TP11Aと、第1部分TP11Aに接続される第2部分TP12Aと、関節機構JEr5Aと、関節機構JEr6とを含む。第1部分TP11Aは、例えば、関節機構JEr4Aを介してリンクLK2Aに接続される。従って、第1部分TP11Aは、軸Ax4Aを回転軸としてリンクLK2Aに対して回転する。
 関節機構JEr5Aは、第1部分TP11Aと第2部分TP12Aとを接続し、軸Ax4Aに垂直な軸Ax5を回転軸として、第2部分TP12Aを第1部分TP11Aに対して回転させる。図13の回転方向Dr5は、軸Ax5を回転軸として回転する場合の第2部分TP12Aの回転方向を示す。なお、関節機構JEr5Aは、「第5駆動機構」の他の例である。
 関節機構JEr6は、図1及び図7に示した関節機構JEr6と同様である。例えば、関節機構JEr6は、軸Ax5に垂直な軸Ax6を回転軸として、先端部TP1Aの少なくとも一部分(例えば、端面TP1sf)を回転させる。図13に示す例では、図1及び図7に示した関節機構JEr6と同様に、関節機構JEr6の表面が端面TP1sfに該当する。なお、関節機構JEr6が第2部分TP12Aに含まれる構成等では、第2部分TP12Aの端面が端面TP1sfであってもよい。
 以上、本変形例では、関節機構JEr4Aは、方向De2とのなす角度が所定の角度以下の軸Ax4Aを第4回転軸として、先端部TP1AをリンクLK2Aに対して回転させる。先端部TP1Aは、リンクLK2Aに接続される第1部分TP11Aと、第1部分TP11Aに接続される第2部分TP12Aと、関節機構JEr5Aと、関節機構JEr6とを含む。関節機構JEr5Aは、第1部分TP11Aと第2部分TP12Aとを接続し、第4回転軸(軸Ax4A)とのなす角度が所定の角度より大きい軸Ax5を第5回転軸として、第2部分TP12Aを第1部分TP11Aに対して回転させる。関節機構JEr6は、第5回転軸(軸Ax5)とのなす角度が所定の角度より大きい軸Ax6を第6回転軸として、先端部TP1Aのうちエンドエフェクタ20が取り付けられる部分(例えば、端面TP1sf)を回転させる。
 本変形例においても、上述した実施形態と同様の効果を得ることができる。例えば、本変形例においても、先端部TP1Aが関節機構JEr5A及びJEr6を含むため、関節機構JEr4、JEr5A及びJEr6等によって、ボディ部BDPの周辺、又は、所定の平面において、様々な作業をロボット10又は10Aに実行させることができる。
[第2変形例]
 上述した実施形態及び変形例では、関節機構JEr3を駆動するモータMOr3が関節機構JEr3と一体的に移動する場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、モータMOr3は、リンクLK1に対する関節機構JEr3の相対的な位置が変化しても関節機構JEr3を駆動可能に、リンクLK1の所定の場所に固定されてもよい。本変形例においても、上述した実施形態及び変形例と同様の効果を得ることができる。
[第3変形例]
 上述した実施形態及び変形例では、6軸多関節ロボットに2つの関節機構JEp1及びJEp2を追加した構成をロボット10又は10Aとして例示したが、本発明はこのような態様に限定されるものではない。例えば、ロボット10又は10Aは、7軸以上の多関節ロボットに2つの関節機構JEp1及びJEp2を追加した構成であってもよい。具体的には、ボディ部BDPと関節機構JEr2との間に、リンクLK1及びLK2とは異なる1以上のリンクLKが配置されてもよい。あるいは、関節機構JEr4と先端部TP1との間に、リンクLK1及びLK2とは異なる1以上のリンクLKが配置されてもよい。すなわち、ロボット10又は10Aは、ボディ部BDPと先端部TP1とを接続する3以上のリンクLKを有してもよい。この場合、ロボット10が有する3以上のリンクLKは、リンクLK1及びLK2を含む複数のリンクLKに該当する。
 以上、本変形例においても、上述した実施形態及び変形例と同様の効果を得ることができる。
[4.応用例]
 上述した実施形態及び変形例において説明したロボット10を含むロボットシステム1は、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法に用いられてもよい。
[5.その他]
 上述した実施形態において簡単に説明した「旋回」と他の回転との区別について、いくつかの例を挙げて説明する。
 図14は、旋回の一例を説明するための説明図である。図14では、長手方向を把握可能な2つのリンクLKi及びLKjの接続を例にして、旋回と他の回転との区別について説明する。図14の延在方向Deiは、リンクLKiが延在する方向を示し、延在方向Dejは、リンクLKjが延在する方向を示す。また、図14の関節機構JEriは、リンクLKiとリンクLKjとを接続し、軸Axiを回転軸として、リンクLKjをリンクLKiに対して回転させる。
