WO2023058725A1 - Composition and ink composition - Google Patents

Composition and ink composition Download PDF

Info

Publication number
WO2023058725A1
WO2023058725A1 PCT/JP2022/037479 JP2022037479W WO2023058725A1 WO 2023058725 A1 WO2023058725 A1 WO 2023058725A1 JP 2022037479 W JP2022037479 W JP 2022037479W WO 2023058725 A1 WO2023058725 A1 WO 2023058725A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
optionally substituted
represented
groups
Prior art date
Application number
PCT/JP2022/037479
Other languages
French (fr)
Japanese (ja)
Inventor
綾香 矢野
雄太 石野
大輔 猪口
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023058725A1 publication Critical patent/WO2023058725A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a composition, and further to an ink composition for forming a functional layer of a photoelectric conversion element.
  • Photoelectric conversion elements are attracting attention as they are extremely useful devices, for example, from the viewpoint of energy saving and reduction of carbon dioxide emissions.
  • a photodetector OPD
  • a manufacturing method of forming functional layers such as an active layer, an electron transport layer, and a hole transport layer by a coating method of coating an ink composition onto an object to be coated. is applied (see Non-Patent Document 1).
  • the thickness of the formed functional layer will not be uniform.
  • the characteristics of the manufactured photoelectric conversion element may vary, or the desired characteristics may not be obtained.
  • the present inventors have made intensive studies to solve the above problems, and have found that, focusing on the terminal structure of the polymer compound contained in the ink composition, a predetermined additive capable of binding to the terminal structure is used. As a result, the inventors have found that the above problems can be solved, and have completed the present invention. That is, the present invention provides the following [1] to [11].
  • A represents a divalent organic group which may have a substituent
  • B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton
  • Y represents a group represented by -CH- or a nitrogen atom.
  • A is a divalent organic group represented by the following formula (IV).
  • Ar 2 and Ar 3 each independently represent an optionally substituted trivalent aromatic heterocyclic group
  • Z represents a group represented by any one of the following formulas (Z-1) to (Z-7).
  • R is hydrogen atom, halogen atom, an optionally substituted alkyl group, a cycloalkyl group optionally having a substituent, an optionally substituted alkenyl group, a cycloalkenyl group optionally having a substituent, an optionally substituted alkynyl group, a cycloalkynyl group optionally having a substituent, an aryl group optionally having a substituent, an optionally substituted alkyloxy group, a cycloalkyloxy group optionally having a substituent, an optionally substituted aryloxy group, an optionally substituted alkylthio group, a cycloalkylthio group optionally having a substituent, an optionally substituted arylthio group, a monovalent heterocyclic group optionally having a substituent, a substituted amino group which may have a substituent, an imine residue optionally having a substituent, an imine residue optionally having a substituent, an imine residue optional
  • [6] The composition according to any one of [1] to [5], wherein A contains a thiophene skeleton.
  • [7] The composition according to any one of [1] to [6], wherein the additive is 4-methylcarbostyril, propionamide, or pyridinol.
  • the ink composition of [8], wherein the n-type semiconductor material is a fullerene compound or a non-fullerene compound.
  • a solidified film obtained by solidifying the ink composition according to [8] or [9].
  • [11] A photoelectric conversion device comprising the solidified film according to [10] as an active layer.
  • composition of the present invention it is possible to suppress an increase in viscosity over time in an ink composition for forming a functional layer of a photoelectric conversion element.
  • FIG. 1 is a diagram schematically showing a configuration example of a photoelectric conversion element.
  • FIG. 2 is a diagram schematically showing a configuration example of an image detection unit.
  • FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit.
  • FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
  • FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device.
  • FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
  • polymer compound means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more and 1 ⁇ 10 8 or less.
  • the constituent units contained in the polymer compound are 100 mol % in total.
  • the term "constituent unit” means a unit that exists at least one in a polymer compound and is derived from a monomer compound (monomer).
  • the "hydrogen atom” may be either a hydrogen atom or a deuterium atom.
  • halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
  • substituents include halogen atoms, alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups, alkyloxy groups, cycloalkyloxy groups, alkylthio groups, cycloalkylthio groups, aryl groups, aryloxy groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, cyano groups, alkylsulfonyl groups, and nitro groups. .
  • alkyl group may have a substituent.
  • An “alkyl group” may be linear, branched, or cyclic, unless otherwise specified.
  • the number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-30, more preferably 1-20, not including the number of carbon atoms in the substituents.
  • the number of carbon atoms in the branched or cyclic alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, not including the number of carbon atoms in substituents.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isoamyl, 2-ethylbutyl, n- hexyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, cyclohexylethyl group, n-octyl group, 2-ethylhexyl group, 3-n-propylheptyl group, adamantyl group, n-decyl group, 3,7-dimethyl Unsubstituted alkyl groups such as octyl group, 2-ethyloctyl group, 2-n-hexyl-decyl group, n-dodecyl group, tetradecyl group, hexadecyl group,
  • a “cycloalkyl group” may be a monocyclic group or a polycyclic group.
  • a cycloalkyl group may have a substituent.
  • the number of carbon atoms in the cycloalkyl group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituents.
  • cycloalkyl groups include unsubstituted alkyl groups such as cyclopentyl, cyclohexyl, cycloheptyl, and adamantyl groups, and hydrogen atoms in these groups are alkyl groups, alkyloxy groups, and aryl groups. , a group substituted with a substituent such as a fluorine atom.
  • cycloalkyl group having a substituent examples include a methylcyclohexyl group and an ethylcyclohexyl group.
  • alkenyl group may be linear or branched.
  • the alkenyl group may have a substituent.
  • the number of carbon atoms in the alkenyl group is usually 2-30, preferably 2-20, not including the number of carbon atoms in the substituents.
  • alkenyl groups include vinyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 5-hexenyl, Alkenyl groups having no substituents such as 7-octenyl groups, and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyloxy groups, aryl groups and fluorine atoms are included.
  • a "cycloalkenyl group” may be a monocyclic group or a polycyclic group.
  • a cycloalkenyl group may have a substituent.
  • the number of carbon atoms in the cycloalkenyl group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituents.
  • cycloalkenyl groups include unsubstituted cycloalkenyl groups such as cyclohexenyl groups, and hydrogen atoms in these groups are substituted groups such as alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms. Substituted groups are included.
  • substituted cycloalkenyl groups include a methylcyclohexenyl group and an ethylcyclohexenyl group.
  • Alkynyl group may be linear or branched.
  • the alkynyl group may have a substituent.
  • the number of carbon atoms in the alkynyl group is usually 2-30, preferably 2-20, not including the number of carbon atoms in the substituents.
  • alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl and 5-hexynyl groups. and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyloxy groups, aryl groups and fluorine atoms.
  • a “cycloalkynyl group” may be a monocyclic group or a polycyclic group.
  • a cycloalkynyl group may have a substituent.
  • the number of carbon atoms in the cycloalkynyl group is usually 4-30, preferably 4-20, not including the number of carbon atoms in the substituents.
  • cycloalkynyl groups include unsubstituted cycloalkynyl groups such as cyclohexynyl groups, and hydrogen atoms in these groups substituted with substituents such as alkyl groups, alkyloxy groups, aryl groups and fluorine atoms. groups.
  • substituted cycloalkynyl groups include a methylcyclohexynyl group and an ethylcyclohexynyl group.
  • alkyloxy group may be linear or branched.
  • the alkyloxy group may have a substituent.
  • the number of carbon atoms in the alkyloxy group is generally 1-30, preferably 1-20, not including the number of carbon atoms in the substituent.
  • alkyloxy groups include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, tert-butyloxy, n-pentyloxy, n-hexyloxy, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, 3-heptyldodecyloxy group, lauryloxy group, etc.
  • Alkyloxy groups having no substituents, and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyloxy groups, aryl groups and fluorine atoms are included.
  • the cycloalkyl group possessed by the "cycloalkyloxy group” may be a monocyclic group or a polycyclic group.
  • a cycloalkyloxy group may have a substituent.
  • the number of carbon atoms in the cycloalkyloxy group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituent.
  • cycloalkyloxy groups include unsubstituted cycloalkyloxy groups such as cyclopentyloxy, cyclohexyloxy, and cycloheptyloxy, and hydrogen atoms in these groups are fluorine atoms, alkyl groups, and the like.
  • a group substituted with a substituent can be mentioned.
  • alkylthio group may be linear or branched.
  • the alkylthio group may have a substituent.
  • the number of carbon atoms in the alkylthio group is generally 1-30, preferably 1-20, not including the number of carbon atoms in the substituent.
  • optionally substituted alkylthio groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, n-pentylthio, n-hexylthio group, n-heptylthio group, n-octylthio group, 2-ethylhexylthio group, n-nonylthio group, n-decylthio group, 3,7-dimethyloctylthio group, 3-heptyldodecylthio group, laurylthio group, and a trifluoromethylthio group.
  • the cycloalkyl group possessed by the "cycloalkylthio group” may be a monocyclic group or a polycyclic group.
  • a cycloalkylthio group may have a substituent.
  • the number of carbon atoms in the cycloalkylthio group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituent.
  • a cyclohexylthio group is mentioned as an example of the cycloalkylthio group which may have a substituent.
  • P-valent aromatic carbocyclic group means the remaining atomic group excluding p hydrogen atoms directly bonded to the carbon atoms constituting the ring from an aromatic hydrocarbon optionally having a substituent. do.
  • the p-valent aromatic carbocyclic group may further have a substituent.
  • Aryl group means a monovalent aromatic carbocyclic group.
  • the aryl group may have a substituent.
  • the number of carbon atoms in the aryl group is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
  • aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, Aryl groups having no substituents such as 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group and 4-phenylphenyl group, and hydrogen atoms in these groups is substituted with a substituent such as an alkyl group, an alkyloxy group, an aryl group, or a fluorine atom.
  • the "aryloxy group” may have a substituent.
  • the number of carbon atoms in the aryloxy group is generally 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
  • aryloxy groups include phenoxy groups, 1-naphthyloxy groups, 2-naphthyloxy groups, 1-anthracenyloxy groups, 9-anthracenyloxy groups, 1-pyrenyloxy groups, and the like.
  • Examples include aryloxy groups and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyl groups, alkyloxy groups and fluorine atoms.
  • the "arylthio group” may have a substituent.
  • the number of carbon atoms in the arylthio group is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
  • optionally substituted arylthio groups include a phenylthio group, a C1-C12 alkyloxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and pentafluorophenyl A thio group can be mentioned.
  • C1-C12 means that the group immediately following it has 1-12 carbon atoms.
  • Cm-Cn indicates that the number of carbon atoms in the group immediately following it is from m to n. The same applies hereinafter.
  • p-valent heterocyclic group (p represents an integer of 1 or more.) is a hydrogen directly bonded to a carbon atom or heteroatom constituting a ring from a heterocyclic compound optionally having a substituent It means an atomic group remaining excluding p hydrogen atoms among atoms.
  • a "p-valent heterocyclic group” includes a "p-valent aromatic heterocyclic group”.
  • p-valent aromatic heterocyclic group from an optionally substituted aromatic heterocyclic compound, p It means the remaining atomic groups excluding hydrogen atoms.
  • Aromatic heterocyclic compounds include not only compounds in which the heterocycle itself exhibits aromaticity, but also compounds in which an aromatic ring is fused to a heterocycle, even if the heterocycle itself does not exhibit aromaticity. be.
  • aromatic heterocyclic compounds specific examples of compounds in which the heterocycle itself exhibits aromaticity include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, and triazine. , pyridazine, quinoline, isoquinoline, carbazole, and dibenzophosphole.
  • aromatic heterocyclic compounds specific examples of compounds in which the heterocyclic ring itself does not show aromaticity and the aromatic ring is fused to the heterocyclic ring include phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyrans.
  • the p-valent heterocyclic group may have a substituent.
  • the number of carbon atoms in the p-valent heterocyclic group is usually 2 to 60, preferably 2 to 20, not including the number of carbon atoms in the substituents.
  • monovalent heterocyclic groups include monovalent aromatic heterocyclic groups (e.g., thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, isoquinolyl group, pyrimidinyl group, triazinyl group), monovalent Examples include non-aromatic heterocyclic groups (eg, piperidyl group, piperazyl group), and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyl groups, alkyloxy groups, and fluorine atoms.
  • monovalent aromatic heterocyclic groups e.g., thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, isoquinolyl group, pyrimidinyl group, triazinyl group
  • monovalent Examples include non-aromatic heterocyclic groups (eg, piperidyl group, piperazyl group), and groups in which hydrogen atoms in these groups are substitute
  • Substituted amino group means an amino group having a substituent. Alkyl groups, aryl groups, and monovalent heterocyclic groups are preferred as the substituents possessed by the amino group. The number of carbon atoms in the substituted amino group is usually 2-30 not including the number of carbon atoms in the substituent.
  • substituted amino groups include dialkylamino groups (eg, dimethylamino group, diethylamino group), diarylamino groups (eg, diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl ) amino group and bis(3,5-di-tert-butylphenyl)amino group).
  • dialkylamino groups eg, dimethylamino group, diethylamino group
  • diarylamino groups eg, diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl ) amino group and bis(3,5-di-tert-butylphenyl)amino group).
  • the "acyl group” may have a substituent.
  • the number of carbon atoms in the acyl group is usually 2-20, preferably 2-18, not including the number of carbon atoms in the substituents.
  • Specific examples of acyl groups include acetyl, propionyl, butyryl, isobutyryl, pivaloyl, benzoyl, trifluoroacetyl, and pentafluorobenzoyl groups.
  • Imine residue means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom or a nitrogen atom that constitutes a carbon atom-nitrogen atom double bond from an imine compound.
  • An "imine compound” means an organic compound having a carbon atom-nitrogen atom double bond in the molecule.
  • imine compounds include aldimines, ketimines, and compounds in which the hydrogen atoms bonded to the nitrogen atoms that constitute the carbon atom-nitrogen double bonds in aldimines are substituted with substituents such as alkyl groups. be done.
  • the number of carbon atoms in the imine residue is usually 2-20, preferably 2-18.
  • Examples of imine residues include groups represented by the following structural formulas.
  • Amido group means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from amide.
  • the amide group usually has about 1 to 20 carbon atoms, preferably 1 to 18 carbon atoms.
  • Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , a ditrifluoroacetamide group, and a dipentafluorobenzamide group.
  • Acid imide group means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from an acid imide.
  • the number of carbon atoms in the acid imide group is generally 4-20.
  • Specific examples of acid imide groups include groups shown below.
  • R' represents an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group.
  • the substituted oxycarbonyl group usually has 2 to 60 carbon atoms, preferably 2 to 48 carbon atoms.
  • substituted oxycarbonyl groups include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, and a hexyloxycarbonyl group.
  • alkylsulfonyl group may be linear or branched.
  • the alkylsulfonyl group may have a substituent.
  • the number of carbon atoms in the alkylsulfonyl group is usually 1-30, not including the number of carbon atoms in the substituents.
  • Specific examples of alkylsulfonyl groups include methylsulfonyl, ethylsulfonyl, and dodecylsulfonyl groups.
  • the “divalent organic group” may be linear, branched, or cyclic. Examples of divalent organic groups include divalent linear aliphatic hydrocarbon groups, divalent branched aliphatic hydrocarbon groups, divalent cyclic hydrocarbon groups, divalent aromatic hydrocarbon groups, Divalent heterocyclic groups and divalent aromatic heterocyclic groups are included. When the “divalent organic group” includes a cyclic structure, the “divalent organic group” may include a condensed ring structure and a bridged structure.
  • ⁇ -conjugated system means a system in which ⁇ electrons are delocalized over multiple bonds.
  • (Meth)acrylic includes acrylic, methacrylic, and combinations thereof.
  • the "ink composition” means a liquid composition used in the coating method, and is not limited to colored liquids.
  • the “coating method” means a method of forming a film using a liquid substance represented by an ink composition.
  • compositions and “ink composition” may be a solution, or may be a dispersion liquid such as a dispersion liquid, an emulsion (emulsion), or a suspension (suspension).
  • composition of the present embodiment is a polymer compound containing a structural unit represented by formula (I), which contains a structural unit represented by formula (I) and is represented by formula (II) It contains a polymer compound that further contains an impurity polymer compound having a terminal structure with a Polymeric compounds that may be included in the composition are typically p-type semiconductor materials.
  • the composition of this embodiment further comprises a solvent comprising an aromatic hydrocarbon. Details of the polymer compound and solvent that can be contained in the composition of the present embodiment will be described later.
  • the ink composition of the present embodiment may further contain an n-type semiconductor material in addition to the "composition" already described. That is, the ink composition of the present embodiment preferably contains two or more polymer compounds that are p-type semiconductor materials, an organic solvent, and an n-type semiconductor material.
  • the ink composition of the present embodiment is assumed to be an ink composition for manufacturing a photoelectric conversion element, preferably an ink composition for forming an active layer, which is a functional layer.
  • compositions that can be included in the “composition” and “ink composition” of the present embodiment are specifically described below.
  • the p-type semiconductor material may contain two or more electron-donating polymer compounds, and the n-type semiconductor material may contain at least one electron-accepting compound.
  • the semiconductor material contained in the ink composition functions as a p-type semiconductor material or an n-type semiconductor material is relatively determined from the HOMO energy level value or the LUMO energy level value of the selected compound. I can.
  • the relationship between the HOMO and LUMO energy level values of the p-type semiconductor material and the HOMO and LUMO energy level values of the n-type semiconductor material indicates that the (solidified) film formed from the ink composition has a photoelectric conversion function, It can be appropriately set within a range in which a predetermined function such as a light detection function is exhibited.
  • the p-type semiconductor material is a polymer compound.
  • the p-type semiconductor material that the ink composition of the present embodiment may contain is a donor/acceptor containing a donor structural unit (also referred to as a D structural unit) and an acceptor structural unit (also referred to as an A structural unit). It includes a ⁇ -conjugated polymer compound having a structure (also referred to as a DA-type conjugated polymer compound).
  • the donor structural unit is a structural unit with an excess of ⁇ electrons
  • the acceptor structural unit is a structural unit with a ⁇ electron deficiency.
  • the structural unit that can constitute the p-type semiconductor material may be a structural unit in which a donor structural unit and an acceptor structural unit are directly bonded, or a donor structural unit and an acceptor structural unit.
  • Structural units linked via spacers are also included.
  • the polymer compound that is the p-type semiconductor material includes, for example, polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives. , polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives.
  • the polymer compound that is the p-type semiconductor material preferably contains a structural unit containing a thiadiazole skeleton and/or a structural unit having a thiophene skeleton.
  • the polymer compound that is the p-type semiconductor material contained in the composition is a polymer compound containing a structural unit represented by the following formula (I), and is represented by the following formula (I): It is a polymer compound containing structural units and further containing an impurity polymer compound having a terminal structure represented by the following formula (II).
  • A represents a divalent organic group which may have a substituent
  • B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton
  • Y represents a group represented by -CH- or a nitrogen atom.
  • B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton
  • Y represents a group represented by -CH- or a nitrogen atom.
  • the structural unit represented by formula (I) includes a structure (structural unit) represented by A and a structure (structural unit) containing a ring structure represented by B. I'm in.
  • A is a donor structural unit (D structural unit), and a ring structure containing B is an acceptor structural unit (A structural unit).
  • the polymer compound of the present embodiment contains impurity polymer compounds as impurities.
  • the impurity polymer compound is assumed to be a polymer compound containing a structural unit represented by the above formula (I) and having a terminal structure represented by the above formula (II).
  • the terminal group represented by formula (II) has a terminal structure containing an amide structure, and is usually derived from a monomer that is a raw material used for synthesizing a polymer compound.
  • the terminal groups represented by formula (II) above include groups generated post-synthetically by, for example, keto tautomerization.
  • a polymer compound that is a p-type semiconductor material may contain an impurity polymer compound from the beginning, and even if it does not contain an impurity polymer compound at the beginning, it may undergo keto tautomerization, for example. As a result, the polymer compound may contain an impurity polymer compound after the fact.
  • A preferably has a structure (constituent unit) represented by formula (III) below.
  • Ar 1 represents a divalent aromatic heterocyclic group or an arylene group.
  • the number of carbon atoms in the divalent aromatic heterocyclic group (constituent unit) represented by Ar 1 is usually 2 to 60, preferably 4 to 60, more preferably 4 to is 20.
  • the divalent aromatic heterocyclic group represented by Ar 1 may have a substituent.
  • Examples of substituents that the divalent aromatic heterocyclic group represented by Ar 1 may have include halogen atoms, alkyl groups, aryl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, alkenyl groups, alkynyl groups, cyano groups, and nitro groups.
  • Ar 1 (A) preferably contains a thiophene skeleton.
  • Examples of the divalent aromatic heterocyclic group represented by Ar 1 include groups represented by the following formulas (101) to (190) (wherein formulas (146), (148), ( 150) and (154) are missing numbers).
  • R has the same meaning as above.
  • the multiple R's may be the same or different.
  • divalent aromatic heterocyclic group (constituent unit) represented by Ar 1 divalent groups (constituent units) represented by the following formulas (III-1) to (III-6) are preferred.
  • X 1 and X 2 each independently represent an oxygen atom or a sulfur atom, and R has the same meaning as above. When there are multiple R's, the multiple R's may be the same or different.
  • both X 1 and X 2 in formulas (III-1) to (III-6) are preferably sulfur atoms.
  • the polymer compound that is the p-type semiconductor material may contain two or more structural units represented by formula (III).
  • the arylene group represented by Ar 1 means an atomic group remaining after removing two hydrogen atoms from an optionally substituted aromatic hydrocarbon.
  • Aromatic hydrocarbons also include compounds having condensed rings, and compounds in which two or more selected from the group consisting of independent benzene rings and condensed rings are bonded directly or via a divalent group such as vinylene.
  • Examples of the substituents that the aromatic hydrocarbon may have include the same substituents as those listed above as the substituents that the heterocyclic compound may have.
  • the number of carbon atoms in the arylene group represented by Ar 1 excluding substituents is usually 6-60, preferably 6-20.
  • the number of carbon atoms in the arylene group including substituents is usually 6-100.
  • Examples of the arylene group represented by Ar 1 include a phenylene group (eg, the following formulas 1 to 3), a naphthalene-diyl group (eg, the following formulas 4 to 13), an anthracene-diyl group (eg, the following formulas 14 to formula 19), biphenyl-diyl groups (e.g., formulas 20 to 25 below), terphenyl-diyl groups (e.g., formulas 26 to 28 below), condensed ring compound groups (e.g., formulas 29 to 35 below ), fluorene-diyl groups (eg, formulas 36 to 38 below), and benzofluorene-diyl groups (eg, formulas 39 to 46 below).
  • a phenylene group eg, the following formulas 1 to 3
  • a naphthalene-diyl group eg, the following formulas 4 to 13
  • R has the same definition as above.
  • the multiple R's may be the same or different.
  • A is more preferably a structure (constituent unit) represented by formula (IV) below.
  • Ar 2 and Ar 3 each independently represent an optionally substituted trivalent aromatic heterocyclic group
  • Z represents a group represented by any one of the following formulas (Z-1) to (Z-7).
  • R is hydrogen atom, halogen atom, an optionally substituted alkyl group, a cycloalkyl group optionally having a substituent, an optionally substituted alkenyl group, a cycloalkenyl group optionally having a substituent, an optionally substituted alkynyl group, a cycloalkynyl group optionally having a substituent, an aryl group optionally having a substituent, an optionally substituted alkyloxy group, a cycloalkyloxy group optionally having a substituent, an optionally substituted aryloxy group, an optionally substituted alkylthio group, a cycloalkylthio group optionally having a substituent, an optionally substituted arylthio group, a monovalent heterocyclic group optionally having a substituent, a substituted amino group which may have a substituent, an imine residue optionally having a substituent, an amide group optionally
  • R in formulas (Z-1) to (Z-7) is preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, still more preferably a hydrogen atom or carbon It is an alkyl group having 1 to 40 atoms, more preferably a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, particularly preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. These groups may have a substituent. When there are multiple R's, the multiple R's may be the same or different.
  • the structure (structural unit) represented by formula (IV) is preferably a structure (structural unit) represented by formula (IV-1) below.
  • Preferred examples of the structure (structural unit) represented by formula (IV-1) include structures (structural units) containing a thiophene skeleton represented by formulas (501) to (505) below.
  • R has the same meaning as above.
  • the two R's may be the same or different.
  • examples of the polymer compound containing the structural unit represented by the above formula (I) include A in the structural unit represented by the formula (I) and at least one end side of the polymer compound.
  • the structural unit represented by formula (I) contained in the polymer compound that is the p-type semiconductor material of the present embodiment is the structure represented by the above A (the structure represented by formula (III) or (IV) ( structural unit)), a structure represented by the following formula (V) (a structure containing a ring structure represented by B (structural unit)).
  • B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton
  • Y represents a group represented by -CH- or a nitrogen atom.
  • B preferably contains a thiadiazole skeleton.
  • the number of carbon atoms in the structure (constituent unit) represented by formula (V) is usually 2-20, preferably 4-20, more preferably 4-10.
  • the structure (constituent unit) represented by formula (V) below may further have a substituent.
  • substituents include halogen atoms, alkyl groups, aryl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, Acid imide groups, substituted oxycarbonyl groups, alkenyl groups, alkynyl groups, cyano groups, and nitro groups are included.
  • Preferred examples of the structure (constituent unit) represented by formula (V) include divalent groups represented by formulas (V-1) to (V-3) below.
  • R has the same meaning as above.
  • the multiple R's may be the same or different.
  • the polymer compound that is the p-type semiconductor material may contain two or more structures represented by A (structures (constitutional units) represented by formula (III) or (IV) , may contain two or more types of structures (constituent units) represented by formula (V).
  • the polymer compound as the p-type semiconductor material and the impurity polymer compound are DA type in which the main chain is composed only of structural units represented by the already described formula (I). It may be a conjugated polymer compound, and may be a DA type conjugated polymer compound containing other constitutional units.
  • the total amount of the structural units represented by the formula (I) is equal to all the structural units contained in the polymer compound.
  • the amount of is 100 mol%, it is usually 20 to 100 mol%, and from the viewpoint of improving the charge transport property as a p-type semiconductor material, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol %.
  • Suitable specific examples of the polymer compound that is the p-type semiconductor material include polymer compounds represented by the following formula P-1.
  • the polymer compound that is the p-type semiconductor material preferably has a predetermined polystyrene-equivalent weight-average molecular weight.
  • the weight average molecular weight in terms of polystyrene means the weight average molecular weight calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
  • the polystyrene-equivalent weight-average molecular weight of the polymer compound, which is the p-type semiconductor material, is preferably 3,000 or more and 500,000 or less, particularly from the viewpoint of improving solubility in solvents.
  • Measurement of the ratio of the terminal structure represented by the formula (II), which is an amide structure can be carried out, for example, by infrared ray according to a conventional method using any suitable conventionally known measuring device (for example, Nicolet iS50 FT-IR manufactured by ThermoFisher) It can be done by spectroscopy.
  • any suitable conventionally known measuring device for example, Nicolet iS50 FT-IR manufactured by ThermoFisher
  • the C ⁇ O stretching peak (1700 cm ⁇ 1 ) intensity derived from the terminal structure including the amide structure contained in the impurity polymer compound further contained in the polymer compound of the present embodiment is expressed by the formula (I):
  • the value obtained by dividing by the peak (954 cm ⁇ 1 ) intensity derived from the main chain containing the represented structural unit and multiplying by 100 is taken as the ratio (%) of the terminal structure containing the amide structure contained in the impurity polymer compound. Just do it.
  • absorption in a specific wavelength region derived from a functional group is observed in a wavelength region of 1500 cm -1 or more, and a wavelength region of 1500 cm -1 or less (fingerprint region Absorption derived from the functional group and absorption derived from the molecular structure are observed.
  • the observed absorption peak may shift within a range of ⁇ 10 cm ⁇ 1 from the above wavenumbers due to influences such as peak shape, peak intensity or baseline shape of the infrared absorption spectrum.
  • the wave number of the C ⁇ O stretching peak derived from the terminal structure containing the amide structure contained in the impurity polymer compound and the absorption peak derived from the main chain containing the structural unit represented by formula (1) is given by formula (1) Alternatively, it may shift within the range of ⁇ 50 cm ⁇ 1 depending on the structure of each of A, B and Y included in formula (2).
  • the polymer compound which is the p-type semiconductor material already described, can be produced by any suitable conventionally known production method (e.g., WO 2013/051676, WO 2011/052709, WO 2018/ 220785).
  • the polymer compound which is the p-type semiconductor material already described, can be produced by a method including a polymerization step (reaction step) using any suitable conventionally known solvent as a polymerization solvent.
  • Polymerization solvents that can be suitably applied to the method for producing a polymer compound of the present embodiment include, for example, hydrocarbon solvents, ketone solvents, alcohol solvents, ether solvents, phenolic solvents, and carboxylic acid ester solvents.
  • an alcohol solvent is preferably used as the polymerization solvent.
  • the polymerization solvent comprises a first solvent that is at least one hydrocarbon solvent, at least one solvent consisting only of at least one carbon atom, at least one hydrogen atom, and at least one oxygen atom. and water.
  • the polymerization solvent may contain any solvent other than the first solvent, the second solvent, and water.
  • Optional solvents include, for example, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, monochlorobenzene, dichlorobenzene, trichlorobenzene.
  • the volume ratio of any solvent is preferably 50% by volume or less, more preferably 25% by volume or less, relative to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water. , more preferably 10% by volume or less.
  • the reaction solvent preferably consists essentially of said first solvent, said second solvent and water.
  • Examples of the first solvent include aliphatic hydrocarbon solvents, alicyclic hydrocarbon solvents, and aromatic hydrocarbon solvents.
  • aliphatic hydrocarbon solvents examples include hexane, heptane, octane, nonane, decane, undecane, and dodecane.
  • Examples of alicyclic hydrocarbon solvents include cyclohexane and decalin.
  • Examples of aromatic hydrocarbon solvents include benzene, toluene, xylene (ortho-xylene), trimethylbenzene (eg, mesitylene), tetralin, indane, naphthalene, and methylnaphthalene.
  • the first solvent may be a single hydrocarbon solvent or a combination of two or more hydrocarbon solvents.
  • the first solvent is preferably one or more selected from the group consisting of toluene, xylene, trimethylbenzene, decalin, tetralin, indane, naphthalene, and methylnaphthalene, more preferably toluene, mesitylene, and tetralin. It is one or more selected from the group consisting of, more preferably toluene, mesitylene, or tetralin.
  • the organic solvent as the second solvent may have only one type of group containing an oxygen atom, or may have two or more types thereof.
  • Examples of the second solvent include alcohol solvents, ether solvents, ketone solvents, phenol solvents, and carboxylic acid ester solvents.
  • alcohol solvents examples include primary alcohols (e.g., methanol, ethanol, 2-phenylethanol, n-propyl alcohol, n-butyl alcohol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, 2-ethyl-1-hexanol, 1-octanol, benzyl alcohol), secondary alcohols (eg, isopropyl alcohol, sec-butyl alcohol, 2-octanol, 3-pentanol, cyclohexanol), tertiary alcohols (eg , tert-butyl alcohol, 1-methylcyclohexanol, 1-ethylcyclohexanol, 1-methylcyclopentanol, tert-amyl alcohol, 2-phenyl-2-propanol, 2-methyl-1-phenyl-2-propanol, 2-methyl-2-pentanol, 3-ethyl-3-pentanol).
  • primary alcohols
  • Ether solvents include anisole, cyclopentyl methyl ether, tert-butyl methyl ether, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and 1,4-dioxane.
  • Ketone solvents include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Phenolic solvents include, for example, phenol, o-cresol, m-cresol, and p-cresol.
  • carboxylic acid ester solvents examples include ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, ⁇ -Butyl lactone can be mentioned.
  • the second solvent may be used alone or in combination of two or more.
  • the second solvent is preferably one or more selected from the group consisting of alcohol solvents, ether solvents, and ketone solvents.
  • the second solvent may be a water-immiscible solvent.
  • a solvent "immiscible with water” means a liquid obtained by adding 5% by mass or more of water to the solvent, and a liquid obtained by adding 5% by mass or more of the solvent to water. It means that the liquid obtained by adding to does not form a transparent one-phase solution.
  • water-immiscible solvents examples include 2-phenylethanol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, 2-ethyl-1-hexanol, 1 - octanol, benzyl alcohol, 2-octanol, cyclohexanol, 1-methylcyclohexanol, 1-ethylcyclohexanol, 1-methylcyclopentanol, 2-phenyl-2-propanol, 2-methyl-1-phenyl-2- Propanol, 2-methyl-2-pentanol, 3-ethyl-3-pentanol, cyclopentyl methyl ether, tert-butyl methyl ether, diisopropyl ether, methyl isobutyl ketone, propyl acetate, butyl acetate, methyl propionate, ethyl propionate , propyl propionate
  • a solvent "miscible with water” means a liquid obtained by adding 5% by mass or more of water to the solvent, and a liquid obtained by adding 5% by mass or more of the solvent to water. to form a clear one-phase solution in both.
  • the second solvent may be a solvent miscible with water.
  • Water-miscible solvents that can be used as the second solvent include, for example, methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isopropyl alcohol, sec-butyl alcohol, 3-pentanol, tert-butyl alcohol.
  • tert-amyl alcohol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, cyclohexanone, phenol, ethyl acetate, ⁇ -butyl lactone, and ethylene glycol.
  • One or more selected from the group consisting of dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, and cyclohexanone are preferred, and one selected from the group consisting of ethylene glycol dimethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran. The above is more preferable.
  • Combinations of the first solvent and the second solvent include, for example, all combinations of the above examples of the first solvent and the above examples of the second solvent.
  • the combination of the first solvent and the second solvent is not particularly limited.
  • the volume ratio of water is determined based on the volume of the first solvent, the volume of the second solvent, and the volume of water used to prepare the reaction solvent.
  • the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is greater than 10% by volume, preferably 25 vol% or more, more preferably 25 vol% or more, still more preferably 35 vol% or more, still more preferably 35 vol% or more, still more preferably 45 vol% or more, still more preferably 45 vol% %, more preferably 50% by volume or more, and particularly preferably more than 50% by volume.
  • the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is less than 100% by volume, preferably is 90% by volume or less, more preferably less than 90% by volume, more preferably 80% by volume or less, still more preferably less than 80% by volume, still more preferably 70% by volume or less, and more preferably is less than 70% by volume, more preferably less than 65% by volume, and particularly preferably less than 65% by volume.
  • the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is more than 10% by volume and 100% by volume. less than, preferably 25% by volume or more and 90% by volume or less, more preferably more than 25% by volume and less than 90% by volume, still more preferably 35% by volume or more and 80% by volume or less, still more preferably 35 It is more than 80% by volume, more preferably 45% by volume or more and less than 70% by volume, more preferably more than 45% by volume and less than 70% by volume, still more preferably 50% by volume or more and 65% by volume. or less, and particularly preferably more than 50% by volume and less than 65% by volume.
  • the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is greater than 10% by volume, preferably 20 vol% or more, more preferably 20 vol% or more, still more preferably 25 vol% or more, still more preferably 25 vol% or more, still more preferably 35 vol% or more, still more preferably 35 vol% %, more preferably 45% by volume or more, more preferably 45% by volume or more, still more preferably 50% by volume or more, particularly preferably 50% by volume or more.
  • the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is less than 100% by volume, preferably is 90% by volume or less, more preferably less than 90% by volume, more preferably 80% by volume or less, still more preferably less than 80% by volume, still more preferably 70% by volume or less, and more preferably is less than 70% by volume, more preferably less than 65% by volume, and particularly preferably less than 65% by volume.
  • the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is more than 10% by volume and 100% by volume. less than, preferably 20% by volume or more and 90% by volume or less, more preferably more than 20% by volume and less than 90% by volume, still more preferably 25% by volume or more and 90% by volume or less, still more preferably 25 More than 90% by volume, more preferably 35% by volume or more and less than 80% by volume, more preferably more than 35% by volume and less than 80% by volume, still more preferably 45% by volume or more and less than 70% by volume or less, more preferably more than 45% by volume and less than 70% by volume, more preferably more than 50% by volume and less than 65% by volume, and particularly preferably more than 50% by volume and less than 65% by volume.
  • the mixing volume ratio a:b of the first solvent and the second solvent is preferably in the range of 1:9 to 9:1, more preferably in the range of 3:7 to 7:3.
  • composition of the present embodiment is an additive capable of forming two or more pairs of complementary hydrogen bonds with a terminal structure (terminal group) containing an amide structure represented by formula (II) already described. Contains agents (compounds).
  • Additives that can be suitably used in the present embodiment include, for example, compounds represented by the following formulas.
  • compounds represented by the following formulas as an additive, one type or two or more types of compounds described below can be used in combination.
  • A represents an oxygen atom, a sulfur atom or an NH group, preferably an oxygen atom or an NH group. Multiple A's may be the same or different.
  • each of a plurality of R is independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted alkyloxy group, optionally substituted alkylthio group, optionally substituted aryl group, optionally substituted aryloxy group, optionally substituted arylthio group, optionally substituted arylalkyl group, optionally substituted arylalkyloxy group, optionally substituted arylalkylthio group, optionally substituted optionally substituted amino group, optionally substituted acyloxy group, optionally substituted amide group, optionally substituted arylalkenyl group, optionally substituted It represents a good arylalkynyl group, bromine atom, fluorine atom, i
  • preferred specific examples of the additive include the additive having a chain amide structure and the additive having a cyclic amide structure exhibiting aromaticity as exemplified above.
  • Examples of specific additives include 4-methylcarbostyril (4MCS) represented by the formula (a), propionamide represented by the formula (d), and and 2-pyridinol.
  • an additive having a cyclic amide structure exhibiting aromaticity is added from the viewpoint of interacting with the amide structure of the impurity polymer compound and suppressing the viscosity increase rate of the composition (ink composition) over time. It is preferred to use That is, in the present embodiment, among the specific additives exemplified above, 4-methylcarbostyril (4MCS) represented by the formula (a) and 2-pyridinol represented by the formula (b) It is preferable to adopt
  • the content (addition amount) of the additive is not particularly limited as long as it does not impair the properties and effects of the composition (ink composition).
  • the amount of the additive added is such that it binds to the terminal structure including the amide structure of the impurity polymer compound contained in the polymer compound that is the p-type semiconductor material contained in the composition, thereby suppressing the binding between the impurity polymer compounds.
  • the amount may be equal to the substance amount of the impurity polymer compound having the terminal structure represented by the formula (II).
  • the amount is preferably (slightly) excessive with respect to the amount of the impurity polymer compound having the terminal structure represented by the formula (II).
  • the additive amount can be an amount that does not exceed the solubility of the additive in the solvent.
  • the additive is added in an amount such that the substance amount of the impurity polymer compound having a terminal structure represented by the formula (II) and the substance amount of the additive are equal to or greater than each other.
  • the amount of the additive to be added is the substance amount of the impurity polymer compound having the terminal structure represented by the formula (II) and the substance of the polymer compound containing the structural unit represented by the formula (I). It is more preferable that the amount is equal to or more than the total amount.
  • the additive is effectively bonded by suppressing association between the additives and generating a hydrogen bond between the terminal structure of the impurity polymer compound having the terminal structure represented by the formula (II) and the additive.
  • the amount of additive with respect to the total amount of the substance amount of the impurity polymer compound having a terminal structure represented by the formula (II) and the substance amount of the polymer compound containing the structural unit represented by the formula (I) More preferably, the amount of the substance is 10,000 times or less.
  • the additive can be added at a concentration of 0.006 mg/mL or more and 60 mg/mL or less. preferable.
  • the additive In preparing the composition (ink composition), it is preferable to add the additive when the solution of the polymer compound and the solvent is heated, the temperature is lowered, and the solution returns to room temperature.
  • the method of adding the additive is not particularly limited.
  • the additive can be added according to any conventionally known suitable procedure in preparing the composition (ink composition).
  • the additive may be mixed with other components (a polymer compound that is a p-type semiconductor, an n-type semiconductor material, and a solvent) when preparing a composition (ink composition).
  • a polymer compound that is a p-type semiconductor, an n-type semiconductor material, and a solvent when preparing a composition (ink composition).
  • the p-type semiconductor material alone or the p-type semiconductor material and the solvent may be mixed in advance, and then the n-type semiconductor material or the n-type semiconductor material and the solvent may be mixed.
  • the above (II) with respect to the peak intensity derived from the main chain containing the structural unit represented by the above formula (I) when measured by infrared spectroscopy
  • the ratio of the peak intensity derived from the terminal structure represented by is, for example, 6% or more, even if it is 8% or more, usually 2%, even if it exceeds 3%, the viscosity increases over time.
  • the above-mentioned compound, which is an additive forms a hydrogen bond in the terminal structure and caps it, thereby effectively suppressing the bonding between polymer compounds, which are p-type semiconductor materials. can.
  • the composition particularly the ink composition for forming the functional layer of the photoelectric conversion element.
  • the viscosity of the composition increases over time, the thickness of the formed film (solidified film) becomes non-uniform. Otherwise, the desired characteristics may not be obtained. Therefore, according to this embodiment, it is possible to suppress the occurrence of variations in the characteristics of the manufactured photoelectric conversion elements.
  • the aspect of the present embodiment using the already described additive is the peak intensity derived from the main chain containing the structural unit represented by the formula (I) when measured by infrared spectroscopy. is preferably 8% or more, more preferably 6.4% or more, and particularly preferably 6% or more.
  • n-type semiconductor material that can be included in the ink composition of the present embodiment may be a low-molecular compound or a high-molecular compound.
  • n-type semiconductor materials that are low molecular weight compounds
  • n-type semiconductor materials include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyano Anthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, fullerenes such as C60 fullerene and fullerene derivatives thereof (hereinafter referred to as fullerene compounds ), and phenanthrene derivatives such as bathocuproin.
  • fullerene compounds fullerene compounds
  • phenanthrene derivatives such as bathocuproin.
  • n-type semiconductor materials that are polymer compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorene and its derivatives.
  • the n-type semiconductor material is preferably one or more selected from fullerenes and fullerene derivatives, more preferably fullerene derivatives.
  • fullerenes include C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene, and C84 fullerene.
  • fullerene derivatives include derivatives of these fullerenes.
  • a fullerene derivative means a compound in which at least a part of fullerene is modified.
  • fullerene derivatives include compounds represented by the following formula.
  • Ra represents an alkyl group, an aryl group, a monovalent heterocyclic group, or a group having an ester structure.
  • a plurality of R a may be the same or different.
  • Rb represents an alkyl group or an aryl group.
  • a plurality of R b may be the same or different.
  • Examples of groups having an ester structure represented by Ra include groups represented by the following formulae.
  • u1 represents an integer of 1-6.
  • u2 represents an integer from 0 to 6;
  • R e represents an alkyl group, an aryl group, or a monovalent heterocyclic group.
  • C60 fullerene derivatives include the following compounds.
  • C70 fullerene derivatives include the following compounds.
  • fullerene derivatives include [6,6]-phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6]-phenyl C61 butyric acid methyl ester), [6,6]-phenyl-C71 butyric acid methyl ester ( C70PCBM, [6,6]-Phenyl C71 butyric acid methyl ester), [6,6]-phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6]-Phenyl C85 butyric acid methyl ester), and [6,6 ]-Thienyl-C61 butyric acid methyl ester ([6,6]-Thienyl C61 butyric acid methyl ester).
  • the n-type semiconductor material that can be contained in the ink composition of the present embodiment includes compounds other than fullerene compounds.
  • n-type semiconductor materials that are not fullerene compounds are referred to as "non-fullerene compounds.”
  • Various compounds are known as non-fullerene compounds, and any suitable conventionally known non-fullerene compound can be used as the n-type semiconductor material in this embodiment.
  • the ink composition according to the present embodiment may contain only one type of compound that is an n-type semiconductor material, or may contain a plurality of types.
  • the non-fullerene compound which is the n-type semiconductor material, is preferably a compound containing a perylenetetracarboxylic acid diimide structure.
  • examples of compounds containing a perylenetetracarboxylic acid diimide structure, which are non-fullerene compounds include compounds represented by the following formulae.
  • R is as defined above. Multiple R's may be the same or different.
  • the n-type semiconductor material preferably contains a compound represented by the following formula (VI).
  • the compound represented by the following formula (VI) is a non-fullerene compound containing a perylenetetracarboxylic acid diimide structure.
  • R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted an alkyloxy group, an optionally substituted cycloalkyloxy group, an optionally substituted aryl group, or an optionally substituted monovalent aromatic heterocyclic group show. Multiple R 1 's may be the same or different.
  • each of a plurality of R 1 is independently an optionally substituted alkyl group.
  • R 2 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted alkyloxy group, a substituent represents an optionally substituted cycloalkyloxy group, an optionally substituted aryl group, or an optionally substituted monovalent aromatic heterocyclic group.
  • Multiple R 2 may be the same or different.
  • Preferred examples of the compound represented by formula (VI) include the compound represented by the following formula.
  • the n-type semiconductor material preferably contains a compound represented by the following formula (VII).
  • a 1 and A 2 each independently represent an electron-withdrawing group, and B 10 represents a group containing a ⁇ -conjugated system.
  • Examples of electron-withdrawing groups A 1 and A 2 include groups represented by —CH ⁇ C(—CN) 2 and groups represented by the following formulas (a-1) to (a-9). and the group to be carried out.
  • T represents an optionally substituted carbocyclic ring or an optionally substituted heterocyclic ring.
  • Carbocyclic and heterocyclic rings may be monocyclic or condensed. When these rings have multiple substituents, the multiple substituents may be the same or different.
  • Examples of the optionally substituted carbocyclic ring for T include an aromatic carbocyclic ring.
  • the optionally substituted carbocyclic ring for T is preferably an aromatic carbocyclic ring.
  • Specific examples of the optionally substituted carbocyclic ring for T include benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring and phenanthrene ring, preferably benzene ring, They are a naphthalene ring and a phenanthrene ring, more preferably a benzene ring and a naphthalene ring, and still more preferably a benzene ring. These rings may have a substituent.
  • Examples of the optionally substituted heterocyclic ring for T include aromatic heterocyclic rings, preferably aromatic heterocyclic rings.
  • Specific examples of the optionally substituted heterocyclic ring for T include pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, and a thienothiophene ring, preferably a thiophene ring, a pyridine ring, a pyrazine ring, a thiazole ring, and a thienothiophene ring, more preferably a thiophene ring. These rings may have a substituent.
  • substituents that the carbocyclic or heterocyclic ring for T may have include halogen atoms, alkyl groups, alkyloxy groups, aryl groups, and monovalent heterocyclic groups, preferably fluorine atoms and/or or an alkyl group having 1 to 6 carbon atoms.
  • X 7 is a hydrogen atom, a halogen atom, a cyano group, an optionally substituted alkyl group, an optionally substituted alkyloxy group, an optionally substituted aryl group, or represents a monovalent heterocyclic group.
  • R a1 , R a2 , R a3 , R a4 , and R a5 each independently represent a hydrogen atom, an optionally substituted alkyl group, a halogen atom, an optionally substituted alkyl represents an oxy group, an optionally substituted aryl group or a monovalent heterocyclic group, preferably an optionally substituted alkyl group or an optionally substituted aryl group is.
  • R a6 and R a7 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, or a substituent optionally substituted cycloalkyl group, optionally substituted alkyloxy group, optionally substituted cycloalkyloxy group, optionally substituted monovalent aromatic carbon It represents a cyclic group or an optionally substituted monovalent aromatic heterocyclic group, and a plurality of R a6 and R a7 may be the same or different.
  • the electron-withdrawing groups A 1 and A 2 include the following formulas (a-1-1) to (a-1-4), formulas (a-6-1) and formulas (a-7 -1) is preferable, and a group represented by formula (a-1-1) is more preferable.
  • multiple R a10 each independently represent a hydrogen atom or a substituent, preferably a hydrogen atom, a halogen atom, a cyano group, or an optionally substituted alkyl group.
  • R a3 , R a4 and R a5 are each independently the same as defined above, preferably each independently an optionally substituted alkyl group or an optionally substituted aryl represents a group.
  • An example of the group containing a ⁇ -conjugated system as B 10 is a group represented by -(S 1 ) n1 -B 11 -(S 2 ) n2 - in the compound represented by formula (VIII) described later. mentioned.
  • the n-type semiconductor material is preferably a compound represented by the following formula (VIII).
  • VIII A 1 -(S 1 ) n1 -B 11 -(S 2 ) n2 -A 2 (VIII)
  • a 1 and A 2 each independently represent an electron-withdrawing group. Examples and preferred examples of A 1 and A 2 are the same as the examples and preferred examples described for A 1 and A 2 in formula (VII).
  • the divalent carbocyclic group optionally having substituent(s) and the divalent heterocyclic group optionally having substituent(s) represented by S 1 and S 2 may be a condensed ring. .
  • the divalent carbocyclic group or divalent heterocyclic group has multiple substituents, the multiple substituents may be the same or different.
  • n1 and n2 each independently represent an integer of 0 or greater, preferably each independently represent 0 or 1, more preferably both represent 0 or 1.
  • divalent carbocyclic groups include divalent aromatic carbocyclic groups.
  • divalent heterocyclic groups include divalent aromatic heterocyclic groups.
  • the divalent aromatic carbocyclic group or divalent aromatic heterocyclic group is a condensed ring, all of the rings constituting the condensed ring may be condensed rings having aromaticity, only a part It may be a condensed ring having aromaticity.
  • S 1 and S 2 are groups represented by any of the formulas (101) to (190) given as examples of the divalent aromatic heterocyclic group represented by Ar 3 already explained, and groups in which hydrogen atoms in these groups are substituted with substituents.
  • S 1 and S 2 preferably each independently represent a group represented by formula (s-1) or (s-2) below.
  • X3 represents an oxygen atom or a sulfur atom.
  • R a10 is as defined above.
  • S 1 and S 2 are preferably each independently a group represented by formula (142), formula (148), or formula (184), or a group in which a hydrogen atom in these groups is substituted with a substituent and more preferably a group represented by the formula (142) or (184), or a group in which one hydrogen atom in the group represented by the formula (184) is substituted with an alkyloxy group. .
  • B 11 is a condensed ring group having two or more structures selected from the group consisting of a carbocyclic structure and a heterocyclic ring structure, a condensed ring group containing no ortho-peri condensed structure, and having a substituent; represents an optional condensed ring group.
  • the condensed ring group represented by B11 may contain a structure in which two or more identical structures are condensed.
  • the multiple substituents may be the same or different.
  • Examples of the carbocyclic structure that can constitute the condensed ring group represented by B 11 include a ring structure represented by the following formula (Cy1) or (Cy2).
  • heterocyclic structures that can constitute the condensed ring group represented by B 11 include ring structures represented by any of the following formulas (Cy3) to (Cy10).
  • B 11 is preferably a condensed ring group having two or more structures selected from the group consisting of structures represented by formulas (Cy1) to (Cy10), It is a condensed ring group which does not contain a condensed structure and which may have a substituent.
  • B 11 may include a structure in which two or more identical structures among the structures represented by formulas (Cy1) to (Cy10) are condensed.
  • B 11 is more preferably a condensed ring group having two or more structures selected from the group consisting of structures represented by formulas (Cy1) to (Cy6) and (Cy8), wherein the ortho-pericondensed It is a condensed ring group having no structure and optionally having a substituent.
  • the substituent that the condensed ring group B 11 may have is preferably an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted and an optionally substituted monovalent heterocyclic group.
  • the aryl group that the condensed ring group represented by B 11 may have may be substituted with, for example, an alkyl group.
  • Examples of the condensed ring group for B 11 include groups represented by the following formulas (b-1) to (b-14), and hydrogen atoms in these groups are substituents (preferably, substituents an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkyloxy group, or an optionally substituted monovalent heterocyclic group ) substituted with.
  • the condensed ring group for B 11 is a group represented by the following formula (b-2) or (b-3), or a hydrogen atom in these groups has a substituent (preferably, a substituent optionally substituted alkyl group, optionally substituted aryl group, optionally substituted alkyloxy group, or optionally substituted monovalent heterocyclic group) is preferred, and a group represented by the following formula (b-2) or (b-3) is more preferred.
  • R a10 is as defined above.
  • a plurality of R a10 are each independently preferably an optionally substituted alkyl group or optionally substituted It is an aryl group.
  • Examples of compounds represented by formula (VII) or formula (VIII) include compounds represented by the following formulas.
  • R is as defined above, and X represents a hydrogen atom, a halogen atom, a cyano group, or an optionally substituted alkyl group.
  • R is preferably a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted alkyloxy group.
  • Examples of compounds represented by formula (VII) or (VIII) include compounds represented by the following formulas.
  • the n-type semiconductor material may contain, in addition to the non-fullerene compound, a combination of the fullerene and the fullerene derivative (fullerene compound) already described.
  • n-type semiconductor material in the present embodiment include compounds represented by the following formulas.
  • composition and ink composition of the present embodiment may contain a solvent containing an aromatic hydrocarbon.
  • the aromatic hydrocarbon may have a substituent.
  • the aromatic hydrocarbon is preferably a compound capable of dissolving the polymer compound, which is the p-type semiconductor material already described.
  • examples of aromatic hydrocarbons that may be contained in the solvent include toluene, xylene (eg, o-xylene, m-xylene, p-xylene), trimethylbenzene (eg, mesitylene, 1,2,4 -trimethylbenzene (pseudocumene)), butylbenzene (e.g. n-butylbenzene, sec-butylbenzene, tert-butylbenzene), methylnaphthalene (e.g.
  • the solvent may contain only one aromatic hydrocarbon, or may contain two or more aromatic hydrocarbons.
  • Aromatic hydrocarbons that can be contained in the solvent are preferably toluene, o-xylene, m-xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert.
  • -butylbenzene methylnaphthalene, tetralin, 1-chloronaphthalene, chlorobenzene and dichlorobenzene (1,2-dichlorobenzene), more preferably toluene, o-xylene, m- xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin, indane, 1-chloronaphthalene, chlorobenzene or dichlorobenzene (o -dichlorobenzene).
  • composition and ink composition of the present embodiment in addition to the aromatic hydrocarbons exemplified above, a further solvent may be used in combination.
  • examples of additional solvents include alkyl halides, aromatic carbonyl compounds, aromatic ester compounds and nitrogen-containing heterocyclic compounds.
  • Alkyl halides include, for example, chloroform.
  • aromatic carbonyl compound examples include acetophenone optionally having substituent(s), propiophenone optionally having substituent(s), butyrophenone optionally having substituent(s), cyclohexylphenone which may be substituted, and benzophenone which may have a substituent.
  • aromatic ester compound examples include optionally substituted methyl benzoate (methyl benzoate), optionally substituted ethyl benzoate, and optionally substituted benzoic acid.
  • propyl, optionally substituted butyl benzoate, optionally substituted isopropyl benzoate, optionally substituted benzyl benzoate, optionally substituted Cyclohexyl benzoate and phenyl benzoate which may have a substituent may be mentioned.
  • nitrogen-containing heterocyclic compounds include optionally substituted pyridine, optionally substituted quinoline, optionally substituted quinoxaline, and optionally substituted optionally substituted pyrimidine, optionally substituted pyrazine, and optionally substituted quinazoline .
  • the nitrogen-containing heterocyclic compound may have substituents directly attached to the ring structure.
  • substituents that the ring structure of the nitrogen-containing heterocyclic compound e.g., quinoline ring structure, 1,2,3,4-tetrahydroquinoline ring structure, quinoxaline ring structure
  • substituents that the ring structure of the nitrogen-containing heterocyclic compound may have include: Examples include alkyl groups having 1 to 5 carbon atoms, alkoxy groups having 1 to 5 carbon atoms, halogen groups, and alkylthio groups.
  • nitrogen-containing heterocyclic compounds containing a pyridine ring structure examples include optionally substituted pyridine, optionally substituted quinoline, and optionally substituted isoquinoline. mentioned.
  • nitrogen-containing cyclic compounds containing a pyrazine ring structure include optionally substituted pyrazine and optionally substituted quinoxaline.
  • Nitrogen-containing cyclic compounds containing a tetrahydropyridine ring structure include, for example, optionally substituted 1,2,3,4-tetrahydroquinoline and optionally substituted 1,2, 3,4-tetrahydroisoquinolines can be mentioned.
  • nitrogen-containing cyclic compounds containing a pyrimidine ring structure examples include optionally substituted pyrimidine and optionally substituted quinazoline.
  • the solvent is selected from alkyl halides, aromatic carbonyl compounds, aromatic ester compounds, or nitrogen-containing heterocyclic compounds as further organic solvents, even if only one of them is included. It may further contain more than seeds.
  • a halogen-free solvent particularly from the viewpoint of environmental conservation.
  • the weight ratio of the solvent to the additional solvent determines the solubility of the p-type semiconductor material and the n-type semiconductor material. From the viewpoint of further improvement, it is preferable to set the range from 80/20 to 99.9/0.1.
  • the total weight of the solvent contained in the composition and ink composition of the present embodiment is the solubility of the p-type semiconductor material and the n-type semiconductor material when the total weight of the composition or ink composition is 100% by mass. From the viewpoint of further improving the From the viewpoint of making it easier to form a layer having a certain thickness or more by increasing the concentration of the semiconductor material, the content is preferably 99.9% by mass or less.
  • composition and ink composition of the present embodiment may further contain any solvent in addition to the solvents and additional solvents already described.
  • the content of any organic solvent is preferably 10% by mass or less, more preferably 5% by mass or less. , more preferably 3% by weight or less.
  • any solvent it is preferred to use a solvent with a higher boiling point than the further solvent.
  • the total concentration of the p-type semiconductor material and the n-type semiconductor material in the ink composition may be any suitable concentration depending on the thickness of the required functional layer (active layer), desired properties, etc. can.
  • the total concentration of the p-type semiconductor material and the n-type semiconductor material is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, preferably 10% by mass or less, and more preferably 5% by mass or less, more preferably 0.01% by mass or more and 20% by mass or less, particularly preferably 0.01% by mass or more and 10% by mass or less, and even more preferably 0.01% by mass or more and 5 % by mass or less, particularly preferably 0.1% by mass or more and 5% by mass or less.
  • the p-type semiconductor material and the n-type semiconductor material may be dissolved or dispersed in the ink composition.
  • the p-type semiconductor material and the n-type semiconductor material are preferably at least partially dissolved, more preferably completely dissolved.
  • the weight ratio of the p-type semiconductor material to the n-type semiconductor material (p-type semiconductor material/n-type semiconductor material) in the ink composition is preferably 1/9 or more, more preferably 1/5 or more, and further It is preferably 1/3 or more, preferably 9/1 or less, more preferably 5/1 or less, still more preferably 3/1 or less.
  • the ink composition can be produced by any suitable conventionally known method.
  • the ink composition can be prepared using the already described "composition" that does not contain an n-type semiconductor material.
  • the mixed solvent is added with a p-type semiconductor material and an n-type semiconductor material.
  • a (first) composition is prepared by adding a p-type semiconductor material to a solvent, and separately, an n-type semiconductor material is added to a further solvent (second) composition and mixing the resulting two or more compositions to prepare (manufacture), in other words, the step of preparing the composition includes the step of preparing two or more compositions, and the ink composition
  • the product can be produced by a production method or the like in which the step of preparing the product includes a step of mixing two or more compositions.
  • the solvent (and further solvent), the p-type semiconductor material and the n-type semiconductor material may be heated to a temperature below the boiling point of the solvent and mixed.
  • the step of preparing the ink composition is preferably carried out under conditions of 0°C or higher and 200°C or lower, and preferably carried out under conditions of 0°C or higher and 100°C or lower.
  • the ink composition prepared as described above may be filtered.
  • Filtration of the ink composition is specifically performed by mixing the solvent (and further solvent) with the p-type semiconductor material and the n-type semiconductor material in preparing (manufacturing) the ink composition, and then filtering the resulting mixture ( ink composition) may be filtered according to a conventional method using a filter having a predetermined pore size.
  • filters that can be used for filtration include, for example, filters made of fluororesins such as cellulose acetate, glass fiber, polyvinylidene fluoride (PVdF), and polytetrafluoroethylene (PTFE).
  • fluororesins such as cellulose acetate, glass fiber, polyvinylidene fluoride (PVdF), and polytetrafluoroethylene (PTFE).
  • composition of the present embodiment can be used for analysis of a component, ie, a polymer compound that is a p-type semiconductor material, and can also be used as a raw material for an ink composition.
  • the ink composition of this embodiment is usually used to form a film (solidified film) containing a p-type semiconductor material and an n-type semiconductor material.
  • the ink composition of the present embodiment is suitably used for forming an active layer, which is a functional layer included in a photoelectric conversion element.
  • the ink composition of the present embodiment can be used particularly suitably for forming an active layer included in a photodetector, which is a photoelectric conversion element to which a reverse bias voltage is applied during use.
  • Solidified Film of Ink Composition After forming a film (coated coating film) using the ink composition of the present embodiment, the solidified film of the ink composition is formed by removing the solvent from the film and solidifying the film. can be formed.
  • a solidified film of the ink composition can be suitably used to form a functional layer, particularly an active layer, included in a photoelectric conversion element (light detection element).
  • the solidified film of the ink composition can be produced by any suitable conventional production method.
  • the method for producing a solidified film of an ink composition includes a step (i) of applying (coating) the ink composition to an object to be applied to obtain a coating film, and removing a solvent from the obtained coating film. including step (ii). Steps (i) and (ii) are described below.
  • the coating method is preferably a slit coating method, a knife coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a bar coating method, an inkjet coating method, a nozzle coating method, or a capillary coating method.
  • a slit coating method, a spin coating method, a capillary coating method, or a bar coating method is more preferable, and a slit coating method or a spin coating method is even more preferable.
  • the ink composition is applied to any application target.
  • the ink composition can be applied to a functional layer that can be included in the photoelectric conversion element, such as an electrode (anode or cathode), an electron transport layer, or a hole transport layer, during the manufacturing process of the photoelectric conversion element.
  • any suitable method can be used as a method for removing the solvent from the coating film of the ink composition formed in step (i).
  • methods for removing the solvent include drying methods such as hot air drying, infrared heating drying, flash lamp annealing drying, and vacuum drying.
  • Photoelectric conversion element (1) Structure of photoelectric conversion element
  • the photoelectric conversion element according to the present embodiment includes a first electrode, a second electrode, and an active layer provided between the first electrode and the second electrode. and wherein the active layer is the solidified film already described.
  • a configuration example of the photoelectric conversion element of the present embodiment will be specifically described below with reference to the drawings.
  • FIG. 1 is a diagram schematically showing a configuration example of a photoelectric conversion element.
  • the photoelectric conversion element 10 is provided on a support substrate 11 .
  • the photoelectric conversion element 10 includes a first electrode 12 provided in contact with a support substrate 11 , an electron transport layer 13 provided in contact with the first electrode 12 , and an electron transport layer 13 provided in contact with the electron transport layer 13 . , a hole transport layer 15 provided in contact with the active layer 14, and a second electrode 16 provided in contact with the hole transport layer 15. there is In this configuration example, a sealing member 17 is further provided so as to be in contact with the first electrode 16 . Constituent elements that can be included in the photoelectric conversion element of this embodiment will be specifically described below.
  • a photoelectric conversion element is usually formed on a substrate (support substrate). Further, it may be further sealed with a substrate (sealing substrate).
  • a substrate substrate
  • One of a pair of electrodes consisting of a first electrode and a second electrode is usually formed on the substrate.
  • the material of the substrate is not particularly limited as long as it is a material that does not chemically change when the layer containing an organic compound is formed.
  • the electrode opposite to the electrode provided on the opaque substrate is preferably a transparent or translucent electrode.
  • a photoelectric conversion element includes a pair of electrodes, a first electrode and a second electrode. At least one of the first electrode and the second electrode is preferably a transparent or translucent electrode in order to allow light to enter.
  • Examples of materials for transparent or semi-transparent electrodes include conductive metal oxide films and semi-transparent metal thin films. Specifically, indium oxide, zinc oxide, tin oxide, and their composites indium tin oxide (ITO), indium zinc oxide (IZO), conductive materials such as NESA, gold, platinum, silver, copper. ITO, IZO, and tin oxide are preferable as materials for transparent or translucent electrodes. Moreover, as the electrode, a transparent conductive film using an organic compound such as polyaniline and its derivatives, polythiophene and its derivatives as a material may be used. The transparent or translucent electrode may be the first electrode or the second electrode.
  • the other electrode may be an electrode with low light transmittance.
  • materials for electrodes with low light transmittance include metals and conductive polymers.
  • Specific examples of low light transmissive electrode materials include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, Metals such as terbium, ytterbium, and alloys of two or more thereof, or one or more of these metals together with gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin alloys with one or more metals selected from the group consisting of graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives.
  • Alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
  • the photoelectric conversion element of this embodiment includes the solidified film of the ink composition already described as an active layer.
  • the active layer of this embodiment has a bulk heterojunction structure.
  • the thickness of the active layer is not particularly limited.
  • the thickness of the active layer can be any suitable thickness, for example, considering the balance between suppression of dark current and extraction of the generated photocurrent.
  • the thickness of the active layer is preferably 100 nm or more, more preferably 100 nm or more, and even more preferably 200 nm or more, particularly from the viewpoint of further reducing dark current.
  • the thickness of the active layer is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 600 nm or less.
  • the photoelectric conversion device of the present embodiment includes, for example, a charge transport layer (electron transport layer, hole transport layer, electron injection layer, An intermediate layer (buffer layer) such as a hole injection layer is preferably provided.
  • materials used for the intermediate layer include metals such as calcium, inorganic oxide semiconductors such as molybdenum oxide and zinc oxide, and PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (poly( 4-styrenesulfonate)) (PEDOT:PSS).
  • metals such as calcium, inorganic oxide semiconductors such as molybdenum oxide and zinc oxide
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • PSS poly( 4-styrenesulfonate)
  • the intermediate layer can be formed by any suitable conventionally known forming method.
  • the intermediate layer can be formed by a vacuum deposition method or a coating method similar to the method for forming the active layer.
  • the photoelectric conversion device of this embodiment preferably has an electron transport layer between the first electrode and the active layer.
  • the electron transport layer has a function of transporting electrons from the active layer to the electrode.
  • the photovoltaic device may not have an electron-transporting layer.
  • the electron transport layer provided in contact with the first electrode is sometimes called an electron injection layer.
  • An electron transport layer (electron injection layer) provided in contact with the first electrode has a function of promoting injection of electrons into the first electrode.
  • the electron transport layer (electron injection layer) may be in contact with the active layer.
  • the electron-transporting layer contains an electron-transporting material.
  • electron-transporting materials include polyalkyleneimine and derivatives thereof, high-molecular compounds having a fluorene structure, metals such as calcium, and metal oxides.
  • polyalkyleneimines and derivatives thereof include alkyleneimine having 2 to 8 carbon atoms, especially alkyleneimine having 2 to 8 carbon atoms, such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine.
  • alkyleneimine having 2 to 8 carbon atoms such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine.
  • Polymers obtained by conventionally polymerizing one or more of 2 to 4 alkyleneimines, and polymers chemically modified by reacting them with various compounds can be mentioned.
  • Preferred polyalkyleneimines and derivatives thereof are polyethyleneimine (PEI) and ethoxylated polyethyleneimine (PEIE).
  • polymer compounds containing a fluorene structure examples include poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-ortho-2,7-(9 ,9′-dioctylfluorene)] (PFN) and PFN-P2.
  • metal oxides examples include zinc oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, titanium oxide, and niobium oxide.
  • a metal oxide containing zinc is preferable, and zinc oxide is particularly preferable.
  • Examples of other electron-transporting materials include poly(4-vinylphenol) and perylene diimide.
  • the intermediate layer is the electron transport layer
  • the substrate supporting substrate
  • the first electrode the electron transport layer
  • the active layer the hole transport layer
  • the second electrode are arranged in this order. It is preferred to have a configuration that is stacked against each other.
  • the photoelectric conversion device of the present embodiment preferably has a hole transport layer as an intermediate layer between the second electrode and the active layer.
  • the hole transport layer has a function of transporting holes from the active layer to the second electrode.
  • the hole transport layer may be in contact with the second electrode.
  • the hole transport layer may be in contact with the active layer.
  • the photoelectric conversion device may not have a hole transport layer.
  • the hole-transporting layer provided in contact with the second electrode is sometimes called a hole-injecting layer.
  • a hole transport layer (hole injection layer) provided in contact with the second electrode has a function of promoting injection of holes generated in the active layer into the second electrode.
  • the hole-transporting layer contains a hole-transporting material.
  • hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing constitutional units having aromatic amine residues, CuSCN, CuI, NiO, tungsten oxide (WO 3 ) and molybdenum oxide. (MoO 3 ).
  • the photoelectric conversion element of the present embodiment further includes a sealing member, and is a sealed body sealed with the sealing member.
  • a sealing member Any suitable conventionally known member can be used as the sealing member.
  • the sealing member include a combination of a glass substrate as a substrate (sealing substrate) and a sealing material (adhesive) such as a UV curable resin.
  • the sealing member may be a sealing layer having a layer structure of one or more layers.
  • layers constituting the sealing layer include gas barrier layers and gas barrier films.
  • the sealing layer is preferably made of a material that has a property of blocking moisture (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property).
  • suitable materials for the sealing layer include polyethylene trifluoride, polytrifluoroethylene chloride (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, ethylene-vinyl alcohol copolymer, and the like.
  • Examples include organic materials, inorganic materials such as silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon.
  • the sealing member is usually made of a material that can withstand a heat treatment to which the photoelectric conversion element is applied, for example, when it is incorporated into a device of the application example described later.
  • the photoelectric conversion element of the present embodiment can be manufactured by any suitable conventionally known manufacturing method.
  • the photoelectric conversion element of the present embodiment may be manufactured by combining processes suitable for materials selected for forming constituent elements.
  • a method for manufacturing a photoelectric conversion element having a configuration in which a substrate (supporting substrate), a first electrode, a hole transport layer, an active layer, an electron transport layer, and a second electrode are in contact with each other in this order. explain.
  • a support substrate provided with a first electrode is prepared.
  • a substrate provided with a conductive thin film formed of the electrode material already described is obtained from the market, and if necessary, the conductive thin film is patterned to form a first electrode, A support substrate provided with a first electrode can be prepared.
  • the method for forming the first electrode is not particularly limited when the first electrode is formed on the support substrate.
  • the first electrode is a structure in which the first electrode is formed by any suitable conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, etc., using the material already described ( (e.g., supporting substrate, active layer, hole transport layer).
  • the method for manufacturing a photoelectric conversion element may include a step of forming a hole transport layer (hole injection layer) provided between the active layer and the first electrode.
  • the method for forming the hole transport layer is not particularly limited. From the viewpoint of simplifying the process of forming the hole transport layer, it is preferable to form the hole transport layer by any suitable conventionally known coating method.
  • the hole transport layer can be formed, for example, by a coating method or a vacuum deposition method using a coating liquid containing a material capable of forming the hole transport layer and a solvent.
  • the active layer is formed on the hole transport layer.
  • the active layer can be formed by any suitable conventionally known formation process.
  • the active layer can be produced by a coating method using the ink composition already described.
  • the active layer can be formed in the same manner as the "solidified film" already described.
  • An active layer can be formed by a process including a process.
  • the method for manufacturing the photoelectric conversion element of this embodiment can include a step of forming an electron transport layer (electron injection layer) provided so as to be in contact with the active layer.
  • an electron transport layer electron injection layer
  • the method for forming the electron transport layer is not particularly limited. From the viewpoint of making the step of forming the electron transport layer simpler, it is preferable to form the electron transport layer by any suitable conventionally known vacuum vapor deposition method.
  • a method for forming the second electrode is not particularly limited.
  • the second electrode can be formed, for example, from the materials of the electrodes exemplified above by any suitable conventionally known method such as a coating method, a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Through the above steps, the photoelectric conversion element of this embodiment is manufactured.
  • Step of forming sealing body In forming the sealing body, in the present embodiment, a conventionally known and suitable sealing material (adhesive) and substrate (sealing substrate) are used. Specifically, a sealing material such as a UV curable resin is applied to the support substrate so as to surround the manufactured photoelectric conversion element, and the sealing material is used to bond the substrate without any gaps.
  • a photoelectric conversion element sealed body can be obtained by sealing the photoelectric conversion element in the gap between the support substrate and the sealing substrate using a method such as irradiation of UV light, which is suitable for the sealing material. can.
  • Applications of the photoelectric conversion element of the present embodiment include photodetection elements and solar cells. More specifically, the photoelectric conversion element of the present embodiment allows a photocurrent to flow by irradiating light from the transparent or translucent electrode side while a voltage (reverse bias voltage) is applied between the electrodes. and can be operated as a photodetector (optical sensor). Also, it can be used as an image sensor by integrating a plurality of photodetectors. The photoelectric conversion element of this embodiment can be suitably used particularly as a photodetector.
  • the photoelectric conversion element of the present embodiment can generate a photovoltaic force between electrodes by being irradiated with light, and can be operated as a solar cell.
  • a solar cell module can also be obtained by integrating a plurality of photoelectric conversion elements.
  • the photoelectric conversion element according to the present embodiment can be used as a photodetector in various electronic devices such as workstations, personal computers, personal digital assistants, entrance/exit management systems, digital cameras, and medical equipment. It can be suitably applied to the detection unit provided in the device.
  • the photoelectric conversion element of the present embodiment is provided in the above-exemplified electronic device, for example, an image detection unit for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor (e.g., an image sensor such as an X-ray sensor), a fingerprint Detection units of biometric information authentication devices that detect predetermined features of a part of a living body, such as detection units, face detection units, vein detection units, and iris detection units (e.g., near-infrared sensors), and optical biosensors such as pulse oximeters. It can be suitably applied to a detection unit or the like.
  • a CMOS image sensor e.g., an image sensor such as an X-ray sensor
  • a fingerprint Detection units of biometric information authentication devices that detect predetermined features of a part of a living body, such as detection units, face detection units, vein detection units, and iris detection units (e.g., near-infrared sensors), and optical biosensor
  • the photoelectric conversion element of this embodiment can be suitably applied as an image detection unit for a solid-state imaging device, and further to a time-of-flight (TOF) type distance measurement device (TOF type distance measurement device).
  • TOF time-of-flight
  • the TOF rangefinder measures the distance by causing the photoelectric conversion element to receive the light emitted from the light source and reflected by the object to be measured. Specifically, the distance to the object to be measured is obtained by detecting the time of flight until the irradiation light emitted from the light source is reflected by the object to be measured and returns as reflected light.
  • the TOF type includes a direct TOF method and an indirect TOF method.
  • the direct TOF method directly measures the difference between the time when the light is irradiated from the light source and the time when the reflected light is received by the photoelectric conversion element. to measure the distance.
  • the distance measurement principle used in the indirect TOF method to obtain the time of flight by charge accumulation includes a continuous wave (especially sine wave) modulation method in which the time of flight is obtained from the phases of the light emitted from the light source and the reflected light reflected by the measurement target. and pulse modulation method.
  • an image detection unit for a solid-state imaging device an image detection unit for an X-ray imaging device, a biometric authentication device (for example, a fingerprint authentication device, a vein Configuration examples of a fingerprint detection unit and a vein detection unit for an authentication device, etc., and an image detection unit of a TOF rangefinder (indirect TOF method) will be described with reference to the drawings.
  • a biometric authentication device for example, a fingerprint authentication device, a vein Configuration examples of a fingerprint detection unit and a vein detection unit for an authentication device, etc.
  • an image detection unit of a TOF rangefinder indirect TOF method
  • FIG. 2 is a diagram schematically showing a configuration example of an image detection unit for a solid-state imaging device.
  • the image detection unit 1 includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and a photoelectric conversion element provided on the interlayer insulating film 30 according to the embodiment of the present invention. It is provided so as to penetrate the element 10 and the interlayer insulating film 30 , and is provided so as to cover the photoelectric conversion element 10 and the interlayer wiring part 32 electrically connecting the CMOS transistor substrate 20 and the photoelectric conversion element 10 . and a color filter 50 provided on the sealing layer 40 .
  • the CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
  • the CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
  • MOS transistor circuits CMOS transistor circuits
  • Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
  • a signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
  • the interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin.
  • the interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten.
  • the interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
  • the sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done.
  • the sealing layer 40 can have the same configuration as the sealing member 17 already described.
  • the color filter 50 for example, a primary color filter made of any conventionally known suitable material and corresponding to the design of the image detection unit 1 can be used. Further, as the color filter 50, a complementary color filter that can be thinner than the primary color filter can be used. As complementary color filters, for example, three types of (yellow, cyan, magenta), three types of (yellow, cyan, transparent), three types of (yellow, transparent, magenta), and three types of (transparent, cyan, magenta) A combination of types of color filters can be used. These can be arranged in any suitable arrangement corresponding to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that color image data can be generated.
  • the light received by the photoelectric conversion element 10 through the color filter 50 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and is output as a light reception signal, that is, the object to be imaged, to the outside of the photoelectric conversion element 10 through the electrodes. is output as an electrical signal corresponding to
  • the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
  • FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit integrally configured with a display device.
  • the display device 2 of the mobile information terminal includes a fingerprint detection unit 100 including the photoelectric conversion element 10 according to the embodiment of the present invention as a main component, and a display panel provided on the fingerprint detection unit 100 and displaying a predetermined image. 200.
  • the fingerprint detection section 100 is provided in an area that matches the display area 200a of the display panel section 200 .
  • the display panel section 200 is integrally laminated above the fingerprint detection section 100 .
  • the fingerprint detection section 100 may be provided so as to correspond only to the partial area.
  • the fingerprint detection unit 100 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions.
  • the fingerprint detection unit 100 includes any suitable conventionally known members such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, and an infrared cut film. It may be provided in a manner corresponding to the design to obtain the properties.
  • the fingerprint detection unit 100 may adopt the configuration of the image detection unit already described.
  • the photoelectric conversion element 10 can be included in any manner within the display area 200a.
  • a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
  • the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
  • the light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of received light, and the received light signal, that is, the electricity corresponding to the imaged fingerprint, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
  • the display panel section 200 is configured as an organic electroluminescence display panel (organic EL display panel) including a touch sensor panel.
  • the display panel unit 200 may be configured by, for example, a display panel having an arbitrary and suitable conventionally known configuration such as a liquid crystal display panel including a light source such as a backlight, instead of the organic EL display panel.
  • the display panel section 200 is provided on the fingerprint detection section 100 already described.
  • the display panel section 200 includes an organic electroluminescence element (organic EL element) 220 as a functional section that performs an essential function.
  • the display panel unit 200 further includes an arbitrary and suitable substrate such as a conventionally known glass substrate (support substrate 210 or sealing substrate 240), a sealing member, a barrier film, a polarizing plate such as a circularly polarizing plate, and an arbitrary substrate such as a touch sensor panel 230.
  • Suitable conventionally known members may be provided in a manner corresponding to the desired properties.
  • the organic EL element 220 is used as a light source for the pixels in the display area 200a, and is also used as a light source for imaging the fingerprint in the fingerprint detection section 100.
  • fingerprint detection unit 100 detects a fingerprint using light emitted from organic EL element 220 of display panel unit 200 . Specifically, the light emitted from the organic EL element 220 passes through the constituent elements existing between the organic EL element 220 and the photoelectric conversion element 10 of the fingerprint detection unit 100, and the display in the display area 200a is displayed. The light is reflected by the skin (finger surface) of the fingertip placed in contact with the surface of the panel section 200 . At least part of the light reflected by the finger surface is transmitted through intervening components and received by the photoelectric conversion element 10 , and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information about the fingerprint on the surface of the finger is constructed from the converted electric signal.
  • the mobile information terminal equipped with the display device 2 performs fingerprint authentication by comparing the obtained image information with pre-recorded fingerprint data for fingerprint authentication by any suitable conventionally known step.
  • FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
  • An image detection unit 1 for an X-ray imaging device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30.
  • a photoelectric conversion element 10 according to the embodiment; , a scintillator 42 provided on the sealing layer 40, a reflective layer 44 provided to cover the scintillator 42, and a reflective layer 44 provided to cover the and a protective layer 46 having a
  • the CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
  • the CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
  • MOS transistor circuits CMOS transistor circuits
  • Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
  • a signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
  • the interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin.
  • the interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten.
  • the interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
  • the sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done.
  • the sealing layer 40 can have the same configuration as the sealing member 17 already described.
  • the scintillator 42 can be made of any conventionally known suitable material that corresponds to the design of the image detection section 1 for the X-ray imaging apparatus.
  • suitable materials for the scintillator 42 include inorganic crystals of inorganic materials such as CsI (cesium iodide), NaI (sodium iodide), ZnS (zinc sulfide), GOS (gadolinium oxysulfide), and GSO (gadolinium silicate).
  • organic crystals of organic materials such as anthracene, naphthalene, and stilbene
  • organic liquids obtained by dissolving organic materials such as diphenyloxazole (PPO) and terphenyl (TP) in organic solvents such as toluene, xylene, and dioxane
  • organic materials such as xenon and helium. Gases, plastics, etc. can be used.
  • the above components correspond to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that the scintillator 42 converts incident X-rays into light having a wavelength centered in the visible region to generate image data. Any suitable arrangement can be used.
  • the reflective layer 44 reflects the light converted by the scintillator 42 .
  • the reflective layer 44 can reduce the loss of converted light and increase detection sensitivity.
  • the reflective layer 44 can also block light that is directly incident from the outside.
  • the protective layer 46 can be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the scintillator 42.
  • the scintillator 42 When radiation energy such as X-rays and ⁇ -rays is incident on the scintillator 42, the scintillator 42 absorbs the radiation energy and converts it into light (fluorescence) with a wavelength in the infrared range from ultraviolet, centered on the visible range. The light converted by the scintillator 42 is received by the photoelectric conversion element 10 .
  • the light received by the photoelectric conversion element 10 via the scintillator 42 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and the received light signal is output outside the photoelectric conversion element 10 via the electrodes. That is, it is output as an electrical signal corresponding to the object to be imaged.
  • Radiation energy (X-rays) to be detected may be incident from either the scintillator 42 side or the photoelectric conversion element 10 side.
  • the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
  • FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device.
  • the vein detection unit 300 for the vein authentication device includes a cover unit 306 defining an insertion unit 310 into which a finger to be measured (eg, one or more fingertips, fingers and palm) is inserted during measurement, and a cover unit 306 .
  • a light source unit 304 provided in a unit 306 for irradiating light onto an object to be measured, a photoelectric conversion element 10 for receiving the light emitted from the light source unit 304 through the object to be measured, and a support for supporting the photoelectric conversion element 10 .
  • the glass substrate 302 is arranged so as to face the substrate 11 and the support substrate 11 with the photoelectric conversion element 10 interposed therebetween, is separated from the cover portion 306 at a predetermined distance, and defines an insertion portion 310 together with the cover portion 306 .
  • the light source unit 304 is configured integrally with the cover unit 306 so that the photoelectric conversion element 10 is separated from the photoelectric conversion element 10 while sandwiching the object to be measured during use.
  • the light source unit 304 is not necessarily positioned on the cover unit 306 side.
  • the object to be measured can be efficiently irradiated with the light from the light source unit 304, for example, a reflection imaging method in which the object to be measured is irradiated from the photoelectric conversion element 10 side may be employed.
  • the vein detection unit 300 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions.
  • the vein detection unit 300 includes any suitable conventionally known member such as a protection film (not shown), a sealing member, a barrier film, a bandpass filter, a near-infrared transmission filter, a visible light cut film, and a finger placement guide. can be provided in a manner corresponding to the design to obtain the desired properties.
  • the vein detection unit 300 may employ the configuration of the image detection unit 1 already described.
  • the photoelectric conversion element 10 can be included in any manner.
  • a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
  • the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
  • the light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of light received, and the received light signal, that is, the electricity corresponding to the imaged vein, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
  • the object to be measured may or may not be in contact with the glass substrate 302 on the photoelectric conversion element 10 side.
  • the vein detection unit 300 detects the vein pattern of the measurement target using light emitted from the light source unit 304 . Specifically, the light emitted from the light source unit 304 is transmitted through the measurement target and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information of the vein pattern to be measured is constructed from the converted electrical signal.
  • vein authentication is performed by comparing the obtained image information with previously recorded vein data for vein authentication by any suitable conventionally known step.
  • FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
  • the image detection unit 400 for the TOF type distance measuring device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30.
  • the photoelectric conversion element 10 according to the embodiment, the two floating diffusion layers 402 spaced apart to sandwich the photoelectric conversion element 10, and the photoelectric conversion element 10 and the floating diffusion layer 402 are provided to cover the photoelectric conversion element 10. It comprises an insulating layer 401 and two photogates 404 provided on the insulating layer 401 and spaced apart from each other.
  • a part of the insulating layer 401 is exposed from the gap between the two photogates 404 separated from each other, and the remaining area is shielded from light by the light shielding portion 406 .
  • the CMOS transistor substrate 20 and the floating diffusion layer 402 are electrically connected by an interlayer wiring portion 32 provided so as to penetrate the interlayer insulating film 30 .
  • the interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin.
  • the interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten.
  • the interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
  • the insulating layer 401 in this configuration example can have any conventionally known and suitable configuration such as a field oxide film made of silicon oxide.
  • the photogate 404 can be made of any suitable conventionally known material such as polysilicon.
  • the image detection section 400 for the TOF type rangefinder includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional section that performs essential functions.
  • the image detector 400 for the TOF-type rangefinder uses any suitable conventional film such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, an infrared cut film, and the like.
  • Known components may be provided in a manner corresponding to the design to obtain the desired properties.
  • Two photogates 404 are provided between the photoelectric conversion element 10 and the floating diffusion layer 402 , and by alternately applying pulses, signal charges generated by the photoelectric conversion element 10 are transferred to the two floating diffusion layers 402 . The charge is transferred to either one and accumulated in the floating diffusion layer 402 .
  • the light pulse arrives so as to equally straddle the timing of opening the two photogates 404, the amount of charge accumulated in the two floating diffusion layers 402 becomes equal. If the light pulse arrives at the other photogate 404 with a delay with respect to the timing at which the light pulse arrives at the one photogate 404, the amount of charge accumulated in the two floating diffusion layers 402 will differ.
  • the difference in the amount of charge accumulated in the floating diffusion layer 402 depends on the delay time of the light pulse.
  • the amount of light received by the photoelectric conversion element 10 is converted into an electrical signal as the difference between the amounts of charge accumulated in the two floating diffusion layers 402, and the received light signal, that is, the electricity corresponding to the object to be measured, is output outside the photoelectric conversion element 10. output as a signal.
  • the received light signal output from the floating diffusion layer 402 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and read out by a signal readout circuit (not shown).
  • Distance information based on the measurement object is generated through signal processing by an arbitrary suitable conventionally known functional unit.
  • the photoelectric conversion element of the present embodiment can have a photodetection function capable of converting irradiated light into an electric signal corresponding to the amount of received light and outputting the signal to an external circuit via an electrode. . Therefore, the photoelectric conversion element of the embodiment of the present invention can be applied particularly suitably as a photodetector having a photodetection function.
  • the photodetector element of this embodiment may be a photoelectric conversion element itself, or may further include a functional element for voltage control in addition to the photoelectric conversion element.
  • Example 1 ⁇ Synthesis of polymer compound P-1> First, compound 1 and compound 2 were synthesized by the method described in International Publication No. 2014/112656. Then, in a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (8.82 mmol), compound 2 (8.82 mmol), compound 3 (18 mmol), water (540 mL), 40% by mass potassium phosphate aqueous solution ( 60 mL), tetralin (300 mL), 1-methylcyclohexanol (300 mL), and chloride (methanide) ⁇ bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl]phosphane ⁇ Palladium (0.22 mmol) was added and mixed.
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 1.
  • Tetralin was used as a solvent, and the previously described polymer compound P-1 was dissolved in the solvent at a concentration of 6 mg/mL, followed by heating at 80° C. for 3 hours to obtain a solution.
  • 4-methylcarbostyril (4MCS) as an additive was added to a concentration of 10 mg/mL and left to stand for 2 hours.
  • the undissolved component of the additive in the solution was removed by filtration through a Merck Millipore 0.45 ⁇ m PVDF filter (model number: SLHV033NB) to obtain a sample for GPC measurement.
  • Heating device Dry Block Heater 4 manufactured by IKA Heating conditions: Internal temperature 80°C Apparatus: Prominence 20A series manufactured by Shimadzu Corporation Column: Shodex KD-806M KD-G 4A (guard column) Mobile phase: ortho-dichlorobenzene manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Flow rate: 1.0 mL/min Temperature: 60°C Detection wavelength: 600nm Standard product: Agilent Polymer Laboratories standard polystyrene
  • the obtained sample was placed in a tablet forming machine to form a tablet, and the ratio of the terminal structure including the amide structure of the polymer compound was measured by infrared spectroscopy (transmission method) under the following measurement conditions.
  • a tablet formed only from potassium bromide was used as a blank.
  • the peak derived from the main chain contained in all polymer compounds is 954 cm ⁇ 1 or a peak shifted within a range of ⁇ 10 cm ⁇ 1 when the peak is shifted.
  • the intensity at the wave number identified as the peak derived from the main chain contained in the polymer compound was adopted.
  • Example 2 ⁇ Synthesis of polymer compound P-2> First, compound 1 and compound 2 were synthesized by the method described in International Publication No. 2014/112656. Next, in a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (13.02 mmol), compound 2 (13.02 mmol), compound 3 (26.5 mmol), water (794.9 mL), 40 mass% phosphorus Aqueous potassium acid solution (88.4 mL), tetralin (441.7 mL), 1-methylcyclohexanol (441.7 mL), and chloride (methanide) ⁇ bis(1,1-dimethylethyl)[3,5-bis(1 ,1-dimethylethyl)phenyl]phosphane ⁇ palladium (0.32 mmol) was added and mixed.
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the resulting crude polymer was dissolved in tetralin and passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again and the precipitated solid was collected by filtration to obtain polymer compound P. -2 was obtained.
  • 5B JIS P 3801: 5 type B
  • GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-2 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 1 below.
  • 1,3-Dibromobenzene 550 g, 2.33 mol
  • THF 2783 mL
  • PdCl 2 dppf
  • CH 2 Cl 2 7.62 g, 9.33 mmol
  • a prepared Grignard reagent was added dropwise to the flask so that the internal temperature did not exceed 10° C. to obtain a reaction solution. After that, the mixture was stirred for 1 hour, water was poured into the reaction mixture to stop the reaction, and the mixture was separated to obtain an organic layer.
  • the obtained organic layer was dehydrated with magnesium sulfate, the magnesium sulfate was removed by filtration, and the filtrate was concentrated with a rotary evaporator.
  • a solution containing compound 5 (5.21 g, 0.025 mol) and THF (107 g) synthesized by the method described in International Publication No. 2011/136311 is added dropwise to a four-necked flask so that the internal temperature does not exceed 40 ° C. to obtain a reaction solution. After that, the mixture was stirred for 1 hour, an aqueous ammonium chloride solution was poured into the reaction mixture to stop the reaction, and the mixture was separated. The obtained organic layer was dehydrated with magnesium sulfate, the magnesium sulfate was removed by filtration, and the obtained filtrate was concentrated with a rotary evaporator.
  • Compound 8 was synthesized according to the scheme below.
  • a mixed solution of phenylboric acid (2.1 mmol) and an aqueous potassium phosphate solution (11.0 mL) having a concentration of 40% by mass was added as raw materials to the reactor, and the mixture was stirred at 65° C. for 1 hour. After the resulting organic layer was washed with an aqueous solution of sodium diethyldithiocarbamate, aqueous acetic acid, and water, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to collect a crude polymer.
  • the obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 3.
  • 5B JIS P 3801: 5 type B
  • GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-3 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 1 below.
  • Polymer compound P-4 was prepared in the same manner as polymer compound P-3, except that compound 3 (2.1 mmol), compound 8 (1.061 mmol) and compound 1 (1.061 mmol) were added as starting materials. Synthesized.
  • GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-4 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 1 below.
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the resulting crude polymer was dissolved in ortho-xylene, passed through a 5B (JIS P 3801: Type 5 B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain Polymer Compound P. -5 was obtained.
  • 5B JIS P 3801: Type 5 B
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 6.
  • GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-6 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 2 below.
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the resulting crude polymer was dissolved in tetralin and passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again and the precipitated solid was collected by filtration to obtain polymer compound P. -7 was obtained.
  • 5B JIS P 3801: 5 type B
  • GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-7 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 3 below.
  • Example 6 ⁇ GPC measurement and measurement of ratio of terminal structure containing amide structure> GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-7 was used and 2-pyridinol was added as an additive. The measurement by infrared spectroscopy was performed without adding 2-pyridinol as an additive. The results are shown in Table 3 below.
  • Example 7 ⁇ GPC measurement and measurement of ratio of terminal structure containing amide structure> GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-7 was used and propionamide was added as an additive. The measurement by infrared spectroscopy was performed without adding propionamide as an additive. The results are shown in Table 3 below.
  • Example 8 Compound 1 (8.82 mmol), Compound 2 (8.82 mmol), Compound 3 (18.000 mmol), water (540 mL), and 40% by mass potassium phosphate aqueous solution were placed in a glass reaction vessel equipped with a cooling device at room temperature. (89.4 mL), tetralin (300 mL), 1-methylcyclohexanol (300 mL), and chloride (methanide) ⁇ bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl ]phosphane ⁇ palladium (0.22 mmol) was added and mixed.
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 8.
  • GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-8 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 3 below.
  • Example 9 ⁇ GPC measurement and measurement of ratio of terminal structure containing amide structure> GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-8 was used and 2-pyridinol was added as an additive. The measurement by infrared spectroscopy was performed without adding 2-pyridinol as an additive. The results are shown in Table 3 below.
  • Example 10 ⁇ GPC measurement and measurement of ratio of terminal structure containing amide structure> GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-8 was used and propionamide was added as an additive. The measurement by infrared spectroscopy was performed without adding propionamide as an additive. The results are shown in Table 3 below.
  • Example 11 In a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (13.024 mmol), compound 2 (13.024 mmol), compound 3 (26.500 mmol), water (794 mL), 40% by mass potassium phosphate aqueous solution ( 8.4 mL), tetralin (441.7 mL), 1-methylcyclohexanol (441.7 mL), and chloride (methanide) ⁇ bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethyl Ethyl)phenyl]phosphane ⁇ palladium (0.32 mmol) was added and mixed.
  • the resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
  • the obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 9.
  • GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-9 was used and 4-methylcarbostyril (4MCS) was added as an additive.
  • the measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 3 below.
  • Example 12 ⁇ GPC measurement and measurement of ratio of terminal structure containing amide structure> GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-9 was used and 2-pyridinol was added as an additive. The measurement by infrared spectroscopy was performed without adding 2-pyridinol as an additive. The results are shown in Table 3 below.
  • Example 13 ⁇ GPC measurement and measurement of ratio of terminal structure containing amide structure> GPC measurement was performed in the same manner as in Example 1, except that the polymer compound P-9 was used and propionamide was added as an additive. The measurement by infrared spectroscopy was performed without adding propionamide as an additive. The results are shown in Table 3 below.
  • REFERENCE SIGNS LIST 1 image detection unit 2 display device 10 photoelectric conversion element 11, 210 support substrate 12 first electrode 13 electron transport layer 14 active layer 15 hole transport layer 16 second electrode 17 sealing member 20 CMOS transistor substrate 30 interlayer insulating film 32 Interlayer Wiring Section 40 Sealing Layer 42 Scintillator 44 Reflective Layer 46 Protective Layer 50 Color Filter 100 Fingerprint Detection Section 200 Display Panel Section 200a Display Area 220 Organic EL Element 230 Touch Sensor Panel 240 Sealing Substrate 300 Vein Detection Section 302 Glass Substrate 304 Light source section 306 Cover section 310 Insertion section 400 Image detection section for TOF rangefinder 401 Insulating layer 402 Floating diffusion layer 404 Photogate 406 Light shielding section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Light Receiving Elements (AREA)

