WO2024048123A1 - Photoelectric conversion element, ink for producing photoelectric conversion element, method for manufacturing photoelectric conversion element, image sensor, and fingerprint authentication device - Google Patents

Photoelectric conversion element, ink for producing photoelectric conversion element, method for manufacturing photoelectric conversion element, image sensor, and fingerprint authentication device Download PDF

Info

Publication number
WO2024048123A1
WO2024048123A1 PCT/JP2023/026967 JP2023026967W WO2024048123A1 WO 2024048123 A1 WO2024048123 A1 WO 2024048123A1 JP 2023026967 W JP2023026967 W JP 2023026967W WO 2024048123 A1 WO2024048123 A1 WO 2024048123A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
conversion element
substituent
intermediate layer
Prior art date
Application number
PCT/JP2023/026967
Other languages
French (fr)
Japanese (ja)
Inventor
諒一 平岡
裕也 鬼塚
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024048123A1 publication Critical patent/WO2024048123A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors

Definitions

  • the present disclosure relates to a photoelectric conversion element, an ink for producing a photoelectric conversion element, a method for producing a photoelectric conversion element, an image sensor, and a fingerprint authentication device.
  • Photoelectric conversion elements are extremely useful devices from the viewpoint of energy saving and reduction of carbon dioxide emissions, for example, and are attracting attention.
  • a photoelectric conversion element is an element that has an anode, a cathode, and an active layer provided between the anode and the cathode.
  • one of the electrodes is made of a transparent or semitransparent material, and light is incident on the active layer from the transparent or semitransparent electrode side.
  • Charges (holes and electrons) are generated in the active layer by the energy (hv) of the light incident on the active layer, and the generated holes move toward the anode and electrons move toward the cathode.
  • the charges that have reached the anode and cathode are extracted to the outside of the device.
  • Electrodes i.e., anodes and cathodes
  • the active layer may be damaged. Therefore, in the photoelectric conversion element, an intermediate layer or the like is sometimes provided between the electrode and the active layer.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose that zinc oxide and PFN (poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2 , 7-(9,9-dioctyl)fluorene]) or PEI (polyethyleneimine).
  • a photoelectric conversion element is used, for example, as a photodetection element.
  • a photoelectric conversion element used as a photodetection element is used in a state where a voltage is applied, and light incident on the element is converted and detected as an electric current. However, even when no light is incident, a weak current flows through the photoelectric conversion element. This current is known as dark current, and is a factor that reduces the accuracy of photodetection.
  • an object of an embodiment of the present disclosure is to provide a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
  • a problem to be solved by another embodiment of the present disclosure is to provide an ink for producing a photoelectric conversion element containing a nonionic insulating polymer.
  • a problem to be solved by another embodiment of the present disclosure is to provide a method for manufacturing a photoelectric conversion element that can obtain a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
  • a problem to be solved by another embodiment of the present disclosure is to provide a photodetection element in which an increase in dark current after heat treatment is suppressed.
  • a problem to be solved by another embodiment of the present disclosure is to provide an image sensor including a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
  • a problem to be solved by another embodiment of the present disclosure is to provide a fingerprint authentication device including a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
  • Means for solving the above problems include the following means. ⁇ 1> An anode, a cathode; an active layer provided between the anode and the cathode; an intermediate layer provided between the anode and the active layer and at least one between the cathode and the active layer, A photoelectric conversion element in which the intermediate layer includes a nonionic insulating polymer. ⁇ 2> The photoelectric conversion element according to ⁇ 1>, wherein the nonionic insulating polymer has a glass transition temperature of 100° C. or higher. ⁇ 3> The photoelectric conversion element according to ⁇ 1> or ⁇ 2>, wherein the nonionic insulating polymer has a melting point of 150° C. or higher.
  • the photoelectric conversion element described in . ⁇ 5> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 4>, wherein the nonionic insulating polymer is polyimide.
  • ⁇ 6> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 5>, comprising an intermediate layer between the cathode and the active layer.
  • ⁇ 7> The photoelectric conversion element according to ⁇ 6>, wherein the cathode is a transparent or semitransparent electrode.
  • the photoelectric conversion element according to any one of ⁇ 1> to ⁇ 7>, wherein the active layer contains a p-type semiconductor material.
  • the p-type semiconductor material is a polymer compound containing at least one selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II). 8>.
  • Z represents a group represented by any one of formulas (Z-1) to (Z-7), and Ar 1 and Ar 2 may be the same or different. Represents a good trivalent aromatic heterocyclic group.
  • Ar 3 represents a divalent aromatic heterocyclic group.
  • R is each independently a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or a cycloalkyl that may have a substituent.
  • ⁇ 12> A method for manufacturing a photoelectric conversion element, including the steps of forming a coating film by applying an ink containing a nonionic insulating polymer, and drying the coating film.
  • An image sensor including the photoelectric conversion element according to ⁇ 13>.
  • a fingerprint authentication device including the photoelectric conversion element according to ⁇ 13>.
  • a photoelectric conversion element in which increase in dark current after heat treatment is suppressed.
  • an ink for producing a photoelectric conversion element containing a nonionic insulating polymer is provided.
  • a method for manufacturing a photoelectric conversion element that can obtain a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
  • a photodetection element is provided in which increase in dark current after heat treatment is suppressed.
  • an image sensor including a photoelectric conversion element in which increase in dark current after heat treatment is suppressed is provided.
  • a fingerprint authentication device including a photoelectric conversion element in which increase in dark current after heat treatment is suppressed is provided.
  • FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view of an image detection section for a solid-state imaging device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a fingerprint detection unit according to an embodiment of the present disclosure.
  • Each component may contain multiple types of applicable substances.
  • the amount of each component in a composition if there are multiple types of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the multiple types of substances present in the composition means quantity.
  • P-valent aromatic heterocyclic group refers to an aromatic heterocyclic compound which may have a substituent, in which P atoms of the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring are means the remaining atomic group excluding the hydrogen atom.
  • P-valent heterocyclic group (P represents an integer of 1 or more) means a direct bond from a heterocyclic compound that may have a substituent to a carbon atom or heteroatom constituting the ring. It means the remaining atomic group after removing P hydrogen atoms from among the hydrogen atoms shown in the figure.
  • the photoelectric conversion element according to the present disclosure includes an anode, a cathode, an active layer provided between the anode and the cathode, and at least one of between the anode and the active layer and between the cathode and the active layer. an intermediate layer provided, the intermediate layer comprising a nonionic insulating polymer.
  • the present inventors conducted extensive research and discovered that by applying a layer containing a nonionic insulating polymer as an intermediate layer, the generation of dark current after heat is applied can be suppressed.
  • a photoelectric conversion element according to the present disclosure has been completed.
  • the photoelectric conversion element according to the present disclosure has an anode and a cathode (hereinafter, the anode and the cathode are also collectively referred to as electrodes).
  • the electrode include transparent or translucent electrodes.
  • the transparent or semitransparent electrode include a conductive metal oxide film and a semitransparent metal thin film.
  • the electrode material includes conductive materials such as indium oxide, zinc oxide, tin oxide, and their composites such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA; gold; Examples include platinum; silver; copper; and the like.
  • the material of the electrode is preferably ITO, IZO or tin oxide.
  • organic compounds such as polyaniline and its derivatives, polythiophene and its derivatives, etc. may be used.
  • the electrode may be an electrode with low light transmittance.
  • materials for the electrode with low light transmittance include metals and conductive polymers.
  • Specific examples of electrode materials with low optical transparency include: Metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium; two or more of these alloys of one or more of these metals and one or more metals selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; graphite; Graphite intercalation compounds; polyaniline and its derivatives; polythiophene and its derivatives; and the like.
  • the alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy,
  • At least one of the electrodes of the photoelectric conversion element according to the present disclosure is a transparent or semitransparent electrode.
  • the photoelectric conversion element according to the present disclosure has an intermediate layer between the cathode and the active layer, it is preferable that the cathode is a transparent or translucent electrode.
  • the thickness of the electrode is not particularly limited, but may be, for example, 1 nm or more and 1000 nm or less, or 100 nm or more and 500 nm or less, and when the photoelectric conversion element according to the present disclosure is used as a photodetecting element, high transmittance can be obtained. is required, so it is preferably 5 nm or more and 200 nm or less.
  • any conventionally known suitable forming method can be used.
  • methods for forming the electrode include vacuum evaporation, sputtering, ion plating, coating methods such as slit coating and spin coating, and plating.
  • a photoelectric conversion element includes an active layer provided between an anode and a cathode.
  • the active layer preferably contains a p-type semiconductor material (electron-donating compound), and contains a p-type semiconductor material (electron-donating compound) and an n-type semiconductor material (electron-accepting compound) (a suitable p-type semiconductor
  • a suitable p-type semiconductor The details of the material and the n-type semiconductor material will be described later.) is more preferable.
  • Which of the p-type semiconductor material and the n-type semiconductor material is used can be relatively determined from the HOMO energy level or LUMO energy level of the selected compound.
  • the thickness of the active layer is preferably 150 nm or more and 10000 nm or less, more preferably 200 nm or more and 1000 nm or less.
  • the active layer can be formed by a coating method. Details of the p-type semiconductor material and n-type semiconductor material that can be included in the active layer and the method for forming the active layer will be described later.
  • a photoelectric conversion element according to the present disclosure includes an intermediate layer provided between an anode and an active layer and at least one between a cathode and an active layer.
  • the intermediate layer includes a nonionic insulating polymer. From the viewpoint of suppressing the generation of dark current, the photoelectric conversion element according to the present disclosure preferably has an intermediate layer between the cathode and the active layer.
  • Nonionic means that it does not have a salt structure and does not have a Br ⁇ nsted acid or Br ⁇ nsted basicity.
  • the presence or absence of Br ⁇ nsted acid or Br ⁇ nsted basicity is determined using a pH meter. Specifically, the judgment is as follows. A polymer solution is obtained by dissolving 5 g of the target polymer in 100 g of water. The temperature of the polymer solution is set to 25° C., and the pH of the polymer solution is measured using a pH meter. If the pH is 5 or less or 8 or more, it is considered to have Br ⁇ nsted acid or Br ⁇ nsted basicity.
  • An insulating polymer is a polymer having a band gap of 3 eV or more at room temperature.
  • the insulating polymer is preferably a polymer with a voltage of 3.5 eV or more.
  • Room temperature is a temperature of 25°C ⁇ 5°C.
  • the band gap (Eg) can be calculated by the following formula using the optical absorption edge wavelength of the polymer material to be measured.
  • h represents Planck's constant (6.626 ⁇ 10 ⁇ 34 Js) and c represents the speed of light (3 ⁇ 10 8 m/s).
  • Formula: Eg hc/absorption edge wavelength
  • the absorption edge wavelength can be measured with a spectrophotometer that can measure in the wavelength range of ultraviolet light, visible light, and near-infrared light. Photometer JASCO-V670 can be used.
  • the absorption edge wavelength is The value of the wavelength at the intersection of the line and the straight line fitted at the shoulder of the absorption peak (on the high wavelength side) can be taken as the absorption edge wavelength (nm).
  • the glass transition temperature of the nonionic insulating polymer is preferably 100° C. or higher.
  • the glass transition temperature is more preferably 150°C or higher, and even more preferably 200°C or higher.
  • the upper limit of the glass transition temperature is not particularly limited, but may be, for example, 400° C. or lower. Therefore, the glass transition temperature of the nonionic insulating polymer is preferably 100°C or more and 400°C or less, more preferably 150°C or more and 400°C or less, and even more preferably 200°C or more and 400°C or less. preferable.
  • the melting point of the nonionic insulating polymer is preferably 150° C. or higher.
  • the melting point of the nonionic insulating polymer is more preferably 200°C or higher, and even more preferably 300°C or higher.
  • the upper limit of the melting point of the nonionic insulating polymer is not particularly limited, but may be, for example, 600° C. or lower. Therefore, the melting point of the nonionic insulating polymer is preferably 150°C or more and 600°C or less, more preferably 200°C or more and 600°C or less, and even more preferably 300°C or more and 600°C or less.
  • a more preferable range of the melting point of the nonionic insulating polymer is 150°C or more and 500°C or less, more preferably 200°C or more and 500°C or less, and still more preferably 300°C or more and 500°C or less.
  • the glass transition temperature and melting point values described in known documents including commercial catalogs may be referred to, but in accordance with JIS-K7121:2012, "4.1 Differential Thermal Analysis (DTA)” or “4. 2. It may be measured by differential scanning calorimetry (DSC). In either measurement method, the glass transition temperature and melting point of the nonionic insulating polymer are preferably within the above ranges.
  • the glass transition temperature and melting point are measured using a differential thermal analyzer or a differential scanning calorimeter.
  • a differential thermal analyzer As the differential thermal analysis device, DTA-50 manufactured by Shimadzu Corporation can be used, and as the differential scanning calorimetry device, DSC-60A Plus manufactured by Shimadzu Corporation can be used.
  • the procedure for measuring the glass transition temperature and melting point using a differential thermal analyzer is, for example, as follows.
  • the melting point is defined as the endothermic peak temperature observed when measuring 2 to 10 mg of sample under heating conditions of 10°C/min from room temperature to 400°C.
  • the glass transition temperature can be determined by the method described in "9.3 How to determine the glass transition temperature" of JIS-K7121:2012.
  • the nonionic insulating polymer is preferably a nonconjugated polymer.
  • a non-conjugated polymer is a polymer other than a conjugated polymer.
  • a conjugated polymer is a polymer in which a conjugated structure exists throughout the polymer.
  • Nonionic insulating polymers include poly(meth)acrylic (e.g., polyacrylate, polymethacrylate, polyacrylonitrile, etc.); polyvinyl alcohol; polyester (e.g., polyethylene terephthalate, polyester naphthalate, polycarbonate, etc.); polyamide; vinyl Polymers (e.g., polystyrene, polyvinyltoluene, polyvinylxylene, etc.); polyimide-based polymers; polysulfides; polysulfones; polyphenylene; (e.g., polysilsesquioxane, polysilane, etc.); polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber (e.g., ethylene propylene rubber, styrene butadiene rubber, ethylene propylene diene rubber, etc.); fluorine-containing polymers (e.g., polyvinylidene fluoride rubber, etc.); Acrylon
  • the nonionic insulating polymer is preferably at least one selected from the group consisting of poly(meth)acrylic, polycarbonate, polyimide polymer, and fluorine-containing polymer, More preferably, it is a polyimide polymer.
  • the polyimide polymer can be produced using the tetracarboxylic acid compound and diamine described below as raw materials. Moreover, diisocyanate can be used as a raw material instead of diamine.
  • Polyimide represents a polymer containing a structural unit containing an imide group
  • polyamide-imide represents a polymer containing both a structural unit containing an imide group and a structural unit containing an amide group.
  • the polyimide polymer represents any polymer selected from polyimide and polyamideimide.
  • the polyimide polymer has a structural unit represented by formula (10).
  • G represents a tetravalent organic group
  • A represents a divalent organic group.
  • the polyimide polymer may contain two or more different types of structural units represented by formula (10).
  • the polyimide polymer according to the present disclosure may include any one or more of the structural units represented by any one of formula (11), formula (12), and formula (13).
  • G and G 1 each independently represent a tetravalent organic group, preferably a tetravalent organic group having 4 or more and 40 or less carbon atoms.
  • the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the number of carbon atoms in the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably 1 or more and 8 or less. .
  • * in formulas (20) to (29) represents a bond
  • Z represents a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, - C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -Ar-, -SO 2 -, -CO-, -O-Ar-O-, -Ar-O-Ar-, -Ar-CH 2 -Ar-, -Ar-C(CH 3 ) 2 -Ar- or -Ar-SO 2 -Ar-.
  • Ar represents an arylene group having 6 or more and 20 or less carbon atoms which may be substituted with a fluorine atom, and a specific example thereof is a phenylene group. Since it is easy to suppress the yellowness of the intermediate layer, G and G1 are expressed by formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula A group represented by either (26) or formula (27) is preferable.
  • G 2 represents a trivalent organic group, and is preferably a trivalent organic group having 4 or more and 40 or less carbon atoms.
  • the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the number of carbon atoms in the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably 1 or more and 8 or less. .
  • formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or Examples include a group in which any one of the bonds of the group represented by formula (29) is replaced with a hydrogen atom; a trivalent chain hydrocarbon group having 6 or less carbon atoms; and the like.
  • the example of Z in the formula is the same as the example of Z in the description regarding G.
  • G 3 represents a divalent organic group, and is preferably a divalent organic group having 4 or more and 40 or less carbon atoms.
  • the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the number of carbon atoms in the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably 1 or more and 8 or less. .
  • formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or Examples include a group in which two non-adjacent bonds of the group represented by any of formula (29) are replaced with hydrogen atoms; a divalent chain hydrocarbon group having 6 or less carbon atoms; and the like.
  • the example of Z in the formula is the same as the example of Z in the description regarding G.
  • A, A 1 , A 2 and A 3 all represent a divalent organic group, preferably a divalent organic group having 4 or more and 40 or less carbon atoms.
  • the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms; in that case, the hydrocarbon group and the fluorine-substituted hydrocarbon group have 1 or more carbon atoms. It is preferably 8 or less.
  • A, A 1 , A 2 and A 3 are respectively formula (30), formula (31), formula (32), formula (33), formula (34), formula (35), formula (36), and formula A group represented by either (37) or formula (38); a group in which any of them is substituted with one or more of methyl group, fluoro group, chloro group, or trifluoromethyl group; carbon number 6 Examples include the following chain hydrocarbon groups.
  • * represents a bond
  • Z 1 , Z 2 and Z 3 each independently represent a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 - or -CO-.
  • Z 1 and Z 3 is -O-
  • Z 2 is -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2 - or -SO 2 -.
  • Z 1 and Z 2 and Z 2 and Z 3 are each preferably located at the meta or para position with respect to each ring.
  • Polyimide polymers are obtained, for example, by polycondensation of diamines and tetracarboxylic acid compounds (tetracarboxylic dianhydrides, etc.), and are described in, for example, JP-A No. 2006-199945 or JP-A No. 2008-163107. It can be synthesized according to the method described.
  • Examples of polyimide polymers include Neoprim manufactured by Mitsubishi Gas Chemical Co., Ltd. and KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd.
  • tetracarboxylic acid compounds used in the synthesis of polyimide polymers include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride, and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. can be mentioned. Tetracarboxylic acid compounds may be used alone or in combination of two or more.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as a tetracarboxylic acid chloride compound in addition to a tetracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydride examples include non-fused polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and fused polycyclic aromatic tetracarboxylic dianhydride. Examples include anhydrides.
  • non-fused polycyclic aromatic tetracarboxylic dianhydride examples include 4,4'-oxydiphthalic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2' , 3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxylic dianhydride) phenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4'-(hexafluoroiso
  • 4,4'-oxydiphthalic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 2,2',3,3'-benzophenonetetracarboxylic dianhydride are preferable.
  • aliphatic tetracarboxylic dianhydride examples include cyclic or acyclic aliphatic tetracarboxylic dianhydride.
  • Cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • cycloalkane tetracarboxylic dianhydride such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride, bicyclo[2.2.
  • Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride dicyclohexyl 3,3'-4,4'-tetracarboxylic dianhydride, and positional isomers thereof. These can be used alone or in combination of two or more.
  • Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These can be used alone or in combination of two or more.
  • the tetracarboxylic acid compound is preferably the alicyclic tetracarboxylic dianhydride or the non-fused polycyclic aromatic tetracarboxylic dianhydride. It will be done. More preferred specific examples include 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, and 2,2-bis(3 , 4-dicarboxyphenyl)propane dianhydride, and 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA). These can be used alone or in combination of two or more.
  • Polyimide polymers are made by further reacting tetracarboxylic acids, tricarboxylic acid compounds, dicarboxylic acid compounds, their anhydrides, and their derivatives in addition to the tetracarboxylic acid anhydrides used in the polyimide synthesis described above. There may be.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, their acid chloride compounds, and acid anhydrides, and two or more of these may be used in combination.
  • Specific examples of tricarboxylic acid compounds include 1,2,4-benzenetricarboxylic anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic anhydride and benzoic acid forming a single bond , -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 - or a phenylene group; and the like.
  • dicarboxylic acid compounds include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and their analogous acid chloride compounds, acid anhydrides, and the like, and two or more of these may be used in combination.
  • Specific examples include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; chain hydrocarbons having 8 or less carbon atoms;
  • Examples include compounds linked with either -SO 2 - or a phenylene group. These can be used alone or in combination of two or more.
  • R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • the ratio of the tetracarboxylic acid compound to the total of the tetracarboxylic acid compound, tricarboxylic acid compound, and dicarboxylic acid compound is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 70 mol%.
  • the content is more preferably 90 mol% or more, particularly preferably 98 mol% or more.
  • Diamines used in the synthesis of polyimide polymers include aliphatic diamines, aromatic diamines, and mixtures thereof.
  • aromatic diamine refers to a diamine in which an amino group is directly bonded to an aromatic ring, and may include an aliphatic group or other substituent as part of its structure.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring, etc., but are not limited thereto. Among these, a benzene ring is preferred.
  • aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic group, and may include an aromatic ring or other substituents as part of its structure.
  • aliphatic diamines examples include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine, and 4,4'-diaminodicyclohexyl.
  • acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine, and 4,4'-diaminodicyclohexyl.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, etc.
  • Aromatic diamine having one aromatic ring 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether , 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-amino phenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-
  • the aromatic diamine is preferably 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl)-4,4'-diaminodiphenyl (
  • the diamine can also have a fluorine substituent.
  • fluorine-based substituent include a perfluoroalkyl group having 1 to 5 carbon atoms, such as a trifluoromethyl group, and a fluoro group.
  • diamines from the viewpoint of high transparency and low coloration, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure, specifically 2,2'-dimethylbenzidine, It is preferable to use one or more selected from the group consisting of 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB) and 4,4'-bis(4-aminophenoxy)biphenyl. .
  • TFMB 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl
  • the polyimide polymer is formed by polycondensation of a diamine and a tetracarboxylic acid compound (including tetracarboxylic acid compound analogs such as acid chloride compounds and tetracarboxylic dianhydride), and is represented by formula (10). It is a condensation type polymer containing structural units of In addition to these, as starting materials, tricarboxylic acid compounds (including tricarboxylic acid compound analogs such as acid chloride compounds and tricarboxylic acid anhydrides) and dicarboxylic acid compounds (including analogs such as acid chloride compounds) are used. Sometimes.
  • the structural units represented by formulas (10) and (11) are usually derived from diamines and tetracarboxylic acid compounds.
  • the structural unit represented by formula (12) is usually derived from a diamine and a tricarboxylic acid compound.
  • the structural unit represented by formula (13) is usually derived from a diamine and a dicarboxylic acid compound. Specific examples of the diamine, tetracarboxylic acid compound, tricarboxylic acid compound, and dicarboxylic acid compound are as described above.
  • the molar ratio between the diamine and the carboxylic acid compound such as the tetracarboxylic acid compound can be appropriately adjusted in the range of preferably 0.9 mol or more and 1.1 mol or less of the tetracarboxylic acid per 1.00 mol of the diamine.
  • the obtained polyimide polymer has a high molecular weight, so it is more preferable that the amount of tetracarboxylic acid is 0.98 mol or more and 1.02 mol per 1.00 mol of diamine. , more preferably 0.99 mol% or more and 1.01 mol% or less.
  • the proportion of amino groups occupying the terminals of the obtained polymer is low, and the ratio of carboxylic acid compounds such as tetracarboxylic acid compounds to 1.00 mol of diamine is 1. It is preferable that it is .00 mol or more.
  • the amount of fluorine in the resulting polyimide polymer is 1% by mass or more based on the mass of the polyimide polymer. , 5% by mass or more, 10% by mass or more, or 20% by mass or more. Since raw material costs tend to increase as the proportion of fluorine increases, the upper limit of the amount of fluorine is preferably 40% by mass or less.
  • the fluorine substituent may be present in either the diamine or the carboxylic acid compound, or in both.
  • the polyimide polymer may be a copolymer containing a plurality of different types of the above structural units.
  • the weight average molecular weight of the polyimide polymer in terms of standard polystyrene is usually 100,000 to 800,000, preferably 200,000 to 700,000, and 300,000 to 600,000. is more preferable, and even more preferably 350,000 or more and 500,000 or less.
  • the polyimide polymer preferably has a fluorine-containing substituent.
  • the fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
  • the intermediate layer may or may not contain components other than the nonionic insulating polymer.
  • components other than the nonionic insulating polymer include components included in the second intermediate layer described below, such as a hole transporting material, an electron transporting material, and the like.
  • the content of the nonionic insulating polymer in the intermediate layer is preferably 80% by mass or more and 100% by mass or less, and 90% by mass or less, based on the mass of the entire intermediate layer. % or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less.
  • the thickness of the intermediate layer is preferably 1 nm or more and 100 nm or less, more preferably 1 nm or more and 20 nm or less, and even more preferably 1 nm or more and 15 nm or less.
  • the intermediate layer can be formed by a coating method. Details of the method for forming the intermediate layer will be described later.
  • the photoelectric conversion element according to the present disclosure may have a second intermediate layer that does not contain the nonionic insulating polymer, if necessary.
  • the second intermediate layer is also referred to as a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, etc. depending on its function.
  • the hole transport layer is a layer that has the function of transporting holes from the active layer to the electrode.
  • the hole injection layer is a hole transport layer provided in contact with the anode.
  • the electron transport layer is a layer that has the function of transporting electrons from the active layer to the electrode.
  • the electron injection layer is an electron transport layer provided in contact with the cathode.
  • any conventionally known suitable material can be used.
  • the material for the second intermediate layer include halides and oxides of alkali metals or alkaline earth metals such as lithium fluoride.
  • materials used for the second intermediate layer include fine particles of inorganic semiconductor materials such as titanium oxide, PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (poly(4-styrene sulfonate)). ) (PEDOT:PSS).
  • the photoelectric conversion element preferably includes a hole transport layer (hole injection layer) between the anode and the active layer.
  • the hole transport layer may be a single layer or a stack of two or more layers.
  • the hole transport layer (hole injection layer) may be in contact with the active layer.
  • the hole transport layer contains a hole transport material.
  • hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing structural units having aromatic amine residues, CuSCN, CuI, NiO, and molybdenum oxide (MoO 3 ). It will be done.
  • the photoelectric conversion element preferably includes an electron transport layer (or an electron injection layer; the same shall apply hereinafter) between the cathode and the active layer.
  • the electron transport layer may be a single layer or a stack of two or more layers.
  • the electron transport layer may be in contact with the active layer.
  • the electron transport layer contains an electron transport material.
  • the electron transporting material include any suitable material that contributes to the movement of electrons in the layers constituting the photoelectric conversion element.
  • Examples of the electron transporting material include metal compounds and compounds having an alkylene structure.
  • metal compounds include metal oxides, metal hydroxides and metal alkoxides.
  • the metal compound is preferably a metal oxide containing a divalent or higher valent metal; a metal hydroxide; or a metal alkoxide; more preferably a metal oxide containing zinc or titanium; a metal hydroxide; or a metal alkoxide; Good too.
  • metal alkoxides include metal methoxide, metal ethoxide, metal propoxide, metal isopropoxide, metal n-butoxide, metal sec-butoxide, metal isobutoxide, metal tert-butoxide.
  • metal oxides include zinc oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, titanium oxide, and niobium oxide. As the metal oxide, metal oxides containing zinc are preferred, and zinc oxide is particularly preferred.
  • metal alkoxides containing titanium are preferred, and titanium (IV) isopropoxide is particularly preferred.
  • Examples of compounds having an alkylene structure include polyalkylene imines and derivatives thereof.
  • Examples of polyalkyleneimines and derivatives thereof include alkyleneimines having 2 to 8 carbon atoms, especially those having 2 to 8 carbon atoms, such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine.
  • Examples include polymers obtained by polymerizing one or more of 2 to 4 alkylene imines by a conventional method, and polymers chemically modified by reacting them with various compounds.
  • Polyalkyleneimine and its derivatives include polyethyleneimine ethoxylate (PEIE: ethoxylated polyethyleneimine), which is a modified product containing polyethyleneimine (PEI) and polyalkyleneimine as the main chain, with ethylene oxide added to the nitrogen atom in the main chain. ) is preferred.
  • PEIE polyethyleneimine ethoxylate
  • PEI polyethyleneimine
  • PEI polyethyleneimine
  • the second intermediate layer can be formed by a coating method. Details of the method for forming the second intermediate layer will be described later.
  • the photoelectric conversion element according to the present disclosure may have a substrate.
  • a photoelectric conversion element is usually formed on a substrate. Electrodes are usually formed on this substrate.
  • the material of the substrate is not particularly limited. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the electrode on the opposite side of the electrode provided on the opaque substrate ie, the electrode on the side far from the substrate
  • FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment of the present disclosure.
  • a photoelectric conversion element 10 according to the present disclosure is provided on, for example, a substrate (support substrate) 11.
  • the photoelectric conversion element 10 includes an electrode 12 provided in contact with a substrate 11, a second intermediate layer or layer 13 provided in contact with the electrode 12, and a second intermediate layer or intermediate layer.
  • an active layer 14 provided in contact with active layer 13; a second intermediate layer or layer 15 provided in contact with active layer 14; and layer 15, which is a second intermediate layer or intermediate layer.
  • the electrode 16 is provided so as to be in contact with the electrode 16.
  • This configuration example further includes a substrate 17 provided in contact with the electrode 16.
  • the electrode 12 is an anode
  • the layer 13 is a second intermediate layer
  • the layer 15 is an intermediate layer
  • the electrode 16 is a cathode
