WO2024048192A1 - Coated electric wire and method for producing coated electric wire - Google Patents

Coated electric wire and method for producing coated electric wire Download PDF

Info

Publication number
WO2024048192A1
WO2024048192A1 PCT/JP2023/028334 JP2023028334W WO2024048192A1 WO 2024048192 A1 WO2024048192 A1 WO 2024048192A1 JP 2023028334 W JP2023028334 W JP 2023028334W WO 2024048192 A1 WO2024048192 A1 WO 2024048192A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer compound
layer
coating composition
electric wire
fluorine
Prior art date
Application number
PCT/JP2023/028334
Other languages
French (fr)
Japanese (ja)
Inventor
安利 中谷
英樹 河野
耕一郎 荻田
勝通 助川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024048192A1 publication Critical patent/WO2024048192A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings

Definitions

  • the present disclosure relates to a covered electric wire and a method for manufacturing the covered electric wire.
  • Patent Document 1 has a conductor and a first insulating layer formed on the outer periphery of the conductor, the first insulating layer is made of a thermosetting resin and a fluororesin, and the first insulating layer is made of a thermosetting resin and a fluororesin.
  • An electric wire characterized by the following is described.
  • An object of the present disclosure is to provide a coated wire that exhibits a low dielectric constant and a high partial discharge inception voltage, is unlikely to cause wrinkles in the coating layer even when bent, and has high adhesion strength between the rectangular wire base material and the coating layer. do.
  • a covered electric wire including a rectangular electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material, wherein the coating layer includes one or both of an amide group and an imide group.
  • a coated wire that exhibits a low dielectric constant and a high partial discharge inception voltage, does not easily cause wrinkles in the coating layer even when bent, and has high adhesion strength between the rectangular wire base material and the coating layer. can.
  • the covered electric wire of the present disclosure includes a rectangular electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material.
  • Fluorine-containing polymer compounds have non-adhesive properties, so when providing a coating layer containing a fluorine-containing polymer compound on a rectangular electric wire base material of a covered electric wire, the flat electric wire base material and the coating layer must be There is a problem that the adhesive does not adhere with sufficient strength. Therefore, when a conventional covered electric wire is bent or bent, there is a problem that the coating layer is lifted from the rectangular electric wire base material or wrinkles are generated in the coating layer.
  • the coating layer is formed of a material that easily adheres to the rectangular wire base material, the dielectric constant of the coating layer of the covered wire will increase, the partial discharge inception voltage of the covered wire will decrease, and the electrical There is a problem in that it is difficult to obtain a coated wire with excellent performance.
  • the coated wire of the present disclosure appropriately combines the constituent materials and formation methods of the three layers. Therefore, the coated wire of the present disclosure exhibits a low dielectric constant and a high partial discharge inception voltage, and the coating layer is less likely to wrinkle even when bent, and the rectangular wire base material and the coating layer are in close contact with each other with high adhesion strength. There is.
  • the shape of the rectangular electric wire base material is not particularly limited as long as the cross section is the shape of a rectangular wire having a substantially rectangular shape.
  • the corners of the cross section of the flat electric wire base material may be at right angles, or the corners of the cross section of the flat electric wire base material may be rounded.
  • the rectangular electric wire base material may be a single wire, a grouped wire, a stranded wire, etc. as long as the entire cross section is approximately rectangular, but a single wire is preferable.
  • the rectangular wire base material is not particularly limited as long as it is made of a conductive material, but it can be made of materials such as copper, copper alloy, aluminum, aluminum alloy, iron, silver, and nickel. Preferably, it is made of an alloy, aluminum or an aluminum alloy. Further, a rectangular electric wire base material plated with silver plating, nickel plating, etc. can also be used. As the copper, oxygen-free copper, low-oxygen copper, copper alloy, etc. can be used.
  • the width of the cross section of the flat electric wire base material may be 1 to 75 mm, and the thickness of the cross section of the flat electric wire base material may be 0.1 to 30 mm.
  • the outer circumferential diameter of the rectangular electric wire base material may be 6.5 mm or more and 200 mm or less. Further, the ratio of width to thickness may be greater than 1 and less than or equal to 30.
  • the surface roughness Sz of the flat wire base material is preferably 0.2 to 12 ⁇ m, more preferably 1 ⁇ m or more, and even more preferably 5 ⁇ m, since the flat wire base material and the coating layer adhere more firmly. or more, and more preferably 10 ⁇ m or less.
  • the surface roughness of the flat wire base material can be adjusted by surface treating the flat wire base material using a surface treatment method such as etching treatment, blasting treatment, laser treatment, or the like. Further, the surface of the rectangular electric wire base material may be provided with irregularities by surface treatment.
  • the distance between the convex and convex portions is preferably as small as possible, and is, for example, 5 ⁇ m or less. Further, regarding the size of the unevenness, for example, the area of each depression when cutting the protrusion on the unprocessed surface is 1 ⁇ m 2 or less.
  • the uneven shape may be a single crater-shaped uneven shape, or may be branched like an ant nest.
  • the coated electric wire of the present disclosure includes a coating layer formed around the outer periphery of a rectangular electric wire base material, and the coating layer includes a first layer, a second layer, and a third layer.
  • the first layer is usually formed on the outer periphery of the rectangular wire base material
  • the second layer is formed on the outer periphery of the first layer
  • the third layer is formed on the outer periphery of the first layer. formed around the outer periphery of the layer.
  • the first layer, second layer, and third layer are all coating films formed from a coating composition.
  • the first layer is a coating film formed from liquid coating composition (1).
  • the second layer is a coating formed from liquid coating composition (2) or powder coating composition (2).
  • the third layer is a coating formed from the liquid coating composition (3) or the powder coating composition (3).
  • the liquid coating composition contains a solvent along with a polymer compound or a fluorine-containing polymer compound.
  • the powder coating composition contains powder of a polymer compound or a fluorine-containing polymer compound. In the present disclosure, whether the powder coating contains only powder of a polymer compound or only powder of a fluorine-containing polymer compound, the powder coating The term "powder coating composition" is used even when it does not contain multiple components.
  • the liquid coating composition (1) contains a polymer compound (1) having one or both of an amide group and an imide group.
  • the liquid coating composition (2) contains a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2).
  • the powder coating composition (2) includes a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2).
  • the liquid coating composition (3) contains a fluorine-containing polymer compound (3-1).
  • a fluorine-containing polymer compound (3-1) By applying the liquid coating composition (3) to the outer periphery of the second layer to form the third layer, a low relative dielectric constant and a high partial discharge inception voltage are imparted to the coating layer, and the coating layer is also bonded to the second layer. By adhering sufficiently, it is possible to form a third layer that provides a coating layer with excellent interlayer strength.
  • the powder coating composition (3) contains a fluorine-containing polymer compound (3-2).
  • a fluorine-containing polymer compound (3-2) By applying the powder coating composition (3) to the outer periphery of the second layer to form the third layer, a low dielectric constant and a high partial discharge inception voltage are imparted to the coating layer, and the second layer By sufficiently adhering to the third layer, it is possible to form a third layer that provides a coating layer with excellent interlayer strength.
  • the thickness of the coating layer is preferably 30 to 200 ⁇ m, more preferably 40 ⁇ m or more, even more preferably 50 ⁇ m or more, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. be. If the thickness is too large, it may be difficult to downsize the device when the coated wire is used in a device such as a motor, and if the thickness is too small, sufficient insulation may not be obtained.
  • the thickness of the first layer is preferably 1 to 50 ⁇ m, more preferably 3 ⁇ m or more, from the viewpoint of sufficiently adhering the flat wire base material and the coating layer and forming a coating layer that does not easily wrinkle when bent. It is more preferably 6 ⁇ m or more, more preferably 40 ⁇ m or less, even more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the thickness of the second layer is preferably set from the viewpoint of sufficiently adhering the second layer to the first layer and the third layer without impairing the low dielectric constant and high partial discharge inception voltage of the coating layer. is 5 to 100 ⁇ m, more preferably 10 ⁇ m or more, more preferably 60 ⁇ m or less, even more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the thickness of the third layer is preferably 5 to 100 ⁇ m from the viewpoint of providing the coating layer with a low dielectric constant and high partial discharge inception voltage, and also ensuring sufficient adhesion between the third layer and the second layer. , more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, even more preferably 20 ⁇ m or more, more preferably less than 90 ⁇ m, still more preferably 80 ⁇ m or less.
  • the thickness of the third layer can be made relatively small.
  • the upper limit of the thickness of the third layer in this case is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and still more preferably 35 ⁇ m or less.
  • the thickness of the third layer can be made relatively large.
  • the lower limit of the thickness of the third layer in this case is preferably more than 35 ⁇ m, more preferably more than 40 ⁇ m, and still more preferably more than 50 ⁇ m.
  • the dielectric constant of the coating layer is preferably 2.3 to 3.0, more preferably 2.9 or less, and even more preferably 2.8 or less. Since the coated wire of the present disclosure appropriately combines the constituent materials and formation methods of the three layers, the dielectric constant of the coating layer can be lowered.
  • the partial discharge inception voltage of the coating layer is preferably 1000 to 2100 (Vp), more preferably 1100 (Vp) or more, even more preferably 1200 (Vp) or more, and even more preferably 1300 (Vp). or more, and more preferably 2000 (Vp) or less. Since the covered electric wire of the present disclosure appropriately combines the constituent materials and formation methods of the three layers, it is possible to increase the partial discharge inception voltage of the coating layer.
  • the coating layer includes the first layer, second layer, and third layer, it may further include other layers, but even if it does not include other layers, it can be used as desired. It is possible to obtain an effective coated wire.
  • the first layer is formed from a liquid coating composition (1) containing a polymer compound (1) having one or both of an amide group and an imide group.
  • the liquid coating composition (1) may contain only the polymer compound (1) having either one or both of an amide group and an imide group.
  • the liquid coating composition (1) may contain a solvent in addition to the polymer compound (1).
  • the solvent include water and organic solvents, with organic solvents being preferred.
  • organic solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylacetamide, N, Examples include N-dimethylformamide, cresol, and methyl isobutyl ketone.
  • the viscosity of the liquid coating composition (1) is preferably 10 to 10,000 (cP), more preferably 50 (cP) or more, and even more preferably It is 100 (cP) or more, more preferably 1000 (cP) or less, and still more preferably 500 (cP) or less.
  • the viscosity of the liquid coating composition (1) can be adjusted by adjusting the content of the polymer compound (1) in the liquid coating composition (1).
  • the content of the polymer compound (1) in the liquid coating composition (1) is preferably 1 to 50% by weight, more preferably 10% by weight or more based on the mass of the liquid coating composition (1). and more preferably 40% by weight or less.
  • the liquid coating composition (1) may contain other components as necessary.
  • Other ingredients include crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, organic and inorganic various pigments, copper damage inhibitors, bubble preventers, adhesion promoters, lubricants, processing aids, colorants, phosphorus stabilizers, lubricants, mold release agents, sliding materials, ultraviolet absorbers, dyes and pigments, reinforcements.
  • additives such as materials, anti-drip agents, fillers, curing agents, ultraviolet curing agents, and flame retardants.
  • the content of other components in the liquid coating composition (1) is preferably less than 30% by weight, more preferably less than 30% by weight based on the mass of the polymer compound (1) in the liquid coating composition (1). is less than 10% by weight, more preferably 5% by weight or less, and the lower limit is not particularly limited, but may be 0% by weight or more. That is, the liquid coating composition (1) does not need to contain other components.
  • the second layer is formed from a liquid coating composition (2) or a powder coating composition (2).
  • the liquid coating composition (2) contains a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2).
  • the liquid coating composition (2) may contain only a polymer compound (2) having one or both of an amide group and an imide group and a fluorine-containing polymer compound (2) as a polymer compound. .
  • the liquid coating composition (2) may contain a solvent in addition to the polymer compound (2) and the fluorine-containing polymer compound (2).
  • the solvent include water and organic solvents.
  • organic solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylacetamide, N, Examples include N-dimethylformamide, cresol, and methyl isobutyl ketone.
  • the viscosity of the liquid coating composition (2) is preferably 10 to 10,000 (cP), more preferably 50 (cP) or more, and even more preferably It is 100 (cP) or more, more preferably 1000 (cP) or less, and still more preferably 500 (cP) or less.
  • the viscosity of the liquid coating composition (2) can be adjusted by adjusting the contents of the polymer compound (2) and the fluorine-containing polymer compound (2) in the liquid coating composition (2).
  • the content of the polymer compound (2) and the fluorine-containing polymer compound (2) in the liquid coating composition (2) is preferably 1 to 90% by weight based on the mass of the liquid coating composition (2).
  • the content is more preferably 10% by weight or more, and more preferably 80% by weight or less.
  • the powder coating composition (2) includes a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2).
  • the polymer compound (2) and the fluorine-containing polymer compound (2) in the powder coating composition (2) are usually both powders.
  • the powder coating composition (2) contains only a polymer compound (2) having one or both of an amide group and an imide group and a fluorine-containing polymer compound (2) as a polymer compound. good.
  • the average particle size of the powder coating composition (2) is preferably 1 to 100 ( ⁇ m), more preferably 5 ⁇ m or more, and even more preferably It is 10 ⁇ m or more, more preferably 90 ⁇ m or less, and still more preferably 80 ⁇ m or less.
  • the volume ratio of the polymer compound (2) and the fluorine-containing polymer compound (2) is such that the coating layer has a low dielectric constant and a high partial discharge. From the viewpoint of sufficiently adhering the second layer to the first layer and the third layer without impairing the starting voltage, the ratio is preferably 10/90 to 90/10, more preferably 15/85 or more. Yes, and more preferably 85/15 or less.
  • the liquid coating composition (2) or powder coating composition (2) may contain other components as necessary.
  • Other ingredients include crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, organic and inorganic various pigments, copper damage inhibitors, bubble preventers, adhesion promoters, lubricants, processing aids, colorants, phosphorus stabilizers, lubricants, mold release agents, sliding materials, ultraviolet absorbers, dyes and pigments, reinforcements.
  • additives such as materials, anti-drip agents, fillers, curing agents, ultraviolet curing agents, and flame retardants.
  • the content of other components in the liquid coating composition (2) or powder coating composition (2) includes the polymer compound (2) in the liquid coating composition (2) or powder coating composition (2). ) and the fluorine-containing polymer compound (2), preferably less than 30% by weight, more preferably less than 10% by weight, even more preferably 5% by weight or less, and the lower limit is not particularly limited. may be 0% by weight or more. That is, the liquid coating composition (2) or the powder coating composition (2) does not need to contain other components.
  • the third layer is formed from a liquid coating composition (3) or a powder coating composition (3).
  • the liquid coating composition (3) contains a fluorine-containing polymer compound (3-1).
  • the liquid coating composition (3) may contain only the fluorine-containing polymer compound (3-1) as the polymer compound.
  • the liquid coating composition (3) may contain a solvent in addition to the fluorine-containing polymer compound (3-1).
  • the solvent include water and organic solvents, with water being preferred.
  • organic solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylacetamide, N, Examples include N-dimethylformamide, cresol, and methyl isobutyl ketone.
  • the viscosity of the liquid coating composition (3) is preferably 10 to 10,000 (cP), more preferably 50 (cP) or more, and even more preferably It is 100 (cP) or more, more preferably 1000 (cP) or less, and still more preferably 500 (cP) or less.
  • the viscosity of the liquid coating composition (3) can be adjusted by adjusting the content of the fluorine-containing polymer compound (3-1) in the liquid coating composition (3).
  • the content of the fluorine-containing polymer compound (3-1) in the liquid coating composition (3) is preferably 1 to 90% by weight, more preferably 1 to 90% by weight based on the mass of the liquid coating composition (3). It is 10% by weight or more, more preferably 80% by weight or less.
  • the powder coating composition (3) contains a fluorine-containing polymer compound (3-2).
  • the fluorine-containing polymer compound (3-2) in the powder coating composition (3) is usually a powder.
  • the powder coating composition (3) may contain only the fluorine-containing polymer compound (3-2) as the polymer compound.
  • the average particle size of the powder coating composition (3) is preferably 1 to 100 ( ⁇ m), more preferably 5 ⁇ m or more, and even more preferably It is 10 ⁇ m or more, more preferably 90 ⁇ m or less, and even more preferably 80 ⁇ m or less.
  • the liquid coating composition (3) or powder coating composition (3) may contain other components as necessary.
  • Other ingredients include crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, organic and inorganic various pigments, copper damage inhibitors, bubble preventers, adhesion promoters, lubricants, processing aids, colorants, phosphorus stabilizers, lubricants, mold release agents, sliding materials, ultraviolet absorbers, dyes and pigments, reinforcements.
  • additives such as materials, anti-drip agents, fillers, curing agents, ultraviolet curing agents, and flame retardants.
  • the content of other components in the liquid coating composition (3) or powder coating composition (3) includes the fluorine-containing polymer compound in the liquid coating composition (3) or powder coating composition (3). It is preferably less than 30% by weight, more preferably less than 10% by weight, and even more preferably 5% by weight or less, based on the mass of (3-1) or the fluorine-containing polymer compound (3-2). Although the lower limit is not particularly limited, it may be 0% by weight or more. That is, the liquid coating composition (3) or the powder coating composition (3) does not need to contain other components.
  • polymer compound used for the coating layer of the covered electric wire
  • the polymer compounds described below can be suitably used as the polymer compound (1) forming the first layer and the polymer compound (2) forming the second layer.
  • a "polymer compound” has one or both of an amide group and an imide group, and preferably does not have a fluorine atom.
  • the polymer compound can have an amide group (amide bond) or an imide group (imide bond) in the main chain or side chain of the polymer compound.
  • the polymer compound is preferably at least one selected from the group consisting of polyamideimide, polyetherimide, polyimide, and thermoplastic polyimide from the viewpoint of adhesion to the rectangular wire base material or adhesion to other layers. At least one selected from the group consisting of , polyamideimide, and polyimide is more preferred. Furthermore, as the polymer compound, two or more types of polymer compounds can be used in combination. For example, a combination of polyamideimide and polyimide can be used as the polymer compound.
  • Polyamide-imide is a resin consisting of a polymer having amide bonds and imide bonds in its molecular structure.
  • Polyamideimides are not particularly limited, and include, for example, reactions between aromatic diamines having an amide bond in the molecule and aromatic tetravalent carboxylic acids such as pyromellitic acid; and reactions between aromatic trivalent carboxylic acids such as trimellitic anhydride.
  • Consists of high molecular weight polymers obtained by various reactions such as reaction with diamines such as 4,4-diaminophenyl ether and diisocyanates such as diphenylmethane diisocyanate; reaction with diamines and dibasic acids having an aromatic imide ring in the molecule. Examples include resin.
  • the polyamideimide is preferably a polymer having an aromatic ring in the main chain.
  • Polyimide is a resin made of a polymer that has imide bonds in its molecular structure.
  • the polyimide is not particularly limited, and examples include resins made of high molecular weight polymers obtained by reaction of aromatic tetravalent carboxylic acid anhydrides such as pyromellitic anhydride.
  • the polyimide is preferably a polymer having an aromatic ring in the main chain.
  • the fluorine-containing polymer compounds described below include a fluorine-containing polymer compound (2) forming a second layer, a fluorine-containing polymer compound (3-1) forming a third layer, and a fluorine-containing polymer compound (3-1) forming a third layer. It can be suitably used as the fluorine-containing polymer compound (3-2) to be formed.
  • a fluorine-containing polymer compound is a polymer compound having a fluorine atom.
  • a fluorine-containing polymer compound is usually a polymer compound in which hydrogen atoms bonded to carbon atoms constituting the main chain are partially or completely replaced with fluorine atoms.
  • a perfluorinated polymer compound is preferable because a coating layer exhibiting a lower dielectric constant and a higher partial discharge inception voltage can be obtained.
  • a perfluoro-based polymer compound is a polymer compound in which the content of perfluoro monomer units is 90 mol% or more with respect to all polymerized units constituting the polymer compound.
  • a perfluoromonomer is a monomer that does not contain a carbon atom-hydrogen bond in its molecule.
  • perfluoromonomers may also be monomers in which some of the fluorine atoms bonded to carbon atoms are replaced with chlorine atoms, and in addition to carbon atoms, nitrogen atoms, oxygen atoms, It may contain a sulfur atom, a phosphorus atom, a boron atom, or a silicon atom.
  • the perfluoromonomer is preferably a monomer in which all hydrogen atoms are replaced with fluorine atoms.
  • the dielectric constant of the fluorine-containing polymer compound is preferably 2.0 to 2.2, more preferably 2.0 to 2.2, since a coating layer exhibiting a lower dielectric constant and a higher partial discharge inception voltage can be obtained. 1 or less.
  • the dielectric constant of the fluorine-containing polymer compound can be measured at 23° C. ⁇ 2° C., relative humidity 50%, and frequency 1 KHz in accordance with JIS-C-2138.
  • fluororesin refers to partially crystalline fluoropolymers and fluoroplastics.
  • the fluororesin has a melting point and is thermoplastic, but may be melt processable or non-melt processable.
  • fluororesins examples include polytetrafluoroethylene, tetrafluoroethylene (TFE)/fluoroalkyl vinyl ether (FAVE) copolymer, tetrafluoroethylene (TFE)/hexafluoropropylene (HFP) copolymer, and TFE/FAVE/HFP copolymer.
  • fluororesin at least one selected from the group consisting of polytetrafluoroethylene, TFE/FAVE copolymer, TFE/HFP copolymer, and TFE/FAVE/HFP copolymer is particularly preferred.
  • Polytetrafluoroethylene may be non-melt processable PTFE or melt processable PTFE, but non-melt processable PTFE is preferable.
  • Non-melt processable PTFE typically has stretchability, fibrillation properties, and non-melt fabrication properties.
  • Non-melt fabrication property refers to the property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point, that is, the property that it does not flow easily even in the melting temperature range, in accordance with ASTM D 1238 and D 2116.
  • PTFE may be a tetrafluoroethylene (TFE) homopolymer or may be a modified PTFE containing a TFE unit and a modified monomer unit.
  • modified PTFE means a product obtained by copolymerizing TFE with a small amount of comonomer that does not impart melt processability to the resulting copolymer.
  • the comonomer is not particularly limited, and examples thereof include hexafluoropropylene [HFP], chlorotrifluoroethylene [CTFE], perfluoro(alkyl vinyl ether) [PAVE], and the like.
  • the proportion of the comonomer added to the modified PTFE varies depending on its type, but for example, it may be 0.001 to 1% by mass based on the total mass of TFE and a small amount of comonomer. preferable.
  • the content of each monomer unit constituting PTFE can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
  • the standard specific gravity (SSG) of PTFE is preferably 2.280 or less, more preferably 2.210 or less, even more preferably 2.200 or less, and preferably 2.130 or more. . SSG can be measured by a water displacement method according to ASTM D 792 using a sample molded according to ASTM D 4895-89.
  • PTFE has a peak temperature in the range of 333 to 347°C. More preferably, the temperature is 335°C or higher and 345°C or lower.
  • the peak temperature is the temperature corresponding to the maximum value in the heat of fusion curve when heated at a rate of 10 °C/min using a differential scanning calorimeter [DSC] for PTFE that has no history of being heated to a temperature of 300 °C or higher. be.
  • a melt-processable fluorine-containing polymer compound can also be used.
  • the fluorine-containing polymer compound (3-2) contained in the powder coating composition (3) for forming the third layer can be melt-processed. It is preferable to use a fluorine-containing high molecular compound having a high molecular weight.
  • a melt-processable fluorine-containing polymer compound (2) contained in the powder coating composition (2) for forming the second layer is used. It is preferable to use a fluorine-containing polymer compound.
  • melt processability means that the polymer can be melted and processed using conventional processing equipment such as extruders and injection molding machines. Therefore, melt processable fluorine-containing polymer compounds usually have a melt flow rate of 0.01 to 500 g/10 minutes.
  • the melt flow rate of the fluorine-containing polymer compound is preferably 0.1 to 100 g/10 minutes, more preferably 80 g/10 minutes or less, even more preferably 70 g/10 minutes or less, and preferably 5 g/10 minutes. It is 10 minutes or more, more preferably 10 g/10 minutes or more.
  • the melt flow rate of the fluorine-containing polymer compound is calculated per 10 minutes from a nozzle with an inner diameter of 2.1 mm and a length of 8 mm at 372°C and under a load of 5 kg using a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) according to ASTM D1238. This is the value obtained as the mass of polymer flowing out (g/10 minutes).
  • the melting point of the fluorine-containing polymer compound is preferably 200 to 322°C, more preferably 230°C or higher, even more preferably 250°C or higher, and even more preferably 320°C or lower.
  • the melting point can be measured using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • melt-processable fluorine-containing polymer compound a melt-processable fluororesin is preferable.
  • melt-processable fluororesins include tetrafluoroethylene (TFE)/fluoroalkyl vinyl ether (FAVE) copolymer, tetrafluoroethylene (TFE)/hexafluoropropylene (HFP) copolymer, and TFE/FAVE/HFP copolymer.
  • melt-processable fluororesin at least one selected from the group consisting of TFE/FAVE copolymer, TFE/HFP copolymer, and TFE/FAVE/HFP copolymer is particularly preferred.
  • a TFE/FAVE copolymer is a copolymer containing tetrafluoroethylene (TFE) units and fluoroalkyl vinyl ether (FAVE) units.
  • Y 1 represents F or CF 3
  • Rf represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • p represents an integer of 0 to 5
  • q represents an integer of 0 to 5.
  • a monomer represented by and general formula (2): CFX CXOCF 2 OR 1 (2) (wherein, X is the same or different and represents H, F or CF3 , and R1 represents at least one linear or branched atom selected from the group consisting of H, Cl, Br and I.
  • a fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 atoms, or 1 to 2 atoms of at least one selected from the group consisting of H, Cl, Br and I
  • At least one type selected from the group consisting of monomers represented by can be mentioned.
  • FAVE is preferably a monomer represented by the general formula (1), consisting of perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether) (PEVE), and perfluoro(propyl vinyl ether) (PPVE). At least one selected from the group consisting of PEVE and PPVE is more preferable, at least one selected from the group consisting of PEVE and PPVE is even more preferable, and PPVE is particularly preferable.
  • the content of FAVE units in the TFE/FAVE copolymer is preferably 1.0 to 30.0 mol%, more preferably 1.2 mol% or more, and even more preferably 1.4 mol% or more, still more preferably 1.6 mol% or more, particularly preferably 1.8 mol% or more, more preferably 3.5 mol% or less, even more preferably 3. .2 mol% or less, still more preferably 2.9 mol% or less, particularly preferably 2.6 mol% or less.
  • the content of TFE units in the TFE/FAVE copolymer is preferably 99.0 to 70.0 mol%, more preferably 96.5 mol% or more, and even more preferably 96.8 mol% or more, still more preferably 97.1 mol% or more, particularly preferably 97.4 mol% or more, more preferably 98.8 mol% or less, even more preferably 98 mol% .6 mol% or less, still more preferably 98.4 mol% or less, particularly preferably 98.2 mol% or less.
  • the content of each monomer unit in the copolymer is measured by 19 F-NMR method.
  • the TFE/FAVE copolymer can also contain monomer units derived from monomers copolymerizable with TFE and FAVE.
  • the content of the monomer copolymerizable with TFE and FAVE is preferably 0 to 29.0 mol%, more preferably 0.0 to 29.0 mol%, based on the total monomer units of the TFE/FAVE copolymer.
  • the content is 1 to 5.0 mol%, more preferably 0.1 to 1.0 mol%.
  • the TFE/FAVE copolymer is preferably at least one selected from the group consisting of a copolymer consisting only of TFE units and FAVE units, and the above-mentioned TFE/HFP/FAVE copolymer. More preferred is a copolymer consisting only of the following.
  • the melting point of the TFE/FAVE copolymer is preferably 280 to 322°C, more preferably 285°C or higher, more preferably 320°C or lower, and even more preferably 315°C or lower.
  • the melting point can be measured using a differential scanning calorimeter (DSC).
  • the glass transition temperature (Tg) of the TFE/FAVE copolymer is preferably 70 to 110°C, more preferably 80°C or higher, and even more preferably 100°C or lower. Glass transition temperature can be measured by dynamic viscoelasticity measurement.
  • a TFE/HFP copolymer is a copolymer containing tetrafluoroethylene (TFE) units and hexafluoropropylene (HFP) units.
  • the content of HFP units in the TFE/HFP copolymer is preferably 0.1 to 30.0 mol%, more preferably 0.7 mol% or more, and even more preferably It is 1.4 mol% or more, and more preferably 10.0 mol% or less.
  • the content of TFE units in the TFE/HFP copolymer is preferably 70.0 to 99.9 mol%, more preferably 90.0 mol% or more, and more preferably It is 99.3 mol% or less, more preferably 98.6 mol%.
  • the TFE/HFP copolymer can also contain monomer units derived from monomers copolymerizable with TFE and HFP.
  • the content of the monomer copolymerizable with TFE and HFP is preferably 0 to 29.9 mol %, more preferably 0.9 mol %, based on the total monomer units of the TFE/HFP copolymer.
  • the content is 1 to 5.0 mol%, more preferably 0.1 to 1.0 mol%.
  • the melting point of the TFE/HFP copolymer is preferably 200 to 322°C, more preferably 210°C or higher, even more preferably 220°C or higher, particularly preferably 240°C or higher, and more preferably 320°C or higher. °C or less, more preferably less than 300°C, particularly preferably 280°C or less.
  • the glass transition temperature (Tg) of the TFE/HFP copolymer is preferably 60 to 110°C, more preferably 65°C or higher, and even more preferably 100°C or lower.
  • the fluorine-containing polymer compound may have a functional group.
  • the functional group is preferably at least one selected from the group consisting of a carbonyl group-containing group, an amino group, a hydroxy group, a -CF 2 H group, an olefin group, an epoxy group, and an isocyanate group.
  • R 6 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 2 to 20 carbon atoms containing an ether-bonding oxygen atom
  • R 3 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and the like.
  • R 4 examples include a methylene group, -CF 2 - group, -C 6 H 4 - group, etc.
  • R 5 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, Examples include butyl group.
  • R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and the like.
  • R 8 and R 9 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a phenyl group, and the like.
  • the hydroxy group is a group represented by -OH or a group containing a group represented by -OH.
  • -OH constituting a carboxyl group is not included in a hydroxy group.
  • Examples of the hydroxy group include -OH, methylol group, and ethylol group.
  • An olefinic group is a group having a carbon-carbon double bond.
  • -CR 10 CR 11 R 12
  • R 10 , R 11 and R 12 may be the same or different and are a hydrogen atom, a fluorine atom, or a monovalent organic group having 1 to 20 carbon atoms.
  • examples of the functional group include non-fluorinated alkyl groups or partially fluorinated alkyl groups such as -CH 3 group and -CFH 2 group.
  • the number of functional groups in the fluorine-containing polymer compound is preferably 5 to 2000 per 10 6 carbon atoms.
  • the number of functional groups per 10 6 carbon atoms is more preferably 50 or more, still more preferably 100 or more, particularly preferably 200 or more, more preferably 1000 or less, and
  • the number is preferably 800 or less, particularly preferably 700 or less, and most preferably 500 or less.
  • the number of functional groups of the fluorine-containing polymer compound may be less than 5 per 10 6 carbon atoms, and may be 0 to 4, since a coating layer with excellent electrical properties can be formed.
  • the fluorine-containing polymer compound has melt processability, it is preferable to have the number of functional groups within the above numerical range.
  • the above-mentioned functional group is a functional group present at the main chain end or side chain end of the fluorine-containing polymer compound, and a functional group present in the main chain or side chain, preferably at the main chain end.
  • -COOH includes a dicarboxylic acid anhydride group (-CO-O-CO-) formed by bonding two -COOHs.
  • Infrared spectroscopy can be used to identify the type of functional group and measure the number of functional groups.
  • the absorption frequencies of -CH 2 CF 2 H, -CH 2 COF, -CH 2 COOH, -CH 2 COOCH 3 and -CH 2 CONH 2 are shown in the table, respectively.
  • the absorption frequency is several tens of Kaiser (cm -1 ) lower than that of COOH free, -COOH bonded, -COOCH 3 , and -CONH 2 . Therefore, for example, the number of functional groups in -COF is the number of functional groups determined from the absorption peak at absorption frequency 1883 cm -1 due to -CF 2 COF and the absorption peak at absorption frequency 1840 cm -1 due to -CH 2 COF. This is the sum of the calculated number of functional groups.
  • the above-mentioned functional group is introduced into the fluorine-containing polymer compound by, for example, a chain transfer agent or a polymerization initiator used when producing the fluorine-containing polymer compound.
  • a chain transfer agent or a polymerization initiator used when producing the fluorine-containing polymer compound.
  • -CH 2 OH is introduced at the end of the main chain of the fluorine-containing polymer compound. be done.
  • the functional group is introduced into the end of the side chain of the fluorine-containing polymer compound.
  • the fluorine-containing polymer compound may contain units derived from a monomer having a functional group.
  • Examples of the monomer having a functional group include a dicarboxylic acid anhydride group ((-CO-O-CO-) and a cyclic carbonized monomer having a polymerizable unsaturated group in the ring) described in JP-A No. 2006-152234. Hydrogen monomers, monomers having a functional group (f) described in International Publication No. 2017/122743, etc. are mentioned. Examples of monomers having a functional group include monomers having a carboxy group (maleic, etc.).
  • monomers having an acid anhydride group examples include monomers having a hydroxyl group or an epoxy group (hydroxybutyl vinyl ether, glycidyl vinyl ether, etc.).
  • the fluorine-containing polymer compound can be produced by conventionally known methods such as, for example, appropriately mixing monomers serving as its constituent units and additives such as a polymerization initiator, and performing emulsion polymerization or suspension polymerization. .
  • the coated wire of the present disclosure is, for example, Forming a first layer by applying the liquid coating composition (1) to the outer periphery of the rectangular electric wire base material, Forming a second layer by applying a liquid coating composition (2) or a powder coating composition (2) to the outer periphery of the first layer,
  • the third layer can be manufactured by applying the liquid coating composition (3) or the powder coating composition (3) to the outer periphery of the second layer to form the third layer.
  • the method of forming a layer by applying a liquid coating composition is not particularly limited, and examples include methods such as spray coating, roll coating, coating with a doctor blade, dip coating, and impregnation coating.
  • a layer may be formed by applying the liquid coating composition and then drying and/or baking the resulting coating film. Drying can be carried out by a conventionally known method, and is preferably carried out at a temperature of 60 to 200°C for 5 to 60 minutes.
  • the firing can be carried out by a conventionally known method, but it is preferably carried out for 5 to 60 minutes at a temperature equal to or higher than the melting point or curing temperature of the polymer compound or fluorine-containing polymer compound.
  • the baking may be performed each time the coating composition is applied, or after the coating composition is applied multiple times to form a plurality of layers (coating films).
  • the method of forming a layer by applying the powder coating composition is not particularly limited, and examples include methods such as electrostatic coating and fluidized dip coating.
  • the layer may be formed by applying the powder coating composition and then baking the resulting coating film.
  • the firing can be carried out by a conventionally known method, but it is preferably carried out for 5 to 60 minutes at a temperature equal to or higher than the melting point or curing temperature of the polymer compound or fluorine-containing polymer compound.
  • the baking may be performed each time the coating composition is applied, or after the coating composition is applied multiple times to form a plurality of layers (coating films).
  • the coated electric wire of the present disclosure is, for example, a LAN cable, a USB cable, a Lightning cable, an HDMI cable, a QSFP cable, an aerospace electric wire, an underground power transmission cable, a submarine power cable, a high-voltage cable, a superconducting cable, a wrapped electric wire, and an automobile.
  • the coated wire of the present disclosure can be wound and used as a coil.
  • the coated wire and coil of the present disclosure can be suitably used in electrical equipment or electronic equipment such as motors, generators, and inductors. Further, the coated wire and coil of the present disclosure can be suitably used for on-vehicle electrical equipment or on-vehicle electronic equipment, such as on-vehicle motors, on-vehicle generators, and on-vehicle inductors.
  • a covered electric wire comprising a flat electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material,
  • the coating layer is A first layer formed from a liquid coating composition (1) containing a polymer compound (1) having one or both of an amide group and an imide group;
  • a second layer formed from a powder coating composition (2) containing a polymer compound (2) having one or both of them, and a fluorine-containing polymer compound (2);
  • a covered wire according to the first aspect wherein the polymer compound (1) or the polymer compound (2) is at least one selected from the group consisting of polyamideimide, polyetherimide, polyimide, and thermoplastic polyimide. . ⁇ 3>
  • the covered electric wire according to the first or second aspect wherein the fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) is a perfluorinated polymer compound. is provided.
  • the first to third fluorine-containing polymer compounds (2), fluorine-containing polymer compounds (3-1), or fluorine-containing polymer compounds (3-2) have a dielectric constant of 2.0 to 2.2.
  • a covered electric wire according to any of the above aspects is provided.
  • a covered electric wire according to any one of the first to fourth aspects is provided, wherein the fluorine-containing polymer compound (3-2) has a melting point of 250 to 320°C.
  • a covered electric wire according to any one of the first to fifth aspects is provided, wherein the volume ratio of the polymer compound (2) to the fluorine-containing polymer compound (2) is from 10/90 to 90/10.
  • the material forming the rectangular electric wire base material is at least one selected from the group consisting of copper, copper alloy, aluminum, and aluminum alloy.
  • the flat electric wire base material has a surface roughness Sz in a range of 0.2 to 12 ⁇ m.
  • a covered electric wire according to any one of the first to eighth aspects wherein the thickness of the coating layer is 30 to 200 ⁇ m, and the dielectric constant of the coating layer is 2.3 to 3.0.
  • the second layer has a thickness of 10 to 100 ⁇ m.
  • the eleventh aspect of the present disclosure There is provided a covered wire according to any one of the first to tenth aspects, wherein the partial discharge inception voltage of the coating layer is 1000 to 2100 (Vp).
  • the fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) has 5 to 1000 functional groups per 10 6 carbon atoms.
  • a covered electric wire according to any of the eleventh aspects is provided.
  • a covered electric wire according to any one of the first to eleventh aspects is provided, in which the fluorine-containing polymer compound (3-2) has 0 to 4 functional groups per 10 6 carbon atoms.
  • a covered electric wire according to any one of the first to thirteenth aspects wherein the fluorine-containing polymer compound (3-2) has a melt flow rate (MFR) of 0.1 to 100 g/10 minutes.
  • MFR melt flow rate
  • a covered electric wire according to any one of the first to fourteenth aspects is provided, wherein the liquid coating composition (2) or the liquid coating composition (3) has a viscosity of 10 to 10,000 (cP).
  • the powder coating composition (2) or the powder coating composition (3) has an average particle size of 1 to 100 ( ⁇ m).
  • a first layer is formed on the outer periphery of the flat wire base material, a second layer is formed on the outer periphery of the first layer, and a third layer is formed on the outer periphery of the second layer.
  • a covered electric wire according to any one of the first to sixteenth aspects is provided.
  • a method for manufacturing a covered electric wire according to any one of the first to seventeenth aspects comprising: Forming a first layer by applying a liquid coating composition (1) to the outer periphery of the rectangular electric wire base material, Forming a second layer by applying a liquid coating composition (2) or a powder coating composition (2) to the outer periphery of the first layer, A manufacturing method is provided in which the third layer is formed by applying the liquid coating composition (3) or the powder coating composition (3) to the outer periphery of the second layer.
  • a motor including a covered electric wire according to any one of the first to seventeenth aspects is provided.
  • the fluorine-containing polymer compound was melted at 330 to 340° C. for 30 minutes and compression molded to produce a film with a thickness of 0.20 to 0.25 mm. This film was scanned 40 times using a Fourier transform infrared spectrometer [FT-IR (product name: Model 1760X, manufactured by PerkinElmer) and analyzed to obtain an infrared absorption spectrum. A difference spectrum was obtained from the base spectrum that does not exist. From the absorption peak of a specific functional group appearing in this difference spectrum, the number N of functional groups per 10 6 carbon atoms in the fluorine-containing polymer compound was calculated according to the following formula (A).
  • FT-IR product name: Model 1760X, manufactured by PerkinElmer
  • N I ⁇ K/t (A) I: Absorbance K: Correction coefficient t: Film thickness (mm)
  • the viscosity of the coating composition was measured using a B-type viscometer (BII-type viscometer manufactured by Toki Sangyo Co., Ltd.) as described in JIS Z8803. Rotating rotor #4 was used for the measurement. The measurement temperature was 25°C.
  • the average particle size of the powder coating composition was measured using a laser diffraction/scattering particle size distribution analyzer manufactured by Nikkiso Co., Ltd.
  • the median particle size (median diameter) in the volume-based particle size distribution was defined as the average particle size.
  • MFR Melt flow rate
  • melting point It was determined as the temperature corresponding to the maximum value in the heat of fusion curve when the temperature was raised at a rate of 10° C./min using a differential scanning calorimeter (DSC).
  • the relative dielectric constant ( ⁇ ) of the entire coating layer was calculated from the following formula by obtaining the capacitance using LCR Hitester 3522-50 manufactured by HIOKI.
  • C Ca+Cb
  • C is the capacitance per unit length of the coating (pf/m), which is the combination of the capacitance Ca of the flat part and the capacitance Cb of the corner part.
  • Ca ( ⁇ / ⁇ 0 ) ⁇ 2 ⁇ (L 1 +L 2 )/T
  • Cb ( ⁇ / ⁇ 0 ) ⁇ 2 ⁇ 0 /Log ⁇ (r+T)/r ⁇ /r
  • ⁇ 0 is the permittivity of vacuum
  • L 1 is the length of the long side of the flat part of the flat wire base material
  • L 2 is the length of the short side of the flat part of the flat wire base material
  • T is the entire wire is the coating thickness
  • r is the radius of curvature of the conductor corner.
  • PDIV Partial discharge inception voltage
  • a test piece was prepared by overlapping two coated electric wires (length 140 mm), including the long sides of their cross-sectional shapes, over a length of 100 mm with no gap. After that, the coating film of 10 mm from the end of the sample was removed, and using a partial discharge measuring device (DAC-PD-7 manufactured by Souken Electric Co., Ltd.), the distance between the rectangular wire base materials of the two covered wires was measured in an atmosphere of 50% relative humidity. The measurement was performed by applying a 50 Hz sine wave alternating current voltage. Assuming a voltage increase rate of 50 V/sec, a voltage decrease rate of 50 V/sec, and a voltage holding time of 0 sec, the voltage at which a discharge of 10 pC or more occurred was defined as the partial discharge inception voltage.
  • Adhesion strength between base material and coating layer Measurement was performed using AGS-J Autograph (50N) (manufactured by Shimadzu Corporation). Two pieces were cut approximately parallel to each other by 50 mm in the long axis direction, and the coating was cut at right angles in the short axis direction at both ends, and the ends were peeled off by 10 mm, and then sandwiched between upper chucks. The conductor was fixed at the bottom so that its long surface was horizontal. When the device was moved in the tensile direction, a jig was used that moved in the lateral direction according to the distance moved in the vertical direction, and the angle was adjusted so that the peeled film was always perpendicular to the long conductor.
  • the tensile stress when the film was pulled at 100 mm/min until it was peeled off by 30 mm was measured, and the maximum point stress was taken as the adhesion strength. If the adhesion strength was 0.1 N/mm or more, it was determined that the adhesion was sufficient and was rated as ⁇ . Less than 0.1 N/mm was marked as x.
  • Example 1 Liquid coating composition A was applied to the outer periphery of a rectangular copper wire base material having a surface roughness Sz of 1.8 ⁇ m and baked to form a first layer. Furthermore, liquid coating composition B was applied to the outer periphery and baked to form a second layer. Furthermore, liquid coating composition G was applied to the outer periphery and baked to form a third layer. A method for forming a first layer using liquid coating composition A, a method for forming a second layer using liquid coating composition B, and a method for forming a third layer using liquid coating composition G. Details will be described later. Various properties of the obtained covered wire were measured. The results are shown in Table 3.
  • Examples 2-8 A covered wire was obtained in the same manner as in Example 1, except that the compositions for forming the first layer, second layer, and third layer were changed as shown in Table 3. Various properties of the obtained covered wire were measured. The results are shown in Table 3.
  • Comparative example 1 A covered wire was obtained in the same manner as in Example 3 except that the first layer was not formed. Various properties of the obtained covered wire were measured. The results are shown in Table 3.
  • liquid coating composition A PAI varnish (resin content: 20% by weight) in which polyamideimide (PAI) was dissolved in 3-methoxy-N,N-dimethylpropanamide was used as liquid coating composition A. This viscosity was 341 cP. This liquid coating composition A was spray coated, dried at 100°C for 15 minutes, and then baked at 230°C for 20 minutes to obtain a coating film with a thickness of 10 ⁇ m.
  • PAI varnish resin content: 20% by weight
  • PAI polyamideimide
  • 3-methoxy-N,N-dimethylpropanamide 3-methoxy-N,N-dimethylpropanamide was used as liquid coating composition A. This viscosity was 341 cP.
  • This liquid coating composition A was spray coated, dried at 100°C for 15 minutes, and then baked at 230°C for 20 minutes to obtain a coating film with a thickness of 10 ⁇ m.
  • PAI Polyamideimide
  • PI polyimide
  • This liquid coating composition D was spray-painted, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 22 ⁇ m.
  • This powder coating composition E was applied electrostatically and baked at 380° C. for 20 minutes to obtain a coating film with a thickness of 20 ⁇ m.
  • This powder coating composition F was applied electrostatically and baked at 320° C. for 20 minutes to obtain a coating film with a thickness of 18 ⁇ m.
  • liquid coating composition G Water was added to an aqueous dispersion composition of PTFE (solid content: 60% by weight, number of functional groups: 18 per 10 6 carbon atoms) to obtain a liquid coating composition G. This viscosity was 292 cP. This liquid coating composition G was spray coated, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 28 ⁇ m.
  • liquid coating composition H Water was added to an aqueous dispersion composition of PFA (TFE/PPVE copolymer) (solid content: 60% by weight, number of functional groups: 133 per 10 6 carbon atoms) to obtain a liquid coating composition H. This viscosity was 224 cP. This liquid coating composition H was spray coated, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 31 ⁇ m.
  • PFA TFE/PPVE copolymer
  • Powder coating composition I PFA powder (TFE/PPVE copolymer, number of functional groups: 220 per 106 carbon atoms, MFR: 27 g/10 min, melting point: 301°C, average particle size: 24 ⁇ m) was used as powder coating composition I. .
  • This powder coating composition I was applied electrostatically and baked at 380° C. for 20 minutes to obtain a coating film with a thickness of 47 ⁇ m.
  • Powder coating composition J PFA powder (TFE/PPVE copolymer, number of functional groups: 2 per 10 6 carbon atoms, MFR: 28 g/10 min, melting point: 301°C, average particle size: 23 ⁇ m) was used as powder coating composition J. .
  • This powder coating composition J was applied electrostatically and baked at 380° C. for 20 minutes to obtain a coating film with a thickness of 75 ⁇ m.
  • powder coating composition K FEP powder (TFE/HFP copolymer, number of functional groups: 625 per 106 carbon atoms, MFR: 38 g/10 min, melting point: 258°C, average particle size: 41 ⁇ m) was used as powder coating composition K. .
  • This powder coating composition K was applied electrostatically and baked at 320° C. for 20 minutes to obtain a coating film with a thickness of 52 ⁇ m.