 図14に示す例では、リンクLKiの延在方向Dei(特定の方向)と軸Axiとのなす角度θが所定の角度より大きい場合、当該軸Axiを回転軸とした回転は、「旋回」に該当する。すなわち、リンクLKiの延在方向Deiと軸Axiとのなす角度θが所定の角度以下の場合、当該軸Axiを回転軸とした回転は、旋回以外の回転(旋回と区別される他の回転)に該当する。図14に示す「回転」は、旋回以外の回転を示す。また、所定の角度は特に限定されないが、図14では、所定の角度が45°である場合を想定する。延在方向Deiと軸Axiとのなす角度θは、延在方向Deiに対する軸Axiの角度として把握される複数の角度(例えば、互いに交差する2つの直線では4つの角度、又は、平行な2つの直線では0°及び180°)のうち、0°以上90°以下の角度である。
 第1パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、90°であり、所定の角度(45°)よりも大きい。従って、第1パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回である。また、第1パターンでは、リンクLKjの延在方向Dejは、軸Axiに垂直である。なお、第1パターンでは、リンクLKjが軸Axiを回転軸として回転(旋回)した場合、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、変化する。
 第2パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、0°であり、所定の角度(45°)以下である。従って、第2パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第2パターンでは、リンクLKjの延在方向Dejは、リンクLKiの延在方向Dei及び軸Axiに平行である。すなわち、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、0°である。なお、第2パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、0°に維持され、常に一定である。
 第3パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、0°であり、所定の角度(45°)以下である。従って、第3パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第3パターンでは、リンクLKjの延在方向Dejは、リンクLKiの延在方向Dei及び軸Axiに垂直である。すなわち、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、90°である。なお、第3パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、90°に維持され、常に一定である。
 第4パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、10°であり、所定の角度(45°)以下である。従って、第4パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第4パターンでは、リンクLKjの延在方向Dejは、軸Axiに平行であり、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、10°である。なお、第4パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、10°に維持され、常に一定である。
 第5パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、70°であり、所定の角度(45°)よりも大きい。従って、第5パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回である。また、第5パターンでは、リンクLKjの延在方向Dejは、軸Axiに垂直である。なお、第5パターンでは、リンクLKjが軸Axiを回転軸として回転(旋回)した場合、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、変化する。
 第6パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、10°であり、所定の角度(45°)以下である。従って、第6パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第6パターンでは、リンクLKjの延在方向Dejは、軸Axiに垂直である。なお、第6パターンでは、リンクLKjが軸Axiを回転軸として回転した場合、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、変化する。