  • the photoelectric conversion element according to the present disclosure can generate photovoltaic force between electrodes when irradiated with light, and can be operated as a solar cell. Furthermore, a thin film solar cell module can be formed by integrating a plurality of solar cells.
  • the photoelectric conversion element according to the present disclosure can cause a photocurrent to flow by irradiating light from the transparent or semi-transparent electrode side with a voltage applied between the electrodes, and can be used as a photodetection element (photosensor). It can be made to work. Furthermore, by integrating a plurality of optical sensors, it can also be used as an image sensor.
  • the photoelectric conversion element according to the present disclosure can be suitably applied to detection units included in various electronic devices such as workstations, personal computers, personal digital assistants, room access control systems, digital cameras, and medical equipment.
  • the photoelectric conversion element includes, for example, an image detection unit (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection unit, a face detection unit, It can be suitably applied to a detection unit that detects a predetermined characteristic of a part of a living body, such as a vein detection unit and an iris detection unit, and a detection unit of an optical biosensor such as a pulse oximeter.
  • image detection unit image sensor
  • a detection unit that detects a predetermined characteristic of a part of a living body, such as a vein detection unit and an iris detection unit
  • an optical biosensor such as a pulse oximeter.
  • FIG. 2 is a schematic cross-sectional view of an image detection section for a solid-state imaging device.
  • the image detection unit 1 includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided to cover the CMOS transistor substrate 20, and a photoelectric conversion element 10 according to the present disclosure provided on the interlayer insulating film 30. , an interlayer wiring section 32 that is provided to penetrate the interlayer insulating film 30 and electrically connect the CMOS transistor substrate 20 and the photoelectric conversion element 10, and a sealing section that is provided to cover the photoelectric conversion element 10. It includes a sealing layer 40 and a color filter 50 provided on the sealing layer 40.
  • the CMOS transistor substrate 20 is provided with any conventionally known suitable configuration in accordance with the design.
  • the CMOS transistor substrate 20 includes transistors, capacitors, etc. formed within the thickness of the substrate, and is equipped with functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions.
  • CMOS transistor circuits MOS transistor circuits
  • Examples of the functional element include a floating diffusion, a reset transistor, an output transistor, and a selection transistor.
  • a signal readout circuit and the like are built into the CMOS transistor substrate 20 using such functional elements, wiring, and the like.
  • the interlayer insulating film 30 can be made of any suitable insulating material known in the art, such as silicon oxide or insulating resin.
  • the interlayer wiring section 32 can be made of any conventionally known suitable conductive material (wiring material), such as copper or tungsten.
  • the interlayer wiring section 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or a buried plug formed separately from the wiring layer.
  • the sealing layer 40 may be made of any conventionally known suitable material, provided that it can prevent or suppress the penetration of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. Can be done.
  • the sealing layer 40 may be constituted by the sealing substrate 17 described above.
  • a primary color filter that is made of any suitable conventionally known material and that corresponds to the design of the image detection section 1 can be used.
  • a complementary color filter that can be made thinner than a primary color filter can also be used. Examples of complementary color filters include three types (yellow, cyan, magenta), three types (yellow, cyan, transparent), three types (yellow, transparent, magenta), and three types (transparent, cyan, magenta). Color filters having a combination of types can be used. These can be arranged in any suitable manner depending on the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20, provided that color image data can be generated.
  • the light received by the photoelectric conversion element 10 via the color filter 50 is converted by the photoelectric conversion element 10 into an electric signal according to the amount of received light, and the received light signal, that is, the imaged object, is transmitted to the outside of the photoelectric conversion element 10 via the electrode. is output as an electrical signal corresponding to
  • the light reception signal outputted from the photoelectric conversion element 10 is inputted to the CMOS transistor substrate 20 via the interlayer wiring section 32, and is read out by a signal readout circuit built in the CMOS transistor substrate 20.
  • Image information based on the imaging target is generated by signal processing by any suitable conventionally known functional unit.
  • FIG. 3 is a schematic cross-sectional view of a fingerprint detection unit that is integrated with the display device.
  • the display device 2 of the mobile information terminal includes a fingerprint detection section 100 that includes the photoelectric conversion element 10 according to the present disclosure as a main component, and a display panel section 200 that is provided on the fingerprint detection section 100 and displays a predetermined image. It is equipped with
  • the fingerprint detection section 100 is provided in an area that substantially coincides with the display area 200a of the display panel section 200.
  • the display panel section 200 is integrally stacked above the fingerprint detection section 100. If fingerprint detection is to be performed only in a part of the display area 200a, the fingerprint detection section 100 may be provided corresponding to only the part of the area.
  • the fingerprint detection unit 100 includes the photoelectric conversion element 10 according to the present disclosure as a functional unit that performs essential functions.
  • the fingerprint detection unit 100 is equipped with a protective film (not shown). Any suitable conventionally known members such as a supporting substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, an infrared cut film, etc. can be provided in a manner corresponding to the design so that desired characteristics can be obtained. .
  • the fingerprint detection unit 100 may also employ the configuration of the image detection unit described above.
  • the photoelectric conversion element 10 may be included in the display area 200a in any manner.
  • a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
  • the photoelectric conversion element 10 is provided on the support substrate 11 or the sealing substrate, and the support substrate 11 is provided with electrodes (anodes or cathodes), for example, in a matrix.
  • the light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electric signal according to the amount of received light, and the light reception signal, that is, the electric signal corresponding to the imaged fingerprint is transmitted outside the photoelectric conversion element 10 via the electrode. Output as a signal.
  • the display panel section 200 is configured as an organic electroluminescence display panel (organic EL display panel) including a touch sensor panel.
  • the display panel section 200 may be configured with a display panel having any suitable conventionally known configuration, such as a liquid crystal display panel including a light source such as a backlight.
  • the display panel section 200 is provided on the already described fingerprint detection section 100.
  • the display panel section 200 includes an organic electroluminescent element (organic EL element) 220 as a functional section that performs an essential function.
  • the display panel section 200 may further include any suitable conventionally known substrate such as a glass substrate (support substrate 210 or sealing substrate 240), a sealing member, a barrier film, a polarizing plate such as a circularly polarizing plate, a touch sensor panel 230, etc.
  • suitable conventionally known members may be provided in a manner corresponding to desired characteristics.
  • the organic EL element 220 is used as a light source for pixels in the display area 200a, and is also used as a light source for imaging a fingerprint in the fingerprint detection unit 100.
  • the fingerprint detection section 100 detects a fingerprint using light emitted from the organic EL element 220 of the display panel section 200. Specifically, the light emitted from the organic EL element 220 passes through the components present between the organic EL element 220 and the photoelectric conversion element 10 of the fingerprint detection unit 100, and displays a certain display within the display area 200a. The light is reflected by the skin of the fingertip (finger surface) of the finger placed so as to be in contact with the surface of the panel section 200.
  • At least a portion of the light reflected by the finger surface is transmitted through the intervening components, is received by the photoelectric conversion element 10, and is converted into an electrical signal according to the amount of light received by the photoelectric conversion element 10. Then, image information about the fingerprint on the finger surface is constructed from the converted electrical signal.
  • the portable information terminal equipped with the display device 2 performs fingerprint authentication by comparing the obtained image information with pre-recorded fingerprint data for fingerprint authentication using any suitable conventionally known steps.
  • a method for manufacturing a photoelectric conversion element according to the present disclosure includes the steps of forming a coating film by applying an ink containing a nonionic insulating polymer, and drying the coating film.
  • a substrate supporting substrate
  • an electrode a second intermediate layer or intermediate layer
  • an active layer a second intermediate layer or intermediate layer
  • an electrode are prepared in this order.
  • a method for manufacturing a photoelectric conversion element having a stacked structure will be described.
  • a support substrate provided with electrodes is prepared.
  • the method of forming electrodes on the support substrate is not particularly limited.
  • the electrode can be formed on the support substrate using, for example, a vacuum evaporation method, a sputtering method, an ion plating method, a plating method, or the like using an electrode material.
  • Examples of the material for the electrode include the compounds exemplified as the material for the electrode described above.
  • a support substrate provided with electrodes can be prepared by obtaining a substrate provided with electrodes from the market and forming electrodes by patterning a conductive thin film as necessary.
  • Step-1 of forming the second intermediate layer or intermediate layer In this step, a second intermediate layer or an intermediate layer is formed on the electrode of the substrate provided with the electrode. First, the procedure for forming the intermediate layer in this step will be explained.
  • This step is a step of forming a coating film by applying an ink containing a nonionic insulating polymer (hereinafter also referred to as "specific ink”), and drying the coating film.
  • an ink containing a nonionic insulating polymer hereinafter also referred to as "specific ink”
  • the specific ink contains a nonionic insulating polymer and a solvent.
  • the nonionic insulating polymer contained in the specific ink the nonionic insulating polymer according to the present disclosure is applied.
  • solvents include water, alcohols, ketones, and hydrocarbons.
  • the specific ink may contain only one type of solvent, or may contain two or more types of solvents.
  • the alcohol is preferably an alcohol having 1 or more and 6 or less carbon atoms.
  • specific examples of alcohols include ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, ethylene glycol, propylene glycol, butoxyethanol and methoxybutanol.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone.
  • the specific ink may contain components other than the nonionic insulating polymer and the solvent.
  • examples of other components include components contained in the second intermediate layer, such as hole transporting materials, electron transporting materials, and the like.
  • the content of the solvent in the specific ink may be 1 part by mass or more and 10,000 parts by mass or less, when the total mass of the nonionic insulating polymer and other components contained in the specific ink is 1 part by mass. It is preferably 10 parts by mass or more and 1000 parts by mass or less.
  • the specific ink may be a solution, or a dispersion such as a dispersion, an emulsion, or a suspension.
  • a specific ink is applied onto the electrode of the substrate provided with the electrode to form a coating film.
  • Any coating method can be used to apply the specific ink.
  • the coating method is preferably a slit coating method, a knife coating method, a spin coating method, a microgravure coating method, a gravure coating method, a bar coating method, an inkjet printing method, a nozzle coating method, or a capillary coating method.
  • a coating method or a bar coating method is more preferred, and a spin coating method is even more preferred.
  • the coating film is dried.
  • Any suitable method can be used to form the intermediate layer by drying the coating film.
  • the drying method include drying methods such as direct heating using a hot plate, hot air drying, infrared heat drying, flash lamp annealing drying, and vacuum drying.
  • This step is a step of forming a coating film by applying the second intermediate layer forming ink and drying the coating film.
  • the second intermediate layer forming ink When forming a hole transport layer, the second intermediate layer forming ink preferably contains a hole transport material and a solvent. When forming an electron transport layer, the second intermediate layer forming ink preferably contains an electron transport material and a solvent.
  • the hole-transporting material and electron-transporting material contained in the ink for forming the second intermediate layer are the same as the hole-transporting material and electron-transporting material that can be contained in the second intermediate layer described above. be done.
  • the solvent include water, alcohol, ketone, and hydrocarbon.
  • alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol.
  • Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone.
  • the second intermediate layer forming ink may contain one type of solvent alone, or may contain two or more types of solvents.
  • the amount of the solvent in the second intermediate layer forming ink is 1 part by mass or more when the total mass of the hole transporting material and electron transporting material contained in the second intermediate layer forming ink is 1 part by mass. It is preferably 10,000 parts by mass or less, and more preferably 10 parts by mass or more and 1,000 parts by mass or less.
  • the coating method explained in the above-mentioned - step of forming the intermediate layer - can be applied.
  • any suitable method can be used to form the second intermediate layer by drying the coating film.
  • the same drying method as explained in the above-mentioned step of forming the intermediate layer can be applied.
  • Step of forming active layer This step is a step of forming a coating film by applying an active layer forming ink and drying the coating film.
  • the active layer forming ink contains a p-type semiconductor material, an n-type semiconductor material, and a solvent.
  • p-type semiconductor materials include polyvinylcarbazole and its derivatives; polysilane and its derivatives; polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain; polyaniline and its derivatives; polythiophene and its derivatives; polypyrrole and its derivatives ; polyphenylene vinylene and its derivatives; polythienylene vinylene and its derivatives; polyfluorene and its derivatives; and the like.
  • the p-type semiconductor material is a polymer compound containing at least one member selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
  • Z represents a group represented by any one of the following formulas (Z-1) to (Z-7).
  • Ar 1 and Ar 2 represent trivalent aromatic heterocyclic groups which may be the same or different.
  • Ar 3 represents a divalent aromatic heterocyclic group.
  • R is each independently a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or a cyclo that may have a substituent.
  • Aryl group which may have a group, alkyloxy group which may have a substituent, cycloalkyloxy group which may have a substituent, aryloxy group which may have a substituent , or a monovalent heterocyclic group which may have a substituent.
  • the plurality of R's may be the same or different.
  • the structural unit represented by formula (I) is preferably a structural unit represented by formula (I-1) below.
  • Z has the same meaning as Z in formula (I).
  • Z is preferably a group selected from the group consisting of groups represented by formulas (Z-4) to (Z-7).
  • Examples of the structural unit represented by formula (I-1) include structural units represented by formulas (501) to (505) below, and the structural unit is represented by formula (501). is preferred.
  • R each independently has the same meaning as R in formulas (Z-1) to (Z-7).
  • the plurality of R's may be the same or different.
  • the number of carbon atoms in the divalent aromatic heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 4 to 60, and more preferably 4 to 20. .
  • the divalent aromatic heterocyclic group represented by Ar 3 may have a substituent.
  • Examples of the divalent aromatic heterocyclic group represented by Ar 3 include groups represented by the following formulas (101) to (185).
  • R has the same meaning as R in formulas (Z-1) to (Z-7).
  • the plurality of R's may be the same or different.
  • structural units represented by the above formula (II) structural units represented by the following formulas (II-1) to (II-6) are preferable.
  • X 1 and X 2 each independently represent an oxygen atom or a sulfur atom
  • R each independently represents a formula (Z-1) to (Z It has the same meaning as R in -7).
  • the plurality of R's may be the same or different.
  • X 1 and X 2 in formulas (II-1) to (II-6) are both sulfur atoms.
  • the p-type semiconductor material is preferably a polymer compound containing a structural unit containing a thiophene skeleton.
  • the polymer compound that is a p-type semiconductor material may contain two or more types of structural units of formula (I), or may contain two or more types of structural units of formula (II).
  • the polymer compound that is a p-type semiconductor material may contain a structural unit represented by the following formula (III).
  • Ar 4 represents an arylene group.
  • the arylene group represented by Ar 4 means an atomic group remaining after two hydrogen atoms are removed from an aromatic hydrocarbon which may have a substituent.
  • Aromatic hydrocarbons also include compounds with fused rings, and compounds in which two or more rings selected from the group consisting of independent benzene rings and fused rings are bonded directly or via a divalent group such as a vinylene group. .
  • the number of carbon atoms in the arylene group excluding substituents is usually 6 to 60, preferably 6 to 20.
  • arylene groups include phenylene groups (e.g., formulas 1 to 3 below), naphthalene-diyl groups (e.g., formulas 4 to 13 below), anthracene-diyl groups (e.g., formulas 14 to 19 below), Biphenyl-diyl group (e.g., formulas 20 to 25 below), terphenyl-diyl group (e.g., formulas 26 to 28 below), fused ring compound groups (e.g., formulas 29 to 35 below), fluorene-diyl groups (for example, the following formulas 36 to 38), and benzofluorene-diyl groups (for example, the following formulas 39 to 46).
  • R each independently has the same meaning as R in formulas (Z-1) to (Z-7).
  • a plurality of R's may be the same or different.
  • the structural units constituting the polymer compound that is a p-type semiconductor material are selected from the structural units represented by formula (I), the structural units represented by formula (II), and the structural units represented by formula (III). It may be a structural unit in which two or more types of structural units are combined and connected.
  • the polymer compound as a p-type semiconductor material contains at least one selected from the group consisting of a structural unit represented by formula (I) and a structural unit represented by formula (II), formula (I)
  • the total amount of the structural unit represented by and the structural unit represented by formula (II) is usually 20 to 100 mol% of all the structural units (100 mol%) contained in the polymer compound, and the p-type
  • the content is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, since it can improve the charge transport properties as a semiconductor material.
  • polymer compounds that are p-type semiconductor materials include polymer compounds represented by the following formulas P-1 to P-8.
  • n is a number of 1 or more and is arbitrarily selected within the weight average molecular weight range described below.
  • the active layer forming ink may contain only one type of p-type semiconductor material, or may contain two or more types in any combination of p-type semiconductor materials.
  • the weight average molecular weight of the p-type semiconductor material in terms of polystyrene is preferably 40,000 or more and 200,000 or less, more preferably 40,000 or more and 150,000 or less, especially from the viewpoint of reducing the dark current ratio, and particularly from the viewpoint of reducing the dark current ratio. From the viewpoint of improvement, it is more preferably 45,000 or more and 150,000 or less.
  • the weight average molecular weight in terms of polystyrene means the weight average molecular weight calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
  • the n-type semiconductor material may be a low-molecular compound or a high-molecular compound.
  • n-type semiconductor materials that are low molecular weight compounds include oxadiazole derivatives; anthraquinodimethane and its derivatives; benzoquinone and its derivatives; naphthoquinone and its derivatives; anthraquinone and its derivatives; tetracyanoanthraquinodimethane and its derivatives.
  • Non-patent Document 3 Advanced Energy Materials, 2021, Volume 11, Issue 15, Article Number 2003570
  • n-type semiconductor materials that are polymeric compounds include polyvinylcarbazole and its derivatives; polysilane and its derivatives; polysiloxane derivatives having an aromatic amine structure in the side chain or main chain; polyaniline and its derivatives; polythiophene and its derivatives ; polypyrrole and its derivatives; polyphenylene vinylene and its derivatives; polythienylene vinylene and its derivatives; polyquinoline and its derivatives; polyquinoxaline and its derivatives; and polyfluorene and its derivatives.
  • the n-type semiconductor material is preferably one or more selected from fullerene and fullerene derivatives, and fullerene derivatives are more preferred.
  • fullerenes include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, and C 84 fullerene.
  • fullerene derivatives include these fullerene derivatives.
  • Fullerene derivative means a compound in which at least a portion of fullerene is modified.
  • fullerene derivatives include compounds represented by the following formulas (N-1) to (N-4).
  • R a each independently represents an alkyl group, an aryl group, a monovalent heterocyclic group, or a group having an ester structure.
  • a plurality of R a 's may be the same or different.
  • R b each independently represents an alkyl group or an aryl group.
  • a plurality of R b 's may be the same or different.
  • Examples of the group having an ester structure represented by R a include a group represented by the following formula (19).
  • u1 represents an integer from 1 to 6.
  • u2 represents an integer from 0 to 6.
  • R c represents an alkyl group, an aryl group, or a monovalent heterocyclic group.
  • Examples of C 60 fullerene derivatives include the following compounds.
  • C70 fullerene derivatives include the following compounds.
  • fullerene derivatives include [6,6]-phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6]-Phenyl C61 butyric acid methyl ester), [6,6]-phenyl-C71 butyric acid methyl ester ( C70PCBM, [6,6]-Phenyl C71 butyric acid meth [6,6]-Phenyl C85 butyric acid methyl ester), [6,6]-Phenyl C85 butyric acid methyl ester (C84PCBM, [6,6]-Phenyl C85 butyric acid methyl ester), 6]-Thienyl C61 butyric acid methyl ester).
  • the active layer forming ink may contain only one type of n-type semiconductor material, or may contain two or more types in any combination of n-type semiconductor materials.
  • the active layer forming ink preferably contains a solvent.
  • the solvent includes a first solvent and, if necessary, a second solvent.
  • the first solvent should be selected taking into consideration the solubility of the selected p-type semiconductor material and n-type semiconductor material, and the characteristics (boiling point, etc.) that correspond to the drying conditions when forming the active layer.
  • the first solvent is an aromatic hydrocarbon (hereinafter simply referred to as aromatic hydrocarbon) that may have a substituent (eg, an alkyl group, a halogen atom).
  • aromatic hydrocarbon hereinafter simply referred to as aromatic hydrocarbon
  • the first solvent is preferably selected in consideration of the solubility of the selected p-type semiconductor material and n-type semiconductor material.
  • aromatic hydrocarbons examples include toluene, xylene (e.g. o-xylene, m-xylene, p-xylene), trimethylbenzene (e.g. mesitylene, 1,2,4-trimethylbenzene (pseudocumene)), butylbenzene. (eg n-butylbenzene, sec-butylbenzene, tert-butylbenzene), methylnaphthalene (eg 1-methylnaphthalene), tetralin, indane, chlorobenzene and dichlorobenzene (eg o-dichlorobenzene).
  • xylene e.g. o-xylene, m-xylene, p-xylene
  • trimethylbenzene e.g. mesitylene, 1,2,4-trimethylbenzene (pseudocumene)
  • butylbenzene eg n-buty
  • the first solvent is preferably toluene, o-xylene, m-xylene, p-xylene, mesitylene, pseudocumene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin, indane, chlorobenzene and It contains one or more selected from the group consisting of o-dichlorobenzene, more preferably o-xylene, pseudocumene, tetralin, chlorobenzene or o-dichlorobenzene.
  • the first solvent may be composed of only one type of aromatic hydrocarbon, or may be composed of two or more types of aromatic hydrocarbons. Preferably, the first solvent is composed of only one type of aromatic hydrocarbon.
  • the second solvent is a solvent selected from the viewpoint of particularly improving the solubility of the n-type semiconductor material.
  • the second solvent include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone, and propiophenone, ethyl acetate, butyl acetate, phenyl acetate, ethyl cellosolve acetate, methyl benzoate, butyl benzoate, benzyl benzoate, etc. and ether solvents such as anisole and o-dimethoxybenzene.
  • the second solvent is preferably acetophenone, propiophenone, or benzyl benzoate.
  • the mass ratio of the first solvent to the second solvent is determined from the viewpoint of further improving the solubility of the p-type semiconductor material and the n-type semiconductor material. , preferably in the range of 85/15 to 97/3.
  • the total mass percentage of the first solvent and the second solvent in the active layer forming ink is calculated by dividing the total weight of the active layer forming ink by 100 mass. %, it is preferably 90% by mass or more and 97.5% by mass or less from the viewpoint of further improving the solubility of the p-type semiconductor material and the n-type semiconductor material.
  • the active layer forming ink may contain components other than the p-type semiconductor material, the n-type semiconductor material, and the solvent.
  • Other components include ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges from absorbed light, and photostabilizers for increasing stability against ultraviolet light.
  • Step-2 of forming the second intermediate layer or intermediate layer In this step, a second intermediate layer or an intermediate layer is formed on the active layer.
  • the procedure for forming the second intermediate layer includes forming the second intermediate layer in the above-mentioned (step-1 of forming the second intermediate layer or intermediate layer).
  • step-1 of forming the second intermediate layer or intermediate layer follows the same procedure as step -.
  • the procedure for forming the intermediate layer is the same as the step of forming the intermediate layer in (Step-1 of forming the second intermediate layer or intermediate layer) described above. Do it with
  • the method of forming the second intermediate layer or the electrodes on the intermediate layer is not particularly limited.
  • the electrode can be formed on the support substrate using, for example, a vacuum evaporation method, a sputtering method, an ion plating method, a plating method, or the like using an electrode material.
  • Examples of the material for the electrode include the compounds exemplified as the material for the electrode described above.
  • p-type semiconductor material, n-type semiconductor material, nonionic insulating polymer, ionic polymer, and inorganic buffer material used in the following Examples and Comparative Examples are as follows.
  • polymer compounds represented by the aforementioned formulas P-7 and P-8 were used as the p-type semiconductor material.
  • the polymer compound represented by formula P-7 was synthesized and used with reference to the method described in International Publication No. 2013/051676.
  • the polymer compound represented by formula P-8 was synthesized and used with reference to the method described in International Publication No. 2011/052709.
  • n-type semiconductor material As the n-type semiconductor material N-1, Guard Surf NC-1010 manufactured by Harbes Co., Ltd. was used.
  • Nonionic insulating polymer (Nonionic insulating polymer) The following Z-1 to Z-8 were used as nonionic insulating polymers. The glass transition temperature and melting point of the nonionic insulating polymers are listed in Table 4.
  • ⁇ Z-1 Polyimide, manufactured by Kawamura Sangyo Co., Ltd., product name: KPI-MX300F
  • ⁇ Z-2 Polycarbonate, manufactured by Scientific Polymer Products
  • ⁇ Z-3 Polymethyl methacrylate, manufactured by Scientific Polymer Products
  • ⁇ Z-5 Cellulose acetate, manufactured by Scientific Polymer Products
  • ⁇ Z-6 Polyphenylene ether sulfone
  • Scientific Polymer Products ⁇ Z-7 Polytetrafluoroethylene, manufactured by Scientific Polymer Products
  • ⁇ Z-8 Fluorine-containing polymer, manufactured by AGC, product name: CYTOP CTL-809M
  • I-1 to I-3 The following I-1 to I-3 were used as ionic polymers.
  • ⁇ I-1 Polyethyleneimine derivative, manufactured by Sigma-Aldrich, trade name: Polyethyleneimine, 80% ethoxylated solution
  • ⁇ I-2 PFN-Br, manufactured by Ossila
  • ⁇ I-3 Polyvinylpyrrolidone, Scientific Polymer Products
  • M-1 Manufactured by Teika, zinc oxide nanoparticle dispersion (HTD-711Z)
  • the band gap can be calculated by the following formula using the optical absorption edge wavelength of the nonionic insulating polymer.
  • Eg is the band gap
  • h Planck's constant (6.626 ⁇ 10 ⁇ 34 Js)
  • c the speed of light (3 ⁇ 10 8 m/s).
  • Eg hc/absorption edge wavelength
  • the absorption edge wavelength can be measured using a spectrophotometer that can measure in the wavelength range of ultraviolet light, visible light, and near-infrared light (an ultraviolet-visible-near-infrared spectrophotometer manufactured by JASCO Corporation). JASCO-V670) was used.
  • the absorption edge wavelength is The value of the wavelength at the intersection of the line and the straight line fitted at the shoulder of the absorption peak (on the high wavelength side) was defined as the absorption edge wavelength (nm).
  • the band gaps of Z-1, Z-2, Z-3, Z-5, Z-6, Z-7, and Z-8 were all within the range of 3.5 to 3.8 eV.
  • Specific inks BI-1 to BI-3 and BI-5 to BI-11 were prepared by mixing nonionic insulating polymers or ionic polymers and solvents at the blending ratios shown in Table 2.
  • the amounts of Z-8 and I-1 shown in Table 2 are the polymer solution in which Z-8 is diluted with a solvent (the solvent is the same as the solvent contained in the specific ink) and the amount of I-1 diluted with a solvent. This is the amount of polymer solution added.
  • the concentration of the polymer solution of BI-8 using Z-8 is 0.45% by mass
  • the concentration of the polymer solution of BI-9 using I-1 is 3% from the standard value of the product of I-1. .5 to 4% by mass.
  • BS-1 to BS-5 are as follows.
  • ⁇ BS-1 2,2,3,3,4,4,5,5-octafluoro-1-pentanol
  • ⁇ BS-2 ⁇ -butyrolactone
  • ⁇ BS-3 3-pentanol
  • ⁇ BS-4 2-Methoxyethanol/BS-5: Fluorine solvent, manufactured by AGC, product name: CT-SOLV180
  • AS-1 to AS-4 are as follows.
  • ⁇ AS-1 Tetralin
  • ⁇ AS-2 Butyl benzoate
  • ⁇ AS-3 Pseudocumene
  • ⁇ AS-4 o-dimethoxybenzene
  • photoelectric conversion elements having a structure in which a supporting substrate, an electrode, an active layer, an intermediate layer, and an electrode are laminated in this order in the following steps.
  • photoelectric conversion elements that are not heat-treated before sealing, and photoelectric conversion elements that are not heat-treated before sealing, and after heat treatment are Two sealed photoelectric conversion elements were produced.
  • a photoelectric conversion element that was not heat-treated before sealing was manufactured using the following steps (1) to (5). This element is hereinafter referred to as a photoelectric conversion element without heat treatment.
  • the photoelectric conversion element sealed after heat treatment is heat treated on a hot plate heated to 200°C in a nitrogen gas atmosphere for 10 minutes, and then in step (5). It was sealed and produced.
  • This element is hereinafter referred to as a heat-treated photoelectric conversion element.
  • Step of forming an electrode on a substrate An ITO thin film with a thickness of 45 nm was formed as an electrode on a glass substrate as a supporting substrate by sputtering. The surface of this glass substrate was subjected to ozone UV treatment.
  • Step-2 of forming the second intermediate layer or intermediate layer an intermediate layer was formed on the active layer.
  • a coating film of an intermediate layer was formed on the active layer by a spin coating method using specific ink BI-1.
  • the thickness of the formed intermediate layer was 6 nm.
  • Example 2 to 7 Comparative Examples 1 to 3> Example except that the type of ink for forming the active layer in (step of forming the active layer) and the type of specific ink in (step-2 of forming the second intermediate layer or intermediate layer) were changed as shown in Table 4.
  • a sealed photoelectric conversion element was obtained by the same procedure as in Example 1.
  • the intermediate layer was formed by performing (step-2 of forming the second intermediate layer or intermediate layer) according to the following procedure.
  • a solution was prepared by diluting inorganic material M-1 10 times with 3-pentanol.
  • a coating film of an intermediate layer made of inorganic material M-1 was formed on the active layer by a spin coating method.
  • the thickness of the formed intermediate layer was 40 nm.
  • the subsequent steps were the same as in Example 1 (the step of forming the second intermediate layer or an electrode on the intermediate layer) to obtain a sealed photoelectric conversion element.
  • D * SR/(2 x elementary charge x Jd) 0.5
  • SR spectral sensitivity (unit: A/W, ampere/watt).
  • SR was obtained as follows. Obtain the value of the photocurrent JL when the reverse bias voltage is 5 V while irradiating light using a spectral sensitivity measuring device CEP-25ML manufactured by Bunko Keiki Co., Ltd. The amount of irradiated light was 1E+14 photons.
  • Equation 1 the photocurrent value at a wavelength of 940 nm is used, and in the case of the active layer forming ink AI-2, the photocurrent value at a wavelength of 800 nm is used to calculate as shown in the following equation 2.
  • Formula 2: SR (JL-Jd)/(energy of irradiated light)
  • Jd is the absolute value of the dark current density Jd of the photoelectric conversion element without heat treatment or the absolute value of the dark current density Jd of the photoelectric conversion element with heat treatment.
  • Equations 1 and 2 show the absolute values of the specific detectability D * of the photoelectric conversion element without heat treatment and the photoelectric conversion element with heat treatment. Evaluation was performed using the following evaluation criteria based on the absolute value of the specific detectability D * of the photoelectric conversion element subjected to heat treatment.
  • B: The exponent part of the numerical value of the photoelectric conversion element D * with heat treatment is 12.
  • C With heat treatment.
  • the exponent part of the value of the specific detectability D * of the photoelectric conversion element is 11.
  • the "exponent part” is the value written to the right of "E+" in the value of D * with heat treatment in Table 4. .
  • Image detection unit 2 Display device 10 Photoelectric conversion element 11, 210 Support substrate 12 Electrode 13 Second intermediate layer or layer that is an intermediate layer 14 Active layer 15 Second intermediate layer or layer that is an intermediate layer 16 Electrode 17, 240 Sealing Substrate 20 CMOS transistor substrate 30 Interlayer insulating film 32 Interlayer wiring section 40 Sealing layer 50 Color filter 100 Fingerprint detection section 200 Display panel section 200a Display area 220 Organic EL element 230 Touch sensor panel