Abstract

The present invention addresses the problem of preventing a temporal increase in viscosity of an ink composition. The present invention pertains to a composition containing: polymer compounds that have a structural unit represented by formula (I) and that include an impurity polymer compound that has the structural unit represented by formula (I) and also has a terminal structure represented by formula (II); an additive capable of forming two or more sets of hydrogen bonds complementary to the terminal structure represented by formula (II); and a solvent including an aromatic hydrocarbon. (In formula (I) and (II), A, B, and Y are as defined in the description.)

Description

組成物及びインク組成物Composition and ink composition
 本発明は、組成物、さらには光電変換素子の機能層を形成するためのインク組成物に関する。 The present invention relates to a composition, and further to an ink composition for forming a functional layer of a photoelectric conversion element.
 光電変換素子は、例えば、省エネルギー、二酸化炭素の排出量の低減の観点から極めて有用なデバイスであり、注目されている。 Photoelectric conversion elements are attracting attention as they are extremely useful devices, for example, from the viewpoint of energy saving and reduction of carbon dioxide emissions.
 光電変換素子、例えば光検出素子(OPD)の製造にあたっては、インク組成物を塗布対象に塗工する塗布法により、活性層、電子輸送層、正孔輸送層などの機能層を形成する製造方法が適用されることが知られている(非特許文献1参照。)。 In the production of a photoelectric conversion element, for example, a photodetector (OPD), a manufacturing method of forming functional layers such as an active layer, an electron transport layer, and a hole transport layer by a coating method of coating an ink composition onto an object to be coated. is applied (see Non-Patent Document 1).
 上記のような光電変換素子の製造方法においては、例えば、同一の塗工条件でインク組成物を塗布した場合でも、インク組成物の粘度が変化すると、形成される機能層の厚さが均一ではなくなってしまい、製造される光電変換素子の特性にばらつきが生じたり、所望の特性が得られなくなってしまう場合がある。 In the method for producing a photoelectric conversion element as described above, for example, even when the ink composition is applied under the same coating conditions, if the viscosity of the ink composition changes, the thickness of the formed functional layer will not be uniform. In some cases, the characteristics of the manufactured photoelectric conversion element may vary, or the desired characteristics may not be obtained.
 本発明者らは、上記課題を解決すべく鋭意研究を進めたところ、インク組成物に含まれる高分子化合物の末端構造に着目して、当該末端構造に結合しうる所定の添加剤を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記[1]~[11]を提供する。
[1] 下記式(I)で表される構成単位を含む高分子化合物であって、下記式(I)で表される構成単位を含み、かつ下記式(II)で表される末端構造を有する不純物高分子化合物をさらに含む前記高分子化合物と、
 前記不純物高分子化合物のうちの下記式(II)で表される末端構造と相補的な水素結合を2組以上形成することができる添加剤と、
 芳香族炭化水素を含む溶媒と
を含む、組成物。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、
 Aは、置換基を有していてもよい2価の有機基を表し、
 Bは、チアジアゾール骨格、オキサジアゾール骨格、又はトリアゾール骨格を含む環構造を表し、
 Yは、-CH-で表される基又は窒素原子を表す。)
Figure JPOXMLDOC01-appb-C000006
(式(II)中、
 B及びYは、前記定義のとおりである。)
[2] 前記Aが、下記式(IV)で表される2価の有機基である、[1]に記載の組成物。
Figure JPOXMLDOC01-appb-C000007
 (式(IV)中、
 Ar及びArは、それぞれ独立して、置換基を有していてもよい3価の芳香族複素環基を表し、
 Zは下記式(Z-1)~式(Z-7)のいずれか1つで表される基を表す。)
Figure JPOXMLDOC01-appb-C000008

 (式(Z-1)~(Z-7)中、Rは、
 水素原子、
 ハロゲン原子、
 置換基を有していてもよいアルキル基、
 置換基を有していてもよいシクロアルキル基、
 置換基を有していてもよいアルケニル基、
 置換基を有していてもよいシクロアルケニル基、
 置換基を有していてもよいアルキニル基、
 置換基を有していてもよいシクロアルキニル基、
 置換基を有していてもよいアリール基、
 置換基を有していてもよいアルキルオキシ基、
 置換基を有していてもよいシクロアルキルオキシ基、
 置換基を有していてもよいアリールオキシ基、
 置換基を有していてもよいアルキルチオ基、
 置換基を有していてもよいシクロアルキルチオ基、
 置換基を有していてもよいアリールチオ基、
 置換基を有していてもよい1価の複素環基、
 置換基を有していてもよい置換アミノ基、
 置換基を有していてもよいイミン残基、
 置換基を有していてもよいアミド基、
 置換基を有していてもよい酸イミド基、
 置換基を有していてもよい置換オキシカルボニル基、
 シアノ基、
 ニトロ基、
 -C(=O)-Rで表される基、又は
 -SO-Rで表される基を表し、
 R及びRは、それぞれ独立して、
 水素原子、
 置換基を有していてもよいアルキル基、
 置換基を有していてもよいシクロアルキル基、
 置換基を有していてもよいアリール基、
 置換基を有していてもよいアルキルオキシ基、
 置換基を有していてもよいシクロアルキルオキシ基、
 置換基を有していてもよいアリールオキシ基、又は
 置換基を有していてもよい1価の複素環基を表す。
 式(Z-1)~式(Z-7)中、Rが2つある場合、2つあるRは同一であっても異なっていてもよい。)
[3] 前記添加剤がアミド構造を含む、[1]又は[2]に記載の組成物。
[4] 赤外分光法により測定したときの前記式(I)で表される構成単位を含む主鎖由来のピーク強度に対する前記式(II)で表される末端構造に由来するピーク強度の割合が8%以上である、[1]~[3]のいずれか1つに記載の組成物。
[5] 前記Bがチアジアゾール骨格を含む、[1]~[4]のいずれか1つに記載の組成物。
[6] 前記Aがチオフェン骨格を含む、[1]~[5]のいずれか1つに記載の組成物。
[7] 前記添加剤が、4-メチルカルボスチリル、プロピオンアミド、又はピリジノールである、[1]~[6]のいずれか1つに記載の組成物。
[8] [1]~[7]に記載の組成物と、n型半導体材料とを含有するインク組成物。
[9] 前記n型半導体材料が、フラーレン化合物又は非フラーレン化合物である、[8]に記載のインク組成物。
[10] [8]又は[9]に記載のインク組成物を固化した固化膜。
[11] [10]に記載の固化膜を活性層として含む、光電変換素子。
The present inventors have made intensive studies to solve the above problems, and have found that, focusing on the terminal structure of the polymer compound contained in the ink composition, a predetermined additive capable of binding to the terminal structure is used. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
That is, the present invention provides the following [1] to [11].
[1] A polymer compound containing a structural unit represented by the following formula (I), which contains a structural unit represented by the following formula (I) and has a terminal structure represented by the following formula (II): the polymer compound further comprising an impurity polymer compound having
an additive capable of forming two or more pairs of complementary hydrogen bonds with the terminal structure represented by the following formula (II) of the impurity polymer compound;
and a solvent comprising an aromatic hydrocarbon.
Figure JPOXMLDOC01-appb-C000005
(In formula (I),
A represents a divalent organic group which may have a substituent,
B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton,
Y represents a group represented by -CH- or a nitrogen atom. )
Figure JPOXMLDOC01-appb-C000006
(In formula (II),
B and Y are as defined above. )
[2] The composition according to [1], wherein A is a divalent organic group represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000007
(In formula (IV),
Ar 2 and Ar 3 each independently represent an optionally substituted trivalent aromatic heterocyclic group,
Z represents a group represented by any one of the following formulas (Z-1) to (Z-7). )
Figure JPOXMLDOC01-appb-C000008

