JP7067533B2 - Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal - Google Patents

Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal Download PDF

Info

Publication number
JP7067533B2
JP7067533B2 JP2019132112A JP2019132112A JP7067533B2 JP 7067533 B2 JP7067533 B2 JP 7067533B2 JP 2019132112 A JP2019132112 A JP 2019132112A JP 2019132112 A JP2019132112 A JP 2019132112A JP 7067533 B2 JP7067533 B2 JP 7067533B2
Authority
JP
Japan
Prior art keywords
hot metal
concentration
blast furnace
predicted value
future
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019132112A
Other languages
Japanese (ja)
Other versions
JP2021017607A (en
Inventor
佳也 橋本
拓幸 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019132112A priority Critical patent/JP7067533B2/en
Publication of JP2021017607A publication Critical patent/JP2021017607A/en
Application granted granted Critical
Publication of JP7067533B2 publication Critical patent/JP7067533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置に関する。 The present invention relates to a method for predicting the Si concentration of hot metal, an operation guidance method, a method for operating a blast furnace, a method for producing molten steel, and an apparatus for predicting the Si concentration of hot metal.

高炉・転炉法において、溶銑中の成分(特にSi濃度)はプロセス間をまたがった操業アクションの適正化を行う上で重要な変数である。例えば、溶銑のSi濃度が高い場合、転炉での熱源となるため、銑配比率の低減につながって粗鋼増産に寄与する。一方、溶銑のSi濃度が高すぎる場合、転炉でスロッピングが発生し、転炉の生産性が低下する可能性がある。 In the blast furnace / converter method, the components in the hot metal (particularly Si concentration) are important variables for optimizing the operation action across processes. For example, when the Si concentration of hot metal is high, it becomes a heat source in a converter, which leads to a reduction in the hot metal distribution ratio and contributes to an increase in crude steel production. On the other hand, if the Si concentration of the hot metal is too high, sloping may occur in the converter and the productivity of the converter may decrease.

また、トピード脱リン等の溶銑予備処理工程においても、脱Si反応は脱P反応と競合するため、吹錬時間に影響し、高炉から転炉までの溶銑のリードタイムを左右する。このように、溶銑中の成分は、高炉・転炉法の生産性に与える影響が大きいため、その将来予測を行うことができれば、生産性確保のための適切なアクションを行うことが可能となる。例えば高炉が複数存在する製鉄所では、将来のSi濃度が高いと予測された高炉から出銑される溶銑を、目標温度の高い製鋼のチャージに優先的に引き当てるというように、溶銑の引き当て計画を高精度化することが可能となる。更に、Si濃度の値を積極的に操作することにより、銑配比率の適正化につながる可能性もある。 Further, even in the hot metal pretreatment step such as topped dephosphorization, the de-Si reaction competes with the de-P reaction, which affects the blowing time and affects the lead time of the hot metal from the blast furnace to the converter. In this way, the components in the hot metal have a large effect on the productivity of the blast furnace / converter method, so if the future can be predicted, it will be possible to take appropriate actions to ensure productivity. .. For example, in a steelworks where there are multiple blast furnaces, the hot metal allocation plan is to preferentially allocate the hot metal from the blast furnace, which is predicted to have a high Si concentration in the future, to the charge of steelmaking with a high target temperature. It is possible to improve the accuracy. Furthermore, positive manipulation of the Si concentration value may lead to optimization of the pig iron distribution ratio.

一方、高炉プロセスは熱的慣性が大きいため、例えば将来8時間程度の溶銑温度およびそれに付随する溶銑のSi濃度の変動は、高炉の操作変数である微粉炭流量等の過去の操作の蓄積に大きく影響される。 On the other hand, since the blast furnace process has a large thermal inertia, for example, fluctuations in the hot metal temperature for about 8 hours in the future and the Si concentration of the hot metal accompanying it are large in the accumulation of past operations such as the pulverized coal flow rate, which is the operating variable of the blast furnace. Be affected.

Henrik Saxen,「Nonlinear Prediction of the Hot Metal Silicon Content in the Blast Furnace」, ISIJ International, Vol.47(2007), No.12, pp.1732-1737Henrik Saxen, "Nonlinear Prediction of the Hot Metal Silicon Content in the Blast Furnace", ISIJ International, Vol.47 (2007), No.12, pp.1732-1737

ここで、溶銑のSi濃度を予測する技術としては、例えば非特許文献1に示すように、データベースに基づいた統計的アプローチが知られている。しかしながら、一般的に、統計的手法の予測精度が担保されるのは、予測対象と類似した操業条件がデータベースに含まれている場合に限られており、未知の操業条件に対しては予測精度が低下する懸念がある。 Here, as a technique for predicting the Si concentration of hot metal, a statistical approach based on a database is known, for example, as shown in Non-Patent Document 1. However, in general, the prediction accuracy of statistical methods is guaranteed only when the database contains operating conditions similar to those to be predicted, and the prediction accuracy is guaranteed for unknown operating conditions. There is a concern that it will decline.

高炉の操業条件としては、コークス比、送風流量、送風温度等の数多くの操作変数があり、かつ時定数も長い。非特許文献1の技術のように、過去の実績データに依拠して予測を行う場合、操作変数の時系列データを考慮する必要があるが、操作変数の時系列データの組み合わせ数は膨大な数に上るため、類似度の高い時系列データが必ずしも存在するとは限らない。 The operating conditions of the blast furnace include many instrumental variables such as coke ratio, air flow rate, and air temperature, and the time constant is long. When making predictions based on past actual data as in the technique of Non-Patent Document 1, it is necessary to consider the time series data of the operation variables, but the number of combinations of the time series data of the operation variables is enormous. Therefore, time series data with high similarity does not always exist.

本発明は、上記に鑑みてなされたものであって、過去に前例のない操業条件に対しても適用することができ、かつ溶銑のSi濃度を精度高く予測することができる溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置を提供することを目的とする。 The present invention has been made in view of the above, and can be applied to operating conditions unprecedented in the past, and can predict the Si concentration of the hot metal with high accuracy. It is an object of the present invention to provide a method, an operation guidance method, a blast furnace operation method, a molten steel manufacturing method, and a Si concentration prediction device for hot metal.