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

The present invention addresses the problem of providing a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed. The present invention relates to a photoelectric conversion element having: an anode (12); a cathode (16); an active layer (14) provided between the anode (12) and the cathode (16); and intermediate layers (13, 15) provided between the anode (12) and the active layer (14) and/or between the cathode (16) and the active layer (14). The intermediate layers (13, 15) contain a non-ionic insulating polymer.

Description

光電変換素子、光電変換素子作製用インク、光電変換素子の製造方法、イメージセンサー及び指紋認証装置Photoelectric conversion element, ink for producing photoelectric conversion element, method for producing photoelectric conversion element, image sensor, and fingerprint authentication device
 本開示は、光電変換素子、光電変換素子作製用インク、光電変換素子の製造方法、イメージセンサー及び指紋認証装置に関する。 The present disclosure relates to a photoelectric conversion element, an ink for producing a photoelectric conversion element, a method for producing a photoelectric conversion element, an image sensor, and a fingerprint authentication device.
 光電変換素子は、例えば、省エネルギー、二酸化炭素の排出量の低減の観点から極めて有用なデバイスであり、注目されている。 Photoelectric conversion elements are extremely useful devices from the viewpoint of energy saving and reduction of carbon dioxide emissions, for example, and are attracting attention.
 光電変換素子とは、陽極と、陰極と、陽極及び陰極の間に設けられる活性層と、を有する素子である。光電変換素子では、いずれかの電極を透明又は半透明の材料から構成し、透明又は半透明とした電極側から活性層に光を入射させる。活性層に入射した光のエネルギー(hν)によって、活性層において電荷(正孔及び電子)が生成し、生成した正孔は陽極に向かって移動し、電子は陰極に向かって移動する。そして、陽極及び陰極に到達した電荷は、素子の外部に取り出される。 A photoelectric conversion element is an element that has an anode, a cathode, and an active layer provided between the anode and the cathode. In a photoelectric conversion element, one of the electrodes is made of a transparent or semitransparent material, and light is incident on the active layer from the transparent or semitransparent electrode side. Charges (holes and electrons) are generated in the active layer by the energy (hv) of the light incident on the active layer, and the generated holes move toward the anode and electrons move toward the cathode. The charges that have reached the anode and cathode are extracted to the outside of the device.
 光電変換素子の製造において、活性層の表面に直接電極(すなわち、陽極及び陰極)を設けると、活性層の損傷を引き起こすことがある。そのため、光電変換素子は、電極及び活性層の間に中間層等を設けることがある。 In the production of photoelectric conversion elements, if electrodes (i.e., anodes and cathodes) are provided directly on the surface of the active layer, the active layer may be damaged. Therefore, in the photoelectric conversion element, an intermediate layer or the like is sometimes provided between the electrode and the active layer.
 非特許文献1及び非特許文献2には、酸化亜鉛とPFN(ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-alt-2,7-(9,9-ジオクチル)フルオレン])又はPEI(ポリエチレンイミン)とを含む中間層を用いる構成が記載されている。 Non-Patent Document 1 and Non-Patent Document 2 disclose that zinc oxide and PFN (poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2 , 7-(9,9-dioctyl)fluorene]) or PEI (polyethyleneimine).
 光電変換素子は例えば光検出素子として用いられる。光検出素子として用いられる光電変換素子は、電圧が印加された状態で使用され、素子に入射した光が変換されて電流として検出される。しかしながら、光が入射していない状態であっても、光電変換素子に微弱な電流が流れる。この電流は暗電流として知られており、光検出の精度を低下させる要因となっている。 A photoelectric conversion element is used, for example, as a photodetection element. A photoelectric conversion element used as a photodetection element is used in a state where a voltage is applied, and light incident on the element is converted and detected as an electric current. However, even when no light is incident, a weak current flows through the photoelectric conversion element. This current is known as dark current, and is a factor that reduces the accuracy of photodetection.
 従来、光電変換素子をイメージセンサー等に実装する際、はんだ接合や封止工程における熱処理(180~230℃)を経た後に、暗電流が増大することがあった。そして、汎用性向上の観点から、耐熱性の高い光電変換素子の開発が要求されている。 Conventionally, when a photoelectric conversion element is mounted on an image sensor or the like, dark current may increase after heat treatment (180 to 230°C) in the soldering or sealing process. From the viewpoint of improving versatility, there is a demand for the development of photoelectric conversion elements with high heat resistance.
 そこで、本開示の一実施形態が解決しようとする課題は、熱処理後の暗電流の増大が抑制される光電変換素子を提供することである。
 本開示の他の一実施形態が解決しようとする課題は、非イオン性の絶縁性ポリマーを含
む光電変換素子作製用インクを提供することである。
 本開示の他の一実施形態が解決しようとする課題は、熱処理後の暗電流の増大が抑制される光電変換素子を得ることができる光電変換素子の製造方法を提供することである。
 本開示の他の一実施形態が解決しようとする課題は、熱処理後の暗電流の増大が抑制される光検出素子を提供することである。
 本開示の他の一実施形態が解決しようとする課題は、熱処理後の暗電流の増大が抑制される光電変換素子を含むイメージセンサーを提供することである。
 本開示の他の一実施形態が解決しようとする課題は、熱処理後の暗電流の増大が抑制される光電変換素子を含む指紋認証装置を提供することである。
Therefore, an object of an embodiment of the present disclosure is to provide a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
A problem to be solved by another embodiment of the present disclosure is to provide an ink for producing a photoelectric conversion element containing a nonionic insulating polymer.
A problem to be solved by another embodiment of the present disclosure is to provide a method for manufacturing a photoelectric conversion element that can obtain a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
A problem to be solved by another embodiment of the present disclosure is to provide a photodetection element in which an increase in dark current after heat treatment is suppressed.
A problem to be solved by another embodiment of the present disclosure is to provide an image sensor including a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
A problem to be solved by another embodiment of the present disclosure is to provide a fingerprint authentication device including a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
 上記課題を解決するための手段には、以下の手段が含まれる。
<1> 陽極と、
 陰極と、
 前記陽極及び前記陰極の間に設けられる活性層と、
 前記陽極及び前記活性層の間並びに前記陰極及び前記活性層の間の少なくとも一方に設けられる中間層と、を有し、
 前記中間層が非イオン性の絶縁性ポリマーを含む光電変換素子。
<2> 前記非イオン性の絶縁性ポリマーのガラス転移温度が100℃以上である<1>に記載の光電変換素子。
<3> 前記非イオン性の絶縁性ポリマーの融点が150℃以上である<1>又は<2>に記載の光電変換素子。
<4> 前記非イオン性の絶縁性ポリマーが、ポリ(メタ)アクリル、ポリカーボネート、ポリイミド及びフッ素含有ポリマーからなる群から選択される少なくとも1種である<1>~<3>のいずれか1つに記載の光電変換素子。
<5> 前記非イオン性の絶縁性ポリマーが、ポリイミドである<1>~<4>のいずれか1つに記載の光電変換素子。
<6> 前記陰極及び前記活性層の間に中間層を有する<1>~<5>のいずれか1つに記載の光電変換素子。
<7> 前記陰極が透明又は半透明の電極である<6>に記載の光電変換素子。
<8> 前記活性層がp型半導体材料を含む<1>~<7>のいずれか1つに記載の光電変換素子。
<9> 前記p型半導体材料が下記式(I)で表される構成単位及び下記式(II)で表される構成単位からなる群から選択される少なくとも1種を含む高分子化合物である<8>に記載の光電変換素子。
Means for solving the above problems include the following means.
<1> An anode,
a cathode;
an active layer provided between the anode and the cathode;
an intermediate layer provided between the anode and the active layer and at least one between the cathode and the active layer,
A photoelectric conversion element in which the intermediate layer includes a nonionic insulating polymer.
<2> The photoelectric conversion element according to <1>, wherein the nonionic insulating polymer has a glass transition temperature of 100° C. or higher.
<3> The photoelectric conversion element according to <1> or <2>, wherein the nonionic insulating polymer has a melting point of 150° C. or higher.
<4> Any one of <1> to <3>, wherein the nonionic insulating polymer is at least one selected from the group consisting of poly(meth)acrylic, polycarbonate, polyimide, and fluorine-containing polymer. The photoelectric conversion element described in .
<5> The photoelectric conversion element according to any one of <1> to <4>, wherein the nonionic insulating polymer is polyimide.
<6> The photoelectric conversion element according to any one of <1> to <5>, comprising an intermediate layer between the cathode and the active layer.
<7> The photoelectric conversion element according to <6>, wherein the cathode is a transparent or semitransparent electrode.
<8> The photoelectric conversion element according to any one of <1> to <7>, wherein the active layer contains a p-type semiconductor material.
<9> The p-type semiconductor material is a polymer compound containing at least one selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II). 8>.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(I)中、Zは式(Z-1)~式(Z-7)のうちのいずれかで表される基を表し、Ar及びArは、同一であっても異なっていてもよい3価の芳香族複素環基を表す。式(II)中、Arは2価の芳香族複素環基を表す。式(Z-1)~(Z-7)中、Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいシクロアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいシクロアルキルチオ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよい置換アミノ基、置換基を有していてもよいイミン残基、置換基を有していてもよいアミド基、置換基を有していてもよい酸イミド基、置換基を有していてもよい置換オキシカルボニル基、シアノ基、ニトロ基、-C(=O)-Rで表される基、又は-SO-Rで表される基を表し、R及びRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリールオキシ基、又は置換基を有していてもよい1価の複素環基を表す。Rが複数存在する場合、複数存在するRは、互いに同一であっても異なっていてもよい。
<10> 前記中間層の厚さが1nm以上20nm以下である<1>に記載の光電変換素子。
<11> 非イオン性の絶縁性ポリマーを含む光電変換素子作製用インク。
<12> 非イオン性の絶縁性ポリマーを含むインクを塗布することで塗布膜を形成し、前記塗布膜を乾燥する工程を含む光電変換素子の製造方法。
<13> 光検出素子である、<1>~<10>のいずれか1つに記載の光電変換素子。<14> <13>に記載の光電変換素子を含むイメージセンサー。
<15> <13>に記載の光電変換素子を含む指紋認証装置。
In formula (I), Z represents a group represented by any one of formulas (Z-1) to (Z-7), and Ar 1 and Ar 2 may be the same or different. Represents a good trivalent aromatic heterocyclic group. In formula (II), Ar 3 represents a divalent aromatic heterocyclic group. In formulas (Z-1) to (Z-7), R is each independently a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or a cycloalkyl that may have a substituent. group, alkenyl group that may have a substituent, cycloalkenyl group that may have a substituent, alkynyl group that may have a substituent, cycloalkynyl that may have a substituent group, an aryl group which may have a substituent, an alkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent Aryloxy group, optionally substituted alkylthio group, optionally substituted cycloalkylthio group, optionally substituted arylthio group, optionally substituted arylthio group Monovalent heterocyclic group, substituted amino group that may have a substituent, imine residue that may have a substituent, amide group that may have a substituent, an acid imide group which may have a substituent, a substituted oxycarbonyl group which may have a substituent, a cyano group, a nitro group, a group represented by -C(=O)-R c , or -SO 2 -R d R c and R d each independently represent a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent. an aryl group which may have a substituent, an alkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent, an aryloxy group which may have a substituent, Or represents a monovalent heterocyclic group which may have a substituent. When a plurality of R's exist, the plurality of R's may be the same or different.
<10> The photoelectric conversion element according to <1>, wherein the intermediate layer has a thickness of 1 nm or more and 20 nm or less.
<11> An ink for producing a photoelectric conversion element containing a nonionic insulating polymer.
<12> A method for manufacturing a photoelectric conversion element, including the steps of forming a coating film by applying an ink containing a nonionic insulating polymer, and drying the coating film.
<13> The photoelectric conversion element according to any one of <1> to <10>, which is a photodetection element. <14> An image sensor including the photoelectric conversion element according to <13>.
<15> A fingerprint authentication device including the photoelectric conversion element according to <13>.
 本開示の一実施形態によれば、熱処理後の暗電流の増大が抑制される光電変換素子が提供される。
 本開示の他の一実施形態によれば、非イオン性の絶縁性ポリマーを含む光電変換素子作製用インクが提供される。
 本開示の他の一実施形態によれば、熱処理後の暗電流の増大が抑制される光電変換素子を得ることができる光電変換素子の製造方法が提供される。
 本開示の他の一実施形態によれば、熱処理後の暗電流の増大が抑制される光検出素子が提供される。
 本開示の他の一実施形態によれば、熱処理後の暗電流の増大が抑制される光電変換素子を含むイメージセンサーが提供される。
 本開示の他の一実施形態によれば、熱処理後の暗電流の増大が抑制される光電変換素子を含む指紋認証装置が提供される。
According to an embodiment of the present disclosure, a photoelectric conversion element is provided in which increase in dark current after heat treatment is suppressed.
According to another embodiment of the present disclosure, an ink for producing a photoelectric conversion element containing a nonionic insulating polymer is provided.
According to another embodiment of the present disclosure, there is provided a method for manufacturing a photoelectric conversion element that can obtain a photoelectric conversion element in which an increase in dark current after heat treatment is suppressed.
According to another embodiment of the present disclosure, a photodetection element is provided in which increase in dark current after heat treatment is suppressed.
According to another embodiment of the present disclosure, an image sensor including a photoelectric conversion element in which increase in dark current after heat treatment is suppressed is provided.
According to another embodiment of the present disclosure, a fingerprint authentication device including a photoelectric conversion element in which increase in dark current after heat treatment is suppressed is provided.
本開示の一実施形態に係る光電変換素子の概略断面図である。FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment of the present disclosure. 本開示の一実施形態に係る固体撮像装置用のイメージ検出部の概略断面図である。1 is a schematic cross-sectional view of an image detection section for a solid-state imaging device according to an embodiment of the present disclosure. 本開示の一実施形態に係る指紋検出部の概略断面図である。FIG. 2 is a schematic cross-sectional view of a fingerprint detection unit according to an embodiment of the present disclosure.
 以下、本開示の一例である実施形態について説明する。これらの説明及び実施例は、実施形態を例示するものであり、発明の範囲を制限するものではない。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
An embodiment that is an example of the present disclosure will be described below. These descriptions and examples are illustrative of embodiments and are not intended to limit the scope of the invention.
In the numerical ranges described step by step in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good. Further, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
 各成分は該当する物質を複数種含んでいてもよい。
 組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
Each component may contain multiple types of applicable substances.
When referring to the amount of each component in a composition, if there are multiple types of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the multiple types of substances present in the composition means quantity.
 「P価の芳香族複素環基」は、置換基を有していてもよい芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちP個の水素原子を除いた残りの原子団を意味する。
 「P価の複素環基」(Pは、1以上の整数を表す。)とは、置換基を有していてもよい複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちP個の水素原子を除いた残りの原子団を意味する。
"P-valent aromatic heterocyclic group" refers to an aromatic heterocyclic compound which may have a substituent, in which P atoms of the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring are means the remaining atomic group excluding the hydrogen atom.
"P-valent heterocyclic group" (P represents an integer of 1 or more) means a direct bond from a heterocyclic compound that may have a substituent to a carbon atom or heteroatom constituting the ring. It means the remaining atomic group after removing P hydrogen atoms from among the hydrogen atoms shown in the figure.
<光電変換素子>
 本開示に係る光電変換素子は、陽極と、陰極と、上記陽極及び上記陰極の間に設けられる活性層と、上記陽極及び上記活性層の間並びに上記陰極及び上記活性層の間の少なくとも一方に設けられる中間層と、を有し、上記中間層が非イオン性の絶縁性ポリマーを含む。
<Photoelectric conversion element>
The photoelectric conversion element according to the present disclosure includes an anode, a cathode, an active layer provided between the anode and the cathode, and at least one of between the anode and the active layer and between the cathode and the active layer. an intermediate layer provided, the intermediate layer comprising a nonionic insulating polymer.
 本発明者らは、鋭意研究を進めたところ、中間層として非イオン性の絶縁性ポリマーを含む層を適用することで、熱が加わった後の暗電流の発生が抑制されることを見出し、本開示に係る光電変換素子を完成するに至った。 The present inventors conducted extensive research and discovered that by applying a layer containing a nonionic insulating polymer as an intermediate layer, the generation of dark current after heat is applied can be suppressed. A photoelectric conversion element according to the present disclosure has been completed.
(電極)
 本開示に係る光電変換素子は、陽極及び陰極(以下、陽極及び陰極をまとめて電極とも称する)を有する。
 電極としては、透明又は半透明の電極が挙げられる。透明又は半透明の電極としては、例えば、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。
 電極の材質としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウムスズオキサイド(ITO)、インジウム亜鉛オキサイド(IZO)、NESA等の導電性材料;金;白金;銀;銅;等が挙げられる。電極の材質としては、ITO、IZO又は酸化スズが好ましい。
 また、電極の材質として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機化合物を用いてもよい。
(electrode)
The photoelectric conversion element according to the present disclosure has an anode and a cathode (hereinafter, the anode and the cathode are also collectively referred to as electrodes).
Examples of the electrode include transparent or translucent electrodes. Examples of the transparent or semitransparent electrode include a conductive metal oxide film and a semitransparent metal thin film.
Specifically, the electrode material includes conductive materials such as indium oxide, zinc oxide, tin oxide, and their composites such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA; gold; Examples include platinum; silver; copper; and the like. The material of the electrode is preferably ITO, IZO or tin oxide.
Further, as the material of the electrode, organic compounds such as polyaniline and its derivatives, polythiophene and its derivatives, etc. may be used.
 電極は光透過性の低い電極であってもよい。光透過性の低い電極の材質としては、例えば、金属及び導電性高分子が挙げられる。光透過性の低い電極の材質の具体例としては、
リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属;これらのうちの2種以上の合金;これらのうちの1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金;グラファイト;グラファイト層間化合物;ポリアニリン及びその誘導体;ポリチオフェン及びその誘導体;等が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、及びカルシウム-アルミニウム合金が挙げられる。
The electrode may be an electrode with low light transmittance. Examples of materials for the electrode with low light transmittance include metals and conductive polymers. Specific examples of electrode materials with low optical transparency include:
Metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium; two or more of these alloys of one or more of these metals and one or more metals selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; graphite; Graphite intercalation compounds; polyaniline and its derivatives; polythiophene and its derivatives; and the like. The alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
 本開示に係る光電変換素子の電極の少なくとも一方は透明又は半透明の電極であることが好ましい。
 また、本開示に係る光電変換素子が陰極及び活性層の間に中間層を有する場合、陰極が透明又は半透明の電極であることが好ましい。
It is preferable that at least one of the electrodes of the photoelectric conversion element according to the present disclosure is a transparent or semitransparent electrode.
Moreover, when the photoelectric conversion element according to the present disclosure has an intermediate layer between the cathode and the active layer, it is preferable that the cathode is a transparent or translucent electrode.
 電極の厚さは、特に限定されないが、例えば1nm以上1000nm以下であってもよく、100nm以上500nm以下であってもよく、本開示に係る光電変換素子を光検出素子に用いる場合、高い透過率が必要であるため、5nm以上200nm以下であることが好ましい。 The thickness of the electrode is not particularly limited, but may be, for example, 1 nm or more and 1000 nm or less, or 100 nm or more and 500 nm or less, and when the photoelectric conversion element according to the present disclosure is used as a photodetecting element, high transmittance can be obtained. is required, so it is preferably 5 nm or more and 200 nm or less.
 電極の形成方法としては、従来公知の任意好適な形成方法を用いることができる。電極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、スリットコート法やスピンコート法等の塗布法、及びめっき法が挙げられる。 As a method for forming the electrode, any conventionally known suitable forming method can be used. Examples of methods for forming the electrode include vacuum evaporation, sputtering, ion plating, coating methods such as slit coating and spin coating, and plating.
(活性層)
 本開示に係る光電変換素子は、陽極及び陰極の間に設けられる活性層を有する。
 活性層は、p型半導体材料(電子供与性化合物)を含むことが好ましく、p型半導体材料(電子供与性化合物)とn型半導体材料(電子受容性化合物)とを含む(好適なp型半導体材料及びn型半導体材料の詳細については後述する。)ことがより好ましい。p型半導体材料及びn型半導体材料のうちのいずれであるかは、選択された化合物のHOMOのエネルギーレベル又はLUMOのエネルギーレベルから相対的に決定することができる。
(active layer)
A photoelectric conversion element according to the present disclosure includes an active layer provided between an anode and a cathode.
The active layer preferably contains a p-type semiconductor material (electron-donating compound), and contains a p-type semiconductor material (electron-donating compound) and an n-type semiconductor material (electron-accepting compound) (a suitable p-type semiconductor The details of the material and the n-type semiconductor material will be described later.) is more preferable. Which of the p-type semiconductor material and the n-type semiconductor material is used can be relatively determined from the HOMO energy level or LUMO energy level of the selected compound.
 活性層の厚さは、150nm以上10000nm以下であることが好ましく、200nm以上1000nm以下であることがより好ましい。 The thickness of the active layer is preferably 150 nm or more and 10000 nm or less, more preferably 200 nm or more and 1000 nm or less.
 活性層は、塗布法により形成することができる。活性層に含まれ得るp型半導体材料及びn型半導体材料、活性層の形成方法の詳細については後述する。 The active layer can be formed by a coating method. Details of the p-type semiconductor material and n-type semiconductor material that can be included in the active layer and the method for forming the active layer will be described later.
(中間層)
 本開示に係る光電変換素子は、陽極及び活性層の間並びに陰極及び活性層の間の少なくとも一方に設けられる中間層を有する。
 そして、中間層は非イオン性の絶縁性ポリマーを含む。
 暗電流の発生抑制の観点から、本開示に係る光電変換素子は、陰極及び活性層の間に中間層を有することが好ましい。
(middle class)
A photoelectric conversion element according to the present disclosure includes an intermediate layer provided between an anode and an active layer and at least one between a cathode and an active layer.
The intermediate layer includes a nonionic insulating polymer.
From the viewpoint of suppressing the generation of dark current, the photoelectric conversion element according to the present disclosure preferably has an intermediate layer between the cathode and the active layer.
 非イオン性とは、塩構造を有せず、かつ、ブレンステッド酸又はブレンステッド塩基性を有しないことを意味する。
 ブレンステッド酸又はブレンステッド塩基性の有無は、pH計を用いて判断する。具体的には以下の通り判断する。
 水100gに対して、対象とするポリマーを5g溶解することでポリマー溶液を得る。ポリマー溶液の温度を25℃とし、pH計によりポリマー溶液のpHを測定し、pHが5以下又は8以上である場合、ブレンステッド酸又はブレンステッド塩基性を有するとする。
Nonionic means that it does not have a salt structure and does not have a Brønsted acid or Brønsted basicity.
The presence or absence of Brønsted acid or Brønsted basicity is determined using a pH meter. Specifically, the judgment is as follows.
A polymer solution is obtained by dissolving 5 g of the target polymer in 100 g of water. The temperature of the polymer solution is set to 25° C., and the pH of the polymer solution is measured using a pH meter. If the pH is 5 or less or 8 or more, it is considered to have Brønsted acid or Brønsted basicity.
 絶縁性ポリマーとは、室温におけるバンドギャップが3eV以上のポリマーである。絶縁性ポリマーは、3.5eV以上のポリマーであることが好ましい。
室温とは、25℃±5℃の温度である。
 バンドギャップ(Eg)は、測定対象とするポリマー材料の光吸収端波長を用いて下記式により計算することができる。式中、hはプランク定数(6.626×10-34Js)、cは光速(3×10m/s)を示す。
   式:Eg=hc/吸収端波長
An insulating polymer is a polymer having a band gap of 3 eV or more at room temperature. The insulating polymer is preferably a polymer with a voltage of 3.5 eV or more.
Room temperature is a temperature of 25°C±5°C.
The band gap (Eg) can be calculated by the following formula using the optical absorption edge wavelength of the polymer material to be measured. In the formula, h represents Planck's constant (6.626×10 −34 Js) and c represents the speed of light (3×10 8 m/s).
Formula: Eg=hc/absorption edge wavelength
 上記式において、吸収端波長は、紫外光、可視光、近赤外光の波長領域において測定が可能である分光光度計で測定でき、例えば、日本分光(株)製の紫外可視近赤外分光光度計JASCO-V670が使用できる。分光光度計により得られた吸収スペクトル、すなわち、縦軸を(高分子)化合物の吸光度(吸収強度)とし、横軸を波長としてプロットすることにより示された吸収スペクトルにおいて、吸収端波長は、ベースラインと吸収ピークの肩(高波長側)でフィッティングした直線との交点における波長の値を吸収端波長(nm)とすることができる。 In the above formula, the absorption edge wavelength can be measured with a spectrophotometer that can measure in the wavelength range of ultraviolet light, visible light, and near-infrared light. Photometer JASCO-V670 can be used. In the absorption spectrum obtained by a spectrophotometer, that is, the absorbance (absorption intensity) of the (polymer) compound is plotted on the vertical axis and the wavelength is plotted on the horizontal axis, the absorption edge wavelength is The value of the wavelength at the intersection of the line and the straight line fitted at the shoulder of the absorption peak (on the high wavelength side) can be taken as the absorption edge wavelength (nm).
 暗電流の増大抑制の観点から、非イオン性の絶縁性ポリマーのガラス転移温度は100℃以上であることが好ましい。ガラス転移温度は、150℃以上であることがより好ましく、200℃以上であることが更に好ましい。また、ガラス転移温度の上限は、特に限定されないが、例えば400℃以下とすることができる。
 よって、非イオン性の絶縁性ポリマーのガラス転移温度は100℃以上400℃以下であることが好ましく、150℃以上400℃以下であることがより好ましく、200℃以上400℃以下であることが更に好ましい。
From the viewpoint of suppressing an increase in dark current, the glass transition temperature of the nonionic insulating polymer is preferably 100° C. or higher. The glass transition temperature is more preferably 150°C or higher, and even more preferably 200°C or higher. Further, the upper limit of the glass transition temperature is not particularly limited, but may be, for example, 400° C. or lower.
Therefore, the glass transition temperature of the nonionic insulating polymer is preferably 100°C or more and 400°C or less, more preferably 150°C or more and 400°C or less, and even more preferably 200°C or more and 400°C or less. preferable.
 暗電流の増大抑制の観点から、非イオン性の絶縁性ポリマーの融点は150℃以上であることが好ましい。非イオン性の絶縁性ポリマーの融点は、200℃以上であることがより好ましく、300℃以上であることが更に好ましい。非イオン性の絶縁性ポリマーの融点の上限は、特に限定されるものでないが、例えば600℃以下とすることができる。
 よって、非イオン性の絶縁性ポリマーの融点は150℃以上600℃以下であることが好ましく、200℃以上600℃以下であることがより好ましく、300℃以上600℃以下であることが更に好ましい。非イオン性の絶縁性ポリマーの融点のより好ましい範囲は、150℃以上500℃以下であり、200℃以上500℃以下であることがより好ましく、300℃以上500℃以下であることが更に好ましい。
From the viewpoint of suppressing an increase in dark current, the melting point of the nonionic insulating polymer is preferably 150° C. or higher. The melting point of the nonionic insulating polymer is more preferably 200°C or higher, and even more preferably 300°C or higher. The upper limit of the melting point of the nonionic insulating polymer is not particularly limited, but may be, for example, 600° C. or lower.
Therefore, the melting point of the nonionic insulating polymer is preferably 150°C or more and 600°C or less, more preferably 200°C or more and 600°C or less, and even more preferably 300°C or more and 600°C or less. A more preferable range of the melting point of the nonionic insulating polymer is 150°C or more and 500°C or less, more preferably 200°C or more and 500°C or less, and still more preferably 300°C or more and 500°C or less.
 ガラス転移温度及び融点は、市販カタログを含む公知の文献に記載の数値を参考にしてもよいが、JIS-K7121:2012に準拠し、「4.1 示差熱分析(DTA)」又は「4.2 示差走査熱量測定(DSC)」にて測定してもよい。いずれの測定法においても、好ましい非イオン性の絶縁性ポリマーのガラス転移温度及び好ましい融点の温度は上記範囲となる。 For the glass transition temperature and melting point, values described in known documents including commercial catalogs may be referred to, but in accordance with JIS-K7121:2012, "4.1 Differential Thermal Analysis (DTA)" or "4. 2. It may be measured by differential scanning calorimetry (DSC). In either measurement method, the glass transition temperature and melting point of the nonionic insulating polymer are preferably within the above ranges.
 ガラス転移温度及び融点は、示差熱分析装置や示差走査熱量測定装置を用いて測定する。示差熱分析装置としては、(株)島津製作所製DTA-50が使用可能であり、示差走査熱量測定装置としては、(株)島津製作所製DSC-60A Plusが使用可能である。 The glass transition temperature and melting point are measured using a differential thermal analyzer or a differential scanning calorimeter. As the differential thermal analysis device, DTA-50 manufactured by Shimadzu Corporation can be used, and as the differential scanning calorimetry device, DSC-60A Plus manufactured by Shimadzu Corporation can be used.
 示差熱分析装置を用いたガラス転移温度及び融点の測定手順は、例えば下記の通りである。
 2~10mgのサンプルを使用して室温から400℃まで10℃/分の昇温条件で測定した際に観測される吸熱ピーク温度を融点とする。ガラス転移温度は、JIS-K7121:2012の「9.3ガラス転移温度の求め方」に記載の方法で求めることができる。
The procedure for measuring the glass transition temperature and melting point using a differential thermal analyzer is, for example, as follows.
The melting point is defined as the endothermic peak temperature observed when measuring 2 to 10 mg of sample under heating conditions of 10°C/min from room temperature to 400°C. The glass transition temperature can be determined by the method described in "9.3 How to determine the glass transition temperature" of JIS-K7121:2012.
 非イオン性の絶縁性ポリマーは非共役系ポリマーであることが好ましい。
 非共役系ポリマーとは、共役系ポリマー以外のポリマーである。
 共役系ポリマーとは、共役構造がポリマー全体にわたって存在するポリマーである。
The nonionic insulating polymer is preferably a nonconjugated polymer.
A non-conjugated polymer is a polymer other than a conjugated polymer.
A conjugated polymer is a polymer in which a conjugated structure exists throughout the polymer.