Abstract

Provided is a coated electric wire comprising a flat electric-wire base and a coating layer formed on the outer periphery of the flat electric-wire base, wherein the coating layer comprises: a first layer, which is a layer formed from a liquid coating composition (1) comprising a polymer (1) having an amide group and/or an imide group, a second layer, which is a layer formed from either a liquid coating composition (2) comprising a polymer (2) having an amide group and/or an imide group and a fluoropolymer (2) or a powdery coating composition (2) comprising a polymer (2) having an amide group and/or an imide group and a fluoropolymer (2), and a third layer, which is a layer formed from a liquid coating composition (3) comprising a fluoropolymer (3-1) or a powdery coating composition (3) comprising a fluoropolymer (3-2).

Description

被覆電線および被覆電線の製造方法Covered wire and method for manufacturing coated wire
 本開示は、被覆電線および被覆電線の製造方法に関する。 The present disclosure relates to a covered electric wire and a method for manufacturing the covered electric wire.
 特許文献1には、導体と、前記導体の外周に形成される第一の絶縁層とを有し、前記第一の絶縁層は、熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が90:10~10:90であり、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けることによって形成された層であることを特徴とする電線が記載されている。 Patent Document 1 has a conductor and a first insulating layer formed on the outer periphery of the conductor, the first insulating layer is made of a thermosetting resin and a fluororesin, and the first insulating layer is made of a thermosetting resin and a fluororesin. A layer having a mass ratio of 90:10 to 10:90 with the fluororesin and formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the resulting mixed solution onto a conductor, and baking it. An electric wire characterized by the following is described.
国際公開第2011/024809号International Publication No. 2011/024809
 本開示では、低い比誘電率および高い部分放電開始電圧を示し、曲げても被覆層にしわが発生しにくく、平角電線基材と被覆層との密着強度が高い被覆電線を提供することを目的とする。 An object of the present disclosure is to provide a coated wire that exhibits a low dielectric constant and a high partial discharge inception voltage, is unlikely to cause wrinkles in the coating layer even when bent, and has high adhesion strength between the rectangular wire base material and the coating layer. do.
 本開示によれば、平角電線基材と、前記平角電線基材の外周に形成された被覆層とを含む被覆電線であって、前記被覆層が、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(1)を含む液状塗料組成物(1)から形成される第1の層と、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む液状塗料組成物(2)、または、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む粉体塗料組成物(2)から形成される第2の層と、含フッ素高分子化合物(3-1)を含む液状塗料組成物(3)、または、含フッ素高分子化合物(3-2)を含む粉体塗料組成物(3)から形成される第3の層と、を含む被覆電線が提供される。 According to the present disclosure, there is provided a covered electric wire including a rectangular electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material, wherein the coating layer includes one or both of an amide group and an imide group. a first layer formed from a liquid coating composition (1) containing a polymer compound (1) having A liquid coating composition (2) containing a fluorine-containing polymer compound (2), or a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2). a second layer formed from a powder coating composition (2) containing a liquid coating composition (3) containing a fluorine-containing polymer compound (3-1) or a fluorine-containing polymer compound (3-2); ), and a third layer formed from a powder coating composition (3).
 本開示によれば、低い比誘電率および高い部分放電開始電圧を示し、曲げても被覆層にしわが発生しにくく、平角電線基材と被覆層との密着強度が高い被覆電線を提供することができる。 According to the present disclosure, it is possible to provide a coated wire that exhibits a low dielectric constant and a high partial discharge inception voltage, does not easily cause wrinkles in the coating layer even when bent, and has high adhesion strength between the rectangular wire base material and the coating layer. can.
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。 Hereinafter, specific embodiments of the present disclosure will be described in detail, but the present disclosure is not limited to the following embodiments.
 本開示の被覆電線は、平角電線基材と、平角電線基材の外周に形成された被覆層とを含む。 The covered electric wire of the present disclosure includes a rectangular electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material.
 含フッ素高分子化合物は、非粘着性を有していることから、被覆電線の平角電線基材上に含フッ素高分子化合物を含む被覆層を設ける場合には、平角電線基材と被覆層とが十分な強度で密着しない問題がある。したがって、従来の被覆電線を湾曲させたり、折り曲げたりすると、被覆層が平角電線基材から浮いてしまったり、被覆層にシワが生じたりする問題がある。 Fluorine-containing polymer compounds have non-adhesive properties, so when providing a coating layer containing a fluorine-containing polymer compound on a rectangular electric wire base material of a covered electric wire, the flat electric wire base material and the coating layer must be There is a problem that the adhesive does not adhere with sufficient strength. Therefore, when a conventional covered electric wire is bent or bent, there is a problem that the coating layer is lifted from the rectangular electric wire base material or wrinkles are generated in the coating layer.
 一方で、平角電線基材と密着しやすい材料により被覆層を形成すると、被覆電線の被覆層の比誘電率が高くなったり、被覆電線の部分放電開始電圧が低くなったりして、電気的な性能に優れる被覆電線を得ることが難しい問題がある。 On the other hand, if the coating layer is formed of a material that easily adheres to the rectangular wire base material, the dielectric constant of the coating layer of the covered wire will increase, the partial discharge inception voltage of the covered wire will decrease, and the electrical There is a problem in that it is difficult to obtain a coated wire with excellent performance.
 本開示の被覆電線は、3つの層の構成材料および形成方法を適切に組み合わせたものである。したがって、本開示の被覆電線は、低い比誘電率および高い部分放電開始電圧を示すとともに、曲げても被覆層にしわが発生しにくく、平角電線基材と被覆層とが高い密着強度で密着している。 The coated wire of the present disclosure appropriately combines the constituent materials and formation methods of the three layers. Therefore, the coated wire of the present disclosure exhibits a low dielectric constant and a high partial discharge inception voltage, and the coating layer is less likely to wrinkle even when bent, and the rectangular wire base material and the coating layer are in close contact with each other with high adhesion strength. There is.
(平角電線基材)
 平角電線基材の形状は、その断面が略長方形の平角線の形状であれば特に限定されない。平角電線基材の断面の角部は直角であってもよいし、平角電線基材の断面の角部が丸みを有していてもよい。また、平角電線基材は、全体の断面が略長方形であれば、単線、集合線、撚線などであってよいが、単線であることが好ましい。
(Flat wire base material)
The shape of the rectangular electric wire base material is not particularly limited as long as the cross section is the shape of a rectangular wire having a substantially rectangular shape. The corners of the cross section of the flat electric wire base material may be at right angles, or the corners of the cross section of the flat electric wire base material may be rounded. Further, the rectangular electric wire base material may be a single wire, a grouped wire, a stranded wire, etc. as long as the entire cross section is approximately rectangular, but a single wire is preferable.
 平角電線基材としては、導電材料から構成されるものであれば特に限定されないが、銅、銅合金、アルミニウム、アルミニウム合金、鉄、銀、ニッケルなどの材料により構成することができ、銅、銅合金、アルミニウムまたはアルミニウム合金により構成されたものが好ましい。また、銀めっき、ニッケルめっきなどのめっきを施した平角電線基材を用いることもできる。銅としては、無酸素銅、低酸素銅、銅合金などを用いることができる。 The rectangular wire base material is not particularly limited as long as it is made of a conductive material, but it can be made of materials such as copper, copper alloy, aluminum, aluminum alloy, iron, silver, and nickel. Preferably, it is made of an alloy, aluminum or an aluminum alloy. Further, a rectangular electric wire base material plated with silver plating, nickel plating, etc. can also be used. As the copper, oxygen-free copper, low-oxygen copper, copper alloy, etc. can be used.
 平角電線基材の断面の幅は1~75mmであってよく、平角電線基材の断面の厚さは0.1~30mmであってよい。平角電線基材の外周径は、6.5mm以上であってよく、200mm以下であってよい。また、幅の厚さに対する比は、1超30以下であってよい。 The width of the cross section of the flat electric wire base material may be 1 to 75 mm, and the thickness of the cross section of the flat electric wire base material may be 0.1 to 30 mm. The outer circumferential diameter of the rectangular electric wire base material may be 6.5 mm or more and 200 mm or less. Further, the ratio of width to thickness may be greater than 1 and less than or equal to 30.
 平角電線基材の面粗さSzは、平角電線基材と被覆層とが一層強固に密着することから、好ましくは0.2~12μmであり、より好ましくは1μm以上であり、さらに好ましくは5μm以上であり、より好ましくは10μm以下である。 The surface roughness Sz of the flat wire base material is preferably 0.2 to 12 μm, more preferably 1 μm or more, and even more preferably 5 μm, since the flat wire base material and the coating layer adhere more firmly. or more, and more preferably 10 μm or less.
 平角電線基材の面粗さは、エッチング処理、ブラスト処理、レーザー処理などの表面処理方法により、平角電線基材を表面処理することにより調整することができる。また、表面処理により、平角電線基材の表面に凹凸を設けてもよい。凸部から凸部の凹凸間距離は小さいほど好ましく、たとえば、5μm以下である。また、凹凸の大きさは、たとえば、未加工面に対する凸部を切断した時の1つあたりの凹部面積が1μm以下である。凹凸形状は、クレーター型の単一な凹凸形状でもよく、アリの巣状に枝分かれしているものでもよい。 The surface roughness of the flat wire base material can be adjusted by surface treating the flat wire base material using a surface treatment method such as etching treatment, blasting treatment, laser treatment, or the like. Further, the surface of the rectangular electric wire base material may be provided with irregularities by surface treatment. The distance between the convex and convex portions is preferably as small as possible, and is, for example, 5 μm or less. Further, regarding the size of the unevenness, for example, the area of each depression when cutting the protrusion on the unprocessed surface is 1 μm 2 or less. The uneven shape may be a single crater-shaped uneven shape, or may be branched like an ant nest.
(被覆層)
 本開示の被覆電線は、平角電線基材の外周に形成された被覆層を含み、被覆層は、第1の層、第2の層および第3の層を含む。本開示の被覆電線においては、通常、第1の層が、平角電線基材の外周に形成され、第2の層が、第1の層の外周に形成され、第3の層が、第2の層の外周に形成される。
(covering layer)
The coated electric wire of the present disclosure includes a coating layer formed around the outer periphery of a rectangular electric wire base material, and the coating layer includes a first layer, a second layer, and a third layer. In the coated wire of the present disclosure, the first layer is usually formed on the outer periphery of the rectangular wire base material, the second layer is formed on the outer periphery of the first layer, and the third layer is formed on the outer periphery of the first layer. formed around the outer periphery of the layer.
 第1の層、第2の層および第3の層は、いずれも、塗料組成物から形成される塗膜である。第1の層は、液状塗料組成物(1)から形成される塗膜である。第2の層は、液状塗料組成物(2)または粉体塗料組成物(2)から形成される塗膜である。第3の層は、液状塗料組成物(3)または粉体塗料組成物(3)から形成される塗膜である。 The first layer, second layer, and third layer are all coating films formed from a coating composition. The first layer is a coating film formed from liquid coating composition (1). The second layer is a coating formed from liquid coating composition (2) or powder coating composition (2). The third layer is a coating formed from the liquid coating composition (3) or the powder coating composition (3).
 液状塗料組成物は、高分子化合物または含フッ素高分子化合物とともに溶媒を含有している。粉体塗料組成物は、高分子化合物または含フッ素高分子化合物の粉体を含有している。本開示においては、粉体塗料が、高分子化合物の粉体のみを含有する場合であっても、含フッ素高分子化合物の粉体のみを含有する場合であっても、すなわち、粉体塗料が複数の成分を含有しない場合であっても、「粉体塗料組成物」との用語を用いる。 The liquid coating composition contains a solvent along with a polymer compound or a fluorine-containing polymer compound. The powder coating composition contains powder of a polymer compound or a fluorine-containing polymer compound. In the present disclosure, whether the powder coating contains only powder of a polymer compound or only powder of a fluorine-containing polymer compound, the powder coating The term "powder coating composition" is used even when it does not contain multiple components.
 液状塗料組成物(1)は、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(1)を含む。液状塗料組成物(1)を平角電線基材の外周に塗布して第1の層を形成することにより、平角電線基材に高い密着強度で密着する第1の層を形成することができ、それによって、高い密着強度で平角電線基材に密着した被覆層を形成することができ、曲げてもしわが発生しにくい被覆層を形成することができる。 The liquid coating composition (1) contains a polymer compound (1) having one or both of an amide group and an imide group. By applying the liquid coating composition (1) to the outer periphery of the rectangular electric wire base material to form the first layer, it is possible to form a first layer that adheres to the rectangular electric wire base material with high adhesion strength, Thereby, it is possible to form a coating layer that closely adheres to the rectangular wire base material with high adhesion strength, and it is possible to form a coating layer that does not easily wrinkle even when bent.
 液状塗料組成物(2)は、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む。液状塗料組成物(2)を第1の層の外周に塗布して第2の層を形成することにより、被覆層の低い比誘電率および高い部分放電開始電圧を損なうことなく、第1の層および第3の層と十分に密着することによって、層間強度に優れた被覆層を与える第2の層を形成することができる。 The liquid coating composition (2) contains a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2). By applying the liquid coating composition (2) to the outer periphery of the first layer to form the second layer, the first layer can be coated without impairing the low dielectric constant and high partial discharge inception voltage of the coating layer. By sufficiently adhering to the third layer, it is possible to form a second layer that provides a coating layer with excellent interlayer strength.
 粉体塗料組成物(2)は、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む。粉体塗料組成物(2)を第1の層の外周に塗布して第2の層を形成することにより、被覆層の低い比誘電率および高い部分放電開始電圧を損なうことなく、第1の層および第3の層と十分に密着することによって、層間強度に優れた被覆層を与える第2の層を形成することができる。 The powder coating composition (2) includes a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2). By applying the powder coating composition (2) to the outer periphery of the first layer to form the second layer, the first layer can be coated without impairing the low dielectric constant and high partial discharge inception voltage of the coating layer. By sufficiently adhering to the second layer and the third layer, it is possible to form a second layer that provides a coating layer with excellent interlayer strength.
 液状塗料組成物(3)は、含フッ素高分子化合物(3-1)を含む。液状塗料組成物(3)を第2の層の外周に塗布して第3の層を形成することにより、低い比誘電率および高い部分放電開始電圧を被覆層に与えるとともに、第2の層と十分に密着することによって、層間強度に優れた被覆層を与える第3の層を形成することができる。 The liquid coating composition (3) contains a fluorine-containing polymer compound (3-1). By applying the liquid coating composition (3) to the outer periphery of the second layer to form the third layer, a low relative dielectric constant and a high partial discharge inception voltage are imparted to the coating layer, and the coating layer is also bonded to the second layer. By adhering sufficiently, it is possible to form a third layer that provides a coating layer with excellent interlayer strength.
 粉体塗料組成物(3)は、含フッ素高分子化合物(3-2)を含む。粉体塗料組成物(3)を第2の層の外周に塗布して第3の層を形成することにより、低い比誘電率および高い部分放電開始電圧を被覆層に与えるとともに、第2の層と十分に密着することによって、層間強度に優れた被覆層を与える第3の層を形成することができる。 The powder coating composition (3) contains a fluorine-containing polymer compound (3-2). By applying the powder coating composition (3) to the outer periphery of the second layer to form the third layer, a low dielectric constant and a high partial discharge inception voltage are imparted to the coating layer, and the second layer By sufficiently adhering to the third layer, it is possible to form a third layer that provides a coating layer with excellent interlayer strength.
 被覆層の厚みは、絶縁特性の観点から、好ましくは30~200μmであり、より好ましくは40μm以上であり、さらに好ましくは50μm以上であり、より好ましくは150μm以下であり、さらに好ましくは100μm以下である。厚みが大きすぎると、被覆電線をモータなどの機器に用いた場合に機器の小型化が困難となる可能性があり、厚みが小さすぎると、十分な絶縁性が得られない可能性がある。 From the viewpoint of insulation properties, the thickness of the coating layer is preferably 30 to 200 μm, more preferably 40 μm or more, even more preferably 50 μm or more, more preferably 150 μm or less, and even more preferably 100 μm or less. be. If the thickness is too large, it may be difficult to downsize the device when the coated wire is used in a device such as a motor, and if the thickness is too small, sufficient insulation may not be obtained.
 第1の層の厚みは、平角電線基材と被覆層とを十分に密着させ、曲げてもしわが発生しにくい被覆層を形成する観点から、好ましくは1~50μmであり、より好ましくは3μm以上であり、さらに好ましくは6μm以上であり、より好ましくは40μm以下であり、さらに好ましくは20μm以下であり、尚さらに好ましくは10μm以下である。 The thickness of the first layer is preferably 1 to 50 μm, more preferably 3 μm or more, from the viewpoint of sufficiently adhering the flat wire base material and the coating layer and forming a coating layer that does not easily wrinkle when bent. It is more preferably 6 μm or more, more preferably 40 μm or less, even more preferably 20 μm or less, and even more preferably 10 μm or less.
 第2の層の厚みは、被覆層の低い比誘電率および高い部分放電開始電圧を損なうことなく、第2の層を、第1の層および第3の層と十分に密着させる観点から、好ましくは5~100μmであり、より好ましくは10μm以上であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、尚さらに好ましくは30μm以下である。 The thickness of the second layer is preferably set from the viewpoint of sufficiently adhering the second layer to the first layer and the third layer without impairing the low dielectric constant and high partial discharge inception voltage of the coating layer. is 5 to 100 μm, more preferably 10 μm or more, more preferably 60 μm or less, even more preferably 40 μm or less, and even more preferably 30 μm or less.
 第3の層の厚みは、低い比誘電率および高い部分放電開始電圧を被覆層に与えるとともに、第3の層を、第2の層と十分に密着させる観点から、好ましくは5~100μmであり、より好ましくは10μm以上であり、さらに好ましくは15μm以上であり、尚さらに好ましくは20μm以上であり、より好ましくは90μm未満であり、さらに好ましくは80μm以下である。 The thickness of the third layer is preferably 5 to 100 μm from the viewpoint of providing the coating layer with a low dielectric constant and high partial discharge inception voltage, and also ensuring sufficient adhesion between the third layer and the second layer. , more preferably 10 μm or more, still more preferably 15 μm or more, even more preferably 20 μm or more, more preferably less than 90 μm, still more preferably 80 μm or less.
 液状塗料組成物(3)を用いて第3の層を形成する場合には、第3の層の厚みを比較的小さくすることができる。この場合の第3の層の厚みの上限は、好ましくは50μm以下であり、より好ましくは40μm以下であり、さらに好ましくは35μm以下である。 When forming the third layer using the liquid coating composition (3), the thickness of the third layer can be made relatively small. The upper limit of the thickness of the third layer in this case is preferably 50 μm or less, more preferably 40 μm or less, and still more preferably 35 μm or less.
 粉体塗料組成物(3)を用いて第3の層を形成する場合には、第3の層の厚みを比較的大きくすることができる。この場合の第3の層の厚みの下限は、好ましくは35μm超であり、より好ましくは40μm超であり、さらに好ましくは50μm超である。 When forming the third layer using the powder coating composition (3), the thickness of the third layer can be made relatively large. The lower limit of the thickness of the third layer in this case is preferably more than 35 μm, more preferably more than 40 μm, and still more preferably more than 50 μm.
 被覆層の比誘電率は、好ましくは2.3~3.0であり、より好ましくは2.9以下であり、さらに好ましくは2.8以下である。本開示の被覆電線は、3つの層の構成材料および形成方法を適切に組み合わせたものであることから、被覆層の比誘電率を低くすることができる。 The dielectric constant of the coating layer is preferably 2.3 to 3.0, more preferably 2.9 or less, and even more preferably 2.8 or less. Since the coated wire of the present disclosure appropriately combines the constituent materials and formation methods of the three layers, the dielectric constant of the coating layer can be lowered.
 被覆層の部分放電開始電圧は、好ましくは1000~2100(Vp)であり、より好ましくは1100(Vp)以上であり、さらに好ましくは1200(Vp)以上であり、尚さらに好ましくは1300(Vp)以上であり、より好ましくは2000(Vp)以下である。本開示の被覆電線は、3つの層の構成材料および形成方法を適切に組み合わせたものであることから、被覆層の部分放電開始電圧を高くすることができる。 The partial discharge inception voltage of the coating layer is preferably 1000 to 2100 (Vp), more preferably 1100 (Vp) or more, even more preferably 1200 (Vp) or more, and even more preferably 1300 (Vp). or more, and more preferably 2000 (Vp) or less. Since the covered electric wire of the present disclosure appropriately combines the constituent materials and formation methods of the three layers, it is possible to increase the partial discharge inception voltage of the coating layer.
 被覆層は、第1の層、第2の層および第3の層を含むものであれば、他の層をさらに含むものであってもよいが、他の層を含まなくても、所望の効果を奏する被覆電線を得ることができる。 As long as the coating layer includes the first layer, second layer, and third layer, it may further include other layers, but even if it does not include other layers, it can be used as desired. It is possible to obtain an effective coated wire.
(第1の層)