上述した課題を解決し、目的を達成するために、本発明に係る溶銑のSi濃度予測方法は、非定常状態における高炉内の状態を計算可能な物理モデルを用いて、高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値を算出する第一ステップと、前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度を求めることにより、回帰式を構築する第二ステップと、前記第一ステップで算出した溶銑温度の予測値を、前記第二ステップで構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出する第三ステップと、を含むことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for predicting the Si concentration of hot metal according to the present invention uses a physical model capable of calculating the state in the blaster in a non-steady state, and presents the operating variables of the blaster. Based on the first step of calculating the predicted value of the future hot metal temperature when the operation amount of the above is maintained and the actual data of the blast furnace, the degree of influence of the hot metal temperature on the Si concentration of the hot metal in the blast furnace is obtained. By inputting the second step of constructing the regression equation and the predicted value of the hot metal temperature calculated in the first step into the regression equation constructed in the second step, the future Si concentration of the hot metal is predicted. It is characterized by including a third step of calculating a value.

また、本発明に係る溶銑のSi濃度予測方法は、上記発明において、前記第一ステップが、前記物理モデルを用いて、前記高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値および将来の造銑速度の予測値を算出し、前記第二ステップが、前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度および造銑速度の影響度を求めることにより、回帰式を構築し、前記第三ステップが、前記第一ステップで算出した溶銑温度の予測値および造銑速度の予測値を、前記第二ステップで構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出することを特徴とする。 Further, in the method for predicting the Si concentration of hot metal according to the present invention, in the above invention, when the first step holds the current manipulated amount of the operating variable of the blast furnace using the physical model, future hot metal The predicted value of the temperature and the predicted value of the future ironmaking speed are calculated, and the second step is the influence of the hot metal temperature and the iron forming on the Si concentration of the hot metal in the blast furnace based on the actual data of the blast furnace. A regression equation is constructed by obtaining the degree of influence of the speed, and the third step constructs the predicted value of the hot metal temperature and the predicted value of the hot metal forming speed calculated in the first step in the second step. By inputting into the formula, the predicted value of the Si concentration of the hot metal in the future is calculated.

上述した課題を解決し、目的を達成するために、本発明に係る操業ガイダンス方法は、上記の溶銑のSi濃度予測方法によって算出された溶銑のSi濃度の予測値を提示することにより、高炉の操業を支援するステップを含むことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the operation guidance method according to the present invention presents the predicted value of the Si concentration of the hot metal calculated by the above-mentioned method of predicting the Si concentration of the hot metal in the blast furnace. It is characterized by including steps to support the operation.

上述した課題を解決し、目的を達成するために、本発明に係る高炉の操業方法は、上記の溶銑のSi濃度予測方法によって算出された溶銑のSi濃度の予測値に基づいて、高炉の操作変数の操作量を調整し、前記高炉を制御するステップを含むことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the operation method of the blast furnace according to the present invention operates the blast furnace based on the predicted value of the Si concentration of the hot metal calculated by the above-mentioned method of predicting the Si concentration of the hot metal. It is characterized by including a step of adjusting the manipulated variable amount and controlling the blast furnace.

上述した課題を解決し、目的を達成するために、本発明に係る溶鋼の製造方法は、上記の溶銑のSi濃度予測方法によって算出された溶銑のSi濃度の予測値に基づいて、溶銑を適切な製鋼のチャージに引き当てて、溶鋼を製造するステップを含むことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for producing molten steel according to the present invention appropriately obtains hot metal based on the predicted value of the Si concentration of the hot metal calculated by the above-mentioned method for predicting the Si concentration of the hot metal. It is characterized by including a step of manufacturing molten steel by allocating it to a charge of steelmaking.

上述した課題を解決し、目的を達成するために、本発明に係る溶銑のSi濃度予測装置は、非定常状態における高炉内の状態を計算可能な物理モデルを用いて、高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値を算出する第一手段と、前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度を求めることにより、回帰式を構築する第二手段と、前記第一手段で算出した溶銑温度の予測値を、前記第二手段で構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出する第三手段と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the Si concentration predictor of the hot metal according to the present invention uses a physical model capable of calculating the state in the blaster state in the unsteady state, and presents the operating variables of the blaster. Based on the first means of calculating the predicted value of the future hot metal temperature when the operation amount of the above is maintained and the actual data of the blast furnace, the degree of influence of the hot metal temperature on the Si concentration of the hot metal in the blast furnace is obtained. By inputting the second means for constructing the regression equation and the predicted value of the hot metal temperature calculated by the first means into the regression equation constructed by the second means, the Si concentration of the hot metal in the future can be predicted. It is characterized by comprising a third means for calculating a value.

本発明に係る溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置によれば、過去に前例のない操業条件に対しても適用することができ、かつ溶銑のSi濃度を精度高く予測することができる。これにより、高炉・転炉法によって製造される溶鋼の生産性を向上させることができる。 According to the hot metal Si concentration prediction method, the operation guidance method, the blast furnace operation method, the molten steel manufacturing method, and the hot metal Si concentration prediction device according to the present invention, it can be applied to operating conditions unprecedented in the past. It is possible to predict the Si concentration of the hot metal with high accuracy. This makes it possible to improve the productivity of molten steel produced by the blast furnace / converter method.

