WO2024048214A1 - Process control method, blast furnace operation method, molten pig iron production method, and process control apparatus - Google Patents

Process control method, blast furnace operation method, molten pig iron production method, and process control apparatus Download PDF

Info

Publication number
WO2024048214A1
WO2024048214A1 PCT/JP2023/028830 JP2023028830W WO2024048214A1 WO 2024048214 A1 WO2024048214 A1 WO 2024048214A1 JP 2023028830 W JP2023028830 W JP 2023028830W WO 2024048214 A1 WO2024048214 A1 WO 2024048214A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
metal temperature
blast furnace
process control
ratio
Prior art date
Application number
PCT/JP2023/028830
Other languages
French (fr)
Japanese (ja)
Inventor
佳也 橋本
稜介 益田
玄弥 大和
健 木津
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024048214A1 publication Critical patent/WO2024048214A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace

Definitions

  • the present disclosure relates to a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control device.
  • Hot metal temperature is an important management index in the blast furnace process in the steel industry, and is mainly controlled by adjusting the pulverized coal ratio and air humidity.
  • blast furnace operations have been carried out under conditions of low coke ratios and high pulverized coal ratios in order to pursue rationalization of raw material and fuel costs, and the furnace conditions tend to become unstable. Therefore, it is necessary to suppress variations in hot metal temperature.
  • the blast furnace process operates with solids filled, so the heat capacity of the entire process is large, and the time constant of response to action is long. Furthermore, it may take several hours, for example, for the raw material charged in the upper part of the furnace to descend to the lower part of the furnace. Therefore, in order to control the hot metal temperature, appropriate operations based on future furnace heat predictions are required.
  • Patent Document 1 discloses a technique for controlling only the hot metal temperature, and does not propose a control method that takes into consideration reducing the reducing agent ratio.
  • the purpose of the present disclosure which has been made to solve the above problems, is to provide a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control method that suppress variation in hot metal temperature while reducing the reducing agent ratio in a blast furnace.
  • the purpose is to provide a control device.
  • a process control method includes: a response prediction step of calculating a predicted value of the future hot metal temperature using a physical model capable of calculating the internal state of the blast furnace; The deviation between the predicted value of the hot metal temperature obtained in the response prediction step and the target value is determined, and an evaluation function having a term corresponding to the deviation and a term for reducing the reducing agent ratio or the blast humidity is calculated.
  • the method includes a step of determining a manipulated variable of the pulverized coal ratio and the blown moisture so as to minimize or maximize it.
  • the response prediction step uses the physical model to predict the future hot metal temperature based on a predicted value of the future hot metal temperature when the current manipulated variable is held and a predicted value of the hot metal temperature when the current manipulated variable is changed. A predicted value of the hot metal temperature is determined.
  • the evaluation function which is a quadratic function regarding the unknown variables, is determined, using the operation amounts of the pulverized coal ratio and the blast moisture as unknown variables, and under the constraint of a linear expression regarding the unknown variables. is used to determine the unknown variable.
  • the method further includes the step of manipulating the blowing flow rate so that the predicted value of the pig iron making speed matches the target value, and manipulating the coke ratio so that the predicted value of the air permeability becomes equal to or less than the upper limit.
  • a blast furnace operating method includes: Operating conditions are changed using the manipulated variables operated by the process control method of any one of (1) to (4).
  • the method for producing hot metal according to an embodiment of the present disclosure includes: Hot metal is produced using the blast furnace operated by the blast furnace operating method of (5).
  • a process control device includes: a storage unit that stores a physical model capable of calculating the internal state of the blast furnace; A hot metal temperature control unit that obtains a target hot metal temperature that is a target value of hot metal temperature and calculates the manipulated variables of the pulverized coal ratio and the air humidity so that the hot metal temperature becomes the target hot metal temperature,
  • the hot metal temperature control section is Using the physical model to obtain a predicted value of the future hot metal temperature, The deviation between the predicted value and the target value of the hot metal temperature is determined so that an evaluation function having a term corresponding to the deviation and a term for reducing the reducing agent ratio or the blast moisture is minimized or maximized. , find the manipulated variables of the pulverized coal ratio and the air humidity.
  • FIG. 1 is a diagram showing manipulated variables and control variables in a blast furnace process.
  • FIG. 2 is a diagram illustrating a process control method according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing input/output information of a physical model used in the present disclosure.
  • FIG. 4 is a diagram showing the results of a control simulation based on simultaneous manipulation of the pulverized coal ratio and the air humidity.
  • FIG. 5 is a diagram showing the results of a control simulation using only the pulverized coal ratio (comparative example).
  • FIG. 6 is a diagram for explaining the effect of reducing the reducing agent ratio (RAR).
  • FIG. 7 is a diagram illustrating a configuration example of a process control device according to an embodiment of the present disclosure.
  • FIG. 1 shows the basic operating variables and control variables in the blast furnace process (steps in blast furnace operation).
  • a control variable is a variable that must be controlled in operation, but cannot be or is difficult to manipulate directly, and is changed through a correlated manipulated variable.
  • the pulverized coal ratio or the air humidity is mainly manipulated in order to set the hot metal temperature to a target value.
  • the coke ratio or the air flow rate is mainly controlled.
  • the air flow rate is mainly manipulated.
  • the air permeability in this embodiment, the pressure loss in the furnace, which directly affects the blow-through, is used.
  • Furnace pressure loss is the difference between blast pressure and furnace top pressure (furnace top pressure).
  • various indicators of ventilation such as ventilation resistance and shaft-to-face differential pressure. Therefore, as the air permeability, another air permeability index may be used instead of the furnace pressure drop, or a combination of a plurality of air permeability indices may be used.
  • the process control method according to the present embodiment focuses on the pulverized coal ratio and the air humidity, which are operational variables for controlling the hot metal temperature, and controls the pulverized coal ratio and air humidity to reduce the reducing agent ratio while controlling the hot metal temperature. Determine the optimal operating amount of ratio and air humidity.
  • FIG. 2 is a diagram showing the processing of the process control method according to the present embodiment.
  • the process control method according to the present embodiment uses, for example, cascade control described in Reference Document 1 (Japanese Patent No. 7107444).
  • control for calculating the target pulverized coal ratio (PCR) (hot metal temperature control in Figure 2) and control for calculating the pulverized coal flow rate required for the target PCR (PCR follow-up control in Figure 2) are performed. It is done continuously.
  • Hot metal temperature control can obtain a target hot metal temperature, which is a target value of hot metal temperature (HMT), and calculate a target PCR using a physical model described below.
  • the hot metal temperature control not only calculates the target PCR (in addition to calculating the manipulated variable of the pulverized coal ratio), but also calculates the manipulated variable of the air humidity.
  • the process control method also includes iron making speed control and air permeability control.
  • pig iron making speed control a target pig iron making speed which is a target value of pig iron making rate (Production rate: Prod) is acquired, and a manipulated variable of a blowing flow rate (BV) is calculated using a physical model described below.
  • the air permeability control obtains the upper limit of the furnace pressure drop ( ⁇ P), and calculates the manipulated variables of the air flow rate and coke ratio using a physical model to be described later.
  • the actual value (which may be an observed value or a calculated value) in a plant including a blast furnace may be fed back for updating the physical model used in each control.
  • PCR pulverized coal ratio
  • HMT hot metal temperature
  • ⁇ P pressure drop in the furnace
  • Prod iron making rate
  • an individual controller in constructing a multivariable control system as shown in FIG. 2, an individual controller (hot metal temperature control , air permeability control, pig iron making speed control).
  • the hot metal temperature is controlled by a cascade control that manipulates the blast moisture and the pulverized coal ratio (PCR) and pulverized coal flow rate.
  • Air permeability is controlled by manipulating the air flow rate and coke ratio.
  • the pig iron making speed is controlled by manipulating the air flow rate.
  • a change in the blast flow rate affects the hot metal temperature. This effect is reflected by the physical model in hot metal temperature control and calculated as the manipulated variable of the pulverized coal ratio or blast moisture. is maintained near the target value.
  • control system is constructed as a control system that has a disturbance removal characteristic that absorbs fluctuations caused by the manipulation of the other's manipulated variables by manipulating its own manipulated variables. can reduce the impact of The same applies to air permeability control.
  • a physical model of a blast furnace based on reaction kinetics is used to predict the future hot metal temperature and iron making rate, and fine powder is adjusted so that the predicted values are close to the target values. Determine the amount of change in coal ratio and air humidity.
  • Step 1 the future hot metal temperature is predicted using a physical model.
  • Step 1 is a response prediction step.
  • the response prediction step uses a physical model to predict the future hot metal temperature based on the predicted value of the future hot metal temperature when the current manipulated variable is held and the predicted value of the hot metal temperature when the current manipulated variable is changed. Find the predicted value of the hot metal temperature.
  • the predicted value of future hot metal temperature if the current manipulated variables are held is a free response described below.
  • the predicted value of the hot metal temperature when the current operating variable is changed is a step response described later in this embodiment, but is not limited to this.
  • Step 2 is a manipulated variable determination step in which the deviation between the predicted value and the target value is determined, the manipulated variable for eliminating the deviation is determined, and the manipulated variable is adjusted.
  • the manipulated variables are pulverized coal ratio and blast moisture.
  • step 3 in order to simulate the actual operation of a blast furnace, the blast flow rate is controlled so that the predicted value of iron making rate matches the target value, and at least the coke ratio is adjusted so that the predicted value of air permeability is below the upper limit.
  • the air permeability is the pressure loss in the furnace, and when the predicted value of the pressure loss in the furnace exceeds a set upper limit, the ventilation state is determined to be abnormal.
  • the ventilation condition is determined to be abnormal, an operation to increase the coke ratio may be performed.
  • an operation to reduce the coke ratio may be performed.
  • the manipulation of the air flow rate and coke ratio in step 3 becomes a disturbance to the hot metal temperature control. As will be described later, it was verified through simulation that the influence of this disturbance could be canceled by manipulating the pulverized coal ratio and the air humidity.
  • the physical model used in the present disclosure is similar to the model of the method described in Reference 2 (Michiharu Hadano et al., "Study of burning operation using an unsteady blast furnace model", Tetsu-to-Hagane, vol. 68, p. 2369). It is. In other words, it calculates the state inside the blast furnace (furnace) in an unsteady state, which is composed of a group of partial differential equations that take into account physical phenomena such as reduction of ore, heat exchange between ore and coke, and melting of ore.
  • a possible physical model is used. This physical model may be referred to as an unsteady model below.
  • the main ones that change over time are blast flow rate, blast oxygen flow rate, pulverized coal flow rate, blast moisture, blast temperature, coke ratio, and furnace top pressure. It is.
  • These input variables are operating variables or operating factors of the blast furnace.
  • the blast flow rate, the blast oxygen flow rate, and the pulverized coal flow rate are the flow rates of air, oxygen, and pulverized coal sent to the blast furnace, respectively.
  • the blast humidity is the humidity of the air sent to the blast furnace.
  • the blowing temperature is the temperature of the air sent to the blast furnace.
  • the coke ratio is the coke ratio at the top of the furnace, and is the weight of coke used for one ton of hot metal production.
  • the main output variables of the unsteady model are gas utilization rate, solution loss carbon amount (sol loss carbon amount), reducing agent ratio, pig iron making rate, hot metal temperature, and furnace pressure drop.
  • the time interval of calculation is not particularly limited, it is 30 minutes in this embodiment. In this embodiment, the time difference between "t+1" and "t" in the unsteady model equation described later is 30 minutes.
  • the unsteady model can be expressed by the following equations (1) and (2).
  • x(t) is a state variable calculated within the unsteady model.
  • State variables include, for example, coke temperature, iron temperature, ore oxidation degree, and raw material fall rate.
  • y(t) is the control variables: hot metal temperature, pig iron making rate, and air permeability (furnace pressure drop).
  • u(t) is the input variable described above, and is a variable that can be operated by the operator who operates the blast furnace.
  • the input variables are blast flow rate BV (t), blast oxygen flow rate BVO (t), pulverized coal flow rate PCI (t), blast moisture BM (t), blast temperature BT (t), and coke ratio CR (t).
  • the furnace top pressure TGP(t). It can be expressed as u(t) (BV(t), BVO(t), PCI(t), BM(t), BT(t), CR(t), TGP(t)) T .
  • PCR pulverized coal ratio
  • BM blast moisture