 第7パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、70°であり、所定の角度(45°)よりも大きい。従って、第7パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回である。また、第7パターンでは、リンクLKjの延在方向Dejは、軸Axiに平行であり、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、70°である。なお、第7パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、70°に維持され、常に一定である。
 このように、上述した実施形態及び変形例では、リンクLKiに対するリンクLKjの回転のうち、リンクLKiの延在方向Deiとのなす角度が所定の角度より大きい軸Axiを回転軸とした回転が、旋回とも称される。但し、「旋回」の定義は、上述の例に限定されない。例えば、リンクLKiの延在方向Deiとのなす角度が所定の角度より大きい軸Axiを回転軸とした回転を旋回とする上述の定義を第1定義とした場合、第1定義の代わりに、下記の第2定義又は第3定義が採用されてもよい。
 第2定義では、リンクLKiに対するリンクLKjの回転により、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度が変化する場合、当該回転が旋回に該当する。従って、第2定義では、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度が、回転しても常に一定の場合、当該回転は、旋回以外の回転に該当する。例えば、第2定義では、図14に示した第1パターン、第5パターン及び第6パターンは、旋回に該当し、第2パターン、第3パターン、第4パターン及び第7パターンは、旋回以外の回転に該当する。
 第3定義では、回転するリンクLKjの延在方向DejとリンクLKjの回転軸(軸Axi)とのなす角度が所定の角度より大きい場合、当該回転が旋回に該当する。従って、第3定義では、リンクLKjの延在方向DejとリンクLKjの回転軸(軸Axi)とのなす角度が所定の角度以下の場合、当該回転は、旋回以外の回転に該当する。例えば、第3定義では、図14に示した第1パターン、第3パターン、第5パターン及び第6パターンは、旋回に該当し、第2パターン、第4パターン及び第7パターンは、旋回以外の回転に該当する。
 また、上述の第1定義、第2定義及び第3定義とは別に、互いに隣接する2つの関節機構JErのそれぞれの回転軸の関係に着目して、2つの関節機構JErによる2つの回転の相対関係を定義してもよい。具体的には、2つの回転軸のなす角度が所定の角度以下である場合(典型的には、平行の場合)、2つの回転を同種の回転とし、2つの回転軸のなす角度が所定の角度よりも大きい場合(典型的には、直交する場合)、2つの回転を異種の回転としてもよい。なお、同種の回転とは、2つの回転とも旋回、又は、2つの回転とも旋回以外の回転であり、異種の回転とは、2つの回転の一方が旋回で他方が旋回以外の回転である。2つの回転の相対関係の定義が用いられる場合、相対関係の起点となる回転は、例えば、上述の第1定義、第2定義及び第3定義のいずれかに基づいて決められてもよい。図14に示した第1パターンは、第1定義、第2定義及び第3定義のいずれにおいても、旋回に該当し、第2パターンは、第1定義、第2定義及び第3定義のいずれにおいても、旋回以外の回転に該当する。従って、第1パターン又は第2パターンを、相対関係の起点となる回転とすることが好ましい。
 また、上述の第1定義、第2定義及び第3定義の2以上の定義を組み合わせた定義が用いられてもよい。この場合、例えば、組み合わせる2以上の定義の全てで旋回に該当する回転のみを旋回としてもよいし、組み合わせる2以上の定義の少なくとも1つで旋回に該当する回転を旋回としてもよい。
 1…ロボットシステム、10、10A…ロボット、20…エンドエフェクタ、30…ロボットコントローラ、32…処理装置、33…メモリ、34…通信装置、35…操作装置、36…表示装置、37…ドライバ回路、Ax1、Ax2、Ax3、Ax3z、Ax4、Ax4A、Ax5、Ax6、Axi…軸、BDP…ボディ部、BDPbt…底面、BDPba…土台部、GD…物品、JEr1、JEr2、JEr3、JEr4、JEr4A、JEr5、JEr5A、JEr6、JEri、JEp1、JEp2…関節機構、JEp11、JEp21…ねじ部、JEp12、JEp22…ナット、JEp13、JEp23…接続部、JEp13a、JEp23a…スライダー部、JEp13b、JEp23b…支持部、JEp14、JEp24…レール、JEp14a、JEp14b、JEp24a、JEp24b…棒状部材、JEr11、JEr21、JEr41、JEr51、JEr61…回転部、JEr12、JEr22、JEr42、JEr52、JEr62…筐体、LK1、LK2、LK2A、LKi、LKj…リンク、MOr1、MOr2、MOr3、MOr4、MOr5、MOr6、MOp1、MOp2…モータ、WB…作業台。