図1は、本発明の実施形態に係る溶銑のSi濃度予測装置の概略的な構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a hot metal Si concentration predictor according to an embodiment of the present invention. 図2は、本発明の実施形態に係る溶銑のSi濃度予測方法で用いる物理モデルの入力変数および出力変数を示す図である。FIG. 2 is a diagram showing input variables and output variables of a physical model used in the method for predicting the Si concentration of hot metal according to the embodiment of the present invention. 図3は、本発明の実施形態に係る溶銑のSi濃度予測方法において、物理モデルによって制御変数の予測推移を算出する際の、操作変数(送風流量、コークス比、微粉炭流量、送風湿度、送風温度)の操作量の変化を示す図である。FIG. 3 shows the operating variables (blowing flow rate, coke ratio, pulverized coal flow rate, blowing humidity, blowing air) when calculating the prediction transition of the control variable by the physical model in the Si concentration prediction method of the hot metal according to the embodiment of the present invention. It is a figure which shows the change of the operation amount of (temperature). 図4は、本発明の実施形態に係る溶銑のSi濃度予測方法において、物理モデルによって算出した制御変数(ガス利用率、ソルロスカーボン量、還元材比、造銑速度、溶銑温度)の予測推移を示す図である。FIG. 4 shows the prediction transition of the control variables (gas utilization rate, sol loss carbon amount, reducing material ratio, hot metal forming speed, hot metal temperature) calculated by the physical model in the Si concentration prediction method of hot metal according to the embodiment of the present invention. It is a figure which shows. 図5は、本発明の実施形態に係る溶銑のSi濃度予測方法において、物理モデルによって算出した溶銑温度の変化量の予測値と、溶銑温度の変化量の実績値との関係を示す図である。FIG. 5 is a diagram showing the relationship between the predicted value of the change amount of the hot metal temperature calculated by the physical model and the actual value of the change amount of the hot metal temperature in the Si concentration prediction method of the hot metal according to the embodiment of the present invention. .. 図6は、溶銑のSi濃度と溶銑温度および造銑速度との相関関係を示す図である。FIG. 6 is a diagram showing the correlation between the Si concentration of the hot metal and the hot metal temperature and the hot metal forming speed. 図7は、本発明の実施形態に係る溶銑のSi濃度予測方法によって予測した溶銑のSi濃度の変化量の予測値と、溶銑のSi濃度の変化量の実績値との関係を示す図である。FIG. 7 is a diagram showing the relationship between the predicted value of the change in the Si concentration of the hot metal predicted by the method for predicting the Si concentration of the hot metal according to the embodiment of the present invention and the actual value of the change in the Si concentration of the hot metal. ..

本発明の実施形態に係る溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置について、図面を参照しながら説明する。 The Si concentration prediction method for hot metal, the operation guidance method, the operation method for a blast furnace, the manufacturing method for molten steel, and the Si concentration prediction device for hot metal according to the embodiment of the present invention will be described with reference to the drawings.

〔溶銑のSi濃度予測装置の構成〕
まず、本発明の実施形態に係る溶銑のSi濃度予測装置(以下、「制御装置」という)の構成について、図1を参照しながら説明する。制御装置100は、情報処理装置101と、入力装置102と、出力装置103と、を備えている。
[Configuration of hot metal Si concentration prediction device]
First, the configuration of the hot metal Si concentration prediction device (hereinafter referred to as “control device”) according to the embodiment of the present invention will be described with reference to FIG. The control device 100 includes an information processing device 101, an input device 102, and an output device 103.

情報処理装置101は、パーソナルコンピュータやワークステーション等の汎用の装置によって構成され、RAM111、ROM112およびCPU113を備えている。RAM111は、CPU113が実行する処理に関する処理プログラムや処理データを一時的に記憶し、CPU113のワーキングエリアとして機能する。 The information processing device 101 is composed of a general-purpose device such as a personal computer or a workstation, and includes a RAM 111, a ROM 112, and a CPU 113. The RAM 111 temporarily stores a processing program and processing data related to the processing executed by the CPU 113, and functions as a working area of the CPU 113.

ROM112は、本発明の実施形態に係る溶銑のSi濃度予測方法を実行する制御プログラム112aと、情報処理装置101全体の動作を制御する処理プログラムや処理データを記憶している。 The ROM 112 stores a control program 112a that executes the method for predicting the Si concentration of hot metal according to the embodiment of the present invention, and a processing program and processing data that control the operation of the entire information processing apparatus 101.

CPU113は、ROM112内に記憶されている制御プログラム112aおよび処理プログラムに従って情報処理装置101全体の動作を制御する。このCPU113は、後記する溶銑のSi濃度予測方法において、第一ステップを行う第一手段、第二ステップを行う第二手段および第三ステップを行う第三手段として機能する。 The CPU 113 controls the operation of the entire information processing apparatus 101 according to the control program 112a and the processing program stored in the ROM 112. The CPU 113 functions as a first means for performing the first step, a second means for performing the second step, and a third means for performing the third step in the method for predicting the Si concentration of the hot metal described later.

入力装置102は、キーボード、マウスポインタ、テンキー等の装置によって構成され、情報処理装置101に対して各種情報を入力する際に操作される。出力装置103は、表示装置や印刷装置等によって構成され、情報処理装置101の各種処理情報を出力する。 The input device 102 is composed of devices such as a keyboard, a mouse pointer, and a numeric keypad, and is operated when various information is input to the information processing device 101. The output device 103 is composed of a display device, a printing device, and the like, and outputs various processing information of the information processing device 101.

〔物理モデルの構成〕
次に、本発明の実施形態に係る溶銑のSi濃度予測方法で用いる物理モデルについて説明する。本発明で用いる物理モデルは、参考文献1(羽田野道春ら:“高炉非定常モデルによる火入れ操業の検討”,鉄と鋼,vol.68,p.2369)記載の方法と同様に、鉄鉱石の還元、鉄鉱石とコークスとの間の熱交換、および鉄鉱石の融解等の複数の物理現象を考慮した偏微分方程式群から構成されており、非定常状態における高炉内の状態を示す変数(出力変数)を計算可能な物理モデルである(以下、「非定常モデル」という)。
[Physical model configuration]
Next, a physical model used in the method for predicting the Si concentration of hot metal according to the embodiment of the present invention will be described. The physical model used in the present invention is the same as the method described in Reference 1 (Michiharu Hanedano et al .: “Study of burning operation by unsteady model of blast furnace”, Iron and Steel, vol.68, p.2369). It consists of a group of partial differential equations that take into account multiple physical phenomena such as reduction of iron ore, heat exchange between iron ore and coke, and melting of iron ore, and is a variable that indicates the state in the blast furnace in the unsteady state. It is a physical model that can calculate the output variable) (hereinafter referred to as "unsteady model").