 非イオン性の絶縁性ポリマーとしては、ポリ(メタ)アクリル(例えば、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル等);ポリビニルアルコール;ポリエステル(例えば、ポリエチレンテレフタレート、ポリエステルナフタレート、ポリカーボネート等);ポリアミド;ビニルポリマー(例えば、ポリスチレン、ポリビニルトルエン、ポリビニルキシレン等);ポリイミド系高分子;ポリスルフィド;ポリスルホン;ポリフェニレン;ポリフェニルエーテル;ポリウレタン;ポリオレフィン(例えば、ポリプロピレン、ポリメチルペンテン、環状オレフィン等);セルロース;シリコン(例えば、ポリシルセスキオキサン、ポリシラン等);ポリ塩化ビニル;ポリアセテート;ポリノルボルネン;合成ゴム(例えば、エチレンプロピレンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム等)フッ素含有ポリマー(例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、AGC社のCYTOP(登録商標)、AGC社のLumiflon(登録商標)、Dupon社のTeflon(登録商標)等);アクリロニトリル-ブタジエン-スチレン共重合体(ABS);フェノール樹脂(例えば、ノボラック等)等が挙げられる Nonionic insulating polymers include poly(meth)acrylic (e.g., polyacrylate, polymethacrylate, polyacrylonitrile, etc.); polyvinyl alcohol; polyester (e.g., polyethylene terephthalate, polyester naphthalate, polycarbonate, etc.); polyamide; vinyl Polymers (e.g., polystyrene, polyvinyltoluene, polyvinylxylene, etc.); polyimide-based polymers; polysulfides; polysulfones; polyphenylene; (e.g., polysilsesquioxane, polysilane, etc.); polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber (e.g., ethylene propylene rubber, styrene butadiene rubber, ethylene propylene diene rubber, etc.); fluorine-containing polymers (e.g., polyvinylidene fluoride rubber, etc.); Acrylonitrile-butadiene-styrene copolymer ( ABS); phenolic resins (e.g., novolak, etc.), etc.
 暗電流の増大抑制の観点から、非イオン性の絶縁性ポリマーが、ポリ(メタ)アクリル、ポリカーボネート、ポリイミド系高分子及びフッ素含有ポリマーからなる群から選択される少なくとも1種であることが好ましく、ポリイミド系高分子であることがより好ましい。 From the viewpoint of suppressing increase in dark current, the nonionic insulating polymer is preferably at least one selected from the group consisting of poly(meth)acrylic, polycarbonate, polyimide polymer, and fluorine-containing polymer, More preferably, it is a polyimide polymer.
 ポリイミド系高分子は、後述するテトラカルボン酸化合物及びジアミンを原料として製造することができる。また、ジアミンに変えて、ジイソシアネートが原料として用いられ得る。 The polyimide polymer can be produced using the tetracarboxylic acid compound and diamine described below as raw materials. Moreover, diisocyanate can be used as a raw material instead of diamine.
 ポリイミドは、イミド基を含む構成単位を含有する重合体を表し、ポリアミドイミドは、イミド基を含む構成単位とアミド基を含む構成単位との両方を含有する重合体を表す。ポリイミド系高分子は、ポリイミド及びポリアミドイミドから選ばれるいずれかの重合体を表す。 Polyimide represents a polymer containing a structural unit containing an imide group, and polyamide-imide represents a polymer containing both a structural unit containing an imide group and a structural unit containing an amide group. The polyimide polymer represents any polymer selected from polyimide and polyamideimide.
 ポリイミド系高分子は、式(10)で表される構成単位を有する。ここで、式(10)中、Gは4価の有機基を表し、Aは2価の有機基を表す。
 ポリイミド系高分子は、異なる2種類以上の式(10)で表される構成単位を含んでいてもよい。また、本開示に係るポリイミド系高分子は、式(11)、式(12)及び式(13)のいずれかで表される構成単位のいずれか1つ以上を含んでいてもよい。
The polyimide polymer has a structural unit represented by formula (10). Here, in formula (10), G represents a tetravalent organic group, and A represents a divalent organic group.
The polyimide polymer may contain two or more different types of structural units represented by formula (10). Furthermore, the polyimide polymer according to the present disclosure may include any one or more of the structural units represented by any one of formula (11), formula (12), and formula (13).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(10)及び式(11)中、G及びGは、それぞれ独立に、4価の有機基を表し、好ましくは炭素数4以上40以下の4価の有機基を表す。有機基は、炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は1以上8以下であることが好ましい。G及びGとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)のいずれかで表される基;炭素数6以下の4価の鎖式炭化水素基;等が例示される。式(20)~式(29)中の*は結合手を表し、Zは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arはフッ素原子で置換されていてもよい炭素数6以上20以下のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。中間層の黄色度を抑制しやすいことから、G及びGとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)又は式(27)のいずれかで表される基であることが好ましい。 In formulas (10) and (11), G and G 1 each independently represent a tetravalent organic group, preferably a tetravalent organic group having 4 or more and 40 or less carbon atoms. The organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the number of carbon atoms in the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably 1 or more and 8 or less. . As G and G1 , formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28 ) or a group represented by formula (29); a tetravalent chain hydrocarbon group having 6 or less carbon atoms; and the like. * in formulas (20) to (29) represents a bond, and Z represents a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, - C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -Ar-, -SO 2 -, -CO-, -O-Ar-O-, -Ar-O-Ar-, -Ar-CH 2 -Ar-, -Ar-C(CH 3 ) 2 -Ar- or -Ar-SO 2 -Ar-. Ar represents an arylene group having 6 or more and 20 or less carbon atoms which may be substituted with a fluorine atom, and a specific example thereof is a phenylene group. Since it is easy to suppress the yellowness of the intermediate layer, G and G1 are expressed by formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula A group represented by either (26) or formula (27) is preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(12)中、Gは3価の有機基を表し、炭素数4以上40以下の3価の有機基であることが好ましい。有機基は、炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は1以上8以下であることが好ましい。Gとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)のいずれかで表される基の結合手のいずれか1つが水素原子に置き換わった基;炭素数6以下の3価の鎖式炭化水素基;等が例示される。式中のZの例は、Gに関する記述におけるZの例と同じである。 In formula (12), G 2 represents a trivalent organic group, and is preferably a trivalent organic group having 4 or more and 40 or less carbon atoms. The organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the number of carbon atoms in the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably 1 or more and 8 or less. . As G2 , formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or Examples include a group in which any one of the bonds of the group represented by formula (29) is replaced with a hydrogen atom; a trivalent chain hydrocarbon group having 6 or less carbon atoms; and the like. The example of Z in the formula is the same as the example of Z in the description regarding G.
 式(13)中、Gは2価の有機基を表し、炭素数4以上40以下の2価の有機基であることが好ましい。有機基は、炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は1以上8以下であることが好ましい。Gとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)のいずれかで表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基;炭素数6以下の2価の鎖式炭化水素基;等が例示される。式中のZの例は、Gに関する記述におけるZの例と同じである。 In formula (13), G 3 represents a divalent organic group, and is preferably a divalent organic group having 4 or more and 40 or less carbon atoms. The organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the number of carbon atoms in the hydrocarbon group and the fluorine-substituted hydrocarbon group is preferably 1 or more and 8 or less. . As G3 , formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or Examples include a group in which two non-adjacent bonds of the group represented by any of formula (29) are replaced with hydrogen atoms; a divalent chain hydrocarbon group having 6 or less carbon atoms; and the like. The example of Z in the formula is the same as the example of Z in the description regarding G.
 式(10)~式(13)中、A、A、A及びAはいずれも2価の有機基を表し、炭素数4以上40以下の2価の有機基であることが好ましい。有機基は、炭化水素基又はフッ素置換された炭素数1以上8以下の炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は1以上8以下であることが好ましい。A、A、A及びAとしては、それぞれ式(30)、式(31)、式(32)、式(33)、式(34)、式(35)、式(36)、式(37)又は式(38)のいずれかで表される基;それらのいずれかがメチル基、フルオロ基、クロロ基又はトリフルオロメチル基のいずれか1種類以上で置換された基;炭素数6以下の鎖式炭化水素基;等が例示される。
 式(30)~式(38)中、*は結合手を表し、Z、Z及びZは、それぞれ独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-又は-CO-を表す。1つの例は、Z
及びZが-O-であり、かつ、Zが-CH-、-C(CH-、-C(CF-又は-SO-である。
 ZとZ、及び、ZとZは、それぞれ、各環に対してメタ位又はパラ位に位置することが好ましい。
In formulas (10) to (13), A, A 1 , A 2 and A 3 all represent a divalent organic group, preferably a divalent organic group having 4 or more and 40 or less carbon atoms. The organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms; in that case, the hydrocarbon group and the fluorine-substituted hydrocarbon group have 1 or more carbon atoms. It is preferably 8 or less. A, A 1 , A 2 and A 3 are respectively formula (30), formula (31), formula (32), formula (33), formula (34), formula (35), formula (36), and formula A group represented by either (37) or formula (38); a group in which any of them is substituted with one or more of methyl group, fluoro group, chloro group, or trifluoromethyl group; carbon number 6 Examples include the following chain hydrocarbon groups.
In formulas (30) to (38), * represents a bond, and Z 1 , Z 2 and Z 3 each independently represent a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 - or -CO-. One example is Z 1
and Z 3 is -O-, and Z 2 is -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2 - or -SO 2 -.
Z 1 and Z 2 and Z 2 and Z 3 are each preferably located at the meta or para position with respect to each ring.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ポリイミド系高分子は、例えば、ジアミンとテトラカルボン酸化合物(テトラカルボン酸二無水物等)との重縮合によって得られ、例えば特開2006-199945号公報又は特開2008-163107号公報に記載されている方法にしたがって合成することができる。ポリイミド系高分子としては、三菱ガス化学(株)製ネオプリム、河村産業(株)製KPI-MX300Fなどを挙げることができる。 Polyimide polymers are obtained, for example, by polycondensation of diamines and tetracarboxylic acid compounds (tetracarboxylic dianhydrides, etc.), and are described in, for example, JP-A No. 2006-199945 or JP-A No. 2008-163107. It can be synthesized according to the method described. Examples of polyimide polymers include Neoprim manufactured by Mitsubishi Gas Chemical Co., Ltd. and KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd.
 ポリイミド系高分子の合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物、及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を併用してもよい。テトラカルボン酸化合物は、テトラカルボン酸二無水物の他、テトラカルボン酸クロライド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of tetracarboxylic acid compounds used in the synthesis of polyimide polymers include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride, and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. can be mentioned. Tetracarboxylic acid compounds may be used alone or in combination of two or more. The tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as a tetracarboxylic acid chloride compound in addition to a tetracarboxylic dianhydride.
 芳香族テトラカルボン酸二無水物としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプ
ロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、1,2,4,5-ベンゼンテトラカルボン酸二無水物が、縮合多環式の芳香族テトラカルボン酸二無水物としては、2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。
Examples of the aromatic tetracarboxylic dianhydride include non-fused polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and fused polycyclic aromatic tetracarboxylic dianhydride. Examples include anhydrides. Examples of the non-fused polycyclic aromatic tetracarboxylic dianhydride include 4,4'-oxydiphthalic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2' , 3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxylic dianhydride) phenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (can be written as 6FDA) ), 1,2-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4 -dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3- dicarboxyphenyl)methane dianhydride, 4,4'-(p-phenylenedioxy)diphthalic dianhydride, and 4,4'-(m-phenylenedioxy)diphthalic dianhydride. In addition, as the monocyclic aromatic tetracarboxylic dianhydride, 1,2,4,5-benzenetetracarboxylic dianhydride is used, and as the fused polycyclic aromatic tetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride is mentioned.
 これらの中でも、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられ、より好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4-ジカルボキシフェニル)メタン二無水物及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Among these, 4,4'-oxydiphthalic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 2,2',3,3'-benzophenonetetracarboxylic dianhydride are preferable. Anhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl Sulfone tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2- Bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), 1,2-bis(2,3-dicarboxyphenyl) Ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3 ,4-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, 4,4'-(p- Examples include phenylenedioxy)diphthalic dianhydride and 4,4'-(m-phenylenedioxy)diphthalic dianhydride, more preferably 4,4'-oxydiphthalic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA) , bis(3,4-dicarboxyphenyl)methane dianhydride and 4,4′-(p-phenylenedioxy)diphthalic dianhydride. These can be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物は、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル3,3’-4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydride. Cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. , cycloalkane tetracarboxylic dianhydride such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride, bicyclo[2.2. 2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl 3,3'-4,4'-tetracarboxylic dianhydride, and positional isomers thereof. These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These can be used alone or in combination of two or more.
 中間層の透明性及び着色の抑制の観点などから、テトラカルボン酸化合物としては、好ましくは前記脂環式テトラカルボン酸二無水物又は非縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。より好ましい具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)が挙げられる。これら
は単独で又は2種以上を組み合わせて用いることができる。
From the viewpoint of transparency of the intermediate layer and suppression of coloration, the tetracarboxylic acid compound is preferably the alicyclic tetracarboxylic dianhydride or the non-fused polycyclic aromatic tetracarboxylic dianhydride. It will be done. More preferred specific examples include 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, and 2,2-bis(3 , 4-dicarboxyphenyl)propane dianhydride, and 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA). These can be used alone or in combination of two or more.
 ポリイミド系高分子は、上記のポリイミド合成に用いられるテトラカルボン酸の無水物に加えて、テトラカルボン酸、トリカルボン酸化合物、ジカルボン酸化合物、それらの無水物及びそれらの誘導体を更に反応させたものであってもよい。 Polyimide polymers are made by further reacting tetracarboxylic acids, tricarboxylic acid compounds, dicarboxylic acid compounds, their anhydrides, and their derivatives in addition to the tetracarboxylic acid anhydrides used in the polyimide synthesis described above. There may be.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸並びにそれらの酸クロライド化合物、及び酸無水物等が挙げられ、これらは2種以上を併用してもよい。
 トリカルボン酸化合物の具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-CH-、-C(CH-、-C(CF-、-SO-もしくはフェニレン基のいずれかで連結された化合物;等が挙げられる。
Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, their acid chloride compounds, and acid anhydrides, and two or more of these may be used in combination.
Specific examples of tricarboxylic acid compounds include 1,2,4-benzenetricarboxylic anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic anhydride and benzoic acid forming a single bond , -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 - or a phenylene group; and the like.
 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、これらは2種以上を併用してもよい。その具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸骨格が-CH-、-S-、-C(CH-、-C(CF-、-O-、-NR-、-C(=O)-、-SO-もしくはフェニレン基のいずれかで連結された化合物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of dicarboxylic acid compounds include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and their analogous acid chloride compounds, acid anhydrides, and the like, and two or more of these may be used in combination. Specific examples include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; chain hydrocarbons having 8 or less carbon atoms; The two benzoic acid skeletons are -CH 2 -, -S-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -O-, -NR 9 -, -C(=O)-, Examples include compounds linked with either -SO 2 - or a phenylene group. These can be used alone or in combination of two or more.
 ジカルボン酸化合物としては、好ましくはテレフタル酸;イソフタル酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;及び2つの安息香酸骨格が-CH-、-C(=O)-、-O-、-NR-、-SO-もしくはフェニレン基のいずれかで連結された化合物であり、より好ましくは、テレフタル酸;4,4’-ビフェニルジカルボン酸;及び2つの安息香酸骨格が-O-、-NR-、-C(=O)-又は-SO-のいずれかで連結された化合物である。これらは単独で又は2種以上を組み合わせて用いることができる。
 Rは、ハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。
The dicarboxylic acid compound is preferably terephthalic acid; isophthalic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; and two benzoic acid skeletons having -CH 2 -, -C(=O) -, -O-, -NR 9 -, -SO 2 - or a compound linked with a phenylene group, more preferably terephthalic acid; 4,4'-biphenyldicarboxylic acid; and two benzoic acids It is a compound whose skeletons are connected by either -O-, -NR 9 -, -C(=O)- or -SO 2 -. These can be used alone or in combination of two or more.
R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
 テトラカルボン酸化合物、トリカルボン酸化合物、及びジカルボン酸化合物の合計に対する、テトラカルボン酸化合物の割合は、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは70モル%以上であり、より更に好ましくは90モル%以上であり、とりわけ好ましくは98モル%以上である。 The ratio of the tetracarboxylic acid compound to the total of the tetracarboxylic acid compound, tricarboxylic acid compound, and dicarboxylic acid compound is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 70 mol%. The content is more preferably 90 mol% or more, particularly preferably 98 mol% or more.
 ポリイミド系高分子の合成に用いられるジアミンとしては、脂肪族ジアミン、芳香族ジアミン又はそれらの混合物が挙げられる。なお、本明細書において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環が挙げられる。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 Diamines used in the synthesis of polyimide polymers include aliphatic diamines, aromatic diamines, and mixtures thereof. In this specification, the term "aromatic diamine" refers to a diamine in which an amino group is directly bonded to an aromatic ring, and may include an aliphatic group or other substituent as part of its structure. The aromatic ring may be a single ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring, etc., but are not limited thereto. Among these, a benzene ring is preferred. Moreover, "aliphatic diamine" refers to a diamine in which an amino group is directly bonded to an aliphatic group, and may include an aromatic ring or other substituents as part of its structure.
 脂肪族ジアミンとしては、ヘキサメチレンジアミン等の非環式脂肪族ジアミン及び1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる
Examples of aliphatic diamines include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine, and 4,4'-diaminodicyclohexyl. Examples include cycloaliphatic diamines such as methane, and these can be used alone or in combination of two or more.
 芳香族ジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の芳香環を1つ有する芳香族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMBと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の芳香環を2つ以上有する芳香族ジアミン;が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, etc. Aromatic diamine having one aromatic ring; 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether , 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-amino phenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (written as TFMB) ), 4,4'-bis(4-aminophenoxy)biphenyl, 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(4-amino-3-methylphenyl)fluorene, 9 , 9-bis(4-amino-3-chlorophenyl)fluorene, 9,9-bis(4-amino-3-fluorophenyl)fluorene, and other aromatic diamines having two or more aromatic rings. These can be used alone or in combination of two or more.
 芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニルであり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニルである。これらは単独で又は2種以上を組み合わせて用いることができる。 The aromatic diamine is preferably 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl)-4,4'-diaminodiphenyl (TFMB), 4,4'-bis(4-aminophenoxy)biphenyl, more preferably 4,4'-diaminodiphenylmethane, 4,4'-diamino Diphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, 2,2 -Bis[4-(4-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB), 4,4' -bis(4-aminophenoxy)biphenyl. These can be used alone or in combination of two or more.
 ジアミンは、フッ素系置換基を有することもできる。フッ素系置換基としては、トリフルオロメチル基などの炭素数1以上5以下のパーフルオロアルキル基、及び、フルオロ基が挙げられる。 The diamine can also have a fluorine substituent. Examples of the fluorine-based substituent include a perfluoroalkyl group having 1 to 5 carbon atoms, such as a trifluoromethyl group, and a fluoro group.
 ジアミンの中でも、高透明性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましく、具体的には2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)及び4,4’-ビス(4-アミノフェノキシ)ビフェニルからなる群から選ばれる1種以上を用いることが好ましい。ビフェニル構造及びフッ素系置換基を有するジアミンであることがより好ましく、具体的には2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)を用いることがより好ましい。 Among the diamines, from the viewpoint of high transparency and low coloration, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure, specifically 2,2'-dimethylbenzidine, It is preferable to use one or more selected from the group consisting of 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB) and 4,4'-bis(4-aminophenoxy)biphenyl. . It is more preferable to use a diamine having a biphenyl structure and a fluorine substituent, and specifically, it is more preferable to use 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl (TFMB).
 ポリイミド系高分子は、ジアミンと、テトラカルボン酸化合物(酸クロライド化合物、テトラカルボン酸二無水物等のテトラカルボン酸化合物類縁体を含む)との重縮合で形成される、式(10)で表される構成単位を含む縮合型高分子である。出発原料としては、これらに加えて、さらにトリカルボン酸化合物(酸クロライド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体を含む)及びジカルボン酸化合物(酸クロライド化合物等の類縁体を含む)を用いることもある。
 式(10)及び式(11)で表される構成単位は、通常、ジアミン及びテトラカルボン酸化合物から誘導される。式(12)で表される構成単位は、通常、ジアミン及びトリカルボン酸化合物から誘導される。式(13)で表される構成単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。ジアミン、テトラカルボン酸化合物、トリカルボン酸化合物及びジカルボン酸化合物の具体例は、上述のとおりである。
The polyimide polymer is formed by polycondensation of a diamine and a tetracarboxylic acid compound (including tetracarboxylic acid compound analogs such as acid chloride compounds and tetracarboxylic dianhydride), and is represented by formula (10). It is a condensation type polymer containing structural units of In addition to these, as starting materials, tricarboxylic acid compounds (including tricarboxylic acid compound analogs such as acid chloride compounds and tricarboxylic acid anhydrides) and dicarboxylic acid compounds (including analogs such as acid chloride compounds) are used. Sometimes.
The structural units represented by formulas (10) and (11) are usually derived from diamines and tetracarboxylic acid compounds. The structural unit represented by formula (12) is usually derived from a diamine and a tricarboxylic acid compound. The structural unit represented by formula (13) is usually derived from a diamine and a dicarboxylic acid compound. Specific examples of the diamine, tetracarboxylic acid compound, tricarboxylic acid compound, and dicarboxylic acid compound are as described above.
 ジアミンと、テトラカルボン酸化合物等のカルボン酸化合物とのモル比は、ジアミン1.00molに対して、好ましくはテトラカルボン酸0.9mol以上1.1mol以下の範囲で適宜調節できる。高い耐折性を発現するためには得られるポリイミド系高分子が高分子量であることが好ましいことから、ジアミン1.00molに対してテトラカルボン酸0.98mol以上1.02molであることがより好ましく、0.99mol%以上1.01mol%以下であることが更に好ましい。
 また、得られる中間層の黄色度を抑制する観点から、得られる高分子末端に占めるアミノ基の割合が低いことが好ましく、ジアミン1.00molに対してテトラカルボン酸化合物等のカルボン酸化合物は1.00mol以上であることが好ましい。
The molar ratio between the diamine and the carboxylic acid compound such as the tetracarboxylic acid compound can be appropriately adjusted in the range of preferably 0.9 mol or more and 1.1 mol or less of the tetracarboxylic acid per 1.00 mol of the diamine. In order to exhibit high bending durability, it is preferable that the obtained polyimide polymer has a high molecular weight, so it is more preferable that the amount of tetracarboxylic acid is 0.98 mol or more and 1.02 mol per 1.00 mol of diamine. , more preferably 0.99 mol% or more and 1.01 mol% or less.
In addition, from the viewpoint of suppressing the yellowness of the obtained intermediate layer, it is preferable that the proportion of amino groups occupying the terminals of the obtained polymer is low, and the ratio of carboxylic acid compounds such as tetracarboxylic acid compounds to 1.00 mol of diamine is 1. It is preferable that it is .00 mol or more.
 ジアミン及びカルボン酸化合物(たとえば、テトラカルボン酸化合物)の分子中のフッ素数を調整して、得られるポリイミド系高分子中のフッ素量を、ポリイミド系高分子の質量を基準として、1質量%以上、5質量%以上、10質量%以上、20質量%以上とすることができる。フッ素の割合が高いほど原料費が高くなる傾向があることから、フッ素量の上限は40質量%以下であることが好ましい。フッ素系置換基は、ジアミン又はカルボン酸化合物のいずれに存在してもよく、両方に存在してもよい。 By adjusting the number of fluorine in the molecule of diamine and carboxylic acid compound (for example, tetracarboxylic acid compound), the amount of fluorine in the resulting polyimide polymer is 1% by mass or more based on the mass of the polyimide polymer. , 5% by mass or more, 10% by mass or more, or 20% by mass or more. Since raw material costs tend to increase as the proportion of fluorine increases, the upper limit of the amount of fluorine is preferably 40% by mass or less. The fluorine substituent may be present in either the diamine or the carboxylic acid compound, or in both.
 ポリイミド系高分子は、異なる種類の複数の上記の構成単位を含む共重合体でもよい。ポリイミド系高分子の標準ポリスチレン換算の重量平均分子量は、通常100,000~800,000であり、200,000以上700,000以下であることが好ましく、300,000以上600,000以下であることがより好ましく、350,000以上500,000以下であることが更に好ましい。 The polyimide polymer may be a copolymer containing a plurality of different types of the above structural units. The weight average molecular weight of the polyimide polymer in terms of standard polystyrene is usually 100,000 to 800,000, preferably 200,000 to 700,000, and 300,000 to 600,000. is more preferable, and even more preferably 350,000 or more and 500,000 or less.
 光透過性の観点から、ポリイミド系高分子は、含フッ素置換基を有することが好ましい。含フッ素置換基の具体例としては、フルオロ基及びトリフルオロメチル基が挙げられる。 From the viewpoint of light transparency, the polyimide polymer preferably has a fluorine-containing substituent. Specific examples of the fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
 中間層は、非イオン性の絶縁性ポリマー以外のその他の成分を含んでもよく、含んでいなくてもよい。
 その他の成分としては、後述の第二中間層に含まれる成分が挙げられ、例えば正孔輸送性材料、電子輸送性材料などが挙げられる。
The intermediate layer may or may not contain components other than the nonionic insulating polymer.
Examples of other components include components included in the second intermediate layer described below, such as a hole transporting material, an electron transporting material, and the like.
 暗電流の増大抑制の観点から、中間層中における非イオン性の絶縁性ポリマーの含有量は、中間層全体の質量に対して、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることが更に好ましい。 From the viewpoint of suppressing the increase in dark current, the content of the nonionic insulating polymer in the intermediate layer is preferably 80% by mass or more and 100% by mass or less, and 90% by mass or less, based on the mass of the entire intermediate layer. % or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less.
 電荷の移動のしやすさの観点から、中間層の厚さは、1nm以上100nm以下である
ことが好ましく、1nm以上20nm以下であることがより好ましく、1nm以上15nm以下であることが更に好ましい。
From the viewpoint of ease of charge movement, the thickness of the intermediate layer is preferably 1 nm or more and 100 nm or less, more preferably 1 nm or more and 20 nm or less, and even more preferably 1 nm or more and 15 nm or less.
 中間層は、塗布法により形成することができる。中間層の形成方法の詳細については後述する。 The intermediate layer can be formed by a coating method. Details of the method for forming the intermediate layer will be described later.
(第二中間層)
 本開示に係る光電変換素子は、必要に応じて前記非イオン性の絶縁性ポリマーを含有しない第二中間層を有していてもよい。
 第二中間層は、その機能に応じて正孔輸送層、電子輸送層、正孔注入層、電子注入層等とも称する。
 正孔輸送層とは、活性層から電極へと正孔を輸送する機能を有する層である。
 正孔注入層とは、陽極に接して設けられる正孔輸送層である。
 電子輸送層とは、活性層から電極へと電子を輸送する機能を有する層である。
 電子注入層とは、陰極に接して設けられる電子輸送層である。
(Second middle layer)
The photoelectric conversion element according to the present disclosure may have a second intermediate layer that does not contain the nonionic insulating polymer, if necessary.
The second intermediate layer is also referred to as a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, etc. depending on its function.
The hole transport layer is a layer that has the function of transporting holes from the active layer to the electrode.
The hole injection layer is a hole transport layer provided in contact with the anode.
The electron transport layer is a layer that has the function of transporting electrons from the active layer to the electrode.
The electron injection layer is an electron transport layer provided in contact with the cathode.
 第二中間層に用いられる材料としては、従来公知の任意好適な材料を用いることができる。第二中間層の材料としては、例えば、フッ化リチウムなどのアルカリ金属又はアルカリ土類金属のハロゲン化物、及び酸化物が挙げられる。
 また、第二中間層に用いられる材料としては、例えば、酸化チタン等の無機半導体材料の微粒子、及びPEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)が挙げられる。
As the material used for the second intermediate layer, any conventionally known suitable material can be used. Examples of the material for the second intermediate layer include halides and oxides of alkali metals or alkaline earth metals such as lithium fluoride.
Examples of materials used for the second intermediate layer include fine particles of inorganic semiconductor materials such as titanium oxide, PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (poly(4-styrene sulfonate)). ) (PEDOT:PSS).