(In the formulas (Z-1) to (Z-7), R is
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R c or a group represented by —SO 2 —R d ,
R c and R d are each independently
hydrogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
In formulas (Z-1) to (Z-7), when there are two Rs, the two Rs may be the same or different. )
[3] The composition according to [1] or [2], wherein the additive contains an amide structure.
[4] The ratio of the peak intensity derived from the terminal structure represented by the formula (II) to the peak intensity derived from the main chain containing the structural unit represented by the formula (I) when measured by infrared spectroscopy is 8% or more, the composition according to any one of [1] to [3].
[5] The composition according to any one of [1] to [4], wherein B contains a thiadiazole skeleton.
[6] The composition according to any one of [1] to [5], wherein A contains a thiophene skeleton.
[7] The composition according to any one of [1] to [6], wherein the additive is 4-methylcarbostyril, propionamide, or pyridinol.
[8] An ink composition containing the composition described in [1] to [7] and an n-type semiconductor material.
[9] The ink composition of [8], wherein the n-type semiconductor material is a fullerene compound or a non-fullerene compound.
[10] A solidified film obtained by solidifying the ink composition according to [8] or [9].
[11] A photoelectric conversion device comprising the solidified film according to [10] as an active layer.
 本発明の組成物によれば、特に光電変換素子の機能層を形成するためのインク組成物における経時的な粘度の増大を抑制することができる。 According to the composition of the present invention, it is possible to suppress an increase in viscosity over time in an ink composition for forming a functional layer of a photoelectric conversion element.
図1は、光電変換素子の構成例を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration example of a photoelectric conversion element. 図2は、イメージ検出部の構成例を模式的に示す図である。FIG. 2 is a diagram schematically showing a configuration example of an image detection unit. 図3は、指紋検出部の構成例を模式的に示す図である。FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit. 図4は、X線撮像装置用のイメージ検出部の構成例を模式的に示す図である。FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus. 図5は、静脈認証装置用の静脈検出部の構成例を模式的に示す図である。FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device. 図6は、間接方式のTOF型測距装置用イメージ検出部の構成例を模式的に示す図である。FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
 以下、図面を参照して、本発明の実施形態について説明する。なお、図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。以下の説明に用いる図面において、同様の構成要素については同一の符号を付して示し、重複する説明については省略する場合がある。また、本発明の実施形態にかかる構成は、必ずしも図示例の配置で使用されるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the drawings only schematically show the shape, size and arrangement of the constituent elements to the extent that the invention can be understood. The present invention is not limited by the following description, and each component can be changed as appropriate without departing from the gist of the present invention. In the drawings used for the following description, the same components are denoted by the same reference numerals, and redundant description may be omitted. Also, the configuration according to the embodiment of the present invention is not necessarily used in the illustrated arrangement.
1.共通する用語の説明
 本明細書において、「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が、1×10以上1×10以下である重合体を意味する。高分子化合物に含まれる構成単位は、合計100モル%である。
1. Explanation of Common Terms As used herein, the term “polymer compound” means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1×10 3 or more and 1×10 8 or less. The constituent units contained in the polymer compound are 100 mol % in total.
 本明細書において、「構成単位」とは、高分子化合物中に1個以上存在する単位であって単量体化合物(モノマー)に由来する単位を意味する。 As used herein, the term "constituent unit" means a unit that exists at least one in a polymer compound and is derived from a monomer compound (monomer).
 本明細書において、「水素原子」は、軽水素原子であっても、重水素原子であってもよい。 As used herein, the "hydrogen atom" may be either a hydrogen atom or a deuterium atom.
 本明細書において、「ハロゲン原子」の例としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 As used herein, examples of "halogen atoms" include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
 「置換基を有していてもよい」態様には、化合物又は基を構成するすべての水素原子が無置換の場合、及び1個以上の水素原子の一部又は全部が置換基によって置換されている場合の両方の態様が含まれる。 In the "optionally substituted" aspect, when all hydrogen atoms constituting the compound or group are unsubstituted, and when one or more hydrogen atoms are partially or entirely substituted by a substituent Both aspects are included.
 置換基の例としては、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、アルキルオキシ基、シクロアルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、シアノ基、アルキルスルホニル基、及びニトロ基が挙げられる。 Examples of substituents include halogen atoms, alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups, alkyloxy groups, cycloalkyloxy groups, alkylthio groups, cycloalkylthio groups, aryl groups, aryloxy groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, cyano groups, alkylsulfonyl groups, and nitro groups. .
 本明細書において、「アルキル基」は置換基を有していてもよい。「アルキル基」は、特に断らない限り、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~30であり、より好ましくは1~20である。分岐状又は環状であるアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。 In this specification, the "alkyl group" may have a substituent. An "alkyl group" may be linear, branched, or cyclic, unless otherwise specified. The number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-30, more preferably 1-20, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched or cyclic alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, not including the number of carbon atoms in substituents.
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、2-エチルブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、n-オクチル基、2-エチルヘキシル基、3-n-プロピルヘプチル基、アダマンチル基、n-デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-n-ヘキシル-デシル基、n-ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の非置換アルキル基;トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-n-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基等の置換アルキル基が挙げられる。 Specific examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isoamyl, 2-ethylbutyl, n- hexyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, cyclohexylethyl group, n-octyl group, 2-ethylhexyl group, 3-n-propylheptyl group, adamantyl group, n-decyl group, 3,7-dimethyl Unsubstituted alkyl groups such as octyl group, 2-ethyloctyl group, 2-n-hexyl-decyl group, n-dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group; trifluoromethyl group, pentafluoroethyl group , perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di-n-hexylphenyl)propyl group, Substituted alkyl groups such as 6-ethyloxyhexyl group are included.
 「シクロアルキル基」は、単環の基であってもよく、多環の基であってもよい。シクロアルキル基は、置換基を有していてもよい。シクロアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは3~20である。 A "cycloalkyl group" may be a monocyclic group or a polycyclic group. A cycloalkyl group may have a substituent. The number of carbon atoms in the cycloalkyl group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituents.
 シクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基などの、置換基を有さないアルキル基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of cycloalkyl groups include unsubstituted alkyl groups such as cyclopentyl, cyclohexyl, cycloheptyl, and adamantyl groups, and hydrogen atoms in these groups are alkyl groups, alkyloxy groups, and aryl groups. , a group substituted with a substituent such as a fluorine atom.
 置換基を有するシクロアルキル基の具体例としては、メチルシクロヘキシル基、エチルシクロヘキシル基が挙げられる。 Specific examples of the cycloalkyl group having a substituent include a methylcyclohexyl group and an ethylcyclohexyl group.
 「アルケニル基」は、直鎖状でもあってもよく、分岐状であってもよい。アルケニル基は、置換基を有していてもよい。アルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは2~20である。 The "alkenyl group" may be linear or branched. The alkenyl group may have a substituent. The number of carbon atoms in the alkenyl group is usually 2-30, preferably 2-20, not including the number of carbon atoms in the substituents.
 アルケニル基の例としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基などの、置換基を有しないアルケニル基、及びこれらの基における水素原子が、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of alkenyl groups include vinyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 5-hexenyl, Alkenyl groups having no substituents such as 7-octenyl groups, and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyloxy groups, aryl groups and fluorine atoms are included.
 「シクロアルケニル基」は、単環の基であってもよく、多環の基であってもよい。シクロアルケニル基は、置換基を有していてもよい。シクロアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは3~20である。 A "cycloalkenyl group" may be a monocyclic group or a polycyclic group. A cycloalkenyl group may have a substituent. The number of carbon atoms in the cycloalkenyl group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituents.
 シクロアルケニル基の例としては、シクロヘキセニル基などの、置換基を有さないシクロアルケニル基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of cycloalkenyl groups include unsubstituted cycloalkenyl groups such as cyclohexenyl groups, and hydrogen atoms in these groups are substituted groups such as alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms. Substituted groups are included.
 置換基を有するシクロアルケニル基の例としては、メチルシクロヘキセニル基、及びエチルシクロヘキセニル基が挙げられる。 Examples of substituted cycloalkenyl groups include a methylcyclohexenyl group and an ethylcyclohexenyl group.
 「アルキニル基」は、直鎖状であってもよく、分岐状であってもよい。アルキニル基は、置換基を有していてもよい。アルキニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは2~20である。 "Alkynyl group" may be linear or branched. The alkynyl group may have a substituent. The number of carbon atoms in the alkynyl group is usually 2-30, preferably 2-20, not including the number of carbon atoms in the substituents.
 アルキニル基の例としては、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基などの、置換基を有しないアルキニル基、及びこれらの基における水素原子が、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl and 5-hexynyl groups. and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyloxy groups, aryl groups and fluorine atoms.
 「シクロアルキニル基」は、単環の基であってもよく、多環の基であってもよい。シクロアルキニル基は、置換基を有していてもよい。シクロアルキニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常4~30であり、好ましくは4~20である。 A "cycloalkynyl group" may be a monocyclic group or a polycyclic group. A cycloalkynyl group may have a substituent. The number of carbon atoms in the cycloalkynyl group is usually 4-30, preferably 4-20, not including the number of carbon atoms in the substituents.
 シクロアルキニル基の例としては、シクロヘキシニル基などの置換基を有しないシクロアルキニル基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of cycloalkynyl groups include unsubstituted cycloalkynyl groups such as cyclohexynyl groups, and hydrogen atoms in these groups substituted with substituents such as alkyl groups, alkyloxy groups, aryl groups and fluorine atoms. groups.
 置換基を有するシクロアルキニル基の例としては、メチルシクロヘキシニル基、及びエチルシクロヘキシニル基が挙げられる。 Examples of substituted cycloalkynyl groups include a methylcyclohexynyl group and an ethylcyclohexynyl group.
 「アルキルオキシ基」は、直鎖状であってもよく、分岐状であってもよい。アルキルオキシ基は、置換基を有していてもよい。アルキルオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~30であり、好ましくは1~20である。 The "alkyloxy group" may be linear or branched. The alkyloxy group may have a substituent. The number of carbon atoms in the alkyloxy group is generally 1-30, preferably 1-20, not including the number of carbon atoms in the substituent.
 アルキルオキシ基の例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、3-ヘプチルドデシルオキシ基、ラウリルオキシ基などの、置換基を有しないアルキルオキシ基、及びこれらの基における水素原子が、アルキルオキシ基、アリール基、フッ素原子等の置換基で置換された基が挙げられる。 Examples of alkyloxy groups include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, tert-butyloxy, n-pentyloxy, n-hexyloxy, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, 3-heptyldodecyloxy group, lauryloxy group, etc. Alkyloxy groups having no substituents, and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyloxy groups, aryl groups and fluorine atoms are included.
 「シクロアルキルオキシ基」が有するシクロアルキル基は、単環の基であってもよく、多環の基であってもよい。シクロアルキルオキシ基は、置換基を有していてもよい。シクロアルキルオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは3~20である。 The cycloalkyl group possessed by the "cycloalkyloxy group" may be a monocyclic group or a polycyclic group. A cycloalkyloxy group may have a substituent. The number of carbon atoms in the cycloalkyloxy group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituent.
 シクロアルキルオキシ基の例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基などの、置換基を有しないシクロアルキルオキシ基、及びこれらの基における水素原子が、フッ素原子、アルキル基などの置換基で置換された基が挙げられる。 Examples of cycloalkyloxy groups include unsubstituted cycloalkyloxy groups such as cyclopentyloxy, cyclohexyloxy, and cycloheptyloxy, and hydrogen atoms in these groups are fluorine atoms, alkyl groups, and the like. A group substituted with a substituent can be mentioned.
 「アルキルチオ基」は、直鎖状であってもよく、分岐状であってもよい。アルキルチオ基は、置換基を有していてもよい。アルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~30であり、好ましくは1~20である。 The "alkylthio group" may be linear or branched. The alkylthio group may have a substituent. The number of carbon atoms in the alkylthio group is generally 1-30, preferably 1-20, not including the number of carbon atoms in the substituent.
 置換基を有していてもよいアルキルチオ基の例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、n-ペンチルチオ基、n-ヘキシルチオ基、n-ヘプチルチオ基、n-オクチルチオ基、2-エチルヘキシルチオ基、n-ノニルチオ基、n-デシルチオ基、3,7-ジメチルオクチルチオ基、3-ヘプチルドデシルチオ基、ラウリルチオ基、及びトリフルオロメチルチオ基が挙げられる。 Examples of optionally substituted alkylthio groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, n-pentylthio, n-hexylthio group, n-heptylthio group, n-octylthio group, 2-ethylhexylthio group, n-nonylthio group, n-decylthio group, 3,7-dimethyloctylthio group, 3-heptyldodecylthio group, laurylthio group, and a trifluoromethylthio group.
 「シクロアルキルチオ基」が有するシクロアルキル基は、単環の基であってもよく、多環の基であってもよい。シクロアルキルチオ基は、置換基を有していてもよい。シクロアルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは3~20である。 The cycloalkyl group possessed by the "cycloalkylthio group" may be a monocyclic group or a polycyclic group. A cycloalkylthio group may have a substituent. The number of carbon atoms in the cycloalkylthio group is usually 3-30, preferably 3-20, not including the number of carbon atoms in the substituent.
 置換基を有していてもよいシクロアルキルチオ基の例としては、シクロヘキシルチオ基が挙げられる。 A cyclohexylthio group is mentioned as an example of the cycloalkylthio group which may have a substituent.
 「p価の芳香族炭素環基」とは、置換基を有していてもよい芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子p個を除いた残りの原子団を意味する。p価の芳香族炭素環基は、置換基をさらに有していてもよい。 "P-valent aromatic carbocyclic group" means the remaining atomic group excluding p hydrogen atoms directly bonded to the carbon atoms constituting the ring from an aromatic hydrocarbon optionally having a substituent. do. The p-valent aromatic carbocyclic group may further have a substituent.
 「アリール基」は、1価の芳香族炭素環基を意味する。アリール基は置換基を有していてもよい。アリール基の炭素原子数は、置換基の炭素原子数を含まないで、通常6~60であり、好ましくは6~48である。 "Aryl group" means a monovalent aromatic carbocyclic group. The aryl group may have a substituent. The number of carbon atoms in the aryl group is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
 アリール基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基などの、置換基を有しないアリール基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, Aryl groups having no substituents such as 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group and 4-phenylphenyl group, and hydrogen atoms in these groups is substituted with a substituent such as an alkyl group, an alkyloxy group, an aryl group, or a fluorine atom.
 「アリールオキシ基」は、置換基を有していてもよい。アリールオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。 The "aryloxy group" may have a substituent. The number of carbon atoms in the aryloxy group is generally 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
 アリールオキシ基の例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基などの置換基を有しないアリールオキシ基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of aryloxy groups include phenoxy groups, 1-naphthyloxy groups, 2-naphthyloxy groups, 1-anthracenyloxy groups, 9-anthracenyloxy groups, 1-pyrenyloxy groups, and the like. Examples include aryloxy groups and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyl groups, alkyloxy groups and fluorine atoms.
 「アリールチオ基」は、置換基を有していてもよい。アリールチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。 The "arylthio group" may have a substituent. The number of carbon atoms in the arylthio group is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituents.
 置換基を有していてもよいアリールチオ基の例としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、及びペンタフルオロフェニルチオ基が挙げられる。「C1~C12」は、その直後に記載された基の炭素原子数が1~12であることを表す。さらに、「Cm~Cn」は、その直後に記載された基の炭素原子数がm~nであることを表す。以下同様である。 Examples of optionally substituted arylthio groups include a phenylthio group, a C1-C12 alkyloxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and pentafluorophenyl A thio group can be mentioned. "C1-C12" means that the group immediately following it has 1-12 carbon atoms. Furthermore, "Cm-Cn" indicates that the number of carbon atoms in the group immediately following it is from m to n. The same applies hereinafter.
 「p価の複素環基」(pは、1以上の整数を表す。)は、置換基を有していてもよい複素環式化合物から環を構成する炭素原子又はヘテロ原子に直接結合する水素原子のうちのp個の水素原子を除いた残りの原子団を意味する。「p価の複素環基」には、「p価の芳香族複素環基」が含まれる。「p価の芳香族複素環基」は、置換基を有していてもよい芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちのp個の水素原子を除いた残りの原子団を意味する。 "p-valent heterocyclic group" (p represents an integer of 1 or more.) is a hydrogen directly bonded to a carbon atom or heteroatom constituting a ring from a heterocyclic compound optionally having a substituent It means an atomic group remaining excluding p hydrogen atoms among atoms. A "p-valent heterocyclic group" includes a "p-valent aromatic heterocyclic group". "p-valent aromatic heterocyclic group", from an optionally substituted aromatic heterocyclic compound, p It means the remaining atomic groups excluding hydrogen atoms.
 芳香族複素環式化合物には、複素環自体が芳香族性を示す化合物に加えて、複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環している化合物が包含される。 Aromatic heterocyclic compounds include not only compounds in which the heterocycle itself exhibits aromaticity, but also compounds in which an aromatic ring is fused to a heterocycle, even if the heterocycle itself does not exhibit aromaticity. be.
 芳香族複素環式化合物のうち、複素環自体が芳香族性を示す化合物の具体例としては、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、及びジベンゾホスホールが挙げられる。 Among aromatic heterocyclic compounds, specific examples of compounds in which the heterocycle itself exhibits aromaticity include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, and triazine. , pyridazine, quinoline, isoquinoline, carbazole, and dibenzophosphole.
 芳香族複素環式化合物のうち、複素環自体が芳香族性を示さず、複素環に芳香環が縮環している化合物の具体例としては、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、及びベンゾピランが挙げられる。 Among aromatic heterocyclic compounds, specific examples of compounds in which the heterocyclic ring itself does not show aromaticity and the aromatic ring is fused to the heterocyclic ring include phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyrans.
 p価の複素環基は、置換基を有していてもよい。p価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは2~20である。 The p-valent heterocyclic group may have a substituent. The number of carbon atoms in the p-valent heterocyclic group is usually 2 to 60, preferably 2 to 20, not including the number of carbon atoms in the substituents.
 1価の複素環基の例としては、1価の芳香族複素環基(例、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基、ピリミジニル基、トリアジニル基)、1価の非芳香族複素環基(例、ピペリジル基、ピペラジル基)、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、フッ素原子などの置換基で置換された基が挙げられる。 Examples of monovalent heterocyclic groups include monovalent aromatic heterocyclic groups (e.g., thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, isoquinolyl group, pyrimidinyl group, triazinyl group), monovalent Examples include non-aromatic heterocyclic groups (eg, piperidyl group, piperazyl group), and groups in which hydrogen atoms in these groups are substituted with substituents such as alkyl groups, alkyloxy groups, and fluorine atoms.
 「置換アミノ基」は、置換基を有するアミノ基を意味する。アミノ基が有する置換基としては、アルキル基、アリール基、及び1価の複素環基が好ましい。置換アミノ基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30である。 "Substituted amino group" means an amino group having a substituent. Alkyl groups, aryl groups, and monovalent heterocyclic groups are preferred as the substituents possessed by the amino group. The number of carbon atoms in the substituted amino group is usually 2-30 not including the number of carbon atoms in the substituent.
 置換アミノ基の例としては、ジアルキルアミノ基(例、ジメチルアミノ基、ジエチルアミノ基)、ジアリールアミノ基(例、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基)が挙げられる。 Examples of substituted amino groups include dialkylamino groups (eg, dimethylamino group, diethylamino group), diarylamino groups (eg, diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl ) amino group and bis(3,5-di-tert-butylphenyl)amino group).
 「アシル基」は、置換基を有していてもよい。アシル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20であり、好ましくは2~18である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、及びペンタフルオロベンゾイル基が挙げられる。 The "acyl group" may have a substituent. The number of carbon atoms in the acyl group is usually 2-20, preferably 2-18, not including the number of carbon atoms in the substituents. Specific examples of acyl groups include acetyl, propionyl, butyryl, isobutyryl, pivaloyl, benzoyl, trifluoroacetyl, and pentafluorobenzoyl groups.
 「イミン残基」とは、イミン化合物から、炭素原子-窒素原子二重結合を構成する炭素原子又は窒素原子に直接結合する水素原子を1個除いた残りの原子団を意味する。「イミン化合物」とは、分子内に、炭素原子-窒素原子二重結合を有する有機化合物を意味する。イミン化合物の例としては、アルジミン、ケチミン、及びアルジミン中の炭素原子-窒素原子二重結合を構成する窒素原子に結合している水素原子が、アルキル基などの置換基で置換された化合物が挙げられる。 "Imine residue" means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom or a nitrogen atom that constitutes a carbon atom-nitrogen atom double bond from an imine compound. An "imine compound" means an organic compound having a carbon atom-nitrogen atom double bond in the molecule. Examples of imine compounds include aldimines, ketimines, and compounds in which the hydrogen atoms bonded to the nitrogen atoms that constitute the carbon atom-nitrogen double bonds in aldimines are substituted with substituents such as alkyl groups. be done.
 イミン残基の炭素原子数は、通常2~20であり、好ましくは2~18である。イミン残基の例としては、下記の構造式で表される基が挙げられる。 The number of carbon atoms in the imine residue is usually 2-20, preferably 2-18. Examples of imine residues include groups represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 「アミド基」とは、アミドから窒素原子に結合した水素原子1つを除いた残りの原子団を意味する。アミド基の炭素原子数は、通常1~20程度であり、好ましくは1~18である。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、及びジペンタフルオロベンズアミド基が挙げられる。 "Amido group" means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from amide. The amide group usually has about 1 to 20 carbon atoms, preferably 1 to 18 carbon atoms. Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , a ditrifluoroacetamide group, and a dipentafluorobenzamide group.
 「酸イミド基」とは、酸イミドから窒素原子に結合した水素原子1つを除いた残りの原子団を意味する。酸イミド基の炭素原子数は、通常4~20である。酸イミド基の具体例としては、以下に示す基が挙げられる。 "Acid imide group" means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from an acid imide. The number of carbon atoms in the acid imide group is generally 4-20. Specific examples of acid imide groups include groups shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 「置換オキシカルボニル基」とは、R’-O-(C=O)-で表される基を意味する。ここで、R’は、アルキル基、アリール基、アリールアルキル基、又は1価の複素環基を表す。
 置換オキシカルボニル基は、炭素原子数が通常2~60であり、好ましくは炭素原子数が2~48である。
"Substituted oxycarbonyl group" means a group represented by R'-O-(C=O)-. Here, R' represents an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group.
The substituted oxycarbonyl group usually has 2 to 60 carbon atoms, preferably 2 to 48 carbon atoms.
 置換オキシカルボニル基の具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、及びピリジルオキシカルボニル基が挙げられる。 Specific examples of substituted oxycarbonyl groups include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, and a hexyloxycarbonyl group. group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyloxycarbonyl group, tri fluoromethoxycarbonyl, pentafluoroethoxycarbonyl, perfluorobutoxycarbonyl, perfluorohexyloxycarbonyl, perfluorooctyloxycarbonyl, phenoxycarbonyl, naphthoxycarbonyl, and pyridyloxycarbonyl groups.
 「アルキルスルホニル基」は、直鎖状でもあってもよく、分岐状であってもよい。アルキルスルホニル基は、置換基を有していてもよい。アルキルスルホニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~30である。アルキルスルホニル基の具体例としては、メチルスルホニル基、エチルスルホニル基、及びドデシルスルホニル基が挙げられる。 The "alkylsulfonyl group" may be linear or branched. The alkylsulfonyl group may have a substituent. The number of carbon atoms in the alkylsulfonyl group is usually 1-30, not including the number of carbon atoms in the substituents. Specific examples of alkylsulfonyl groups include methylsulfonyl, ethylsulfonyl, and dodecylsulfonyl groups.
 「2価の有機基」は、直鎖状、分岐状、環状のいずれの態様であってもよい。2価の有機基としては、例えば、2価の直鎖状脂肪族炭化水素基、2価の分岐状脂肪族炭化水素基、2価の環状炭化水素基、2価の芳香族炭化水素基、2価の複素環基、2価の芳香族複素環基が挙げられる。「2価の有機基」が環状の構造を含む場合には、「2価の有機基」は縮環構造、橋かけ構造を含んでいてもよい。 The "divalent organic group" may be linear, branched, or cyclic. Examples of divalent organic groups include divalent linear aliphatic hydrocarbon groups, divalent branched aliphatic hydrocarbon groups, divalent cyclic hydrocarbon groups, divalent aromatic hydrocarbon groups, Divalent heterocyclic groups and divalent aromatic heterocyclic groups are included. When the "divalent organic group" includes a cyclic structure, the "divalent organic group" may include a condensed ring structure and a bridged structure.
 化学式に付される「*」は、結合手を表す。 "*" attached to the chemical formula represents a bond.
 「π共役系」とは、π電子が複数の結合にわたって非局在化している系を意味する。 "π-conjugated system" means a system in which π electrons are delocalized over multiple bonds.
 「(メタ)アクリル」には、アクリル、メタクリル、及びこれらの組み合わせが含まれる。 "(Meth)acrylic" includes acrylic, methacrylic, and combinations thereof.
 本実施形態において、「インク組成物」は、塗布法に用いられる液状の組成物を意味し、着色した液に限定されない。また、「塗布法」は、インク組成物に代表される液状物質を用いて膜を形成する方法を意味している。 In the present embodiment, the "ink composition" means a liquid composition used in the coating method, and is not limited to colored liquids. Also, the “coating method” means a method of forming a film using a liquid substance represented by an ink composition.
 本実施形態において、「組成物」及び「インク組成物」は、溶液であってもよく、分散液、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液であってもよい。 In the present embodiment, the "composition" and "ink composition" may be a solution, or may be a dispersion liquid such as a dispersion liquid, an emulsion (emulsion), or a suspension (suspension).
2.組成物
 本実施形態の組成物は、式(I)で表される構成単位を含む高分子化合物であって、式(I)で表される構成単位を含み、かつ式(II)で表される末端構造を有する不純物高分子化合物をさらに含む高分子化合物を含有している。組成物に含まれうる高分子化合物は、通常、p型半導体材料である。本実施形態の組成物は、芳香族炭化水素を含む溶媒をさらに含む。本実施形態の組成物に含まれうる高分子化合物及び溶媒の詳細については後述する。
2. Composition The composition of the present embodiment is a polymer compound containing a structural unit represented by formula (I), which contains a structural unit represented by formula (I) and is represented by formula (II) It contains a polymer compound that further contains an impurity polymer compound having a terminal structure with a Polymeric compounds that may be included in the composition are typically p-type semiconductor materials. The composition of this embodiment further comprises a solvent comprising an aromatic hydrocarbon. Details of the polymer compound and solvent that can be contained in the composition of the present embodiment will be described later.
3.インク組成物
 本実施形態のインク組成物は、既に説明した「組成物」に加えて、n型半導体材料をさらに含みうる。すなわち、本実施形態のインク組成物は、p型半導体材料である2種以上の高分子化合物と、有機溶媒と、n型半導体材料とを含むことが好ましい。
3. Ink Composition The ink composition of the present embodiment may further contain an n-type semiconductor material in addition to the "composition" already described. That is, the ink composition of the present embodiment preferably contains two or more polymer compounds that are p-type semiconductor materials, an organic solvent, and an n-type semiconductor material.
 本実施形態のインク組成物は、光電変換素子製造用のインク組成物であって、好ましくは機能層である活性層を形成するためのインク組成物であることが想定されている。 The ink composition of the present embodiment is assumed to be an ink composition for manufacturing a photoelectric conversion element, preferably an ink composition for forming an active layer, which is a functional layer.
 以下、本実施形態の「組成物」及び「インク組成物」に含まれうる成分について具体的に説明する。 Components that can be included in the "composition" and "ink composition" of the present embodiment are specifically described below.
 本実施形態において、p型半導体材料は、2種以上の電子供与性の高分子化合物を含み、n型半導体材料は、少なくとも1種の電子受容性化合物を含みうる。 In this embodiment, the p-type semiconductor material may contain two or more electron-donating polymer compounds, and the n-type semiconductor material may contain at least one electron-accepting compound.
 インク組成物に含まれる半導体材料が、p型半導体材料及びn型半導体材料のうちのいずれとして機能するかは、選択された化合物のHOMOエネルギーレベルの値又はLUMOエネルギーレベルの値から相対的に決定しうる。 Whether the semiconductor material contained in the ink composition functions as a p-type semiconductor material or an n-type semiconductor material is relatively determined from the HOMO energy level value or the LUMO energy level value of the selected compound. I can.
 p型半導体材料のHOMO及びLUMOのエネルギーレベルの値と、n型半導体材料のHOMO及びLUMOのエネルギーレベルの値との関係は、インク組成物から形成される(固化)膜が、光電変換機能、光検出機能といった所定の機能を発揮する範囲に適宜設定することができる The relationship between the HOMO and LUMO energy level values of the p-type semiconductor material and the HOMO and LUMO energy level values of the n-type semiconductor material indicates that the (solidified) film formed from the ink composition has a photoelectric conversion function, It can be appropriately set within a range in which a predetermined function such as a light detection function is exhibited.
 (1)p型半導体材料
 本実施形態において、p型半導体材料は、高分子化合物である。具体的には、本実施形態のインク組成物が含みうるp型半導体材料は、ドナー構成単位(D構成単位ともいう。)とアクセプター構成単位(A構成単位ともいう。)とを含むドナー・アクセプター構造を有するπ共役系の高分子化合物(D-A型共役高分子化合物ともいう。)を含む。
(1) p-type semiconductor material In this embodiment, the p-type semiconductor material is a polymer compound. Specifically, the p-type semiconductor material that the ink composition of the present embodiment may contain is a donor/acceptor containing a donor structural unit (also referred to as a D structural unit) and an acceptor structural unit (also referred to as an A structural unit). It includes a π-conjugated polymer compound having a structure (also referred to as a DA-type conjugated polymer compound).
 ここで、ドナー構成単位はπ電子が過剰である構成単位であり、アクセプター構成単位はπ電子が欠乏している構成単位である。 Here, the donor structural unit is a structural unit with an excess of π electrons, and the acceptor structural unit is a structural unit with a π electron deficiency.
 本実施形態において、p型半導体材料を構成し得る構成単位には、ドナー構成単位とアクセプター構成単位とが直接的に結合した構成単位、さらにはドナー構成単位とアクセプター構成単位とが、任意好適なスペーサー(基又は構成単位)を介して結合した構成単位も含まれる。 In the present embodiment, the structural unit that can constitute the p-type semiconductor material may be a structural unit in which a donor structural unit and an acceptor structural unit are directly bonded, or a donor structural unit and an acceptor structural unit. Structural units linked via spacers (groups or structural units) are also included.
 本実施形態において、p型半導体材料である高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を含むポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。 In the present embodiment, the polymer compound that is the p-type semiconductor material includes, for example, polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives. , polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives.
 本実施形態において、p型半導体材料である高分子化合物は、チアジアゾール骨格を含む構成単位及び/又はチオフェン骨格を有する構成単位を含むことが好ましい。 In the present embodiment, the polymer compound that is the p-type semiconductor material preferably contains a structural unit containing a thiadiazole skeleton and/or a structural unit having a thiophene skeleton.
 本実施形態において、組成物に含まれるp型半導体材料である高分子化合物は、下記式(I)で表される構成単位を含む高分子化合物であって、下記式(I)で表される構成単位を含み、かつ下記式(II)で表される末端構造を有する不純物高分子化合物をさらに含む高分子化合物である。 In the present embodiment, the polymer compound that is the p-type semiconductor material contained in the composition is a polymer compound containing a structural unit represented by the following formula (I), and is represented by the following formula (I): It is a polymer compound containing structural units and further containing an impurity polymer compound having a terminal structure represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(I)中、
 Aは、置換基を有していてもよい2価の有機基を表し、
 Bは、チアジアゾール骨格、オキサジアゾール骨格、又はトリアゾール骨格を含む環構造を表し、
 Yは、-CH-で表される基又は窒素原子を表す。
In formula (I),
A represents a divalent organic group which may have a substituent,
B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton,
Y represents a group represented by -CH- or a nitrogen atom.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(II)中、
 Bは、チアジアゾール骨格、オキサジアゾール骨格、又はトリアゾール骨格を含む環構造を表し、
 Yは、-CH-で表される基又は窒素原子を表す。
In formula (II),
B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton,
Y represents a group represented by -CH- or a nitrogen atom.
 本実施形態において、上記のとおり、式(I)で表される構成単位は、Aで表される構造(構成単位)と、Bで表される環構造を含む構造(構成単位)とを含んでいる。 In the present embodiment, as described above, the structural unit represented by formula (I) includes a structure (structural unit) represented by A and a structure (structural unit) containing a ring structure represented by B. I'm in.
 本実施形態においては、Aはドナー構成単位(D構成単位)であり、Bを含む環構造はアクセプター構成単位(A構成単位)である。 In the present embodiment, A is a donor structural unit (D structural unit), and a ring structure containing B is an acceptor structural unit (A structural unit).
 上記のとおり、本実施形態の高分子化合物は、不純物として不純物高分子化合物を含む。ここで、不純物高分子化合物としては、上記式(I)で表される構成単位を含み、かつ上記式(II)で表される末端構造を有する高分子化合物が想定されている。 As described above, the polymer compound of the present embodiment contains impurity polymer compounds as impurities. Here, the impurity polymer compound is assumed to be a polymer compound containing a structural unit represented by the above formula (I) and having a terminal structure represented by the above formula (II).
 式(II)で表される末端基は、上記のとおり、アミド構造を含む末端構造を有しており、通常、高分子化合物の合成に用いられる原料である単量体に由来する。上記式(II)で表される末端基には、例えばケト互変異性化により合成後に生成した基が含まれる。 As described above, the terminal group represented by formula (II) has a terminal structure containing an amide structure, and is usually derived from a monomer that is a raw material used for synthesizing a polymer compound. The terminal groups represented by formula (II) above include groups generated post-synthetically by, for example, keto tautomerization.
 よって、p型半導体材料である高分子化合物は、当初から不純物高分子化合物を含んでいる場合があり、さらには当初は不純物高分子化合物を含んでいなかったとしても、例えばケト互変異性化により事後的に、高分子化合物が不純物高分子化合物を含むこととなってしまう場合もありうる。 Therefore, a polymer compound that is a p-type semiconductor material may contain an impurity polymer compound from the beginning, and even if it does not contain an impurity polymer compound at the beginning, it may undergo keto tautomerization, for example. As a result, the polymer compound may contain an impurity polymer compound after the fact.
 式(I)中、Aは、下記式(III)で表される構造(構成単位)であることが好ましい。 In formula (I), A preferably has a structure (constituent unit) represented by formula (III) below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(III)中、Arは、2価の芳香族複素環基又はアリーレン基を表す。 In formula (III), Ar 1 represents a divalent aromatic heterocyclic group or an arylene group.
 式(III)中、Arで表される2価の芳香族複素環基(構成単位)の炭素原子数は、通常2~60であり、好ましくは4~60であり、より好ましくは4~20である。Arで表される2価の芳香族複素環基は置換基を有していてもよい。Arで表される2価の芳香族複素環基が有していてもよい置換基の例としては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、アルケニル基、アルキニル基、シアノ基、及びニトロ基が挙げられる。Ar(A)は、チオフェン骨格を含むことが好ましい。 In formula (III), the number of carbon atoms in the divalent aromatic heterocyclic group (constituent unit) represented by Ar 1 is usually 2 to 60, preferably 4 to 60, more preferably 4 to is 20. The divalent aromatic heterocyclic group represented by Ar 1 may have a substituent. Examples of substituents that the divalent aromatic heterocyclic group represented by Ar 1 may have include halogen atoms, alkyl groups, aryl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, alkenyl groups, alkynyl groups, cyano groups, and nitro groups. Ar 1 (A) preferably contains a thiophene skeleton.
 Arで表される2価の芳香族複素環基の例としては、下記式(101)~式(190)で表される基が挙げられる(なお、式(146)、(148)、(150)及び(154)は欠番である。)。 Examples of the divalent aromatic heterocyclic group represented by Ar 1 include groups represented by the following formulas (101) to (190) (wherein formulas (146), (148), ( 150) and (154) are missing numbers).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
 式(101)~式(190)中、Rは前記と同じ意味を表す。Rが複数存在する場合、複数のRは、互いに同一であっても異なっていてもよい。 In formulas (101) to (190), R has the same meaning as above. When there are multiple R's, the multiple R's may be the same or different.
 Arで表される2価の芳香族複素環基(構成単位)としては、下記式(III-1)~式(III-6)で表される2価の基(構成単位)が好ましい。 As the divalent aromatic heterocyclic group (constituent unit) represented by Ar 1 , divalent groups (constituent units) represented by the following formulas (III-1) to (III-6) are preferred.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(III-1)~式(III-6)中、X及びXは、それぞれ独立に、酸素原子又は硫黄原子を表し、Rは上記と同じ意味を表す。Rが複数存在する場合、複数のRは、互いに同一であっても異なっていてもよい。 In formulas (III-1) to (III-6), X 1 and X 2 each independently represent an oxygen atom or a sulfur atom, and R has the same meaning as above. When there are multiple R's, the multiple R's may be the same or different.
 原料化合物(単量体)の入手性の観点から、式(III-1)~式(III-6)中のX及びXは、いずれも硫黄原子であることが好ましい。 From the viewpoint of availability of starting compounds (monomers), both X 1 and X 2 in formulas (III-1) to (III-6) are preferably sulfur atoms.
 本実施形態において、p型半導体材料である高分子化合物は、2種以上の式(III)で表される構成単位を含んでいてもよい。 In the present embodiment, the polymer compound that is the p-type semiconductor material may contain two or more structural units represented by formula (III).
 Arで表されるアリーレン基とは、置換基を有していてもよい芳香族炭化水素から、水素原子2つを除いた残りの原子団を意味する。芳香族炭化水素には、縮合環を有する化合物、独立したベンゼン環及び縮合環からなる群から選ばれる2つ以上が、直接又はビニレン等の2価の基を介して結合した化合物も含まれる。 The arylene group represented by Ar 1 means an atomic group remaining after removing two hydrogen atoms from an optionally substituted aromatic hydrocarbon. Aromatic hydrocarbons also include compounds having condensed rings, and compounds in which two or more selected from the group consisting of independent benzene rings and condensed rings are bonded directly or via a divalent group such as vinylene.
 芳香族炭化水素が有していてもよい置換基の例としては、複素環式化合物が有していてもよい置換基として挙げた上記例と同様の置換基が挙げられる。 Examples of the substituents that the aromatic hydrocarbon may have include the same substituents as those listed above as the substituents that the heterocyclic compound may have.
 Arで表されるアリーレン基における、置換基を除いた部分の炭素原子数は、通常6~60であり、好ましくは6~20である。置換基を含めたアリーレン基の炭素原子数は、通常6~100である。 The number of carbon atoms in the arylene group represented by Ar 1 excluding substituents is usually 6-60, preferably 6-20. The number of carbon atoms in the arylene group including substituents is usually 6-100.
 Ar1で表されるアリーレン基の例としては、フェニレン基(例えば、下記式1~式3)、ナフタレン-ジイル基(例えば、下記式4~式13)、アントラセン-ジイル基(例えば、下記式14~式19)、ビフェニル-ジイル基(例えば、下記式20~式25)、ターフェニル-ジイル基(例えば、下記式26~式28)、縮合環化合物基(例えば、下記式29~式35)、フルオレン-ジイル基(例えば、下記式36~式38)、及びベンゾフルオレン-ジイル基(例えば、下記式39~式46)が挙げられる。 Examples of the arylene group represented by Ar 1 include a phenylene group (eg, the following formulas 1 to 3), a naphthalene-diyl group (eg, the following formulas 4 to 13), an anthracene-diyl group (eg, the following formulas 14 to formula 19), biphenyl-diyl groups (e.g., formulas 20 to 25 below), terphenyl-diyl groups (e.g., formulas 26 to 28 below), condensed ring compound groups (e.g., formulas 29 to 35 below ), fluorene-diyl groups (eg, formulas 36 to 38 below), and benzofluorene-diyl groups (eg, formulas 39 to 46 below).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式1~式46中、Rは前記と同義である。Rが複数ある場合、複数あるRは、互いに同一であっても異なっていてもよい。 In Formulas 1 to 46, R has the same definition as above. When there are multiple R's, the multiple R's may be the same or different.
 式(I)中、Aは、下記式(IV)で表される構造(構成単位)であることがより好ましい。 In formula (I), A is more preferably a structure (constituent unit) represented by formula (IV) below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(IV)中、
 Ar及びArは、それぞれ独立して、置換基を有していてもよい3価の芳香族複素環基を表し、
 Zは下記式(Z-1)~式(Z-7)のいずれか1つで表される基を表す。
In formula (IV),
Ar 2 and Ar 3 each independently represent an optionally substituted trivalent aromatic heterocyclic group,
Z represents a group represented by any one of the following formulas (Z-1) to (Z-7).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(Z-1)~(Z-7)中、Rは、
 水素原子、
 ハロゲン原子、
 置換基を有していてもよいアルキル基、
 置換基を有していてもよいシクロアルキル基、
 置換基を有していてもよいアルケニル基、
 置換基を有していてもよいシクロアルケニル基、
 置換基を有していてもよいアルキニル基、
 置換基を有していてもよいシクロアルキニル基、
 置換基を有していてもよいアリール基、
 置換基を有していてもよいアルキルオキシ基、
 置換基を有していてもよいシクロアルキルオキシ基、
 置換基を有していてもよいアリールオキシ基、
 置換基を有していてもよいアルキルチオ基、
 置換基を有していてもよいシクロアルキルチオ基、
 置換基を有していてもよいアリールチオ基、
 置換基を有していてもよい1価の複素環基、
 置換基を有していてもよい置換アミノ基、
 置換基を有していてもよいイミン残基、
 置換基を有していてもよいアミド基、
 置換基を有していてもよい酸イミド基、
 置換基を有していてもよい置換オキシカルボニル基、
 シアノ基、
 ニトロ基、
 -C(=O)-Rで表される基、又は
 -SO-Rで表される基を表し、
 R及びRは、それぞれ独立して、
 水素原子、
 置換基を有していてもよいアルキル基、
 置換基を有していてもよいシクロアルキル基、
 置換基を有していてもよいアリール基、
 置換基を有していてもよいアルキルオキシ基、
 置換基を有していてもよいシクロアルキルオキシ基、
 置換基を有していてもよいアリールオキシ基、又は
 置換基を有していてもよい1価の複素環基を表す。
 式(Z-1)~式(Z-7)中、Rが2つある場合、2つあるRは同一であっても異なっていてもよい。
In formulas (Z-1) to (Z-7), R is
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R c or a group represented by —SO 2 —R d ,
R c and R d are each independently
hydrogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
In formulas (Z-1) to (Z-7), when there are two Rs, the two Rs may be the same or different.
 式(Z-1)~(Z-7)中のRは、好ましくは水素原子、アルキル基、又はアリール基であり、より好ましくは水素原子又はアルキル基であり、さらに好ましくは、水素原子又は炭素原子数1~40のアルキル基であり、より好ましくは水素原子又は炭素原子数1~30のアルキル基であり、特に好ましくは水素原子又は炭素原子数1~20のアルキル基である。これらの基は、置換基を有していてもよい。Rが複数存在する場合、複数存在するRは、互いに同一であっても異なっていてもよい。 R in formulas (Z-1) to (Z-7) is preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, still more preferably a hydrogen atom or carbon It is an alkyl group having 1 to 40 atoms, more preferably a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, particularly preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. These groups may have a substituent. When there are multiple R's, the multiple R's may be the same or different.
 式(IV)で表される構造(構成単位)は、下記式(IV-1)で表される構造(構成単位)であることが好ましい。 The structure (structural unit) represented by formula (IV) is preferably a structure (structural unit) represented by formula (IV-1) below.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(IV-1)中、Zは前記と同様の意味を表す。 In formula (IV-1), Z has the same meaning as above.
 式(IV-1)で表される構造(構成単位)の好ましい例としては、下記式(501)~式(505)で表されるチオフェン骨格を含む構造(構成単位)が挙げられる。 Preferred examples of the structure (structural unit) represented by formula (IV-1) include structures (structural units) containing a thiophene skeleton represented by formulas (501) to (505) below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(501)~式(505)中、Rは前記と同様の意味を表す。Rが2つ存在する場合、2つのRは互いに同一であっても異なっていてもよい。 In formulas (501) to (505) above, R has the same meaning as above. When there are two R's, the two R's may be the same or different.
 本実施形態において、上記式(I)で表される構成単位を含む高分子化合物の例としては、式(I)で表される構成単位中のAであって、高分子化合物の少なくとも一端側に位置しているAに、末端基としてハロゲン原子が結合した高分子化合物が挙げられる。 In the present embodiment, examples of the polymer compound containing the structural unit represented by the above formula (I) include A in the structural unit represented by the formula (I) and at least one end side of the polymer compound. Polymer compounds in which a halogen atom is bonded as a terminal group to A located at .
 本実施形態のp型半導体材料である高分子化合物に含まれる式(I)で表される構成単位は、上記Aで表される構造(式(III)又は(IV)で表される構造(構成単位))に加えて、下記式(V)で表される構造(Bで表される環構造を含む構造(構成単位))を含む。 The structural unit represented by formula (I) contained in the polymer compound that is the p-type semiconductor material of the present embodiment is the structure represented by the above A (the structure represented by formula (III) or (IV) ( structural unit)), a structure represented by the following formula (V) (a structure containing a ring structure represented by B (structural unit)).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 前記式(V)中、Bは、チアジアゾール骨格、オキサジアゾール骨格、又はトリアゾール骨格を含む環構造を表し、Yは、-CH-で表される基又は窒素原子を表す。Bは、チアジアゾール骨格を含むことが好ましい。 In the formula (V), B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton, and Y represents a group represented by -CH- or a nitrogen atom. B preferably contains a thiadiazole skeleton.
 前記式(V)で表される構造(構成単位)の炭素原子数は、通常2~20であり、好ましくは4~20であり、より好ましくは4~10である。 The number of carbon atoms in the structure (constituent unit) represented by formula (V) is usually 2-20, preferably 4-20, more preferably 4-10.
 下記式(V)で表される構造(構成単位)は、置換基をさらに有していてもよい。置換基の例としては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、アルケニル基、アルキニル基、シアノ基、及びニトロ基が挙げられる。 The structure (constituent unit) represented by formula (V) below may further have a substituent. Examples of substituents include halogen atoms, alkyl groups, aryl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, Acid imide groups, substituted oxycarbonyl groups, alkenyl groups, alkynyl groups, cyano groups, and nitro groups are included.
 式(V)で表される構造(構成単位)の好ましい例としては、下記式(V-1)~式(V-3)で表される2価の基が挙げられる。 Preferred examples of the structure (constituent unit) represented by formula (V) include divalent groups represented by formulas (V-1) to (V-3) below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(V-1)~式(V-3)中、Rは前記と同じ意味を表す。Rが複数存在する場合、複数のRは、互いに同一であっても異なっていてもよい。 In formulas (V-1) to (V-3), R has the same meaning as above. When there are multiple R's, the multiple R's may be the same or different.
 本実施形態において、p型半導体材料である高分子化合物は、2種以上のAで表される構造(式(III)又は(IV)で表される構造(構成単位)を含んでいてもよく、2種以上の式(V)で表される構造(構成単位)を含んでいてもよい。 In the present embodiment, the polymer compound that is the p-type semiconductor material may contain two or more structures represented by A (structures (constitutional units) represented by formula (III) or (IV) , may contain two or more types of structures (constituent units) represented by formula (V).
 本実施形態において、p型半導体材料である高分子化合物、さらには不純物高分子化合物は、その主鎖が既に説明した式(I)で表される構成単位のみから構成されているD-A型共役高分子化合物であってよく、さらに他の構成単位を含むD-A型共役高分子化合物であってもよい。 In the present embodiment, the polymer compound as the p-type semiconductor material and the impurity polymer compound are DA type in which the main chain is composed only of structural units represented by the already described formula (I). It may be a conjugated polymer compound, and may be a DA type conjugated polymer compound containing other constitutional units.
 既に説明した式(I)で表される構成単位を含むp型半導体材料である高分子化合物において、式(I)で表される構成単位の合計量は、高分子化合物が含むすべての構成単位の量を100モル%としたときに、通常20~100モル%であり、p型半導体材料としての電荷輸送性を向上させる観点から、好ましくは40~100モル%であり、より好ましくは50~100モル%である。 In the polymer compound that is the p-type semiconductor material containing the structural unit represented by the formula (I) already described, the total amount of the structural units represented by the formula (I) is equal to all the structural units contained in the polymer compound. When the amount of is 100 mol%, it is usually 20 to 100 mol%, and from the viewpoint of improving the charge transport property as a p-type semiconductor material, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol %.
 p型半導体材料である高分子化合物の好適な具体例としては、下記式P-1で表される高分子化合物が挙げられる。 Suitable specific examples of the polymer compound that is the p-type semiconductor material include polymer compounds represented by the following formula P-1.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 本実施形態において、p型半導体材料である高分子化合物は、所定のポリスチレン換算の重量平均分子量を有することが好ましい。 In the present embodiment, the polymer compound that is the p-type semiconductor material preferably has a predetermined polystyrene-equivalent weight-average molecular weight.
 ここで、ポリスチレン換算の重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレンの標準試料を用いて算出した重量平均分子量を意味する。 Here, the weight average molecular weight in terms of polystyrene means the weight average molecular weight calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
 p型半導体材料である高分子化合物のポリスチレン換算の重量平均分子量は、特に溶媒に対する溶解性を向上させる観点から、3000以上500000以下であることが好ましい。 The polystyrene-equivalent weight-average molecular weight of the polymer compound, which is the p-type semiconductor material, is preferably 3,000 or more and 500,000 or less, particularly from the viewpoint of improving solubility in solvents.
 アミド構造である前記式(II)で表される末端構造の割合の測定は、例えば、従来公知の任意好適な測定装置(例えば、ThermoFisher社製Nicolet iS50 FT-IR)を用いる常法に従う赤外分光法により行うことができる。 Measurement of the ratio of the terminal structure represented by the formula (II), which is an amide structure, can be carried out, for example, by infrared ray according to a conventional method using any suitable conventionally known measuring device (for example, Nicolet iS50 FT-IR manufactured by ThermoFisher) It can be done by spectroscopy.
 具体的には、本実施形態の高分子化合物にさらに含まれる不純物高分子化合物に含まれるアミド構造を含む末端構造に由来するC=O伸縮ピーク(1700cm-1)強度を、式(I)で表される構成単位を含む主鎖由来のピーク(954cm-1)強度で除算し、さらに100を乗じた値を、不純物高分子化合物に含まれるアミド構造を含む末端構造の割合(%)とすればよい。 Specifically, the C═O stretching peak (1700 cm −1 ) intensity derived from the terminal structure including the amide structure contained in the impurity polymer compound further contained in the polymer compound of the present embodiment is expressed by the formula (I): The value obtained by dividing by the peak (954 cm −1 ) intensity derived from the main chain containing the represented structural unit and multiplying by 100 is taken as the ratio (%) of the terminal structure containing the amide structure contained in the impurity polymer compound. Just do it.
 なお、赤外分光法において、1500cm-1以上の波長領域には官能基に由来する特定の波長領域の吸収(特性吸収帯ともいう。)が観測され、1500cm-1以下の波長領域(指紋領域ともいう)には、官能基に由来する吸収と分子構造に由来する吸収が観測される。しかしながら、観測される吸収ピークは、赤外吸収スペクトルのピーク形状、ピーク強度又はベースライン形状などの影響により、上記の波数から±10cm-1の範囲でシフトすることがある。 In infrared spectroscopy, absorption in a specific wavelength region derived from a functional group (also referred to as a characteristic absorption band) is observed in a wavelength region of 1500 cm -1 or more, and a wavelength region of 1500 cm -1 or less (fingerprint region Absorption derived from the functional group and absorption derived from the molecular structure are observed. However, the observed absorption peak may shift within a range of ±10 cm −1 from the above wavenumbers due to influences such as peak shape, peak intensity or baseline shape of the infrared absorption spectrum.
 また、不純物高分子化合物に含まれるアミド構造を含む末端構造に由来するC=O伸縮ピーク及び式(1)で表される構成単位を含む主鎖由来の吸収ピークの波数は、式(1)又は式(2)に含まれるA、B及びYのそれぞれの構造により、±50cm-1の範囲でシフトする場合がある。 In addition, the wave number of the C═O stretching peak derived from the terminal structure containing the amide structure contained in the impurity polymer compound and the absorption peak derived from the main chain containing the structural unit represented by formula (1) is given by formula (1) Alternatively, it may shift within the range of ±50 cm −1 depending on the structure of each of A, B and Y included in formula (2).
 本実施例において、不純物高分子化合物に含まれるアミド構造を含む末端構造に由来するC=O伸縮ピーク強度及び式(1)で表される構成単位を含む主鎖由来のピーク強度は、それぞれ1700cm-1及び954cm-1であるか又は上記の範囲でシフトしているピークであって、不純物高分子化合物に含まれるアミド構造を含む末端構造に由来するC=O伸縮ピーク及び式(1)で表される構成単位を含む主鎖由来のピークとして同定した波数における数値を使用している。吸収ピークがシフトしている場合は、上記のシフト範囲及び公知文献に記載の吸収波長の領域を参考にして吸収ピークを特定し、上記割合を算出すればよい。 In this example, the C═O stretching peak intensity derived from the terminal structure containing the amide structure contained in the impurity polymer compound and the peak intensity derived from the main chain containing the structural unit represented by formula (1) were each 1700 cm. −1 and 954 cm −1 or a peak shifted within the above range, which is a C=O stretching peak derived from a terminal structure including an amide structure contained in the impurity polymer compound and in formula (1) Values at wavenumbers identified as peaks derived from the main chain containing the indicated structural unit are used. If the absorption peak is shifted, the absorption peak may be specified with reference to the shift range and the absorption wavelength region described in the known literature, and the ratio may be calculated.
 (p型半導体材料である高分子化合物の製造方法)
 本実施形態において、既に説明したp型半導体材料である高分子化合物は、従来公知の任意好適な製造方法(例えば国際公開第2013/051676号、国際公開第2011/052709号、国際公開第2018/220785号に記載の方法)に従って製造することができる。
(Method for producing polymer compound as p-type semiconductor material)
In the present embodiment, the polymer compound, which is the p-type semiconductor material already described, can be produced by any suitable conventionally known production method (e.g., WO 2013/051676, WO 2011/052709, WO 2018/ 220785).
 本実施形態において、既に説明したp型半導体材料である高分子化合物は、従来公知の任意好適な溶媒を重合溶媒として用いる重合工程(反応工程)を含む方法により製造することができる。 In the present embodiment, the polymer compound, which is the p-type semiconductor material already described, can be produced by a method including a polymerization step (reaction step) using any suitable conventionally known solvent as a polymerization solvent.
 本実施形態の高分子化合物の製造方法に好適に適用できる重合溶媒としては、例えば、炭化水素溶媒、ケトン溶媒、アルコール溶媒、エーテル溶媒、フェノール類溶媒、及びカルボン酸エステル溶媒が挙げられる。本実施形態において、重合溶媒としては、アルコール溶媒を用いることが好ましい。 Polymerization solvents that can be suitably applied to the method for producing a polymer compound of the present embodiment include, for example, hydrocarbon solvents, ketone solvents, alcohol solvents, ether solvents, phenolic solvents, and carboxylic acid ester solvents. In the present embodiment, an alcohol solvent is preferably used as the polymerization solvent.
 本実施形態において、重合溶媒は、少なくとも1種の炭化水素溶媒である第1の溶媒、少なくとも1個の炭素原子、少なくとも1個の水素原子、及び少なくとも1個の酸素原子のみからなる少なくとも1種の有機溶媒である第2の溶媒、及び水を含みうる。 In this embodiment, the polymerization solvent comprises a first solvent that is at least one hydrocarbon solvent, at least one solvent consisting only of at least one carbon atom, at least one hydrogen atom, and at least one oxygen atom. and water.
 重合溶媒は、第1の溶媒、第2の溶媒、及び水以外の任意の溶媒を含んでいてもよい。任意の溶媒としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼンが挙げられる。任意の溶媒の体積比率は、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対して、好ましくは50体積%以下であり、より好ましくは25体積%以下であり、さらに好ましくは10体積%以下である。反応溶媒は、好ましくは実質的に前記第1の溶媒、前記第2の溶媒、及び水のみからなる。 The polymerization solvent may contain any solvent other than the first solvent, the second solvent, and water. Optional solvents include, for example, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, monochlorobenzene, dichlorobenzene, trichlorobenzene. The volume ratio of any solvent is preferably 50% by volume or less, more preferably 25% by volume or less, relative to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water. , more preferably 10% by volume or less. The reaction solvent preferably consists essentially of said first solvent, said second solvent and water.
 第1の溶媒としては、例えば、脂肪族炭化水素溶媒、脂環式炭化水素溶媒、及び芳香族炭化水素溶媒が挙げられる。 Examples of the first solvent include aliphatic hydrocarbon solvents, alicyclic hydrocarbon solvents, and aromatic hydrocarbon solvents.
 脂肪族炭化水素溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカンが挙げられる。 Examples of aliphatic hydrocarbon solvents include hexane, heptane, octane, nonane, decane, undecane, and dodecane.
 脂環式炭化水素溶媒としては、例えば、シクロヘキサン、デカリンが挙げられる。
 芳香族炭化水素溶媒としては、例えば、ベンゼン、トルエン、キシレン(オルトキシレン)、トリメチルベンゼン(例、メシチレン)、テトラリン、インダン、ナフタレン、メチルナフタレンが挙げられる。
Examples of alicyclic hydrocarbon solvents include cyclohexane and decalin.
Examples of aromatic hydrocarbon solvents include benzene, toluene, xylene (ortho-xylene), trimethylbenzene (eg, mesitylene), tetralin, indane, naphthalene, and methylnaphthalene.
 第1の溶媒は、1種単独の炭化水素溶媒であっても、2種以上の炭化水素溶媒の組み合わせであってもよい。 The first solvent may be a single hydrocarbon solvent or a combination of two or more hydrocarbon solvents.
 第1の溶媒は、好ましくはトルエン、キシレン、トリメチルベンゼン、デカリン、テトラリン、インダン、ナフタレン、及びメチルナフタレンからなる群から選択される1種以上であり、より好ましくは、トルエン、メシチレン、及びテトラリンからなる群から選択される1種以上であり、さらに好ましくは、トルエン、メシチレン、又はテトラリンである。 The first solvent is preferably one or more selected from the group consisting of toluene, xylene, trimethylbenzene, decalin, tetralin, indane, naphthalene, and methylnaphthalene, more preferably toluene, mesitylene, and tetralin. It is one or more selected from the group consisting of, more preferably toluene, mesitylene, or tetralin.
 第2の溶媒としての有機溶媒は、ヒドロキシ基、オキソ基、オキシカルボニル基(-(C=O)-O-で表される基)、エーテル結合(-O-で表される基)等の、酸素原子を含む基を、1つのみ有していてもよいし、2つ以上有していてもよい。 The organic solvent as the second solvent includes a hydroxyl group, an oxo group, an oxycarbonyl group (a group represented by -(C=O)-O-), an ether bond (a group represented by -O-), and the like. , may have only one group containing an oxygen atom, or may have two or more groups.
 また、第2の溶媒としての有機溶媒は、酸素原子を含む基を、1種のみ有していてもよいし、2種以上有していてもよい。 In addition, the organic solvent as the second solvent may have only one type of group containing an oxygen atom, or may have two or more types thereof.
 第2の溶媒としては、例えば、アルコール溶媒、エーテル溶媒、ケトン溶媒、フェノール溶媒、及びカルボン酸エステル溶媒が挙げられる。 Examples of the second solvent include alcohol solvents, ether solvents, ketone solvents, phenol solvents, and carboxylic acid ester solvents.
 アルコール溶媒としては、例えば、第1級アルコール(例、メタノール、エタノール、2-フェニルエタノール、n-プロピルアルコール、n-ブチルアルコール、3-メチル-1-ブタノール、1-ペンタノール、1-ヘキサノール、2-エチル-1-ヘキサノール、1-オクタノール、ベンジルアルコール)、第2級アルコール(例、イソプロピルアルコール、sec-ブチルアルコール、2-オクタノール、3-ペンタノール、シクロヘキサノール)、第3級アルコール(例、tert-ブチルアルコール、1-メチルシクロヘキサノール、1-エチルシクロヘキサノール、1-メチルシクロペンタノール、tert-アミルアルコール、2-フェニル-2-プロパノール、2-メチル-1-フェニル-2-プロパノール、2-メチル-2-ペンタノール、3-エチル-3-ペンタノール)が挙げられる。 Examples of alcohol solvents include primary alcohols (e.g., methanol, ethanol, 2-phenylethanol, n-propyl alcohol, n-butyl alcohol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, 2-ethyl-1-hexanol, 1-octanol, benzyl alcohol), secondary alcohols (eg, isopropyl alcohol, sec-butyl alcohol, 2-octanol, 3-pentanol, cyclohexanol), tertiary alcohols (eg , tert-butyl alcohol, 1-methylcyclohexanol, 1-ethylcyclohexanol, 1-methylcyclopentanol, tert-amyl alcohol, 2-phenyl-2-propanol, 2-methyl-1-phenyl-2-propanol, 2-methyl-2-pentanol, 3-ethyl-3-pentanol).
 エーテル溶媒としては、アニソール、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサンが挙げられる。 Ether solvents include anisole, cyclopentyl methyl ether, tert-butyl methyl ether, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and 1,4-dioxane.
 ケトン溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。 Ketone solvents include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 フェノール類溶媒としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾールが挙げられる。 Phenolic solvents include, for example, phenol, o-cresol, m-cresol, and p-cresol.
 カルボン酸エステル溶媒としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、γ―ブチルラクトンが挙げられる。 Examples of carboxylic acid ester solvents include ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, γ-Butyl lactone can be mentioned.
 第2の溶媒は、1種単独でも、2種以上の組み合わせであってもよい。 The second solvent may be used alone or in combination of two or more.
 第2の溶媒は、好ましくはアルコール溶媒、エーテル溶媒、及びケトン溶媒からなる群から選択される1種以上である。 The second solvent is preferably one or more selected from the group consisting of alcohol solvents, ether solvents, and ketone solvents.
 第2の溶媒は、水と混和しない溶媒であってもよい。ある溶媒が「水と混和しない」とは、当該溶媒に対して5質量%以上の水を当該溶媒に添加して得られた液、及び、水に対して5質量%以上の当該溶媒を水に添加して得られた液が、透明な1相の溶液を形成しないことをいう。 The second solvent may be a water-immiscible solvent. A solvent "immiscible with water" means a liquid obtained by adding 5% by mass or more of water to the solvent, and a liquid obtained by adding 5% by mass or more of the solvent to water. It means that the liquid obtained by adding to does not form a transparent one-phase solution.
 第2の溶媒として用いられうる、水と混和しない溶媒としては、例えば、2-フェニルエタノール、3-メチル-1-ブタノール、1-ペンタノール、1-ヘキサノール、2-エチル-1-ヘキサノール、1-オクタノール、ベンジルアルコール、2-オクタノール、シクロヘキサノール、1-メチルシクロヘキサノール、1-エチルシクロヘキサノール、1-メチルシクロペンタノール、2-フェニル-2-プロパノール、2-メチル-1-フェニル-2-プロパノール、2-メチル-2-ペンタノール、3-エチル-3-ペンタノール、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル、メチルイソブチルケトン、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチルが挙げられる。 Examples of water-immiscible solvents that can be used as the second solvent include 2-phenylethanol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, 2-ethyl-1-hexanol, 1 - octanol, benzyl alcohol, 2-octanol, cyclohexanol, 1-methylcyclohexanol, 1-ethylcyclohexanol, 1-methylcyclopentanol, 2-phenyl-2-propanol, 2-methyl-1-phenyl-2- Propanol, 2-methyl-2-pentanol, 3-ethyl-3-pentanol, cyclopentyl methyl ether, tert-butyl methyl ether, diisopropyl ether, methyl isobutyl ketone, propyl acetate, butyl acetate, methyl propionate, ethyl propionate , propyl propionate, butyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and butyl benzoate.
 ある溶媒が「水と混和する」とは、当該溶媒に対して5質量%以上の水を当該溶媒に添加して得られた液、及び、水に対して5質量%以上の当該溶媒を水に添加して得られた液が、両方にて透明な1相の溶液を形成することをいう。 A solvent "miscible with water" means a liquid obtained by adding 5% by mass or more of water to the solvent, and a liquid obtained by adding 5% by mass or more of the solvent to water. to form a clear one-phase solution in both.
 第2の溶媒は、水と混和する溶媒であってもよい。第2の溶媒として用いられうる、水と混和する溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、n-ブチルアルコール、イソプロピルアルコール、sec-ブチルアルコール、3-ペンタノール、tert-ブチルアルコール、tert-アミルアルコール、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、アセトン、メチルエチルケトン、シクロヘキサノン、フェノール、酢酸エチル、γ―ブチルラクトンが挙げられ、エチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、メチルエチルケトン、シクロヘキサノンからなる群から選択される1種以上が好ましく、エチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランからなる群から選択される1種以上がより好ましい。 The second solvent may be a solvent miscible with water. Water-miscible solvents that can be used as the second solvent include, for example, methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isopropyl alcohol, sec-butyl alcohol, 3-pentanol, tert-butyl alcohol. , tert-amyl alcohol, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, cyclohexanone, phenol, ethyl acetate, γ-butyl lactone, and ethylene glycol. One or more selected from the group consisting of dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, and cyclohexanone are preferred, and one selected from the group consisting of ethylene glycol dimethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran. The above is more preferable.
 第1の溶媒と第2の溶媒との組み合わせとしては、例えば、第1の溶媒として挙げられた上記例と、第2の溶媒として挙げられた上記例とのすべての組み合わせが挙げられる。第1の溶媒と第2の溶媒との組み合わせは、特に限定されない。 Combinations of the first solvent and the second solvent include, for example, all combinations of the above examples of the first solvent and the above examples of the second solvent. The combination of the first solvent and the second solvent is not particularly limited.
 第1の溶媒、第2の溶媒、及び水は、体積比a:b:cで混合される。ここで、a+b+c=100であり、cは10を超え100未満である。すなわち、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え100体積%未満である。 The first solvent, the second solvent, and water are mixed at a volume ratio of a:b:c. where a+b+c=100 and c is greater than 10 and less than 100. That is, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is more than 10% by volume and less than 100% by volume.
 水の体積比率は、反応溶媒を調製するために用いられた第1の溶媒の体積、第2の溶媒の体積、及び水の体積に基づいて決定される。 The volume ratio of water is determined based on the volume of the first solvent, the volume of the second solvent, and the volume of water used to prepare the reaction solvent.
 第2の溶媒が水と混和する場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え、好ましくは25体積%以上であり、より好ましくは25体積%を超え、さらに好ましくは35体積%以上であり、さらに好ましくは35体積%を超え、さらに好ましくは45体積%以上であり、さらに好ましくは45体積%を超え、さらに好ましくは50体積%以上であり、特に好ましくは50体積%を超える。 When the second solvent is miscible with water, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is greater than 10% by volume, preferably 25 vol% or more, more preferably 25 vol% or more, still more preferably 35 vol% or more, still more preferably 35 vol% or more, still more preferably 45 vol% or more, still more preferably 45 vol% %, more preferably 50% by volume or more, and particularly preferably more than 50% by volume.
 第2の溶媒は水と混和する場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、100体積%未満であり、好ましくは90体積%以下であり、より好ましくは90体積%未満であり、さらに好ましくは80体積%以下であり、さらに好ましくは80体積%未満であり、さらに好ましくは70体積%以下であり、さらに好ましくは70体積%未満であり、さらに好ましくは65体積%以下であり、特に好ましくは65体積%未満である。 When the second solvent is miscible with water, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is less than 100% by volume, preferably is 90% by volume or less, more preferably less than 90% by volume, more preferably 80% by volume or less, still more preferably less than 80% by volume, still more preferably 70% by volume or less, and more preferably is less than 70% by volume, more preferably less than 65% by volume, and particularly preferably less than 65% by volume.
 第2の溶媒が水と混和する場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え100体積%未満であり、好ましくは25体積%以上90体積%以下であり、より好ましくは25体積%を超え90体積%未満であり、さらに好ましくは35体積%以上80体積%以下であり、さらに好ましくは35体積%を超え80体積%未満であり、さらに好ましくは45体積%以上70体積%以下であり、さらに好ましくは45体積%を超え70体積%未満であり、さらに好ましくは50体積%以上65体積%以下であり、特に好ましくは50体積%を超え65体積%未満である。 When the second solvent is miscible with water, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is more than 10% by volume and 100% by volume. less than, preferably 25% by volume or more and 90% by volume or less, more preferably more than 25% by volume and less than 90% by volume, still more preferably 35% by volume or more and 80% by volume or less, still more preferably 35 It is more than 80% by volume, more preferably 45% by volume or more and less than 70% by volume, more preferably more than 45% by volume and less than 70% by volume, still more preferably 50% by volume or more and 65% by volume. or less, and particularly preferably more than 50% by volume and less than 65% by volume.
 第2の溶媒が水と混和しない場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え、好ましくは20体積%以上であり、より好ましくは20体積%を超え、さらに好ましくは25体積%以上であり、さらに好ましくは25体積%を超え、さらに好ましくは35体積%以上であり、さらに好ましくは35体積%を超え、さらに好ましくは45体積%以上であり、さらに好ましくは45体積%を超え、さらに好ましくは50体積%以上であり、特に好ましくは50体積%を超える。 When the second solvent is immiscible with water, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is greater than 10% by volume, preferably 20 vol% or more, more preferably 20 vol% or more, still more preferably 25 vol% or more, still more preferably 25 vol% or more, still more preferably 35 vol% or more, still more preferably 35 vol% %, more preferably 45% by volume or more, more preferably 45% by volume or more, still more preferably 50% by volume or more, particularly preferably 50% by volume or more.
 第2の溶媒が水と混和しない場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、100体積%未満であり、好ましくは90体積%以下であり、より好ましくは90体積%未満であり、さらに好ましくは80体積%以下であり、さらに好ましくは80体積%未満であり、さらに好ましくは70体積%以下であり、さらに好ましくは70体積%未満であり、さらに好ましくは65体積%以下であり、特に好ましくは65体積%未満である。 When the second solvent is immiscible with water, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is less than 100% by volume, preferably is 90% by volume or less, more preferably less than 90% by volume, more preferably 80% by volume or less, still more preferably less than 80% by volume, still more preferably 70% by volume or less, and more preferably is less than 70% by volume, more preferably less than 65% by volume, and particularly preferably less than 65% by volume.
 第2の溶媒が水と混和しない場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え100体積%未満であり、好ましくは20体積%以上90体積%以下であり、より好ましくは20体積%を超え90体積%未満であり、さらに好ましくは25体積%以上90体積%以下であり、さらに好ましくは25体積%を超え90体積%未満であり、さらに好ましくは35体積%以上80体積%以下であり、さらに好ましくは35体積%を超え80体積%未満であり、さらに好ましくは45体積%以上70体積%以下であり、さらに好ましくは45体積%を超え70体積%未満であり、さらに好ましくは50体積%以上65体積%以下であり、特に好ましくは50体積%を超え65体積%未満である。 When the second solvent is immiscible with water, the volume ratio c (%) of water to the sum of the volume of the first solvent, the volume of the second solvent, and the volume of water is more than 10% by volume and 100% by volume. less than, preferably 20% by volume or more and 90% by volume or less, more preferably more than 20% by volume and less than 90% by volume, still more preferably 25% by volume or more and 90% by volume or less, still more preferably 25 More than 90% by volume, more preferably 35% by volume or more and less than 80% by volume, more preferably more than 35% by volume and less than 80% by volume, still more preferably 45% by volume or more and less than 70% by volume or less, more preferably more than 45% by volume and less than 70% by volume, more preferably more than 50% by volume and less than 65% by volume, and particularly preferably more than 50% by volume and less than 65% by volume.
 第1の溶媒と第2の溶媒の混合体積比a:bは1:9~9:1の範囲が好ましく、3:7~7:3の範囲がより好ましい。 The mixing volume ratio a:b of the first solvent and the second solvent is preferably in the range of 1:9 to 9:1, more preferably in the range of 3:7 to 7:3.
 (2)添加剤
 本実施形態の組成物は、既に説明した式(II)で表されるアミド構造を含む末端構造(末端基)と相補的な水素結合を2組以上形成することができる添加剤(化合物)を含む。
(2) Additives The composition of the present embodiment is an additive capable of forming two or more pairs of complementary hydrogen bonds with a terminal structure (terminal group) containing an amide structure represented by formula (II) already described. Contains agents (compounds).
 本実施形態において好適に用いることができる添加剤としては、例えば、下記式で表される化合物が挙げられる。本実施形態においては、添加剤として、1種又は2種以上の後述する化合物を組み合わせて用いることができる。 Additives that can be suitably used in the present embodiment include, for example, compounds represented by the following formulas. In this embodiment, as an additive, one type or two or more types of compounds described below can be used in combination.
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-C000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050
 前記式中、Aは、酸素原子、硫黄原子またはNH基を表し、好ましくは酸素原子またはNH基である。複数あるAは同一であっても異なっていてもよい。前記式中、複数あるRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいアリールアルキルオキシ基、置換基を有していてもよいアリールアルキルチオ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアミド基、置換基を有していてもよいアリールアルケニル基、置換基を有していてもよいアリールアルキニル基、臭素原子、フッ素原子、ヨウ素原子、ヒドロキシ基、カルボキシ基、ニトロ基、シアノ基を表す。 In the above formula, A represents an oxygen atom, a sulfur atom or an NH group, preferably an oxygen atom or an NH group. Multiple A's may be the same or different. In the above formula, each of a plurality of R is independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted alkyloxy group, optionally substituted alkylthio group, optionally substituted aryl group, optionally substituted aryloxy group, optionally substituted arylthio group, optionally substituted arylalkyl group, optionally substituted arylalkyloxy group, optionally substituted arylalkylthio group, optionally substituted optionally substituted amino group, optionally substituted acyloxy group, optionally substituted amide group, optionally substituted arylalkenyl group, optionally substituted It represents a good arylalkynyl group, bromine atom, fluorine atom, iodine atom, hydroxy group, carboxy group, nitro group and cyano group.
 前記式で表される添加物である化合物の具体例としては、下記式(a)~(i)で表される化合物が挙げられる。 Specific examples of compounds that are additives represented by the above formula include compounds represented by the following formulas (a) to (i).
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 本実施形態において、添加剤の好適な具体例としては、上記例示の鎖状アミド構造を有する添加剤及び芳香族性を示す環状アミド構造を有する添加剤が挙げられる。 In the present embodiment, preferred specific examples of the additive include the additive having a chain amide structure and the additive having a cyclic amide structure exhibiting aromaticity as exemplified above.
 また、具体的な添加剤の例としては、前記式(a)で表される4-メチルカルボスチリル(4MCS)、前記式(d)で表されるプロピオンアミド、前記式(b)で表される2-ピリジノールが挙げられる。 Examples of specific additives include 4-methylcarbostyril (4MCS) represented by the formula (a), propionamide represented by the formula (d), and and 2-pyridinol.
 本実施形態において、不純物高分子化合物のアミド構造と相互作用させ、組成物(インク組成物)の経時的な増粘率を抑制する観点から、芳香族性を示す環状アミド構造を有する添加剤を使用することが好ましい。すなわち、本実施形態においては、上記例示の具体的な添加剤のうち、前記式(a)で表される4-メチルカルボスチリル(4MCS)及び前記式(b)で表される2-ピリジノールを採用することが好ましい。 In the present embodiment, an additive having a cyclic amide structure exhibiting aromaticity is added from the viewpoint of interacting with the amide structure of the impurity polymer compound and suppressing the viscosity increase rate of the composition (ink composition) over time. It is preferred to use That is, in the present embodiment, among the specific additives exemplified above, 4-methylcarbostyril (4MCS) represented by the formula (a) and 2-pyridinol represented by the formula (b) It is preferable to adopt
 本実施形態において、添加剤の含有量(添加量)は、組成物(インク組成物)の特性及び作用効果を損なわないことを条件として特に限定されない。添加剤の添加量は、組成物中に含まれるp型半導体材料である高分子化合物に含まれる不純物高分子化合物のアミド構造を含む末端構造に結合して、不純物高分子化合物同士の結合を抑制して、組成物(インク組成物)の経時的な増粘率を抑制する観点から、前記式(II)で表される末端構造を有する不純物高分子化合物の物質量と等量とすればよく、前記式(II)で表される末端構造を有する不純物高分子化合物の物質量に対して(若干の)過剰量とすることが好ましい。 In the present embodiment, the content (addition amount) of the additive is not particularly limited as long as it does not impair the properties and effects of the composition (ink composition). The amount of the additive added is such that it binds to the terminal structure including the amide structure of the impurity polymer compound contained in the polymer compound that is the p-type semiconductor material contained in the composition, thereby suppressing the binding between the impurity polymer compounds. Then, from the viewpoint of suppressing the viscosity increase rate of the composition (ink composition) over time, the amount may be equal to the substance amount of the impurity polymer compound having the terminal structure represented by the formula (II). , the amount is preferably (slightly) excessive with respect to the amount of the impurity polymer compound having the terminal structure represented by the formula (II).
 より具体的には、本実施形態の組成物において、添加剤の添加量は、溶媒に対する添加剤の溶解度を超えない濃度となる量とすることができる。 More specifically, in the composition of the present embodiment, the additive amount can be an amount that does not exceed the solubility of the additive in the solvent.
 本実施形態の組成物において、添加剤の添加量は、前記式(II)で表される末端構造を有する不純物高分子化合物の物質量と添加剤の物質量が等量以上となる量とすることが好ましく、添加剤の添加量が、前記式(II)で表される末端構造を有する不純物高分子化合物の物質量と前記式(I)で表される構成単位を含む高分子化合物の物質量との総量と等量以上となる量であることがより好ましい。 In the composition of the present embodiment, the additive is added in an amount such that the substance amount of the impurity polymer compound having a terminal structure represented by the formula (II) and the substance amount of the additive are equal to or greater than each other. Preferably, the amount of the additive to be added is the substance amount of the impurity polymer compound having the terminal structure represented by the formula (II) and the substance of the polymer compound containing the structural unit represented by the formula (I). It is more preferable that the amount is equal to or more than the total amount.
 添加剤同士の会合を抑制し、かつ前記式(II)で表される末端構造を有する不純物高分子化合物の当該末端構造と添加剤との間に水素結合を生成させることにより効果的に結合させる観点から、前記式(II)で表される末端構造を有する不純物高分子化合物の物質量と前記式(I)で表される構成単位を含む高分子化合物の物質量との総量に対する添加剤の物質量が10000倍以下となる量とすることがより好ましい。 The additive is effectively bonded by suppressing association between the additives and generating a hydrogen bond between the terminal structure of the impurity polymer compound having the terminal structure represented by the formula (II) and the additive. From the point of view, the amount of additive with respect to the total amount of the substance amount of the impurity polymer compound having a terminal structure represented by the formula (II) and the substance amount of the polymer compound containing the structural unit represented by the formula (I) More preferably, the amount of the substance is 10,000 times or less.
 本実施形態の組成物において、例えば、不純物高分子化合物の分子量が添加剤の分子量の1000倍である場合、前記式(II)で表される末端構造を有する不純物高分子化合物と前記式(I)で表される構成単位を含む高分子化合物との合計の濃度が6mg/mLである場合には、添加剤は0.006mg/mL以上60mg/mL以下の濃度となるように添加することが好ましい。 In the composition of the present embodiment, for example, when the molecular weight of the impurity polymer compound is 1000 times the molecular weight of the additive, the impurity polymer compound having a terminal structure represented by the above formula (II) and the above formula (I) ) is 6 mg/mL, the additive can be added at a concentration of 0.006 mg/mL or more and 60 mg/mL or less. preferable.
 組成物(インク組成物)の調製にあたり、添加剤の添加のタイミングは、高分子化合物と溶媒との溶液の加熱した後、降温させ、溶液が常温にまで戻ったタイミングで添加することが好ましい。 In preparing the composition (ink composition), it is preferable to add the additive when the solution of the polymer compound and the solvent is heated, the temperature is lowered, and the solution returns to room temperature.
 添加剤を添加する方法は、特に限定されない。添加剤は、組成物(インク組成物)の調製にあたり、従来公知の任意好適な手順に従って添加することができる。 The method of adding the additive is not particularly limited. The additive can be added according to any conventionally known suitable procedure in preparing the composition (ink composition).
 具体的には、添加剤は、組成物(インク組成物)の調製にあたり、他の成分(p型半導体である高分子化合物、n型半導体材料及び溶媒)と混合する態様としてもよく、例えば、予め、p型半導体材料のみ、又はp型半導体材料及び溶媒と混合しておき、さらにn型半導体材料、又はn型半導体材料及び溶媒と混合する態様としてもよい。 Specifically, the additive may be mixed with other components (a polymer compound that is a p-type semiconductor, an n-type semiconductor material, and a solvent) when preparing a composition (ink composition). Alternatively, the p-type semiconductor material alone or the p-type semiconductor material and the solvent may be mixed in advance, and then the n-type semiconductor material or the n-type semiconductor material and the solvent may be mixed.
 本実施形態によれば、上記化合物を添加剤として用いることにより、赤外分光法により測定したときの前記式(I)で表される構成単位を含む主鎖由来のピーク強度に対する前記(II)で表される末端構造に由来するピーク強度の割合が、例えば、6%以上、さらには8%以上であったとしても、通常、2%、さらには3%を超えると粘度が経時的に増大してしまう傾向があるところ、当該末端構造に添加剤である上記化合物が水素結合を形成してキャッピングすることにより、p型半導体材料である高分子化合物同士の結合を効果的に抑制することができる。そのため、組成物、さらには特に光電変換素子の機能層を形成するためのインク組成物における経時的な粘度の増大を抑制することができる。組成物において経時的な粘度が増加すると、形成される膜(固化膜)の厚さが不均一となり、その結果インク組成物から形成される固化膜を含む光電変換素子では、その特性にばらつきが生じたり、所望の特性が得られなくなるおそれがある。したがって、本実施形態によれば、製造される光電変換素子の特性におけるばらつきの発生を抑制することができる。 According to the present embodiment, by using the above compound as an additive, the above (II) with respect to the peak intensity derived from the main chain containing the structural unit represented by the above formula (I) when measured by infrared spectroscopy The ratio of the peak intensity derived from the terminal structure represented by is, for example, 6% or more, even if it is 8% or more, usually 2%, even if it exceeds 3%, the viscosity increases over time. However, the above-mentioned compound, which is an additive, forms a hydrogen bond in the terminal structure and caps it, thereby effectively suppressing the bonding between polymer compounds, which are p-type semiconductor materials. can. Therefore, it is possible to suppress an increase in the viscosity over time of the composition, particularly the ink composition for forming the functional layer of the photoelectric conversion element. When the viscosity of the composition increases over time, the thickness of the formed film (solidified film) becomes non-uniform. Otherwise, the desired characteristics may not be obtained. Therefore, according to this embodiment, it is possible to suppress the occurrence of variations in the characteristics of the manufactured photoelectric conversion elements.
 すなわち、既に説明した添加剤を用いる本実施形態の態様は、赤外分光法により測定したときの前記式(I)で表される構成単位を含む主鎖由来のピーク強度に対する前記式(II)で表される末端構造に由来するピーク強度の割合が好ましくは8%以上、より好ましくは6.4%以上、さらには6%以上である場合において特に好ましく適用することができる。 That is, the aspect of the present embodiment using the already described additive is the peak intensity derived from the main chain containing the structural unit represented by the formula (I) when measured by infrared spectroscopy. is preferably 8% or more, more preferably 6.4% or more, and particularly preferably 6% or more.
 (3)n型半導体材料
 本実施形態のインク組成物が含みうるn型半導体材料は、低分子化合物であっても高分子化合物であってもよい。
(3) n-type semiconductor material The n-type semiconductor material that can be included in the ink composition of the present embodiment may be a low-molecular compound or a high-molecular compound.
 低分子化合物であるn型半導体材料(電子受容性化合物)の例としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、C60フラーレン等のフラーレン及びその誘導体であるフラーレン誘導体(以下、フラーレン化合物という場合がある。)、並びに、バソクプロイン等のフェナントレン誘導体が挙げられる。 Examples of n-type semiconductor materials (electron-accepting compounds) that are low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyano Anthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, fullerenes such as C60 fullerene and fullerene derivatives thereof (hereinafter referred to as fullerene compounds ), and phenanthrene derivatives such as bathocuproin.
 高分子化合物であるn型半導体材料の例としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が挙げられる。 Examples of n-type semiconductor materials that are polymer compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorene and its derivatives.
 n型半導体材料としては、フラーレン及びフラーレン誘導体から選ばれる1種以上が好ましく、フラーレン誘導体がより好ましい。 The n-type semiconductor material is preferably one or more selected from fullerenes and fullerene derivatives, more preferably fullerene derivatives.
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、及びC84フラーレンが挙げられる。フラーレン誘導体の例としては、これらのフラーレンの誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を意味する。 Examples of fullerenes include C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene, and C84 fullerene. Examples of fullerene derivatives include derivatives of these fullerenes. A fullerene derivative means a compound in which at least a part of fullerene is modified.
 フラーレン誘導体の例としては、下記式で表される化合物が挙げられる。 Examples of fullerene derivatives include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 式中、
 Rは、アルキル基、アリール基、1価の複素環基、又はエステル構造を有する基を表す。複数あるRは、互いに同一であっても異なっていてもよい。
 Rは、アルキル基、又はアリール基を表す。複数あるRは、互いに同一であっても異なっていてもよい。
During the ceremony,
Ra represents an alkyl group, an aryl group, a monovalent heterocyclic group, or a group having an ester structure. A plurality of R a may be the same or different.
Rb represents an alkyl group or an aryl group. A plurality of R b may be the same or different.
 Rで表されるエステル構造を有する基の例としては、下記式で表される基が挙げられる。 Examples of groups having an ester structure represented by Ra include groups represented by the following formulae.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 式(19)中、u1は、1~6の整数を表す。u2は、0~6の整数を表す。Rは、アルキル基、アリール基、又は1価の複素環基を表す。 In formula (19), u1 represents an integer of 1-6. u2 represents an integer from 0 to 6; R e represents an alkyl group, an aryl group, or a monovalent heterocyclic group.
 C60フラーレン誘導体の例としては、下記の化合物が挙げられる。 Examples of C60 fullerene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 C70フラーレン誘導体の例としては、下記の化合物が挙げられる。 Examples of C70 fullerene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 フラーレン誘導体の具体例としては、[6,6]-フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]-フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6」-フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、及び[6,6]-チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。 Specific examples of fullerene derivatives include [6,6]-phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6]-phenyl C61 butyric acid methyl ester), [6,6]-phenyl-C71 butyric acid methyl ester ( C70PCBM, [6,6]-Phenyl C71 butyric acid methyl ester), [6,6]-phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6]-Phenyl C85 butyric acid methyl ester), and [6,6 ]-Thienyl-C61 butyric acid methyl ester ([6,6]-Thienyl C61 butyric acid methyl ester).
 本実施形態のインク組成物に含まれうるn型半導体材料には、フラーレン化合物ではない化合物が含まれる。本明細書において、フラーレン化合物ではないn型半導体材料を、「非フラーレン化合物」という。非フラーレン化合物としては、多種の化合物が公知であり、従来公知の任意好適な非フラーレン化合物を本実施形態においてn型半導体材料として用いることができる。 The n-type semiconductor material that can be contained in the ink composition of the present embodiment includes compounds other than fullerene compounds. In this specification, n-type semiconductor materials that are not fullerene compounds are referred to as "non-fullerene compounds." Various compounds are known as non-fullerene compounds, and any suitable conventionally known non-fullerene compound can be used as the n-type semiconductor material in this embodiment.
 本実施形態にかかるインク組成物は、n型半導体材料である化合物を、1種のみ含んでいてもよく、複数種類含んでいてもよい。 The ink composition according to the present embodiment may contain only one type of compound that is an n-type semiconductor material, or may contain a plurality of types.
 本実施形態において、n型半導体材料である非フラーレン化合物は、ペリレンテトラカルボン酸ジイミド構造を含む化合物であることが好ましい。非フラーレン化合物であるペリレンテトラカルボン酸ジイミド構造を含む化合物の例としては、下記式で表される化合物が挙げられる。 In the present embodiment, the non-fullerene compound, which is the n-type semiconductor material, is preferably a compound containing a perylenetetracarboxylic acid diimide structure. Examples of compounds containing a perylenetetracarboxylic acid diimide structure, which are non-fullerene compounds, include compounds represented by the following formulae.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 式中、Rは、前記定義のとおりである。複数あるRは、互いに同一であっても異なっていてもよい。 In the formula, R is as defined above. Multiple R's may be the same or different.
 本実施形態において、n型半導体材料は、好ましくは、下記式(VI)で表される化合物を含む。下記式(VI)で表される化合物は、ペリレンテトラカルボン酸ジイミド構造を含む非フラーレン化合物である。 In this embodiment, the n-type semiconductor material preferably contains a compound represented by the following formula (VI). The compound represented by the following formula (VI) is a non-fullerene compound containing a perylenetetracarboxylic acid diimide structure.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 前記式(VI)中、Rは、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリール基、又は置換基を有していてもよい1価の芳香族複素環基を表す。複数あるRは互いに同一であっても異なっていてもよい。 In the formula (VI), R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted an alkyloxy group, an optionally substituted cycloalkyloxy group, an optionally substituted aryl group, or an optionally substituted monovalent aromatic heterocyclic group show. Multiple R 1 's may be the same or different.
 好ましくは、複数あるRは、それぞれ独立して、置換基を有していてもよいアルキル基である。 Preferably, each of a plurality of R 1 is independently an optionally substituted alkyl group.
 Rは、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよいアリール基、又は置換基を有していてもよい1価の芳香族複素環基を表す。複数あるRは同一であっても異なっていてもよい。 R 2 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted alkyloxy group, a substituent represents an optionally substituted cycloalkyloxy group, an optionally substituted aryl group, or an optionally substituted monovalent aromatic heterocyclic group. Multiple R 2 may be the same or different.
 式(VI)で表される化合物の好ましい例としては、下記式で表される化合物が挙げられる。 Preferred examples of the compound represented by formula (VI) include the compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 本実施形態において、n型半導体材料は、下記式(VII)で表される化合物を含むことが好ましい。