図2に示すように、この非定常モデルに対して与える境界条件の中で時間変化する主なもの(入力変数,高炉の操作変数(操業因子ともいう))は、以下の通りである。
(1)炉頂におけるコークス比(CR)[kg/t]:炉頂から投入されるコークス量に対する鉄鉱石量の比
(2)送風流量(BV)[Nm/min]:高炉に送風される空気の流量
(3)富化酸素流量(BVO)[Nm/min]:高炉に吹き込まれる富化酸素の流量
(4)送風温度(BT)[℃]:高炉に送風される空気の温度
(5)微粉炭流量(微粉炭吹込み量、PCI)[kg/min]:溶銑生成量1トンに対して使用される微粉炭の重量
(6)送風湿分(BM)[g/Nm]:高炉に送風される空気の湿度
As shown in FIG. 2, the main variables (input variables, blast furnace instrumental variables (also referred to as operating factors)) that change with time in the boundary conditions given to this unsteady model are as follows.
(1) Coke ratio at the top of the furnace (CR) [kg / t]: Ratio of the amount of iron ore to the amount of coke input from the top of the furnace (2) Blower flow rate (BV) [Nm 3 / min]: Blasted to the blast furnace Flow of air (3) Flow of enriched oxygen (BVO) [Nm 3 / min]: Flow of enriched oxygen blown into the blast furnace (4) Blast temperature (BT) [° C]: Temperature of air blown to the blast furnace (5) Flow rate of blast furnace (amount of blast furnace blown, PCI) [kg / min]: Weight of blast furnace used for 1 ton of hot metal production (6) Blast furnace moisture (BM) [g / Nm 3 ]: Humidity of the air blown to the blast furnace

また、非定常モデルによって形成される主な出力変数は、以下の通りである。
(1)炉内におけるガス利用率(ηCO):CO/(CO+CO
(2)原料およびガス温度
(3)鉱石還元率
(4)ソルーションロスカーボン量(ソルロスカーボン量)[kg/t]
(5)酸素原単位
(6)溶銑温度
(7)造銑速度(溶銑生成速度)[t/min]
(8)炉体ヒートロス量:冷却水により炉体を冷却した際に冷却水が奪う熱量
(9)還元材比(RAR)[kg/t]:溶銑1トンあたりの微粉炭流量とコークス比との和)である。
The main output variables formed by the unsteady model are as follows.
(1) Gas utilization rate in the furnace (ηCO): CO 2 / (CO + CO 2 )
(2) Raw material and gas temperature (3) Ore reduction rate (4) Solution loss carbon amount (sol loss carbon amount) [kg / t]
(5) Oxygen intensity unit (6) Hot metal temperature (7) Hot metal formation speed (hot metal formation speed) [t / min]
(8) Amount of heat loss in the furnace body: Amount of heat taken by the cooling water when the furnace body is cooled by the cooling water (9) Reduction material ratio (RR) [kg / t]: Flow rate of pulverized coal per ton of hot metal and coke ratio The sum of).

本発明では、出力変数を計算する際のタイムステップ(時間間隔)は30分とした。但し、タイムステップは目的に応じて可変であり、本実施形態の値に限定されることはない。本発明では、上記の非定常モデルを用いて時々刻々変化する溶銑温度および造銑速度を含む出力変数を計算する。 In the present invention, the time step (time interval) when calculating the output variable is set to 30 minutes. However, the time step is variable depending on the purpose and is not limited to the value of the present embodiment. In the present invention, the output variables including the hot metal temperature and the hot metal forming rate, which change from moment to moment, are calculated using the above-mentioned unsteady model.

〔溶銑のSi濃度予測方法〕
次に、本実施形態に係る溶銑のSi濃度予測方法について説明する。本実施形態に係る溶銑のSi濃度予測方法は、非定常状態における高炉内の状態を計算可能な上記の非定常モデルを用いて、溶銑のSi濃度の予測を行う。すなわち、本実施形態では、高炉内の伝熱および反応現象を考慮した非定常モデルによって高炉内の熱的状態の将来予測を行い、さらにその情報を介して、将来の溶銑のSi濃度の予測を統計的に行う。
[Method for predicting the Si concentration of hot metal]
Next, a method for predicting the Si concentration of the hot metal according to the present embodiment will be described. The method for predicting the Si concentration of hot metal according to the present embodiment predicts the Si concentration of hot metal by using the above-mentioned non-stationary model capable of calculating the state in the blast furnace in the unsteady state. That is, in the present embodiment, the future prediction of the thermal state in the blast furnace is performed by the unsteady model considering the heat transfer and the reaction phenomenon in the blast furnace, and the Si concentration of the future hot metal is predicted through the information. Do it statistically.

高炉内の溶銑のSi濃度を決定するメカニズムとしては、以下の二つが知られている。以下の示した反応式において、[x]は溶銑中の成分を示し、(x)はスラグ中の成分を示している。
(1)高炉の羽口の燃焼部においてSiOガスが発生(SiO+C=SiO+CO)し、高炉の炉下部を滴下する溶銑に吸収される(SiO+[C]=[Si]+CO)メカニズム。
(2)高炉の炉底のスラグ-メタル界面におけるSiO還元反応((SiO)+2C=[Si]+2CO)を介してSiが溶銑中に取り込まれるメカニズム。
The following two are known as mechanisms for determining the Si concentration of hot metal in a blast furnace. In the reaction formula shown below, [x] indicates a component in hot metal, and (x) indicates a component in slag.
(1) A mechanism in which SiO gas is generated in the combustion part of the tuyere of the blast furnace (SiO 2 + C = SiO + CO) and absorbed by the hot metal dripping from the lower part of the furnace of the blast furnace (SiO + [C] = [Si] + CO).
(2) A mechanism in which Si is incorporated into the hot metal via a SiO 2 reduction reaction ((SiO 2 ) + 2C = [Si] + 2CO) at the slag-metal interface of the bottom of the blast furnace.

熱力学的な平衡[Si]は10%を超え、実際のSi濃度は高々2%程度であることから、[Si]値は平衡には到達しておらず、速度論的要素が大きいと考えられている。上記(1)、(2)のいずれのメカニズムについても、高炉内の熱的な状態が大きく影響するため、本発明では上記の非定常モデルを用いて、高炉炉内の熱的状態を予測することを足掛かりとする。また、本発明では高炉内の熱的状態の代表値として溶銑温度を用いる。 Since the thermodynamic equilibrium [Si] exceeds 10% and the actual Si concentration is at most about 2%, it is considered that the [Si] value has not reached the equilibrium and the kinetic factor is large. Has been done. Since the thermal state in the blast furnace has a great influence on both the above mechanisms (1) and (2), the present invention predicts the thermal state in the blast furnace by using the above non-stationary model. Use that as a foothold. Further, in the present invention, the hot metal temperature is used as a representative value of the thermal state in the blast furnace.