 第二中間層が正孔輸送層である場合、光電変換素子は、陽極と活性層との間に、正孔輸送層(正孔注入層)を備えることが好ましい。
 正孔輸送層は、単層であっても、2層以上が積層されていてもよい。正孔輸送層(正孔注入層)は、活性層に接していてもよい。
When the second intermediate layer is a hole transport layer, the photoelectric conversion element preferably includes a hole transport layer (hole injection layer) between the anode and the active layer.
The hole transport layer may be a single layer or a stack of two or more layers. The hole transport layer (hole injection layer) may be in contact with the active layer.
 正孔輸送層は、正孔輸送性材料を含む。正孔輸送性材料の例としては、ポリチオフェン及びその誘導体、芳香族アミン化合物、芳香族アミン残基を有する構成単位を含む高分子化合物、CuSCN、CuI、NiO、及び酸化モリブデン(MoO)が挙げられる。 The hole transport layer contains a hole transport material. Examples of hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing structural units having aromatic amine residues, CuSCN, CuI, NiO, and molybdenum oxide (MoO 3 ). It will be done.
 第二中間層が電子輸送層である場合、光電変換素子は、陰極と活性層との間に、電子輸送層(又は電子注入層。以下同様とする。)を備えることが好ましい。
 電子輸送層は、単層であっても、2層以上が積層されていてもよい。電子輸送層は、活性層に接していてもよい。
When the second intermediate layer is an electron transport layer, the photoelectric conversion element preferably includes an electron transport layer (or an electron injection layer; the same shall apply hereinafter) between the cathode and the active layer.
The electron transport layer may be a single layer or a stack of two or more layers. The electron transport layer may be in contact with the active layer.
 電子輸送層は、電子輸送性材料を含む。電子輸送性材料としては、光電変換素子を構成する層中の電子の移動に寄与する任意好適な材料が挙げられる。電子輸送性材料としては、例えば金属化合物及びアルキレン構造を有する化合物が挙げられる。 The electron transport layer contains an electron transport material. Examples of the electron transporting material include any suitable material that contributes to the movement of electrons in the layers constituting the photoelectric conversion element. Examples of the electron transporting material include metal compounds and compounds having an alkylene structure.
 金属化合物の例としては、金属酸化物、金属水酸化物及び金属アルコキシドが挙げられる。金属化合物は、好ましくは二価以上の金属を含む金属酸化物;金属水酸化物;又は金属アルコキシド;より好ましくは亜鉛もしくはチタンを含む金属酸化物;金属水酸化物;又は金属アルコキシド;であってもよい。
 金属アルコキシドの例としては、金属メトキシド、金属エトキシド、金属プロポキシド、金属イソプロポキシド、金属n-ブトキシド、金属sec-ブトキシド、金属イソブトキシド、金属tert-ブトキシドが挙げられる。
 金属酸化物の例としては、酸化亜鉛、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、酸化チタン及び酸化ニオブが挙げられる。金属酸化物としては、亜鉛を含む金属
酸化物が好ましく、中でも酸化亜鉛が好ましい。
Examples of metal compounds include metal oxides, metal hydroxides and metal alkoxides. The metal compound is preferably a metal oxide containing a divalent or higher valent metal; a metal hydroxide; or a metal alkoxide; more preferably a metal oxide containing zinc or titanium; a metal hydroxide; or a metal alkoxide; Good too.
Examples of metal alkoxides include metal methoxide, metal ethoxide, metal propoxide, metal isopropoxide, metal n-butoxide, metal sec-butoxide, metal isobutoxide, metal tert-butoxide.
Examples of metal oxides include zinc oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, titanium oxide, and niobium oxide. As the metal oxide, metal oxides containing zinc are preferred, and zinc oxide is particularly preferred.
 金属アルコキシドとしては、チタンを含む金属アルコキシドが好ましく、中でもチタニウム(IV)イソプロポキシドが好ましい。 As the metal alkoxide, metal alkoxides containing titanium are preferred, and titanium (IV) isopropoxide is particularly preferred.
 アルキレン構造を有する化合物の例としては、ポリアルキレンイミン及びその誘導体が挙げられる。ポリアルキレンイミン及びその誘導体の例としては、エチレンイミン、プロピレンイミン、ブチレンイミン、ジメチルエチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミンといった炭素原子数2~8のアルキレンイミン、特に炭素原子数2~4のアルキレンイミンの1種又は2種以上を常法により重合して得られるポリマー、ならびにそれらを種々の化合物と反応させて化学的に変性させたポリマーが挙げられる。ポリアルキレンイミン及びその誘導体としては、ポリエチレンイミン(PEI)及びポリアルキレンイミンを主鎖として含み、エチレンオキシドが主鎖中の窒素原子に付加した変性体であるポリエチレンイミンエトキシレート(PEIE:エトキシ化ポリエチレンイミン)が好ましい。 Examples of compounds having an alkylene structure include polyalkylene imines and derivatives thereof. Examples of polyalkyleneimines and derivatives thereof include alkyleneimines having 2 to 8 carbon atoms, especially those having 2 to 8 carbon atoms, such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine. Examples include polymers obtained by polymerizing one or more of 2 to 4 alkylene imines by a conventional method, and polymers chemically modified by reacting them with various compounds. Polyalkyleneimine and its derivatives include polyethyleneimine ethoxylate (PEIE: ethoxylated polyethyleneimine), which is a modified product containing polyethyleneimine (PEI) and polyalkyleneimine as the main chain, with ethylene oxide added to the nitrogen atom in the main chain. ) is preferred.
 第二中間層は、塗布法により形成することができる。第二中間層の形成方法の詳細については後述する。 The second intermediate layer can be formed by a coating method. Details of the method for forming the second intermediate layer will be described later.
(基板)
 本開示に係る光電変換素子は、基板を有してもよい。
 光電変換素子は、通常、基板に形成される。この基板には、通常、電極が形成される。基板の材料は特に限定されない。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。基板が不透明である場合には、不透明な基板側に設けられる電極とは反対側の電極(すなわち、基板から遠い側の電極)が透明又は半透明の電極とすることが好ましい。
(substrate)
The photoelectric conversion element according to the present disclosure may have a substrate.
A photoelectric conversion element is usually formed on a substrate. Electrodes are usually formed on this substrate. The material of the substrate is not particularly limited. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. When the substrate is opaque, it is preferable that the electrode on the opposite side of the electrode provided on the opaque substrate (ie, the electrode on the side far from the substrate) be a transparent or semitransparent electrode.
(光電変換素子の構成例)
 本開示に係る光電変換素子が取り得る構成例について説明する。図1は、本開示の一実施形態に係る光電変換素子の概略断面図である。
 図1に示されるように、本開示に係る光電変換素子10は、例えば、基板(支持基板)11上に設けられている。光電変換素子10は、基板11に接するように設けられている電極12と、電極12に接するように設けられている第二中間層又は中間層である層13と、第二中間層又は中間層13に接するように設けられている活性層14と、活性層14に接するように設けられている第二中間層又は中間層である層15と、第二中間層又は中間層である層15に接するように設けられている電極16とを備えている。
 この構成例では、電極16に接するように設けられている基板17をさらに備えている。
(Example of configuration of photoelectric conversion element)
Examples of configurations that can be taken by the photoelectric conversion element according to the present disclosure will be described. FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment of the present disclosure.
As shown in FIG. 1, a photoelectric conversion element 10 according to the present disclosure is provided on, for example, a substrate (support substrate) 11. The photoelectric conversion element 10 includes an electrode 12 provided in contact with a substrate 11, a second intermediate layer or layer 13 provided in contact with the electrode 12, and a second intermediate layer or intermediate layer. an active layer 14 provided in contact with active layer 13; a second intermediate layer or layer 15 provided in contact with active layer 14; and layer 15, which is a second intermediate layer or intermediate layer. The electrode 16 is provided so as to be in contact with the electrode 16.
This configuration example further includes a substrate 17 provided in contact with the electrode 16.
 ここで、本開示に係る光電変換素子10は、電極12は陽極であり、層13は第二中間層であり、層15は中間層であり、電極16は陰極であることが好ましい。 Here, in the photoelectric conversion element 10 according to the present disclosure, it is preferable that the electrode 12 is an anode, the layer 13 is a second intermediate layer, the layer 15 is an intermediate layer, and the electrode 16 is a cathode.
(光電変換素子の用途)
 本開示に係る光電変換素子は、光が照射されることにより、電極間に光起電力を発生させることができ、太陽電池として動作させることができる。また太陽電池を複数集積することにより薄膜太陽電池モジュールとすることもできる。
(Applications of photoelectric conversion elements)
The photoelectric conversion element according to the present disclosure can generate photovoltaic force between electrodes when irradiated with light, and can be operated as a solar cell. Furthermore, a thin film solar cell module can be formed by integrating a plurality of solar cells.
 本開示に係る光電変換素子は、電極間に電圧を印加した状態で、透明又は半透明の電極側から光を照射することにより、光電流を流すことができ、光検出素子(光センサー)として動作させることができる。また、光センサーを複数集積することによりイメージセン
サーとして用いることもできる。
The photoelectric conversion element according to the present disclosure can cause a photocurrent to flow by irradiating light from the transparent or semi-transparent electrode side with a voltage applied between the electrodes, and can be used as a photodetection element (photosensor). It can be made to work. Furthermore, by integrating a plurality of optical sensors, it can also be used as an image sensor.
 本開示に係る光電変換素子は、ワークステーション、パーソナルコンピュータ、携帯情報端末、入退室管理システム、デジタルカメラ、及び医療機器などの種々の電子装置が備える検出部に好適に適用することができる。 The photoelectric conversion element according to the present disclosure can be suitably applied to detection units included in various electronic devices such as workstations, personal computers, personal digital assistants, room access control systems, digital cameras, and medical equipment.
 本開示に係る光電変換素子は、上記例示の電子装置が備える、例えば、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーの検出部などに好適に適用することができる。 The photoelectric conversion element according to the present disclosure includes, for example, an image detection unit (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection unit, a face detection unit, It can be suitably applied to a detection unit that detects a predetermined characteristic of a part of a living body, such as a vein detection unit and an iris detection unit, and a detection unit of an optical biosensor such as a pulse oximeter.
 以下、本開示に係る光電変換素子が好適に適用され得る検出部のうち、固体撮像装置用のイメージ検出部、生体情報認証装置(指紋認証装置)のための指紋検出部の構成例について、図面を参照して説明する。 Hereinafter, configuration examples of an image detection section for a solid-state imaging device and a fingerprint detection section for a biometric information authentication device (fingerprint authentication device) among the detection sections to which the photoelectric conversion element according to the present disclosure can be suitably applied will be explained in drawings. Explain with reference to.
-イメージ検出部-
 図2は、固体撮像装置用のイメージ検出部の概略断面図である。
 イメージ検出部1は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本開示に係る光電変換素子10と、層間絶縁膜30を貫通するように設けられており、CMOSトランジスタ基板20と光電変換素子10とを電気的に接続する層間配線部32と、光電変換素子10を覆うように設けられている封止層40と、封止層40上に設けられているカラーフィルター50とを備えている。
 CMOSトランジスタ基板20は、従来公知の任意好適な構成を設計に応じた態様で備えている。
-Image detection section-
FIG. 2 is a schematic cross-sectional view of an image detection section for a solid-state imaging device.
The image detection unit 1 includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided to cover the CMOS transistor substrate 20, and a photoelectric conversion element 10 according to the present disclosure provided on the interlayer insulating film 30. , an interlayer wiring section 32 that is provided to penetrate the interlayer insulating film 30 and electrically connect the CMOS transistor substrate 20 and the photoelectric conversion element 10, and a sealing section that is provided to cover the photoelectric conversion element 10. It includes a sealing layer 40 and a color filter 50 provided on the sealing layer 40.
The CMOS transistor substrate 20 is provided with any conventionally known suitable configuration in accordance with the design.
 CMOSトランジスタ基板20は、基板の厚さ内に形成されたトランジスタ、コンデンサなどを含み、種々の機能を実現するためのCMOSトランジスタ回路(MOSトランジスタ回路)などの機能素子を備えている。
 機能素子としては、例えば、フローティングディフュージョン、リセットトランジスタ、出力トランジスタ、選択トランジスタが挙げられる。
 このような機能素子、配線などにより、CMOSトランジスタ基板20には、信号読み出し回路などが作り込まれている。
The CMOS transistor substrate 20 includes transistors, capacitors, etc. formed within the thickness of the substrate, and is equipped with functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions.
Examples of the functional element include a floating diffusion, a reset transistor, an output transistor, and a selection transistor.
A signal readout circuit and the like are built into the CMOS transistor substrate 20 using such functional elements, wiring, and the like.
 層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。 The interlayer insulating film 30 can be made of any suitable insulating material known in the art, such as silicon oxide or insulating resin. The interlayer wiring section 32 can be made of any conventionally known suitable conductive material (wiring material), such as copper or tungsten. The interlayer wiring section 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or a buried plug formed separately from the wiring layer.
 封止層40は、光電変換素子10を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。封止層40は、既に説明した封止基板17により構成してもよい。 The sealing layer 40 may be made of any conventionally known suitable material, provided that it can prevent or suppress the penetration of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. Can be done. The sealing layer 40 may be constituted by the sealing substrate 17 described above.
 カラーフィルター50としては、従来公知の任意好適な材料により構成され、かつイメージ検出部1の設計に対応した例えば原色カラーフィルターを用いることができる。また、カラーフィルター50としては、原色カラーフィルターと比較して、厚さを薄くすることができる補色カラーフィルターを用いることもできる。補色カラーフィルターとしては
、例えば(イエロー、シアン、マゼンタ)の3種類、(イエロー、シアン、透明)の3種類、(イエロー、透明、マゼンタ)の3種類、及び(透明、シアン、マゼンタ)の3種類が組み合わされたカラーフィルターを用いることができる。これらは、カラー画像データを生成できることを条件として、光電変換素子10及びCMOSトランジスタ基板20の設計に対応した任意好適な配置とすることができる。
As the color filter 50, for example, a primary color filter that is made of any suitable conventionally known material and that corresponds to the design of the image detection section 1 can be used. Further, as the color filter 50, a complementary color filter that can be made thinner than a primary color filter can also be used. Examples of complementary color filters include three types (yellow, cyan, magenta), three types (yellow, cyan, transparent), three types (yellow, transparent, magenta), and three types (transparent, cyan, magenta). Color filters having a combination of types can be used. These can be arranged in any suitable manner depending on the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20, provided that color image data can be generated.
 カラーフィルター50を介して光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像対象に対応する電気信号として出力される。 The light received by the photoelectric conversion element 10 via the color filter 50 is converted by the photoelectric conversion element 10 into an electric signal according to the amount of received light, and the received light signal, that is, the imaged object, is transmitted to the outside of the photoelectric conversion element 10 via the electrode. is output as an electrical signal corresponding to
 次いで、光電変換素子10から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、撮像対象に基づく画像情報が生成される。 Next, the light reception signal outputted from the photoelectric conversion element 10 is inputted to the CMOS transistor substrate 20 via the interlayer wiring section 32, and is read out by a signal readout circuit built in the CMOS transistor substrate 20. Image information based on the imaging target is generated by signal processing by any suitable conventionally known functional unit.
-指紋検出部-
 図3は、表示装置に一体的に構成される指紋検出部の概略断面図である。
 携帯情報端末の表示装置2は、本開示に係る光電変換素子10を主たる構成要素として含む指紋検出部100と、当該指紋検出部100上に設けられ、所定の画像を表示する表示パネル部200とを備えている。
-Fingerprint detection part-
FIG. 3 is a schematic cross-sectional view of a fingerprint detection unit that is integrated with the display device.
The display device 2 of the mobile information terminal includes a fingerprint detection section 100 that includes the photoelectric conversion element 10 according to the present disclosure as a main component, and a display panel section 200 that is provided on the fingerprint detection section 100 and displays a predetermined image. It is equipped with
 この構成例では、表示パネル部200の表示領域200aと略一致する領域に指紋検出部100が設けられている。換言すると、指紋検出部100の上方に、表示パネル部200が一体的に積層されている。
 表示領域200aのうちの一部の領域においてのみ指紋検出を行う場合には、当該一部の領域のみに対応させて指紋検出部100を設ければよい。
In this configuration example, the fingerprint detection section 100 is provided in an area that substantially coincides with the display area 200a of the display panel section 200. In other words, the display panel section 200 is integrally stacked above the fingerprint detection section 100.
If fingerprint detection is to be performed only in a part of the display area 200a, the fingerprint detection section 100 may be provided corresponding to only the part of the area.
 指紋検出部100は、本開示に係る光電変換素子10を本質的な機能を奏する機能部として含む。指紋検出部100は、図示されていない保護フィルム(protection
 film)、支持基板、封止基板、封止部材、バリアフィルム、バンドパスフィルター、赤外線カットフィルムなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。指紋検出部100には、既に説明したイメージ検出部の構成を採用することもできる。
The fingerprint detection unit 100 includes the photoelectric conversion element 10 according to the present disclosure as a functional unit that performs essential functions. The fingerprint detection unit 100 is equipped with a protective film (not shown).
Any suitable conventionally known members such as a supporting substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, an infrared cut film, etc. can be provided in a manner corresponding to the design so that desired characteristics can be obtained. . The fingerprint detection unit 100 may also employ the configuration of the image detection unit described above.
 光電変換素子10は、表示領域200a内において、任意の態様で含まれ得る。例えば、複数の光電変換素子10が、マトリクス状に配置されていてもよい。
 光電変換素子10は、既に説明したとおり、支持基板11又は封止基板に設けられており、支持基板11には、例えばマトリクス状に電極(陽極又は陰極)が設けられている。
 光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像された指紋に対応する電気信号として出力される。
The photoelectric conversion element 10 may be included in the display area 200a in any manner. For example, a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
As already explained, the photoelectric conversion element 10 is provided on the support substrate 11 or the sealing substrate, and the support substrate 11 is provided with electrodes (anodes or cathodes), for example, in a matrix.
The light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electric signal according to the amount of received light, and the light reception signal, that is, the electric signal corresponding to the imaged fingerprint is transmitted outside the photoelectric conversion element 10 via the electrode. Output as a signal.
 表示パネル部200は、この構成例では、タッチセンサーパネルを含む有機エレクトロルミネッセンス表示パネル(有機EL表示パネル)として構成されている。表示パネル部200は、例えば有機EL表示パネルの代わりに、バックライトなどの光源を含む液晶表示パネルなどの任意好適な従来公知の構成を有する表示パネルにより構成されていてもよい。
 表示パネル部200は、既に説明した指紋検出部100上に設けられている。表示パネル部200は、有機エレクトロルミネッセンス素子(有機EL素子)220を本質的な機能を奏する機能部として含む。表示パネル部200は、さらに任意好適な従来公知のガラ
ス基板といった基板(支持基板210又は封止基板240)、封止部材、バリアフィルム、円偏光板などの偏光板、タッチセンサーパネル230などの任意好適な従来公知の部材を所望の特性に対応した態様で備え得る。
In this configuration example, the display panel section 200 is configured as an organic electroluminescence display panel (organic EL display panel) including a touch sensor panel. For example, instead of the organic EL display panel, the display panel section 200 may be configured with a display panel having any suitable conventionally known configuration, such as a liquid crystal display panel including a light source such as a backlight.
The display panel section 200 is provided on the already described fingerprint detection section 100. The display panel section 200 includes an organic electroluminescent element (organic EL element) 220 as a functional section that performs an essential function. The display panel section 200 may further include any suitable conventionally known substrate such as a glass substrate (support substrate 210 or sealing substrate 240), a sealing member, a barrier film, a polarizing plate such as a circularly polarizing plate, a touch sensor panel 230, etc. Suitable conventionally known members may be provided in a manner corresponding to desired characteristics.
 以上説明した構成例において、有機EL素子220は、表示領域200aにおける画素の光源として用いられるとともに、指紋検出部100における指紋の撮像のための光源としても用いられる。 In the configuration example described above, the organic EL element 220 is used as a light source for pixels in the display area 200a, and is also used as a light source for imaging a fingerprint in the fingerprint detection unit 100.
 ここで、指紋検出部100の動作について簡単に説明する。
 指紋認証の実行時には、表示パネル部200の有機EL素子220から放射される光を用いて指紋検出部100が指紋を検出する。具体的には、有機EL素子220から放射された光は、有機EL素子220と指紋検出部100の光電変換素子10との間に存在する構成要素を透過して、表示領域200a内である表示パネル部200の表面に接するように載置された手指の指先の皮膚(指表面)によって反射される。指表面によって反射された光のうちの少なくとも一部は、間に存在する構成要素を透過して光電変換素子10によって受光され、光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、指表面の指紋についての画像情報が構成される。
Here, the operation of the fingerprint detection section 100 will be briefly explained.
When performing fingerprint authentication, the fingerprint detection section 100 detects a fingerprint using light emitted from the organic EL element 220 of the display panel section 200. Specifically, the light emitted from the organic EL element 220 passes through the components present between the organic EL element 220 and the photoelectric conversion element 10 of the fingerprint detection unit 100, and displays a certain display within the display area 200a. The light is reflected by the skin of the fingertip (finger surface) of the finger placed so as to be in contact with the surface of the panel section 200. At least a portion of the light reflected by the finger surface is transmitted through the intervening components, is received by the photoelectric conversion element 10, and is converted into an electrical signal according to the amount of light received by the photoelectric conversion element 10. Then, image information about the fingerprint on the finger surface is constructed from the converted electrical signal.
 表示装置2を備える携帯情報端末は、従来公知の任意好適なステップにより、得られた画像情報と、予め記録されていた指紋認証用の指紋データとを比較して、指紋認証を行う。 The portable information terminal equipped with the display device 2 performs fingerprint authentication by comparing the obtained image information with pre-recorded fingerprint data for fingerprint authentication using any suitable conventionally known steps.
<光電変換素子の製造方法>
 本開示に係る光電変換素子の製造方法は、非イオン性の絶縁性ポリマーを含むインクを塗布することで塗布膜を形成し、前記塗布膜を乾燥する工程を含む。
 以下、光電変換素子の製造方法の一例として、基板(支持基板)と、電極と、第二中間層又は中間層と、活性層と、第二中間層又は中間層と、電極と、をこの順で積層する構成を有する光電変換素子の製造方法について説明する。
<Method for manufacturing photoelectric conversion element>
A method for manufacturing a photoelectric conversion element according to the present disclosure includes the steps of forming a coating film by applying an ink containing a nonionic insulating polymer, and drying the coating film.
Hereinafter, as an example of a method for manufacturing a photoelectric conversion element, a substrate (supporting substrate), an electrode, a second intermediate layer or intermediate layer, an active layer, a second intermediate layer or intermediate layer, and an electrode are prepared in this order. A method for manufacturing a photoelectric conversion element having a stacked structure will be described.
(基板上に電極を形成する工程)
 本工程では、電極が設けられた支持基板を用意する。
 支持基板に電極を形成する方法は特に限定されない。電極は、例えば、電極の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法等によって、支持基板上に形成することができる。
 電極の材料としては、既述の電極の材質として例示した化合物が挙げられる。
(Process of forming electrodes on the substrate)
In this step, a support substrate provided with electrodes is prepared.
The method of forming electrodes on the support substrate is not particularly limited. The electrode can be formed on the support substrate using, for example, a vacuum evaporation method, a sputtering method, an ion plating method, a plating method, or the like using an electrode material.
Examples of the material for the electrode include the compounds exemplified as the material for the electrode described above.
 また、電極が設けられた基板を市場より入手し、必要に応じて、導電性の薄膜をパターニングすることにより電極を形成することによって、電極が設けられた支持基板を用意することができる。 Furthermore, a support substrate provided with electrodes can be prepared by obtaining a substrate provided with electrodes from the market and forming electrodes by patterning a conductive thin film as necessary.
(第二中間層又は中間層を形成する工程-1)
 本工程では、電極が設けられた基板の電極上に、第二中間層又は中間層を形成する。
 先ず、本工程において中間層を形成する手順について説明する。
(Step-1 of forming the second intermediate layer or intermediate layer)
In this step, a second intermediate layer or an intermediate layer is formed on the electrode of the substrate provided with the electrode.
First, the procedure for forming the intermediate layer in this step will be explained.
-中間層を形成する工程-
 本工程は、非イオン性の絶縁性ポリマーを含むインク(以下、「特定インク」とも称する)を塗布することで塗布膜を形成し、塗布膜を乾燥する工程である。
-Process of forming the intermediate layer-
This step is a step of forming a coating film by applying an ink containing a nonionic insulating polymer (hereinafter also referred to as "specific ink"), and drying the coating film.
 特定インクは、非イオン性の絶縁性ポリマー及び溶媒を含むことが好ましい。
 特定インクに含まれる非イオン性の絶縁性ポリマーとしては、本開示に係る非イオン性
の絶縁性ポリマーが適用される。
 溶媒としては、例えば、水、アルコール、ケトン、及び炭化水素が挙げられる。特定インクは、1種類の溶媒のみを含んでいても、2種類以上の溶媒を含んでもよい。
Preferably, the specific ink contains a nonionic insulating polymer and a solvent.
As the nonionic insulating polymer contained in the specific ink, the nonionic insulating polymer according to the present disclosure is applied.
Examples of solvents include water, alcohols, ketones, and hydrocarbons. The specific ink may contain only one type of solvent, or may contain two or more types of solvents.
 中間層に隣接する活性層に対する影響を抑制する観点から、アルコールとしては、炭素数1以上6以下のアルコールであることが好ましい。
 アルコールの具体例としては、エタノール、1-プロパノール、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール及びメトキシブタノールが挙げられる。
From the viewpoint of suppressing the influence on the active layer adjacent to the intermediate layer, the alcohol is preferably an alcohol having 1 or more and 6 or less carbon atoms.
Specific examples of alcohols include ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, ethylene glycol, propylene glycol, butoxyethanol and methoxybutanol.
 ケトンの具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン、及びシクロヘキサノンが挙げられる。 Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone.
 特定インクは、非イオン性の絶縁性ポリマー及び溶媒以外のその他の成分を含んでもよい。その他の成分としては、第二中間層に含まれる成分が挙げられ、例えば正孔輸送性材料、電子輸送性材料などが挙げられる。 The specific ink may contain components other than the nonionic insulating polymer and the solvent. Examples of other components include components contained in the second intermediate layer, such as hole transporting materials, electron transporting materials, and the like.
 特定インクにおける溶媒の含有量は、特定インクに含まれる非イオン性の絶縁性ポリマー及びその他の成分の合計の質量を1質量部とした場合に、1質量部以上10000質量部以下であることが好ましく、10質量部以上1000質量部以下とすることがより好ましい。 The content of the solvent in the specific ink may be 1 part by mass or more and 10,000 parts by mass or less, when the total mass of the nonionic insulating polymer and other components contained in the specific ink is 1 part by mass. It is preferably 10 parts by mass or more and 1000 parts by mass or less.
 特定インクは、溶液であってもよく、分散液、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液であってもよい。 The specific ink may be a solution, or a dispersion such as a dispersion, an emulsion, or a suspension.
 本工程は、電極が設けられた基板の電極上に特定インクを塗布し、塗布膜を形成する。
 特定インクを塗布する方法としては、任意の塗布法を用いることができる。
 塗布法としては、スリットコート法、ナイフコート法、スピンコート法、マイクログラビアコート法、グラビアコート法、バーコート法、インクジェット印刷法、ノズルコート法、又はキャピラリーコート法が好ましく、スピンコート法、キャピラリーコート法、又はバーコート法がより好ましく、スピンコート法がさらに好ましい。
In this step, a specific ink is applied onto the electrode of the substrate provided with the electrode to form a coating film.
Any coating method can be used to apply the specific ink.
The coating method is preferably a slit coating method, a knife coating method, a spin coating method, a microgravure coating method, a gravure coating method, a bar coating method, an inkjet printing method, a nozzle coating method, or a capillary coating method. A coating method or a bar coating method is more preferred, and a spin coating method is even more preferred.
 つづいて、本工程は、塗布膜を乾燥する。
 塗布膜を乾燥ことにより中間層を形成する方法としては、任意好適な方法を用いることができる。乾燥の方法の例としては、ホットプレートを用いて直接的に加熱する方法、熱風乾燥法、赤外線加熱乾燥法、フラッシュランプアニール乾燥法、減圧乾燥法などの乾燥法が挙げられる。
Next, in this step, the coating film is dried.
Any suitable method can be used to form the intermediate layer by drying the coating film. Examples of the drying method include drying methods such as direct heating using a hot plate, hot air drying, infrared heat drying, flash lamp annealing drying, and vacuum drying.
-第二中間層を形成する工程-
 つぎに本工程において第二中間層を形成する工程について説明する。
 本工程は、第二中間層形成用インクを塗布することで塗布膜を形成し、塗布膜を乾燥する工程である。
-Process of forming the second intermediate layer-
Next, the step of forming the second intermediate layer in this step will be explained.
This step is a step of forming a coating film by applying the second intermediate layer forming ink and drying the coating film.
 正孔輸送層を形成する場合、第二中間層形成用インクは、正孔輸送性材料及び溶媒を含むことが好ましい。
 電子輸送層を形成する場合、第二中間層形成用インクは、電子輸送性材料及び溶媒を含むことが好ましい。
When forming a hole transport layer, the second intermediate layer forming ink preferably contains a hole transport material and a solvent.
When forming an electron transport layer, the second intermediate layer forming ink preferably contains an electron transport material and a solvent.
 第二中間層形成用インクに含まれる正孔輸送性材料及び電子輸送性材料としては、既述の第二中間層に含まれうる正孔輸送性材料及び電子輸送性材料と同一のものが適用される