 A-B10-A (VII)
In this embodiment, the n-type semiconductor material preferably contains a compound represented by the following formula (VII).

A 1 -B 10 -A 2 (VII)
 式(VII)中、
 A及びAは、それぞれ独立に、電子求引性の基を表し、B10は、π共役系を含む基を表す。
In formula (VII),
A 1 and A 2 each independently represent an electron-withdrawing group, and B 10 represents a group containing a π-conjugated system.
 A及びAである電子求引性の基の例としては、-CH=C(-CN)で表される基、及び下記式(a-1)~式(a-9)で表される基が挙げられる。 Examples of electron-withdrawing groups A 1 and A 2 include groups represented by —CH═C(—CN) 2 and groups represented by the following formulas (a-1) to (a-9). and the group to be carried out.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 式(a-1)~式(a-7)中、
 Tは、置換基を有していてもよい炭素環、又は置換基を有していてもよい複素環を表す。炭素環及び複素環は、単環であってもよく、縮合環であってもよい。これらの環が置換基を複数有する場合、複数ある置換基は、同一であっても異なっていてもよい。
In formulas (a-1) to (a-7),
T represents an optionally substituted carbocyclic ring or an optionally substituted heterocyclic ring. Carbocyclic and heterocyclic rings may be monocyclic or condensed. When these rings have multiple substituents, the multiple substituents may be the same or different.
 Tである置換基を有していてもよい炭素環の例としては、芳香族炭素環が挙げられる。Tである置換基を有していてもよい炭素環は、好ましくは芳香族炭素環である。Tである置換基を有していてもよい炭素環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、及びフェナントレン環が挙げられ、好ましくはベンゼン環、ナフタレン環、及びフェナントレン環であり、より好ましくはベンゼン環及びナフタレン環であり、さらに好ましくはベンゼン環である。これらの環は、置換基を有していてもよい。 Examples of the optionally substituted carbocyclic ring for T include an aromatic carbocyclic ring. The optionally substituted carbocyclic ring for T is preferably an aromatic carbocyclic ring. Specific examples of the optionally substituted carbocyclic ring for T include benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring and phenanthrene ring, preferably benzene ring, They are a naphthalene ring and a phenanthrene ring, more preferably a benzene ring and a naphthalene ring, and still more preferably a benzene ring. These rings may have a substituent.
 Tである置換基を有していてもよい複素環の例としては、芳香族複素環が挙げられ、好ましくは芳香族複素環である。Tである置換基を有していてもよい複素環の具体例としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、及びチエノチオフェン環が挙げられ、好ましくはチオフェン環、ピリジン環、ピラジン環、チアゾール環、及びチエノチオフェン環であり、より好ましくはチオフェン環である。これらの環は、置換基を有していてもよい。 Examples of the optionally substituted heterocyclic ring for T include aromatic heterocyclic rings, preferably aromatic heterocyclic rings. Specific examples of the optionally substituted heterocyclic ring for T include pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, and a thienothiophene ring, preferably a thiophene ring, a pyridine ring, a pyrazine ring, a thiazole ring, and a thienothiophene ring, more preferably a thiophene ring. These rings may have a substituent.
 Tである炭素環又は複素環が有し得る置換基の例としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリール基、及び1価の複素環基が挙げられ、好ましくはフッ素原子、及び/又は炭素原子数1~6のアルキル基である。 Examples of substituents that the carbocyclic or heterocyclic ring for T may have include halogen atoms, alkyl groups, alkyloxy groups, aryl groups, and monovalent heterocyclic groups, preferably fluorine atoms and/or or an alkyl group having 1 to 6 carbon atoms.
 X、X、及びXは、それぞれ独立して、酸素原子、硫黄原子、アルキリデン基、又は=C(-CN)で表される基を表し、好ましくは、酸素原子、硫黄原子、又は=C(-CN)で表される基である。 X 4 , X 5 and X 6 each independently represents an oxygen atom, a sulfur atom, an alkylidene group or a group represented by =C(-CN) 2 , preferably an oxygen atom, a sulfur atom, or =C(-CN) 2 .
 Xは、水素原子、ハロゲン原子、シアノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいアリール基又は1価の複素環基を表す。 X 7 is a hydrogen atom, a halogen atom, a cyano group, an optionally substituted alkyl group, an optionally substituted alkyloxy group, an optionally substituted aryl group, or represents a monovalent heterocyclic group.
 Ra1、Ra2、Ra3、Ra4、及びRa5は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、ハロゲン原子、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいアリール基又は1価の複素環基を表し、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基である。 R a1 , R a2 , R a3 , R a4 , and R a5 each independently represent a hydrogen atom, an optionally substituted alkyl group, a halogen atom, an optionally substituted alkyl represents an oxy group, an optionally substituted aryl group or a monovalent heterocyclic group, preferably an optionally substituted alkyl group or an optionally substituted aryl group is.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 式(a-8)及び式(a-9)中、Ra6及びRa7は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよい1価の芳香族炭素環基、又は置換基を有していてもよい1価の芳香族複素環基を表し、複数あるRa6及びRa7は、同一であっても異なっていてもよい。 In formulas (a-8) and (a-9), R a6 and R a7 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, or a substituent optionally substituted cycloalkyl group, optionally substituted alkyloxy group, optionally substituted cycloalkyloxy group, optionally substituted monovalent aromatic carbon It represents a cyclic group or an optionally substituted monovalent aromatic heterocyclic group, and a plurality of R a6 and R a7 may be the same or different.
 A及びAである電子求引性の基としては、下記の式(a-1-1)~式(a-1-4)並びに式(a-6-1)及び式(a-7-1)のいずれかで表される基が好ましく、式(a-1-1)で表される基がより好ましい。ここで、複数あるRa10は、それぞれ独立して、水素原子又は置換基を表し、好ましくは水素原子、ハロゲン原子、シアノ基、又は置換基を有していてもよいアルキル基を表す。Ra3、Ra4、及びRa5は、それぞれ独立して、前記と同義であり、好ましくはそれぞれ独立して置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表す。 The electron-withdrawing groups A 1 and A 2 include the following formulas (a-1-1) to (a-1-4), formulas (a-6-1) and formulas (a-7 -1) is preferable, and a group represented by formula (a-1-1) is more preferable. Here, multiple R a10 each independently represent a hydrogen atom or a substituent, preferably a hydrogen atom, a halogen atom, a cyano group, or an optionally substituted alkyl group. R a3 , R a4 and R a5 are each independently the same as defined above, preferably each independently an optionally substituted alkyl group or an optionally substituted aryl represents a group.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 B10であるπ共役系を含む基の例としては、後述する式(VIII)で表される化合物における、-(Sn1-B11-(Sn2-で表される基が挙げられる。 An example of the group containing a π-conjugated system as B 10 is a group represented by -(S 1 ) n1 -B 11 -(S 2 ) n2 - in the compound represented by formula (VIII) described later. mentioned.
 本実施形態において、n型半導体材料は、下記式(VIII)で表される化合物であることが好ましい。

-(Sn1-B11-(Sn2-A (VIII)
In this embodiment, the n-type semiconductor material is preferably a compound represented by the following formula (VIII).