  • S PCR (t) is the amount of change in hot metal temperature when the pulverized coal ratio (PCR) is manipulated by a unit amount (1 [kg/t]).
  • S BM (t) is the amount of change in the blown air moisture (BM) when the blown air moisture (BM) is manipulated by a unit amount (1 [g/Nm 3 ]).
  • S PCR and S BM can be determined by, for example, another physical model or a step response test in actual operation.
  • reference 3 Y. Hashimoto, Online prediction of hot metal temperature using transient model and moving horizon estimation. ISIJ The simulation results described in Int. 2019, vol. 59, p. 1534) were used. .
  • the deviation of the free response y f (t) from the target value y pre (t) is defined as ⁇ y.
  • the square of the deviation between the predicted value of the hot metal temperature and the target value y pre (t) is expressed by the following equation (8).
  • the evaluation function J used in the quadratic programming method is set to the first and second terms of equation (8), as shown in equation (9). In addition, it includes a term (third term) for reducing air humidity. Furthermore, the evaluation function J includes a fourth term for suppressing excessive operation.
  • a and R are coefficients.
  • the third term is introduced, and the weighting of ⁇ PCR and ⁇ BM included in the vector ⁇ is changed depending on the size of the elements of the coefficient vector a, and the manipulation of both Distribution can be adjusted.
  • is determined using equation (9) under the constraints of equations (10) to (13) below.
  • PCR max and PCR min are the upper and lower limits of the target range of the pulverized coal ratio (PCR), respectively.
  • ⁇ PCR max is the upper limit of the allowable change in the pulverized coal ratio (PCR).
  • BM max and BM min are the upper and lower limits of the target range of the blast moisture (BM), respectively.
  • ⁇ BM max is the upper limit of the allowable change amount of the air humidity (BM).
  • the evaluation function J was designed to reduce the air humidity in order to reduce the reducing agent ratio.
  • the unknown variable ⁇ was obtained when the evaluation function J is minimized, but the deviation between the predicted value of the hot metal temperature and the target value, the minimizing of the reducing agent ratio (or the air humidity), and the evaluation
  • the evaluation function J may be designed so that it corresponds to the maximization of the function J. That is, the manipulated variables of the pulverized coal ratio and the air humidity may be determined so that the evaluation function J is minimized or maximized.
  • a quasi-optimal value may be evaluated as an optimal value.
  • the evaluation function J does not necessarily take the maximum or minimum value, as long as the value of the evaluation function J is near the maximum value or near the minimum value (if semi-optimization is performed), the control objective is achieved. You can treat it if you do. Therefore, the evaluation function J is minimized or maximized not only when the value of the evaluation function J is the maximum value or the minimum value, but also when the value of the evaluation function J is near the maximum value or near the minimum value. It may be possible to include cases.
  • ⁇ BV which is the manipulated variable of the blast flow rate (BV) [Nm 3 /min] is determined by the following equation (14) so as to eliminate the deviation between the target value and the predicted value.
  • Prod (t+T) is a predicted value of the iron making speed T steps ahead.
  • T may be 4, which means a predicted value for 2 hours (30 minutes x 4) ahead.
  • Prod ref is the target iron making speed (target value of the iron making speed).
  • S BV is the amount of change in the iron making speed when the blowing flow rate (BV) is manipulated by a unit amount (1 [Nm 3 /min]). The SBV can be determined using another physical model or a step response test in actual operation.
  • b is a coefficient and is a positive number.
  • the control for determining ⁇ BV according to equation (14) corresponds to the iron making speed control in FIG. 2.
  • the manipulated variables of the coke ratio (CR) and the blowing flow rate (BV) are determined by comparison with the upper limit (threshold).
  • the manipulated variable is determined so as to increase the coke ratio and simultaneously decrease the blowing flow rate. This corresponds to the operation of stabilizing the unloading of raw materials in the operation of a blast furnace.
  • the manipulated variable is determined so as to gradually reduce the coke ratio.
  • control is performed so that the pressure loss in the furnace does not exceed the upper limit, but when the pressure loss in the furnace is below the upper limit, it becomes possible to reduce the cost of operation by gradually reducing the coke ratio.
  • the value of the pressure drop in the furnace changes near the upper limit.
  • Control that determines the manipulated variables of the coke ratio (CR) and the blowing flow rate (BV) by comparison with the upper limit of the pressure drop in the furnace corresponds to the air permeability control in FIG. 2 .
  • FIG. 4 is a diagram showing simulation results based on the above process control.
  • the blast moisture (BM) is , pulverized coal ratio (PCR), blast flow rate (BV), and coke ratio (CR) were manipulated.
  • the target hot metal temperature was 1500°C.
  • the target pig iron making speed was 7 [t/min]. Further, the upper limit of the pressure drop in the furnace was 100 [kPa].
  • the hot metal temperature (HMT) is operated near the target value, and based on the evaluation function J shown in equation (9), the blast moisture (BM) is controlled while suppressing the variation in the hot metal temperature. It can be seen that the value is maintained near the lower limit value.
  • the air humidity is close to the lower limit value, heat absorption due to the steam decomposition reaction that requires the introduction of a reducing agent is less likely to occur, leading to a reduction in the reducing agent ratio.
  • the iron making rate (Prod) is controlled near the target value, and the pressure loss in the furnace ( ⁇ P) is also kept below the upper limit.
  • FIG. 5 is a diagram showing simulation results obtained by control of a comparative example.
  • the pulverized coal ratio (PCR) is , the blast flow rate (BV) and coke ratio (CR) were manipulated.
  • the simulation conditions are the same as in FIG. 4 except for the blast moisture (BM).
  • the air humidity was set at a constant value of 15.5 [g/Nm 3 ].
  • FIG. 6 is a diagram for explaining the effect of reducing the reducing agent ratio (RAR), and shows the reducing agent ratio of the simulation results of FIG. 4 (process control method according to the present embodiment) and FIG. 5 (comparative example). This is a comparison of changes over time.
  • the average value of the reducing agent ratio in the process control method according to the present embodiment is lower than the average value of the reducing agent ratio in the comparative example.
  • the reducing agent ratio can be reduced by simultaneously controlling the pulverized coal ratio and the air humidity.
  • the amount of oxygen (oxygen basic unit) [Nm 3 /t] required to be blown from the tuyere to produce 1 ton of hot metal is reduced. Therefore, the target iron making speed can be reached with a smaller air flow rate. As a result, there is a margin for pressure loss, and the coke ratio can also be reduced (see CR in Figures 3 and 4).
  • FIG. 7 is a diagram illustrating a configuration example of a process control device 10 according to an embodiment.
  • the process control device 10 includes a communication section 11, a storage section 12, and a control section 13.
  • the control section 13 includes a hot metal temperature control section 14, an iron making speed control section 15, an air permeability control section 16, and a PCR follow-up control section 17.
  • the process control device 10 executes the process control method described above.
  • the process control device 10 may display information such as the operation amount on a display unit such as a liquid crystal display when operating the blown humidity, the blown air flow rate, the coke ratio, or the pulverized coal ratio.
  • the communication unit 11 is configured to include a communication module for communicating with the host system.
  • the host system includes a process computer that manages processes in the plant including the blast furnace.
  • the communication unit 11 may include a communication module compatible with mobile communication standards such as 4G (4th Generation) and 5G (5th Generation).
  • the communication unit 11 may include, for example, a communication module compatible with wired or wireless LAN standards.
  • the control unit 13 can obtain information such as a target hot metal temperature, a target iron making rate, and an upper limit of pressure drop in the furnace from the host system via the communication unit 11. Further, the control unit 13 can output information on the manipulated variables that have been operated, that is, the manipulated variables that reflect the calculated manipulated variables, to the host system via the communication unit 11.
  • the storage unit 12 stores the above physical model.
  • the storage unit 12 also stores programs and data related to control of the blast furnace process.
  • the storage unit 12 may include any storage device such as a semiconductor storage device, an optical storage device, and a magnetic storage device.
  • a semiconductor storage device may include, for example, a semiconductor memory.
  • the storage unit 12 may include multiple types of storage devices.
  • the control unit 13 controls and manages each functional unit constituting the process control device 10 and the entire process control device 10.
  • the control unit 13 may also acquire data used for control. That is, the control unit 13 may acquire the hot metal temperature, iron making rate, and air permeability of the blast furnace using observed values or calculated values.
  • the control unit 13 is configured to include at least one processor such as a CPU (Central Processing Unit) to control and manage various functions.
  • the control unit 13 may be composed of one processor or a plurality of processors.
  • the processor that constitutes the control section 13 functions as a hot metal temperature control section 14, an ironmaking speed control section 15, an air permeability control section 16, and a PCR follow-up control section 17 by reading out and executing a program from the storage section 12. It's fine.
  • the hot metal temperature control unit 14 obtains a target hot metal temperature, which is a target value of the hot metal temperature, and calculates the manipulated variables of the blast moisture and pulverized coal ratio so that the hot metal temperature becomes the target hot metal temperature.
  • the hot metal temperature control section 14 is a functional section that executes "hot metal temperature control" in FIG. 2.
  • the pig iron making speed control unit 15 obtains a target pig iron making speed which is a target value of the pig iron making speed, and calculates the manipulated variable of the air blowing flow rate so that the pig iron making speed becomes the target pig iron making speed.
  • the pig iron making speed control section 15 is a functional section that executes the "pig making speed control" shown in FIG. 2 .
  • the air permeability control unit 16 obtains the upper limit of the air permeability (in the present embodiment, the pressure loss in the furnace) and calculates at least the manipulated variable of the coke ratio so that the air permeability does not exceed the upper limit.
  • the air permeability control unit 16 may further calculate the manipulated variable of the air flow rate as in this embodiment.
  • the air permeability control section 16 is a functional section that executes the "air permeability control" shown in FIG.
  • the PCR follow-up control unit 17 acquires the pulverized coal ratio (target PCR), which is a target value determined by the hot metal temperature control unit 14, and controls the pulverized coal flow rate (PCI) to follow the target PCR by PCR follow-up control. Calculate the amount of operation.
  • target PCR pulverized coal ratio
  • PCI pulverized coal flow rate
  • the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16 are individual controllers for controlling the hot metal temperature (HMT), pig iron making speed (Prod), and furnace pressure drop ( ⁇ P), respectively. .
  • the hot metal temperature control unit 14 executes step 1 (response prediction step) using a physical model to obtain a predicted value of the hot metal temperature.
  • the hot metal temperature control unit 14 executes step 2 (operation amount determination step) to determine the operation amounts of the pulverized coal ratio and the blast moisture.
  • the pig iron making speed control unit 15 executes step 3 and obtains the manipulated variable of the air flow rate so as to eliminate the deviation between the target value and the predicted value of the pig iron making speed.
  • the air permeability control unit 16 executes step 3 to determine the manipulated variables of the air flow rate and coke ratio so that the predicted value of the pressure loss in the furnace does not exceed the upper limit.
  • the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16, which are constructed as individual controllers, automatically control fluctuations based on the manipulation of operating variables by other control sections. This is a control system that has a disturbance removal characteristic that absorbs by manipulating the manipulated variables. Therefore, the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16 can reduce the influence of interference of operating variables from other control sections.
  • a process control method executed by the process control device 10 may be used as part of the blast furnace operating method.
  • the manipulated variables manipulated in the process control method described above may be used to change operating conditions in the operation of a blast furnace.
  • such a method of operating a blast furnace can be carried out as part of a manufacturing method of manufacturing hot metal.
  • raw material iron ore is melted and reduced to become pig iron, which is tapped as hot metal, and the blast furnace may be operated according to this operating method.
  • the process control device 10 may be realized, for example, by a computer separate from the process computer that controls the operation of the blast furnace, or may be realized by the process computer.
  • a computer includes, for example, a memory, a hard disk drive (storage device), a CPU (processing unit), and a display device such as a display.
  • Various functions can be realized by organically cooperating hardware such as a CPU and memory with a program.
  • the storage unit 12 may be realized, for example, by a storage device.
  • the control unit 13 may be realized by, for example, a CPU.
  • the process control method, blast furnace operating method, hot metal manufacturing method, and process control device 10 reduce the reducing agent ratio in the blast furnace while reducing the variation in hot metal temperature. suppression can be achieved.
  • the configuration of the process control device 10 shown in FIG. 7 is an example.
  • the process control device 10 may not include all of the components shown in FIG. Further, the process control device 10 may include components other than those shown in FIG. For example, the process control device 10 may further include a display section.
  • Process control device 11 Communication section 12 Storage section 13 Control section 14 Hot metal temperature control section 15 Iron making speed control section 16 Air permeability control section 17 PCR follow-up control section