(第一ステップ)
本ステップでは、上記の非定常モデルを用いて、高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値および将来の造銑速度の予測値を算出する。すなわち本ステップでは、操作変数の現在の操作量が将来も一定に保持されると仮定し、非定常モデルによる計算を繰り返し実行することにより、溶銑温度および造銑速度の将来予測を行う。
(First step)
In this step, using the above-mentioned unsteady model, the predicted value of the future hot metal temperature and the predicted value of the future hot metal formation rate when the current manipulated variable of the blast furnace operating variable is held are calculated. That is, in this step, it is assumed that the current manipulated variable of the manipulated variable is kept constant in the future, and the hot metal temperature and the hot metal forming speed are predicted by repeatedly executing the calculation by the unsteady model.

図3は、高炉の操作変数の一例を示しており、図4は、溶銑温度を含む制御変数の一例を示している。図3および図4において、時刻の原点は現時点、つまり予測を行うタイミングである。また、同図では、現時点では得られない将来区間における実績値(破線参照)も含まれている。 FIG. 3 shows an example of the instrumental variables of the blast furnace, and FIG. 4 shows an example of the control variables including the hot metal temperature. In FIGS. 3 and 4, the origin of time is the present time, that is, the timing of making a prediction. The figure also includes actual values (see broken line) in future sections that cannot be obtained at this time.

図3および図4に示すように、将来区間における操作変数の操作量を予測計算に反映していないにも関わらず、溶銑温度および造銑速度の予測値(実線参照)は実績値(破線参照)と相応に合致している。これは、プロセスの熱容量が大きいため、例えば将来10時間先までの溶銑温度の推移が、操作変数の過去の操作の蓄積に大きく影響されているということを意味している。 As shown in FIGS. 3 and 4, the predicted values of the hot metal temperature and the hot metal forming speed (see the solid line) are the actual values (see the broken line) even though the manipulated variables of the manipulated variables in the future section are not reflected in the prediction calculation. ) And correspondingly. This means that due to the large heat capacity of the process, for example, the transition of the hot metal temperature up to 10 hours in the future is greatly influenced by the accumulation of past operations of the manipulated variables.

図5は、本ステップで算出した溶銑温度の予測値の予測精度の一例を示している。同図の横軸は、8時間先の溶銑温度の変化量の実績値である、縦軸は、8時間先の溶銑温度の変化量の予測値である。同図に示すように、8時間先の溶銑温度の変化量を精度高く予測できていることがわかる。 FIG. 5 shows an example of the prediction accuracy of the predicted value of the hot metal temperature calculated in this step. The horizontal axis of the figure is the actual value of the change in the hot metal temperature 8 hours ahead, and the vertical axis is the predicted value of the change in the hot metal temperature 8 hours ahead. As shown in the figure, it can be seen that the amount of change in the hot metal temperature 8 hours ahead can be predicted with high accuracy.

(第二ステップ)
本ステップでは、図示しない実績データベースに蓄積されている高炉の実績データに基づいて、高炉内の溶銑のSi濃度に対する、溶銑温度の影響度および造銑速度の影響度を求めることにより、回帰式を構築する。
(Second step)
In this step, the regression equation is calculated by obtaining the degree of influence of the hot metal temperature and the degree of influence of the iron forming speed on the Si concentration of the hot metal in the blast furnace based on the actual data of the blast furnace accumulated in the actual database (not shown). To construct.

ここで、図6(a)に示すように、溶銑中のSi濃度は溶銑温度との相関が高い。[Si]は酸化物の還元反応(吸熱)によりメタル中に移行するため、温度が高いほど高濃度となっている。また、図6(b)に示すように、溶銑中のSi濃度と造銑速度の間には、負の相関が認められる。これは、前記したように(SiO)の還元反応が著しく遅いため、造銑速度が小さく、溶銑の炉内滞留時間が長いほどSi濃度が上昇するためである。 Here, as shown in FIG. 6A, the Si concentration in the hot metal has a high correlation with the hot metal temperature. Since [Si] is transferred into the metal by the reduction reaction (endothermic) of the oxide, the higher the temperature, the higher the concentration. Further, as shown in FIG. 6 (b), a negative correlation is observed between the Si concentration in the hot metal and the iron forming rate. This is because, as described above, the reduction reaction of (SiO 2 ) is extremely slow, so that the iron forming speed is low and the Si concentration increases as the hot metal residence time in the furnace increases.

本ステップでは、非定常モデルによる将来(例えば8時間先)の溶銑温度の予測値および造銑速度の予測値の情報を用いて、溶銑のSi濃度の予測を行うための回帰式を構築する。回帰式の形式は下記式(1)の通りであり、同式における係数α、β、γは図示しない実績データベースに蓄積されている高炉の実績データに基づいて、最小二乗法により決定した。 In this step, a regression equation for predicting the Si concentration of hot metal is constructed by using the information of the predicted value of the hot metal temperature and the predicted value of the hot metal forming rate in the future (for example, 8 hours ahead) by the unsteady model. The format of the regression equation is as shown in the following equation (1), and the coefficients α, β, and γ in the equation are determined by the least squares method based on the actual data of the blast furnace accumulated in the actual database (not shown).

将来の溶銑のSi濃度の変化=α×将来の溶銑温度の変化(※非定常モデルにより算出)+β×将来の造銑速度の変化(※非定常モデルにより算出)+γ ・・・(1) Change in Si concentration of future hot metal = α × Change in future hot metal temperature (* calculated by unsteady model) + β × Change in future hot metal formation rate (* calculated by unsteady model) + γ ・ ・ ・ (1)

なお、実績データに基づいて溶銑のSi濃度に対する溶銑温度の影響度や造銑速度の影響度を統計的に求める手法については、最小二乗法以外の統計手法を用いてもよい。また、上記式(1)における「将来の」に相当する具体的時間は、プロセスごとの時定数に応じて決定されるが、例えば8時間程度であることが多い。 As a method for statistically obtaining the influence of the hot metal temperature on the Si concentration of the hot metal and the influence of the hot metal forming speed based on the actual data, a statistical method other than the least squares method may be used. Further, the specific time corresponding to the "future" in the above equation (1) is determined according to the time constant for each process, but is often, for example, about 8 hours.