 第1の層は、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(1)を含む液状塗料組成物(1)から形成される。液状塗料組成物(1)は、高分子化合物として、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(1)のみを含むものであってよい。
(first layer)
The first layer is formed from a liquid coating composition (1) containing a polymer compound (1) having one or both of an amide group and an imide group. The liquid coating composition (1) may contain only the polymer compound (1) having either one or both of an amide group and an imide group.
 液状塗料組成物(1)は、高分子化合物(1)に加えて、溶媒を含有してもよい。溶媒としては、水、有機溶媒などが挙げられ、有機溶媒が好ましい。有機溶媒としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、クレゾール、メチルイソブチルケトンなどが挙げられる。 The liquid coating composition (1) may contain a solvent in addition to the polymer compound (1). Examples of the solvent include water and organic solvents, with organic solvents being preferred. Examples of organic solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylacetamide, N, Examples include N-dimethylformamide, cresol, and methyl isobutyl ketone.
 液状塗料組成物(1)の粘度は、所望の厚みを有する層を容易に形成できる観点から、好ましくは10~10000(cP)であり、より好ましくは50(cP)以上であり、さらに好ましくは100(cP)以上であり、より好ましくは1000(cP)以下であり、さらに好ましくは500(cP)以下である。液状塗料組成物(1)の粘度は、液状塗料組成物(1)中の高分子化合物(1)の含有量を調整することにより、調整することができる。 The viscosity of the liquid coating composition (1) is preferably 10 to 10,000 (cP), more preferably 50 (cP) or more, and even more preferably It is 100 (cP) or more, more preferably 1000 (cP) or less, and still more preferably 500 (cP) or less. The viscosity of the liquid coating composition (1) can be adjusted by adjusting the content of the polymer compound (1) in the liquid coating composition (1).
 液状塗料組成物(1)中の高分子化合物(1)の含有量は、液状塗料組成物(1)の質量に対して、好ましくは1~50重量%であり、より好ましくは10重量%以上であり、より好ましくは40重量%以下である。 The content of the polymer compound (1) in the liquid coating composition (1) is preferably 1 to 50% by weight, more preferably 10% by weight or more based on the mass of the liquid coating composition (1). and more preferably 40% by weight or less.
 液状塗料組成物(1)は、必要に応じて他の成分を含んでもよい。他の成分としては、架橋剤、帯電防止剤、耐熱安定剤、発泡剤、発泡核剤、酸化防止剤、界面活性剤、光重合開始剤、摩耗防止剤、表面改質剤、有機・無機系の各種顔料、銅害防止剤、気泡防止剤密着付与剤、潤滑剤、加工助剤、着色剤、リン系安定剤、潤滑剤、離型剤、摺動材、紫外線吸収剤、染顔料、補強材、ドリップ防止剤、充填材、硬化剤、紫外線硬化剤、難燃剤等の添加剤等を挙げることができる。液状塗料組成物(1)中の他の成分の含有量としては、液状塗料組成物(1)中の高分子化合物(1)の質量に対して、好ましくは30重量%未満であり、より好ましくは10重量%未満であり、さらに好ましくは5重量%以下であり、下限は特に限定されないが、0重量%以上であってもよい。すなわち、液状塗料組成物(1)は、他の成分を含有しなくてもよい。 The liquid coating composition (1) may contain other components as necessary. Other ingredients include crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, organic and inorganic various pigments, copper damage inhibitors, bubble preventers, adhesion promoters, lubricants, processing aids, colorants, phosphorus stabilizers, lubricants, mold release agents, sliding materials, ultraviolet absorbers, dyes and pigments, reinforcements. Examples include additives such as materials, anti-drip agents, fillers, curing agents, ultraviolet curing agents, and flame retardants. The content of other components in the liquid coating composition (1) is preferably less than 30% by weight, more preferably less than 30% by weight based on the mass of the polymer compound (1) in the liquid coating composition (1). is less than 10% by weight, more preferably 5% by weight or less, and the lower limit is not particularly limited, but may be 0% by weight or more. That is, the liquid coating composition (1) does not need to contain other components.
(第2の層)
 第2の層は、液状塗料組成物(2)または粉体塗料組成物(2)から形成される。
(Second layer)
The second layer is formed from a liquid coating composition (2) or a powder coating composition (2).
 液状塗料組成物(2)は、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む。液状塗料組成物(2)は、高分子化合物として、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)および含フッ素高分子化合物(2)のみを含むものであってよい。 The liquid coating composition (2) contains a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2). The liquid coating composition (2) may contain only a polymer compound (2) having one or both of an amide group and an imide group and a fluorine-containing polymer compound (2) as a polymer compound. .
 液状塗料組成物(2)は、高分子化合物(2)および含フッ素高分子化合物(2)に加えて、溶媒を含有してもよい。溶媒としては、水、有機溶媒などが挙げられる。有機溶媒としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、クレゾール、メチルイソブチルケトンなどが挙げられる。 The liquid coating composition (2) may contain a solvent in addition to the polymer compound (2) and the fluorine-containing polymer compound (2). Examples of the solvent include water and organic solvents. Examples of organic solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylacetamide, N, Examples include N-dimethylformamide, cresol, and methyl isobutyl ketone.
 液状塗料組成物(2)の粘度は、所望の厚みを有する層を容易に形成できる観点から、好ましくは10~10000(cP)であり、より好ましくは50(cP)以上であり、さらに好ましくは100(cP)以上であり、より好ましくは1000(cP)以下であり、さらに好ましくは500(cP)以下である。液状塗料組成物(2)の粘度は、液状塗料組成物(2)中の高分子化合物(2)および含フッ素高分子化合物(2)の含有量を調整することにより、調整することができる。 The viscosity of the liquid coating composition (2) is preferably 10 to 10,000 (cP), more preferably 50 (cP) or more, and even more preferably It is 100 (cP) or more, more preferably 1000 (cP) or less, and still more preferably 500 (cP) or less. The viscosity of the liquid coating composition (2) can be adjusted by adjusting the contents of the polymer compound (2) and the fluorine-containing polymer compound (2) in the liquid coating composition (2).
 液状塗料組成物(2)中の高分子化合物(2)および含フッ素高分子化合物(2)の含有量は、液状塗料組成物(2)の質量に対して、好ましくは1~90重量%であり、より好ましくは10重量%以上であり、より好ましくは80重量%以下である。 The content of the polymer compound (2) and the fluorine-containing polymer compound (2) in the liquid coating composition (2) is preferably 1 to 90% by weight based on the mass of the liquid coating composition (2). The content is more preferably 10% by weight or more, and more preferably 80% by weight or less.
 粉体塗料組成物(2)は、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む。粉体塗料組成物(2)中の高分子化合物(2)および含フッ素高分子化合物(2)は、通常、いずれも粉体である。粉体塗料組成物(2)は、高分子化合物として、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)および含フッ素高分子化合物(2)のみを含むものであってよい。 The powder coating composition (2) includes a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2). The polymer compound (2) and the fluorine-containing polymer compound (2) in the powder coating composition (2) are usually both powders. The powder coating composition (2) contains only a polymer compound (2) having one or both of an amide group and an imide group and a fluorine-containing polymer compound (2) as a polymer compound. good.
 粉体塗料組成物(2)の平均粒径は、所望の厚みを有する層を容易に形成できる観点から、好ましくは1~100(μm)であり、より好ましくは5μm以上であり、さらに好ましくは10μm以上であり、より好ましくは90μm以下であり、さらに好ましくは80μm以下である。 The average particle size of the powder coating composition (2) is preferably 1 to 100 (μm), more preferably 5 μm or more, and even more preferably It is 10 μm or more, more preferably 90 μm or less, and still more preferably 80 μm or less.
 液状塗料組成物(2)または粉体塗料組成物(2)において、高分子化合物(2)と含フッ素高分子化合物(2)との体積比は、被覆層の低い比誘電率および高い部分放電開始電圧を損なうことなく、第2の層を、第1の層および第3の層と十分に密着させる観点から、好ましくは10/90~90/10であり、より好ましくは15/85以上であり、より好ましくは85/15以下である。 In the liquid coating composition (2) or the powder coating composition (2), the volume ratio of the polymer compound (2) and the fluorine-containing polymer compound (2) is such that the coating layer has a low dielectric constant and a high partial discharge. From the viewpoint of sufficiently adhering the second layer to the first layer and the third layer without impairing the starting voltage, the ratio is preferably 10/90 to 90/10, more preferably 15/85 or more. Yes, and more preferably 85/15 or less.
 液状塗料組成物(2)または粉体塗料組成物(2)は、必要に応じて他の成分を含んでもよい。他の成分としては、架橋剤、帯電防止剤、耐熱安定剤、発泡剤、発泡核剤、酸化防止剤、界面活性剤、光重合開始剤、摩耗防止剤、表面改質剤、有機・無機系の各種顔料、銅害防止剤、気泡防止剤密着付与剤、潤滑剤、加工助剤、着色剤、リン系安定剤、潤滑剤、離型剤、摺動材、紫外線吸収剤、染顔料、補強材、ドリップ防止剤、充填材、硬化剤、紫外線硬化剤、難燃剤等の添加剤等を挙げることができる。液状塗料組成物(2)または粉体塗料組成物(2)中の他の成分の含有量としては、液状塗料組成物(2)または粉体塗料組成物(2)中の高分子化合物(2)および含フッ素高分子化合物(2)の質量に対して、好ましくは30重量%未満であり、より好ましくは10重量%未満であり、さらに好ましくは5重量%以下であり、下限は特に限定されないが、0重量%以上であってもよい。すなわち、液状塗料組成物(2)または粉体塗料組成物(2)は、他の成分を含有しなくてもよい。 The liquid coating composition (2) or powder coating composition (2) may contain other components as necessary. Other ingredients include crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, organic and inorganic various pigments, copper damage inhibitors, bubble preventers, adhesion promoters, lubricants, processing aids, colorants, phosphorus stabilizers, lubricants, mold release agents, sliding materials, ultraviolet absorbers, dyes and pigments, reinforcements. Examples include additives such as materials, anti-drip agents, fillers, curing agents, ultraviolet curing agents, and flame retardants. The content of other components in the liquid coating composition (2) or powder coating composition (2) includes the polymer compound (2) in the liquid coating composition (2) or powder coating composition (2). ) and the fluorine-containing polymer compound (2), preferably less than 30% by weight, more preferably less than 10% by weight, even more preferably 5% by weight or less, and the lower limit is not particularly limited. may be 0% by weight or more. That is, the liquid coating composition (2) or the powder coating composition (2) does not need to contain other components.
(第3の層)
 第3の層は、液状塗料組成物(3)または粉体塗料組成物(3)から形成される。
(Third layer)
The third layer is formed from a liquid coating composition (3) or a powder coating composition (3).
 液状塗料組成物(3)は、含フッ素高分子化合物(3-1)を含む。液状塗料組成物(3)は、高分子化合物として、含フッ素高分子化合物(3-1)のみを含むものであってよい。 The liquid coating composition (3) contains a fluorine-containing polymer compound (3-1). The liquid coating composition (3) may contain only the fluorine-containing polymer compound (3-1) as the polymer compound.
 液状塗料組成物(3)は、含フッ素高分子化合物(3-1)に加えて、溶媒を含有してもよい。溶媒としては、水、有機溶媒などが挙げられ、水が好ましい。有機溶媒としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、クレゾール、メチルイソブチルケトンなどが挙げられる。 The liquid coating composition (3) may contain a solvent in addition to the fluorine-containing polymer compound (3-1). Examples of the solvent include water and organic solvents, with water being preferred. Examples of organic solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylacetamide, N, Examples include N-dimethylformamide, cresol, and methyl isobutyl ketone.
 液状塗料組成物(3)の粘度は、所望の厚みを有する層を容易に形成できる観点から、好ましくは10~10000(cP)であり、より好ましくは50(cP)以上であり、さらに好ましくは100(cP)以上であり、より好ましくは1000(cP)以下であり、さらに好ましくは500(cP)以下である。液状塗料組成物(3)の粘度は、液状塗料組成物(3)中の含フッ素高分子化合物(3-1)の含有量を調整することにより、調整することができる。 The viscosity of the liquid coating composition (3) is preferably 10 to 10,000 (cP), more preferably 50 (cP) or more, and even more preferably It is 100 (cP) or more, more preferably 1000 (cP) or less, and still more preferably 500 (cP) or less. The viscosity of the liquid coating composition (3) can be adjusted by adjusting the content of the fluorine-containing polymer compound (3-1) in the liquid coating composition (3).
 液状塗料組成物(3)中の含フッ素高分子化合物(3-1)の含有量は、液状塗料組成物(3)の質量に対して、好ましくは1~90重量%であり、より好ましくは10重量%以上であり、より好ましくは80重量%以下である。 The content of the fluorine-containing polymer compound (3-1) in the liquid coating composition (3) is preferably 1 to 90% by weight, more preferably 1 to 90% by weight based on the mass of the liquid coating composition (3). It is 10% by weight or more, more preferably 80% by weight or less.
 粉体塗料組成物(3)は、含フッ素高分子化合物(3-2)を含む。粉体塗料組成物(3)中の含フッ素高分子化合物(3-2)は、通常、粉体である。粉体塗料組成物(3)は、高分子化合物として、含フッ素高分子化合物(3-2)のみを含むものであってよい。 The powder coating composition (3) contains a fluorine-containing polymer compound (3-2). The fluorine-containing polymer compound (3-2) in the powder coating composition (3) is usually a powder. The powder coating composition (3) may contain only the fluorine-containing polymer compound (3-2) as the polymer compound.
 粉体塗料組成物(3)の平均粒径は、所望の厚みを有する層を容易に形成できる観点から、好ましくは1~100(μm)であり、より好ましくは5μm以上であり、さらに好ましくは10μm以上であり、より好ましくは90μm以下であり、さらに好ましくは80μm以下である。 The average particle size of the powder coating composition (3) is preferably 1 to 100 (μm), more preferably 5 μm or more, and even more preferably It is 10 μm or more, more preferably 90 μm or less, and even more preferably 80 μm or less.
 液状塗料組成物(3)または粉体塗料組成物(3)は、必要に応じて他の成分を含んでもよい。他の成分としては、架橋剤、帯電防止剤、耐熱安定剤、発泡剤、発泡核剤、酸化防止剤、界面活性剤、光重合開始剤、摩耗防止剤、表面改質剤、有機・無機系の各種顔料、銅害防止剤、気泡防止剤密着付与剤、潤滑剤、加工助剤、着色剤、リン系安定剤、潤滑剤、離型剤、摺動材、紫外線吸収剤、染顔料、補強材、ドリップ防止剤、充填材、硬化剤、紫外線硬化剤、難燃剤等の添加剤等を挙げることができる。液状塗料組成物(3)または粉体塗料組成物(3)中の他の成分の含有量としては、液状塗料組成物(3)または粉体塗料組成物(3)中の含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)の質量に対して、好ましくは30重量%未満であり、より好ましくは10重量%未満であり、さらに好ましくは5重量%以下であり、下限は特に限定されないが、0重量%以上であってもよい。すなわち、液状塗料組成物(3)または粉体塗料組成物(3)は、他の成分を含有しなくてもよい。 The liquid coating composition (3) or powder coating composition (3) may contain other components as necessary. Other ingredients include crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, organic and inorganic various pigments, copper damage inhibitors, bubble preventers, adhesion promoters, lubricants, processing aids, colorants, phosphorus stabilizers, lubricants, mold release agents, sliding materials, ultraviolet absorbers, dyes and pigments, reinforcements. Examples include additives such as materials, anti-drip agents, fillers, curing agents, ultraviolet curing agents, and flame retardants. The content of other components in the liquid coating composition (3) or powder coating composition (3) includes the fluorine-containing polymer compound in the liquid coating composition (3) or powder coating composition (3). It is preferably less than 30% by weight, more preferably less than 10% by weight, and even more preferably 5% by weight or less, based on the mass of (3-1) or the fluorine-containing polymer compound (3-2). Although the lower limit is not particularly limited, it may be 0% by weight or more. That is, the liquid coating composition (3) or the powder coating composition (3) does not need to contain other components.
(高分子化合物)
 次に、被覆電線の被覆層に用いる高分子化合物について説明する。以下に説明する高分子化合物は、第1の層を形成する高分子化合物(1)および第2の層を形成する高分子化合物(2)として、好適に用いることができる。
(polymer compound)
Next, the polymer compound used for the coating layer of the covered electric wire will be explained. The polymer compounds described below can be suitably used as the polymer compound (1) forming the first layer and the polymer compound (2) forming the second layer.
 本開示において、「高分子化合物」は、アミド基およびイミド基のいずれか一方または両方を有しており、好適にはフッ素原子を有しない。高分子化合物は、アミド基(アミド結合)またはイミド基(イミド結合)を、高分子化合物の主鎖または側鎖に有することができる。 In the present disclosure, a "polymer compound" has one or both of an amide group and an imide group, and preferably does not have a fluorine atom. The polymer compound can have an amide group (amide bond) or an imide group (imide bond) in the main chain or side chain of the polymer compound.
 高分子化合物としては、平角電線基材との密着性または他の層との密着性の観点から、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよび熱可塑性ポリイミドからなる群より選択される少なくとも1種が好ましく、ポリアミドイミドおよびポリイミドからなる群より選択される少なくとも1種がより好ましい。また、高分子化合物として、2種以上の高分子化合物を組み合わせて用いることもできる。たとえば、高分子化合物として、ポリアミドイミドおよびポリイミドの組み合わせを用いることができる。 The polymer compound is preferably at least one selected from the group consisting of polyamideimide, polyetherimide, polyimide, and thermoplastic polyimide from the viewpoint of adhesion to the rectangular wire base material or adhesion to other layers. At least one selected from the group consisting of , polyamideimide, and polyimide is more preferred. Furthermore, as the polymer compound, two or more types of polymer compounds can be used in combination. For example, a combination of polyamideimide and polyimide can be used as the polymer compound.
 ポリアミドイミドは、分子構造中にアミド結合及びイミド結合を有する重合体からなる樹脂である。ポリアミドイミドとしては特に限定されず、例えば、アミド結合を分子内に有する芳香族ジアミンとピロメリット酸等の芳香族四価カルボン酸との反応;無水トリメリット酸等の芳香族三価カルボン酸と4,4-ジアミノフェニルエーテル等のジアミンやジフェニルメタンジイソシアネート等のジイソシアネートとの反応;芳香族イミド環を分子内に有する二塩基酸とジアミンとの反応等の各反応により得られる高分子量重合体からなる樹脂等が挙げられる。ポリアミドイミドとしては、主鎖中に芳香環を有する重合体からなるものが好ましい。 Polyamide-imide is a resin consisting of a polymer having amide bonds and imide bonds in its molecular structure. Polyamideimides are not particularly limited, and include, for example, reactions between aromatic diamines having an amide bond in the molecule and aromatic tetravalent carboxylic acids such as pyromellitic acid; and reactions between aromatic trivalent carboxylic acids such as trimellitic anhydride. Consists of high molecular weight polymers obtained by various reactions such as reaction with diamines such as 4,4-diaminophenyl ether and diisocyanates such as diphenylmethane diisocyanate; reaction with diamines and dibasic acids having an aromatic imide ring in the molecule. Examples include resin. The polyamideimide is preferably a polymer having an aromatic ring in the main chain.
 ポリイミドは、分子構造中にイミド結合を有する重合体からなる樹脂である。ポリイミドとしては特に限定されず、例えば、無水ピロメリット酸等の芳香族四価カルボン酸無水物の反応等により得られる高分子量重合体からなる樹脂等が挙げられる。ポリイミドとしては、主鎖中に芳香環を有する重合体からなるものが好ましい。 Polyimide is a resin made of a polymer that has imide bonds in its molecular structure. The polyimide is not particularly limited, and examples include resins made of high molecular weight polymers obtained by reaction of aromatic tetravalent carboxylic acid anhydrides such as pyromellitic anhydride. The polyimide is preferably a polymer having an aromatic ring in the main chain.
(含フッ素高分子化合物)
 次に、被覆電線の被覆層に用いる含フッ素高分子化合物について説明する。以下に説明する含フッ素高分子化合物は、第2の層を形成する含フッ素高分子化合物(2)、第3の層を形成する含フッ素高分子化合物(3-1)および第3の層を形成する含フッ素高分子化合物(3-2)として、好適に用いることができる。
(Fluorine-containing polymer compound)
Next, the fluorine-containing polymer compound used for the coating layer of the covered electric wire will be explained. The fluorine-containing polymer compounds described below include a fluorine-containing polymer compound (2) forming a second layer, a fluorine-containing polymer compound (3-1) forming a third layer, and a fluorine-containing polymer compound (3-1) forming a third layer. It can be suitably used as the fluorine-containing polymer compound (3-2) to be formed.
 含フッ素高分子化合物は、フッ素原子を有する高分子化合物である。含フッ素高分子化合物は、通常、主鎖を構成する炭素原子に結合した水素原子が部分的に、または、完全にフッ素原子で置き換えられている高分子化合物である。 A fluorine-containing polymer compound is a polymer compound having a fluorine atom. A fluorine-containing polymer compound is usually a polymer compound in which hydrogen atoms bonded to carbon atoms constituting the main chain are partially or completely replaced with fluorine atoms.
 含フッ素高分子化合物としては、一層低い比誘電率および一層高い部分放電開始電圧を示す被覆層が得られることから、パーフルオロ系高分子化合物が好ましい。本開示において、パーフルオロ系高分子化合物とは、高分子化合物を構成する全ての重合単位に対するパーフルオロモノマー単位の含有量が90モル%以上である高分子化合物である。 As the fluorine-containing polymer compound, a perfluorinated polymer compound is preferable because a coating layer exhibiting a lower dielectric constant and a higher partial discharge inception voltage can be obtained. In the present disclosure, a perfluoro-based polymer compound is a polymer compound in which the content of perfluoro monomer units is 90 mol% or more with respect to all polymerized units constituting the polymer compound.
 本開示において、パーフルオロモノマーとは、分子中に炭素原子-水素原子結合を含まないモノマーである。パーフルオロモノマーは、炭素原子及びフッ素原子の他、炭素原子に結合しているフッ素原子のいくつかが塩素原子で置換されたモノマーであってもよく、炭素原子の他、窒素原子、酸素原子、硫黄原子、燐原子、硼素原子又は珪素原子を有するものであってもよい。パーフルオロモノマーとしては、全ての水素原子がフッ素原子に置換されたモノマーであることが好ましい。 In the present disclosure, a perfluoromonomer is a monomer that does not contain a carbon atom-hydrogen bond in its molecule. In addition to carbon atoms and fluorine atoms, perfluoromonomers may also be monomers in which some of the fluorine atoms bonded to carbon atoms are replaced with chlorine atoms, and in addition to carbon atoms, nitrogen atoms, oxygen atoms, It may contain a sulfur atom, a phosphorus atom, a boron atom, or a silicon atom. The perfluoromonomer is preferably a monomer in which all hydrogen atoms are replaced with fluorine atoms.
 含フッ素高分子化合物の比誘電率は、一層低い比誘電率および一層高い部分放電開始電圧を示す被覆層が得られることから、好ましくは2.0~2.2であり、より好ましくは2.1以下である。含フッ素高分子化合物の比誘電率は、JIS-C-2138に準拠し、23℃±2℃、相対湿度50%、周波数1KHzにて測定することができる。 The dielectric constant of the fluorine-containing polymer compound is preferably 2.0 to 2.2, more preferably 2.0 to 2.2, since a coating layer exhibiting a lower dielectric constant and a higher partial discharge inception voltage can be obtained. 1 or less. The dielectric constant of the fluorine-containing polymer compound can be measured at 23° C.±2° C., relative humidity 50%, and frequency 1 KHz in accordance with JIS-C-2138.