Abstract

Provided is a process control method, a blast furnace operation method, a molten pig iron production method, and a process control apparatus, which are for achieving suppression of variability in molten pig iron temperature while reducing a reduction material ratio in a blast furnace. This process control method comprises: a response prediction step for determining a predictive value of a future molten pig iron temperature by using a physical model with which it is possible to calculate the internal state of a blast furnace; and a manipulation degree determination step for determining the deviation between a target value and the predictive value of the molten pig iron temperature determined in the response prediction step, and determining the degrees by which a fine powdered coal ratio and a blown air moisture are to be manipulated, so as to minimize or maximize an evaluation function having a term corresponding to the deviation and a term for reducing a reduction material ratio or the blown air moisture.

Description

プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置Process control method, blast furnace operating method, hot metal production method, and process control device
 本開示は、プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置に関する。 The present disclosure relates to a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control device.
 製鉄業における高炉プロセスにおいて溶銑温度(Hot Metal Temperature:HMT)は重要な管理指標であり、主に微粉炭比及び送風湿分を調整することで制御されている。近年の高炉操業は、原燃料コストの合理化を追及すべく、低コークス比及び高微粉炭比の条件下で行われており、炉況が不安定化しやすい。そのため、溶銑温度のばらつきを抑える必要がある。 Hot metal temperature (HMT) is an important management index in the blast furnace process in the steel industry, and is mainly controlled by adjusting the pulverized coal ratio and air humidity. In recent years, blast furnace operations have been carried out under conditions of low coke ratios and high pulverized coal ratios in order to pursue rationalization of raw material and fuel costs, and the furnace conditions tend to become unstable. Therefore, it is necessary to suppress variations in hot metal temperature.
 また高炉プロセスは、固体が充填された状態で操業を行うためプロセス全体の熱容量が大きく、アクションに対する応答の時定数が長いという特徴がある。さらに、炉上部で装入された原料が炉下部に降下するまでに、例えば数時間を要することがある。そのため溶銑温度の制御のためには、将来の炉熱予測に基づく適切な操作が必要である。 In addition, the blast furnace process operates with solids filled, so the heat capacity of the entire process is large, and the time constant of response to action is long. Furthermore, it may take several hours, for example, for the raw material charged in the upper part of the furnace to descend to the lower part of the furnace. Therefore, in order to control the hot metal temperature, appropriate operations based on future furnace heat predictions are required.
 高炉の長い時定数に由来する応答の遅れを考慮するため、予測に基づいて高炉を制御する方法として、例えば特許文献1のような物理モデルを用いるものがある。 In order to take into account the response delay resulting from the long time constant of the blast furnace, there is a method of controlling the blast furnace based on predictions using a physical model such as that disclosed in Patent Document 1, for example.
特開平11-335710号公報Japanese Patent Application Publication No. 11-335710
 ここで、近年のCO低減の社会的要請により高炉プロセスでは還元材比(コークス比と微粉炭比の合計)の低減が求められている。還元材比を低減するために、炉内に吹き込む送風湿分を低減したり、炉体ヒートロスを低減したりすることで、余剰な熱源を消費しないようにすることが有効である。しかしながら、高炉プロセスでは、溶銑温度を制御するとともに、銑鉄の生産速度(以下「造銑速度」と称される)を目標値近傍に保つことが求められる。そのため、還元材比の低減よりも溶銑温度のばらつき低減を優先した微粉炭比及び送風湿分の操作が実施されがちである。また、特許文献1は、溶銑温度のみを制御する技術を開示し、還元材比を低減することを考慮した制御方法を提案するものでない。 Here, due to recent social demands for CO 2 reduction, reduction of the reducing agent ratio (total of coke ratio and pulverized coal ratio) is required in the blast furnace process. In order to reduce the reducing agent ratio, it is effective to reduce the amount of moisture blown into the furnace or reduce the heat loss of the furnace body so as not to consume excess heat source. However, in the blast furnace process, it is required to control the hot metal temperature and to maintain the pig iron production rate (hereinafter referred to as "pig iron making rate") near a target value. Therefore, the pulverized coal ratio and the air humidity tend to be controlled in a way that gives priority to reducing variations in hot metal temperature over reducing the reducing agent ratio. Further, Patent Document 1 discloses a technique for controlling only the hot metal temperature, and does not propose a control method that takes into consideration reducing the reducing agent ratio.
 以上の問題を解決すべくなされた本開示の目的は、高炉において還元材比を低減しつつ、溶銑温度のばらつき抑制を実現するプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置を提供することにある。 The purpose of the present disclosure, which has been made to solve the above problems, is to provide a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control method that suppress variation in hot metal temperature while reducing the reducing agent ratio in a blast furnace. The purpose is to provide a control device.
 (1)本開示の一実施形態に係るプロセスの制御方法は、
 高炉の内部の状態を計算可能な物理モデルを用いて将来の溶銑温度の予測値を求める応答予測ステップと、
 前記応答予測ステップで求められた前記溶銑温度の予測値と目標値との偏差を求めて、前記偏差に対応する項と還元材比又は送風湿分を低減するための項とを有する評価関数が最小化又は最大化するように、微粉炭比及び送風湿分の操作量を求める操作量決定ステップと、を含む。
(1) A process control method according to an embodiment of the present disclosure includes:
a response prediction step of calculating a predicted value of the future hot metal temperature using a physical model capable of calculating the internal state of the blast furnace;
The deviation between the predicted value of the hot metal temperature obtained in the response prediction step and the target value is determined, and an evaluation function having a term corresponding to the deviation and a term for reducing the reducing agent ratio or the blast humidity is calculated. The method includes a step of determining a manipulated variable of the pulverized coal ratio and the blown moisture so as to minimize or maximize it.
 (2)本開示の一実施形態として、(1)において、
 前記応答予測ステップは、前記物理モデルを用いて現在の操作変数が保持された場合の将来の溶銑温度の予測値と現在の操作変数を変化させた場合の溶銑温度の予測値とに基づいて将来の前記溶銑温度の予測値を求める。
(2) As an embodiment of the present disclosure, in (1),
The response prediction step uses the physical model to predict the future hot metal temperature based on a predicted value of the future hot metal temperature when the current manipulated variable is held and a predicted value of the hot metal temperature when the current manipulated variable is changed. A predicted value of the hot metal temperature is determined.
 (3)本開示の一実施形態として、(1)又は(2)において、
 前記操作量決定ステップは、求める前記微粉炭比及び前記送風湿分の操作量を未知変数として、前記未知変数に関する一次式の制約条件下で、前記未知変数に関する二次関数である前記評価関数を用いて、前記未知変数を決定する。
(3) As an embodiment of the present disclosure, in (1) or (2),
In the operation amount determining step, the evaluation function, which is a quadratic function regarding the unknown variables, is determined, using the operation amounts of the pulverized coal ratio and the blast moisture as unknown variables, and under the constraint of a linear expression regarding the unknown variables. is used to determine the unknown variable.
 (4)本開示の一実施形態として、(1)から(3)のいずれかにおいて、
 造銑速度の予測値が目標値と合致するように送風流量を操作し、通気度の予測値が上限以下となるようにコークス比を操作するステップをさらに含む。
(4) As an embodiment of the present disclosure, in any one of (1) to (3),
The method further includes the step of manipulating the blowing flow rate so that the predicted value of the pig iron making speed matches the target value, and manipulating the coke ratio so that the predicted value of the air permeability becomes equal to or less than the upper limit.
 (5)本開示の一実施形態に係る高炉の操業方法は、
 (1)から(4)のいずれかのプロセスの制御方法によって操作された操作変数を用いて操業条件を変更する。
(5) A blast furnace operating method according to an embodiment of the present disclosure includes:
Operating conditions are changed using the manipulated variables operated by the process control method of any one of (1) to (4).
 (6)本開示の一実施形態に係る溶銑の製造方法は、
 (5)の高炉の操業方法によって操業される前記高炉を用いて溶銑を製造する。
(6) The method for producing hot metal according to an embodiment of the present disclosure includes:
Hot metal is produced using the blast furnace operated by the blast furnace operating method of (5).
 (7)本開示の一実施形態に係るプロセスの制御装置は、
 高炉の内部の状態を計算可能な物理モデルを記憶する記憶部と、
 溶銑温度の目標値である目標溶銑温度を取得して、前記溶銑温度が前記目標溶銑温度となるように、微粉炭比及び送風湿分の操作量を算出する溶銑温度制御部と、を備え、
 前記溶銑温度制御部は、
  前記物理モデルを用いて将来の溶銑温度の予測値を求め、
  前記溶銑温度の予測値と目標値との偏差を求めて、前記偏差に対応する項と還元材比又は送風湿分を低減するための項とを有する評価関数が最小化又は最大化するように、微粉炭比及び送風湿分の操作量を求める。
(7) A process control device according to an embodiment of the present disclosure includes:
a storage unit that stores a physical model capable of calculating the internal state of the blast furnace;
A hot metal temperature control unit that obtains a target hot metal temperature that is a target value of hot metal temperature and calculates the manipulated variables of the pulverized coal ratio and the air humidity so that the hot metal temperature becomes the target hot metal temperature,
The hot metal temperature control section is
Using the physical model to obtain a predicted value of the future hot metal temperature,
The deviation between the predicted value and the target value of the hot metal temperature is determined so that an evaluation function having a term corresponding to the deviation and a term for reducing the reducing agent ratio or the blast moisture is minimized or maximized. , find the manipulated variables of the pulverized coal ratio and the air humidity.
 本開示によれば、高炉において還元材比を低減しつつ、溶銑温度のばらつき抑制を実現するプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置を提供することができる。 According to the present disclosure, it is possible to provide a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control device that realize suppression of hot metal temperature variations while reducing the reducing agent ratio in a blast furnace.
図1は、高炉プロセスにおける操作変数と制御変数を示す図である。FIG. 1 is a diagram showing manipulated variables and control variables in a blast furnace process. 図2は、本開示の一実施形態に係るプロセスの制御方法を示す図である。FIG. 2 is a diagram illustrating a process control method according to an embodiment of the present disclosure. 図3は、本開示で用いられる物理モデルの入出力情報を示す図である。FIG. 3 is a diagram showing input/output information of a physical model used in the present disclosure. 図4は、微粉炭比と送風湿分の同時操作による制御シミュレーションの結果を示す図である。FIG. 4 is a diagram showing the results of a control simulation based on simultaneous manipulation of the pulverized coal ratio and the air humidity. 図5は、微粉炭比のみの操作(比較例)による制御シミュレーションの結果を示す図である。FIG. 5 is a diagram showing the results of a control simulation using only the pulverized coal ratio (comparative example). 図6は、還元材比(RAR)の低減効果を説明するための図である。FIG. 6 is a diagram for explaining the effect of reducing the reducing agent ratio (RAR). 図7は、本開示の一実施形態に係るプロセスの制御装置の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a process control device according to an embodiment of the present disclosure.
 以下、図面を参照して本開示の一実施形態に係るプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置が説明される。 Hereinafter, a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control device according to an embodiment of the present disclosure will be described with reference to the drawings.
 図1は高炉プロセス(高炉の操業での工程)における基本的な操作変数と制御変数を示す。制御変数は、操業において制御すべき変数であるが、直接的な操作ができない又は直接的な操作が困難な変数であって、相関のある操作変数を介して変更される。高炉の操業において、溶銑温度を目標値とするために、主に微粉炭比又は送風湿分が操作される。高炉の通気性(通気度)を良好に保つために、主にコークス比又は送風流量が操作される。また、造銑速度を目標値とするために、主に送風流量が操作される。ここで、通気度として、本実施形態では、吹き抜けに直接的に影響がある炉内圧損が用いられる。炉内圧損は、送風圧力と炉頂圧(炉頂の圧力)との差である。炉内圧損以外に、通気抵抗、対面シャフト差圧など様々な通気性の指標が存在する。そのため、通気度として、炉内圧損に代えて別の通気性の指標が用いられてよいし、複数の通気性の指標の組み合わせが用いられてよい。本実施形態に係るプロセスの制御方法では、溶銑温度を制御するための操作変数である微粉炭比及び送風湿分に着目し、溶銑温度を制御しつつ還元材比を低減するように、微粉炭比及び送風湿分の最適な操作量を決定する。 Figure 1 shows the basic operating variables and control variables in the blast furnace process (steps in blast furnace operation). A control variable is a variable that must be controlled in operation, but cannot be or is difficult to manipulate directly, and is changed through a correlated manipulated variable. In the operation of a blast furnace, the pulverized coal ratio or the air humidity is mainly manipulated in order to set the hot metal temperature to a target value. In order to maintain good air permeability (air permeability) of the blast furnace, the coke ratio or the air flow rate is mainly controlled. Moreover, in order to set the pig iron making speed to the target value, the air flow rate is mainly manipulated. Here, as the air permeability, in this embodiment, the pressure loss in the furnace, which directly affects the blow-through, is used. Furnace pressure loss is the difference between blast pressure and furnace top pressure (furnace top pressure). In addition to the pressure drop in the furnace, there are various indicators of ventilation, such as ventilation resistance and shaft-to-face differential pressure. Therefore, as the air permeability, another air permeability index may be used instead of the furnace pressure drop, or a combination of a plurality of air permeability indices may be used. The process control method according to the present embodiment focuses on the pulverized coal ratio and the air humidity, which are operational variables for controlling the hot metal temperature, and controls the pulverized coal ratio and air humidity to reduce the reducing agent ratio while controlling the hot metal temperature. Determine the optimal operating amount of ratio and air humidity.