Claims (14)

  1.  基部と、
     先端部と、
     第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、
     前記第1リンクと前記第2リンクとを接続し、前記第1リンクが延在する第1方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、
     前記第1方向に沿って、前記第1駆動機構を前記第1リンクに対して相対的に移動させる第1移動機構と、
     前記第2リンクが延在する第2方向に沿って、前記第2リンクを前記第1駆動機構に対して相対的に移動させる第2移動機構と、
     を備えている、
     ことを特徴とする多関節ロボット。
  2.  前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第2回転軸として、前記基部の少なくとも一部分を回転させる第2駆動機構と、
     前記基部と前記第1リンクとを接続し、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第3回転軸として前記第1リンクを回転させる第3駆動機構と、
     前記第2リンクと前記先端部とを接続し、前記先端部を前記第2リンクに対して回転させる第4駆動機構と、
     をさらに備えている、
     ことを特徴とする請求項1に記載の多関節ロボット。
  3.  前記第4駆動機構は、
     前記第2方向とのなす角度が前記所定の角度より大きい軸を第4回転軸として、前記先端部を前記第2リンクに対して回転させ、
     前記先端部は、
     前記第2リンクに接続される第1部分と、
     前記第1部分に接続される第2部分と、
     前記第1部分と前記第2部分とを接続し、前記第4回転軸とのなす角度が前記所定の角度より大きい軸を第5回転軸として、前記第2部分を前記第1部分に対して回転させる第5駆動機構と、
     前記第5回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部のうちエンドエフェクタが取り付けられる部分を回転させる第6駆動機構と、
     を含む、
     ことを特徴とする請求項2に記載の多関節ロボット。
  4.  前記第4駆動機構は、
     前記第2方向とのなす角度が前記所定の角度以下の軸を第4回転軸として、前記先端部を前記第2リンクに対して回転させ、
     前記先端部は、
     前記第2リンクに接続される第1部分と、
     前記第1部分に接続される第2部分と、
     前記第1部分と前記第2部分とを接続し、前記第4回転軸とのなす角度が前記所定の角度より大きい軸を第5回転軸として、前記第2部分を前記第1部分に対して回転させる第5駆動機構と、
     前記第5回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部のうちエンドエフェクタが取り付けられる部分を回転させる第6駆動機構と、
     を含む、
     ことを特徴とする請求項2に記載の多関節ロボット。
  5.  前記第1リンク及び前記第2リンクの状態は、第1状態に遷移可能であり、
     前記第1状態は、
     前記第1回転軸が、前記第1リンクの2つの端部のうち、前記基部から遠い端部よりも前記基部に近い端部の近くに位置し、かつ前記第2リンクの2つの端部のうち、前記先端部から遠い端部よりも前記先端部に近い端部の近くに位置する、
     状態である、
     ことを特徴とする請求項2に記載の多関節ロボット。
  6.  前記第1リンク及び前記第2リンクの状態は、第2状態に遷移可能であり、
     前記第2状態は、
     前記第1方向及び前記第2方向が、前記第2回転軸に平行であり、
     前記第2リンクの2つの端部のうち前記先端部から遠い端部が、前記第1リンクの2つの端部のうち、前記基部から遠い端部よりも前記基部に近い端部の近くに位置する、
     状態である、
     ことを特徴とする請求項2に記載の多関節ロボット。
  7.  前記第1駆動機構を駆動する第1モータと、
     前記第1移動機構を駆動する第2モータと、
     前記第2移動機構を駆動する第3モータと、
     をさらに有し、
     前記第1移動機構は、
     前記第1リンクの内部に配置され、前記第1方向に延在し、前記第2モータの回転に伴い、前記第1方向に沿う軸を回転軸として回転する第1ねじ部と、
     前記第1駆動機構に接続され、前記第1ねじ部が挿通され、前記第1ねじ部の回転に伴い、前記第1ねじ部に対して相対的に移動する第1移動部と、
     を有し、
     前記第2移動機構は、
     前記第2リンクの内部に配置され、前記第2方向に延在し、前記第3モータの回転に伴い、前記第2方向に沿う軸を回転軸として回転する第2ねじ部と、
     前記第1駆動機構に接続され、前記第2ねじ部が挿通され、前記第2ねじ部の回転に伴い、前記第2ねじ部に対して相対的に移動する第2移動部と、
     を有し、
     前記第1駆動機構は、前記第1移動部の移動に伴い、前記第1リンクに対して相対的に移動し、