A 1 -(S 1 ) n1 -B 11 -(S 2 ) n2 -A 2 (VIII)
 式(VIII)中、A及びAは、それぞれ独立に、電子求引性の基を表す。A及びAの例及び好ましい例は、前記式(VII)におけるA及びAについて説明した例及び好ましい例と同様である。 In formula (VIII), A 1 and A 2 each independently represent an electron-withdrawing group. Examples and preferred examples of A 1 and A 2 are the same as the examples and preferred examples described for A 1 and A 2 in formula (VII).
 S及びSは、それぞれ独立に、置換基を有していてもよい2価の炭素環基、置換基を有していてもよい2価の複素環基、-C(Rs1)=C(Rs2)-で表される基(ここで、Rs1及びRs2は、それぞれ独立に、水素原子、又は置換基(好ましくは、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよい1価の複素環基を表す。)、又は-C≡C-で表される基を表す。 S 1 and S 2 each independently represent an optionally substituted divalent carbocyclic group, an optionally substituted divalent heterocyclic group, —C(R s1 )= A group represented by C(R s2 )- (here, R s1 and R s2 are each independently a hydrogen atom or a substituent (preferably a hydrogen atom, a halogen atom, or a substituent a good alkyl group or a monovalent heterocyclic group which may have a substituent), or a group represented by -C≡C-.
 S及びSで表される、置換基を有していてもよい2価の炭素環基及び置換基を有していてもよい2価の複素環基は、縮合環であってもよい。2価の炭素環基又は2価の複素環基が、複数の置換基を有する場合、複数ある置換基は、同一であっても異なっていてもよい。 The divalent carbocyclic group optionally having substituent(s) and the divalent heterocyclic group optionally having substituent(s) represented by S 1 and S 2 may be a condensed ring. . When the divalent carbocyclic group or divalent heterocyclic group has multiple substituents, the multiple substituents may be the same or different.
 式(VIII)中、n1及びn2は、それぞれ独立に、0以上の整数を表し、好ましくはそれぞれ独立に、0又は1を表し、より好ましくは、いずれも0又は1を表す。 In formula (VIII), n1 and n2 each independently represent an integer of 0 or greater, preferably each independently represent 0 or 1, more preferably both represent 0 or 1.
 2価の炭素環基の例としては、2価の芳香族炭素環基が挙げられる。
 2価の複素環基の例としては、2価の芳香族複素環基が挙げられる。
 2価の芳香族炭素環基又は2価の芳香族複素環基が縮合環である場合、縮合環を構成する環の全部が芳香族性を有する縮合環であってもよく、一部のみが芳香族性を有する縮合環であってもよい。
Examples of divalent carbocyclic groups include divalent aromatic carbocyclic groups.
Examples of divalent heterocyclic groups include divalent aromatic heterocyclic groups.
When the divalent aromatic carbocyclic group or divalent aromatic heterocyclic group is a condensed ring, all of the rings constituting the condensed ring may be condensed rings having aromaticity, only a part It may be a condensed ring having aromaticity.
 S及びSの例としては、既に説明したArで表される2価の芳香族複素環基の例として挙げられた式(101)~(190)のいずれかで表される基、及びこれらの基における水素原子が置換基で置換された基が挙げられる。 Examples of S 1 and S 2 are groups represented by any of the formulas (101) to (190) given as examples of the divalent aromatic heterocyclic group represented by Ar 3 already explained, and groups in which hydrogen atoms in these groups are substituted with substituents.
 S及びSは、好ましくは、それぞれ独立に、下記式(s-1)又は(s-2)で表される基を表す。 S 1 and S 2 preferably each independently represent a group represented by formula (s-1) or (s-2) below.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 式(s-1)及び(s-2)中、
 Xは、酸素原子又は硫黄原子を表す。
 Ra10は、前記定義のとおりである。
In formulas (s-1) and (s-2),
X3 represents an oxygen atom or a sulfur atom.
R a10 is as defined above.
 S及びSは、好ましくは、それぞれ独立に、式(142)、式(148)、若しくは式(184)で表される基、又はこれらの基における水素原子が置換基で置換された基であり、より好ましくは、前記式(142)若しくは式(184)で表される基、又は式(184)で表される基における1つの水素原子が、アルキルオキシ基で置換された基である。 S 1 and S 2 are preferably each independently a group represented by formula (142), formula (148), or formula (184), or a group in which a hydrogen atom in these groups is substituted with a substituent and more preferably a group represented by the formula (142) or (184), or a group in which one hydrogen atom in the group represented by the formula (184) is substituted with an alkyloxy group. .
 B11は、炭素環構造及び複素環構造からなる群から選択された2以上の構造の縮合環基であり、かつオルト-ペリ縮合構造を含まない縮合環基であり、かつ置換基を有していてもよい縮合環基を表す。 B 11 is a condensed ring group having two or more structures selected from the group consisting of a carbocyclic structure and a heterocyclic ring structure, a condensed ring group containing no ortho-peri condensed structure, and having a substituent; represents an optional condensed ring group.
 B11で表される縮合環基は、互いに同一である2以上の構造を縮合した構造を含んでいてもよい。 The condensed ring group represented by B11 may contain a structure in which two or more identical structures are condensed.
 B11で表される縮合環基が複数の置換基を有する場合、複数ある置換基は、同一であっても異なっていてもよい。 When the condensed ring group represented by B 11 has multiple substituents, the multiple substituents may be the same or different.
 B11で表される縮合環基を構成し得る炭素環構造の例としては、下記式(Cy1)又は式(Cy2)で表される環構造が挙げられる。 Examples of the carbocyclic structure that can constitute the condensed ring group represented by B 11 include a ring structure represented by the following formula (Cy1) or (Cy2).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 B11で表される縮合環基を構成し得る複素環構造の例としては、下記式(Cy3)~式(Cy10)のいずれかで表される環構造が挙げられる。 Examples of heterocyclic structures that can constitute the condensed ring group represented by B 11 include ring structures represented by any of the following formulas (Cy3) to (Cy10).
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 式(VIII)中、B11は、好ましくは、前記式(Cy1)~式(Cy10)で表される構造からなる群から選択された2以上の構造の縮合環基であって、オルト-ペリ縮合構造を含まない縮合環基であり、かつ置換基を有していてもよい縮合環基である。B11は、式(Cy1)~式(Cy10)で表される構造のうち、2以上の同一の構造が縮合した構造を含んでいてもよい。 In formula (VIII), B 11 is preferably a condensed ring group having two or more structures selected from the group consisting of structures represented by formulas (Cy1) to (Cy10), It is a condensed ring group which does not contain a condensed structure and which may have a substituent. B 11 may include a structure in which two or more identical structures among the structures represented by formulas (Cy1) to (Cy10) are condensed.
 B11は、より好ましくは、式(Cy1)~式(Cy6)及び式(Cy8)で表される構造からなる群から選択された2以上の構造の縮合環基であって、オルト-ペリ縮合構造を含まない縮合環基であり、かつ置換基を有していてもよい縮合環基である。 B 11 is more preferably a condensed ring group having two or more structures selected from the group consisting of structures represented by formulas (Cy1) to (Cy6) and (Cy8), wherein the ortho-pericondensed It is a condensed ring group having no structure and optionally having a substituent.
 B11である縮合環基が有していてもよい置換基は、好ましくは置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、及び置換基を有していてもよい1価の複素環基である。B11で表される縮合環基が有していてもよいアリール基は、例えば、アルキル基により置換されていてもよい。 The substituent that the condensed ring group B 11 may have is preferably an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted and an optionally substituted monovalent heterocyclic group. The aryl group that the condensed ring group represented by B 11 may have may be substituted with, for example, an alkyl group.
 B11である縮合環基の例としては、下記式(b-1)~式(b-14)で表される基、及びこれらの基における水素原子が、置換基(好ましくは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、又は置換基を有していてもよい1価の複素環基)で置換された基が挙げられる。B11である縮合環基としては、下記式(b-2)又は(b-3)で表される基、又はこれらの基における水素原子が、置換基(好ましくは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、又は置換基を有していてもよい1価の複素環基)で置換された基が好ましく、下記式(b-2)又は(b-3)で表される基がより好ましい。 Examples of the condensed ring group for B 11 include groups represented by the following formulas (b-1) to (b-14), and hydrogen atoms in these groups are substituents (preferably, substituents an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkyloxy group, or an optionally substituted monovalent heterocyclic group ) substituted with. The condensed ring group for B 11 is a group represented by the following formula (b-2) or (b-3), or a hydrogen atom in these groups has a substituent (preferably, a substituent optionally substituted alkyl group, optionally substituted aryl group, optionally substituted alkyloxy group, or optionally substituted monovalent heterocyclic group) is preferred, and a group represented by the following formula (b-2) or (b-3) is more preferred.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式(b-1)~式(b-14)中、
 Ra10は、前記定義のとおりである。
 式(b-1)~式(b-14)中、複数あるRa10は、それぞれ独立して、好ましくは置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基である。
In formulas (b-1) to (b-14),
R a10 is as defined above.
In formulas (b-1) to (b-14), a plurality of R a10 are each independently preferably an optionally substituted alkyl group or optionally substituted It is an aryl group.
 式(VII)又は式(VIII)で表される化合物の例としては、下記式で表される化合物が挙げられる。 Examples of compounds represented by formula (VII) or formula (VIII) include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 上記式中、Rは、前記定義のとおりであり、Xは、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。
 上記式中、Rは、好ましくは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよいアルキルオキシ基である。
In the above formula, R is as defined above, and X represents a hydrogen atom, a halogen atom, a cyano group, or an optionally substituted alkyl group.
In the above formula, R is preferably a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted alkyloxy group. .
 式(VII)又は(VIII)で表される化合物としては、下記式で表される化合物が挙げられる。 Examples of compounds represented by formula (VII) or (VIII) include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-I000072
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-I000072
 本実施形態のインク組成物おいて、n型半導体材料は、上記非フラーレン化合物に加えて、さらに既に説明したフラーレン及びフラーレン誘導体(フラーレン化合物)を組み合わせて含んでいてもよい。 In the ink composition of the present embodiment, the n-type semiconductor material may contain, in addition to the non-fullerene compound, a combination of the fullerene and the fullerene derivative (fullerene compound) already described.
 本実施形態におけるn型半導体材料の好適な具体例としては、下記式で表される化合物が挙げられる。 Suitable specific examples of the n-type semiconductor material in the present embodiment include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-I000075

Figure JPOXMLDOC01-appb-I000076
Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-I000075