 図2は、本実施形態に係るプロセスの制御方法の処理を示す図である。本実施形態に係るプロセスの制御方法では、例えば参考文献1(特許第7107444号公報)に記載されるカスケード制御が使用される。カスケード制御では、目標とする微粉炭比(PCR)を算出する制御(図2の溶銑温度制御)と、目標PCRに必要な微粉炭流量を算出する制御(図2のPCR追従制御)と、が連続して行われる。溶銑温度制御は、溶銑温度(HMT)の目標値である目標溶銑温度を取得して、後述の物理モデルを用いて目標PCRを算出することができる。また、溶銑温度制御は、目標PCRを算出するだけでなく(微粉炭比の操作量を求めるだけでなく)、送風湿分の操作量も算出する。 FIG. 2 is a diagram showing the processing of the process control method according to the present embodiment. The process control method according to the present embodiment uses, for example, cascade control described in Reference Document 1 (Japanese Patent No. 7107444). In the cascade control, control for calculating the target pulverized coal ratio (PCR) (hot metal temperature control in Figure 2) and control for calculating the pulverized coal flow rate required for the target PCR (PCR follow-up control in Figure 2) are performed. It is done continuously. Hot metal temperature control can obtain a target hot metal temperature, which is a target value of hot metal temperature (HMT), and calculate a target PCR using a physical model described below. Moreover, the hot metal temperature control not only calculates the target PCR (in addition to calculating the manipulated variable of the pulverized coal ratio), but also calculates the manipulated variable of the air humidity.
 本実施形態に係るプロセスの制御方法は、造銑速度制御及び通気度制御も含む。造銑速度制御は、造銑速度(Production rate:Prod)の目標値である目標造銑速度を取得して、後述の物理モデルを用いて、送風流量(BV)の操作量を算出する。通気度制御は、炉内圧損(ΔP)の上限である炉内圧損上限を取得して、後述の物理モデルを用いて、送風流量及びコークス比の操作量を算出する。ここで、高炉を含むプラントでの実績値(観測値又は計算値であり得る)は各制御で用いられる物理モデルの更新などのために、フィードバックされてよい。図2の例では、微粉炭比(PCR)、溶銑温度(HMT)、炉内圧損(ΔP)及び造銑速度(Prod)の実績値が、それぞれ実績PCR、実績HMT、実績ΔP及び実績Prodとして示されている。また、高炉プロセスにおける制御変数と相関のある操作変数との対応付けは図1及び図2に示すものに限定されない。例えば造銑速度制御では送風流量に代えて送風酸素流量を操作することが可能である。 The process control method according to the present embodiment also includes iron making speed control and air permeability control. In pig iron making speed control, a target pig iron making speed which is a target value of pig iron making rate (Production rate: Prod) is acquired, and a manipulated variable of a blowing flow rate (BV) is calculated using a physical model described below. The air permeability control obtains the upper limit of the furnace pressure drop (ΔP), and calculates the manipulated variables of the air flow rate and coke ratio using a physical model to be described later. Here, the actual value (which may be an observed value or a calculated value) in a plant including a blast furnace may be fed back for updating the physical model used in each control. In the example in Figure 2, the actual values of pulverized coal ratio (PCR), hot metal temperature (HMT), pressure drop in the furnace (ΔP), and iron making rate (Prod) are expressed as actual PCR, actual HMT, actual ΔP, and actual Prod, respectively. It is shown. Furthermore, the correspondence between control variables and correlated manipulated variables in the blast furnace process is not limited to that shown in FIGS. 1 and 2. For example, in pig iron making speed control, it is possible to manipulate the blown oxygen flow rate instead of the blown air flow rate.
 本実施形態では、図2に示すような多変数制御系の構築において、溶銑温度(HMT)、炉内圧損(ΔP)、造銑速度(Prod)を制御するための個別のコントローラ(溶銑温度制御、通気度制御、造銑速度制御)が構築されている。溶銑温度は、送風湿分の操作及び微粉炭比(PCR)と微粉炭流量を操作するカスケード制御によって制御される。通気度は、送風流量及びコークス比の操作により制御される。造銑速度は、送風流量の操作により制御される。ここで、例えば造銑速度制御において送風流量を操作した場合に、送風流量の変化は溶銑温度に影響する。この影響は、溶銑温度制御における物理モデルによって反映されて、微粉炭比又は送風湿分の操作量として算出され、算出された微粉炭比又は送風湿分の操作量が反映されることで溶銑温度が目標値近傍に保たれる。本実施形態では、上記のように個別のコントローラが構築されているが、それぞれの操作変数同士の干渉を考慮した制御を実現可能である。つまり、例えば溶銑温度制御と造銑速度制御は干渉するが、他方の操作変数の操作に基づく変動を、自己の操作変数の操作によって吸収する外乱除去特性を有する制御系として構築されており、干渉の影響を低減できる。また、通気度制御についても同様である。 In this embodiment, in constructing a multivariable control system as shown in FIG. 2, an individual controller (hot metal temperature control , air permeability control, pig iron making speed control). The hot metal temperature is controlled by a cascade control that manipulates the blast moisture and the pulverized coal ratio (PCR) and pulverized coal flow rate. Air permeability is controlled by manipulating the air flow rate and coke ratio. The pig iron making speed is controlled by manipulating the air flow rate. Here, for example, when the blast flow rate is manipulated in pig iron making speed control, a change in the blast flow rate affects the hot metal temperature. This effect is reflected by the physical model in hot metal temperature control and calculated as the manipulated variable of the pulverized coal ratio or blast moisture. is maintained near the target value. In this embodiment, although individual controllers are constructed as described above, it is possible to realize control that takes into account the interference between the respective manipulated variables. In other words, for example, hot metal temperature control and pig iron making speed control interfere, but the control system is constructed as a control system that has a disturbance removal characteristic that absorbs fluctuations caused by the manipulation of the other's manipulated variables by manipulating its own manipulated variables. can reduce the impact of The same applies to air permeability control.
 本実施形態に係るプロセスの制御方法では、反応速度論に基づいた高炉の物理モデルを用いて将来の溶銑温度及び造銑速度を予測し、予測された値が目標値近傍となるように、微粉炭比及び送風湿分の変化量を決定する。この操作量の決定の際に還元材比を考慮した評価関数を最小化する二次計画法を用いることで、還元材比低減と溶銑温度のばらつき抑制を両立することができる。本実施形態に係るプロセスの制御方法における処理の流れの概略は、以下のステップ1~3の通りである。 In the process control method according to the present embodiment, a physical model of a blast furnace based on reaction kinetics is used to predict the future hot metal temperature and iron making rate, and fine powder is adjusted so that the predicted values are close to the target values. Determine the amount of change in coal ratio and air humidity. By using a quadratic programming method that minimizes an evaluation function that takes the reducing agent ratio into consideration when determining the manipulated variable, it is possible to both reduce the reducing agent ratio and suppress variations in hot metal temperature. The outline of the processing flow in the process control method according to the present embodiment is as shown in steps 1 to 3 below.
 まず、ステップ1として、物理モデルを用いて将来の溶銑温度が予測される。ステップ1は応答予測ステップである。応答予測ステップは、物理モデルを用いて現在の操作変数が保持された場合の将来の溶銑温度の予測値と、現在の操作変数を変化させた場合の溶銑温度の予測値とに基づいて、将来の溶銑温度の予測値を求める。現在の操作変数が保持された場合の将来の溶銑温度の予測値は、後述する自由応答である。現在の操作変数を変化させた場合の溶銑温度の予測値は、本実施形態においては後述するステップ応答であるが、これに限定されない。 First, in step 1, the future hot metal temperature is predicted using a physical model. Step 1 is a response prediction step. The response prediction step uses a physical model to predict the future hot metal temperature based on the predicted value of the future hot metal temperature when the current manipulated variable is held and the predicted value of the hot metal temperature when the current manipulated variable is changed. Find the predicted value of the hot metal temperature. The predicted value of future hot metal temperature if the current manipulated variables are held is a free response described below. The predicted value of the hot metal temperature when the current operating variable is changed is a step response described later in this embodiment, but is not limited to this.
 次に、ステップ2として、ステップ1での溶銑温度の予測値が目標値と合致するように、かつ、還元材比を最小化するように二次計画法を用いて操作変数の操作を実行する。ステップ2は、操作量決定ステップであって、予測値と目標値との偏差を求めて、偏差を解消するための操作量が求められ、操作変数が調整される。本実施形態において、操作変数は微粉炭比及び送風湿分である。 Next, in step 2, the manipulated variables are manipulated using quadratic programming so that the predicted value of the hot metal temperature in step 1 matches the target value and the reducing agent ratio is minimized. . Step 2 is a manipulated variable determination step in which the deviation between the predicted value and the target value is determined, the manipulated variable for eliminating the deviation is determined, and the manipulated variable is adjusted. In this embodiment, the manipulated variables are pulverized coal ratio and blast moisture.
 また、ステップ3として、高炉の実操業を模擬するため、造銑速度の予測値が目標値と合致するように送風流量を操作し、通気度の予測値が上限以下となるように少なくともコークス比を操作してよい。本実施形態において、通気度は炉内圧損であって、炉内圧損の予測値が設定されている上限を超えると通気状態が異常であると判定される。通気状態が異常と判定される場合に、コークス比を上昇させる操作が実行されてよい。通気状態が異常でないと判定される場合、つまり炉内圧損の予測値が上限以下の場合に、コークス比を低減させる操作が実行されてよい。ステップ3による送風流量及びコークス比の操作は、溶銑温度制御にとって外乱となる。後述するように、この外乱の影響を微粉炭比及び送風湿分の操作により打ち消すことが可能であることが、シミュレーションによって検証された。 In addition, in step 3, in order to simulate the actual operation of a blast furnace, the blast flow rate is controlled so that the predicted value of iron making rate matches the target value, and at least the coke ratio is adjusted so that the predicted value of air permeability is below the upper limit. may be operated. In this embodiment, the air permeability is the pressure loss in the furnace, and when the predicted value of the pressure loss in the furnace exceeds a set upper limit, the ventilation state is determined to be abnormal. When the ventilation condition is determined to be abnormal, an operation to increase the coke ratio may be performed. When it is determined that the ventilation condition is not abnormal, that is, when the predicted value of the pressure drop in the furnace is less than or equal to the upper limit, an operation to reduce the coke ratio may be performed. The manipulation of the air flow rate and coke ratio in step 3 becomes a disturbance to the hot metal temperature control. As will be described later, it was verified through simulation that the influence of this disturbance could be canceled by manipulating the pulverized coal ratio and the air humidity.
 本開示において用いられる物理モデルは、参考文献2(羽田野道春ら、「高炉非定常モデルによる火入れ操業の検討」、鉄と鋼、vol.68、p.2369)に記載の方法のモデルと同様である。すなわち、鉱石の還元、鉱石とコークスとの間の熱交換及び鉱石の融解等の物理現象を考慮した偏微分方程式群から構成された、非定常状態における高炉の内部(炉内)の状態を計算可能な物理モデルが用いられる。この物理モデルを、以下において非定常モデルと称することがある。 The physical model used in the present disclosure is similar to the model of the method described in Reference 2 (Michiharu Hadano et al., "Study of burning operation using an unsteady blast furnace model", Tetsu-to-Hagane, vol. 68, p. 2369). It is. In other words, it calculates the state inside the blast furnace (furnace) in an unsteady state, which is composed of a group of partial differential equations that take into account physical phenomena such as reduction of ore, heat exchange between ore and coke, and melting of ore. A possible physical model is used. This physical model may be referred to as an unsteady model below.
 図3に示すように、非定常モデルに与えられる入力変数の中で時間変化する主なものは、送風流量、送風酸素流量、微粉炭流量、送風湿分、送風温度、コークス比及び炉頂圧である。これらの入力変数は高炉の操作変数又は操業因子である。送風流量、送風酸素流量、微粉炭流量は、それぞれ、高炉に送られる空気、酸素、微粉炭の流量である。送風湿分は、高炉に送られる空気の湿度である。送風温度は、高炉に送られる空気の温度である。コークス比は、炉頂部におけるコークス比であって、1トンの溶銑生成量に対して使用されるコークス重量である。 As shown in Figure 3, among the input variables given to the unsteady model, the main ones that change over time are blast flow rate, blast oxygen flow rate, pulverized coal flow rate, blast moisture, blast temperature, coke ratio, and furnace top pressure. It is. These input variables are operating variables or operating factors of the blast furnace. The blast flow rate, the blast oxygen flow rate, and the pulverized coal flow rate are the flow rates of air, oxygen, and pulverized coal sent to the blast furnace, respectively. The blast humidity is the humidity of the air sent to the blast furnace. The blowing temperature is the temperature of the air sent to the blast furnace. The coke ratio is the coke ratio at the top of the furnace, and is the weight of coke used for one ton of hot metal production.
 また、非定常モデルの主な出力変数は、ガス利用率、ソルーションロスカーボン量(ソルロスカーボン量)、還元材比、造銑速度、溶銑温度及び炉内圧損である。非定常モデルを用いて時々刻々変化する溶銑温度、造銑速度及び炉内圧損を計算可能である。計算の時間間隔は特に限定されないが、本実施形態において30分である。後述する非定常モデルの式の「t+1」と「t」との時間差が、本実施形態では30分である。 In addition, the main output variables of the unsteady model are gas utilization rate, solution loss carbon amount (sol loss carbon amount), reducing agent ratio, pig iron making rate, hot metal temperature, and furnace pressure drop. Using the unsteady model, it is possible to calculate the ever-changing hot metal temperature, iron making rate, and furnace pressure drop. Although the time interval of calculation is not particularly limited, it is 30 minutes in this embodiment. In this embodiment, the time difference between "t+1" and "t" in the unsteady model equation described later is 30 minutes.
 非定常モデルを以下の式(1)及び式(2)により表すことができる。 The unsteady model can be expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここでx(t)は非定常モデル内で計算される状態変数である。状態変数は、例えばコークスの温度、鉄の温度、鉱石の酸化度、原料の降下速度などである。y(t)は制御変数である溶銑温度、造銑速度及び通気度(炉内圧損)である。u(t)は上記の入力変数であって、高炉の操業を行うオペレータが操作可能な変数である。つまり、入力変数は、送風流量BV(t)、送風酸素流量BVO(t)、微粉炭流量PCI(t)、送風湿分BM(t)、送風温度BT(t)、コークス比CR(t)、炉頂圧TGP(t)である。u(t)=(BV(t),BVO(t),PCI(t),BM(t),BT(t),CR(t),TGP(t))で表すことができる。 Here x(t) is a state variable calculated within the unsteady model. State variables include, for example, coke temperature, iron temperature, ore oxidation degree, and raw material fall rate. y(t) is the control variables: hot metal temperature, pig iron making rate, and air permeability (furnace pressure drop). u(t) is the input variable described above, and is a variable that can be operated by the operator who operates the blast furnace. In other words, the input variables are blast flow rate BV (t), blast oxygen flow rate BVO (t), pulverized coal flow rate PCI (t), blast moisture BM (t), blast temperature BT (t), and coke ratio CR (t). , the furnace top pressure TGP(t). It can be expressed as u(t)=(BV(t), BVO(t), PCI(t), BM(t), BT(t), CR(t), TGP(t)) T .
 まず現在の入力変数の値が一定に保たれたことを仮定して将来の制御変数の予測計算をおこなう。現在の時間ステップであるtを0として、以下の式(3)及び式(4)を用いて将来の制御変数が予測される。このようにして求められた制御変数の応答y(t)は自由応答と称される。 First, a predictive calculation of future control variables is performed assuming that the current values of input variables are kept constant. Setting the current time step t 0 to 0, future control variables are predicted using equations (3) and (4) below. The response y f (t) of the control variable determined in this way is called a free response.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以下では、現在及び将来の微粉炭比(PCR)及び送風湿分(BM)の操作量を決定する方法について述べる。将来として2時間後を予測する例が説明される。未知変数であるθ=(ΔPCR,ΔBM,ΔPCR,ΔBM)を導入して、二次計画法によって微粉炭比(PCR)及び送風湿分(BM)の操作量が決定される。添え字の0は現在を示す。また、添え字の1は2時間後を示す。 Below, a method for determining the current and future manipulated variables of pulverized coal ratio (PCR) and blast moisture (BM) will be described. An example of predicting the future two hours later will be explained. By introducing unknown variables θ=(ΔPCR 0 , ΔBM 0 , ΔPCR 1 , ΔBM 1 ), the manipulated variables of the pulverized coal ratio (PCR) and the blast moisture (BM) are determined by quadratic programming. The subscript 0 indicates the current state. Moreover, the subscript 1 indicates 2 hours later.