     前記第2リンクは、前記第2移動部の移動に伴い、前記第1駆動機構に対して相対的に移動する、
     ことを特徴とする請求項2に記載の多関節ロボット。
  8.  請求項7に記載の多関節ロボットの制御方法であって、
     前記多関節ロボットの動作を制御する制御装置は、
     前記第1モータ、前記第2モータ及び前記第3モータを制御することにより、前記多関節ロボットの動作を制御する、
     ことを特徴とする多関節ロボットの制御方法。
  9.  請求項7に記載の多関節ロボットと、
     前記先端部に取り付けられたエンドエフェクタと、
     前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記第1モータ、前記第2モータ及び前記第3モータを制御することにより、前記多関節ロボットの動作を制御する、
     ことを特徴とするロボットシステム。
  10.  請求項9に記載のロボットシステムにより、部品を組み付ける、又は、部品を取り除く、
     ことを特徴とする物品の製造方法。
  11.  基部と、
     先端部と、
     第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、
     前記第1リンクと前記第2リンクとを接続し、前記第1リンクが延在する第1方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、
     前記第1方向に沿って、前記第1駆動機構を前記第1リンクに対して相対的に移動させる第1移動機構と、
     前記第2リンクが延在する第2方向に沿って、前記第2リンクを前記第1駆動機構に対して相対的に移動させる第2移動機構と、
     前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第2回転軸として、前記基部の少なくとも一部分を回転させる第2駆動機構と、
     前記基部と前記第1リンクとを接続し、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第3回転軸として前記第1リンクを回転させる第3駆動機構と、
     を備え、
     前記第1方向からの平面視において、前記第1回転軸に沿う方向と前記第3回転軸に沿う方向は、前記所定の角度以上の第1角度で交差している、
     ことを特徴とする多関節ロボット。
  12.  前記第1角度は、実質的に90度である、
     ことを特徴とする請求項11に記載の多関節ロボット。
  13.  前記第2リンクと前記先端部とを接続し、前記先端部を前記第2リンクに対して回転させる第4駆動機構をさらに有し、
     前記第4駆動機構は、
     前記第2方向とのなす角度が前記所定の角度より大きい軸を第4回転軸として、前記先端部を前記第2リンクに対して回転させ、
     前記先端部は、
     前記第2リンクに接続される第1部分と、
     前記第1部分に接続される第2部分と、
     前記第1部分と前記第2部分とを接続し、前記第4回転軸とのなす角度が前記所定の角度より大きい軸を第5回転軸として、前記第2部分を前記第1部分に対して回転させる第5駆動機構と、
     前記第5回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部のうちエンドエフェクタが取り付けられる部分を回転させる第6駆動機構と、
     を含む、
     ことを特徴とする請求項12に記載の多関節ロボット。
  14.  前記第2リンクと前記先端部とを接続し、前記先端部を前記第2リンクに対して回転させる第4駆動機構をさらに有し、
     前記第4駆動機構は、
     前記第2方向とのなす角度が前記所定の角度以下の軸を第4回転軸として、前記先端部を前記第2リンクに対して回転させ、
     前記先端部は、
     前記第2リンクに接続される第1部分と、
     前記第1部分に接続される第2部分と、
     前記第1部分と前記第2部分とを接続し、前記第4回転軸とのなす角度が前記所定の角度より大きい軸を第5回転軸として、前記第2部分を前記第1部分に対して回転させる第5駆動機構と、
     前記第5回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部のうちエンドエフェクタが取り付けられる部分を回転させる第6駆動機構と、
     を含む、
     ことを特徴とする請求項12に記載の多関節ロボット。
PCT/JP2023/029628 2022-08-30 2023-08-16 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法 WO2024048285A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-136863 2022-08-30
JP2022136863A JP7352267B1 (ja) 2022-08-30 2022-08-30 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
JP2023-118901 2023-07-21
JP2023118901 2023-07-21