 含フッ素高分子化合物としては、フッ素樹脂が好ましい。本開示においてフッ素樹脂とは、部分結晶性フルオロポリマーであり、フルオロプラスチックスである。フッ素樹脂は、融点を有し、熱可塑性を有するが、溶融加工性であっても、非溶融加工性であってもよい。 As the fluorine-containing polymer compound, a fluororesin is preferable. In the present disclosure, fluororesin refers to partially crystalline fluoropolymers and fluoroplastics. The fluororesin has a melting point and is thermoplastic, but may be melt processable or non-melt processable.
 フッ素樹脂としては、ポリテトラフルオロエチレン、テトラフルオロエチレン(TFE)/フルオロアルキルビニルエーテル(FAVE)共重合体、テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体、TFE/FAVE/HFP共重合体、TFE/エチレン共重合体〔ETFE〕、TFE/エチレン/HFP共重合体、エチレン/クロロトリフルオロエチレン(CTFE)共重合体〔ECTFE〕、ポリクロロトリフルオロエチレン〔PCTFE〕、CTFE/TFE共重合体、ポリビニリデンフルオライド〔PVdF〕、TFE/ビニリデンフルオライド(VdF)共重合体〔VT〕、ポリビニルフルオライド〔PVF〕、TFE/VdF/CTFE共重合体〔VTC〕、TFE/HFP/VdF共重合体などが挙げられる。 Examples of fluororesins include polytetrafluoroethylene, tetrafluoroethylene (TFE)/fluoroalkyl vinyl ether (FAVE) copolymer, tetrafluoroethylene (TFE)/hexafluoropropylene (HFP) copolymer, and TFE/FAVE/HFP copolymer. Polymer, TFE/ethylene copolymer [ETFE], TFE/ethylene/HFP copolymer, ethylene/chlorotrifluoroethylene (CTFE) copolymer [ECTFE], polychlorotrifluoroethylene [PCTFE], CTFE/TFE Copolymer, polyvinylidene fluoride [PVdF], TFE/vinylidene fluoride (VdF) copolymer [VT], polyvinyl fluoride [PVF], TFE/VdF/CTFE copolymer [VTC], TFE/HFP/ Examples include VdF copolymer.
 フッ素樹脂としては、なかでも、ポリテトラフルオロエチレン、TFE/FAVE共重合体、TFE/HFP共重合体、および、TFE/FAVE/HFP共重合体からなる群より選択される少なくとも1種が好ましい。 As the fluororesin, at least one selected from the group consisting of polytetrafluoroethylene, TFE/FAVE copolymer, TFE/HFP copolymer, and TFE/FAVE/HFP copolymer is particularly preferred.
 ポリテトラフルオロエチレン(PTFE)は、非溶融加工性のPTFEであってもよいし、溶融加工性のPTFEであってもよいが、非溶融加工性のPTFEが好ましい。 Polytetrafluoroethylene (PTFE) may be non-melt processable PTFE or melt processable PTFE, but non-melt processable PTFE is preferable.
 非溶融加工性のPTFEは、通常、延伸性、フィブリル化特性および非溶融二次加工性を有する。非溶融二次加工性とは、ASTM D 1238及びD 2116に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質、すなわち溶融温度領域でも容易に流動しない性質を意味する。 Non-melt processable PTFE typically has stretchability, fibrillation properties, and non-melt fabrication properties. Non-melt fabrication property refers to the property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point, that is, the property that it does not flow easily even in the melting temperature range, in accordance with ASTM D 1238 and D 2116.
 PTFEは、テトラフルオロエチレン(TFE)単独重合体であってもよいし、TFE単位および変性モノマー単位を含有する変性PTFEであってもよい。本開示において、「変性PTFE」とは、得られる共重合体に溶融加工性を付与しない程度の少量の共単量体をTFEと共重合してなるものを意味する。共単量体としては特に限定されず、たとえば、ヘキサフルオロプロピレン〔HFP〕、クロロトリフルオロエチレン〔CTFE〕、パーフルオロ(アルキルビニルエーテル)〔PAVE〕等が挙げられる。共単量体が変性PTFEに付加されている割合は、その種類によって異なるが、たとえば、TFEと少量の共単量体との合計質量に対して、0.001~1質量%であることが好ましい。本開示において、PTFEを構成する各単量体単位の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。 PTFE may be a tetrafluoroethylene (TFE) homopolymer or may be a modified PTFE containing a TFE unit and a modified monomer unit. In the present disclosure, "modified PTFE" means a product obtained by copolymerizing TFE with a small amount of comonomer that does not impart melt processability to the resulting copolymer. The comonomer is not particularly limited, and examples thereof include hexafluoropropylene [HFP], chlorotrifluoroethylene [CTFE], perfluoro(alkyl vinyl ether) [PAVE], and the like. The proportion of the comonomer added to the modified PTFE varies depending on its type, but for example, it may be 0.001 to 1% by mass based on the total mass of TFE and a small amount of comonomer. preferable. In the present disclosure, the content of each monomer unit constituting PTFE can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
 PTFEは、標準比重(SSG)が2.280以下であることが好ましく、2.210以下であることがより好ましく、2.200以下であることがさらに好ましく、2.130以上であることが好ましい。SSGは、ASTM D 4895-89に準拠して成形されたサンプルを用い、ASTM D 792に準拠した水置換法により測定することができる。 The standard specific gravity (SSG) of PTFE is preferably 2.280 or less, more preferably 2.210 or less, even more preferably 2.200 or less, and preferably 2.130 or more. . SSG can be measured by a water displacement method according to ASTM D 792 using a sample molded according to ASTM D 4895-89.
 PTFEは、ピーク温度が333~347℃の範囲に存在することが好ましい。より好ましくは、335℃以上であり、また、345℃以下である。ピーク温度は、300℃以上の温度に加熱した履歴がないPTFEについて示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。 It is preferable that PTFE has a peak temperature in the range of 333 to 347°C. More preferably, the temperature is 335°C or higher and 345°C or lower. The peak temperature is the temperature corresponding to the maximum value in the heat of fusion curve when heated at a rate of 10 °C/min using a differential scanning calorimeter [DSC] for PTFE that has no history of being heated to a temperature of 300 °C or higher. be.
 含フッ素高分子化合物として、溶融加工性の含フッ素高分子化合物を用いることもできる。特に、所望の厚みを有する層を容易に形成できる観点から、第3の層を形成するための粉体塗料組成物(3)に含まれる含フッ素高分子化合物(3-2)として、溶融加工性の含フッ素高分子化合物を用いることが好ましい。また、所望の厚みを有する層を容易に形成できる観点から、第2の層を形成するための粉体塗料組成物(2)に含まれる含フッ素高分子化合物(2)として、溶融加工性の含フッ素高分子化合物を用いることが好ましい。 As the fluorine-containing polymer compound, a melt-processable fluorine-containing polymer compound can also be used. In particular, from the viewpoint of easily forming a layer having a desired thickness, the fluorine-containing polymer compound (3-2) contained in the powder coating composition (3) for forming the third layer can be melt-processed. It is preferable to use a fluorine-containing high molecular compound having a high molecular weight. In addition, from the viewpoint of easily forming a layer having a desired thickness, a melt-processable fluorine-containing polymer compound (2) contained in the powder coating composition (2) for forming the second layer is used. It is preferable to use a fluorine-containing polymer compound.
 本開示において、溶融加工性とは、押出機および射出成形機などの従来の加工機器を用いて、ポリマーを溶融して加工することが可能であることを意味する。従って、溶融加工性の含フッ素高分子化合物は、メルトフローレートが0.01~500g/10分であることが通常である。 In this disclosure, melt processability means that the polymer can be melted and processed using conventional processing equipment such as extruders and injection molding machines. Therefore, melt processable fluorine-containing polymer compounds usually have a melt flow rate of 0.01 to 500 g/10 minutes.
 含フッ素高分子化合物のメルトフローレートは、好ましくは0.1~100g/10分であり、より好ましくは80g/10分以下であり、さらに好ましくは70g/10分以下であり、好ましくは5g/10分以上であり、より好ましくは10g/10分以上である。 The melt flow rate of the fluorine-containing polymer compound is preferably 0.1 to 100 g/10 minutes, more preferably 80 g/10 minutes or less, even more preferably 70 g/10 minutes or less, and preferably 5 g/10 minutes. It is 10 minutes or more, more preferably 10 g/10 minutes or more.
 含フッ素高分子化合物のメルトフローレートは、ASTM D1238に従って、メルトインデクサー(安田精機製作所社製)を用いて、372℃、5kg荷重下で内径2.1mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。 The melt flow rate of the fluorine-containing polymer compound is calculated per 10 minutes from a nozzle with an inner diameter of 2.1 mm and a length of 8 mm at 372°C and under a load of 5 kg using a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) according to ASTM D1238. This is the value obtained as the mass of polymer flowing out (g/10 minutes).
 含フッ素高分子化合物の融点は、好ましくは200~322℃であり、より好ましくは230℃以上であり、さらに好ましくは250℃以上であり、より好ましくは320℃以下である。 The melting point of the fluorine-containing polymer compound is preferably 200 to 322°C, more preferably 230°C or higher, even more preferably 250°C or higher, and even more preferably 320°C or lower.
 融点は、示差走査熱量計〔DSC〕を用いて測定できる。 The melting point can be measured using a differential scanning calorimeter (DSC).
 溶融加工性の含フッ素高分子化合物としては、溶融加工性のフッ素樹脂が好ましい。溶融加工可能なフッ素樹脂としては、テトラフルオロエチレン(TFE)/フルオロアルキルビニルエーテル(FAVE)共重合体、テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体、TFE/FAVE/HFP共重合体、TFE/エチレン共重合体〔ETFE〕、TFE/エチレン/HFP共重合体、エチレン/クロロトリフルオロエチレン(CTFE)共重合体〔ECTFE〕、ポリクロロトリフルオロエチレン〔PCTFE〕、CTFE/TFE共重合体、ポリビニリデンフルオライド〔PVdF〕、TFE/ビニリデンフルオライド(VdF)共重合体〔VT〕、ポリビニルフルオライド〔PVF〕、TFE/VdF/CTFE共重合体〔VTC〕、TFE/HFP/VdF共重合体などが挙げられる。 As the melt-processable fluorine-containing polymer compound, a melt-processable fluororesin is preferable. Examples of melt-processable fluororesins include tetrafluoroethylene (TFE)/fluoroalkyl vinyl ether (FAVE) copolymer, tetrafluoroethylene (TFE)/hexafluoropropylene (HFP) copolymer, and TFE/FAVE/HFP copolymer. combination, TFE/ethylene copolymer [ETFE], TFE/ethylene/HFP copolymer, ethylene/chlorotrifluoroethylene (CTFE) copolymer [ECTFE], polychlorotrifluoroethylene [PCTFE], CTFE/TFE copolymer Polymer, polyvinylidene fluoride [PVdF], TFE/vinylidene fluoride (VdF) copolymer [VT], polyvinyl fluoride [PVF], TFE/VdF/CTFE copolymer [VTC], TFE/HFP/VdF Examples include copolymers.
 溶融加工可能なフッ素樹脂としては、なかでも、TFE/FAVE共重合体、TFE/HFP共重合体、および、TFE/FAVE/HFP共重合体からなる群より選択される少なくとも1種が好ましい。 As the melt-processable fluororesin, at least one selected from the group consisting of TFE/FAVE copolymer, TFE/HFP copolymer, and TFE/FAVE/HFP copolymer is particularly preferred.
 TFE/FAVE共重合体は、テトラフルオロエチレン(TFE)単位およびフルオロアルキルビニルエーテル(FAVE)単位を含有する共重合体である。 A TFE/FAVE copolymer is a copolymer containing tetrafluoroethylene (TFE) units and fluoroalkyl vinyl ether (FAVE) units.
 FAVE単位を構成するFAVEとしては、一般式(1):
CF=CFO(CFCFYO)-(CFCFCFO)-Rf  (1)
(式中、YはFまたはCFを表し、Rfは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)で表される単量体、および、一般式(2):
CFX=CXOCFOR   (2)
(式中、Xは、同一または異なり、H、FまたはCFを表し、Rは、直鎖または分岐した、H、Cl、BrおよびIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、BrおよびIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5または6の環状フルオロアルキル基を表す。)で表される単量体からなる群より選択される少なくとも1種を挙げることができる。
The FAVE that constitutes the FAVE unit has the general formula (1):
CF 2 =CFO(CF 2 CFY 1 O) p - (CF 2 CF 2 CF 2 O) q - Rf (1)
(In the formula, Y 1 represents F or CF 3 , Rf represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5, and q represents an integer of 0 to 5.) A monomer represented by and general formula (2):
CFX=CXOCF 2 OR 1 (2)
(wherein, X is the same or different and represents H, F or CF3 , and R1 represents at least one linear or branched atom selected from the group consisting of H, Cl, Br and I. A fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 atoms, or 1 to 2 atoms of at least one selected from the group consisting of H, Cl, Br and I At least one type selected from the group consisting of monomers represented by (representing a cyclic fluoroalkyl group having 5 or 6 carbon atoms) can be mentioned.
 FAVEとしては、なかでも、一般式(1)で表される単量体が好ましく、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)(PEVE)およびパーフルオロ(プロピルビニルエーテル)(PPVE)からなる群より選択される少なくとも1種がより好ましく、PEVEおよびPPVEからなる群より選択される少なくとも1種がさらに好ましく、PPVEが特に好ましい。 Among these, FAVE is preferably a monomer represented by the general formula (1), consisting of perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether) (PEVE), and perfluoro(propyl vinyl ether) (PPVE). At least one selected from the group consisting of PEVE and PPVE is more preferable, at least one selected from the group consisting of PEVE and PPVE is even more preferable, and PPVE is particularly preferable.
 TFE/FAVE共重合体のFAVE単位の含有量は、全モノマー単位に対して、好ましくは1.0~30.0モル%であり、より好ましくは1.2モル%以上であり、さらに好ましくは1.4モル%以上であり、尚さらに好ましくは1.6モル%以上であり、特に好ましくは1.8モル%以上であり、より好ましくは3.5モル%以下であり、さらに好ましくは3.2モル%以下であり、尚さらに好ましくは2.9モル%以下であり、特に好ましくは2.6モル%以下である。 The content of FAVE units in the TFE/FAVE copolymer is preferably 1.0 to 30.0 mol%, more preferably 1.2 mol% or more, and even more preferably 1.4 mol% or more, still more preferably 1.6 mol% or more, particularly preferably 1.8 mol% or more, more preferably 3.5 mol% or less, even more preferably 3. .2 mol% or less, still more preferably 2.9 mol% or less, particularly preferably 2.6 mol% or less.
 TFE/FAVE共重合体のTFE単位の含有量は、全モノマー単位に対して、好ましくは99.0~70.0モル%であり、より好ましくは96.5モル%以上であり、さらに好ましくは96.8モル%以上であり、尚さらに好ましくは97.1モル%以上であり、特に好ましくは97.4モル%以上であり、より好ましくは98.8モル%以下であり、さらに好ましくは98.6モル%以下であり、尚さらに好ましくは98.4モル%以下であり、特に好ましくは98.2モル%以下である。 The content of TFE units in the TFE/FAVE copolymer is preferably 99.0 to 70.0 mol%, more preferably 96.5 mol% or more, and even more preferably 96.8 mol% or more, still more preferably 97.1 mol% or more, particularly preferably 97.4 mol% or more, more preferably 98.8 mol% or less, even more preferably 98 mol% .6 mol% or less, still more preferably 98.4 mol% or less, particularly preferably 98.2 mol% or less.
 本開示において、共重合体中の各モノマー単位の含有量は、19F-NMR法により測定する。 In the present disclosure, the content of each monomer unit in the copolymer is measured by 19 F-NMR method.
 TFE/FAVE共重合体は、TFEおよびFAVEと共重合可能な単量体に由来する単量体単位を含有することもできる。この場合、TFEおよびFAVEと共重合可能な単量体の含有量は、TFE/FAVE共重合体の全モノマー単位に対して、好ましくは0~29.0モル%であり、より好ましくは0.1~5.0モル%であり、さらに好ましくは0.1~1.0モル%である。 The TFE/FAVE copolymer can also contain monomer units derived from monomers copolymerizable with TFE and FAVE. In this case, the content of the monomer copolymerizable with TFE and FAVE is preferably 0 to 29.0 mol%, more preferably 0.0 to 29.0 mol%, based on the total monomer units of the TFE/FAVE copolymer. The content is 1 to 5.0 mol%, more preferably 0.1 to 1.0 mol%.
 TFEおよびFAVEと共重合可能な単量体としては、HFP、CZ=CZ(CF(式中、Z、ZおよびZは、同一または異なって、HまたはFを表し、Zは、H、FまたはClを表し、nは2~10の整数を表す。)で表されるビニル単量体、および、CF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体、官能基を有する単量体等が挙げられる。なかでも、HFPが好ましい。 Monomers copolymerizable with TFE and FAVE include HFP, CZ 1 Z 2 =CZ 3 (CF 2 ) n Z 4 (wherein Z 1 , Z 2 and Z 3 are the same or different, H or F, Z 4 represents H, F or Cl, and n represents an integer from 2 to 10), and CF 2 =CF-OCH 2 -Rf 1 ( In the formula, Rf 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms. Among them, HFP is preferred.
 TFE/FAVE共重合体としては、TFE単位およびFAVE単位のみからなる共重合体、および、上記TFE/HFP/FAVE共重合体からなる群より選択される少なくとも1種が好ましく、TFE単位およびFAVE単位のみからなる共重合体がより好ましい。 The TFE/FAVE copolymer is preferably at least one selected from the group consisting of a copolymer consisting only of TFE units and FAVE units, and the above-mentioned TFE/HFP/FAVE copolymer. More preferred is a copolymer consisting only of the following.
 TFE/FAVE共重合体の融点は、好ましくは280~322℃であり、より好ましくは285℃以上であり、より好ましくは320℃以下であり、さらに好ましくは315℃以下である。融点は、示差走査熱量計〔DSC〕を用いて測定できる。 The melting point of the TFE/FAVE copolymer is preferably 280 to 322°C, more preferably 285°C or higher, more preferably 320°C or lower, and even more preferably 315°C or lower. The melting point can be measured using a differential scanning calorimeter (DSC).
 TFE/FAVE共重合体のガラス転移温度(Tg)は、好ましくは70~110℃であり、より好ましくは80℃以上であり、より好ましくは100℃以下である。ガラス転移温度は、動的粘弾性測定により測定できる。 The glass transition temperature (Tg) of the TFE/FAVE copolymer is preferably 70 to 110°C, more preferably 80°C or higher, and even more preferably 100°C or lower. Glass transition temperature can be measured by dynamic viscoelasticity measurement.
 TFE/HFP共重合体は、テトラフルオロエチレン(TFE)単位およびヘキサフルオロプロピレン(HFP)単位を含有する共重合体である。 A TFE/HFP copolymer is a copolymer containing tetrafluoroethylene (TFE) units and hexafluoropropylene (HFP) units.
 TFE/HFP共重合体のHFP単位の含有量は、全モノマー単位に対して、好ましくは0.1~30.0モル%であり、より好ましくは0.7モル%以上であり、さらに好ましくは1.4モル%以上であり、より好ましくは10.0モル%以下である。 The content of HFP units in the TFE/HFP copolymer is preferably 0.1 to 30.0 mol%, more preferably 0.7 mol% or more, and even more preferably It is 1.4 mol% or more, and more preferably 10.0 mol% or less.
 TFE/HFP共重合体のTFE単位の含有量は、全モノマー単位に対して、好ましくは70.0~99.9モル%であり、より好ましくは90.0モル%以上であり、より好ましくは99.3モル%以下であり、さらに好ましくは98.6モル%である。 The content of TFE units in the TFE/HFP copolymer is preferably 70.0 to 99.9 mol%, more preferably 90.0 mol% or more, and more preferably It is 99.3 mol% or less, more preferably 98.6 mol%.
 TFE/HFP共重合体は、TFEおよびHFPと共重合可能な単量体に由来する単量体単位を含有することもできる。この場合、TFEおよびHFPと共重合可能な単量体の含有量は、TFE/HFP共重合体の全モノマー単位に対して、好ましくは0~29.9モル%であり、より好ましくは0.1~5.0モル%であり、さらに好ましくは0.1~1.0モル%である。 The TFE/HFP copolymer can also contain monomer units derived from monomers copolymerizable with TFE and HFP. In this case, the content of the monomer copolymerizable with TFE and HFP is preferably 0 to 29.9 mol %, more preferably 0.9 mol %, based on the total monomer units of the TFE/HFP copolymer. The content is 1 to 5.0 mol%, more preferably 0.1 to 1.0 mol%.
 TFEおよびHFPと共重合可能な単量体としては、FAVE、CZ=CZ(CF(式中、Z、ZおよびZは、同一または異なって、HまたはFを表し、Zは、H、FまたはClを表し、nは2~10の整数を表す。)で表されるビニル単量体、および、CF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体、官能基を有する単量体等が挙げられる。なかでも、FAVEが好ましい。 Monomers copolymerizable with TFE and HFP include FAVE, CZ 1 Z 2 =CZ 3 (CF 2 ) n Z 4 (wherein Z 1 , Z 2 and Z 3 are the same or different, H or F, Z 4 represents H, F or Cl, and n represents an integer from 2 to 10), and CF 2 =CF-OCH 2 -Rf 1 ( In the formula, Rf 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms. Among them, FAVE is preferred.
 TFE/HFP共重合体の融点は、好ましくは200~322℃であり、より好ましくは210℃以上であり、さらに好ましくは220℃以上であり、特に好ましくは240℃以上であり、より好ましくは320℃以下であり、さらに好ましくは300℃未満であり、特に好ましくは280℃以下である。 The melting point of the TFE/HFP copolymer is preferably 200 to 322°C, more preferably 210°C or higher, even more preferably 220°C or higher, particularly preferably 240°C or higher, and more preferably 320°C or higher. ℃ or less, more preferably less than 300°C, particularly preferably 280°C or less.
 TFE/HFP共重合体のガラス転移温度(Tg)は、好ましくは60~110℃であり、より好ましくは65℃以上であり、より好ましくは100℃以下である。 The glass transition temperature (Tg) of the TFE/HFP copolymer is preferably 60 to 110°C, more preferably 65°C or higher, and even more preferably 100°C or lower.
 含フッ素高分子化合物は、官能基を有していてもよい。 The fluorine-containing polymer compound may have a functional group.
 官能基としては、カルボニル基含有基、アミノ基、ヒドロキシ基、-CFH基、オレフィン基、エポキシ基およびイソシアネート基からなる群より選択される少なくとも1種が好ましい。 The functional group is preferably at least one selected from the group consisting of a carbonyl group-containing group, an amino group, a hydroxy group, a -CF 2 H group, an olefin group, an epoxy group, and an isocyanate group.
 カルボニル基含有基は、構造中にカルボニル基(-C(=O)-)を含有する基である。カルボニル基含有基としては、たとえば、
 カーボネート基[-O-C(=O)-OR(式中、Rは炭素原子数1~20のアルキル基またはエーテル結合性酸素原子を含む炭素原子数2~20のアルキル基である)]、
 アシル基[-C(=O)-R(式中、Rは炭素原子数1~20のアルキル基またはエーテル結合性酸素原子を含む炭素原子数2~20のアルキル基である)]
 ハロホルミル基[-C(=O)X、Xはハロゲン原子]、
 ホルミル基[-C(=O)H]、
 式:-R-C(=O)-R(式中、Rは、炭素原子数1~20の2価の有機基であり、Rは、炭素原子数1~20の1価の有機基である)で示される基、
 式:-O-C(=O)-R(式中、Rは、炭素原子数1~20のアルキル基またはエーテル結合性酸素原子を含む炭素原子数2~20のアルキル基である)で示される基、
 カルボキシル基[-C(=O)OH]、
 アルコキシカルボニル基[-C(=O)OR(式中、Rは、炭素原子数1~20の1価の有機基である)]、
 カルバモイル基[-C(=O)NR(式中、RおよびRは、同じであっても異なっていてもよく、水素原子または炭素原子数1~20の1価の有機基である)]、
 酸無水物結合[-C(=O)-O-C(=O)-]、
などをあげることができる。
A carbonyl group-containing group is a group containing a carbonyl group (-C(=O)-) in its structure. Examples of carbonyl group-containing groups include:
Carbonate group [-O-C(=O)-OR 3 (wherein R 3 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 2 to 20 carbon atoms containing an ether-bonding oxygen atom) ],
Acyl group [-C(=O)-R 3 (wherein R 3 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 2 to 20 carbon atoms containing an ether-bonding oxygen atom)]
Haloformyl group [-C(=O)X 5 , X 5 is a halogen atom],
Formyl group [-C(=O)H],
Formula: -R 4 -C(=O)-R 5 (wherein, R 4 is a divalent organic group having 1 to 20 carbon atoms, and R 5 is a monovalent organic group having 1 to 20 carbon atoms. a group represented by ), which is an organic group of
Formula: -O-C(=O)-R 6 (wherein R 6 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 2 to 20 carbon atoms containing an ether-bonding oxygen atom) A group represented by
carboxyl group [-C(=O)OH],
Alkoxycarbonyl group [-C(=O)OR 7 (wherein R 7 is a monovalent organic group having 1 to 20 carbon atoms)],
Carbamoyl group [-C(=O)NR 8 R 9 (wherein R 8 and R 9 may be the same or different, and are a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms) )],
Acid anhydride bond [-C(=O)-OC(=O)-],
etc. can be given.
 Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などがあげられる。上記Rの具体例としては、メチレン基、-CF-基、-C-基などがあげられ、Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などがあげられる。Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などがあげられる。また、RおよびRの具体例としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、フェニル基などがあげられる。 Specific examples of R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and the like. Specific examples of the above R 4 include a methylene group, -CF 2 - group, -C 6 H 4 - group, etc., and specific examples of R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, Examples include butyl group. Specific examples of R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and the like. Further, specific examples of R 8 and R 9 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a phenyl group, and the like.
 ヒドロキシ基は、-OHで示される基または-OHで示される基を含む基である。本開示において、カルボキシル基を構成する-OHは、ヒドロキシ基に含まない。ヒドロキシ基としては、-OH、メチロール基、エチロール基などが挙げられる。 The hydroxy group is a group represented by -OH or a group containing a group represented by -OH. In the present disclosure, -OH constituting a carboxyl group is not included in a hydroxy group. Examples of the hydroxy group include -OH, methylol group, and ethylol group.
 オレフィン基(Olefinic group)とは、炭素-炭素二重結合を有する基である。オレフィン基としては、下記式:
 -CR10=CR1112
(式中、R10、R11およびR12は、同じであっても異なっていてもよく、水素原子、フッ素原子または炭素原子数1~20の1価の有機基である。)で表される官能基が挙げられ、-CF=CF、-CH=CF、-CF=CHF、-CF=CHおよび-CH=CHからなる群より選択される少なくとも1種が好ましい。
An olefinic group is a group having a carbon-carbon double bond. As an olefin group, the following formula:
-CR 10 =CR 11 R 12
(In the formula, R 10 , R 11 and R 12 may be the same or different and are a hydrogen atom, a fluorine atom, or a monovalent organic group having 1 to 20 carbon atoms.) At least one functional group selected from the group consisting of -CF=CF 2 , -CH=CF 2 , -CF=CHF, -CF=CH 2 and -CH=CH 2 is preferred.
 イソシアネート基は、-N=C=Oで示される基である。 The isocyanate group is a group represented by -N=C=O.
 また、官能基として、-CH基、-CFH基などの非フッ素化アルキル基または部分フッ素化アルキル基を挙げることもできる。 Furthermore, examples of the functional group include non-fluorinated alkyl groups or partially fluorinated alkyl groups such as -CH 3 group and -CFH 2 group.
 含フッ素高分子化合物の官能基数は、炭素原子10個あたり、5~2000個であることが好ましい。官能基の個数は、炭素原子10個あたり、より好ましくは50個以上であり、さらに好ましくは100個以上であり、特に好ましくは200個以上であり、より好ましくは1000個以下であり、さらに好ましくは800個以下であり、特に好ましくは700個以下であり、最も好ましくは500個以下である。 The number of functional groups in the fluorine-containing polymer compound is preferably 5 to 2000 per 10 6 carbon atoms. The number of functional groups per 10 6 carbon atoms is more preferably 50 or more, still more preferably 100 or more, particularly preferably 200 or more, more preferably 1000 or less, and The number is preferably 800 or less, particularly preferably 700 or less, and most preferably 500 or less.
 また、含フッ素高分子化合物の官能基数は、電気特性に優れる被覆層を形成できることから、炭素原子10個あたり5個未満であってよく、0~4個であってもよい。特に、含フッ素高分子化合物が溶融加工性を有する場合、上記の数値範囲内の官能基数を有することが好ましい。 Further, the number of functional groups of the fluorine-containing polymer compound may be less than 5 per 10 6 carbon atoms, and may be 0 to 4, since a coating layer with excellent electrical properties can be formed. In particular, when the fluorine-containing polymer compound has melt processability, it is preferable to have the number of functional groups within the above numerical range.
 上記官能基は、含フッ素高分子化合物の主鎖末端または側鎖末端に存在する官能基、および、主鎖中または側鎖中に存在する官能基であり、好適には主鎖末端に存在する。上記官能基としては、-CF=CF、-CFH、-COF、-COOH、-COOCH、-CONH、-OH、-CHOHなどが挙げられ、-CFH、-COF、-COOH、-COOCHおよび-CHOHからなる群より選択される少なくとも1種が好ましい。-COOHには、2つの-COOHが結合することにより形成されるジカルボン酸無水物基(-CO-O-CO-)が含まれる。 The above-mentioned functional group is a functional group present at the main chain end or side chain end of the fluorine-containing polymer compound, and a functional group present in the main chain or side chain, preferably at the main chain end. . Examples of the above-mentioned functional groups include -CF=CF 2 , -CF 2 H, -COF, -COOH, -COOCH 3 , -CONH 2 , -OH, -CH 2 OH, etc., and -CF 2 H, -COF , -COOH, -COOCH 3 and -CH 2 OH is preferred. -COOH includes a dicarboxylic acid anhydride group (-CO-O-CO-) formed by bonding two -COOHs.
 上記官能基の種類の同定および官能基数の測定には、赤外分光分析法を用いることができる。 Infrared spectroscopy can be used to identify the type of functional group and measure the number of functional groups.
 官能基数については、具体的には、以下の方法で測定する。まず、共重合体を330~340℃にて30分間溶融し、圧縮成形して、厚さ0.20~0.25mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、共重合体の赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って、共重合体における炭素原子1×10個あたりの官能基数Nを算出する。
   N=I×K/t  (A)
    I:吸光度
    K:補正係数
    t:フィルムの厚さ(mm)
Specifically, the number of functional groups is measured by the following method. First, the copolymer is melted at 330 to 340° C. for 30 minutes and compression molded to produce a film with a thickness of 0.20 to 0.25 mm. This film is analyzed by Fourier transform infrared spectroscopy to obtain an infrared absorption spectrum of the copolymer and a difference spectrum from a fully fluorinated base spectrum free of functional groups. From the absorption peak of a specific functional group appearing in this difference spectrum, the number N of functional groups per 1×10 6 carbon atoms in the copolymer is calculated according to the following formula (A).
N=I×K/t (A)
I: Absorbance K: Correction coefficient t: Film thickness (mm)
 参考までに、本開示における官能基について、吸収周波数、モル吸光係数および補正係数を表1に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。 For reference, absorption frequencies, molar extinction coefficients, and correction coefficients for the functional groups in the present disclosure are shown in Table 1. Furthermore, the molar extinction coefficient was determined from FT-IR measurement data of a low-molecular model compound.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、-CHCFH、-CHCOF、-CHCOOH、-CHCOOCH、-CHCONHの吸収周波数は、それぞれ表中に示す、-CFH、-COF、-COOH freeと-COOH bonded、-COOCH、-CONHの吸収周波数から数十カイザー(cm-1)低くなる。
 従って、たとえば、-COFの官能基数とは、-CFCOFに起因する吸収周波数1883cm-1の吸収ピークから求めた官能基数と、-CHCOFに起因する吸収周波数1840cm-1の吸収ピークから求めた官能基数との合計である。
The absorption frequencies of -CH 2 CF 2 H, -CH 2 COF, -CH 2 COOH, -CH 2 COOCH 3 and -CH 2 CONH 2 are shown in the table, respectively. The absorption frequency is several tens of Kaiser (cm -1 ) lower than that of COOH free, -COOH bonded, -COOCH 3 , and -CONH 2 .
Therefore, for example, the number of functional groups in -COF is the number of functional groups determined from the absorption peak at absorption frequency 1883 cm -1 due to -CF 2 COF and the absorption peak at absorption frequency 1840 cm -1 due to -CH 2 COF. This is the sum of the calculated number of functional groups.
 上記官能基数は、-CF=CF、-CFH、-COF、-COOH、-COOCH、-CONHおよび-CHOHの合計数であってよく、-CFH、-COF、-COOH、-COOCHおよび-CHOHの合計数であってよい。 The number of functional groups mentioned above may be the total number of -CF=CF 2 , -CF 2 H, -COF, -COOH, -COOCH 3 , -CONH 2 and -CH 2 OH, -CF 2 H, -COF, It may be the total number of -COOH, -COOCH 3 and -CH 2 OH.
 上記官能基は、たとえば、含フッ素高分子化合物を製造する際に用いた連鎖移動剤や重合開始剤によって、含フッ素高分子化合物に導入される。たとえば、連鎖移動剤としてアルコールを使用したり、重合開始剤として-CHOHの構造を有する過酸化物を使用したりした場合、含フッ素高分子化合物の主鎖末端に-CHOHが導入される。また、官能基を有する単量体を重合することによって、上記官能基が含フッ素高分子化合物の側鎖末端に導入される。含フッ素高分子化合物は、官能基を有する単量体に由来する単位を含有してもよい。 The above-mentioned functional group is introduced into the fluorine-containing polymer compound by, for example, a chain transfer agent or a polymerization initiator used when producing the fluorine-containing polymer compound. For example, when alcohol is used as a chain transfer agent or a peroxide having a -CH 2 OH structure is used as a polymerization initiator, -CH 2 OH is introduced at the end of the main chain of the fluorine-containing polymer compound. be done. Further, by polymerizing a monomer having a functional group, the functional group is introduced into the end of the side chain of the fluorine-containing polymer compound. The fluorine-containing polymer compound may contain units derived from a monomer having a functional group.
 官能基を有する単量体としては、特開2006-152234号に記載のジカルボン酸無水物基((-CO-O-CO-)を有しかつ環内に重合性不飽和基を有する環状炭化水素モノマー、国際公開第2017/122743号に記載の官能基(f)を有する単量体などが挙げられる。官能基を有する単量体としては、なかでも、カルボキシ基を有する単量体(マレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸等);酸無水物基を有する単量体(無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、無水マレイン酸等)、水酸基またはエポキシ基を有する単量体(ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル等)等が挙げられる。 Examples of the monomer having a functional group include a dicarboxylic acid anhydride group ((-CO-O-CO-) and a cyclic carbonized monomer having a polymerizable unsaturated group in the ring) described in JP-A No. 2006-152234. Hydrogen monomers, monomers having a functional group (f) described in International Publication No. 2017/122743, etc. are mentioned. Examples of monomers having a functional group include monomers having a carboxy group (maleic, etc.). monomers having an acid anhydride group (itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, maleic anhydride, etc.); Examples include monomers having a hydroxyl group or an epoxy group (hydroxybutyl vinyl ether, glycidyl vinyl ether, etc.).
 含フッ素高分子化合物は、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、懸濁重合を行う等の従来公知の方法により製造することができる。 The fluorine-containing polymer compound can be produced by conventionally known methods such as, for example, appropriately mixing monomers serving as its constituent units and additives such as a polymerization initiator, and performing emulsion polymerization or suspension polymerization. .
(被覆電線の製造方法)
 本開示の被覆電線は、たとえば、
 液状塗料組成物(1)を、平角電線基材の外周に塗布することにより、第1の層を形成し、
 液状塗料組成物(2)または粉体塗料組成物(2)を、第1の層の外周に塗布することにより、第2の層を形成し、
 液状塗料組成物(3)または粉体塗料組成物(3)を、第2の層の外周に塗布することにより、第3の層を形成する
製造方法により製造することができる。
(Method for manufacturing coated wire)
The coated wire of the present disclosure is, for example,
Forming a first layer by applying the liquid coating composition (1) to the outer periphery of the rectangular electric wire base material,
Forming a second layer by applying a liquid coating composition (2) or a powder coating composition (2) to the outer periphery of the first layer,
The third layer can be manufactured by applying the liquid coating composition (3) or the powder coating composition (3) to the outer periphery of the second layer to form the third layer.
 液状塗料組成物の塗布することにより層を形成する方法としては特に限定されず、たとえば、スプレー塗装、ロール塗装、ドクターブレードによる塗装、ディップ(浸漬)塗装、含浸塗装などの方法が挙げられる。 The method of forming a layer by applying a liquid coating composition is not particularly limited, and examples include methods such as spray coating, roll coating, coating with a doctor blade, dip coating, and impregnation coating.
 液状塗料組成物を塗布したのち、得られた塗布膜を乾燥および/または焼成することにより、層を形成してもよい。乾燥は、従来公知の方法により行うことができ、60~200℃の温度で5~60分間行うことが好ましい。焼成は、従来公知の方法により行うことができるが、高分子化合物または含フッ素高分子化合物の融点もしくは硬化温度以上の温度で5~60分間行うことが好ましい。焼成は、塗料組成物を塗布する毎に行ってもよいし、塗料組成物を複数回塗布して複数の層(塗布膜)を形成させた後に行ってもよい。 A layer may be formed by applying the liquid coating composition and then drying and/or baking the resulting coating film. Drying can be carried out by a conventionally known method, and is preferably carried out at a temperature of 60 to 200°C for 5 to 60 minutes. The firing can be carried out by a conventionally known method, but it is preferably carried out for 5 to 60 minutes at a temperature equal to or higher than the melting point or curing temperature of the polymer compound or fluorine-containing polymer compound. The baking may be performed each time the coating composition is applied, or after the coating composition is applied multiple times to form a plurality of layers (coating films).
 粉体塗料組成物の塗布することにより層を形成する方法としては特に限定されず、たとえば、静電塗装、流動浸漬塗装などの方法が挙げられる。 The method of forming a layer by applying the powder coating composition is not particularly limited, and examples include methods such as electrostatic coating and fluidized dip coating.
 粉体塗料組成物を塗布したのち、得られた塗布膜を焼成することにより、層を形成してもよい。焼成は、従来公知の方法により行うことができるが、高分子化合物または含フッ素高分子化合物の融点もしくは硬化温度以上の温度で5~60分間行うことが好ましい。焼成は、塗料組成物を塗布する毎に行ってもよいし、塗料組成物を複数回塗布して複数の層(塗布膜)を形成させた後に行ってもよい。 The layer may be formed by applying the powder coating composition and then baking the resulting coating film. The firing can be carried out by a conventionally known method, but it is preferably carried out for 5 to 60 minutes at a temperature equal to or higher than the melting point or curing temperature of the polymer compound or fluorine-containing polymer compound. The baking may be performed each time the coating composition is applied, or after the coating composition is applied multiple times to form a plurality of layers (coating films).
 本開示の被覆電線は、たとえば、LAN用ケーブル、USBケーブル、Lightningケーブル、HDMIケーブル、QSFPケーブル、航空宇宙用電線、地中送電ケーブル、海底電力ケーブル、高圧ケーブル、超電導ケーブル、ラッピング電線、自動車用電線、ワイヤーハーネス・電装品、ロボット・FA用電線、OA機器用電線、情報機器用電線(光ファイバケーブル、LANケーブル、HDMIケーブル、ライトニングケーブル、オーディオケーブル等)、通信基地局用内部配線、大電流内部配線(インバーター、パワーコンディショナー、蓄電池システム等)、電子機器内部配線、小型電子機器・モバイル配線、可動部配線、電気機器内部配線、測定機器類内部配線、電力ケーブル(建設用、風力/太陽光発電用等)、制御・計装配線用ケーブル、モーター用ケーブル等に好適に使用できる。 The coated electric wire of the present disclosure is, for example, a LAN cable, a USB cable, a Lightning cable, an HDMI cable, a QSFP cable, an aerospace electric wire, an underground power transmission cable, a submarine power cable, a high-voltage cable, a superconducting cable, a wrapped electric wire, and an automobile. Electrical wires, wire harnesses and electrical components, electric wires for robots and FA, electric wires for OA equipment, electric wires for information equipment (optical fiber cables, LAN cables, HDMI cables, lightning cables, audio cables, etc.), internal wiring for communication base stations, large Current internal wiring (inverters, power conditioners, storage battery systems, etc.), electronic equipment internal wiring, small electronic equipment/mobile wiring, moving part wiring, electrical equipment internal wiring, measuring equipment internal wiring, power cables (for construction, wind/solar It can be suitably used for photovoltaic power generation, etc.), control/instrumentation wiring cables, motor cables, etc.
 本開示の被覆電線は、巻回されて、コイルとして使用することができる。本開示の被覆電線およびコイルは、モータ、発電機、インダクターなどの電気機器または電子機器に好適に用いることができる。また、本開示の被覆電線およびコイルは、車載用モータ、車載用発電機、車載用インダクターなどの車載用電気機器または車載用電子機器に好適に用いることができる。 The coated wire of the present disclosure can be wound and used as a coil. The coated wire and coil of the present disclosure can be suitably used in electrical equipment or electronic equipment such as motors, generators, and inductors. Further, the coated wire and coil of the present disclosure can be suitably used for on-vehicle electrical equipment or on-vehicle electronic equipment, such as on-vehicle motors, on-vehicle generators, and on-vehicle inductors.
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims.
<1> 本開示の第1の観点によれば、
 平角電線基材と、前記平角電線基材の外周に形成された被覆層とを含む被覆電線であって、
 前記被覆層が、
 アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(1)を含む液状塗料組成物(1)から形成される第1の層と、
 アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む液状塗料組成物(2)、または、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む粉体塗料組成物(2)から形成される第2の層と、
 含フッ素高分子化合物(3-1)を含む液状塗料組成物(3)、または、含フッ素高分子化合物(3-2)を含む粉体塗料組成物(3)から形成される第3の層と、
を含む被覆電線が提供される。
<2> 本開示の第2の観点によれば、
 高分子化合物(1)または高分子化合物(2)が、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよび熱可塑性ポリイミドからなる群より選択される少なくとも1種である第1の観点による被覆電線が提供される。
<3> 本開示の第3の観点によれば、
 含フッ素高分子化合物(2)、含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)が、パーフルオロ系高分子化合物である第1または第2の観点による被覆電線が提供される。
<4> 本開示の第4の観点によれば、
 含フッ素高分子化合物(2)、含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)の比誘電率が、2.0~2.2である第1~第3のいずれかの観点による被覆電線が提供される。
<5> 本開示の第5の観点によれば、
 含フッ素高分子化合物(3-2)の融点が、250~320℃である第1~第4のいずれかの観点による被覆電線が提供される。
<6> 本開示の第6の観点によれば、
 高分子化合物(2)と含フッ素高分子化合物(2)との体積比が、10/90~90/10である第1~第5のいずれかの観点による被覆電線が提供される。
<7> 本開示の第7の観点によれば、
 前記平角電線基材の形成材料が、銅、銅合金、アルミニウムおよびアルミニウム合金からなる群より選択される少なくとも1種である第1~第6のいずれかの観点による被覆電線が提供される。
<8> 本開示の第8の観点によれば、
 前記平角電線基材の面粗さSzが、0.2~12μmの範囲にある第1~第7のいずれかの観点による被覆電線が提供される。
<9> 本開示の第9の観点によれば、
 前記被覆層の厚みが、30~200μmであって、前記被覆層の比誘電率が、2.3~3.0である第1~第8のいずれかの観点による被覆電線が提供される。
<10> 本開示の第10の観点によれば、
 第2の層の厚みが、10~100μmである第1~第9のいずれかの観点による被覆電線が提供される。
<11> 本開示の第11の観点によれば、
 前記被覆層の部分放電開始電圧が、1000~2100(Vp)である第1~第10のいずれかの観点による被覆電線が提供される。
<12> 本開示の第12の観点によれば、
 含フッ素高分子化合物(2)、含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)が、炭素原子10個あたり5~1000個の官能基を有する第1~第11のいずれかの観点による被覆電線が提供される。
<13> 本開示の第13の観点によれば、
 含フッ素高分子化合物(3-2)が、炭素原子10個あたり0~4個の官能基を有する第1~第11のいずれかの観点による被覆電線が提供される。
<14> 本開示の第14の観点によれば、
 含フッ素高分子化合物(3-2)のメルトフローレート(MFR)が、0.1~100g/10分である第1~第13のいずれかの観点による被覆電線が提供される。
<15> 本開示の第15の観点によれば、
 液状塗料組成物(2)または液状塗料組成物(3)の粘度が、10~10000(cP)である第1~第14のいずれかの観点によるの被覆電線が提供される。
<16> 本開示の第16の観点によれば、
 粉体塗料組成物(2)または粉体塗料組成物(3)の平均粒径が、1~100(μm)である第1~第15のいずれかの観点による被覆電線が提供される。
<17> 本開示の第17の観点によれば、
 第1の層が、前記平角電線基材の外周に形成され、第2の層が、第1の層の外周に形成され、第3の層が、第2の層の外周に形成される第1~第16のいずれかの観点による被覆電線が提供される。
<18> 本開示の第18の観点によれば、
 第1~第17のいずれかの観点による被覆電線を製造するための被覆電線の製造方法であって、
 液状塗料組成物(1)を、前記平角電線基材の外周に塗布することにより、第1の層を形成し、
 液状塗料組成物(2)または粉体塗料組成物(2)を、第1の層の外周に塗布することにより、第2の層を形成し、
 液状塗料組成物(3)または粉体塗料組成物(3)を、第2の層の外周に塗布することにより、第3の層を形成する
製造方法が提供される。
<19>本開示の第19の観点によれば、
 第1~第17のいずれかの観点による被覆電線を備えるモータが提供される。
<1> According to the first aspect of the present disclosure,
A covered electric wire comprising a flat electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material,
The coating layer is
A first layer formed from a liquid coating composition (1) containing a polymer compound (1) having one or both of an amide group and an imide group;
A liquid coating composition (2) containing a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2), or either an amide group or an imide group A second layer formed from a powder coating composition (2) containing a polymer compound (2) having one or both of them, and a fluorine-containing polymer compound (2);
A third layer formed from a liquid coating composition (3) containing a fluorine-containing polymer compound (3-1) or a powder coating composition (3) containing a fluorine-containing polymer compound (3-2) and,
A covered electric wire is provided.
<2> According to the second aspect of the present disclosure,
Provided is a covered wire according to the first aspect, wherein the polymer compound (1) or the polymer compound (2) is at least one selected from the group consisting of polyamideimide, polyetherimide, polyimide, and thermoplastic polyimide. .
<3> According to the third aspect of the present disclosure,
The covered electric wire according to the first or second aspect, wherein the fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) is a perfluorinated polymer compound. is provided.
<4> According to the fourth aspect of the present disclosure,
The first to third fluorine-containing polymer compounds (2), fluorine-containing polymer compounds (3-1), or fluorine-containing polymer compounds (3-2) have a dielectric constant of 2.0 to 2.2. A covered electric wire according to any of the above aspects is provided.
<5> According to the fifth aspect of the present disclosure,
A covered electric wire according to any one of the first to fourth aspects is provided, wherein the fluorine-containing polymer compound (3-2) has a melting point of 250 to 320°C.
<6> According to the sixth aspect of the present disclosure,
A covered electric wire according to any one of the first to fifth aspects is provided, wherein the volume ratio of the polymer compound (2) to the fluorine-containing polymer compound (2) is from 10/90 to 90/10.
<7> According to the seventh aspect of the present disclosure,
There is provided a covered electric wire according to any one of the first to sixth aspects, wherein the material forming the rectangular electric wire base material is at least one selected from the group consisting of copper, copper alloy, aluminum, and aluminum alloy.
<8> According to the eighth aspect of the present disclosure,
There is provided a covered electric wire according to any one of the first to seventh aspects, wherein the flat electric wire base material has a surface roughness Sz in a range of 0.2 to 12 μm.
<9> According to the ninth aspect of the present disclosure,
There is provided a covered electric wire according to any one of the first to eighth aspects, wherein the thickness of the coating layer is 30 to 200 μm, and the dielectric constant of the coating layer is 2.3 to 3.0.
<10> According to the tenth aspect of the present disclosure,