 本物理モデルを用いる予測制御の前提として、将来の溶銑温度は、自由応答である応答y(t)とステップ応答との重ね合わせで近似できるとしてよい。10時間先までの2時間ごとの溶銑温度の予測値であるypre(t)は以下の式(5)の通りである。 As a premise of predictive control using this physical model, it may be assumed that the future hot metal temperature can be approximated by superposing the response y f (t), which is a free response, and the step response. y pre (t), which is a predicted value of hot metal temperature every 2 hours up to 10 hours ahead, is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここでSPCR(t)は微粉炭比(PCR)を単位量(1[kg/t])だけ操作した場合の溶銑温度の変化量である。また、SBM(t)は送風湿分(BM)を単位量(1[g/Nm])だけ操作した場合の送風湿分の変化量である。SPCR及びSBMは、例えば別の物理モデル又は実操業におけるステップ応答試験などにより求めることが可能である。本開示における計算では、参考文献3(Y.Hashimoto,Online prediction of hot metal temperature using transient model and moving horizon estimation. ISIJ Int. 2019,vol.59,p.1534)に記載のシミュレーション結果が用いられた。 Here, S PCR (t) is the amount of change in hot metal temperature when the pulverized coal ratio (PCR) is manipulated by a unit amount (1 [kg/t]). Further, S BM (t) is the amount of change in the blown air moisture (BM) when the blown air moisture (BM) is manipulated by a unit amount (1 [g/Nm 3 ]). S PCR and S BM can be determined by, for example, another physical model or a step response test in actual operation. In the calculations in this disclosure, reference 3 (Y. Hashimoto, Online prediction of hot metal temperature using transient model and moving horizon estimation. ISIJ The simulation results described in Int. 2019, vol. 59, p. 1534) were used. .
 以下において、ステップ応答行列Sを用いて式(5)を下記式(6)のように表すと、溶銑温度の予測値と目標値ypre(t)との偏差は式(7)の通りとなる。 In the following, when formula (5) is expressed as formula (6) below using step response matrix S, the deviation between the predicted value of hot metal temperature and the target value y pre (t) is as shown in formula (7). Become.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで自由応答であるy(t)の目標値ypre(t)からの偏差をδyとしている。溶銑温度の予測値と目標値ypre(t)との偏差の自乗は下記式(8)の通りである。 Here, the deviation of the free response y f (t) from the target value y pre (t) is defined as δy. The square of the deviation between the predicted value of the hot metal temperature and the target value y pre (t) is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 溶銑温度のばらつきの低減と還元材比の最小化とを両立するため、二次計画法に用いられる評価関数Jは式(9)の通り、式(8)の第1項及び第2項に加えて、送風湿分を低減する項(第3項)を含む。また、評価関数Jは、過度な操作を抑制するための第4項を含む。 In order to both reduce the variation in hot metal temperature and minimize the reducing agent ratio, the evaluation function J used in the quadratic programming method is set to the first and second terms of equation (8), as shown in equation (9). In addition, it includes a term (third term) for reducing air humidity. Furthermore, the evaluation function J includes a fourth term for suppressing excessive operation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、a及びRは係数である。微粉炭比(PCR)と送風湿分(BM)のそれぞれの変更に対する溶銑温度の応答性を比べると、送風湿分の方が即応性を有することが知られている。ただし、送風湿分を増減できるように増加方向及び低減方向に操作可能領域を確保するためには送風湿分の平均値を上昇させる必要がある。送風湿分の平均値を上昇させると、送風湿分の水蒸気分解反応による吸熱が生じ、吸熱で低下した熱を補償するために還元材を多く投入しなければならないという問題が生じる。そこで、送風湿分の操作量を制限するため、第3項が導入されており、係数ベクトルaの要素の大きさにより、ベクトルθに含まれるΔPCRとΔBMの重みづけを変更し、両者の操作配分を調整することができる。 Here, a and R are coefficients. When comparing the responsiveness of hot metal temperature to changes in pulverized coal ratio (PCR) and blast moisture (BM), it is known that blast moisture has a faster response. However, in order to secure an operable range in the increasing direction and the decreasing direction so that the blown air humidity can be increased or decreased, it is necessary to increase the average value of the blown air humidity. When the average value of the air humidity is increased, heat absorption occurs due to the steam decomposition reaction of the air humidity, and a problem arises in that a large amount of reducing agent must be added to compensate for the decrease in heat due to heat absorption. Therefore, in order to limit the manipulated amount of air humidity, the third term is introduced, and the weighting of ΔPCR and ΔBM included in the vector θ is changed depending on the size of the elements of the coefficient vector a, and the manipulation of both Distribution can be adjusted.
 また、以下の式(10)~式(13)の制約条件の下で、式(9)を用いてθが決定される。 Furthermore, θ is determined using equation (9) under the constraints of equations (10) to (13) below.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、式(10)~式(13)における添え字のiは0又は1である。また、添え字のnowは現時点の微粉炭比(PCR)又は送風湿分(BM)の値を意味する。PCRmax、PCRminはそれぞれ微粉炭比(PCR)の目標範囲の上限、下限である。ΔPCRmaxは微粉炭比(PCR)の許容される変化量の大きさの上限である。BMmax、BMminはそれぞれ送風湿分(BM)の目標範囲の上限、下限である。ΔBMmaxは送風湿分(BM)の許容される変化量の大きさの上限である。式(10)~式(13)で示される未知変数θに関する一次式の制約条件下で、未知変数θに関する二次関数である評価関数Jを最小化するように、二次計画法を用いて未知変数θが決定される。式(9)を用いて未知変数θを求める制御が図2の溶銑温度制御に対応する。 Here, the subscript i in equations (10) to (13) is 0 or 1. Moreover, the subscript "now" means the current value of pulverized coal ratio (PCR) or blast moisture (BM). PCR max and PCR min are the upper and lower limits of the target range of the pulverized coal ratio (PCR), respectively. ΔPCR max is the upper limit of the allowable change in the pulverized coal ratio (PCR). BM max and BM min are the upper and lower limits of the target range of the blast moisture (BM), respectively. ΔBM max is the upper limit of the allowable change amount of the air humidity (BM). Using quadratic programming to minimize the evaluation function J, which is a quadratic function regarding the unknown variable θ, under the constraint conditions of the linear expression regarding the unknown variable θ shown in equations (10) to (13). An unknown variable θ is determined. Control for determining the unknown variable θ using equation (9) corresponds to the hot metal temperature control in FIG. 2.
 ここで、本実施形態において、還元材比を低減するために送風湿分を低減するように評価関数Jを設計したが、例えば微粉炭比の増加にペナルティを与えるなど、還元材比を直接的に低減する評価関数Jを用いても同様の効果が得られる。また、本実施形態では評価関数Jが最小化する場合の未知変数θを求めたが、溶銑温度の予測値と目標値との偏差及び還元材比(又は送風湿分)の最小化と、評価関数Jの最大化とが対応するように、評価関数Jが設計されてよい。つまり、評価関数Jが最小化又は最大化するように、微粉炭比及び送風湿分の操作量が求められてよい。さらに、評価関数Jにおいて、準最適値が最適値と評価されてよい。つまり、必ずしも評価関数Jが最大値又は最小値をとらなくても、評価関数Jの値が最大値の近傍又は最小値の近傍であれば(準最適化が行われれば)、制御目的が達成されると扱ってよい。したがって、評価関数Jが最小化又は最大化することは、評価関数Jの値が最大値又は最小値となる場合だけでなく、評価関数Jの値が最大値の近傍又は最小値の近傍となる場合を含むとしてよい。 Here, in this embodiment, the evaluation function J was designed to reduce the air humidity in order to reduce the reducing agent ratio. However, for example, by giving a penalty to an increase in the pulverized coal ratio, A similar effect can be obtained by using an evaluation function J that reduces . In addition, in this embodiment, the unknown variable θ was obtained when the evaluation function J is minimized, but the deviation between the predicted value of the hot metal temperature and the target value, the minimizing of the reducing agent ratio (or the air humidity), and the evaluation The evaluation function J may be designed so that it corresponds to the maximization of the function J. That is, the manipulated variables of the pulverized coal ratio and the air humidity may be determined so that the evaluation function J is minimized or maximized. Furthermore, in the evaluation function J, a quasi-optimal value may be evaluated as an optimal value. In other words, even if the evaluation function J does not necessarily take the maximum or minimum value, as long as the value of the evaluation function J is near the maximum value or near the minimum value (if semi-optimization is performed), the control objective is achieved. You can treat it if you do. Therefore, the evaluation function J is minimized or maximized not only when the value of the evaluation function J is the maximum value or the minimum value, but also when the value of the evaluation function J is near the maximum value or near the minimum value. It may be possible to include cases.
 実操業に近い操業条件で、本開示による還元材比の低減効果をシミュレーションにより検証するため、溶銑温度以外の制御変数(造銑速度及び炉内圧損)についても、以下の手法により、操作変数(送風流量及びコークス比)が操作される。 In order to verify the effect of reducing the reducing agent ratio by the present disclosure through simulation under operating conditions close to actual operations, the following method was used to change the manipulated variables ( The blast flow rate and coke ratio) are controlled.
 造銑速度について、目標値と予測値との偏差を解消するように、以下の式(14)によって、送風流量(BV)[Nm/min]の操作量であるΔBVが求められる。 Regarding the pig iron making speed, ΔBV, which is the manipulated variable of the blast flow rate (BV) [Nm 3 /min], is determined by the following equation (14) so as to eliminate the deviation between the target value and the predicted value.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここでProd(t+T)は造銑速度のTステップ先の予測値である。一例としてTは4であってよく、このとき2時間(30分×4)先の予測値を意味する。Prodrefは目標造銑速度(造銑速度の目標値)である。また、SBVは送風流量(BV)を単位量(1[Nm/min])だけ操作した場合の造銑速度の変化量である。SBVは別の物理モデル又は実操業におけるステップ応答試験などにより求めることが可能である。また、bは係数であって正の数である。式(14)に従ってΔBVを求める制御が図2の造銑速度制御に対応する。 Here, Prod (t+T) is a predicted value of the iron making speed T steps ahead. As an example, T may be 4, which means a predicted value for 2 hours (30 minutes x 4) ahead. Prod ref is the target iron making speed (target value of the iron making speed). Further, S BV is the amount of change in the iron making speed when the blowing flow rate (BV) is manipulated by a unit amount (1 [Nm 3 /min]). The SBV can be determined using another physical model or a step response test in actual operation. Moreover, b is a coefficient and is a positive number. The control for determining ΔBV according to equation (14) corresponds to the iron making speed control in FIG. 2.
 また、炉内圧損(ΔP)について、上限(閾値)との比較によって、コークス比(CR)及び送風流量(BV)の操作量が決定される。炉内圧損(ΔP)が上限を超えた場合に、コークス比を上昇させると同時に送風流量を低下させるように操作量が決定される。このことは、高炉の操業において、原料の荷下がりを安定化させる操作に対応する。また、炉内圧損が上限以下の場合に、徐々にコークス比を低減させていくように操作量が決定される。原則として炉内圧損が上限を超えないように制御が行われるが、炉内圧損が上限以下の場合に、徐々にコークス比を低減させることによって操業のコストを低減させることが可能になる。このような制御が行われる場合に、炉内圧損の値は上限の近傍で推移する。炉内圧損の上限との比較によって、コークス比(CR)及び送風流量(BV)の操作量を決定する制御が図2の通気度制御に対応する。 Furthermore, with respect to the pressure drop in the furnace (ΔP), the manipulated variables of the coke ratio (CR) and the blowing flow rate (BV) are determined by comparison with the upper limit (threshold). When the pressure drop (ΔP) in the furnace exceeds the upper limit, the manipulated variable is determined so as to increase the coke ratio and simultaneously decrease the blowing flow rate. This corresponds to the operation of stabilizing the unloading of raw materials in the operation of a blast furnace. Moreover, when the pressure drop in the furnace is below the upper limit, the manipulated variable is determined so as to gradually reduce the coke ratio. In principle, control is performed so that the pressure loss in the furnace does not exceed the upper limit, but when the pressure loss in the furnace is below the upper limit, it becomes possible to reduce the cost of operation by gradually reducing the coke ratio. When such control is performed, the value of the pressure drop in the furnace changes near the upper limit. Control that determines the manipulated variables of the coke ratio (CR) and the blowing flow rate (BV) by comparison with the upper limit of the pressure drop in the furnace corresponds to the air permeability control in FIG. 2 .
 図4は、上記のプロセス制御によるシミュレーション結果を示す図である。つまり図4のシミュレーションでは溶銑温度(HMT)、造銑速度(Prod)及び通気度の一例である炉内圧損(ΔP)の非定常モデルを用いた予測値に基づいて、送風湿分(BM)、微粉炭比(PCR)、送風流量(BV)及びコークス比(CR)を操作した。目標溶銑温度は1500℃であった。目標造銑速度は7[t/min]であった。また、炉内圧損の上限値は100[kPa]であった。 FIG. 4 is a diagram showing simulation results based on the above process control. In other words, in the simulation shown in Fig. 4, the blast moisture (BM) is , pulverized coal ratio (PCR), blast flow rate (BV), and coke ratio (CR) were manipulated. The target hot metal temperature was 1500°C. The target pig iron making speed was 7 [t/min]. Further, the upper limit of the pressure drop in the furnace was 100 [kPa].
 図4に示す通り、溶銑温度(HMT)は目標値近傍に操作されており、式(9)に示した評価関数Jに基づき、溶銑温度のばらつきを抑制しつつ、送風湿分(BM)は下限値近傍に保持されていることがわかる。送風湿分が下限値近傍であることは、還元材を投入しなければならない水蒸気分解反応による吸熱が生じにくいため、還元材比の低減につながる。また、造銑速度(Prod)は目標値近傍に制御されており、炉内圧損(ΔP)についても上限以下に保たれている。 As shown in Figure 4, the hot metal temperature (HMT) is operated near the target value, and based on the evaluation function J shown in equation (9), the blast moisture (BM) is controlled while suppressing the variation in the hot metal temperature. It can be seen that the value is maintained near the lower limit value. When the air humidity is close to the lower limit value, heat absorption due to the steam decomposition reaction that requires the introduction of a reducing agent is less likely to occur, leading to a reduction in the reducing agent ratio. Further, the iron making rate (Prod) is controlled near the target value, and the pressure loss in the furnace (ΔP) is also kept below the upper limit.
 比較検証のため、微粉炭比(PCR)のみを操作し、送風湿分(BM)を操作しない比較例についてシミュレーションが実施された。図5は、比較例の制御によるシミュレーション結果を示す図である。図5のシミュレーションでは、溶銑温度(HMT)、造銑速度(Prod)及び通気度の一例である炉内圧損(ΔP)の非定常モデルを用いた予測値に基づいて、微粉炭比(PCR)、送風流量(BV)及びコークス比(CR)を操作した。シミュレーションの条件は、送風湿分(BM)を除いて、図4の場合と同じである。送風湿分は15.5[g/Nm]の一定値とした。 For comparative verification, a simulation was performed for a comparative example in which only the pulverized coal ratio (PCR) was manipulated and the blast moisture (BM) was not manipulated. FIG. 5 is a diagram showing simulation results obtained by control of a comparative example. In the simulation shown in Fig. 5, the pulverized coal ratio (PCR) is , the blast flow rate (BV) and coke ratio (CR) were manipulated. The simulation conditions are the same as in FIG. 4 except for the blast moisture (BM). The air humidity was set at a constant value of 15.5 [g/Nm 3 ].