Publications (1)

Publication Number Publication Date
WO2024048285A1 true WO2024048285A1 (ja) 2024-03-07

Family

ID=90099393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029628 WO2024048285A1 (ja) 2022-08-30 2023-08-16 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法

Country Status (1)

Country Link
WO (1) WO2024048285A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136782A (ja) * 1984-12-10 1986-06-24 株式会社東芝 複合多関節型ロボツト
JP2007030086A (ja) * 2005-07-26 2007-02-08 Shinko Engineering Kk 多関節ロボット
JP2020187702A (ja) * 2019-05-17 2020-11-19 ローレルバンクマシン株式会社 大束作成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136782A (ja) * 1984-12-10 1986-06-24 株式会社東芝 複合多関節型ロボツト
JP2007030086A (ja) * 2005-07-26 2007-02-08 Shinko Engineering Kk 多関節ロボット
JP2020187702A (ja) * 2019-05-17 2020-11-19 ローレルバンクマシン株式会社 大束作成装置

Similar Documents

Publication Publication Date Title
KR101992149B1 (ko) 착용형 팔동작 측정 장치
KR101498836B1 (ko) 7축 다관절 로봇의 제어 장치 및 교시 방법
US8977392B2 (en) Robot control device, robot control method, robot control program, and robot system
US20160318186A1 (en) Robot
WO2004104814A1 (en) Parallel haptic joystick system
JP2007136590A (ja) 冗長関節部を有する冗長ロボットの制御装置および制御方法
CN111819038B (zh) 采用平行连杆机构的作业设备及其控制方法
KR20170142832A (ko) 다자유도 로봇의 말단 제어를 위한 콘트롤러, 상기 콘트롤러를 이용한 다자유도 로봇 제어방법 및 이에 의해 동작하는 로봇
WO2024048285A1 (ja) 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
JP7352267B1 (ja) 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
CN110545965B (zh) 多关节机器人以及多关节机器人系统
JP5755715B2 (ja) ロボットの制御方法
WO2023228857A1 (ja) 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
JP4268035B2 (ja) 産業用ロボットおよびその制御方法
JP3767643B2 (ja) 教示用力センサ
JP2023173622A (ja) 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
JP7395990B2 (ja) 教示装置、制御方法および教示プログラム
WO2024070568A1 (ja) 多関節ロボットの制御方法、ロボットシステム、プログラム、及び、物品の製造方法
JP2003025263A (ja) パラレルメカニズム機械の制御装置
JP2023173621A (ja) 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
JP2023173620A (ja) 多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法
Xiao et al. Kinematics analysis of a snake robot module using screw theory
KR200277575Y1 (ko) 2자유도 마스터기구를 이용한 로봇의 운동지시장치
KR101479656B1 (ko) 구면좌표계를 기반으로 한 로봇 팔 및 그 제어방법
JPS60108908A (ja) 産業用ロボツト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860050

Country of ref document: EP

Kind code of ref document: A1