There is provided a covered wire according to any one of the first to ninth aspects, wherein the second layer has a thickness of 10 to 100 μm.
<11> According to the eleventh aspect of the present disclosure,
There is provided a covered wire according to any one of the first to tenth aspects, wherein the partial discharge inception voltage of the coating layer is 1000 to 2100 (Vp).
<12> According to the twelfth aspect of the present disclosure,
The fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) has 5 to 1000 functional groups per 10 6 carbon atoms. A covered electric wire according to any of the eleventh aspects is provided.
<13> According to the thirteenth aspect of the present disclosure,
A covered electric wire according to any one of the first to eleventh aspects is provided, in which the fluorine-containing polymer compound (3-2) has 0 to 4 functional groups per 10 6 carbon atoms.
<14> According to the fourteenth aspect of the present disclosure,
There is provided a covered electric wire according to any one of the first to thirteenth aspects, wherein the fluorine-containing polymer compound (3-2) has a melt flow rate (MFR) of 0.1 to 100 g/10 minutes.
<15> According to the fifteenth aspect of the present disclosure,
A covered electric wire according to any one of the first to fourteenth aspects is provided, wherein the liquid coating composition (2) or the liquid coating composition (3) has a viscosity of 10 to 10,000 (cP).
<16> According to the sixteenth aspect of the present disclosure,
A covered electric wire according to any one of the first to fifteenth aspects is provided, wherein the powder coating composition (2) or the powder coating composition (3) has an average particle size of 1 to 100 (μm).
<17> According to the seventeenth aspect of the present disclosure,
A first layer is formed on the outer periphery of the flat wire base material, a second layer is formed on the outer periphery of the first layer, and a third layer is formed on the outer periphery of the second layer. A covered electric wire according to any one of the first to sixteenth aspects is provided.
<18> According to the eighteenth aspect of the present disclosure,
A method for manufacturing a covered electric wire according to any one of the first to seventeenth aspects, comprising:
Forming a first layer by applying a liquid coating composition (1) to the outer periphery of the rectangular electric wire base material,
Forming a second layer by applying a liquid coating composition (2) or a powder coating composition (2) to the outer periphery of the first layer,
A manufacturing method is provided in which the third layer is formed by applying the liquid coating composition (3) or the powder coating composition (3) to the outer periphery of the second layer.
<19> According to the nineteenth aspect of the present disclosure,
A motor including a covered electric wire according to any one of the first to seventeenth aspects is provided.
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。 Next, embodiments of the present disclosure will be described with examples, but the present disclosure is not limited to these examples.
 実施例の各数値は以下の方法により測定した。 Each numerical value in Examples was measured by the following method.
(面粗さSz)
 レーザー顕微鏡で8000μmの視野における面粗さSzを測定した。
(Surface roughness Sz)
Surface roughness Sz in a field of 8000 μm 2 was measured using a laser microscope.
(官能基数)
 含フッ素高分子化合物を330~340℃にて30分間溶融し、圧縮成形して、厚さ0.20~0.25mmのフィルムを作製した。このフィルムをフーリエ変換赤外分光分析装置〔FT-IR(商品名:1760X型、パーキンエルマー社製)により40回スキャンし、分析して赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得た。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って、含フッ素高分子化合物における炭素原子10個あたりの官能基数Nを算出した。
(Number of functional groups)
The fluorine-containing polymer compound was melted at 330 to 340° C. for 30 minutes and compression molded to produce a film with a thickness of 0.20 to 0.25 mm. This film was scanned 40 times using a Fourier transform infrared spectrometer [FT-IR (product name: Model 1760X, manufactured by PerkinElmer) and analyzed to obtain an infrared absorption spectrum. A difference spectrum was obtained from the base spectrum that does not exist. From the absorption peak of a specific functional group appearing in this difference spectrum, the number N of functional groups per 10 6 carbon atoms in the fluorine-containing polymer compound was calculated according to the following formula (A).
   N=I×K/t    (A)
    I:吸光度
    K:補正係数
    t:フィルムの厚さ(mm)
N=I×K/t (A)
I: Absorbance K: Correction coefficient t: Film thickness (mm)
 参考までに、本開示における官能基について、吸収周波数、モル吸光係数および補正係数を表2に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。 For reference, absorption frequencies, molar extinction coefficients, and correction coefficients for the functional groups in the present disclosure are shown in Table 2. Furthermore, the molar extinction coefficient was determined from FT-IR measurement data of a low-molecular model compound.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(粘度)
 JIS Z8803に記載のB型粘度計(東機産業社製BII型粘度計)を用いて、塗料組成物の粘度を測定した。測定には、回転ローター#4を用いた。測定温度は25℃とした。
(viscosity)
The viscosity of the coating composition was measured using a B-type viscometer (BII-type viscometer manufactured by Toki Sangyo Co., Ltd.) as described in JIS Z8803. Rotating rotor #4 was used for the measurement. The measurement temperature was 25°C.
(平均粒径)
 日機装社製レーザー回折・散乱式粒度分布測定装置により、粉体塗料組成物の平均粒径を測定した。体積基準による粒度分布における中央値の粒径(メディアン径)を平均粒径とした。
(Average particle size)
The average particle size of the powder coating composition was measured using a laser diffraction/scattering particle size distribution analyzer manufactured by Nikkiso Co., Ltd. The median particle size (median diameter) in the volume-based particle size distribution was defined as the average particle size.
(メルトフローレート(MFR))
 ASTM D1238に従って、メルトインデクサー(安田精機製作所社製)を用いて、372℃、5kg荷重下で、内径2.1mm、長さ8mmのノズルから10分間あたりに流出する共重合体の質量(g/10分)を求めた。
(Melt flow rate (MFR))
According to ASTM D1238, using a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the mass (g /10 minutes) was calculated.
(融点)
 示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めた。
(melting point)
It was determined as the temperature corresponding to the maximum value in the heat of fusion curve when the temperature was raised at a rate of 10° C./min using a differential scanning calorimeter (DSC).
(被覆厚み)
 マイクロメータにより測定した。
(Coating thickness)
Measured with a micrometer.
(比誘電率)
 被覆層全体の比誘電率(ε)は、HIOKI社製LCRハイテスタ3522-50を用いて、静電容量を得て下記の式より算出した。
   C=Ca+Cb
(式中、Cは被覆の単位長さ当たりの静電容量(pf/m)で、平坦部の静電容量Caと角曲部の静電容量Cbの合成である。)
   Ca=(ε/ε)×2×(L+L)/T
   Cb=(ε/ε)×2πε/Log{(r+T)/r}/r
(式中、εは真空の誘電率、Lは平角電線基材の平坦部の長辺の長さ、Lは平角電線基材の平坦部の短辺の長さTは電線全体の被覆厚み、rは導体コーナーの曲率半径である。)
(relative permittivity)
The relative dielectric constant (ε) of the entire coating layer was calculated from the following formula by obtaining the capacitance using LCR Hitester 3522-50 manufactured by HIOKI.
C=Ca+Cb
(In the formula, C is the capacitance per unit length of the coating (pf/m), which is the combination of the capacitance Ca of the flat part and the capacitance Cb of the corner part.)
Ca=(ε/ε 0 )×2×(L 1 +L 2 )/T
Cb=(ε/ε 0 )×2πε 0 /Log{(r+T)/r}/r
(In the formula, ε 0 is the permittivity of vacuum, L 1 is the length of the long side of the flat part of the flat wire base material, L 2 is the length of the short side of the flat part of the flat wire base material , and T is the entire wire is the coating thickness, and r is the radius of curvature of the conductor corner.)
(部分放電開始電圧(PDIV))
 2本の被覆電線(長さ140mm)の断面形状の長辺を含む面同士を、長さ100mmに亘って隙間が無いように重ね合わせた試験片を作成した。その後、試料端部10mmの被覆被膜を取り払い、部分放電測定器(総研電気社製DAC-PD-7)を用いて、相対湿度50%の雰囲気下で2本の被覆電線の平角電線基材間に50Hz正弦波の交流電圧を加えることで測定した。昇圧速度50V/sec、降圧速度50V/sec、電圧保持時間を0secとして、10pC以上の放電が発生した時点の電圧を部分放電開始電圧とした。
(Partial discharge inception voltage (PDIV))
A test piece was prepared by overlapping two coated electric wires (length 140 mm), including the long sides of their cross-sectional shapes, over a length of 100 mm with no gap. After that, the coating film of 10 mm from the end of the sample was removed, and using a partial discharge measuring device (DAC-PD-7 manufactured by Souken Electric Co., Ltd.), the distance between the rectangular wire base materials of the two covered wires was measured in an atmosphere of 50% relative humidity. The measurement was performed by applying a 50 Hz sine wave alternating current voltage. Assuming a voltage increase rate of 50 V/sec, a voltage decrease rate of 50 V/sec, and a voltage holding time of 0 sec, the voltage at which a discharge of 10 pC or more occurred was defined as the partial discharge inception voltage.
(曲げ試験)
 U字コイルを用い、基点から10mm地点の両側を長軸方向にR2曲げた時に、被覆層に浮きしわが発生しなかったものを○、発生したものを×とした。
(bending test)
When both sides of a point 10 mm from the base point were bent R2 in the major axis direction using a U-shaped coil, the coating layer was rated ◯ if no lifting wrinkles were generated, and the rated × was if wrinkles were generated.
(基材と被覆層間の密着強度)
 AGS-Jオートグラフ(50N)(島津製作所社製)を用いて測定した。長軸方向に50mm略平行に2本、その両端を短軸方向に被膜を直角に切り込み、端を10mm剥離させ、上部チャックに挟んだ。導体は長面方向が水平になるよう下部に固定した。引張方向に装置を動かしたとき、その縦方向の移動距離に応じて横方向に連動して動く治具を用い、剥離した被膜が常に長面方向の導体と垂直になるよう角度を調整した。30mm剥離させるまでに100mm/minで引っ張った時の引張応力を測定し、その最大点応力を密着強度とした。密着強度が0.1N/mm以上であれば、十分に密着していると判断して○とした。0.1N/mm未満を×とした。
(Adhesion strength between base material and coating layer)
Measurement was performed using AGS-J Autograph (50N) (manufactured by Shimadzu Corporation). Two pieces were cut approximately parallel to each other by 50 mm in the long axis direction, and the coating was cut at right angles in the short axis direction at both ends, and the ends were peeled off by 10 mm, and then sandwiched between upper chucks. The conductor was fixed at the bottom so that its long surface was horizontal. When the device was moved in the tensile direction, a jig was used that moved in the lateral direction according to the distance moved in the vertical direction, and the angle was adjusted so that the peeled film was always perpendicular to the long conductor. The tensile stress when the film was pulled at 100 mm/min until it was peeled off by 30 mm was measured, and the maximum point stress was taken as the adhesion strength. If the adhesion strength was 0.1 N/mm or more, it was determined that the adhesion was sufficient and was rated as ○. Less than 0.1 N/mm was marked as x.
実施例1
 面粗さSzが1.8μmである銅製の平角電線基材の外周に、液状塗料組成物Aを塗布、焼成して第1の層を形成した。さらにその外周に、液状塗料組成物Bを塗布、焼成して第2の層を形成した。さらにその外周に、液状塗料組成物Gを塗布、焼成して第3の層を形成した。液状塗料組成物Aを用いた第1の層の形成方法、液状塗料組成物Bを用いた第2の層の形成方法、および、液状塗料組成物Gを用いた第3の層の形成方法の詳細については後述する。得られた被覆電線について、各種性状を測定した。結果を表3に示す。
Example 1
Liquid coating composition A was applied to the outer periphery of a rectangular copper wire base material having a surface roughness Sz of 1.8 μm and baked to form a first layer. Furthermore, liquid coating composition B was applied to the outer periphery and baked to form a second layer. Furthermore, liquid coating composition G was applied to the outer periphery and baked to form a third layer. A method for forming a first layer using liquid coating composition A, a method for forming a second layer using liquid coating composition B, and a method for forming a third layer using liquid coating composition G. Details will be described later. Various properties of the obtained covered wire were measured. The results are shown in Table 3.
実施例2~8
 第1の層、第2の層および第3の層を形成するための組成物を、表3に記載のとおりに変更した以外は、実施例1と同様にして、被覆電線を得た。得られた被覆電線について、各種性状を測定した。結果を表3に示す。
Examples 2-8
A covered wire was obtained in the same manner as in Example 1, except that the compositions for forming the first layer, second layer, and third layer were changed as shown in Table 3. Various properties of the obtained covered wire were measured. The results are shown in Table 3.
比較例1
 第1の層を形成しない以外は、実施例3と同様にして、被覆電線を得た。得られた被覆電線について、各種性状を測定した。結果を表3に示す。
Comparative example 1
A covered wire was obtained in the same manner as in Example 3 except that the first layer was not formed. Various properties of the obtained covered wire were measured. The results are shown in Table 3.
液状塗料組成物Aを用いた第1の層の形成:
 ポリアミドイミド(PAI)が3-メトキシ-N,N-ジメチルプロパンアミドに溶解したPAIワニス(樹脂分:20重量%)を、液状塗料組成物Aとして用いた。この粘度は341cPであった。
 この液状塗料組成物Aをスプレー塗装し、100℃で15分間乾燥させた後に、230℃で20分間焼成することにより、10μm厚の被覆膜を得た。
Formation of the first layer using liquid coating composition A:
PAI varnish (resin content: 20% by weight) in which polyamideimide (PAI) was dissolved in 3-methoxy-N,N-dimethylpropanamide was used as liquid coating composition A. This viscosity was 341 cP.
This liquid coating composition A was spray coated, dried at 100°C for 15 minutes, and then baked at 230°C for 20 minutes to obtain a coating film with a thickness of 10 μm.
液状塗料組成物Bを用いた第2の層の形成:
 ポリアミドイミド(PAI)ワニス(樹脂分:34重量%)を水中に投入してPAIを析出させた。これをボールミルにより粉砕してPAIの水分散体(固形分20重量%)を得た。これにPTFEの水分散組成物(固形分:60重量%、官能基数:炭素原子10個あたり18個)と水を添加して、PAI/PTFE=25/75(体積%)の液状塗料組成物Bを得た。この粘度は138cPであった。
 この液状塗料組成物Bをスプレー塗装し、100℃で15分間乾燥させた後に、380℃で20分間焼成することにより、19μm厚の被覆膜を得た。
Formation of the second layer using liquid coating composition B:
Polyamideimide (PAI) varnish (resin content: 34% by weight) was poured into water to precipitate PAI. This was pulverized using a ball mill to obtain an aqueous dispersion of PAI (solid content: 20% by weight). A water dispersion composition of PTFE (solid content: 60% by weight, number of functional groups: 18 per 10 6 carbon atoms) and water were added to this to form a liquid coating composition with PAI/PTFE = 25/75 (volume %). I got item B. This viscosity was 138 cP.
This liquid coating composition B was spray coated, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 19 μm.
液状塗料組成物Cを用いた第2の層の形成:
 ポリイミド(PI)ワニス(樹脂分:29重量%)を水中に投入してPIを析出させた。これをボールミルにより粉砕してPIの水分散体(固形分:20重量%)を得た。これにPTFEの水分散組成物(固形分:60重量%、官能基数:炭素原子10個あたり18個)と水を添加して、PI/PTFE=30/70(体積%)の液状塗料組成物Cを得た。この粘度は145cPであった。
 この液状塗料組成物Cをスプレー塗装し、100℃で15分間乾燥させた後に、380℃で20分間焼成することにより、21μm厚の被覆膜を得た。
Formation of the second layer using liquid coating composition C:
Polyimide (PI) varnish (resin content: 29% by weight) was poured into water to precipitate PI. This was pulverized using a ball mill to obtain an aqueous dispersion of PI (solid content: 20% by weight). A water dispersion composition of PTFE (solid content: 60% by weight, number of functional groups: 18 per 10 6 carbon atoms) and water were added to this to form a liquid coating composition with PI/PTFE = 30/70 (volume%). I got item C. This viscosity was 145 cP.
This liquid coating composition C was spray coated, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 21 μm.
液状塗料組成物Dを用いた第2の層の形成:
 ポリアミドイミド(PAI)ワニス(樹脂分:34重量%)にPFA粉末(TFE/PPVE共重合体、官能基数:炭素原子10個あたり220個、MFR:27g/10min、融点:301℃、平均粒径:24μm)と3-メトキシ-N,N-ジメチルプロパンアミドを添加して、PAI/PFA=25/75(体積%)の液状塗料組成物Dを得た。この粘度は367cPであった。
 この液状塗料組成物Dをスプレー塗装し、100℃で15分間乾燥させた後に、380℃で20分間焼成することにより、22μm厚の被覆膜を得た。
Formation of the second layer using liquid coating composition D:
PFA powder (TFE/PPVE copolymer, number of functional groups: 220 per 10 carbon atoms, MFR: 27 g/10 min, melting point: 301°C, average particle size) on polyamideimide (PAI) varnish (resin content: 34% by weight) diameter: 24 μm) and 3-methoxy-N,N-dimethylpropanamide to obtain a liquid coating composition D with PAI/PFA=25/75 (volume %). This viscosity was 367 cP.
This liquid coating composition D was spray-painted, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 22 μm.
粉体塗料組成物Eを用いた第2の層の形成:
 ポリアミドイミド(PAI)粉末(平均粒径20μm)とPFA粉末(TFE/PPVE共重合体、官能基数:炭素原子10個あたり220個、MFR:27g/10min、融点:301℃、平均粒径:24μm)を混合して、PAI/PFA=20/80(体積%)の粉体塗料組成物Eを得た。この平均粒径は23μmであった。
 この粉体塗料組成物Eを静電塗装し、380℃で20分間焼成することにより、20μm厚の被覆膜を得た。
Formation of the second layer using powder coating composition E:
Polyamideimide (PAI) powder (average particle size 20 μm) and PFA powder (TFE/PPVE copolymer, number of functional groups: 220 per 10 6 carbon atoms, MFR: 27 g/10 min, melting point: 301°C, average particle size: 24 μm) to obtain powder coating composition E with PAI/PFA=20/80 (volume %). The average particle size was 23 μm.
This powder coating composition E was applied electrostatically and baked at 380° C. for 20 minutes to obtain a coating film with a thickness of 20 μm.
粉体塗料組成物Fを用いた第2の層の形成:
 ポリアミドイミド(PAI)粉末(平均粒径20μm)とFEP粉末(TFE/HFP共重合体、官能基数:炭素原子10個あたり625個、MFR:38g/10min、融点:258℃、平均粒径:41μm)を混合して、PAI/FEP=20/80(体積%)の粉体塗料組成物Fを得た。この平均粒径は26μmであった。
 この粉体塗料組成物Fを静電塗装し、320℃で20分間焼成することにより、18μm厚の被覆膜を得た。
Formation of the second layer using powder coating composition F:
Polyamideimide (PAI) powder (average particle size 20 μm) and FEP powder (TFE/HFP copolymer, number of functional groups: 625 per 10 6 carbon atoms, MFR: 38 g/10 min, melting point: 258 ° C., average particle size: 41 μm) to obtain a powder coating composition F with PAI/FEP=20/80 (volume %). The average particle size was 26 μm.
This powder coating composition F was applied electrostatically and baked at 320° C. for 20 minutes to obtain a coating film with a thickness of 18 μm.
液状塗料組成物Gを用いた第3の層の形成:
 PTFEの水分散組成物(固形分:60重量%、官能基数:炭素原子10個あたり18個)に水を添加して、液状塗料組成物Gを得た。この粘度は292cPであった。
 この液状塗料組成物Gをスプレー塗装し、100℃で15分間乾燥させた後に、380℃で20分間焼成することにより、28μm厚の被覆膜を得た。
Formation of the third layer using liquid coating composition G:
Water was added to an aqueous dispersion composition of PTFE (solid content: 60% by weight, number of functional groups: 18 per 10 6 carbon atoms) to obtain a liquid coating composition G. This viscosity was 292 cP.
This liquid coating composition G was spray coated, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 28 μm.
液状塗料組成物Hを用いた第3の層の形成:
 PFA(TFE/PPVE共重合体)の水分散組成物(固形分:60重量%、官能基数:炭素原子10個あたり133個)に水を添加して、液状塗料組成物Hを得た。この粘度は224cPであった。
 この液状塗料組成物Hをスプレー塗装し、100℃で15分間乾燥させた後に、380℃で20分間焼成することにより、31μm厚の被覆膜を得た。
Formation of the third layer using liquid coating composition H:
Water was added to an aqueous dispersion composition of PFA (TFE/PPVE copolymer) (solid content: 60% by weight, number of functional groups: 133 per 10 6 carbon atoms) to obtain a liquid coating composition H. This viscosity was 224 cP.
This liquid coating composition H was spray coated, dried at 100°C for 15 minutes, and then baked at 380°C for 20 minutes to obtain a coating film with a thickness of 31 μm.
粉体塗料組成物Iを用いた第3の層の形成:
 PFA粉末(TFE/PPVE共重合体、官能基数:炭素原子10個あたり220個、MFR:27g/10min、融点:301℃、平均粒径:24μm)を、粉体塗料組成物Iとして用いた。
 この粉体塗料組成物Iを静電塗装し、380℃で20分間焼成することにより、47μm厚の被覆膜を得た。
Formation of the third layer using powder coating composition I:
PFA powder (TFE/PPVE copolymer, number of functional groups: 220 per 106 carbon atoms, MFR: 27 g/10 min, melting point: 301°C, average particle size: 24 μm) was used as powder coating composition I. .
This powder coating composition I was applied electrostatically and baked at 380° C. for 20 minutes to obtain a coating film with a thickness of 47 μm.
粉体塗料組成物Jを用いた第3の層の形成:
 PFA粉末(TFE/PPVE共重合体、官能基数:炭素原子10個あたり2個、MFR:28g/10min、融点:301℃、平均粒径:23μm)を、粉体塗料組成物Jとして用いた。
 この粉体塗料組成物Jを静電塗装し、380℃で20分間焼成することにより、75μm厚の被覆膜を得た。
Formation of the third layer using powder coating composition J:
PFA powder (TFE/PPVE copolymer, number of functional groups: 2 per 10 6 carbon atoms, MFR: 28 g/10 min, melting point: 301°C, average particle size: 23 μm) was used as powder coating composition J. .
This powder coating composition J was applied electrostatically and baked at 380° C. for 20 minutes to obtain a coating film with a thickness of 75 μm.
粉体塗料組成物Kを用いた第3の層の形成:
 FEP粉末(TFE/HFP共重合体、官能基数:炭素原子10個あたり625個、MFR:38g/10min、融点:258℃、平均粒径:41μm)を、粉体塗料組成物Kとして用いた。
 この粉体塗料組成物Kを静電塗装し、320℃で20分間焼成することにより、52μm厚の被覆膜を得た。
Formation of the third layer using powder coating composition K:
FEP powder (TFE/HFP copolymer, number of functional groups: 625 per 106 carbon atoms, MFR: 38 g/10 min, melting point: 258°C, average particle size: 41 μm) was used as powder coating composition K. .
This powder coating composition K was applied electrostatically and baked at 320° C. for 20 minutes to obtain a coating film with a thickness of 52 μm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (19)