(第三ステップ)
本ステップでは、第一ステップで算出した溶銑温度の予測値および造銑速度の予測値を、第二ステップで構築した上記式(1)の回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出する。
(Third step)
In this step, by inputting the predicted value of the hot metal temperature and the predicted value of the hot metal forming speed calculated in the first step into the regression equation of the above formula (1) constructed in the second step, the Si concentration of the future hot metal Calculate the predicted value of.

図7は、本ステップで予測した算出した将来の溶銑のSi濃度の一例を示している。同図の横軸は、8時間先の溶銑のSi濃度の変化量の実績値、縦軸は、8時間先の溶銑のSi濃度の変化量の予測値である。同図に示すように、8時間先の溶銑のSi濃度の変化量を精度高く予測できていることがわかる。 FIG. 7 shows an example of the Si concentration of the future hot metal predicted in this step. In the figure, the horizontal axis is the actual value of the change in the Si concentration of the hot metal 8 hours ahead, and the vertical axis is the predicted value of the change in the Si concentration of the hot metal 8 hours ahead. As shown in the figure, it can be seen that the amount of change in the Si concentration of the hot metal 8 hours ahead can be predicted with high accuracy.

〔操業ガイダンス方法〕
本実施形態に係る溶銑のSi濃度予測方法を操業ガイダンス方法に適用することも可能である。本実施形態に係る溶銑のSi濃度予測方法を高炉の操業方法に適用することも可能である。この場合、前記した第一ステップ、第二ステップおよび第三ステップに加えて、第三ステップで算出された溶銑のSi濃度の予測値を、例えば出力装置103を介して製鋼工程または溶銑予備処理工程のオペレータに提示することにより、高炉の操業を支援するステップを行う。
[Operation guidance method]
It is also possible to apply the method for predicting the Si concentration of hot metal according to the present embodiment to the operation guidance method. It is also possible to apply the method for predicting the Si concentration of hot metal according to the present embodiment to the method for operating a blast furnace. In this case, in addition to the first step, the second step, and the third step described above, the predicted value of the Si concentration of the hot metal calculated in the third step is obtained by, for example, the steelmaking step or the hot metal pretreatment step via the output device 103. By presenting it to the operator of the blast furnace, steps are taken to support the operation of the blast furnace.

〔高炉の操業方法〕
本実施形態に係る溶銑のSi濃度予測方法を高炉の操業方法に適用することも可能である。この場合、前記した第一ステップ、第二ステップおよび第三ステップに加えて、第三ステップで算出された溶銑のSi濃度の予測値に基づいて、高炉の操作変数の操作量を調整し、当該高炉を制御するステップを行う。このステップでは、例えば将来のSi濃度が高い(例えば0.5wt%超)場合、微粉炭比やコークス比等の操作量を減らす操作を行う。
[Blast furnace operation method]
It is also possible to apply the method for predicting the Si concentration of hot metal according to the present embodiment to the method for operating a blast furnace. In this case, in addition to the first step, the second step and the third step described above, the manipulated variable of the blast furnace operating variable is adjusted based on the predicted value of the Si concentration of the hot metal calculated in the third step. Take steps to control the blast furnace. In this step, for example, when the future Si concentration is high (for example, more than 0.5 wt%), an operation of reducing the operation amount such as the pulverized coal ratio and the coke ratio is performed.

〔溶鋼の製造方法〕
本実施形態に係る溶銑のSi濃度予測方法を溶鋼の製造方法に適用することも可能である。この場合、前記した第一ステップ、第二ステップおよび第三ステップに加えて、第三ステップで算出された溶銑のSi濃度の予測値に基づいて、溶銑を適切な製鋼のチャージに引き当てて、前記溶鋼を製造するステップを行う。このステップでは、例えば将来のSi濃度が高い(例えば0.5wt%超)と予測された高炉から出銑される溶銑を、目標温度の高い製鋼のチャージに引き当て、将来のSi濃度が低い(例えば0.5wt%未満)と予測された高炉から出銑される溶銑を、目標温度の低い製鋼のチャージに引き当てる。
[Manufacturing method of molten steel]
It is also possible to apply the method for predicting the Si concentration of hot metal according to the present embodiment to the method for producing molten steel. In this case, in addition to the first step, the second step and the third step described above, the hot metal is assigned to an appropriate steelmaking charge based on the predicted value of the Si concentration of the hot metal calculated in the third step. Perform the steps to manufacture molten steel. In this step, for example, hot metal from a blast furnace predicted to have a high future Si concentration (for example, more than 0.5 wt%) is assigned to the charge of steelmaking having a high target temperature, and the future Si concentration is low (for example). The hot metal from the blast furnace, which is predicted to be less than 0.5 wt%), is allocated to the charge of steelmaking with a low target temperature.

以上説明したような本実施形態に係る溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置によれば、過去に前例のない操業条件に対しても適用することができ、かつ溶銑のSi濃度を精度高く予測することができる。これにより、高炉・転炉法によって製造される溶鋼の生産性を向上させることができる。 According to the hot metal Si concentration prediction method, the operation guidance method, the blast furnace operation method, the molten steel manufacturing method, and the hot metal Si concentration prediction device according to the above-described embodiment, the operating conditions unprecedented in the past can be met. It can also be applied, and the Si concentration of the hot metal can be predicted with high accuracy. This makes it possible to improve the productivity of molten steel produced by the blast furnace / converter method.

すなわち、本実施形態に係る溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置によれば、造銑速度を目標値の近傍に保ちながら溶銑温度を制御したり、あるいは溶銑温度を一定に制御しながら造銑速度を制御したりすることができるため、高効率かつ安定的な高炉プロセスを実現することができる。 That is, according to the hot metal Si concentration prediction method, the operation guidance method, the blast furnace operation method, the molten steel manufacturing method, and the hot metal Si concentration prediction device according to the present embodiment, the hot metal is kept close to the target value. Since the iron forming speed can be controlled while controlling the temperature or controlling the hot metal temperature to be constant, a highly efficient and stable blast furnace process can be realized.

以上、本発明に係る溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。 As described above, the Si concentration prediction method for hot metal, the operation guidance method, the operation method for the blast furnace, the manufacturing method for molten steel, and the Si concentration prediction device for hot metal according to the present invention will be specifically described with reference to embodiments and examples for carrying out the invention. However, the gist of the present invention is not limited to these descriptions, and must be broadly interpreted based on the description of the scope of claims. Needless to say, various changes, modifications, etc. based on these descriptions are also included in the gist of the present invention.