Figure JPOXMLDOC01-appb-I000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 (3)溶媒
 本実施形態の組成物、及びインク組成物は、溶媒として、芳香族炭化水素を含む溶媒を含みうる。当該芳香族炭化水素は置換基を有していてもよい。芳香族炭化水素としては、特に既に説明したp型半導体材料である高分子化合物を溶解させることができる化合物であることが好ましい。
(3) Solvent The composition and ink composition of the present embodiment may contain a solvent containing an aromatic hydrocarbon. The aromatic hydrocarbon may have a substituent. The aromatic hydrocarbon is preferably a compound capable of dissolving the polymer compound, which is the p-type semiconductor material already described.
 本実施形態において、溶媒に含まれうる芳香族炭化水素としては、例えば、トルエン、キシレン(例、o-キシレン、m-キシレン、p-キシレン)、トリメチルベンゼン(例、メシチレン、1,2,4-トリメチルベンゼン(プソイドクメン))、ブチルベンゼン(例、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン)、メチルナフタレン(例、1-メチルナフタレン)、1,2,3,4-テトラヒドロナフタレン(テトラリン)、インダン、1-クロロナフタレン、クロロベンゼン及びジクロロベンゼン(1,2-ジクロロベンゼン)が挙げられる。 In the present embodiment, examples of aromatic hydrocarbons that may be contained in the solvent include toluene, xylene (eg, o-xylene, m-xylene, p-xylene), trimethylbenzene (eg, mesitylene, 1,2,4 -trimethylbenzene (pseudocumene)), butylbenzene (e.g. n-butylbenzene, sec-butylbenzene, tert-butylbenzene), methylnaphthalene (e.g. 1-methylnaphthalene), 1,2,3,4-tetrahydronaphthalene (tetralin), indane, 1-chloronaphthalene, chlorobenzene and dichlorobenzene (1,2-dichlorobenzene).
 本実施形態において、溶媒は、1種のみの芳香族炭化水素を含んでいても、2種以上の芳香族炭化水素を含んでいてもよい。 In this embodiment, the solvent may contain only one aromatic hydrocarbon, or may contain two or more aromatic hydrocarbons.
 溶媒に含まれうる芳香族炭化水素は、好ましくは、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、1,2,4-トリメチルベンゼン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、メチルナフタレン、テトラリン、1-クロロナフタレン、クロロベンゼン及びジクロロベンゼン(1,2-ジクロロベンゼン)からなる群から選択される1種以上であり、より好ましくはトルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、1,2,4-トリメチルベンゼン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、メチルナフタレン、テトラリン、インダン、1-クロロナフタレン、クロロベンゼン又はジクロロベンゼン(o-ジクロロベンゼン)である。 Aromatic hydrocarbons that can be contained in the solvent are preferably toluene, o-xylene, m-xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert. -butylbenzene, methylnaphthalene, tetralin, 1-chloronaphthalene, chlorobenzene and dichlorobenzene (1,2-dichlorobenzene), more preferably toluene, o-xylene, m- xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin, indane, 1-chloronaphthalene, chlorobenzene or dichlorobenzene (o -dichlorobenzene).
 本実施形態の組成物及びインク組成物においては、上記例示の芳香族炭化水素に加えて、さらなる溶媒を組み合わせて用いてもよい。 In the composition and ink composition of the present embodiment, in addition to the aromatic hydrocarbons exemplified above, a further solvent may be used in combination.
 本実施形態において、さらなる溶媒の例としては、ハロゲン化アルキル、芳香族カルボニル化合物、芳香族エステル化合物及び含窒素複素環式化合物が挙げられる。 In the present embodiment, examples of additional solvents include alkyl halides, aromatic carbonyl compounds, aromatic ester compounds and nitrogen-containing heterocyclic compounds.
 ハロゲン化アルキルとしては、例えば、クロロホルムが挙げられる。
 芳香族カルボニル化合物としては、例えば、置換基を有していてもよいアセトフェノン、置換基を有していてもよいプロピオフェノン、置換基を有していてもよいブチロフェノン、置換基を有していてもよいシクロへキシルフェノン、置換基を有していてもよいベンゾフェノンが挙げられる。
Alkyl halides include, for example, chloroform.
Examples of the aromatic carbonyl compound include acetophenone optionally having substituent(s), propiophenone optionally having substituent(s), butyrophenone optionally having substituent(s), cyclohexylphenone which may be substituted, and benzophenone which may have a substituent.
 芳香族エステル化合物としては、例えば、置換基を有していてもよいメチルベンゾエート(安息香酸メチル)、置換基を有していてもよい安息香酸エチル、置換基を有していてもよい安息香酸プロピル、置換基を有していてもよい安息香酸ブチル、置換基を有していてもよい安息香酸イソプロピル、置換基を有していてもよい安息香酸ベンジル、置換基を有していてもよい安息香酸シクロへキシル、置換基を有していてもよい安息香酸フェニルが挙げられる。 Examples of the aromatic ester compound include optionally substituted methyl benzoate (methyl benzoate), optionally substituted ethyl benzoate, and optionally substituted benzoic acid. propyl, optionally substituted butyl benzoate, optionally substituted isopropyl benzoate, optionally substituted benzyl benzoate, optionally substituted Cyclohexyl benzoate and phenyl benzoate which may have a substituent may be mentioned.
 含窒素複素環式化合物としては、例えば、置換基を有していてもよいピリジン、置換基を有していてもよいキノリン、置換基を有していてもよいキノキサリン、置換基を有していてもよい1,2,3,4-テトラヒドロキノリン、置換基を有していてもよいピリミジン、置換基を有していてもよいピラジン、及び置換基を有していてもよいキナゾリンが挙げられる。 Examples of nitrogen-containing heterocyclic compounds include optionally substituted pyridine, optionally substituted quinoline, optionally substituted quinoxaline, and optionally substituted optionally substituted pyrimidine, optionally substituted pyrazine, and optionally substituted quinazoline .
 含窒素複素環式化合物は、環構造に直接的に結合する置換基を有していてもよい。
 含窒素複素環式化合物の環構造(例、キノリン環構造、1,2,3,4-テトラヒドロキノリン環構造、キノキサリン環構造)が有していてもよい置換基としては、例えば、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、ハロゲン基、及びアルキルチオ基が挙げられる。
The nitrogen-containing heterocyclic compound may have substituents directly attached to the ring structure.
Examples of substituents that the ring structure of the nitrogen-containing heterocyclic compound (e.g., quinoline ring structure, 1,2,3,4-tetrahydroquinoline ring structure, quinoxaline ring structure) may have include: Examples include alkyl groups having 1 to 5 carbon atoms, alkoxy groups having 1 to 5 carbon atoms, halogen groups, and alkylthio groups.
 ピリジン環構造を含む含窒素複素環式化合物としては、例えば、置換基を有していてもよいピリジン、置換基を有していてもよいキノリン、及び置換基を有していてもよいイソキノリンが挙げられる。 Examples of nitrogen-containing heterocyclic compounds containing a pyridine ring structure include optionally substituted pyridine, optionally substituted quinoline, and optionally substituted isoquinoline. mentioned.
 ピラジン環構造を含む含窒素環式化合物としては、例えば、置換基を有していてもよいピラジン、置換基を有していてもよいキノキサリンが挙げられる。 Examples of nitrogen-containing cyclic compounds containing a pyrazine ring structure include optionally substituted pyrazine and optionally substituted quinoxaline.
 テトラヒドロピリジン環構造を含む含窒素環式化合物としては、例えば、置換基を有していてもよい1,2,3,4-テトラヒドロキノリン、及び置換基を有していてもよい1,2,3,4-テトラヒドロイソキノリンが挙げられる。 Nitrogen-containing cyclic compounds containing a tetrahydropyridine ring structure include, for example, optionally substituted 1,2,3,4-tetrahydroquinoline and optionally substituted 1,2, 3,4-tetrahydroisoquinolines can be mentioned.
 ピリミジン環構造を含む含窒素環式化合物としては、例えば、置換基を有していてもよいピリミジン、及び置換基を有していてもよいキナゾリンが挙げられる。 Examples of nitrogen-containing cyclic compounds containing a pyrimidine ring structure include optionally substituted pyrimidine and optionally substituted quinazoline.
 本実施形態において、溶媒は、さらなる有機溶媒として、ハロゲン化アルキル、芳香族カルボニル化合物、芳香族エステル化合物又は含窒素複素環式化合物をさらに1種のみを含んでいても、これらから選択される2種以上をさらに含んでいてもよい。 In this embodiment, the solvent is selected from alkyl halides, aromatic carbonyl compounds, aromatic ester compounds, or nitrogen-containing heterocyclic compounds as further organic solvents, even if only one of them is included. It may further contain more than seeds.
 本実施形態においては、特に環境保全の観点から、ハロゲンを含まない溶媒を使用することが好ましい。 In the present embodiment, it is preferable to use a halogen-free solvent, particularly from the viewpoint of environmental conservation.
 (溶媒及びさらなる溶媒の重量比)
 本実施形態の組成物及びインク組成物が、上記溶媒及び上記さらなる溶媒を含む場合、溶媒のさらなる溶媒に対する重量比(溶媒/さらなる溶媒)は、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、80/20~99.9/0.1の範囲とすることが好ましい。
(weight ratio of solvent and further solvent)
When the compositions and ink compositions of the present embodiments contain the solvent and the additional solvent, the weight ratio of the solvent to the additional solvent (solvent/additional solvent) determines the solubility of the p-type semiconductor material and the n-type semiconductor material. From the viewpoint of further improvement, it is preferable to set the range from 80/20 to 99.9/0.1.
 (組成物及びインク組成物における溶媒の重量百分率)
 本実施形態の組成物及びインク組成物に含まれる溶媒の総重量は、組成物又はインク組成物の全重量を100質量%としたときに、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、好ましくは90質量%以上であり、より好ましくは92質量%以上であり、さらに好ましくは95質量%以上であり、組成物又はインク組成物中のp型半導体材料及びn型半導体材料の濃度をより高くして一定の厚さ以上の層を形成し易くする観点から、好ましくは99.9質量%以下である。
(Weight percentage of solvent in composition and ink composition)
The total weight of the solvent contained in the composition and ink composition of the present embodiment is the solubility of the p-type semiconductor material and the n-type semiconductor material when the total weight of the composition or ink composition is 100% by mass. From the viewpoint of further improving the From the viewpoint of making it easier to form a layer having a certain thickness or more by increasing the concentration of the semiconductor material, the content is preferably 99.9% by mass or less.
 本実施形態の組成物及びインク組成物は、既に説明した溶媒及びさらなる溶媒に加えて、任意の溶媒をさらに含んでいてもよい。組成物又はインク組成物に含まれる全溶媒の合計重量を100質量%とした場合に、任意の有機溶媒の含有率は、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは3重量%以下である。任意の溶媒としては、さらなる溶媒よりも沸点が高い溶媒を用いることが好ましい。 The composition and ink composition of the present embodiment may further contain any solvent in addition to the solvents and additional solvents already described. When the total weight of all solvents contained in the composition or ink composition is 100% by mass, the content of any organic solvent is preferably 10% by mass or less, more preferably 5% by mass or less. , more preferably 3% by weight or less. As any solvent, it is preferred to use a solvent with a higher boiling point than the further solvent.
 (インク組成物におけるp型半導体材料及びn型半導体材料の濃度)
 インク組成物における、p型半導体材料及びn型半導体材料の合計の濃度は、必要とされる機能層(活性層)の厚さ、所望の特性等に応じて、任意好適な濃度とすることができる。p型半導体材料及びn型半導体材料の合計の濃度は、好ましくは0.01質量%以上であり、より好ましくは0.1質量%以上であり、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは0.01質量%以上20質量%以下であり、特に好ましくは0.01質量%以上10質量%以下であり、さらに特に好ましくは0.01質量%以上5質量%以下であり、とりわけ好ましくは0.1質量%以上5質量%以下である。
(Concentration of p-type semiconductor material and n-type semiconductor material in ink composition)
The total concentration of the p-type semiconductor material and the n-type semiconductor material in the ink composition may be any suitable concentration depending on the thickness of the required functional layer (active layer), desired properties, etc. can. The total concentration of the p-type semiconductor material and the n-type semiconductor material is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, preferably 10% by mass or less, and more preferably 5% by mass or less, more preferably 0.01% by mass or more and 20% by mass or less, particularly preferably 0.01% by mass or more and 10% by mass or less, and even more preferably 0.01% by mass or more and 5 % by mass or less, particularly preferably 0.1% by mass or more and 5% by mass or less.
 インク組成物中、p型半導体材料及びn型半導体材料は溶解していても分散していてもよい。インク組成物中、p型半導体材料及びn型半導体材料は、少なくとも一部が溶解していることが好ましく、全部が溶解していることがより好ましい。 The p-type semiconductor material and the n-type semiconductor material may be dissolved or dispersed in the ink composition. In the ink composition, the p-type semiconductor material and the n-type semiconductor material are preferably at least partially dissolved, more preferably completely dissolved.
 (p型半導体材料のn型半導体材料に対する重量比(p/n比))
 インク組成物中のp型半導体材料のn型半導体材料に対する重量比(p型半導体材料/n型半導体材料)は、好ましくは1/9以上であり、より好ましくは1/5以上であり、さらに好ましくは1/3以上であり、好ましくは9/1以下であり、より好ましくは5/1以下であり、さらに好ましく好ましくは3/1以下である。
(Weight ratio of p-type semiconductor material to n-type semiconductor material (p/n ratio))
The weight ratio of the p-type semiconductor material to the n-type semiconductor material (p-type semiconductor material/n-type semiconductor material) in the ink composition is preferably 1/9 or more, more preferably 1/5 or more, and further It is preferably 1/3 or more, preferably 9/1 or less, more preferably 5/1 or less, still more preferably 3/1 or less.
3.インク組成物の製造方法
 本実施形態において、インク組成物は、従来公知の任意好適な方法により製造することができる。
3. Method for Producing Ink Composition In the present embodiment, the ink composition can be produced by any suitable conventionally known method.
 インク組成物は、n型半導体材料を含まない、既に説明した「組成物」を用いて調製することができる。 The ink composition can be prepared using the already described "composition" that does not contain an n-type semiconductor material.
 インク組成物において、特に2種以上の溶媒が用いられる場合には、例えば、既に説明した溶媒及びさらなる溶媒を混合して混合溶媒を調製した後、混合溶媒にp型半導体材料及びn型半導体材料を添加して製造する方法、さらには溶媒にp型半導体材料を添加した(第1)組成物を調製し、これとは別に、さらなる溶媒にn型半導体材料を添加した(第2)組成物を調製し、得られた2種以上の組成物を混合して調製(製造)する方法、換言すると、組成物を調製する工程が、2種以上の組成物を調製する工程を含み、インク組成物を調製する工程が、2種以上の組成物を混合する工程を含む製造方法などにより、製造することができる。 In the ink composition, particularly when two or more solvents are used, for example, after preparing a mixed solvent by mixing the already described solvent and a further solvent, the mixed solvent is added with a p-type semiconductor material and an n-type semiconductor material. Further, a (first) composition is prepared by adding a p-type semiconductor material to a solvent, and separately, an n-type semiconductor material is added to a further solvent (second) composition and mixing the resulting two or more compositions to prepare (manufacture), in other words, the step of preparing the composition includes the step of preparing two or more compositions, and the ink composition The product can be produced by a production method or the like in which the step of preparing the product includes a step of mixing two or more compositions.
 インク組成物を調製するにあたり、溶媒(及びさらなる溶媒)とp型半導体材料及びn型半導体材料とを、溶媒の沸点以下の温度まで加温して混合してもよい。 In preparing the ink composition, the solvent (and further solvent), the p-type semiconductor material and the n-type semiconductor material may be heated to a temperature below the boiling point of the solvent and mixed.
 本実施形態において、インク組成物を調製する工程は、0℃以上200℃以下の条件下で行われることが好ましく、0℃以上100℃以下での条件下で行われることが好ましい。 In the present embodiment, the step of preparing the ink composition is preferably carried out under conditions of 0°C or higher and 200°C or lower, and preferably carried out under conditions of 0°C or higher and 100°C or lower.
 本実施形態において、上述のとおり調製されたインク組成物はろ過してもよい。インク組成物のろ過は、具体的には、インク組成物を調製(製造)するにあたり、溶媒(及びさらなる溶媒)とp型半導体材料及びn型半導体材料とを混合した後、得られた混合物(インク組成物)を、所定の孔径を有するフィルターを用いて常法に従ってろ過すればよい。 In this embodiment, the ink composition prepared as described above may be filtered. Filtration of the ink composition is specifically performed by mixing the solvent (and further solvent) with the p-type semiconductor material and the n-type semiconductor material in preparing (manufacturing) the ink composition, and then filtering the resulting mixture ( ink composition) may be filtered according to a conventional method using a filter having a predetermined pore size.
 本実施形態において、ろ過に用いられうるフィルターとしては、例えば、セルロースアセテート、ガラス繊維、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)といったフッ素樹脂で形成されたフィルターが挙げられる。 In this embodiment, filters that can be used for filtration include, for example, filters made of fluororesins such as cellulose acetate, glass fiber, polyvinylidene fluoride (PVdF), and polytetrafluoroethylene (PTFE).
4.組成物及びインク組成物の用途
 本実施形態の組成物は、成分、すなわちp型半導体材料である高分子化合物の分析等に用いることができ、さらにはインク組成物の原料として用いることができる。
4. Applications of Composition and Ink Composition The composition of the present embodiment can be used for analysis of a component, ie, a polymer compound that is a p-type semiconductor material, and can also be used as a raw material for an ink composition.
 本実施形態のインク組成物は、通常、p型半導体材料及びn型半導体材料を含む膜(固化膜)を形成するために用いられる。 The ink composition of this embodiment is usually used to form a film (solidified film) containing a p-type semiconductor material and an n-type semiconductor material.
 本実施形態のインク組成物は、光電変換素子に含まれる機能層である活性層を形成するために好適に用いられる。特に、本実施形態のインク組成物は、使用時において逆バイアス電圧が印加される光電変換素子である光検出素子に含まれる活性層を形成するために特に好適に用いることができる。 The ink composition of the present embodiment is suitably used for forming an active layer, which is a functional layer included in a photoelectric conversion element. In particular, the ink composition of the present embodiment can be used particularly suitably for forming an active layer included in a photodetector, which is a photoelectric conversion element to which a reverse bias voltage is applied during use.
5.インク組成物の固化膜
 本実施形態のインク組成物を用いて膜(塗工された塗膜)を形成した後、膜から溶媒を除去して膜を固化させることによりインク組成物の固化膜を形成することができる。インク組成物の固化膜は光電変換素子(光検出素子)に含まれる機能層、特に活性層を形成するために好適に用いることができる。インク組成物の固化膜は、従来公知の任意好適な製造方法により製造することができる。
5. Solidified Film of Ink Composition After forming a film (coated coating film) using the ink composition of the present embodiment, the solidified film of the ink composition is formed by removing the solvent from the film and solidifying the film. can be formed. A solidified film of the ink composition can be suitably used to form a functional layer, particularly an active layer, included in a photoelectric conversion element (light detection element). The solidified film of the ink composition can be produced by any suitable conventional production method.
 本実施形態において、インク組成物の固化膜の製造方法は、インク組成物を塗布対象に塗布(塗工)して塗膜を得る工程(i)、及び得られた塗膜から溶媒を除去する工程(ii)を含む。以下、工程(i)及び工程(ii)について説明する。 In the present embodiment, the method for producing a solidified film of an ink composition includes a step (i) of applying (coating) the ink composition to an object to be applied to obtain a coating film, and removing a solvent from the obtained coating film. including step (ii). Steps (i) and (ii) are described below.
 [工程(i)]
 工程(i)において、インク組成物を塗布対象に塗布する方法としては、既に説明した従来公知の任意の塗布法を用いることができる。本実施形態において、塗布法としては、スリットコート法、ナイフコート法、スピンコート法、マイクログラビアコート法、グラビアコート法、バーコート法、インクジェットコート法、ノズルコート法、又はキャピラリーコート法が好ましく、スリットコート法、スピンコート法、キャピラリーコート法、又はバーコート法がより好ましく、スリットコート法又はスピンコート法がさらに好ましい。
[Step (i)]
In the step (i), as a method of applying the ink composition to the object to be applied, any conventionally known application method that has already been described can be used. In the present embodiment, the coating method is preferably a slit coating method, a knife coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a bar coating method, an inkjet coating method, a nozzle coating method, or a capillary coating method. A slit coating method, a spin coating method, a capillary coating method, or a bar coating method is more preferable, and a slit coating method or a spin coating method is even more preferable.
 工程(i)において、インク組成物は、任意の塗布対象に塗布される。インク組成物は、光電変換素子の製造工程において、例えば、電極(陽極又は陰極)、電子輸送層、又は正孔輸送層などの光電変換素子が含みうる機能層に塗布されうる。 In step (i), the ink composition is applied to any application target. The ink composition can be applied to a functional layer that can be included in the photoelectric conversion element, such as an electrode (anode or cathode), an electron transport layer, or a hole transport layer, during the manufacturing process of the photoelectric conversion element.
 [工程(ii)]
 工程(ii)において、工程(i)により形成されたインク組成物の塗膜から、溶媒を除去する方法としては、任意好適な方法を用いることができる。溶媒を除去する方法の例としては、熱風乾燥法、赤外線加熱乾燥法、フラッシュランプアニール乾燥法、減圧乾燥法などの乾燥法が挙げられる。
[Step (ii)]
In step (ii), any suitable method can be used as a method for removing the solvent from the coating film of the ink composition formed in step (i). Examples of methods for removing the solvent include drying methods such as hot air drying, infrared heating drying, flash lamp annealing drying, and vacuum drying.
6.光電変換素子
 (1)光電変換素子の構成
 本実施形態にかかる光電変換素子は、第1電極と、第2の電極と、該第1電極及び第2の電極の間に設けられている活性層とを含み、該活性層が既に説明した固化膜である。
 以下、図面を参照して本実施形態の光電変換素子の構成例について具体的に説明する。
6. Photoelectric conversion element (1) Structure of photoelectric conversion element The photoelectric conversion element according to the present embodiment includes a first electrode, a second electrode, and an active layer provided between the first electrode and the second electrode. and wherein the active layer is the solidified film already described.
A configuration example of the photoelectric conversion element of the present embodiment will be specifically described below with reference to the drawings.
 図1は、光電変換素子の構成例を模式的に示す図である。 FIG. 1 is a diagram schematically showing a configuration example of a photoelectric conversion element.
 図1に示されるように、光電変換素子10は、支持基板11に設けられている。光電変換素子10は、支持基板11に接するように設けられている第1の電極12と、第1の電極12に接するように設けられている電子輸送層13と、電子輸送層13に接するように設けられている活性層14と、活性層14に接するように設けられている正孔輸送層15と、正孔輸送層15に接するように設けられている第2の電極16とを備えている。この構成例では、第1の電極16に接するように封止部材17がさらに設けられている。
 以下、本実施形態の光電変換素子に含まれ得る構成要素について具体的に説明する。
As shown in FIG. 1 , the photoelectric conversion element 10 is provided on a support substrate 11 . The photoelectric conversion element 10 includes a first electrode 12 provided in contact with a support substrate 11 , an electron transport layer 13 provided in contact with the first electrode 12 , and an electron transport layer 13 provided in contact with the electron transport layer 13 . , a hole transport layer 15 provided in contact with the active layer 14, and a second electrode 16 provided in contact with the hole transport layer 15. there is In this configuration example, a sealing member 17 is further provided so as to be in contact with the first electrode 16 .
Constituent elements that can be included in the photoelectric conversion element of this embodiment will be specifically described below.
 (基板)
 光電変換素子は、通常、基板(支持基板)上に形成される。また、さらに基板(封止基板)により封止される場合もある。基板には、通常、第1の電極及び第2の電極からなる一対の電極のうちの一方が形成される。基板の材料は、特に有機化合物を含む層を形成する際に化学的に変化しない材料であれば特に限定されない。
(substrate)
A photoelectric conversion element is usually formed on a substrate (support substrate). Further, it may be further sealed with a substrate (sealing substrate). One of a pair of electrodes consisting of a first electrode and a second electrode is usually formed on the substrate. The material of the substrate is not particularly limited as long as it is a material that does not chemically change when the layer containing an organic compound is formed.
 基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板が用いられる場合には、不透明な基板側に設けられる電極とは反対側の電極(換言すると、不透明な基板から遠い側の電極)が透明又は半透明の電極とされることが好ましい。 Examples of substrate materials include glass, plastic, polymer film, and silicon. When an opaque substrate is used, the electrode opposite to the electrode provided on the opaque substrate (in other words, the electrode on the far side from the opaque substrate) is preferably a transparent or translucent electrode. .
 (電極)
 光電変換素子は、一対の電極である第1の電極及び第2の電極を含んでいる。第1の電極及び第2の電極のうち、少なくとも一方の電極は、光を入射させるために、透明又は半透明の電極とすることが好ましい。
(electrode)
A photoelectric conversion element includes a pair of electrodes, a first electrode and a second electrode. At least one of the first electrode and the second electrode is preferably a transparent or translucent electrode in order to allow light to enter.
 透明又は半透明の電極の材料の例としては、導電性の金属酸化物膜、半透明の金属薄膜が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、NESA等の導電性材料、金、白金、銀、銅が挙げられる。透明又は半透明である電極の材料としては、ITO、IZO、酸化スズが好ましい。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などの有機化合物が材料として用いられる透明導電膜を用いてもよい。透明又は半透明の電極は、第1の電極であっても第2の電極であってもよい。 Examples of materials for transparent or semi-transparent electrodes include conductive metal oxide films and semi-transparent metal thin films. Specifically, indium oxide, zinc oxide, tin oxide, and their composites indium tin oxide (ITO), indium zinc oxide (IZO), conductive materials such as NESA, gold, platinum, silver, copper. ITO, IZO, and tin oxide are preferable as materials for transparent or translucent electrodes. Moreover, as the electrode, a transparent conductive film using an organic compound such as polyaniline and its derivatives, polythiophene and its derivatives as a material may be used. The transparent or translucent electrode may be the first electrode or the second electrode.
 一対の電極のうちの一方の電極が透明又は半透明であれば、他方の電極は光透過性の低い電極であってもよい。光透過性の低い電極の材料の例としては、金属、及び導電性高分子が挙げられる。光透過性の低い電極の材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びこれらのうちの2種以上の合金、又は、これらのうちの1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、及びカルシウム-アルミニウム合金が挙げられる。 If one electrode of the pair of electrodes is transparent or translucent, the other electrode may be an electrode with low light transmittance. Examples of materials for electrodes with low light transmittance include metals and conductive polymers. Specific examples of low light transmissive electrode materials include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, Metals such as terbium, ytterbium, and alloys of two or more thereof, or one or more of these metals together with gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin alloys with one or more metals selected from the group consisting of graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives. Alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
 (活性層)
 本実施形態の光電変換素子は、活性層として、既に説明したインク組成物の固化膜を含む。本実施形態の活性層は、バルクヘテロジャンクション型の構造を有している。
(active layer)
The photoelectric conversion element of this embodiment includes the solidified film of the ink composition already described as an active layer. The active layer of this embodiment has a bulk heterojunction structure.
 本実施形態において、活性層の厚さは、特に限定されない。活性層の厚さは、例えば、暗電流の抑制と生じた光電流の取り出しとのバランスを考慮して、任意好適な厚さとすることができる。活性層の厚さは、特に暗電流をより低減する観点から、好ましくは100nm以上であり、より好ましくは100nm以上であり、さらに好ましくは200nm以上である。また、活性層の厚さは、好ましくは5μm以下であり、より好ましくは1μm以下であり、さらに好ましくは600nm以下である。 In this embodiment, the thickness of the active layer is not particularly limited. The thickness of the active layer can be any suitable thickness, for example, considering the balance between suppression of dark current and extraction of the generated photocurrent. The thickness of the active layer is preferably 100 nm or more, more preferably 100 nm or more, and even more preferably 200 nm or more, particularly from the viewpoint of further reducing dark current. Also, the thickness of the active layer is preferably 5 μm or less, more preferably 1 μm or less, and still more preferably 600 nm or less.
 (中間層)
 図1に示されるとおり、本実施形態の光電変換素子は、光電変換効率などの特性を向上させるための構成要素として、例えば、電荷輸送層(電子輸送層、正孔輸送層、電子注入層、正孔注入層)などの中間層(バッファー層)を備えていることが好ましい。
(middle layer)
As shown in FIG. 1, the photoelectric conversion device of the present embodiment includes, for example, a charge transport layer (electron transport layer, hole transport layer, electron injection layer, An intermediate layer (buffer layer) such as a hole injection layer is preferably provided.
 また、中間層に用いられる材料の例としては、カルシウムなどの金属、酸化モリブデン、酸化亜鉛などの無機酸化物半導体、及びPEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)が挙げられる。 Examples of materials used for the intermediate layer include metals such as calcium, inorganic oxide semiconductors such as molybdenum oxide and zinc oxide, and PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (poly( 4-styrenesulfonate)) (PEDOT:PSS).
 中間層は、従来公知の任意好適な形成方法により形成することができる。中間層は、真空蒸着法や活性層の形成方法と同様の塗布法により形成することができる。 The intermediate layer can be formed by any suitable conventionally known forming method. The intermediate layer can be formed by a vacuum deposition method or a coating method similar to the method for forming the active layer.
 図1に示されるように、本実施形態の光電変換素子は、第1の電極と活性層との間に、電子輸送層を備えることが好ましい。電子輸送層は、活性層から電極へと電子を輸送する機能を有する。
 別の実施形態では、光電変換素子は、電子輸送層を備えていなくてもよい。
As shown in FIG. 1, the photoelectric conversion device of this embodiment preferably has an electron transport layer between the first electrode and the active layer. The electron transport layer has a function of transporting electrons from the active layer to the electrode.
In another embodiment, the photovoltaic device may not have an electron-transporting layer.
 第1の電極に接して設けられる電子輸送層を、特に電子注入層という場合がある。第1の電極に接して設けられる電子輸送層(電子注入層)は、第1の電極への電子の注入を促進する機能を有する。電子輸送層(電子注入層)は、活性層に接していてもよい。 The electron transport layer provided in contact with the first electrode is sometimes called an electron injection layer. An electron transport layer (electron injection layer) provided in contact with the first electrode has a function of promoting injection of electrons into the first electrode. The electron transport layer (electron injection layer) may be in contact with the active layer.
 電子輸送層は、電子輸送性材料を含む。電子輸送性材料の例としては、ポリアルキレンイミン及びその誘導体、フルオレン構造を含む高分子化合物、カルシウムなどの金属、金属酸化物が挙げられる。 The electron-transporting layer contains an electron-transporting material. Examples of electron-transporting materials include polyalkyleneimine and derivatives thereof, high-molecular compounds having a fluorene structure, metals such as calcium, and metal oxides.
 ポリアルキレンイミン及びその誘導体の例としては、エチレンイミン、プロピレンイミン、ブチレンイミン、ジメチルエチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミンといった炭素原子数2~8のアルキレンイミン、特に炭素原子数2~4のアルキレンイミンの1種又は2種以上を常法により重合して得られるポリマー、並びにそれらを種々の化合物と反応させて化学的に変性させたポリマーが挙げられる。ポリアルキレンイミン及びその誘導体としては、ポリエチレンイミン(PEI)及びエトキシ化ポリエチレンイミン(PEIE)が好ましい。 Examples of polyalkyleneimines and derivatives thereof include alkyleneimine having 2 to 8 carbon atoms, especially alkyleneimine having 2 to 8 carbon atoms, such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine. Polymers obtained by conventionally polymerizing one or more of 2 to 4 alkyleneimines, and polymers chemically modified by reacting them with various compounds can be mentioned. Preferred polyalkyleneimines and derivatives thereof are polyethyleneimine (PEI) and ethoxylated polyethyleneimine (PEIE).
 フルオレン構造を含む高分子化合物の例としては、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-オルト-2,7-(9,9’-ジオクチルフルオレン)](PFN)及びPFN-P2が挙げられる。 Examples of polymer compounds containing a fluorene structure include poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-ortho-2,7-(9 ,9′-dioctylfluorene)] (PFN) and PFN-P2.
 金属酸化物の例としては、酸化亜鉛、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、酸化チタン及び酸化ニオブが挙げられる。金属酸化物としては、亜鉛を含む金属酸化物が好ましく、中でも酸化亜鉛が好ましい。 Examples of metal oxides include zinc oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, titanium oxide, and niobium oxide. As the metal oxide, a metal oxide containing zinc is preferable, and zinc oxide is particularly preferable.
 その他の電子輸送性材料の例としては、ポリ(4-ビニルフェノール)、ペリレンジイミドが挙げられる。 Examples of other electron-transporting materials include poly(4-vinylphenol) and perylene diimide.
 本実施形態にかかる光電変換素子は、中間層が電子輸送層であって、基板(支持基板)、第1の電極、電子輸送層、活性層、正孔輸送層、第2の電極がこの順に互いに接するように積層された構成を有することが好ましい。 In the photoelectric conversion element according to this embodiment, the intermediate layer is the electron transport layer, and the substrate (supporting substrate), the first electrode, the electron transport layer, the active layer, the hole transport layer, and the second electrode are arranged in this order. It is preferred to have a configuration that is stacked against each other.
 図1に示されるように、本実施形態の光電変換素子は、第2の電極と活性層との間に、中間層として正孔輸送層を備えていることが好ましい。正孔輸送層は、活性層から第2の電極へと正孔を輸送する機能を有する。正孔輸送層は、第2の電極に接していてもよい。正孔輸送層は活性層に接していてもよい。
 別の実施形態では、光電変換素子は、正孔輸送層を備えていなくてもよい。
As shown in FIG. 1, the photoelectric conversion device of the present embodiment preferably has a hole transport layer as an intermediate layer between the second electrode and the active layer. The hole transport layer has a function of transporting holes from the active layer to the second electrode. The hole transport layer may be in contact with the second electrode. The hole transport layer may be in contact with the active layer.
In another embodiment, the photoelectric conversion device may not have a hole transport layer.
 第2の電極に接して設けられる正孔輸送層を、特に正孔注入層という場合がある。第2の電極に接して設けられる正孔輸送層(正孔注入層)は、活性層で発生した正孔の第2の電極への注入を促進する機能を有する。 The hole-transporting layer provided in contact with the second electrode is sometimes called a hole-injecting layer. A hole transport layer (hole injection layer) provided in contact with the second electrode has a function of promoting injection of holes generated in the active layer into the second electrode.
 正孔輸送層は、正孔輸送性材料を含む。正孔輸送性材料の例としては、ポリチオフェン及びその誘導体、芳香族アミン化合物、芳香族アミン残基を有する構成単位を含む高分子化合物、CuSCN、CuI、NiO、酸化タングステン(WO)及び酸化モリブデン(MoO)が挙げられる。 The hole-transporting layer contains a hole-transporting material. Examples of hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing constitutional units having aromatic amine residues, CuSCN, CuI, NiO, tungsten oxide (WO 3 ) and molybdenum oxide. (MoO 3 ).
 (封止部材)
 本実施形態の光電変換素子は、封止部材をさらに含み、かかる封止部材により封止された封止体とすることが好ましい。
 封止部材は任意好適な従来公知の部材を用いることができる。封止部材の例としては、基板(封止基板)であるガラス基板とUV硬化性樹脂などの封止材(接着剤)との組合せが挙げられる。
(sealing member)
Preferably, the photoelectric conversion element of the present embodiment further includes a sealing member, and is a sealed body sealed with the sealing member.
Any suitable conventionally known member can be used as the sealing member. Examples of the sealing member include a combination of a glass substrate as a substrate (sealing substrate) and a sealing material (adhesive) such as a UV curable resin.
 封止部材は、1層以上の層構造である封止層であってもよい。封止層を構成する層の例としては、ガスバリア層、ガスバリア性フィルムが挙げられる。 The sealing member may be a sealing layer having a layer structure of one or more layers. Examples of layers constituting the sealing layer include gas barrier layers and gas barrier films.
 封止層は、水分を遮断する性質(水蒸気バリア性)又は酸素を遮断する性質(酸素バリア性)を有する材料により形成することが好ましい。封止層の材料として好適な材料の例としては、三フッ化ポリエチレン、ポリ三フッ化塩化エチレン(PCTFE)、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、脂環式ポリオレフィン、エチレン-ビニルアルコール共重合体などの有機材料、酸化ケイ素、窒化ケイ素、酸化アルミニウム、ダイヤモンドライクカーボンなどの無機材料などが挙げられる。 The sealing layer is preferably made of a material that has a property of blocking moisture (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property). Examples of suitable materials for the sealing layer include polyethylene trifluoride, polytrifluoroethylene chloride (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, ethylene-vinyl alcohol copolymer, and the like. Examples include organic materials, inorganic materials such as silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon.
 封止部材は、通常、光電変換素子が適用される、例えば後述する適用例のデバイスに組み込まれる際において実施され得る加熱処理に耐えうる材料により構成される。 The sealing member is usually made of a material that can withstand a heat treatment to which the photoelectric conversion element is applied, for example, when it is incorporated into a device of the application example described later.
 (2)光電変換素子の製造方法
 本実施形態の光電変換素子は、従来公知の任意好適な製造方法により製造しうる。本実施形態の光電変換素子は、構成要素を形成するにあたり選択された材料に好適な工程を組み合わせて製造すればよい。
(2) Manufacturing Method of Photoelectric Conversion Element The photoelectric conversion element of the present embodiment can be manufactured by any suitable conventionally known manufacturing method. The photoelectric conversion element of the present embodiment may be manufactured by combining processes suitable for materials selected for forming constituent elements.
 以下、本発明の実施形態として、基板(支持基板)、第1の電極、正孔輸送層、活性層、電子輸送層、第2の電極がこの順に互いに接する構成を有する光電変換素子の製造方法を説明する。 Hereinafter, as an embodiment of the present invention, a method for manufacturing a photoelectric conversion element having a configuration in which a substrate (supporting substrate), a first electrode, a hole transport layer, an active layer, an electron transport layer, and a second electrode are in contact with each other in this order. explain.
 (基板を用意する工程)
 本工程では、例えば第1の電極が設けられた支持基板を用意する。また、既に説明した電極の材料により形成された導電性の薄膜が設けられた基板を市場より入手し、必要に応じて、導電性の薄膜をパターニングして第1の電極を形成することにより、第1の電極が設けられた支持基板を用意することができる。
(Process of preparing substrate)
In this step, for example, a support substrate provided with a first electrode is prepared. Alternatively, a substrate provided with a conductive thin film formed of the electrode material already described is obtained from the market, and if necessary, the conductive thin film is patterned to form a first electrode, A support substrate provided with a first electrode can be prepared.
 本実施形態にかかる光電変換素子の製造方法において、支持基板上に第1の電極を形成する場合の第1の電極の形成方法は特に限定されない。第1の電極は、既に説明した材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法、塗布法などの従来公知の任意好適な方法によって、第1の電極を形成すべき構成(例、支持基板、活性層、正孔輸送層)上に形成することができる。 In the method for manufacturing the photoelectric conversion element according to this embodiment, the method for forming the first electrode is not particularly limited when the first electrode is formed on the support substrate. The first electrode is a structure in which the first electrode is formed by any suitable conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, etc., using the material already described ( (e.g., supporting substrate, active layer, hole transport layer).
 (正孔輸送層の形成工程)
 光電変換素子の製造方法は、活性層と第1の電極との間に設けられる正孔輸送層(正孔注入層)を形成する工程を含んでいてもよい。
(Step of forming hole transport layer)
The method for manufacturing a photoelectric conversion element may include a step of forming a hole transport layer (hole injection layer) provided between the active layer and the first electrode.
 正孔輸送層の形成方法は特に限定されない。正孔輸送層の形成工程をより簡便にする観点からは、従来公知の任意好適な塗布法によって正孔輸送層を形成することが好ましい。正孔輸送層は、例えば、既に説明した正孔輸送層を構成しうる材料と溶媒とを含む塗布液を用いる塗布法や真空蒸着法により形成することができる。 The method for forming the hole transport layer is not particularly limited. From the viewpoint of simplifying the process of forming the hole transport layer, it is preferable to form the hole transport layer by any suitable conventionally known coating method. The hole transport layer can be formed, for example, by a coating method or a vacuum deposition method using a coating liquid containing a material capable of forming the hole transport layer and a solvent.
 (活性層の形成工程)
 本実施形態の光電変換素子の製造方法においては、正孔輸送層上に活性層が形成される。活性層は、任意好適な従来公知の形成工程により形成することができる。本実施形態において、活性層は、既に説明したインク組成物を用いる塗布法により製造することができる。
(Step of forming active layer)
In the method for manufacturing the photoelectric conversion element of this embodiment, the active layer is formed on the hole transport layer. The active layer can be formed by any suitable conventionally known formation process. In this embodiment, the active layer can be produced by a coating method using the ink composition already described.
 活性層は、既に説明した「固化膜」と同様にして形成することができる。本実施形態では、p型半導体材料と、n型半導体材料と、溶媒とを含むインク組成物を、正孔輸送層上に塗布して塗膜を形成する工程、次いで、前記塗膜を乾燥させる工程を含む工程により、活性層を形成することができる。 The active layer can be formed in the same manner as the "solidified film" already described. In this embodiment, a step of applying an ink composition containing a p-type semiconductor material, an n-type semiconductor material, and a solvent onto a hole transport layer to form a coating film, and then drying the coating film. An active layer can be formed by a process including a process.
 (電子輸送層の形成工程)
 本実施形態の光電変換素子の製造方法は、活性層に接するように設けられた電子輸送層(電子注入層)を形成する工程を含みうる。
(Step of forming electron transport layer)
The method for manufacturing the photoelectric conversion element of this embodiment can include a step of forming an electron transport layer (electron injection layer) provided so as to be in contact with the active layer.
 電子輸送層の形成方法は特に限定されない。電子輸送層の形成工程をより簡便にする観点からは、従来公知の任意好適な真空蒸着法によって電子輸送層を形成することが好ましい。 The method for forming the electron transport layer is not particularly limited. From the viewpoint of making the step of forming the electron transport layer simpler, it is preferable to form the electron transport layer by any suitable conventionally known vacuum vapor deposition method.
 (第2の電極の形成工程)
 第2の電極の形成方法は特に限定されない。第2の電極は、例えば、上記例示の電極の材料を、塗布法、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法など従来公知の任意好適な方法によって形成することができる。以上の工程により、本実施形態の光電変換素子が製造される。
(Step of forming second electrode)
A method for forming the second electrode is not particularly limited. The second electrode can be formed, for example, from the materials of the electrodes exemplified above by any suitable conventionally known method such as a coating method, a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Through the above steps, the photoelectric conversion element of this embodiment is manufactured.
 (封止体の形成工程)
 封止体の形成にあたり、本実施形態では、従来公知の任意好適な封止材(接着剤)及び基板(封止基板)を用いる。具体的には、製造された光電変換素子の周辺を囲むように、支持基板上に、例えばUV硬化性樹脂などの封止材を塗布した後、封止材により隙間なく貼り合わせた後、選択された封止材に好適な、UV光の照射などの方法を用いて支持基板と封止基板との間隙に光電変換素子を封止することにより、光電変換素子の封止体を得ることができる。
(Step of forming sealing body)
In forming the sealing body, in the present embodiment, a conventionally known and suitable sealing material (adhesive) and substrate (sealing substrate) are used. Specifically, a sealing material such as a UV curable resin is applied to the support substrate so as to surround the manufactured photoelectric conversion element, and the sealing material is used to bond the substrate without any gaps. A photoelectric conversion element sealed body can be obtained by sealing the photoelectric conversion element in the gap between the support substrate and the sealing substrate using a method such as irradiation of UV light, which is suitable for the sealing material. can.
 (3)光電変換素子の用途
 本実施形態の光電変換素子の用途としては、光検出素子、太陽電池が挙げられる。
 より具体的には、本実施形態の光電変換素子は、電極間に電圧(逆バイアス電圧)を印加した状態で、透明又は半透明の電極側から光を照射することにより、光電流を流すことができ、光検出素子(光センサー)として動作させることができる。また、光検出素子を複数集積することによりイメージセンサーとして用いることもできる。本実施形態の光電変換素子は、特に光検出素子として好適に用いることができる。
(3) Applications of Photoelectric Conversion Element Applications of the photoelectric conversion element of the present embodiment include photodetection elements and solar cells.
More specifically, the photoelectric conversion element of the present embodiment allows a photocurrent to flow by irradiating light from the transparent or translucent electrode side while a voltage (reverse bias voltage) is applied between the electrodes. and can be operated as a photodetector (optical sensor). Also, it can be used as an image sensor by integrating a plurality of photodetectors. The photoelectric conversion element of this embodiment can be suitably used particularly as a photodetector.
 また、本実施形態の光電変換素子は、光が照射されることにより、電極間に光起電力を発生させることができ、太陽電池として動作させることができる。光電変換素子を複数集積することにより太陽電池モジュールとすることもできる。 In addition, the photoelectric conversion element of the present embodiment can generate a photovoltaic force between electrodes by being irradiated with light, and can be operated as a solar cell. A solar cell module can also be obtained by integrating a plurality of photoelectric conversion elements.
 (4)光電変換素子の適用例
 本実施形態にかかる光電変換素子は、光検出素子として、ワークステーション、パーソナルコンピュータ、携帯情報端末、入退室管理システム、デジタルカメラ、及び医療機器などの種々の電子装置が備える検出部に好適に適用することができる。
(4) Application Examples of Photoelectric Conversion Element The photoelectric conversion element according to the present embodiment can be used as a photodetector in various electronic devices such as workstations, personal computers, personal digital assistants, entrance/exit management systems, digital cameras, and medical equipment. It can be suitably applied to the detection unit provided in the device.
 本実施形態の光電変換素子は、上記例示の電子装置が備える、例えば、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(例えば、X線センサーなどのイメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する生体情報認証装置の検出部(例えば、近赤外線センサー)、パルスオキシメータなどの光学バイオセンサーの検出部などに好適に適用することができる。 The photoelectric conversion element of the present embodiment is provided in the above-exemplified electronic device, for example, an image detection unit for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor (e.g., an image sensor such as an X-ray sensor), a fingerprint Detection units of biometric information authentication devices that detect predetermined features of a part of a living body, such as detection units, face detection units, vein detection units, and iris detection units (e.g., near-infrared sensors), and optical biosensors such as pulse oximeters. It can be suitably applied to a detection unit or the like.
 本実施形態の光電変換素子は、固体撮像装置用のイメージ検出部として、さらにはTime-of-flight(TOF)型距離測定装置(TOF型測距装置)に好適に適用することもできる。 The photoelectric conversion element of this embodiment can be suitably applied as an image detection unit for a solid-state imaging device, and further to a time-of-flight (TOF) type distance measurement device (TOF type distance measurement device).
 TOF型測距装置では、光源からの放射光が測定対象物において反射された反射光を光電変換素子で受光させることにより距離を測定する。具体的には、光源から放射された照射光が測定対象物で反射して反射光として戻るまでの飛行時間を検出して測定対象物までの距離を求める。TOF型には、直接TOF方式と間接TOF方式とが存在する。直接TOF方式では光源から光を照射した時刻と反射光を光電変換素子で受光した時刻との差を直接計測し、間接TOF方式では飛行時間に依存した電荷蓄積量の変化を時間変化に換算することで距離を計測する。間接TOF方式で用いられる電荷蓄積により飛行時間を得る測距原理には、光源からの放射光と測定対象で反射される反射光との位相から飛行時間を求める連続波(特に正弦波)変調方式とパルス変調方式とがある。 The TOF rangefinder measures the distance by causing the photoelectric conversion element to receive the light emitted from the light source and reflected by the object to be measured. Specifically, the distance to the object to be measured is obtained by detecting the time of flight until the irradiation light emitted from the light source is reflected by the object to be measured and returns as reflected light. The TOF type includes a direct TOF method and an indirect TOF method. The direct TOF method directly measures the difference between the time when the light is irradiated from the light source and the time when the reflected light is received by the photoelectric conversion element. to measure the distance. The distance measurement principle used in the indirect TOF method to obtain the time of flight by charge accumulation includes a continuous wave (especially sine wave) modulation method in which the time of flight is obtained from the phases of the light emitted from the light source and the reflected light reflected by the measurement target. and pulse modulation method.
 以下、本実施形態にかかる光電変換素子が好適に適用され得る検出部のうち、固体撮像装置用のイメージ検出部及びX線撮像装置用のイメージ検出部、生体認証装置(例えば指紋認証装置や静脈認証装置など)のための指紋検出部及び静脈検出部、並びにTOF型測距装置(間接TOF方式)のイメージ検出部の構成例について、図面を参照して説明する。 Hereinafter, among detection units to which the photoelectric conversion element according to the present embodiment can be preferably applied, an image detection unit for a solid-state imaging device, an image detection unit for an X-ray imaging device, a biometric authentication device (for example, a fingerprint authentication device, a vein Configuration examples of a fingerprint detection unit and a vein detection unit for an authentication device, etc., and an image detection unit of a TOF rangefinder (indirect TOF method) will be described with reference to the drawings.
 (固体撮像装置用のイメージ検出部)
 図2は、固体撮像装置用のイメージ検出部の構成例を模式的に示す図である。
(Image detector for solid-state imaging device)
FIG. 2 is a diagram schematically showing a configuration example of an image detection unit for a solid-state imaging device.
 イメージ検出部1は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本発明の実施形態にかかる光電変換素子10と、層間絶縁膜30を貫通するように設けられており、CMOSトランジスタ基板20と光電変換素子10とを電気的に接続する層間配線部32と、光電変換素子10を覆うように設けられている封止層40と、封止層40上に設けられているカラーフィルター50とを備えている。 The image detection unit 1 includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and a photoelectric conversion element provided on the interlayer insulating film 30 according to the embodiment of the present invention. It is provided so as to penetrate the element 10 and the interlayer insulating film 30 , and is provided so as to cover the photoelectric conversion element 10 and the interlayer wiring part 32 electrically connecting the CMOS transistor substrate 20 and the photoelectric conversion element 10 . and a color filter 50 provided on the sealing layer 40 .
 CMOSトランジスタ基板20は、従来公知の任意好適な構成を設計に応じた態様で備えている。 The CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
 CMOSトランジスタ基板20は、基板の厚さ内に形成されたトランジスタ、コンデンサなどを含み、種々の機能を実現するためのCMOSトランジスタ回路(MOSトランジスタ回路)などの機能素子を備えている。 The CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
 機能素子としては、例えば、フローティングディフュージョン、リセットトランジスタ、出力トランジスタ、選択トランジスタが挙げられる。 Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
 このような機能素子、配線などにより、CMOSトランジスタ基板20には、信号読み出し回路などが作り込まれている。 A signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
 層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。 The interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin. The interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten. The interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
 封止層40は、光電変換素子10を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。封止層40は、既に説明した封止部材17と同様の構成とすることができる。 The sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done. The sealing layer 40 can have the same configuration as the sealing member 17 already described.
 カラーフィルター50としては、従来公知の任意好適な材料により構成され、かつイメージ検出部1の設計に対応した例えば原色カラーフィルターを用いることができる。また、カラーフィルター50としては、原色カラーフィルターと比較して、厚さを薄くすることができる補色カラーフィルターを用いることもできる。補色カラーフィルターとしては、例えば(イエロー、シアン、マゼンタ)の3種類、(イエロー、シアン、透明)の3種類、(イエロー、透明、マゼンタ)の3種類、及び(透明、シアン、マゼンタ)の3種類が組み合わされたカラーフィルターを用いることができる。これらは、カラー画像データを生成できることを条件として、光電変換素子10及びCMOSトランジスタ基板20の設計に対応した任意好適な配置とすることができる。 As the color filter 50, for example, a primary color filter made of any conventionally known suitable material and corresponding to the design of the image detection unit 1 can be used. Further, as the color filter 50, a complementary color filter that can be thinner than the primary color filter can be used. As complementary color filters, for example, three types of (yellow, cyan, magenta), three types of (yellow, cyan, transparent), three types of (yellow, transparent, magenta), and three types of (transparent, cyan, magenta) A combination of types of color filters can be used. These can be arranged in any suitable arrangement corresponding to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that color image data can be generated.
 カラーフィルター50を介して光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像対象に対応する電気信号として出力される。  The light received by the photoelectric conversion element 10 through the color filter 50 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and is output as a light reception signal, that is, the object to be imaged, to the outside of the photoelectric conversion element 10 through the electrodes. is output as an electrical signal corresponding to 
 次いで、光電変換素子10から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、撮像対象に基づく画像情報が生成される。 Next, the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
 (指紋検出部)
 図3は、表示装置に一体的に構成される指紋検出部の構成例を模式的に示す図である。
(fingerprint detector)
FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit integrally configured with a display device.
 携帯情報端末の表示装置2は、本発明の実施形態にかかる光電変換素子10を主たる構成要素として含む指紋検出部100と、当該指紋検出部100上に設けられ、所定の画像を表示する表示パネル部200とを備えている。 The display device 2 of the mobile information terminal includes a fingerprint detection unit 100 including the photoelectric conversion element 10 according to the embodiment of the present invention as a main component, and a display panel provided on the fingerprint detection unit 100 and displaying a predetermined image. 200.
 この構成例では、表示パネル部200の表示領域200aと一致する領域に指紋検出部100が設けられている。換言すると、指紋検出部100の上方に、表示パネル部200が一体的に積層されている。 In this configuration example, the fingerprint detection section 100 is provided in an area that matches the display area 200a of the display panel section 200 . In other words, the display panel section 200 is integrally laminated above the fingerprint detection section 100 .
 表示領域200aのうちの一部の領域においてのみ指紋検出を行う場合には、当該一部の領域のみに対応させて指紋検出部100を設ければよい。 In the case where fingerprint detection is performed only in a partial area of the display area 200a, the fingerprint detection section 100 may be provided so as to correspond only to the partial area.
 指紋検出部100は、本発明の実施形態にかかる光電変換素子10を本質的な機能を奏する機能部として含む。指紋検出部100は、図示されていない保護フィルム(protection film)、支持基板、封止基板、封止部材、バリアフィルム、バンドパスフィルター、赤外線カットフィルムなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。指紋検出部100には、既に説明したイメージ検出部の構成を採用することもできる。 The fingerprint detection unit 100 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions. The fingerprint detection unit 100 includes any suitable conventionally known members such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, and an infrared cut film. It may be provided in a manner corresponding to the design to obtain the properties. The fingerprint detection unit 100 may adopt the configuration of the image detection unit already described.
 光電変換素子10は、表示領域200a内において、任意の態様で含まれ得る。例えば、複数の光電変換素子10が、マトリクス状に配置されていてもよい。 The photoelectric conversion element 10 can be included in any manner within the display area 200a. For example, a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
 光電変換素子10は、既に説明したとおり、支持基板11に設けられており、支持基板11には、例えばマトリクス状に電極(第一の電極又は第二の電極)が設けられている。 As already described, the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
 光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像された指紋に対応する電気信号として出力される。 The light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of received light, and the received light signal, that is, the electricity corresponding to the imaged fingerprint, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