 図6は、還元材比(RAR)の低減効果を説明するための図であって、図4(本実施形態に係るプロセスの制御方法)と図5(比較例)のシミュレーション結果の還元材比の時間変化を比較したものである。図6に示すように、本実施形態に係るプロセスの制御方法での還元材比の平均値は、比較例の還元材比の平均値より低減されている。微粉炭比及び送風湿分の同時操作によって、還元材比を低減可能であることが示された。還元材比が低減されることによって、溶銑1tを製造するために必要な羽口から吹き込む酸素量(酸素原単位)[Nm/t]が低減する。そのため、より少ない送風流量で目標の造銑速度に到達させることができる。結果として、圧力損失に余裕が生まれるため、コークス比も低減できている(図3と図4のCR参照)。 FIG. 6 is a diagram for explaining the effect of reducing the reducing agent ratio (RAR), and shows the reducing agent ratio of the simulation results of FIG. 4 (process control method according to the present embodiment) and FIG. 5 (comparative example). This is a comparison of changes over time. As shown in FIG. 6, the average value of the reducing agent ratio in the process control method according to the present embodiment is lower than the average value of the reducing agent ratio in the comparative example. It has been shown that the reducing agent ratio can be reduced by simultaneously controlling the pulverized coal ratio and the air humidity. By reducing the reducing agent ratio, the amount of oxygen (oxygen basic unit) [Nm 3 /t] required to be blown from the tuyere to produce 1 ton of hot metal is reduced. Therefore, the target iron making speed can be reached with a smaller air flow rate. As a result, there is a margin for pressure loss, and the coke ratio can also be reduced (see CR in Figures 3 and 4).
 図7は、一実施形態に係るプロセスの制御装置10の構成例を示す図である。図7に示すように、本実施形態に係るプロセスの制御装置10は、通信部11と、記憶部12と、制御部13と、を備える。制御部13は、溶銑温度制御部14と、造銑速度制御部15と、通気度制御部16と、PCR追従制御部17と、を備える。プロセスの制御装置10は、上記のプロセスの制御方法を実行する。ここで、プロセスの制御装置10は、送風湿分、送風流量、コークス比又は微粉炭比を操作する場合に、例えば操作量などの情報を液晶ディスプレイなどの表示部に表示させてよい。 FIG. 7 is a diagram illustrating a configuration example of a process control device 10 according to an embodiment. As shown in FIG. 7, the process control device 10 according to the present embodiment includes a communication section 11, a storage section 12, and a control section 13. The control section 13 includes a hot metal temperature control section 14, an iron making speed control section 15, an air permeability control section 16, and a PCR follow-up control section 17. The process control device 10 executes the process control method described above. Here, the process control device 10 may display information such as the operation amount on a display unit such as a liquid crystal display when operating the blown humidity, the blown air flow rate, the coke ratio, or the pulverized coal ratio.
 通信部11は、上位システムと通信するための通信モジュールを含んで構成される。上位システムは、高炉を含むプラントでのプロセスを管理するプロセスコンピュータを含む。通信部11は、例えば4G(4th Generation)、5G(5th Generation)などの移動体通信規格に対応する通信モジュールを含んでよい。通信部11は、例えば有線又は無線のLAN規格に対応する通信モジュールを含んでよい。制御部13は、通信部11を介して、上位システムから目標溶銑温度、目標造銑速度及び炉内圧損上限などの情報を取得できる。また、制御部13は、通信部11を介して、操作を実行した操作変数、すなわち算出した操作量を反映した操作変数の情報を上位システムに出力することができる。 The communication unit 11 is configured to include a communication module for communicating with the host system. The host system includes a process computer that manages processes in the plant including the blast furnace. The communication unit 11 may include a communication module compatible with mobile communication standards such as 4G (4th Generation) and 5G (5th Generation). The communication unit 11 may include, for example, a communication module compatible with wired or wireless LAN standards. The control unit 13 can obtain information such as a target hot metal temperature, a target iron making rate, and an upper limit of pressure drop in the furnace from the host system via the communication unit 11. Further, the control unit 13 can output information on the manipulated variables that have been operated, that is, the manipulated variables that reflect the calculated manipulated variables, to the host system via the communication unit 11.
 記憶部12は、上記の物理モデルを記憶する。また、記憶部12は、高炉プロセスの制御に関するプログラム及びデータを記憶する。記憶部12は、半導体記憶デバイス、光記憶デバイス及び磁気記憶デバイスなどの任意の記憶デバイスを含んでよい。半導体記憶デバイスは例えば半導体メモリを含んでよい。記憶部12は、複数の種類の記憶デバイスを含んでよい。 The storage unit 12 stores the above physical model. The storage unit 12 also stores programs and data related to control of the blast furnace process. The storage unit 12 may include any storage device such as a semiconductor storage device, an optical storage device, and a magnetic storage device. A semiconductor storage device may include, for example, a semiconductor memory. The storage unit 12 may include multiple types of storage devices.
 制御部13は、プロセスの制御装置10を構成する各機能部及びプロセスの制御装置10の全体を制御及び管理する。制御部13は制御に用いられるデータの取得も実行してよい。つまり、制御部13は、高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得してよい。制御部13は、種々の機能を制御及び管理するために、例えばCPU(Central Processing Unit)のような少なくとも1つのプロセッサを含んで構成される。制御部13は、1つのプロセッサで構成されてよいし、複数のプロセッサで構成されてよい。制御部13を構成するプロセッサは、記憶部12からプログラムを読みだして実行することによって、溶銑温度制御部14、造銑速度制御部15、通気度制御部16及びPCR追従制御部17として機能してよい。 The control unit 13 controls and manages each functional unit constituting the process control device 10 and the entire process control device 10. The control unit 13 may also acquire data used for control. That is, the control unit 13 may acquire the hot metal temperature, iron making rate, and air permeability of the blast furnace using observed values or calculated values. The control unit 13 is configured to include at least one processor such as a CPU (Central Processing Unit) to control and manage various functions. The control unit 13 may be composed of one processor or a plurality of processors. The processor that constitutes the control section 13 functions as a hot metal temperature control section 14, an ironmaking speed control section 15, an air permeability control section 16, and a PCR follow-up control section 17 by reading out and executing a program from the storage section 12. It's fine.
 溶銑温度制御部14は、溶銑温度の目標値である目標溶銑温度を取得して、溶銑温度が目標溶銑温度となるように、送風湿分及び微粉炭比の操作量を算出する。溶銑温度制御部14は、図2の「溶銑温度制御」を実行する機能部である。 The hot metal temperature control unit 14 obtains a target hot metal temperature, which is a target value of the hot metal temperature, and calculates the manipulated variables of the blast moisture and pulverized coal ratio so that the hot metal temperature becomes the target hot metal temperature. The hot metal temperature control section 14 is a functional section that executes "hot metal temperature control" in FIG. 2.
 造銑速度制御部15は、造銑速度の目標値である目標造銑速度を取得して、造銑速度が目標造銑速度となるように、送風流量の操作量を算出する。造銑速度制御部15は、図2の「造銑速度制御」を実行する機能部である。 The pig iron making speed control unit 15 obtains a target pig iron making speed which is a target value of the pig iron making speed, and calculates the manipulated variable of the air blowing flow rate so that the pig iron making speed becomes the target pig iron making speed. The pig iron making speed control section 15 is a functional section that executes the "pig making speed control" shown in FIG. 2 .
 通気度制御部16は、通気度(本実施形態において炉内圧損)の上限を取得して、通気度が上限を超えないように、少なくともコークス比の操作量を算出する。通気度制御部16は、本実施形態のように、さらに送風流量の操作量を算出してよい。通気度制御部16は、図2の「通気度制御」を実行する機能部である。 The air permeability control unit 16 obtains the upper limit of the air permeability (in the present embodiment, the pressure loss in the furnace) and calculates at least the manipulated variable of the coke ratio so that the air permeability does not exceed the upper limit. The air permeability control unit 16 may further calculate the manipulated variable of the air flow rate as in this embodiment. The air permeability control section 16 is a functional section that executes the "air permeability control" shown in FIG.
 PCR追従制御部17は、溶銑温度制御部14によって定められた目標値である微粉炭比(目標PCR)を取得して、PCR追従制御によって、目標PCRに追従するように微粉炭流量(PCI)の操作量を算出する。PCR追従制御部17は、図2の「PCR追従制御」を実行する機能部である。 The PCR follow-up control unit 17 acquires the pulverized coal ratio (target PCR), which is a target value determined by the hot metal temperature control unit 14, and controls the pulverized coal flow rate (PCI) to follow the target PCR by PCR follow-up control. Calculate the amount of operation. The PCR follow-up control section 17 is a functional section that executes "PCR follow-up control" in FIG.
 溶銑温度制御部14、造銑速度制御部15、通気度制御部16は、それぞれ溶銑温度(HMT)、造銑速度(Prod)、炉内圧損(ΔP)を制御するための個別のコントローラである。上記のステップ1~3を用いて説明すると、溶銑温度制御部14は、物理モデルを用いてステップ1(応答予測ステップ)を実行して、溶銑温度の予測値を求める。溶銑温度制御部14は、ステップ2(操作量決定ステップ)を実行して、微粉炭比及び送風湿分の操作量を求める。造銑速度制御部15は、ステップ3を実行して、造銑速度の目標値と予測値との偏差を解消するように送風流量の操作量を求める。また、通気度制御部16は、ステップ3を実行して、炉内圧損の予測値が上限を超えないように、送風流量及びコークス比の操作量を求める。ここで、上記のように、個別のコントローラとして構築される溶銑温度制御部14、造銑速度制御部15及び通気度制御部16は、他の制御部による操作変数の操作に基づく変動を、自己の操作変数の操作によって吸収する外乱除去特性を有する制御系である。そのため、溶銑温度制御部14、造銑速度制御部15及び通気度制御部16は、他の制御部からの操作変数の干渉の影響を低減できる。 The hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16 are individual controllers for controlling the hot metal temperature (HMT), pig iron making speed (Prod), and furnace pressure drop (ΔP), respectively. . To explain using steps 1 to 3 above, the hot metal temperature control unit 14 executes step 1 (response prediction step) using a physical model to obtain a predicted value of the hot metal temperature. The hot metal temperature control unit 14 executes step 2 (operation amount determination step) to determine the operation amounts of the pulverized coal ratio and the blast moisture. The pig iron making speed control unit 15 executes step 3 and obtains the manipulated variable of the air flow rate so as to eliminate the deviation between the target value and the predicted value of the pig iron making speed. Furthermore, the air permeability control unit 16 executes step 3 to determine the manipulated variables of the air flow rate and coke ratio so that the predicted value of the pressure loss in the furnace does not exceed the upper limit. Here, as described above, the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16, which are constructed as individual controllers, automatically control fluctuations based on the manipulation of operating variables by other control sections. This is a control system that has a disturbance removal characteristic that absorbs by manipulating the manipulated variables. Therefore, the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16 can reduce the influence of interference of operating variables from other control sections.
 高炉の操業方法の一部として、プロセスの制御装置10によって実行されるプロセスの制御方法が用いられてよい。例えば上記のプロセスの制御方法において操作された操作変数は、高炉の操業における操業条件の変更に用いられてよい。また、このような高炉の操業方法は、溶銑を製造する製造方法の一部として実行され得る。高炉において原料の鉄鉱石が溶解、還元されて銑鉄となり、溶銑として出銑されるが、高炉はこの操業方法に従って操業されてよい。 A process control method executed by the process control device 10 may be used as part of the blast furnace operating method. For example, the manipulated variables manipulated in the process control method described above may be used to change operating conditions in the operation of a blast furnace. Moreover, such a method of operating a blast furnace can be carried out as part of a manufacturing method of manufacturing hot metal. In a blast furnace, raw material iron ore is melted and reduced to become pig iron, which is tapped as hot metal, and the blast furnace may be operated according to this operating method.
 プロセスの制御装置10は、例えば高炉の操業を制御するプロセスコンピュータと別のコンピュータで実現されてよいし、プロセスコンピュータで実現されてよい。コンピュータは、例えばメモリ及びハードディスクドライブ(記憶装置)、CPU(処理装置)、ディスプレイなどの表示装置を備える。各種機能は、CPU、メモリ等のハードウエアとプログラムとを有機的に協働させることにより実現され得る。記憶部12は、例えば記憶装置で実現されてよい。制御部13は、例えばCPUで実現されてよい。 The process control device 10 may be realized, for example, by a computer separate from the process computer that controls the operation of the blast furnace, or may be realized by the process computer. A computer includes, for example, a memory, a hard disk drive (storage device), a CPU (processing unit), and a display device such as a display. Various functions can be realized by organically cooperating hardware such as a CPU and memory with a program. The storage unit 12 may be realized, for example, by a storage device. The control unit 13 may be realized by, for example, a CPU.
 以上のように、本実施形態に係るプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置10は、上記構成によって、高炉において還元材比を低減しつつ、溶銑温度のばらつき抑制を実現することができる。 As described above, the process control method, blast furnace operating method, hot metal manufacturing method, and process control device 10 according to the present embodiment reduce the reducing agent ratio in the blast furnace while reducing the variation in hot metal temperature. suppression can be achieved.
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラム又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。 Although the embodiments according to the present disclosure have been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. It should therefore be noted that these variations or modifications are included within the scope of this disclosure. For example, the functions included in each component or each step can be rearranged to avoid logical contradictions, and multiple components or steps can be combined or divided into one. It is. Embodiments according to the present disclosure can also be realized as a program executed by a processor included in the device or a storage medium recording the program. It is to be understood that these are also encompassed within the scope of the present disclosure.
 図7に示されるプロセスの制御装置10の構成は一例である。プロセスの制御装置10は、図7に示す構成要素の全てを含まなくてよい。また、プロセスの制御装置10は、図7に示す以外の構成要素を備えてよい。例えば、プロセスの制御装置10は、さらに表示部を備える構成であってよい。 The configuration of the process control device 10 shown in FIG. 7 is an example. The process control device 10 may not include all of the components shown in FIG. Further, the process control device 10 may include components other than those shown in FIG. For example, the process control device 10 may further include a display section.
 10 プロセスの制御装置
 11 通信部
 12 記憶部
 13 制御部
 14 溶銑温度制御部
 15 造銑速度制御部
 16 通気度制御部
 17 PCR追従制御部
10 Process control device 11 Communication section 12 Storage section 13 Control section 14 Hot metal temperature control section 15 Iron making speed control section 16 Air permeability control section 17 PCR follow-up control section