 溶媒としては、例えば、水、アルコール、ケトン、及び炭化水素等が挙げられる。アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、及びメトキシブタノール等が挙げられる。ケトンの具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン、及びシクロヘキサノン等が挙げられる。炭化水素の具体例としては、n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン、テトラリン、クロロベンゼン、及びオルトジクロロベンゼン等が挙げられる。第二中間層形成用インクは、1種類単独の溶媒を含んでいてもよく、2種類以上の溶媒を含んでいてもよい。第二中間層形成用インクにおける溶媒の量は、第二中間層形成用インクに含まれる正孔輸送性材料及び電子輸送性材料の合計の質量を1質量部とした場合に、1質量部以上10000質量部以下であることが好ましく、10質量部以上1000質量部以下であることがより好ましい。
The hole-transporting material and electron-transporting material contained in the ink for forming the second intermediate layer are the same as the hole-transporting material and electron-transporting material that can be contained in the second intermediate layer described above. be done.
Examples of the solvent include water, alcohol, ketone, and hydrocarbon. Specific examples of alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol. Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone. Specific examples of hydrocarbons include n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene, tetralin, chlorobenzene, and orthodichlorobenzene. The second intermediate layer forming ink may contain one type of solvent alone, or may contain two or more types of solvents. The amount of the solvent in the second intermediate layer forming ink is 1 part by mass or more when the total mass of the hole transporting material and electron transporting material contained in the second intermediate layer forming ink is 1 part by mass. It is preferably 10,000 parts by mass or less, and more preferably 10 parts by mass or more and 1,000 parts by mass or less.
 第二中間層形成用インクを塗布する方法(塗布法)としては、既述の-中間層を形成する工程-において説明した塗布法が適用可能である。 As the method (coating method) for applying the second intermediate layer forming ink, the coating method explained in the above-mentioned - step of forming the intermediate layer - can be applied.
 塗布膜を乾燥することにより第二中間層を形成する方法としては、任意好適な方法を用いることができる。乾燥の方法の例としては、既述の-中間層を形成する工程-において説明した乾燥の方法と同一のものが適用可能である。 Any suitable method can be used to form the second intermediate layer by drying the coating film. As an example of the drying method, the same drying method as explained in the above-mentioned step of forming the intermediate layer can be applied.
(活性層を形成する工程)
 本工程は、活性層形成用インクを塗布することで塗布膜を形成し、塗布膜を乾燥する工程である。
 活性層形成用インクはp型半導体材料、n型半導体材料及び溶媒を含有する。
(Step of forming active layer)
This step is a step of forming a coating film by applying an active layer forming ink and drying the coating film.
The active layer forming ink contains a p-type semiconductor material, an n-type semiconductor material, and a solvent.
-p型半導体材料-
 p型半導体材料としては、例えば、ポリビニルカルバゾール及びその誘導体;ポリシラン及びその誘導体;側鎖又は主鎖に芳香族アミン構造を含むポリシロキサン誘導体;ポリアニリン及びその誘導体;ポリチオフェン及びその誘導体;ポリピロール及びその誘導体;ポリフェニレンビニレン及びその誘導体;ポリチエニレンビニレン及びその誘導体;ポリフルオレン及びその誘導体;等が挙げられる。
-p-type semiconductor material-
Examples of p-type semiconductor materials include polyvinylcarbazole and its derivatives; polysilane and its derivatives; polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain; polyaniline and its derivatives; polythiophene and its derivatives; polypyrrole and its derivatives ; polyphenylene vinylene and its derivatives; polythienylene vinylene and its derivatives; polyfluorene and its derivatives; and the like.
 p型半導体材料が下記式(I)で表される構成単位及び下記式(II)で表される構成単位からなる群から選択される少なくとも1種を含む高分子化合物であることが好ましい。 It is preferable that the p-type semiconductor material is a polymer compound containing at least one member selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(I)中、Zは下記式(Z-1)~式(Z-7)のうちのいずれかで表される基を表す。Ar及びArは、同一であっても異なっていてもよい3価の芳香族複素環基を表す。 In formula (I), Z represents a group represented by any one of the following formulas (Z-1) to (Z-7). Ar 1 and Ar 2 represent trivalent aromatic heterocyclic groups which may be the same or different.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(II)中、Arは2価の芳香族複素環基を表す。 In formula (II), Ar 3 represents a divalent aromatic heterocyclic group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(Z-1)~式(Z-7)中、Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいシクロアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいシクロアルキルチオ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよい置換アミノ基、置換基を有していてもよいイミン残基、置換基を有していてもよいアミド基、置換基を有していてもよい酸イミド基、置換基を有していてもよい置換オキシカルボニル基、シアノ基、ニトロ基、-C(=O)-Rで表される基、又は-SO-Rで表される基を表し、R及びRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリールオキシ基、又は置換基を有していてもよい1価の複素環基を表す。Rが複数存在する場合、複数存在するRは、互いに同一であっても異なっていてもよい。 In formulas (Z-1) to (Z-7), R is each independently a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or a cyclo that may have a substituent. Alkyl group, alkenyl group that may have a substituent, cycloalkenyl group that may have a substituent, alkynyl group that may have a substituent, cycloalkenyl group that may have a substituent Alkynyl group, aryl group that may have a substituent, alkyloxy group that may have a substituent, cycloalkyloxy group that may have a substituent, Good aryloxy group, optionally substituted alkylthio group, optionally substituted cycloalkylthio group, optionally substituted arylthio group, optionally substituted arylthio group, optionally substituted arylthio group, optionally substituted cycloalkylthio group, optionally substituted arylthio group A good monovalent heterocyclic group, a substituted amino group that may have a substituent, an imine residue that may have a substituent, an amide group that may have a substituent, a substituted amino group that may have a substituent, an amide group that may have a substituent, an optionally substituted oxycarbonyl group, a cyano group, a nitro group, a group represented by -C(=O)-R c , or -SO 2 -R represents a group represented by d , and R c and R d each independently represent a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent. Aryl group which may have a group, alkyloxy group which may have a substituent, cycloalkyloxy group which may have a substituent, aryloxy group which may have a substituent , or a monovalent heterocyclic group which may have a substituent. When a plurality of R's exist, the plurality of R's may be the same or different.
 式(I)で表される構成単位は、下記式(I-1)で表される構成単位であることが好ましい。 The structural unit represented by formula (I) is preferably a structural unit represented by formula (I-1) below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(I-1)中、Zは式(I)におけるZと同義である。
 式(I-1)中、Zは、式(Z-4)~式(Z-7)で表される基からなる群から選ばれる基であることが好ましい。
In formula (I-1), Z has the same meaning as Z in formula (I).
In formula (I-1), Z is preferably a group selected from the group consisting of groups represented by formulas (Z-4) to (Z-7).
 式(I-1)で表される構成単位の例としては、下記式(501)~式(505)で表される構成単位が挙げられ、式(501)で表される構成単位であることが好ましい。 Examples of the structural unit represented by formula (I-1) include structural units represented by formulas (501) to (505) below, and the structural unit is represented by formula (501). is preferred.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(501)~式(505)中、Rは、それぞれ独立に、式(Z-1)~(Z-7)におけるRと同義である。Rが複数存在する場合、複数存在するRは、互いに同一であっても異なっていてもよい。 In formulas (501) to (505), R each independently has the same meaning as R in formulas (Z-1) to (Z-7). When a plurality of R's exist, the plurality of R's may be the same or different.
 式(II)中、Arで表される2価の芳香族複素環基が有する炭素原子数は、通常2~60であり、好ましくは4~60であり、より好ましくは4~20である。Arで表される2価の芳香族複素環基は置換基を有していてもよい。 In formula (II), the number of carbon atoms in the divalent aromatic heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 4 to 60, and more preferably 4 to 20. . The divalent aromatic heterocyclic group represented by Ar 3 may have a substituent.
 Arで表される2価の芳香族複素環基の例としては、下記式(101)~式(185)で表される基が挙げられる。 Examples of the divalent aromatic heterocyclic group represented by Ar 3 include groups represented by the following formulas (101) to (185).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(101)~式(185)中、Rは式(Z-1)~(Z-7)におけるRと同義である。Rが複数個存在する場合、複数個のRは、互いに同一であっても異なっていてもよい。 In formulas (101) to (185), R has the same meaning as R in formulas (Z-1) to (Z-7). When a plurality of R's exist, the plurality of R's may be the same or different.
 前記式(II)で表される構成単位としては、下記式(II-1)~式(II-6)で表される構成単位が好ましい。 As the structural unit represented by the above formula (II), structural units represented by the following formulas (II-1) to (II-6) are preferable.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(II-1)~式(II-6)中、X及びXは、それぞれ独立に、酸素原子又は硫黄原子を表し、Rは、それぞれ独立に、式(Z-1)~(Z-7)におけるRと同義である。Rが複数個存在する場合、複数個のRは、互いに同一であっても異なっていてもよい。 In formulas (II-1) to (II-6), X 1 and X 2 each independently represent an oxygen atom or a sulfur atom, and R each independently represents a formula (Z-1) to (Z It has the same meaning as R in -7). When a plurality of R's exist, the plurality of R's may be the same or different.
 原料化合物の入手性の観点から、式(II-1)~式(II-6)中のX及びXは、いずれも硫黄原子であることが好ましい。 From the viewpoint of availability of raw material compounds, it is preferable that X 1 and X 2 in formulas (II-1) to (II-6) are both sulfur atoms.
 p型半導体材料は、チオフェン骨格を含む構成単位を含む高分子化合物であることが好
ましい。
The p-type semiconductor material is preferably a polymer compound containing a structural unit containing a thiophene skeleton.
 p型半導体材料である高分子化合物は、2種以上の式(I)の構成単位を含んでいてもよく、2種以上の式(II)の構成単位を含んでいてもよい。 The polymer compound that is a p-type semiconductor material may contain two or more types of structural units of formula (I), or may contain two or more types of structural units of formula (II).
 溶媒に対する溶解性を向上させるため、p型半導体材料である高分子化合物は、下記式(III)で表される構成単位を含んでいてもよい。 In order to improve solubility in a solvent, the polymer compound that is a p-type semiconductor material may contain a structural unit represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(III)中、Arはアリーレン基を表す。
 Arで表されるアリーレン基とは、置換基を有していてもよい芳香族炭化水素から、水素原子を2個除いた残りの原子団を意味する。芳香族炭化水素には、縮合環を有する化合物、独立したベンゼン環及び縮合環からなる群から選ばれる2個以上が、直接又はビニレン基等の2価の基を介して結合した化合物も含まれる。
In formula (III), Ar 4 represents an arylene group.
The arylene group represented by Ar 4 means an atomic group remaining after two hydrogen atoms are removed from an aromatic hydrocarbon which may have a substituent. Aromatic hydrocarbons also include compounds with fused rings, and compounds in which two or more rings selected from the group consisting of independent benzene rings and fused rings are bonded directly or via a divalent group such as a vinylene group. .
 アリーレン基における、置換基を除いた部分の炭素原子数は、通常6~60であり、好ましくは6~20である。
 アリーレン基の例としては、フェニレン基(例えば、下記式1~式3)、ナフタレン-ジイル基(例えば、下記式4~式13)、アントラセン-ジイル基(例えば、下記式14~式19)、ビフェニル-ジイル基(例えば、下記式20~式25)、ターフェニル-ジイル基(例えば、下記式26~式28)、縮合環化合物基(例えば、下記式29~式35)、フルオレン-ジイル基(例えば、下記式36~式38)、及びベンゾフルオレン-ジイル基(例えば、下記式39~式46)が挙げられる。
The number of carbon atoms in the arylene group excluding substituents is usually 6 to 60, preferably 6 to 20.
Examples of arylene groups include phenylene groups (e.g., formulas 1 to 3 below), naphthalene-diyl groups (e.g., formulas 4 to 13 below), anthracene-diyl groups (e.g., formulas 14 to 19 below), Biphenyl-diyl group (e.g., formulas 20 to 25 below), terphenyl-diyl group (e.g., formulas 26 to 28 below), fused ring compound groups (e.g., formulas 29 to 35 below), fluorene-diyl groups (for example, the following formulas 36 to 38), and benzofluorene-diyl groups (for example, the following formulas 39 to 46).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式1~46中、Rは、それぞれ独立に、式(Z-1)~(Z-7)におけるRと同義である。複数個存在するRは、互いに同一であっても異なっていてもよい。 In formulas 1 to 46, R each independently has the same meaning as R in formulas (Z-1) to (Z-7). A plurality of R's may be the same or different.
 p型半導体材料である高分子化合物を構成する構成単位は、式(I)で表される構成単位、式(II)で表される構成単位及び式(III)で表される構成単位から選択される2種以上の構成単位が2個以上組み合わせされて連結された構成単位であってもよい。 The structural units constituting the polymer compound that is a p-type semiconductor material are selected from the structural units represented by formula (I), the structural units represented by formula (II), and the structural units represented by formula (III). It may be a structural unit in which two or more types of structural units are combined and connected.
 p型半導体材料としての高分子化合物が、式(I)で表される構成単位及び式(II)で表される構成単位からなる群から選択される少なくとも1種を含む場合、式(I)で表される構成単位及び式(II)で表される構成単位の合計量は、高分子化合物が含むすべての構成単位(100モル%)のうち、通常20~100モル%であり、p型半導体材料としての電荷輸送性を向上させることができるので、好ましくは40~100モル%であり、より好ましくは50~100モル%である。 When the polymer compound as a p-type semiconductor material contains at least one selected from the group consisting of a structural unit represented by formula (I) and a structural unit represented by formula (II), formula (I) The total amount of the structural unit represented by and the structural unit represented by formula (II) is usually 20 to 100 mol% of all the structural units (100 mol%) contained in the polymer compound, and the p-type The content is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, since it can improve the charge transport properties as a semiconductor material.
 p型半導体材料である高分子化合物の具体例としては、下記式P-1~P-8で表される高分子化合物が挙げられる。下記式P-1~P-8中、nは、1以上の数であり、後述の重量平均分子量の範囲で任意に選択される。 Specific examples of polymer compounds that are p-type semiconductor materials include polymer compounds represented by the following formulas P-1 to P-8. In the following formulas P-1 to P-8, n is a number of 1 or more and is arbitrarily selected within the weight average molecular weight range described below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 活性層形成用インクは、p型半導体材料を1種のみ含んでいてもよく、2種以上を任意の割合の組み合わせで含んでいてもよい。 The active layer forming ink may contain only one type of p-type semiconductor material, or may contain two or more types in any combination of p-type semiconductor materials.
 p型半導体材料のポリスチレン換算の重量平均分子量は、特に暗電流比を低減する観点から、40000以上200000以下であることが好ましく、40000以上150000以下であることがより好ましく、特に溶媒に対する溶解性を向上させる観点から、さらに好ましくは45000以上150000以下である。 The weight average molecular weight of the p-type semiconductor material in terms of polystyrene is preferably 40,000 or more and 200,000 or less, more preferably 40,000 or more and 150,000 or less, especially from the viewpoint of reducing the dark current ratio, and particularly from the viewpoint of reducing the dark current ratio. From the viewpoint of improvement, it is more preferably 45,000 or more and 150,000 or less.
 ここで、ポリスチレン換算の重量平均分子量とは、ゲルパーミエーションクロマトグラフィ(GPC)を用い、ポリスチレンの標準試料を用いて算出した重量平均分子量を意味する。 Here, the weight average molecular weight in terms of polystyrene means the weight average molecular weight calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
-n型半導体材料-
 n型半導体材料は、低分子化合物であっても高分子化合物であってもよい。
-N-type semiconductor material-
The n-type semiconductor material may be a low-molecular compound or a high-molecular compound.
 低分子化合物であるn型半導体材料の例としては、オキサジアゾール誘導体;アントラキノジメタン及びその誘導体;ベンゾキノン及びその誘導体;ナフトキノン及びその誘導体;アントラキノン及びその誘導体;テトラシアノアントラキノジメタン及びその誘導体;フルオレノン誘導体;ジフェニルジシアノエチレン及びその誘導体;ジフェノキノン誘導体;8-ヒドロキシキノリン及びその誘導体の金属錯体;C60フラーレン等のフラーレン類及びその誘導体;並びに、バソクプロイン等のフェナントレン誘導体;が挙げられる。 Examples of n-type semiconductor materials that are low molecular weight compounds include oxadiazole derivatives; anthraquinodimethane and its derivatives; benzoquinone and its derivatives; naphthoquinone and its derivatives; anthraquinone and its derivatives; tetracyanoanthraquinodimethane and its derivatives. Derivatives; fluorenone derivatives; diphenyldicyanoethylene and its derivatives; diphenoquinone derivatives; metal complexes of 8-hydroxyquinoline and its derivatives; fullerenes such as C 60 fullerene and derivatives thereof; and phenanthrene derivatives such as bathocuproine;
 n型半導体材料の別の例としては、非特許文献3に記載されているような、アクセプター・ドナー・アクセプター(ADA)型の構造を有する低分子化合物も好適に用いること
ができる。
 非特許文献3:Advanced Energy Materials、2021年、Volume11、Issue15、Article Number 2003570 
   