 表示パネル部200は、この構成例では、タッチセンサーパネルを含む有機エレクトロルミネッセンス表示パネル(有機EL表示パネル)として構成されている。表示パネル部200は、例えば有機EL表示パネルの代わりに、バックライトなどの光源を含む液晶表示パネルなどの任意好適な従来公知の構成を有する表示パネルにより構成されていてもよい。 In this configuration example, the display panel section 200 is configured as an organic electroluminescence display panel (organic EL display panel) including a touch sensor panel. The display panel unit 200 may be configured by, for example, a display panel having an arbitrary and suitable conventionally known configuration such as a liquid crystal display panel including a light source such as a backlight, instead of the organic EL display panel.
 表示パネル部200は、既に説明した指紋検出部100上に設けられている。表示パネル部200は、有機エレクトロルミネッセンス素子(有機EL素子)220を本質的な機能を奏する機能部として含む。表示パネル部200は、さらに任意好適な従来公知のガラス基板といった基板(支持基板210又は封止基板240)、封止部材、バリアフィルム、円偏光板などの偏光板、タッチセンサーパネル230などの任意好適な従来公知の部材を所望の特性に対応した態様で備え得る。 The display panel section 200 is provided on the fingerprint detection section 100 already described. The display panel section 200 includes an organic electroluminescence element (organic EL element) 220 as a functional section that performs an essential function. The display panel unit 200 further includes an arbitrary and suitable substrate such as a conventionally known glass substrate (support substrate 210 or sealing substrate 240), a sealing member, a barrier film, a polarizing plate such as a circularly polarizing plate, and an arbitrary substrate such as a touch sensor panel 230. Suitable conventionally known members may be provided in a manner corresponding to the desired properties.
 以上説明した構成例において、有機EL素子220は、表示領域200aにおける画素の光源として用いられるとともに、指紋検出部100における指紋の撮像のための光源としても用いられる。 In the configuration example described above, the organic EL element 220 is used as a light source for the pixels in the display area 200a, and is also used as a light source for imaging the fingerprint in the fingerprint detection section 100.
 ここで、指紋検出部100の動作について簡単に説明する。
 指紋認証の実行時には、表示パネル部200の有機EL素子220から放射される光を用いて指紋検出部100が指紋を検出する。具体的には、有機EL素子220から放射された光は、有機EL素子220と指紋検出部100の光電変換素子10との間に存在する構成要素を透過して、表示領域200a内である表示パネル部200の表面に接するように載置された手指の指先の皮膚(指表面)によって反射される。指表面によって反射された光のうちの少なくとも一部は、間に存在する構成要素を透過して光電変換素子10によって受光され、光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、指表面の指紋についての画像情報が構成される。
Here, the operation of fingerprint detection unit 100 will be briefly described.
When performing fingerprint authentication, fingerprint detection unit 100 detects a fingerprint using light emitted from organic EL element 220 of display panel unit 200 . Specifically, the light emitted from the organic EL element 220 passes through the constituent elements existing between the organic EL element 220 and the photoelectric conversion element 10 of the fingerprint detection unit 100, and the display in the display area 200a is displayed. The light is reflected by the skin (finger surface) of the fingertip placed in contact with the surface of the panel section 200 . At least part of the light reflected by the finger surface is transmitted through intervening components and received by the photoelectric conversion element 10 , and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information about the fingerprint on the surface of the finger is constructed from the converted electric signal.
 表示装置2を備える携帯情報端末は、従来公知の任意好適なステップにより、得られた画像情報と、予め記録されていた指紋認証用の指紋データとを比較して、指紋認証を行う。 The mobile information terminal equipped with the display device 2 performs fingerprint authentication by comparing the obtained image information with pre-recorded fingerprint data for fingerprint authentication by any suitable conventionally known step.
 (X線撮像装置用のイメージ検出部)
 図4は、X線撮像装置用のイメージ検出部の構成例を模式的に示す図である。
(Image detector for X-ray imaging device)
FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
 X線撮像装置用のイメージ検出部1は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本発明の実施形態にかかる光電変換素子10と、層間絶縁膜30を貫通するように設けられており、CMOSトランジスタ基板20と光電変換素子10とを電気的に接続する層間配線部32と、光電変換素子10を覆うように設けられている封止層40と、封止層40上に設けられているシンチレータ42とシンチレータ42を覆うように設けられている反射層44と、反射層44を覆うように設けられている保護層46とを備えている。 An image detection unit 1 for an X-ray imaging device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30. a photoelectric conversion element 10 according to the embodiment; , a scintillator 42 provided on the sealing layer 40, a reflective layer 44 provided to cover the scintillator 42, and a reflective layer 44 provided to cover the and a protective layer 46 having a
 CMOSトランジスタ基板20は、従来公知の任意好適な構成を設計に応じた態様で備えている。 The CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
 CMOSトランジスタ基板20は、基板の厚さ内に形成されたトランジスタ、コンデンサなどを含み、種々の機能を実現するためのCMOSトランジスタ回路(MOSトランジスタ回路)などの機能素子を備えている。 The CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
 機能素子としては、例えば、フローティングディフュージョン、リセットトランジスタ、出力トランジスタ、選択トランジスタが挙げられる。 Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
 このような機能素子、配線などにより、CMOSトランジスタ基板20には、信号読み出し回路などが作り込まれている。 A signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
 層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。 The interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin. The interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten. The interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
 封止層40は、光電変換素子10を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。封止層40は、既に説明した封止部材17と同様の構成とすることができる。 The sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done. The sealing layer 40 can have the same configuration as the sealing member 17 already described.
 シンチレータ42は、X線撮像装置用のイメージ検出部1の設計に対応した従来公知の任意好適な材料により構成することができる。シンチレータ42の好適な材料の例としては、CsI(ヨウ化セシウム)やNaI(ヨウ化ナトリウム)、ZnS(硫化亜鉛)、GOS(酸硫化ガドリニウム)、GSO(ケイ酸ガドリニウム)といった無機材料の無機結晶や、アントラセン、ナフタレン、スチルベンといった有機材料の有機結晶や、トルエン、キシレン、ジオキサンといった有機溶媒にジフェニルオキサゾール(PPO)やテルフェニル(TP)などの有機材料を溶解させた有機液体、キセノンやヘリウムといった気体、プラスチックなどを用いることができる。 The scintillator 42 can be made of any conventionally known suitable material that corresponds to the design of the image detection section 1 for the X-ray imaging apparatus. Examples of suitable materials for the scintillator 42 include inorganic crystals of inorganic materials such as CsI (cesium iodide), NaI (sodium iodide), ZnS (zinc sulfide), GOS (gadolinium oxysulfide), and GSO (gadolinium silicate). , organic crystals of organic materials such as anthracene, naphthalene, and stilbene; organic liquids obtained by dissolving organic materials such as diphenyloxazole (PPO) and terphenyl (TP) in organic solvents such as toluene, xylene, and dioxane; and organic materials such as xenon and helium. Gases, plastics, etc. can be used.
 上記の構成要素は、シンチレータ42が入射したX線を可視領域を中心とした波長を有する光に変換して画像データを生成できることを条件として、光電変換素子10及びCMOSトランジスタ基板20の設計に対応した任意好適な配置とすることができる。 The above components correspond to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that the scintillator 42 converts incident X-rays into light having a wavelength centered in the visible region to generate image data. Any suitable arrangement can be used.
 反射層44は、シンチレータ42で変換された光を反射する。反射層44は、変換された光の損失を低減し、検出感度を増大させることができる。また、反射層44は、外部から直接的に入射する光を遮断することもできる。 The reflective layer 44 reflects the light converted by the scintillator 42 . The reflective layer 44 can reduce the loss of converted light and increase detection sensitivity. In addition, the reflective layer 44 can also block light that is directly incident from the outside.
 保護層46は、シンチレータ42を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。 The protective layer 46 can be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the scintillator 42.
 ここで、上記の構成を有するX線撮像装置用のイメージ検出部1の動作について簡単に説明する。 Here, the operation of the image detection unit 1 for the X-ray imaging apparatus having the above configuration will be briefly described.
 X線やγ線といった放射線エネルギーがシンチレータ42に入射すると、シンチレータ42は放射線エネルギーを吸収し、可視領域を中心とした紫外から赤外領域の波長の光(蛍光)に変換する。そして、シンチレータ42によって変換された光は、光電変換素子10によって受光される。 When radiation energy such as X-rays and γ-rays is incident on the scintillator 42, the scintillator 42 absorbs the radiation energy and converts it into light (fluorescence) with a wavelength in the infrared range from ultraviolet, centered on the visible range. The light converted by the scintillator 42 is received by the photoelectric conversion element 10 .
 このように、シンチレータ42を介して光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像対象に対応する電気信号として出力される。検出対象である放射線エネルギー(X線)は、シンチレータ42側、光電変換素子10側のいずれから入射させてもよい。 In this way, the light received by the photoelectric conversion element 10 via the scintillator 42 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and the received light signal is output outside the photoelectric conversion element 10 via the electrodes. That is, it is output as an electrical signal corresponding to the object to be imaged. Radiation energy (X-rays) to be detected may be incident from either the scintillator 42 side or the photoelectric conversion element 10 side.
 次いで、光電変換素子10から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、撮像対象に基づく画像情報が生成される。 Next, the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
 (静脈検出部)
 図5は、静脈認証装置用の静脈検出部の構成例を模式的に示す図である。
 静脈認証装置用の静脈検出部300は、測定時において測定対象である手指(例、1以上の手指の指先、手指及び掌)が挿入される挿入部310を画成するカバー部306と、カバー部306に設けられており、測定対象に光を照射する光源部304と、光源部304から照射された光を測定対象を介して受光する光電変換素子10と、光電変換素子10を支持する支持基板11と、支持基板11と光電変換素子10を挟んで対向するように配置されており、所定の距離でカバー部306から離間して、カバー部306とともに挿入部310を画成するガラス基板302から構成されている。
(Vein detector)
FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device.
The vein detection unit 300 for the vein authentication device includes a cover unit 306 defining an insertion unit 310 into which a finger to be measured (eg, one or more fingertips, fingers and palm) is inserted during measurement, and a cover unit 306 . A light source unit 304 provided in a unit 306 for irradiating light onto an object to be measured, a photoelectric conversion element 10 for receiving the light emitted from the light source unit 304 through the object to be measured, and a support for supporting the photoelectric conversion element 10 . The glass substrate 302 is arranged so as to face the substrate 11 and the support substrate 11 with the photoelectric conversion element 10 interposed therebetween, is separated from the cover portion 306 at a predetermined distance, and defines an insertion portion 310 together with the cover portion 306 . consists of
 この構成例では、光源部304は、光電変換素子10とは、使用時において測定対象を挟んで離間するように、カバー部306と一体的に構成されている透過型撮影方式を示しているが、光源部304は必ずしもカバー部306側に位置させる必要はない。 In this configuration example, the light source unit 304 is configured integrally with the cover unit 306 so that the photoelectric conversion element 10 is separated from the photoelectric conversion element 10 while sandwiching the object to be measured during use. , the light source unit 304 is not necessarily positioned on the cover unit 306 side.
 光源部304からの光を、測定対象に効率的に照射できることを条件として、例えば、光電変換素子10側から測定対象を照射する反射型撮影方式としてもよい。 On the condition that the object to be measured can be efficiently irradiated with the light from the light source unit 304, for example, a reflection imaging method in which the object to be measured is irradiated from the photoelectric conversion element 10 side may be employed.
 静脈検出部300は、本発明の実施形態にかかる光電変換素子10を本質的な機能を奏する機能部として含む。静脈検出部300は、図示されていない保護フィルム(protection film)、封止部材、バリアフィルム、バンドパスフィルター、近赤外線透過フィルター、可視光カットフィルム、指置きガイドなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。静脈検出部300には、既に説明したイメージ検出部1の構成を採用することもできる。 The vein detection unit 300 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions. The vein detection unit 300 includes any suitable conventionally known member such as a protection film (not shown), a sealing member, a barrier film, a bandpass filter, a near-infrared transmission filter, a visible light cut film, and a finger placement guide. can be provided in a manner corresponding to the design to obtain the desired properties. The vein detection unit 300 may employ the configuration of the image detection unit 1 already described.
 光電変換素子10は、任意の態様で含まれ得る。例えば、複数の光電変換素子10が、マトリクス状に配置されていてもよい。 The photoelectric conversion element 10 can be included in any manner. For example, a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
 光電変換素子10は、既に説明したとおり、支持基板11に設けられており、支持基板11には、例えばマトリクス状に電極(第一の電極又は第二の電極)が設けられている。 As already described, the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
 光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像された静脈に対応する電気信号として出力される。 The light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of light received, and the received light signal, that is, the electricity corresponding to the imaged vein, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
 静脈検出時(使用時)において、測定対象は、光電変換素子10側のガラス基板302に接触していても、接触していなくてもよい。 At the time of vein detection (during use), the object to be measured may or may not be in contact with the glass substrate 302 on the photoelectric conversion element 10 side.
 ここで、静脈検出部300の動作について簡単に説明する。
 静脈検出時には、光源部304から放射される光を用いて静脈検出部300が測定対象の静脈パターンを検出する。具体的には、光源部304から放射された光は、測定対象を透過して光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、測定対象の静脈パターンの画像情報が構成される。
Here, the operation of the vein detection unit 300 will be briefly described.
During vein detection, the vein detection unit 300 detects the vein pattern of the measurement target using light emitted from the light source unit 304 . Specifically, the light emitted from the light source unit 304 is transmitted through the measurement target and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information of the vein pattern to be measured is constructed from the converted electrical signal.
 静脈認証装置では、従来公知の任意好適なステップにより、得られた画像情報と、予め記録されていた静脈認証用の静脈データとを比較して、静脈認証が行われる。 In the vein authentication device, vein authentication is performed by comparing the obtained image information with previously recorded vein data for vein authentication by any suitable conventionally known step.
 (TOF型測距装置用イメージ検出部)
 図6は、間接方式のTOF型測距装置用イメージ検出部の構成例を模式的に示す図である。
(Image detector for TOF rangefinder)
FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
 TOF型測距装置用イメージ検出部400は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本発明の実施形態にかかる光電変換素子10と、光電変換素子10を挟むように離間して配置されている2つの浮遊拡散層402と、光電変換素子10と浮遊拡散層402を覆うように設けられている絶縁層401と、絶縁層401上に設けられており、互いに離間して配置されている2つのフォトゲート404とを備えている。 The image detection unit 400 for the TOF type distance measuring device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30. The photoelectric conversion element 10 according to the embodiment, the two floating diffusion layers 402 spaced apart to sandwich the photoelectric conversion element 10, and the photoelectric conversion element 10 and the floating diffusion layer 402 are provided to cover the photoelectric conversion element 10. It comprises an insulating layer 401 and two photogates 404 provided on the insulating layer 401 and spaced apart from each other.
 離間した2つのフォトゲート404の間隙からは絶縁層401の一部分が露出しており、残余の領域は遮光部406により遮光されている。CMOSトランジスタ基板20と浮遊拡散層402とは層間絶縁膜30を貫通するように設けられている層間配線部32によって電気的に接続されている。 A part of the insulating layer 401 is exposed from the gap between the two photogates 404 separated from each other, and the remaining area is shielded from light by the light shielding portion 406 . The CMOS transistor substrate 20 and the floating diffusion layer 402 are electrically connected by an interlayer wiring portion 32 provided so as to penetrate the interlayer insulating film 30 .
 層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。 The interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin. The interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten. The interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
 絶縁層401は、この構成例では、酸化シリコンにより構成されるフィールド酸化膜などの従来公知の任意好適な構成とすることができる。 The insulating layer 401 in this configuration example can have any conventionally known and suitable configuration such as a field oxide film made of silicon oxide.
 フォトゲート404は、例えばポリシリコンなどの従来公知の任意好適な材料により構成することができる。 The photogate 404 can be made of any suitable conventionally known material such as polysilicon.
 TOF型測距装置用イメージ検出部400は、本発明の実施形態にかかる光電変換素子10を本質的な機能を奏する機能部として含む。TOF型測距装置用イメージ検出部400は、図示されていない保護フィルム(protection film)、支持基板、封止基板、封止部材、バリアフィルム、バンドパスフィルター、赤外線カットフィルムなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。 The image detection section 400 for the TOF type rangefinder includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional section that performs essential functions. The image detector 400 for the TOF-type rangefinder uses any suitable conventional film such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, an infrared cut film, and the like. Known components may be provided in a manner corresponding to the design to obtain the desired properties.
 ここで、TOF型測距装置用イメージ検出部400の動作について簡単に説明する。 Here, the operation of the TOF rangefinder image detection unit 400 will be briefly described.
 光源から光が照射され、光源からの光が測定対象より反射され、反射光を光電変換素子10で受光する。光電変換素子10と浮遊拡散層402との間には2つのフォトゲート404が設けられており、交互にパルスを加えることによって、光電変換素子10によって発生した信号電荷を2つの浮遊拡散層402のいずれかに転送し、浮遊拡散層402に電荷が蓄積される。2つのフォトゲート404を開くタイミングに対して、光パルスが等分にまたがるように到来すると、2つの浮遊拡散層402に蓄積される電荷量は等量になる。一方のフォトゲート404に光パルスが到達するタイミングに対して、他方のフォトゲート404に光パルスが遅れて到来すると、2つの浮遊拡散層402に蓄積される電荷量に差が生じる。 Light is emitted from the light source, the light from the light source is reflected from the object to be measured, and the photoelectric conversion element 10 receives the reflected light. Two photogates 404 are provided between the photoelectric conversion element 10 and the floating diffusion layer 402 , and by alternately applying pulses, signal charges generated by the photoelectric conversion element 10 are transferred to the two floating diffusion layers 402 . The charge is transferred to either one and accumulated in the floating diffusion layer 402 . When the light pulse arrives so as to equally straddle the timing of opening the two photogates 404, the amount of charge accumulated in the two floating diffusion layers 402 becomes equal. If the light pulse arrives at the other photogate 404 with a delay with respect to the timing at which the light pulse arrives at the one photogate 404, the amount of charge accumulated in the two floating diffusion layers 402 will differ.
 浮遊拡散層402に蓄積された電荷量の差は、光パルスの遅延時間に依存する。測定対象までの距離Lは、光の往復時間tdと光の速度cを用いてL=(1/2)ctdの関係にあるので、遅延時間が2つの浮遊拡散層402の電荷量の差から推定できれば、測定対象までの距離を求めることができる。 The difference in the amount of charge accumulated in the floating diffusion layer 402 depends on the delay time of the light pulse. The distance L to the object to be measured has a relationship of L=(1/2) ctd using the round trip time td of light and the speed of light c. If it can be estimated, the distance to the measurement target can be obtained.
 光電変換素子10が受光した光の受光量は、2つの浮遊拡散層402に蓄積される電荷量の差として電気信号に変換され、光電変換素子10外に受光信号、すなわち測定対象に対応する電気信号として出力される。 The amount of light received by the photoelectric conversion element 10 is converted into an electrical signal as the difference between the amounts of charge accumulated in the two floating diffusion layers 402, and the received light signal, that is, the electricity corresponding to the object to be measured, is output outside the photoelectric conversion element 10. output as a signal.
 次いで、浮遊拡散層402から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、測定対象に基づく距離情報が生成される。 Next, the received light signal output from the floating diffusion layer 402 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and read out by a signal readout circuit (not shown). Distance information based on the measurement object is generated through signal processing by an arbitrary suitable conventionally known functional unit.
7.光検出素子
 前記のとおり、本実施形態の光電変換素子は、照射された光を、受光量に応じた電気信号に変換し、電極を介して外部回路に出力しうる光検出機能を有しうる。よって、本発明の実施形態の光電変換素子は、光検出機能を有する光検出素子として特に好適に適用されうる。ここで、本実施形態の光検出素子は、光電変換素子そのものであってもよく、光電変換素子に加えて、電圧制御のためなどの機能素子をさらに含んでいてもよい。
7. Photodetection element As described above, the photoelectric conversion element of the present embodiment can have a photodetection function capable of converting irradiated light into an electric signal corresponding to the amount of received light and outputting the signal to an external circuit via an electrode. . Therefore, the photoelectric conversion element of the embodiment of the present invention can be applied particularly suitably as a photodetector having a photodetection function. Here, the photodetector element of this embodiment may be a photoelectric conversion element itself, or may further include a functional element for voltage control in addition to the photoelectric conversion element.
 以下、本発明をさらに詳細に説明するために実施例を示す。本発明は下記の実施例に限定されない。 Examples are given below to describe the present invention in more detail. The invention is not limited to the following examples.
 下記スキームに示されるとおり、化合物1、2及び3を用いて、高分子化合物P-1、P-2、P-5、P-6、P-8及びP-9を合成した。 As shown in the scheme below, using compounds 1, 2 and 3, polymer compounds P-1, P-2, P-5, P-6, P-8 and P-9 were synthesized.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 (実施例1)
 <高分子化合物P-1の合成>
 まず、化合物1及び化合物2は、国際公開第2014/112656号に記載の方法により合成した。
次いで、常温で冷却装置を備えたガラス製反応容器に、化合物1(8.82mmol)、化合物2(8.82mmol)、化合物3(18mmol)、水(540mL)、40質量%リン酸カリウム水溶液(60mL)、テトラリン(300mL)、1-メチルシクロヘキサノール(300mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.22mmol)を加えて混合した。
(Example 1)
<Synthesis of polymer compound P-1>
First, compound 1 and compound 2 were synthesized by the method described in International Publication No. 2014/112656.
Then, in a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (8.82 mmol), compound 2 (8.82 mmol), compound 3 (18 mmol), water (540 mL), 40% by mass potassium phosphate aqueous solution ( 60 mL), tetralin (300 mL), 1-methylcyclohexanol (300 mL), and chloride (methanide) {bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl]phosphane} Palladium (0.22 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより高分子化合物P-1を得た。 The obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 1.
 <GPC測定用試料の調製>
 溶媒としてテトラリンを用い、当該溶媒に、既に説明した高分子化合物P-1を6mg/mLの濃度で溶解させ、80℃で3時間加熱を行って溶解液を得た。
<Preparation of sample for GPC measurement>
Tetralin was used as a solvent, and the previously described polymer compound P-1 was dissolved in the solvent at a concentration of 6 mg/mL, followed by heating at 80° C. for 3 hours to obtain a solution.
 次いで、得られた溶解液の温度を常温にまで戻した後、添加剤である4-メチルカルボスチリル(4MCS)を10mg/mLの濃度になるように加え、2時間静置した。 Next, after returning the temperature of the resulting solution to normal temperature, 4-methylcarbostyril (4MCS) as an additive was added to a concentration of 10 mg/mL and left to stand for 2 hours.
 溶解液中における添加剤の不溶解成分をメルク社製ミリポア 0.45μmPVDFフィルター(型番:SLHV033NB)で濾過して除去し、GPC測定用試料を得た。 The undissolved component of the additive in the solution was removed by filtration through a Merck Millipore 0.45 μm PVDF filter (model number: SLHV033NB) to obtain a sample for GPC measurement.
 <GPC測定>
 RI検出器とUV-Vis検出器とを備えたゲル浸透クロマトグラフィー装置を用い、下記の分析条件により測定され、算出された値を分子量とした。上記のとおり調製したGPC測定用試料を用いて、調製当日に測定した値(Init)、調製後7日間、常温で保管した後に測定した値(7日後)を得た。結果を下記表1に示した。
<GPC measurement>
Using a gel permeation chromatography device equipped with an RI detector and a UV-Vis detector, measurement was performed under the following analysis conditions, and the calculated value was taken as the molecular weight. Using the GPC measurement sample prepared as described above, the value measured on the day of preparation (Init) and the value measured after storage at room temperature for 7 days after preparation (after 7 days) were obtained. The results are shown in Table 1 below.
 [分析条件]
加熱装置:IKA社製 Dry Block Heater 4
加熱条件:内温80℃
装置:島津製作所社製 Prominence 20Aシリーズ
カラム:Shodex KD-806M KD-G 4A(ガードカラム)
移動相:富士フイルム和光純薬社製 オルト-ジクロロベンゼン
流量:1.0mL/min
温度:60℃
検出波長:600nm
標準品:アジレント社製 ポリマーラボラトリーズ 標準ポリスチレン
[Analysis conditions]
Heating device: Dry Block Heater 4 manufactured by IKA
Heating conditions: Internal temperature 80°C
Apparatus: Prominence 20A series manufactured by Shimadzu Corporation Column: Shodex KD-806M KD-G 4A (guard column)
Mobile phase: ortho-dichlorobenzene manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Flow rate: 1.0 mL/min
Temperature: 60°C
Detection wavelength: 600nm
Standard product: Agilent Polymer Laboratories standard polystyrene
 <赤外分光法によるアミド構造を含む末端構造の割合の測定>
 乳鉢と乳棒とを用いて、既に説明した高分子化合物P-1を細かくなるまですりつぶし、臭化カリウムと高分子化合物P-1とを5質量%の濃度となるように、色が均一になるまで混合して試料を調製した。
<Measurement of proportion of terminal structure containing amide structure by infrared spectroscopy>
Using a mortar and pestle, the already explained polymer compound P-1 is ground until it becomes fine, and the color becomes uniform so that the concentration of potassium bromide and polymer compound P-1 becomes 5% by mass. Samples were prepared by mixing to
 得られた試料を錠剤形成器に入れて錠剤を形成し、下記の測定条件で、赤外分光法(透過法)により高分子化合物のアミド構造を含む末端構造の割合の測定を行った。なお、臭化カリウムのみで形成した錠剤をブランクとして用いた。
 [測定条件]
測定法:赤外分光法(透過法)
装置:ThermoFisher社製 Nicolet iS50 FT-IR
積算回数:32回
含有量:高分子化合物10mg、KBr200mg
The obtained sample was placed in a tablet forming machine to form a tablet, and the ratio of the terminal structure including the amide structure of the polymer compound was measured by infrared spectroscopy (transmission method) under the following measurement conditions. A tablet formed only from potassium bromide was used as a blank.
[Measurement condition]
Measurement method: infrared spectroscopy (transmission method)
Apparatus: Nicolet iS50 FT-IR manufactured by ThermoFisher
Accumulation times: 32 Contents: Polymer compound 10 mg, KBr 200 mg
 一部の高分子化合物に含まれるアミド構造を含む末端構造に由来するC=O伸縮ピーク強度を、全ての高分子化合物に含まれる主鎖由来のピーク強度で除算し、さらに100を乗じた値をアミド構造を含む末端構造の割合(%)とした。結果を下記表1に示した。 A value obtained by dividing the C=O stretching peak intensity derived from the terminal structure including the amide structure contained in some polymer compounds by the peak intensity derived from the main chain contained in all polymer compounds and multiplying the result by 100. was taken as the ratio (%) of the terminal structure containing the amide structure. The results are shown in Table 1 below.
 ここで、一部の高分子化合物に含まれるアミド構造を含む末端構造に由来するC=O伸縮ピークとしては、1700cm-1であるか、又はピークがシフトしている場合には±10cm-1の範囲でシフトしているピークであって、当該高分子化合物に含まれる上記C=O伸縮ピークとして同定した波数における強度を採用した。 Here, the C═O stretching peak derived from the terminal structure including the amide structure contained in some polymer compounds is 1700 cm −1 or ±10 cm −1 when the peak is shifted. and the intensity at the wave number identified as the C=O stretching peak contained in the polymer compound was adopted.
 また、全ての高分子化合物に含まれる主鎖由来のピークとしては、954cm-1であるか、又はピークがシフトしている場合には±10cm-1の範囲でシフトしているピークであって、高分子化合物に含まれる主鎖由来のピークとして同定した波数における強度を採用した。 In addition, the peak derived from the main chain contained in all polymer compounds is 954 cm −1 or a peak shifted within a range of ±10 cm −1 when the peak is shifted. , the intensity at the wave number identified as the peak derived from the main chain contained in the polymer compound was adopted.
 (実施例2)
 <高分子化合物P-2の合成>
 まず、化合物1及び化合物2を、国際公開第2014/112656号に記載の方法により合成した。
 次いで、常温で冷却装置を備えたガラス製反応容器に、化合物1(13.02mmol)、化合物2(13.02mmol)、化合物3(26.5mmol)、水(794.9mL)、40質量%リン酸カリウム水溶液(88.4mL)、テトラリン(441.7mL)、1-メチルシクロヘキサノール(441.7mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.32mmol)を加えて混合した。
(Example 2)
<Synthesis of polymer compound P-2>
First, compound 1 and compound 2 were synthesized by the method described in International Publication No. 2014/112656.
Next, in a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (13.02 mmol), compound 2 (13.02 mmol), compound 3 (26.5 mmol), water (794.9 mL), 40 mass% phosphorus Aqueous potassium acid solution (88.4 mL), tetralin (441.7 mL), 1-methylcyclohexanol (441.7 mL), and chloride (methanide) {bis(1,1-dimethylethyl)[3,5-bis(1 ,1-dimethylethyl)phenyl]phosphane}palladium (0.32 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより、高分子化合物P-2を得た。 The resulting crude polymer was dissolved in tetralin and passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again and the precipitated solid was collected by filtration to obtain polymer compound P. -2 was obtained.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-2を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表1に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-2 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 1 below.
 (比較例1)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例1と同様にして、GPC測定を行った。結果を下記表1に示した。
(Comparative example 1)
GPC measurement was performed in the same manner as in Example 1 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 1 below.
 (比較例2)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例2と同様にして、GPC測定を行った。結果を下記表1に示した。
(Comparative example 2)
GPC measurement was performed in the same manner as in Example 2 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 1 below.
 <化合物9の合成>
 以下の手順のとおり化合物9の合成を行った。
<Synthesis of Compound 9>
Compound 9 was synthesized according to the following procedure.
 まず、下記のスキームのとおり化合物4を合成した。 First, compound 4 was synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 窒素ガスで内部の雰囲気を置換したフラスコにマグネシウム(65.2g、2.68mol)、THF(275mL)、ヨウ素(2粒)を加えて、撹拌した。ヨウ素の紫色が消えた後に、1-Bromo-3-hexylbenzene(612.9g、2.54mol)のTHF(4730mL)溶液を滴下し、グリニャール試薬を発生させた。 Magnesium (65.2 g, 2.68 mol), THF (275 mL), and iodine (2 grains) were added to a flask whose internal atmosphere was replaced with nitrogen gas, and stirred. After the purple color of iodine disappeared, a solution of 1-Bromo-3-hexylbenzene (612.9 g, 2.54 mol) in THF (4730 mL) was added dropwise to generate a Grignard reagent.
 次に、別のフラスコに1,3-Dibromobenzene(550g、2.33mol)、THF(2783mL)、PdCl(dppf)・CHCl(7.62g、9.33mmol)を加え、撹拌して10℃まで冷却した。このフラスコに調製済みのグリニャール試薬を内温が10℃を超えないように滴下し、反応液を得た。その後1時間撹拌し、反応液に水を注いで反応を停止させ、分液して有機層を得た。 Then, 1,3-Dibromobenzene (550 g, 2.33 mol), THF (2783 mL), PdCl 2 (dppf).CH 2 Cl 2 (7.62 g, 9.33 mmol) were added to another flask and stirred. Cool to 10°C. A prepared Grignard reagent was added dropwise to the flask so that the internal temperature did not exceed 10° C. to obtain a reaction solution. After that, the mixture was stirred for 1 hour, water was poured into the reaction mixture to stop the reaction, and the mixture was separated to obtain an organic layer.
 得られた有機層を硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した後、ろ液をロータリーエバポレーターで濃縮した。 The obtained organic layer was dehydrated with magnesium sulfate, the magnesium sulfate was removed by filtration, and the filtrate was concentrated with a rotary evaporator.
 濃縮されたろ液をシリカゲルカラムクロマトグラフィー(ヘキサン溶媒)で精製することで化合物4を532.2g(1.68mol、収率67%)得た。 The concentrated filtrate was purified by silica gel column chromatography (hexane solvent) to obtain 532.2 g (1.68 mol, yield 67%) of compound 4.
 化合物4のH-NMR測定結果は下記のとおりである。
 δ(ppm):7.73 (t, 1H), 7.52-7.50 (dt, 1H), 7.48-7.45 (dq, 1H), 7.38-7.28 (m, 4H), 7.21-7.18 (m, 1H), 2.67 (t, 2H), 1.69-1.58 (m, 2H), 1.40-1.28 (m, 6H), 0.89 (t, 3H)
The 1 H-NMR measurement results of compound 4 are as follows.
δ (ppm): 7.73 (t, 1H), 7.52-7.50 (dt, 1H), 7.48-7.45 (dq, 1H), 7.38-7.28 (m, 4H), 7.21-7.18 (m, 1H), 2.67 (t, 2H), 1.69-1.58 (m, 2H), 1.40-1.28 (m, 6H) , 0.89 (t, 3H)
 次に、下記のスキームのとおり化合物7を合成した。 Next, compound 7 was synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 窒素ガスで内部の雰囲気を置換した容量1Lの四つ口フラスコにマグネシウム(1.61g,0.066mol)、THF(47g)、ヨウ素(32mg)を加え、撹拌した。ヨウ素の紫色が消えた後に、化合物4(19.8g、0.063mmol)のTHF(36g)溶液を滴下し、グリニャール試薬を発生させた。 Magnesium (1.61 g, 0.066 mol), THF (47 g), and iodine (32 mg) were added to a 1 L four-necked flask whose internal atmosphere was replaced with nitrogen gas, and stirred. After the purple color of iodine disappeared, a solution of compound 4 (19.8 g, 0.063 mmol) in THF (36 g) was added dropwise to generate a Grignard reagent.
 国際公開第2011/136311号に記載の方法で合成した化合物5(5.21g、0.025mol)及びTHF(107g)を含む溶液を内温が40℃を超えないように四つ口フラスコに滴下し、反応液を得た。その後1時間撹拌し、反応液に塩化アンモニウム水溶液を注いで反応を停止させ、分液した。得られた有機層を硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した後、得られたろ液をロータリーエバポレーターで濃縮した。 A solution containing compound 5 (5.21 g, 0.025 mol) and THF (107 g) synthesized by the method described in International Publication No. 2011/136311 is added dropwise to a four-necked flask so that the internal temperature does not exceed 40 ° C. to obtain a reaction solution. After that, the mixture was stirred for 1 hour, an aqueous ammonium chloride solution was poured into the reaction mixture to stop the reaction, and the mixture was separated. The obtained organic layer was dehydrated with magnesium sulfate, the magnesium sulfate was removed by filtration, and the obtained filtrate was concentrated with a rotary evaporator.
 展開溶媒としてヘキサン及び酢酸エチルを使用するシリカゲルカラムクロマトグラフィーにより精製することで、化合物6を14.21g(20.7mmol、収率83%)得た。 Purification by silica gel column chromatography using hexane and ethyl acetate as developing solvents gave 14.21 g (20.7 mmol, yield 83%) of compound 6.
 化合物6のH-NMR測定結果は下記のとおりである。
 δ(ppm):7.82-7.76 (m, 1H), 7.64 (s, 2H), 7.43 (m, 2H), 7.31 (m, 10H), 7.25 (m, 2H), 7.21 (m, 1H), 7.13 (m, 2H), 6.91 (d, 1H), 6.64 (d, 1H), 6.43 (d, 1H), 3.72-3.64 (m, 1H), 2.63 (t, 4H), 1.61 (m, 4H), 1.22-1.34 (m, 12H), 0.86 (t, 6H)
The 1 H-NMR measurement results of compound 6 are as follows.
δ (ppm): 7.82-7.76 (m, 1H), 7.64 (s, 2H), 7.43 (m, 2H), 7.31 (m, 10H), 7.25 (m , 2H), 7.21 (m, 1H), 7.13 (m, 2H), 6.91 (d, 1H), 6.64 (d, 1H), 6.43 (d, 1H), 3 .72-3.64 (m, 1H), 2.63 (t, 4H), 1.61 (m, 4H), 1.22-1.34 (m, 12H), 0.86 (t, 6H) )
 次いで、下記のスキームのとおり化合物8を合成した。 Then, compound 8 was synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 容量500mLの四つ口フラスコに化合物6(14.21g、0.0208mmol)、ヘプタン(130g)を仕込み、反応容器内の雰囲気を窒素ガスで置換した後にトリフルオロ酢酸(0.409g、0.0036mmol)を仕込み、60℃に昇温して30分間撹拌した後に、常温まで冷却して反応溶液を得た。 Compound 6 (14.21 g, 0.0208 mmol) and heptane (130 g) were placed in a four-necked flask with a capacity of 500 mL, and after replacing the atmosphere in the reaction vessel with nitrogen gas, trifluoroacetic acid (0.409 g, 0.0036 mmol) ), heated to 60° C., stirred for 30 minutes, and then cooled to room temperature to obtain a reaction solution.
 反応溶液を水で2回洗浄した後、有機層を硫酸マグネシウムで脱水し、シリカゲルを充填した桐山ロートに通液させ、ろ液をロータリーエバポレーターで濃縮することで化合物7を13.37g(収率96.6%)得た。 After the reaction solution was washed twice with water, the organic layer was dehydrated with magnesium sulfate, passed through a Kiriyama funnel packed with silica gel, and the filtrate was concentrated with a rotary evaporator to give 13.37 g of compound 7 (yield: 96.6%).
 得られた化合物7のH-NMR測定結果は下記のとおりである。
 δ(ppm):7.73 (s, 2H), 7.64 (s, 2H), 7.45-7.43 (m, 7H), 7.33-7.31 (m, 2H), 7.26 (s, 2H), 7.22 (s, 1H), 7.16-7.13 (m, 1H), 6.93 (d, 1H), 6.65 (d, 1H), 6.44 (d, 1H), 2.64 (t, 4H), 1.67-1.58 (m, 4H), 1.34-1.26 (m, 12H), 0.86 (t, 6H)
1 H-NMR measurement results of the obtained compound 7 are as follows.
δ (ppm): 7.73 (s, 2H), 7.64 (s, 2H), 7.45-7.43 (m, 7H), 7.33-7.31 (m, 2H), 7 .26 (s, 2H), 7.22 (s, 1H), 7.16-7.13 (m, 1H), 6.93 (d, 1H), 6.65 (d, 1H), 44 (d, 1H), 2.64 (t, 4H), 1.67-1.58 (m, 4H), 1.34-1.26 (m, 12H), 0.86 (t, 6H)
 下記のスキームのとおり化合物8を合成した。 Compound 8 was synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 アルゴンガスで内部の雰囲気を置換したフラスコに化合物7(25.0g)、テトラエチルエチレンジアミンを(5.6mL)、脱水テトラヒドロフラン(436mL)を入れ、攪拌して溶解させた。次いで溶液をドライアイス及びアセトンを含む冷却槽で-65℃まで冷却した後、1.6mol/LのnBuLiヘキサン溶液(58.9mL)をフラスコに滴下し、-65℃で2時間攪拌した。-65℃を維持したまま、トリイソプロポキシボラン(19.74g)をTHF40mLに溶解させた溶液をフラスコに滴下し、-65℃でさらに1時間攪拌した後、常温まで昇温させて反応液を得た。 Compound 7 (25.0 g), tetraethylethylenediamine (5.6 mL), and dehydrated tetrahydrofuran (436 mL) were placed in a flask whose internal atmosphere was replaced with argon gas, and dissolved by stirring. After the solution was cooled to -65°C in a cooling bath containing dry ice and acetone, a 1.6 mol/L nBuLi hexane solution (58.9 mL) was added dropwise to the flask and stirred at -65°C for 2 hours. A solution of triisopropoxyborane (19.74 g) dissolved in 40 mL of THF was added dropwise to the flask while the temperature was maintained at −65° C., and the mixture was further stirred at −65° C. for 1 hour and then warmed to room temperature to dilute the reaction solution. Obtained.
 次に、得られた反応液に濃度2%の塩酸を290mL入れ、分液した。得られた有機層を硫酸マグネシウムとトリメチロールエタン(13.5g)を加えて1時間常温で攪拌した。濾過によって硫酸マグネシウムを除き、ろ液を得た。得られたろ液について減圧下で溶媒を留去し、トルエン(700mL)を加えて析出した固体をろ過によって除去した後、ヘキサンを加えて上澄みを除いた後、減圧下で溶媒を除去することで化合物8を37.7g(収率109%)得た。 Next, 290 mL of hydrochloric acid with a concentration of 2% was added to the obtained reaction solution, and the solution was separated. Magnesium sulfate and trimethylolethane (13.5 g) were added to the obtained organic layer, and the mixture was stirred at room temperature for 1 hour. Magnesium sulfate was removed by filtration to obtain a filtrate. The solvent was distilled off under reduced pressure for the resulting filtrate, toluene (700 mL) was added and the precipitated solid was removed by filtration, then hexane was added to remove the supernatant, and the solvent was removed under reduced pressure. 37.7 g of compound 8 was obtained (yield 109%).
 (実施例3)
 下記のスキームのとおり、高分子化合物P-3及びP-4を合成した。
(Example 3)
Polymer compounds P-3 and P-4 were synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 冷却装置を備えたガラス製反応容器に、常温で、原料として化合物1(1.05mmol)、化合物8(1.05mmol)、化合物3(2.1mmol)、水(62.5g)、濃度40質量%のリン酸カリウム水溶液(7.6mL)、THF(49mL)、テトラリン(21mL)、及びビス(トリ-tert-ブチルホスフィン)パラジウム(0)(0.02mmol)を加えて65℃で1時間攪拌した。さらに反応容器に原料としてフェニルホウ酸(2.1mmol)及び濃度40質量%のリン酸カリウム水溶液(11.0mL)の混合溶液を加えて、65℃で1時間攪拌した。生じた有機層をジエチルジチオカルバミン酸ナトリウム水溶液、酢酸水、及び水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 Compound 1 (1.05 mmol), Compound 8 (1.05 mmol), Compound 3 (2.1 mmol) and water (62.5 g) as raw materials were placed in a glass reaction vessel equipped with a cooling device at room temperature at a concentration of 40 mass. % potassium phosphate aqueous solution (7.6 mL), THF (49 mL), tetralin (21 mL), and bis(tri-tert-butylphosphine)palladium(0) (0.02 mmol) were added and stirred at 65° C. for 1 hour. bottom. Furthermore, a mixed solution of phenylboric acid (2.1 mmol) and an aqueous potassium phosphate solution (11.0 mL) having a concentration of 40% by mass was added as raw materials to the reactor, and the mixture was stirred at 65° C. for 1 hour. After the resulting organic layer was washed with an aqueous solution of sodium diethyldithiocarbamate, aqueous acetic acid, and water, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to collect a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより高分子化合物P-3を得た。 The obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 3.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-3を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表1に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-3 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 1 below.
 (比較例3)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例3と同様にして、GPC測定を行った。結果を下記表1に示した。
(Comparative Example 3)
GPC measurement was performed in the same manner as in Example 3 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 1 below.
 (実施例4)
 加えた原料を、化合物3(2.1mmol)、化合物8(1.061mmol)及び化合物1(1.061mmol)とした以外は、高分子化合物P-3と同様にして高分子化合物P-4を合成した。
(Example 4)
Polymer compound P-4 was prepared in the same manner as polymer compound P-3, except that compound 3 (2.1 mmol), compound 8 (1.061 mmol) and compound 1 (1.061 mmol) were added as starting materials. Synthesized.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-4を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表1に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-4 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 1 below.
 (比較例4)
4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例4と同様にして、GPC測定を行った。結果を下記表1に示した。
(Comparative Example 4)
GPC measurement was performed in the same manner as in Example 4 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 1 below.
 (比較例5)
 まず、化合物1及び化合物2を、国際公開第2014/112656号に記載の方法により合成した。
(Comparative Example 5)
First, compound 1 and compound 2 were synthesized by the method described in International Publication No. 2014/112656.
 次いで、常温で冷却装置を備えたガラス製反応容器に、化合物1(12.95mmol)、化合物2(12.95mmol)、化合物3(26.5mmol)、水(789.8mL)、40質量%リン酸カリウム水溶液(93.5mL)、オルトキシレン(441mL)、シクロヘキサノン(441mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.32mmol)を加えて混合した。 Next, in a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (12.95 mmol), compound 2 (12.95 mmol), compound 3 (26.5 mmol), water (789.8 mL), 40 mass% phosphorus Aqueous potassium acid solution (93.5 mL), ortho-xylene (441 mL), cyclohexanone (441 mL), and chloride (methanide) {bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl ]phosphane}palladium (0.32 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをオルトキシレンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより高分子化合物P-5を得た。 The resulting crude polymer was dissolved in ortho-xylene, passed through a 5B (JIS P 3801: Type 5 B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain Polymer Compound P. -5 was obtained.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-5を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表2に示した。
 なお、表2中、「N.D.」はC=O伸縮ピーク強度が検出限界値以下であったためアミド構造を含む末端構造の割合が算出できなかったことを示している。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-5 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 2 below.
In Table 2, "N.D." indicates that the ratio of the terminal structure containing the amide structure could not be calculated because the C=O stretching peak intensity was below the detection limit.
 (比較例6)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は比較例5と同様にして、GPC測定を行った。結果を下記表2に示した。
(Comparative Example 6)
GPC measurement was performed in the same manner as in Comparative Example 5 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 2 below.
 (比較例7)
 まず、化合物1及び化合物2を、国際公開第2014/112656号に記載の方法により合成した。
(Comparative Example 7)
First, compound 1 and compound 2 were synthesized by the method described in International Publication No. 2014/112656.
 次いで、冷却装置を備えたガラス製反応容器に、常温で、化合物1(8.92mmol)、化合物2(8.92mmol)、化合物3(18mmol)、水(540mL)、40質量%リン酸カリウム水溶液(60mL)、テトラリン(300mL)、1-メチルシクロヘキサノール(300mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.22mmol)を加えて混合した。 Then, in a glass reaction vessel equipped with a cooling device, at room temperature, compound 1 (8.92 mmol), compound 2 (8.92 mmol), compound 3 (18 mmol), water (540 mL), 40% by mass potassium phosphate aqueous solution (60 mL), tetralin (300 mL), 1-methylcyclohexanol (300 mL), and chloride (methanide){bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl]phosphane. } Palladium (0.22 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより高分子化合物P-6を得た。 The obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 6.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-6を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表2に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-6 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 2 below.
 (比較例8)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は比較例7と同様にして、GPC測定を行った。結果を下記表2に示した。
(Comparative Example 8)
GPC measurement was performed in the same manner as in Comparative Example 7 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 2 below.
 (実施例5)
 下記のスキームのとおり、高分子化合物P-7を合成した。
(Example 5)
Polymer compound P-7 was synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 冷却装置を備えたガラス製反応容器に、常温で、化合物1(2.54mmol)、化合物3(2.50mmol)、水(75.5mL)、40質量%リン酸カリウム水溶液(13.8mL)、テトラリン(42.3mL)、1-メチルシクロヘキサノール(40.1mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.016mmol)を加えて混合した。 In a glass reaction vessel equipped with a cooling device, at room temperature, compound 1 (2.54 mmol), compound 3 (2.50 mmol), water (75.5 mL), 40% by mass potassium phosphate aqueous solution (13.8 mL), Tetralin (42.3 mL), 1-methylcyclohexanol (40.1 mL), and chloride (methanide) {bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl]phosphane } Palladium (0.016 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより、高分子化合物P-7を得た。 The resulting crude polymer was dissolved in tetralin and passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again and the precipitated solid was collected by filtration to obtain polymer compound P. -7 was obtained.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-7を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表3に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-7 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 3 below.
 (実施例6)
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-7を用い、添加剤として2-ピリジノールを添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である2-ピリジノールを添加せずに実施した。結果を下記表3に示した。
(Example 6)
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-7 was used and 2-pyridinol was added as an additive. The measurement by infrared spectroscopy was performed without adding 2-pyridinol as an additive. The results are shown in Table 3 below.
 (実施例7)
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-7を用い、添加剤としてプロピオンアミドを添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤であるプロピオンアミドを添加せずに実施した。結果を下記表3に示した。
(Example 7)
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-7 was used and propionamide was added as an additive. The measurement by infrared spectroscopy was performed without adding propionamide as an additive. The results are shown in Table 3 below.
 (比較例9)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例5と同様にして、GPC測定を行った。結果を下記表3に示した。
(Comparative Example 9)
GPC measurement was performed in the same manner as in Example 5 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 3 below.
 (実施例8)
 冷却装置を備えたガラス製反応容器に、常温で、化合物1(8.82mmol)、化合物2(8.82mmol)、化合物3(18.000mmol)、水(540mL)、40質量%リン酸カリウム水溶液(89.4mL)、テトラリン(300mL)、1-メチルシクロヘキサノール(300mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.22mmol)を加えて混合した。
(Example 8)
Compound 1 (8.82 mmol), Compound 2 (8.82 mmol), Compound 3 (18.000 mmol), water (540 mL), and 40% by mass potassium phosphate aqueous solution were placed in a glass reaction vessel equipped with a cooling device at room temperature. (89.4 mL), tetralin (300 mL), 1-methylcyclohexanol (300 mL), and chloride (methanide) {bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethylethyl)phenyl ]phosphane}palladium (0.22 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより高分子化合物P-8を得た。 The obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 8.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-8を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表3に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1 except that polymer compound P-8 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 3 below.
 (実施例9)
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-8を用い、添加剤として2-ピリジノールを添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である2-ピリジノールを添加せずに実施した。結果を下記表3に示した。
(Example 9)
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-8 was used and 2-pyridinol was added as an additive. The measurement by infrared spectroscopy was performed without adding 2-pyridinol as an additive. The results are shown in Table 3 below.
 (実施例10)
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-8を用い、添加剤としてプロピオンアミドを添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤であるプロピオンアミドを添加せずに実施した。結果を下記表3に示した。
(Example 10)
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-8 was used and propionamide was added as an additive. The measurement by infrared spectroscopy was performed without adding propionamide as an additive. The results are shown in Table 3 below.
 (比較例10)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例8と同様にして、GPC測定を行った。結果を下記表3に示した。
(Comparative Example 10)
GPC measurement was performed in the same manner as in Example 8 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 3 below.
 (実施例11)
 常温で冷却装置を備えたガラス製反応容器に、化合物1(13.024mmol)、化合物2(13.024mmol)、化合物3(26.500mmol)、水(794mL)、40質量%リン酸カリウム水溶液(8.4mL)、テトラリン(441.7mL)、1-メチルシクロヘキサノール(441.7mL)、及びクロリド(メタニド){ビス(1,1-ジメチルエチル)[3,5-ビス(1,1-ジメチルエチル)フェニル]ホスファン}パラジウム(0.32mmol)を加えて混合した。
(Example 11)
In a glass reaction vessel equipped with a cooling device at room temperature, compound 1 (13.024 mmol), compound 2 (13.024 mmol), compound 3 (26.500 mmol), water (794 mL), 40% by mass potassium phosphate aqueous solution ( 8.4 mL), tetralin (441.7 mL), 1-methylcyclohexanol (441.7 mL), and chloride (methanide) {bis(1,1-dimethylethyl)[3,5-bis(1,1-dimethyl Ethyl)phenyl]phosphane}palladium (0.32 mmol) was added and mixed.
 得られた混合物を65℃で2時間攪拌した。生じた有機層を水、酢酸水で洗浄した後、洗浄済みの有機層をメタノールに加えて析出した固体を濾過することによって粗ポリマーとして回収した。 The resulting mixture was stirred at 65°C for 2 hours. After washing the resulting organic layer with water and aqueous acetic acid, the washed organic layer was added to methanol and the precipitated solid was collected by filtration to obtain a crude polymer.
 得られた粗ポリマーをテトラリンに溶解させて、5B(JIS P 3801:5種B)濾紙に通液させた後、再度メタノールに加えて析出した固体を濾過によって回収することにより高分子化合物P-9を得た。 The obtained crude polymer was dissolved in tetralin, passed through a 5B (JIS P 3801: 5 type B) filter paper, and then added to methanol again, and the precipitated solid was collected by filtration to obtain the polymer compound P-. got 9.
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-9を用い、添加剤として4-メチルカルボスチリル(4MCS)を添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である4-メチルカルボスチリル(4MCS)を添加せずに実施した。結果を下記表3に示した。
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-9 was used and 4-methylcarbostyril (4MCS) was added as an additive. The measurement by infrared spectroscopy was performed without adding 4-methylcarbostyril (4MCS) as an additive. The results are shown in Table 3 below.
 (実施例12)
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-9を用い、添加剤として2-ピリジノールを添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤である2-ピリジノールを添加せずに実施した。結果を下記表3に示した。
(Example 12)
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that polymer compound P-9 was used and 2-pyridinol was added as an additive. The measurement by infrared spectroscopy was performed without adding 2-pyridinol as an additive. The results are shown in Table 3 below.
 (実施例13)
 <GPC測定及びアミド構造を含む末端構造の割合の測定>
 高分子化合物P-9を用い、添加剤としてプロピオンアミドを添加した以外は実施例1と同様にして、GPC測定を行った。なお、赤外分光法による測定は、添加剤であるプロピオンアミドを添加せずに実施した。結果を下記表3に示した。
(Example 13)
<GPC measurement and measurement of ratio of terminal structure containing amide structure>
GPC measurement was performed in the same manner as in Example 1, except that the polymer compound P-9 was used and propionamide was added as an additive. The measurement by infrared spectroscopy was performed without adding propionamide as an additive. The results are shown in Table 3 below.
 (比較例11)
 4-メチルカルボスチリル(4MCS)を用いなかった以外は実施例11と同様にして、GPC測定を行った。結果を下記表3に示した。
(Comparative Example 11)
GPC measurement was performed in the same manner as in Example 11 except that 4-methylcarbostyril (4MCS) was not used. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000087
 1 イメージ検出部
 2 表示装置
 10 光電変換素子
 11、210 支持基板
 12 第1の電極
 13 電子輸送層
 14 活性層
 15 正孔輸送層
 16 第2の電極
 17 封止部材
 20 CMOSトランジスタ基板
 30 層間絶縁膜
 32 層間配線部
 40 封止層
 42 シンチレータ
 44 反射層
 46 保護層
 50 カラーフィルター
 100 指紋検出部
 200 表示パネル部
 200a 表示領域
 220 有機EL素子
 230 タッチセンサーパネル
 240 封止基板
 300 静脈検出部
 302 ガラス基板
 304 光源部
 306 カバー部
 310 挿入部
 400 TOF型測距装置用イメージ検出部
 401 絶縁層
 402 浮遊拡散層
 404 フォトゲート
 406 遮光部
REFERENCE SIGNS LIST 1 image detection unit 2 display device 10 photoelectric conversion element 11, 210 support substrate 12 first electrode 13 electron transport layer 14 active layer 15 hole transport layer 16 second electrode 17 sealing member 20 CMOS transistor substrate 30 interlayer insulating film 32 Interlayer Wiring Section 40 Sealing Layer 42 Scintillator 44 Reflective Layer 46 Protective Layer 50 Color Filter 100 Fingerprint Detection Section 200 Display Panel Section 200a Display Area 220 Organic EL Element 230 Touch Sensor Panel 240 Sealing Substrate 300 Vein Detection Section 302 Glass Substrate 304 Light source section 306 Cover section 310 Insertion section 400 Image detection section for TOF rangefinder 401 Insulating layer 402 Floating diffusion layer 404 Photogate 406 Light shielding section