  1.  平角電線基材と、前記平角電線基材の外周に形成された被覆層とを含む被覆電線であって、
     前記被覆層が、
     アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(1)を含む液状塗料組成物(1)から形成される第1の層と、
     アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む液状塗料組成物(2)、または、アミド基およびイミド基のいずれか一方または両方を有する高分子化合物(2)、ならびに、含フッ素高分子化合物(2)を含む粉体塗料組成物(2)から形成される第2の層と、
     含フッ素高分子化合物(3-1)を含む液状塗料組成物(3)、または、含フッ素高分子化合物(3-2)を含む粉体塗料組成物(3)から形成される第3の層と、
    を含む被覆電線。
    A covered electric wire comprising a flat electric wire base material and a coating layer formed on the outer periphery of the flat electric wire base material,
    The coating layer is
    A first layer formed from a liquid coating composition (1) containing a polymer compound (1) having one or both of an amide group and an imide group;
    A liquid coating composition (2) containing a polymer compound (2) having one or both of an amide group and an imide group, and a fluorine-containing polymer compound (2), or either an amide group or an imide group A second layer formed from a powder coating composition (2) containing a polymer compound (2) having one or both of them, and a fluorine-containing polymer compound (2);
    A third layer formed from a liquid coating composition (3) containing a fluorine-containing polymer compound (3-1) or a powder coating composition (3) containing a fluorine-containing polymer compound (3-2) and,
    Insulated electrical wires.
  2.  高分子化合物(1)または高分子化合物(2)が、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよび熱可塑性ポリイミドからなる群より選択される少なくとも1種である請求項1に記載の被覆電線。 The covered wire according to claim 1, wherein the polymer compound (1) or the polymer compound (2) is at least one selected from the group consisting of polyamideimide, polyetherimide, polyimide, and thermoplastic polyimide.
  3.  含フッ素高分子化合物(2)、含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)が、パーフルオロ系高分子化合物である請求項1または2に記載の被覆電線。 The covered electric wire according to claim 1 or 2, wherein the fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) is a perfluorinated polymer compound. .
  4.  含フッ素高分子化合物(2)、含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)の比誘電率が、2.0~2.2である請求項1~3のいずれかに記載の被覆電線。 Claims 1 to 3, wherein the fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) has a dielectric constant of 2.0 to 2.2. The covered electric wire described in any of the above.
  5.  含フッ素高分子化合物(3-2)の融点が、250~320℃である請求項1~4のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 4, wherein the fluorine-containing polymer compound (3-2) has a melting point of 250 to 320°C.
  6.  高分子化合物(2)と含フッ素高分子化合物(2)との体積比が、10/90~90/10である請求項1~5のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 5, wherein the volume ratio of the polymer compound (2) to the fluorine-containing polymer compound (2) is 10/90 to 90/10.
  7.  前記平角電線基材の形成材料が、銅、銅合金、アルミニウムおよびアルミニウム合金からなる群より選択される少なくとも1種である請求項1~6のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 6, wherein the forming material of the rectangular electric wire base material is at least one selected from the group consisting of copper, copper alloy, aluminum, and aluminum alloy.
  8.  前記平角電線基材の面粗さSzが、0.2~12μmの範囲にある請求項1~7のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 7, wherein the flat electric wire base material has a surface roughness Sz in a range of 0.2 to 12 μm.
  9.  前記被覆層の厚みが、30~200μmであって、前記被覆層の比誘電率が、2.3~3.0である請求項1~8のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 8, wherein the thickness of the coating layer is 30 to 200 μm, and the dielectric constant of the coating layer is 2.3 to 3.0.
  10.  第2の層の厚みが、10~100μmである請求項1~9のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 9, wherein the second layer has a thickness of 10 to 100 μm.
  11.  前記被覆層の部分放電開始電圧が、1000~2100(Vp)である請求項1~10のいずれかに記載の被覆電線。 The covered electric wire according to any one of claims 1 to 10, wherein the partial discharge inception voltage of the coating layer is 1000 to 2100 (Vp).
  12.  含フッ素高分子化合物(2)、含フッ素高分子化合物(3-1)または含フッ素高分子化合物(3-2)が、炭素原子10個あたり5~1000個の官能基を有する請求項1~11のいずれかに記載の被覆電線。 Claim 1: The fluorine-containing polymer compound (2), the fluorine-containing polymer compound (3-1), or the fluorine-containing polymer compound (3-2) has 5 to 1000 functional groups per 10 6 carbon atoms. The covered electric wire according to any one of items 1 to 11.
  13.  含フッ素高分子化合物(3-2)が、炭素原子10個あたり0~4個の官能基を有する請求項1~11のいずれかに記載の被覆電線。 The coated electric wire according to any one of claims 1 to 11, wherein the fluorine-containing polymer compound (3-2) has 0 to 4 functional groups per 10 6 carbon atoms.
  14.  含フッ素高分子化合物(3-2)のメルトフローレート(MFR)が、0.1~100g/10分である請求項1~13のいずれかに記載の被覆電線。 The coated wire according to any one of claims 1 to 13, wherein the fluorine-containing polymer compound (3-2) has a melt flow rate (MFR) of 0.1 to 100 g/10 minutes.
  15.  液状塗料組成物(2)または液状塗料組成物(3)の粘度が、10~10000(cP)である請求項1~14のいずれかに記載の被覆電線。 The coated wire according to any one of claims 1 to 14, wherein the liquid coating composition (2) or the liquid coating composition (3) has a viscosity of 10 to 10,000 (cP).
  16.  粉体塗料組成物(2)または粉体塗料組成物(3)の平均粒径が、1~100(μm)である請求項1~15のいずれかに記載の被覆電線。 The coated electric wire according to any one of claims 1 to 15, wherein the powder coating composition (2) or the powder coating composition (3) has an average particle size of 1 to 100 (μm).
  17.  第1の層が、前記平角電線基材の外周に形成され、第2の層が、第1の層の外周に形成され、第3の層が、第2の層の外周に形成される請求項1~16のいずれかに記載の被覆電線。 A first layer is formed on the outer periphery of the rectangular electric wire base material, a second layer is formed on the outer periphery of the first layer, and a third layer is formed on the outer periphery of the second layer. Item 17. The covered electric wire according to any one of Items 1 to 16.
  18.  請求項1~17のいずれかに記載の被覆電線を製造するための被覆電線の製造方法であって、
     液状塗料組成物(1)を、前記平角電線基材の外周に塗布することにより、第1の層を形成し、
     液状塗料組成物(2)または粉体塗料組成物(2)を、第1の層の外周に塗布することにより、第2の層を形成し、
     液状塗料組成物(3)または粉体塗料組成物(3)を、第2の層の外周に塗布することにより、第3の層を形成する
    製造方法。
    A method for manufacturing a covered electric wire for manufacturing the covered electric wire according to any one of claims 1 to 17, comprising:
    Forming a first layer by applying a liquid coating composition (1) to the outer periphery of the rectangular electric wire base material,
    Forming a second layer by applying a liquid coating composition (2) or a powder coating composition (2) to the outer periphery of the first layer,
    A manufacturing method in which a third layer is formed by applying a liquid coating composition (3) or a powder coating composition (3) to the outer periphery of the second layer.
  19.  請求項1~17のいずれかに記載の被覆電線を備えるモータ。 A motor comprising the covered electric wire according to any one of claims 1 to 17.
PCT/JP2023/028334 2022-08-29 2023-08-02 Coated electric wire and method for producing coated electric wire WO2024048192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022136052 2022-08-29
JP2022-136052 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048192A1 true WO2024048192A1 (en) 2024-03-07