As another example of the n-type semiconductor material, a low molecular compound having an acceptor-donor-acceptor (ADA) type structure as described in Non-Patent Document 3 can also be suitably used.
Non-patent document 3: Advanced Energy Materials, 2021, Volume 11, Issue 15, Article Number 2003570
 高分子化合物であるn型半導体材料の例としては、ポリビニルカルバゾール及びその誘導体;ポリシラン及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリシロキサン誘導体;ポリアニリン及びその誘導体;ポリチオフェン及びその誘導体;ポリピロール及びその誘導体;ポリフェニレンビニレン及びその誘導体;ポリチエニレンビニレン及びその誘導体;ポリキノリン及びその誘導体;ポリキノキサリン及びその誘導体;並びに、ポリフルオレン及びその誘導体;が挙げられる。 Examples of n-type semiconductor materials that are polymeric compounds include polyvinylcarbazole and its derivatives; polysilane and its derivatives; polysiloxane derivatives having an aromatic amine structure in the side chain or main chain; polyaniline and its derivatives; polythiophene and its derivatives ; polypyrrole and its derivatives; polyphenylene vinylene and its derivatives; polythienylene vinylene and its derivatives; polyquinoline and its derivatives; polyquinoxaline and its derivatives; and polyfluorene and its derivatives.
 n型半導体材料としては、フラーレン及びフラーレン誘導体から選ばれる1種以上が好ましく、フラーレン誘導体がより好ましい。 The n-type semiconductor material is preferably one or more selected from fullerene and fullerene derivatives, and fullerene derivatives are more preferred.
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、及びC84フラーレンが挙げられる。フラーレン誘導体の例としては、これらのフラーレンの誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を意味する。 Examples of fullerenes include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, and C 84 fullerene. Examples of fullerene derivatives include these fullerene derivatives. Fullerene derivative means a compound in which at least a portion of fullerene is modified.
 フラーレン誘導体の例としては、下記式(N-1)~式(N-4)で表される化合物が挙げられる。 Examples of fullerene derivatives include compounds represented by the following formulas (N-1) to (N-4).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(N-1)~式(N-4)中、Rは、それぞれ独立に、アルキル基、アリール基、1価の複素環基、又はエステル構造を有する基を表す。複数個あるRは、互いに同一であっても異なっていてもよい。
 Rは、それぞれ独立に、アルキル基、又はアリール基を表す。複数個あるRは、互いに同一であっても異なっていてもよい。
In formulas (N-1) to (N-4), R a each independently represents an alkyl group, an aryl group, a monovalent heterocyclic group, or a group having an ester structure. A plurality of R a 's may be the same or different.
R b each independently represents an alkyl group or an aryl group. A plurality of R b 's may be the same or different.
 Rで表されるエステル構造を有する基の例としては、下記式(19)で表される基が挙げられる。 Examples of the group having an ester structure represented by R a include a group represented by the following formula (19).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(19)中、u1は、1~6の整数を表す。u2は、0~6の整数を表す。Rは、アルキル基、アリール基、又は1価の複素環基を表す。 In formula (19), u1 represents an integer from 1 to 6. u2 represents an integer from 0 to 6. R c represents an alkyl group, an aryl group, or a monovalent heterocyclic group.
 C60フラーレン誘導体の例としては、下記の化合物が挙げられる。 Examples of C 60 fullerene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 C70フラーレン誘導体の例としては、下記の化合物が挙げられる。 Examples of C70 fullerene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 フラーレン誘導体の具体例としては、[6,6]-フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]-フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid meth
yl ester)、[6,6」-フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、及び[6,6]-チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。
Specific examples of fullerene derivatives include [6,6]-phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6]-Phenyl C61 butyric acid methyl ester), [6,6]-phenyl-C71 butyric acid methyl ester ( C70PCBM, [6,6]-Phenyl C71 butyric acid meth
[6,6]-Phenyl C85 butyric acid methyl ester), [6,6]-Phenyl C85 butyric acid methyl ester (C84PCBM, [6,6]-Phenyl C85 butyric acid methyl ester), 6]-Thienyl C61 butyric acid methyl ester).
 活性層形成用インクは、n型半導体材料を1種のみ含んでいてもよく、2種以上を任意の割合の組み合わせで含んでいてもよい。 The active layer forming ink may contain only one type of n-type semiconductor material, or may contain two or more types in any combination of n-type semiconductor materials.
-溶媒-
 活性層形成用インクは、溶媒を含むことが好ましい。
 溶媒は第1溶媒と、必要に応じて第2溶媒と、を含むことが好ましい。
-solvent-
The active layer forming ink preferably contains a solvent.
Preferably, the solvent includes a first solvent and, if necessary, a second solvent.
・第1溶媒
 第1溶媒は、選択されたp型半導体材料及びn型半導体材料に対する溶解性、活性層を形成する際の乾燥条件に対応するための特性(沸点など)を考慮して選択すればよい。
 第1溶媒は、置換基(例えば、アルキル基、ハロゲン原子)を有していてもよい芳香族炭化水素(以下、単に芳香族炭化水素という。)である。第1溶媒は、選択されたp型半導体材料及びn型半導体材料の溶解性を考慮して選択することが好ましい。
・First solvent The first solvent should be selected taking into consideration the solubility of the selected p-type semiconductor material and n-type semiconductor material, and the characteristics (boiling point, etc.) that correspond to the drying conditions when forming the active layer. Bye.
The first solvent is an aromatic hydrocarbon (hereinafter simply referred to as aromatic hydrocarbon) that may have a substituent (eg, an alkyl group, a halogen atom). The first solvent is preferably selected in consideration of the solubility of the selected p-type semiconductor material and n-type semiconductor material.
 芳香族炭化水素としては、例えば、トルエン、キシレン(例えば、o-キシレン、m-キシレン、p-キシレン)、トリメチルベンゼン(例えば、メシチレン、1,2,4-トリメチルベンゼン(プソイドクメン))、ブチルベンゼン(例えば、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン)、メチルナフタレン(例えば、1-メチルナフタレン)、テトラリン、インダン、クロロベンゼン及びジクロロベンゼン(例えば、o-ジクロロベンゼン)が挙げられる。 Examples of aromatic hydrocarbons include toluene, xylene (e.g. o-xylene, m-xylene, p-xylene), trimethylbenzene (e.g. mesitylene, 1,2,4-trimethylbenzene (pseudocumene)), butylbenzene. (eg n-butylbenzene, sec-butylbenzene, tert-butylbenzene), methylnaphthalene (eg 1-methylnaphthalene), tetralin, indane, chlorobenzene and dichlorobenzene (eg o-dichlorobenzene).
 第1溶媒は、好ましくは、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、プソイドクメン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、メチルナフタレン、テトラリン、インダン、クロロベンゼン及びo-ジクロロベンゼンからなる群から選択される1種以上を含み、より好ましくは、o-キシレン、プソイドクメン、テトラリン、クロロベンゼン又はo-ジクロロベンゼンを含む。 The first solvent is preferably toluene, o-xylene, m-xylene, p-xylene, mesitylene, pseudocumene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin, indane, chlorobenzene and It contains one or more selected from the group consisting of o-dichlorobenzene, more preferably o-xylene, pseudocumene, tetralin, chlorobenzene or o-dichlorobenzene.
 第1溶媒は1種のみの芳香族炭化水素から構成されていても、2種以上の芳香族炭化水素から構成されていてもよい。第1溶媒は、1種のみの芳香族炭化水素から構成されることが好ましい。 The first solvent may be composed of only one type of aromatic hydrocarbon, or may be composed of two or more types of aromatic hydrocarbons. Preferably, the first solvent is composed of only one type of aromatic hydrocarbon.
・第2溶媒
 第2溶媒は、特にn型半導体材料の溶解性を高める観点から選択される溶媒である。第2溶媒としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノン等のケトン溶媒、酢酸エチル、酢酸ブチル、酢酸フェニル、エチルセルソルブアセテート、安息香酸メチル、安息香酸ブチル、安息香酸ベンジル等のエステル溶媒、アニソール、o-ジメトキシベンゼン等のエーテル溶媒が挙げられる。
 第2溶媒は、アセトフェノン、プロピオフェノン、又は安息香酸ベンジルが好ましい。
-Second Solvent The second solvent is a solvent selected from the viewpoint of particularly improving the solubility of the n-type semiconductor material. Examples of the second solvent include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone, and propiophenone, ethyl acetate, butyl acetate, phenyl acetate, ethyl cellosolve acetate, methyl benzoate, butyl benzoate, benzyl benzoate, etc. and ether solvents such as anisole and o-dimethoxybenzene.
The second solvent is preferably acetophenone, propiophenone, or benzyl benzoate.
・第1溶媒及び第2溶媒の組み合わせ
 第1溶媒及び第2溶媒の組み合わせとしては、例えば、下記表1に示される組み合わせが挙げられる。
- Combination of the first solvent and the second solvent Examples of the combination of the first solvent and the second solvent include the combinations shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
・第1溶媒及び第2溶媒の重量比
 第1溶媒の第2溶媒に対する質量比(第1溶媒/第2溶媒)は、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、85/15~97/3の範囲とすることが好ましい。
・Weight ratio of the first solvent and the second solvent The mass ratio of the first solvent to the second solvent (first solvent/second solvent) is determined from the viewpoint of further improving the solubility of the p-type semiconductor material and the n-type semiconductor material. , preferably in the range of 85/15 to 97/3.
・活性層形成用インクにおける第1溶媒及び第2溶媒の合計の質量百分率
 活性層形成用インクに含まれる第1溶媒及び第2溶媒の総質量は、活性層形成用インクの全重量を100質量%としたときに、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、90質量%以上97.5質量%以下であることが好ましい。
・The total mass percentage of the first solvent and the second solvent in the active layer forming ink The total mass of the first solvent and the second solvent contained in the active layer forming ink is calculated by dividing the total weight of the active layer forming ink by 100 mass. %, it is preferably 90% by mass or more and 97.5% by mass or less from the viewpoint of further improving the solubility of the p-type semiconductor material and the n-type semiconductor material.
-その他の成分-
 活性層形成用インクは、p型半導体材料、n型半導体材料及び溶媒以外のその他の成分を含んでもよい。
 その他の成分としては、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、紫外線に対する安定性を増すための光安定剤などが挙げられる。
-Other ingredients-
The active layer forming ink may contain components other than the p-type semiconductor material, the n-type semiconductor material, and the solvent.
Other components include ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges from absorbed light, and photostabilizers for increasing stability against ultraviolet light.
(第二中間層又は中間層を形成する工程-2)
 本工程では、活性層上に、第二中間層又は中間層を形成する。
 本工程において第二中間層を形成する場合、第二中間層を形成する手順としては、既述の(第二中間層又は中間層を形成する工程-1)における-第二中間層を形成する工程-と同一の手順で行う。
 本工程において中間層を形成する場合、中間層を形成する手順としては、既述の(第二中間層又は中間層を形成する工程-1)における-中間層を形成する工程-と同一の手順で行う。
(Step-2 of forming the second intermediate layer or intermediate layer)
In this step, a second intermediate layer or an intermediate layer is formed on the active layer.
When forming the second intermediate layer in this step, the procedure for forming the second intermediate layer includes forming the second intermediate layer in the above-mentioned (step-1 of forming the second intermediate layer or intermediate layer). Follow the same procedure as step -.
When forming the intermediate layer in this step, the procedure for forming the intermediate layer is the same as the step of forming the intermediate layer in (Step-1 of forming the second intermediate layer or intermediate layer) described above. Do it with
(第二中間層又は中間層上に電極を形成する工程)
 第二中間層又は中間層上に電極を形成する方法は特に限定されない。電極は、例えば、電極の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法等によって、支持基板上に形成することができる。
 電極の材料としては、既述の電極の材質として例示した化合物が挙げられる。
(Step of forming an electrode on the second intermediate layer or the intermediate layer)
The method of forming the second intermediate layer or the electrodes on the intermediate layer is not particularly limited. The electrode can be formed on the support substrate using, for example, a vacuum evaporation method, a sputtering method, an ion plating method, a plating method, or the like using an electrode material.
Examples of the material for the electrode include the compounds exemplified as the material for the electrode described above.
 以下に実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の説明において、特に断りのない限り、「部」及び「%」はすべて質量基準である。 Examples will be described below, but the present invention is not limited to these examples in any way. In the following description, all "parts" and "%" are based on mass unless otherwise specified.
<材料>
 下記実施例及び比較例において使用した、p型半導体材料、n型半導体材料、非イオン性の絶縁性ポリマー、イオン性ポリマー、及び無機バッファー材料は下記の通りである。
<Materials>
The p-type semiconductor material, n-type semiconductor material, nonionic insulating polymer, ionic polymer, and inorganic buffer material used in the following Examples and Comparative Examples are as follows.
(p型半導体材料)
 p型半導体材料として、既述の式P-7及び式P-8で表される高分子化合物を用いた。
 式P-7で表される高分子化合物は国際公開第2013/051676号に記載の方法を参考にして合成し、使用した。
 式P-8で表される高分子化合物は国際公開第2011/052709号に記載の方法を参考にして合成し、使用した。
(p-type semiconductor material)
As the p-type semiconductor material, polymer compounds represented by the aforementioned formulas P-7 and P-8 were used.
The polymer compound represented by formula P-7 was synthesized and used with reference to the method described in International Publication No. 2013/051676.
The polymer compound represented by formula P-8 was synthesized and used with reference to the method described in International Publication No. 2011/052709.
(n型半導体材料)
 n型半導体材料N-1として、ハーベス社製、商品名:Guard Surf NC-1010を使用した。
(n-type semiconductor material)
As the n-type semiconductor material N-1, Guard Surf NC-1010 manufactured by Harbes Co., Ltd. was used.
(非イオン性の絶縁性ポリマー)
 非イオン性の絶縁性ポリマーとして、下記Z-1~Z-8を用いた。
 非イオン性の絶縁性ポリマーのガラス転移温度及び融点は表4に記載する。
・Z-1:ポリイミド、河村産業株式会社製、商品名:KPI-MX300F
・Z-2:ポリカーボネート、Scientific Polymer Products社製
・Z-3:ポリメチルメタクリレート、Scientific Polymer Products社製
・Z-5:セルロースアセテート、Scientific Polymer Products社製
・Z-6:ポリフェニレンエーテルサルホン、Scientific Polymer Products
・Z-7:ポリテトラフルオロエチレン、Scientific Polymer Products社製
・Z-8:フッ素含有ポリマー、AGC社製、商品名:CYTOP CTL-809M
(Nonionic insulating polymer)
The following Z-1 to Z-8 were used as nonionic insulating polymers.
The glass transition temperature and melting point of the nonionic insulating polymers are listed in Table 4.
・Z-1: Polyimide, manufactured by Kawamura Sangyo Co., Ltd., product name: KPI-MX300F
・Z-2: Polycarbonate, manufactured by Scientific Polymer Products ・Z-3: Polymethyl methacrylate, manufactured by Scientific Polymer Products ・Z-5: Cellulose acetate, manufactured by Scientific Polymer Products ・Z-6: Polyphenylene ether sulfone, Scientific Polymer Products
・Z-7: Polytetrafluoroethylene, manufactured by Scientific Polymer Products ・Z-8: Fluorine-containing polymer, manufactured by AGC, product name: CYTOP CTL-809M
(イオン性ポリマー)
 イオン性ポリマーとして、下記I-1~I-3を用いた。
・I-1:ポリエチレンイミン誘導体、シグマアルドリッチ社製、商品名:ポリエチレンイミン、80%エトキシ化溶液
・I-2:PFN-Br、Ossila社製
・I-3:ポリビニルピロリドン、Scientific Polymer Products
(ionic polymer)
The following I-1 to I-3 were used as ionic polymers.
・I-1: Polyethyleneimine derivative, manufactured by Sigma-Aldrich, trade name: Polyethyleneimine, 80% ethoxylated solution ・I-2: PFN-Br, manufactured by Ossila ・I-3: Polyvinylpyrrolidone, Scientific Polymer Products
 以下に、Z-2~Z-3、Z-5~Z-8及びI-1~I-3の構造式を示す。 The structural formulas of Z-2 to Z-3, Z-5 to Z-8, and I-1 to I-3 are shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(無機材料)
 無機材料として、下記M-1を用いた。
・M-1:テイカ社製、酸化亜鉛ナノ粒子分散液(HTD-711Z)
(Inorganic material)
The following M-1 was used as the inorganic material.
・M-1: Manufactured by Teika, zinc oxide nanoparticle dispersion (HTD-711Z)
<バンドギャップの計算>
 バンドギャップは、非イオン性の絶縁性ポリマーの光吸収端波長を用いて下記式により計算することができる。式中、Egはバンドギャップ、hはプランク定数(6.626×10-34Js)、cは光速(3×10m/s)を示す。
   式:Eg=hc/吸収端波長
<Band gap calculation>
The band gap can be calculated by the following formula using the optical absorption edge wavelength of the nonionic insulating polymer. In the formula, Eg is the band gap, h is Planck's constant (6.626×10 −34 Js), and c is the speed of light (3×10 8 m/s).
Formula: Eg=hc/absorption edge wavelength
 上記式において、吸収端波長の測定には、紫外光、可視光、近赤外光の波長領域において測定が可能である分光光度計(日本分光(株)製の紫外可視近赤外分光光度計JASCO-V670)を用いた。分光光度計により得られた吸収スペクトル、すなわち、縦軸を(高分子)化合物の吸光度(吸収強度)とし、横軸を波長としてプロットすることにより
示された吸収スペクトルにおいて、吸収端波長は、ベースラインと吸収ピークの肩(高波長側)でフィッティングした直線との交点における波長の値を吸収端波長(nm)とした。
 Z-1、Z-2、Z-3、Z-5、Z-6、Z-7、及びZ-8のバンドギャップは、いずれも3.5~3.8eVの範囲内であった。
In the above equation, the absorption edge wavelength can be measured using a spectrophotometer that can measure in the wavelength range of ultraviolet light, visible light, and near-infrared light (an ultraviolet-visible-near-infrared spectrophotometer manufactured by JASCO Corporation). JASCO-V670) was used. In the absorption spectrum obtained by a spectrophotometer, that is, the absorbance (absorption intensity) of the (polymer) compound is plotted on the vertical axis and the wavelength is plotted on the horizontal axis, the absorption edge wavelength is The value of the wavelength at the intersection of the line and the straight line fitted at the shoulder of the absorption peak (on the high wavelength side) was defined as the absorption edge wavelength (nm).
The band gaps of Z-1, Z-2, Z-3, Z-5, Z-6, Z-7, and Z-8 were all within the range of 3.5 to 3.8 eV.
<特定インクの調製>
 表2に記載の配合比で、非イオン性の絶縁性ポリマー又はイオン性ポリマー並びに溶媒を混合し、特定インクBI-1~BI-3、及びBI-5~BI-11を調製した。
 なお、表2に示すZ-8及びI-1の添加量は、Z-8を溶媒(溶媒は特定インクに含まれる溶媒と同一である)で希釈したポリマー溶液及びI-1を溶媒で希釈したポリマー溶液の添加量である。
 Z-8を使用したBI-8のポリマー溶液の濃度は、0.45質量%であり、I-1を使用したBI-9のポリマー溶液の濃度は、I-1の製品の規格値から3.5~4質量%である。
<Preparation of specific ink>
Specific inks BI-1 to BI-3 and BI-5 to BI-11 were prepared by mixing nonionic insulating polymers or ionic polymers and solvents at the blending ratios shown in Table 2.
The amounts of Z-8 and I-1 shown in Table 2 are the polymer solution in which Z-8 is diluted with a solvent (the solvent is the same as the solvent contained in the specific ink) and the amount of I-1 diluted with a solvent. This is the amount of polymer solution added.
The concentration of the polymer solution of BI-8 using Z-8 is 0.45% by mass, and the concentration of the polymer solution of BI-9 using I-1 is 3% from the standard value of the product of I-1. .5 to 4% by mass.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表2中、BS-1~BS-5は以下の通りである。
・BS-1:2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール
・BS-2:γ-ブチルラクトン
・BS-3:3-ペンタノール
・BS-4:2-メトキシエタノール
・BS-5:フッ素系溶媒、AGC社製、商品名:CT-SOLV180
In Table 2, BS-1 to BS-5 are as follows.
・BS-1: 2,2,3,3,4,4,5,5-octafluoro-1-pentanol ・BS-2: γ-butyrolactone ・BS-3: 3-pentanol ・BS-4 :2-Methoxyethanol/BS-5: Fluorine solvent, manufactured by AGC, product name: CT-SOLV180
<活性層形成用インクの調製>
 表3に記載の配合比で、p型半導体材料、n型半導体材料、第1溶媒及び第2溶媒を混合し、活性層形成用インクAI-1及びAI-2を調製した。
<Preparation of ink for forming active layer>
A p-type semiconductor material, an n-type semiconductor material, a first solvent, and a second solvent were mixed at the blending ratio shown in Table 3 to prepare active layer forming inks AI-1 and AI-2.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表3中、AS-1~AS-4は以下の通りである。
・AS-1:テトラリン
・AS-2:安息香酸ブチル
・AS-3:プソイドクメン
・AS-4:o-ジメトキシベンゼン
In Table 3, AS-1 to AS-4 are as follows.
・AS-1: Tetralin ・AS-2: Butyl benzoate ・AS-3: Pseudocumene ・AS-4: o-dimethoxybenzene
<実施例1>
 以下の手順で、支持基板と、電極と、活性層と、中間層と、電極と、をこの順で積層する構成を有する光電変換素子について、封止前に熱処理しない光電変換素子、及び熱処理後に封止した光電変換素子の2つを作製した。
 封止前に熱処理しない光電変換素子は、以下の(1)~(5)の手順で作製した。この素子を、以下、熱処理なしの光電変換素子と称する。
 熱処理後に封止した光電変換素子は、以下の(1)~(4)の手順の後、窒素ガス雰囲気下で200℃に加熱したホットプレートで10分間加熱処理し、その後(5)の手順で封止を行い作製した。この素子を、以下、熱処理ありの光電変換素子と称する。
<Example 1>
For photoelectric conversion elements having a structure in which a supporting substrate, an electrode, an active layer, an intermediate layer, and an electrode are laminated in this order in the following steps, photoelectric conversion elements that are not heat-treated before sealing, and photoelectric conversion elements that are not heat-treated before sealing, and after heat treatment are Two sealed photoelectric conversion elements were produced.
A photoelectric conversion element that was not heat-treated before sealing was manufactured using the following steps (1) to (5). This element is hereinafter referred to as a photoelectric conversion element without heat treatment.
After the steps (1) to (4) below, the photoelectric conversion element sealed after heat treatment is heat treated on a hot plate heated to 200°C in a nitrogen gas atmosphere for 10 minutes, and then in step (5). It was sealed and produced. This element is hereinafter referred to as a heat-treated photoelectric conversion element.
(1)基板上に電極を形成する工程
 スパッタリング法により、支持基板であるガラス基板上に電極としてのITO薄膜を45nmの厚さで形成させた。このガラス基板の表面に対し、オゾンUV処理を行った。
(1) Step of forming an electrode on a substrate An ITO thin film with a thickness of 45 nm was formed as an electrode on a glass substrate as a supporting substrate by sputtering. The surface of this glass substrate was subjected to ozone UV treatment.
(2)活性層を形成する工程
 次に、ITOの薄膜上にスピンコート法により活性層形成用インクAI-1の塗布膜を形成した後、大気中のホットプレートにおいて70℃5分間の加熱を行った後、窒素ガス雰囲気下で100℃に加熱したホットプレートを用いて10分間加熱処理して乾燥させ、活性層を形成した。形成された活性層の厚さは約250nmであった。
(2) Step of forming active layer Next, after forming a coating film of active layer forming ink AI-1 on the ITO thin film by spin coating method, it was heated at 70°C for 5 minutes on a hot plate in the atmosphere. After this, a heat treatment was performed for 10 minutes using a hot plate heated to 100° C. in a nitrogen gas atmosphere to form an active layer. The thickness of the active layer formed was about 250 nm.
(3)第二中間層又は中間層を形成する工程-2
 本工程では、活性層上に、中間層を形成した。特定インクBI-1を用いて、スピンコート法により活性層上に中間層の塗膜を形成した。形成された中間層の厚みは6nmであった。
(3) Step-2 of forming the second intermediate layer or intermediate layer
In this step, an intermediate layer was formed on the active layer. A coating film of an intermediate layer was formed on the active layer by a spin coating method using specific ink BI-1. The thickness of the formed intermediate layer was 6 nm.
(4)第二中間層又は中間層上に電極を形成する工程
 次に、スパッタ装置を用いて、中間層上に、電極であるITO膜を約50nmの厚さで形成し、光電変換素子を形成した。得られた光電変換素子の厚さ方向から見たときの平面的な形状は2mm×2mmの正方形であった。
(4) Step of forming the second intermediate layer or an electrode on the intermediate layer Next, using a sputtering device, an ITO film, which is an electrode, is formed with a thickness of about 50 nm on the intermediate layer, and the photoelectric conversion element is formed. Formed. The planar shape of the obtained photoelectric conversion element when viewed from the thickness direction was a square of 2 mm x 2 mm.
(5)その他の工程
 次に、紫外線(UV)硬化性封止剤を封止ガラス基板に塗布したのち、光電変換素子が形成されたガラス基板と貼り合わせ、UV光を照射することで封止済みの光電変換素子を
得た。
(5) Other steps Next, after applying an ultraviolet (UV) curable sealant to the sealing glass substrate, it is bonded to the glass substrate on which the photoelectric conversion element is formed, and sealed by irradiating it with UV light. A completed photoelectric conversion element was obtained.
<実施例2~7、比較例1~3>
 (活性層を形成する工程)において活性層形成用インクの種類及び(第二中間層又は中間層を形成する工程-2)において特定インクの種類を表4の通りに変更したこと以外は実施例1と同一の手順で封止済みの光電変換素子を得た。
<Examples 2 to 7, Comparative Examples 1 to 3>
Example except that the type of ink for forming the active layer in (step of forming the active layer) and the type of specific ink in (step-2 of forming the second intermediate layer or intermediate layer) were changed as shown in Table 4. A sealed photoelectric conversion element was obtained by the same procedure as in Example 1.
<比較例4>
 (第二中間層又は中間層を形成する工程-2)を下記手順で行うことで中間層を形成した。
 無機材料M-1を3-ペンタノールで10倍に希釈した溶液を調製した。スピンコート法により活性層上に無機材料M-1からなる中間層の塗膜を形成した。形成された中間層の厚みは40nmであった。
 以降の工程は、実施例1の(第二中間層又は中間層上に電極を形成する工程)と同一の手順で封止済みの光電変換素子を得た。
<Comparative example 4>
The intermediate layer was formed by performing (step-2 of forming the second intermediate layer or intermediate layer) according to the following procedure.
A solution was prepared by diluting inorganic material M-1 10 times with 3-pentanol. A coating film of an intermediate layer made of inorganic material M-1 was formed on the active layer by a spin coating method. The thickness of the formed intermediate layer was 40 nm.
The subsequent steps were the same as in Example 1 (the step of forming the second intermediate layer or an electrode on the intermediate layer) to obtain a sealed photoelectric conversion element.
<評価>
(暗電流密度Jd)
 各例で得た熱処理なしの光電変換素子及び各例で得た熱処理ありの光電変換素子に対して、光が照射されない暗状態において、電流-電圧測定をソースメータ(KEITHLEY 2611B Source Meter、ケースレーインスツルメンツ社製)を用いて行い、逆バイアス電圧が5Vの際の暗電流密度Jdの値を得た。
 熱処理なしの光電変換素子及び熱処理ありの光電変換素子の暗電流密度Jdの絶対値を表4に示す。
 熱処理ありの光電変換素子の暗電流密度Jdの絶対値を基に、下記評価基準で評価を行った。
-評価基準-
 A:熱処理ありの光電変換素子の暗電流密度Jdの絶対値が200以下である
 B:熱処理ありの光電変換素子の暗電流密度Jdの絶対値が200を超え、500以下である
 C:熱処理ありの光電変換素子の暗電流密度Jdの絶対値が500を超える
<Evaluation>
(Dark current density Jd)
For the photoelectric conversion elements without heat treatment obtained in each example and the photoelectric conversion elements with heat treatment obtained in each example, current-voltage measurements were performed using a source meter (KEITHLEY 2611B Source Meter, Keithley Instruments) in a dark state where no light was irradiated. The dark current density Jd was obtained when the reverse bias voltage was 5V.
Table 4 shows the absolute values of the dark current densities Jd of the photoelectric conversion elements without heat treatment and the photoelectric conversion elements with heat treatment.
Evaluation was performed using the following evaluation criteria based on the absolute value of the dark current density Jd of the photoelectric conversion element subjected to heat treatment.
-Evaluation criteria-
A: The absolute value of the dark current density Jd of the photoelectric conversion element with heat treatment is 200 or less. B: The absolute value of the dark current density Jd of the photoelectric conversion element with heat treatment is more than 200 and 500 or less. C: With heat treatment. The absolute value of the dark current density Jd of the photoelectric conversion element exceeds 500.
(比検出能D
 比検出能Dは近似的に次式1のように求められることが知られている。
 式1:D=SR/(2×電気素量×Jd)0.5
 ここでSRは分光感度(単位:A/W、アンペア/ワット)である。
 SRは次のように得た。分光計器株式会社製 分光感度測定装置CEP-25MLを用いて光を照射した状態において、逆バイアス電圧が5Vの際の光電流JLの値を得る。照射光の光量はフォトン数1E+14であった。活性層形成用インクAI-1の場合は波長940nmにおける光電流値、活性層形成用インクAI-2の場合は波長800nmにおける光電流値を用いて、次式2のように計算される。
 式2:SR=(JL-Jd)/(照射光のエネルギー)
 ここで、式1及び式2中、Jdは、熱処理なしの光電変換素子の暗電流密度Jdの絶対値又は熱処理ありの光電変換素子の暗電流密度Jdの絶対値である。熱処理なしの光電変換素子の比検出能Dを算出する場合、式1及び式2には熱処理なしの光電変換素子の暗電流密度Jdの絶対値を代入する。また、熱処理ありの光電変換素子の比検出能Dを算出する場合、式1及び式2には熱処理ありの光電変換素子の暗電流密度Jdの絶対値を代入する。
 熱処理なしの光電変換素子及び熱処理ありの光電変換素子の比検出能Dの絶対値を表4に示す。
 熱処理ありの光電変換素子の比検出能Dの絶対値を基に、下記評価基準で評価を行った。
-評価基準-
 A:熱処理ありの光電変換素子の比検出能Dの数値の指数部が13である
 B:熱処理ありの光電変換素子の比検出能Dの数値の指数部が12である
 C:熱処理ありの光電変換素子の比検出能Dの数値の指数部が11である
 ここで「指数部」とは、表4中の熱処理ありDの値における「E+」の右に記載した数値である。
(Specific detection ability D * )
It is known that the ratio detection ability D * can be approximately calculated as shown in the following equation 1.
Formula 1: D * = SR/(2 x elementary charge x Jd) 0.5
Here, SR is spectral sensitivity (unit: A/W, ampere/watt).
SR was obtained as follows. Obtain the value of the photocurrent JL when the reverse bias voltage is 5 V while irradiating light using a spectral sensitivity measuring device CEP-25ML manufactured by Bunko Keiki Co., Ltd. The amount of irradiated light was 1E+14 photons. In the case of the active layer forming ink AI-1, the photocurrent value at a wavelength of 940 nm is used, and in the case of the active layer forming ink AI-2, the photocurrent value at a wavelength of 800 nm is used to calculate as shown in the following equation 2.
Formula 2: SR=(JL-Jd)/(energy of irradiated light)
Here, in Equations 1 and 2, Jd is the absolute value of the dark current density Jd of the photoelectric conversion element without heat treatment or the absolute value of the dark current density Jd of the photoelectric conversion element with heat treatment. When calculating the specific detectability D * of the photoelectric conversion element without heat treatment, the absolute value of the dark current density Jd of the photoelectric conversion element without heat treatment is substituted into Equations 1 and 2. Furthermore, when calculating the specific detectability D * of the photoelectric conversion element subjected to heat treatment, the absolute value of the dark current density Jd of the photoelectric conversion element subjected to heat treatment is substituted into Equations 1 and 2.
Table 4 shows the absolute values of the specific detectability D * of the photoelectric conversion element without heat treatment and the photoelectric conversion element with heat treatment.
Evaluation was performed using the following evaluation criteria based on the absolute value of the specific detectability D * of the photoelectric conversion element subjected to heat treatment.
-Evaluation criteria-
A: The exponent part of the numerical value of the photoelectric conversion element D * with heat treatment is 13. B: The exponent part of the numerical value of the photoelectric conversion element D * with heat treatment is 12. C: With heat treatment. The exponent part of the value of the specific detectability D * of the photoelectric conversion element is 11. Here, the "exponent part" is the value written to the right of "E+" in the value of D * with heat treatment in Table 4. .
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 表4中、熱処理なしD及び熱処理ありDの値は指数表示である。
 表4中、ガラス転移温度及び融点の下欄に記載の表記について以下の通り説明する。
・「-」:測定していないことを意味する。
・「>」:ガラス転移温度又は融点が、「>」の右に記載の数値よりも大きいことを意味する。
・「ND」:検出されないことを意味する。
 上記結果から、本実施例の光電変換素子は、熱が加わった後の暗電流の増大が抑制されることがわかる。
In Table 4, the values of D * without heat treatment and D * with heat treatment are expressed as an index.
In Table 4, the notation in the column below the glass transition temperature and melting point will be explained as follows.
・“-”: Means not measured.
- ">": Means that the glass transition temperature or melting point is higher than the numerical value written to the right of ">".
- "ND": means not detected.
From the above results, it can be seen that the photoelectric conversion element of this example suppresses the increase in dark current after heat is applied.
 1 イメージ検出部
 2 表示装置
 10 光電変換素子
 11、210 支持基板
 12 電極
 13 第二中間層又は中間層である層
 14 活性層
 15 第二中間層又は中間層である層
 16 電極
 17、240 封止基板
 20 CMOSトランジスタ基板
 30 層間絶縁膜
 32 層間配線部
 40 封止層
 50 カラーフィルター
 100 指紋検出部
 200 表示パネル部
 200a 表示領域
 220 有機EL素子
 230 タッチセンサーパネル
1 Image detection unit 2 Display device 10 Photoelectric conversion element 11, 210 Support substrate 12 Electrode 13 Second intermediate layer or layer that is an intermediate layer 14 Active layer 15 Second intermediate layer or layer that is an intermediate layer 16 Electrode 17, 240 Sealing Substrate 20 CMOS transistor substrate 30 Interlayer insulating film 32 Interlayer wiring section 40 Sealing layer 50 Color filter 100 Fingerprint detection section 200 Display panel section 200a Display area 220 Organic EL element 230 Touch sensor panel