Claims (7)

  1.  高炉の内部の状態を計算可能な物理モデルを用いて将来の溶銑温度の予測値を求める応答予測ステップと、
     前記応答予測ステップで求められた前記溶銑温度の予測値と目標値との偏差を求めて、前記偏差に対応する項と還元材比又は送風湿分を低減するための項とを有する評価関数が最小化又は最大化するように、微粉炭比及び送風湿分の操作量を求める操作量決定ステップと、を含む、プロセスの制御方法。
    a response prediction step of calculating a predicted value of the future hot metal temperature using a physical model capable of calculating the internal state of the blast furnace;
    The deviation between the predicted value of the hot metal temperature obtained in the response prediction step and the target value is determined, and an evaluation function having a term corresponding to the deviation and a term for reducing the reducing agent ratio or the blast humidity is calculated. A method for controlling a process, comprising: determining a manipulated variable for a pulverized coal ratio and a blown moisture so as to minimize or maximize it.
  2.  前記応答予測ステップは、前記物理モデルを用いて現在の操作変数が保持された場合の将来の溶銑温度の予測値と現在の操作変数を変化させた場合の溶銑温度の予測値とに基づいて将来の前記溶銑温度の予測値を求める、請求項1に記載のプロセスの制御方法。 The response prediction step uses the physical model to predict the future hot metal temperature based on a predicted value of the future hot metal temperature when the current manipulated variable is held and a predicted value of the hot metal temperature when the current manipulated variable is changed. 2. The process control method according to claim 1, further comprising determining a predicted value of the hot metal temperature.
  3.  前記操作量決定ステップは、求める前記微粉炭比及び前記送風湿分の操作量を未知変数として、前記未知変数に関する一次式の制約条件下で、前記未知変数に関する二次関数である前記評価関数を用いて、前記未知変数を決定する、請求項1又は2に記載のプロセスの制御方法。 In the operation amount determining step, the evaluation function, which is a quadratic function regarding the unknown variables, is determined, using the operation amounts of the pulverized coal ratio and the blast moisture as unknown variables, and under the constraint of a linear expression regarding the unknown variables. The method for controlling a process according to claim 1 or 2, wherein the unknown variable is determined by using the unknown variable.
  4.  造銑速度の予測値が目標値と合致するように送風流量を操作し、通気度の予測値が上限以下となるようにコークス比を操作するステップをさらに含む、請求項1から3のいずれか一項に記載のプロセスの制御方法。 Any one of claims 1 to 3, further comprising the step of manipulating the air flow rate so that the predicted value of pig iron making speed matches the target value, and manipulating the coke ratio so that the predicted value of air permeability is below the upper limit. A method for controlling the process described in item 1.
  5.  請求項1から4のいずれか一項に記載のプロセスの制御方法によって操作された操作変数を用いて操業条件を変更する、高炉の操業方法。 A method for operating a blast furnace, comprising changing operating conditions using manipulated variables operated by the process control method according to any one of claims 1 to 4.
  6.  請求項5に記載の高炉の操業方法によって操業される前記高炉を用いて溶銑を製造する、溶銑の製造方法。 A method for producing hot metal, comprising producing hot metal using the blast furnace operated by the blast furnace operating method according to claim 5.
  7.  高炉の内部の状態を計算可能な物理モデルを記憶する記憶部と、
     溶銑温度の目標値である目標溶銑温度を取得して、前記溶銑温度が前記目標溶銑温度となるように、微粉炭比及び送風湿分の操作量を算出する溶銑温度制御部と、を備え、
     前記溶銑温度制御部は、
      前記物理モデルを用いて将来の溶銑温度の予測値を求め、
      前記溶銑温度の予測値と目標値との偏差を求めて、前記偏差に対応する項と還元材比又は送風湿分を低減するための項とを有する評価関数が最小化又は最大化するように、微粉炭比及び送風湿分の操作量を求める、プロセスの制御装置。
    a storage unit that stores a physical model capable of calculating the internal state of the blast furnace;
    A hot metal temperature control unit that acquires a target hot metal temperature that is a target value of hot metal temperature and calculates the manipulated variables of the pulverized coal ratio and the air humidity so that the hot metal temperature becomes the target hot metal temperature,
    The hot metal temperature control section is
    Using the physical model to obtain a predicted value of the future hot metal temperature,
    The deviation between the predicted value and the target value of the hot metal temperature is determined so that an evaluation function having a term corresponding to the deviation and a term for reducing the reducing agent ratio or the blast humidity is minimized or maximized. , a process control device that determines the manipulated variables of pulverized coal ratio and air humidity.
PCT/JP2023/028830 2022-08-31 2023-08-07 Process control method, blast furnace operation method, molten pig iron production method, and process control apparatus WO2024048214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138752 2022-08-31
JP2022138752 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048214A1 true WO2024048214A1 (en) 2024-03-07