例えば、前記した実施形態では、溶銑温度に加えて造銑速度の情報を利用して溶銑のSi濃度を予測していたが、溶銑温度のみからSi濃度を予測することも可能である。この場合、第一ステップでは、非定常モデルを用いて、高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値をし、第二ステップでは、高炉の実績データに基づいて、高炉内の溶銑のSi濃度に対する、溶銑温度の影響度を求めることにより、回帰式を構築し、第三ステップでは、第一ステップで算出した溶銑温度の予測値を、第二ステップで構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出する。なお、溶銑温度の情報のみを利用して予測する場合よりも、前記した実施形態のように、溶銑温度に加えて造銑速度の情報を利用して溶銑のSi濃度を予測する場合のほうが、予測精度が高いことは言うまでもない。 For example, in the above-described embodiment, the Si concentration of the hot metal is predicted by using the information of the hot metal forming speed in addition to the hot metal temperature, but it is also possible to predict the Si concentration only from the hot metal temperature. In this case, in the first step, the unsteady model is used to predict the future hot metal temperature when the current manipulated variable of the blast furnace is held, and in the second step, the actual data of the blast furnace is used. Based on this, a regression equation was constructed by obtaining the degree of influence of the hot metal temperature on the Si concentration of the hot metal in the blast furnace. By inputting to the constructed regression equation, the predicted value of the Si concentration of the hot metal in the future is calculated. It should be noted that, as in the above-described embodiment, the case of predicting the Si concentration of the hot metal by using the information of the hot metal forming speed in addition to the hot metal temperature is better than the case of predicting by using only the hot metal temperature information. Needless to say, the prediction accuracy is high.

100 制御装置
101 情報処理装置
102 入力装置
103 出力装置
111 RAM
112 ROM
112a 制御プログラム
113 CPU
100 Control device 101 Information processing device 102 Input device 103 Output device 111 RAM
112 ROM
112a control program 113 CPU

Claims (5)

非定常状態における高炉内の状態を計算可能な物理モデルを用いて、高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値を算出する第一ステップと、
前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度を求めることにより、回帰式を構築する第二ステップと、
前記第一ステップで算出した溶銑温度の予測値を、前記第二ステップで構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出する第三ステップと、
を含み、
前記第一ステップは、前記物理モデルを用いて、前記高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値および将来の造銑速度の予測値を算出し、
前記第二ステップは、前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度および造銑速度の影響度を求めることにより、回帰式を構築し、
前記第三ステップは、前記第一ステップで算出した溶銑温度の予測値および造銑速度の予測値を、前記第二ステップで構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出することを特徴とする溶銑のSi濃度予測方法。
Using a physical model that can calculate the state in the blast furnace in the unsteady state, the first step to calculate the predicted value of the future hot metal temperature when the current manipulated variable of the operating variable of the blast furnace is held.
The second step of constructing a regression equation by obtaining the degree of influence of the hot metal temperature on the Si concentration of the hot metal in the blast furnace based on the actual data of the blast furnace.
By inputting the predicted value of the hot metal temperature calculated in the first step into the regression equation constructed in the second step, the third step of calculating the predicted value of the Si concentration of the hot metal in the future, and
Including
In the first step, using the physical model, the predicted value of the future hot metal temperature and the predicted value of the future hot metal forming speed when the current manipulated variable of the operating variable of the blast furnace is held are calculated.
In the second step, a regression equation is constructed by obtaining the degree of influence of the hot metal temperature and the degree of influence of the iron forming speed on the Si concentration of the hot metal in the blast furnace based on the actual data of the blast furnace.
In the third step, the predicted value of the hot metal temperature and the predicted value of the hot metal forming speed calculated in the first step are input to the regression equation constructed in the second step, thereby predicting the Si concentration of the hot metal in the future. A method for predicting the Si concentration of hot metal, which comprises calculating a value .
請求項1に記載の溶銑のSi濃度予測方法によって算出された溶銑のSi濃度の予測値を提示することにより、高炉の操業を支援するステップを含むことを特徴とする操業ガイダンス方法。 An operation guidance method comprising a step of supporting the operation of a blast furnace by presenting a predicted value of the Si concentration of the hot metal calculated by the Si concentration prediction method of the hot metal according to claim 1 . 請求項1に記載の溶銑のSi濃度予測方法によって算出された溶銑のSi濃度の予測値に基づいて、高炉の操作変数の操作量を調整し、前記高炉を制御するステップを含むことを特徴とする高炉の操業方法。 Based on the predicted value of the Si concentration of the hot metal calculated by the method for predicting the Si concentration of the hot metal according to claim 1, the operation amount of the instrumental variable of the blast furnace is adjusted, and the step of controlling the blast furnace is included. How to operate the blast furnace. 請求項1に記載の溶銑のSi濃度予測方法によって算出された溶銑のSi濃度の予測値に基づいて、溶銑を、前記予測値に応じた目標温度の製鋼のチャージに引き当てて、溶鋼を製造するステップを含むことを特徴とする溶鋼の製造方法。 Based on the predicted value of the Si concentration of the hot metal calculated by the method for predicting the Si concentration of the hot metal according to claim 1, the hot metal is assigned to the charge of steelmaking at the target temperature according to the predicted value to manufacture the molten steel. A method for producing molten steel, which comprises steps. 非定常状態における高炉内の状態を計算可能な物理モデルを用いて、高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値を算出する第一手段と、
前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度を求めることにより、回帰式を構築する第二手段と、
前記第一手段で算出した溶銑温度の予測値を、前記第二手段で構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出する第三手段と、
を備え
前記第一手段は、前記物理モデルを用いて、前記高炉の操作変数の現在の操作量を保持した場合の、将来の溶銑温度の予測値および将来の造銑速度の予測値を算出し、
前記第二手段は、前記高炉の実績データに基づいて、前記高炉内の溶銑のSi濃度に対する、溶銑温度の影響度および造銑速度の影響度を求めることにより、回帰式を構築し、
前記第三手段は、前記第一手段で算出した溶銑温度の予測値および造銑速度の予測値を、前記第二手段で構築した回帰式に入力することにより、将来の溶銑のSi濃度の予測値を算出することを特徴とする溶銑のSi濃度予測装置。
Using a physical model that can calculate the state in the blast furnace in the unsteady state, the first means to calculate the predicted value of the future hot metal temperature when the current manipulated variable of the operating variable of the blast furnace is held.
A second means for constructing a regression equation by obtaining the degree of influence of the hot metal temperature on the Si concentration of the hot metal in the blast furnace based on the actual data of the blast furnace.
A third means for calculating the predicted value of the Si concentration of the hot metal in the future by inputting the predicted value of the hot metal temperature calculated by the first means into the regression equation constructed by the second means.
Equipped with
The first means uses the physical model to calculate a predicted value of future hot metal temperature and a predicted value of future hot metal forming speed when the current manipulated variable of the operating variable of the blast furnace is held.
The second means constructs a regression equation by obtaining the degree of influence of the hot metal temperature and the degree of influence of the hot metal making speed on the Si concentration of the hot metal in the blast furnace based on the actual data of the blast furnace.
The third means predicts the future Si concentration of hot metal by inputting the predicted value of the hot metal temperature and the predicted value of the hot metal forming speed calculated by the first means into the regression equation constructed by the second means. A Si concentration predictor for hot metal, which is characterized by calculating a value .
JP2019132112A 2019-07-17 2019-07-17 Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal Active JP7067533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019132112A JP7067533B2 (en) 2019-07-17 2019-07-17 Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019132112A JP7067533B2 (en) 2019-07-17 2019-07-17 Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal

Publications (2)

Publication Number Publication Date
JP2021017607A JP2021017607A (en) 2021-02-15
JP7067533B2 true JP7067533B2 (en) 2022-05-16

Family

ID=74563468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019132112A Active JP7067533B2 (en) 2019-07-17 2019-07-17 Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal

Country Status (1)

Country Link
JP (1) JP7067533B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173838A (en) 2011-02-18 2012-09-10 Jfe Steel Corp Tapping application method for molten steel ladle and tapping application device for molten steel ladle
JP2013256698A (en) 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp Suspending method of blast furnace
JP2016015122A (en) 2014-06-13 2016-01-28 Jfeスチール株式会社 Allocation schedule creation method of molten steel ladle and allocation schedule creation device
JP2018024935A (en) 2016-08-02 2018-02-15 Jfeスチール株式会社 Molten iron temperature prediction method, molten iron temperature prediction device, operation method of blast furnace, operation guidance device, molten iron temperature control method and molten iron temperature control device
JP2019019385A (en) 2017-07-19 2019-02-07 Jfeスチール株式会社 Method and device for predicting molten iron temperature, operation method of blast furnace, operation guidance device, and method and device for controlling molten iron temperature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61508A (en) * 1984-06-14 1986-01-06 Kawasaki Steel Corp Operating method of blast furnace
JP2912086B2 (en) * 1992-06-09 1999-06-28 株式会社神戸製鋼所 Blast furnace control method
JP2889093B2 (en) * 1993-08-31 1999-05-10 新日本製鐵株式会社 Hot metal composition control method for blast furnace
JP3384298B2 (en) * 1997-10-09 2003-03-10 住友金属工業株式会社 Blast furnace operation method
JPH11189814A (en) * 1997-12-25 1999-07-13 Nkk Corp Method for estimating molten iron components in blast furnace and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173838A (en) 2011-02-18 2012-09-10 Jfe Steel Corp Tapping application method for molten steel ladle and tapping application device for molten steel ladle
JP2013256698A (en) 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp Suspending method of blast furnace
JP2016015122A (en) 2014-06-13 2016-01-28 Jfeスチール株式会社 Allocation schedule creation method of molten steel ladle and allocation schedule creation device
JP2018024935A (en) 2016-08-02 2018-02-15 Jfeスチール株式会社 Molten iron temperature prediction method, molten iron temperature prediction device, operation method of blast furnace, operation guidance device, molten iron temperature control method and molten iron temperature control device
JP2019019385A (en) 2017-07-19 2019-02-07 Jfeスチール株式会社 Method and device for predicting molten iron temperature, operation method of blast furnace, operation guidance device, and method and device for controlling molten iron temperature

Also Published As

Publication number Publication date
JP2021017607A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
Radhakrishnan et al. Neural networks for the identification and control of blast furnace hot metal quality
US20230313329A1 (en) Operation guidance method, blast furnace operation method, hot metal manufacturing method, and operation guidance apparatus
JP6729514B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operating method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
CA2894813C (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP7067533B2 (en) Si concentration prediction method for hot metal, operation guidance method, blast furnace operation method, molten steel manufacturing method and Si concentration prediction device for hot metal
Azadi et al. Nonlinear prediction model of blast furnace operation status
JP6915754B2 (en) Process control method, operation guidance method, blast furnace operation method, hot metal manufacturing method and process control device
Pavlov et al. Decision-making support in blast-furnace operation
JP5924310B2 (en) Blowing control method and blowing control device
Azadi et al. Model predictive control of molten iron and slag quality indices in a large-scale ironmaking blast furnace using a hybrid dynamic model
JP7193032B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, and blast furnace operation method
TWI794865B (en) Method of controlling temperature of molten iron, method of operation instruction, operation method of blast furnace, method of manufacturing molten iron, device for controlling temperature of molten iron, and operation instruction device
JP7115663B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, supplied heat amount estimation program, and method of operating blast furnace
CN116579670B (en) Economic benefit calculation and feasibility assessment method for recycling thermal refining slag
JP7384150B2 (en) Operation guidance method, blast furnace operation method, hot metal production method and operation guidance device
JP2022152721A (en) Operation method of blast furnace
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
WO2023276353A1 (en) Supply heat quantity estimation method, supply heat quantity estimation device, supply heat quantity estimation program, and blast furnace operation method
Ferreira et al. Predictions at the blow end of the LD-KGC converter by a semi-dynamic control model
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
Kim et al. Influence of phosphorus on the reduction of silicon in regions characterized by droplet flow of the smelting products
Koros Oxygen Lances and the Thermochemistry of the Open Hearth: A Condensation of the McKune Award Paper
Jianwen et al. Parameters adjustment for VOD endpoint carbon content and endpoint temperature prediction model
Mishin et al. Thermal regulation of the hearth by means of a blast-furnace model
Bodyaev et al. Optimal energy balance and operational parameters of arc furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R150 Certificate of patent or registration of utility model

Ref document number: 7067533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150