Claims (15)

  1.  陽極と、
     陰極と、
     前記陽極及び前記陰極の間に設けられる活性層と、
     前記陽極及び前記活性層の間並びに前記陰極及び前記活性層の間の少なくとも一方に設けられる中間層と、を有し、
     前記中間層が非イオン性の絶縁性ポリマーを含む光電変換素子。
    an anode;
    a cathode;
    an active layer provided between the anode and the cathode;
    an intermediate layer provided between the anode and the active layer and at least one between the cathode and the active layer,
    A photoelectric conversion element in which the intermediate layer includes a nonionic insulating polymer.
  2.  前記非イオン性の絶縁性ポリマーのガラス転移温度が100℃以上である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the nonionic insulating polymer has a glass transition temperature of 100°C or higher.
  3.  前記非イオン性の絶縁性ポリマーの融点が150℃以上である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the nonionic insulating polymer has a melting point of 150°C or higher.
  4.  前記非イオン性の絶縁性ポリマーが、ポリ(メタ)アクリル、ポリカーボネート、ポリイミド及びフッ素含有ポリマーからなる群から選択される少なくとも1種である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the nonionic insulating polymer is at least one selected from the group consisting of poly(meth)acrylic, polycarbonate, polyimide, and fluorine-containing polymer.
  5.  前記非イオン性の絶縁性ポリマーが、ポリイミドである請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the nonionic insulating polymer is polyimide.
  6.  前記陰極及び前記活性層の間に中間層を有する請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, further comprising an intermediate layer between the cathode and the active layer.
  7.  前記陰極が透明又は半透明の電極である請求項6に記載の光電変換素子。 The photoelectric conversion element according to claim 6, wherein the cathode is a transparent or semitransparent electrode.
  8.  前記活性層がp型半導体材料を含む請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the active layer contains a p-type semiconductor material.
  9.  前記p型半導体材料が下記式(I)で表される構成単位及び下記式(II)で表される構成単位からなる群から選択される少なくとも1種を含む高分子化合物である請求項8に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (式(I)中、Zは式(Z-1)~式(Z-7)のうちのいずれかで表される基を表し、
    Ar及びArは、同一であっても異なっていてもよい3価の芳香族複素環基を表す。式(II)中、Arは2価の芳香族複素環基を表す。式(Z-1)~(Z-7)中、Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいシクロアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいシクロアルキルチオ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよい置換アミノ基、置換基を有していてもよいイミン残基、置換基を有していてもよいアミド基、置換基を有していてもよい酸イミド基、置換基を有していてもよい置換オキシカルボニル基、シアノ基、ニトロ基、-C(=O)-Rで表される基、又は-SO-Rで表される基を表し、R及びRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリールオキシ基、又は置換基を有していてもよい1価の複素環基を表す。Rが複数存在する場合、複数存在するRは、互いに同一であっても異なっていてもよい。)
    9. The p-type semiconductor material is a polymer compound containing at least one selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II). The photoelectric conversion element described.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (In formula (I), Z represents a group represented by any one of formulas (Z-1) to (Z-7),
    Ar 1 and Ar 2 represent trivalent aromatic heterocyclic groups which may be the same or different. In formula (II), Ar 3 represents a divalent aromatic heterocyclic group. In formulas (Z-1) to (Z-7), R is each independently a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or a cycloalkyl that may have a substituent. group, alkenyl group that may have a substituent, cycloalkenyl group that may have a substituent, alkynyl group that may have a substituent, cycloalkynyl that may have a substituent group, an aryl group which may have a substituent, an alkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent Aryloxy group, optionally substituted alkylthio group, optionally substituted cycloalkylthio group, optionally substituted arylthio group, optionally substituted arylthio group Monovalent heterocyclic group, substituted amino group that may have a substituent, imine residue that may have a substituent, amide group that may have a substituent, an acid imide group which may have a substituent, a substituted oxycarbonyl group which may have a substituent, a cyano group, a nitro group, a group represented by -C(=O)-R c , or -SO 2 -R d R c and R d each independently represent a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent. an aryl group which may have a substituent, an alkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent, an aryloxy group which may have a substituent, Or represents a monovalent heterocyclic group which may have a substituent. When a plurality of R's exist, the plurality of R's may be the same or different. )
  10.  前記中間層の厚さが1nm以上20nm以下である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the intermediate layer has a thickness of 1 nm or more and 20 nm or less.
  11.  非イオン性の絶縁性ポリマーを含む光電変換素子作製用インク。 Ink for producing photoelectric conversion elements containing nonionic insulating polymer.
  12.  非イオン性の絶縁性ポリマーを含むインクを塗布することで塗布膜を形成し、前記塗布膜を乾燥する工程を含む光電変換素子の製造方法。 A method for manufacturing a photoelectric conversion element, which includes the steps of forming a coating film by applying an ink containing a nonionic insulating polymer, and drying the coating film.
  13.  光検出素子である、請求項1~請求項10のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 10, which is a photodetection element.
  14.  請求項13に記載の光電変換素子を含むイメージセンサー。 An image sensor comprising the photoelectric conversion element according to claim 13.
  15.  請求項13に記載の光電変換素子を含む指紋認証装置。 A fingerprint authentication device comprising the photoelectric conversion element according to claim 13.
PCT/JP2023/026967 2022-08-31 2023-07-24 Photoelectric conversion element, ink for producing photoelectric conversion element, method for manufacturing photoelectric conversion element, image sensor, and fingerprint authentication device WO2024048123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138793A JP2024034522A (en) 2022-08-31 2022-08-31 Photoelectric conversion element, ink for manufacturing photoelectric conversion element, method for manufacturing photoelectric conversion element, image sensor, and fingerprint authentication device
JP2022-138793 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048123A1 true WO2024048123A1 (en) 2024-03-07

Family

ID=90099577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026967 WO2024048123A1 (en) 2022-08-31 2023-07-24 Photoelectric conversion element, ink for producing photoelectric conversion element, method for manufacturing photoelectric conversion element, image sensor, and fingerprint authentication device

Country Status (2)

Country Link
JP (1) JP2024034522A (en)
WO (1) WO2024048123A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258190A1 (en) * 2007-09-14 2010-10-14 Jingsong Huang Organic Photovoltaic Device Having a Non-Conductive Interlayer
US20190097144A1 (en) * 2016-03-15 2019-03-28 Nutech Ventures Insulating tunneling contact for efficient and stable perovskite solar cells
CN111599827A (en) * 2020-04-28 2020-08-28 深圳市惠能材料科技研发中心(有限合伙) Novel perovskite semiconductor type X-ray detector and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258190A1 (en) * 2007-09-14 2010-10-14 Jingsong Huang Organic Photovoltaic Device Having a Non-Conductive Interlayer
US20190097144A1 (en) * 2016-03-15 2019-03-28 Nutech Ventures Insulating tunneling contact for efficient and stable perovskite solar cells
CN111599827A (en) * 2020-04-28 2020-08-28 深圳市惠能材料科技研发中心(有限合伙) Novel perovskite semiconductor type X-ray detector and preparation method thereof

Also Published As

Publication number Publication date
JP2024034522A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
JP7284128B2 (en) Photoelectric conversion element and manufacturing method thereof
JP7339239B2 (en) Photoelectric conversion element
JP7080133B2 (en) Photodetection and fingerprint authentication device
US20230363184A1 (en) Photoelectric conversion element and method for manufacturing same
WO2021065374A1 (en) Photoelectric conversion element
WO2024048123A1 (en) Photoelectric conversion element, ink for producing photoelectric conversion element, method for manufacturing photoelectric conversion element, image sensor, and fingerprint authentication device
CN115336021A (en) Light detection element, sensor and biometric authentication device including same, and composition and ink
WO2019082852A1 (en) Photoelectric conversion element and method for manufacturing same
JP7315531B2 (en) Photodetector
TWI787101B (en) Production method of ink composition for production of photoelectric conversion element, cured film, photodetection element
TW202323362A (en) composition and ink composition
CN117242913A (en) Ink composition and method for producing same
JP7235465B2 (en) Photoelectric conversion element and manufacturing method thereof
CN112514100A (en) Photodetector
WO2023100844A1 (en) Compound and photoelectric conversion element employing same
WO2019082849A1 (en) Photoelectric conversion element and method for manufacturing same
WO2021200315A1 (en) Photodetector element
JP7321962B2 (en) Photodetector
WO2023120359A1 (en) Compound and photoelectric conversion element using same
WO2023058725A1 (en) Composition and ink composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859892

Country of ref document: EP

Kind code of ref document: A1