Family

ID=90099303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028830 WO2024048214A1 (en) 2022-08-31 2023-08-07 Process control method, blast furnace operation method, molten pig iron production method, and process control apparatus

Country Status (1)

Country Link
WO (1) WO2024048214A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172825A (en) * 1992-12-07 1994-06-21 Nippon Steel Corp Operation of blast furnace
JP2000129319A (en) * 1998-10-23 2000-05-09 Kawasaki Steel Corp Method for controlling furnace heat in blast furnace and device therefor
JP2002146414A (en) * 2000-11-06 2002-05-22 Nippon Steel Corp Method for operating blast furnace
JP2012087375A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Method for operating blast furnace
WO2015105107A1 (en) * 2014-01-07 2015-07-16 新日鐵住金株式会社 Method for operating blast furnace
JP2022014169A (en) * 2020-07-06 2022-01-19 Jfeスチール株式会社 Operation guidance method, blast furnace operation method, production method of hot metal, and operation guidance device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172825A (en) * 1992-12-07 1994-06-21 Nippon Steel Corp Operation of blast furnace
JP2000129319A (en) * 1998-10-23 2000-05-09 Kawasaki Steel Corp Method for controlling furnace heat in blast furnace and device therefor
JP2002146414A (en) * 2000-11-06 2002-05-22 Nippon Steel Corp Method for operating blast furnace
JP2012087375A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Method for operating blast furnace
WO2015105107A1 (en) * 2014-01-07 2015-07-16 新日鐵住金株式会社 Method for operating blast furnace
JP2022014169A (en) * 2020-07-06 2022-01-19 Jfeスチール株式会社 Operation guidance method, blast furnace operation method, production method of hot metal, and operation guidance device

Similar Documents

Publication Publication Date Title
Radhakrishnan et al. Neural networks for the identification and control of blast furnace hot metal quality
US8002871B2 (en) Methods and apparatus for an oxygen furnace quality control system
Hashimoto et al. Transient model-based operation guidance on blast furnace
WO2021014782A1 (en) Learning model generation method, learning model generation device, method for controlling molten iron temperature in blast furnace, method for guiding molten iron temperature control in blast furnace, and molten iron manufacturing method
TWI788892B (en) Work instruction method, blast furnace operation method, molten iron manufacturing method, work instruction device
WO2024048214A1 (en) Process control method, blast furnace operation method, molten pig iron production method, and process control apparatus
Li et al. Numerical investigation of the inner profiles of ironmaking blast furnaces: effect of throat-to-belly diameter ratio
WO2024048310A1 (en) Method for controlling process, method for operating blast furnace, method for manufacturing molten metal, and device for controlling process
JP6915754B2 (en) Process control method, operation guidance method, blast furnace operation method, hot metal manufacturing method and process control device
JP7384150B2 (en) Operation guidance method, blast furnace operation method, hot metal production method and operation guidance device
JPS61508A (en) Operating method of blast furnace
WO2022009617A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
Azadi et al. Model predictive control of molten iron and slag quality indices in a large-scale ironmaking blast furnace using a hybrid dynamic model
WO2024053568A1 (en) Sintering process control method, operation guidance method, sintered ore manufacturing method, sintering process control device, operation guidance device, sintering operation guidance system, and terminal device
Zhang et al. Prediction of Blast Furnace Fuel Ratio Based on Back‐Propagation Neural Network and K‐Nearest Neighbor Algorithm
JP7264321B1 (en) Hot metal temperature prediction method, operation guidance method, hot metal production method, hot metal temperature prediction device, operation guidance device, blast furnace operation guidance system, blast furnace operation guidance server and terminal device
JP2010007992A (en) Sintering apparatus and sintering method
Masuda et al. Automation on thermal control of blast furnace
JP7384326B1 (en) Blast furnace hot metal temperature prediction method, blast furnace hot metal temperature prediction model learning method, blast furnace operating method, blast furnace hot metal temperature prediction device, blast furnace hot metal temperature prediction system and terminal device
JP2013036084A (en) Device and method for calculation of sub-material input amount in converter
JP6933196B2 (en) Blast furnace unloading speed prediction model learning method, blast furnace unloading speed prediction method, blast furnace operation guidance method, blast furnace unloading speed control method, hot metal manufacturing method, blast furnace operation method, and blast furnace unloading speed prediction Model learning device
WO2022168396A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, and operation method for blast furnace
CA1139567A (en) Blast-furnace operation method
JP2022048698A (en) Control device for blast furnace, operation method for blast furnace, and program
JP7067533B2 (en) Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859982

Country of ref document: EP

Kind code of ref document: A1