Family

ID=90099248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028334 WO2024048192A1 (en) 2022-08-29 2023-08-02 Coated electric wire and method for producing coated electric wire

Country Status (2)

Country Link
JP (1) JP7469727B2 (en)
WO (1) WO2024048192A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329412A (en) * 1986-07-22 1988-02-08 住友電気工業株式会社 Insulated wire
JPH11191325A (en) * 1997-12-26 1999-07-13 Optec Dai Ichi Denko Co Ltd Insulated electric wire and electric equipment using thereof
WO2011024809A1 (en) * 2009-08-24 2011-03-03 ダイキン工業株式会社 Electric wire and process for production thereof
WO2019102989A1 (en) * 2017-11-21 2019-05-31 三菱マテリアル株式会社 Insulated conductor and insulated conductor manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329412B2 (en) 2014-03-26 2018-05-23 株式会社メガチップス SIMD processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329412A (en) * 1986-07-22 1988-02-08 住友電気工業株式会社 Insulated wire
JPH11191325A (en) * 1997-12-26 1999-07-13 Optec Dai Ichi Denko Co Ltd Insulated electric wire and electric equipment using thereof
WO2011024809A1 (en) * 2009-08-24 2011-03-03 ダイキン工業株式会社 Electric wire and process for production thereof
WO2019102989A1 (en) * 2017-11-21 2019-05-31 三菱マテリアル株式会社 Insulated conductor and insulated conductor manufacturing method

Also Published As

Publication number Publication date
JP7469727B2 (en) 2024-04-17
JP2024032667A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6708275B2 (en) Fluororesin materials, high frequency transmission fluororesin materials and high frequency transmission coated wires
JP5314707B2 (en) Tetrafluoroethylene / hexafluoropropylene copolymer and electric wire
CN104903977B (en) Insulated electric conductor
WO2022181842A1 (en) Fluorine-containing copolymer
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
JP5423800B2 (en) Electric wire and manufacturing method thereof
WO2022181841A1 (en) Fluorine-containing copolymer
JP7469727B2 (en) Covered electric wire and method for producing the same
JP6015846B2 (en) Electrical insulation parts
WO2024048189A1 (en) Coated wiring and method for manufacturing coated wiring
JP7469726B2 (en) Covered electric wire and method for producing the same
WO2024048190A1 (en) Covered electric wire, and method for producing covered electric wire
JP2011071089A (en) Electric wire and method of manufacturing the same
JP2021002459A (en) Rectangular magnet wire and coil
WO2019008998A1 (en) Electric wire, twisted pair cable and lan cable
WO2019187725A1 (en) Fluororesin material, fluororesin material for high frequency transmission, and covered electric wire for high-frequency transmission
JP7460940B2 (en) insulated wire
JP2020183516A (en) Magnet wire and coil
JP7397390B1 (en) Compositions, injection molded objects, powder coatings and coated wires
WO2024009909A1 (en) Resin-covered conductor, coil, and manufacturing method for resin-covered conductor
WO2024096106A1 (en) Electrodeposition coating composition, film, coated article, coated wire, and printed circuit board
WO2024043329A1 (en) Insulated wire and production method therefor
CN117355578A (en) Coating composition and laminate
WO2022181240A1 (en) Copolymer, molded body, injection molded body, and coated electrical wire
CN117377729A (en) Coating composition and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859961

Country of ref document: EP

Kind code of ref document: A1