Claims (11)

  1.  下記式(I)で表される構成単位を含む高分子化合物であって、下記式(I)で表される構成単位を含み、かつ下記式(II)で表される末端構造を有する不純物高分子化合物をさらに含む前記高分子化合物と、
     前記不純物高分子化合物のうちの下記式(II)で表される末端構造と相補的な水素結合を2組以上形成することができる添加剤と、
     芳香族炭化水素を含む溶媒と
    を含む、組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、
     Aは、置換基を有していてもよい2価の有機基を表し、
     Bは、チアジアゾール骨格、オキサジアゾール骨格、又はトリアゾール骨格を含む環構造を表し、
     Yは、-CH-で表される基又は窒素原子を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、
     B及びYは、前記定義のとおりである。)
    A polymer compound containing a structural unit represented by the following formula (I), which contains a structural unit represented by the following formula (I) and has a terminal structure represented by the following formula (II). the polymer compound further comprising a molecular compound;
    an additive capable of forming two or more pairs of complementary hydrogen bonds with the terminal structure represented by the following formula (II) of the impurity polymer compound;
    and a solvent comprising an aromatic hydrocarbon.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I),
    A represents a divalent organic group which may have a substituent,
    B represents a ring structure containing a thiadiazole skeleton, an oxadiazole skeleton, or a triazole skeleton,
    Y represents a group represented by -CH- or a nitrogen atom. )
    Figure JPOXMLDOC01-appb-C000002
    (In formula (II),
    B and Y are as defined above. )
  2.  前記Aが、下記式(IV)で表される2価の有機基である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
     (式(IV)中、
     Ar及びArは、それぞれ独立して、置換基を有していてもよい3価の芳香族複素環基を表し、
     Zは下記式(Z-1)~式(Z-7)のいずれか1つで表される基を表す。)
    Figure JPOXMLDOC01-appb-C000004

     (式(Z-1)~(Z-7)中、Rは、
     水素原子、
     ハロゲン原子、
     置換基を有していてもよいアルキル基、
     置換基を有していてもよいシクロアルキル基、
     置換基を有していてもよいアルケニル基、
     置換基を有していてもよいシクロアルケニル基、
     置換基を有していてもよいアルキニル基、
     置換基を有していてもよいシクロアルキニル基、
     置換基を有していてもよいアリール基、
     置換基を有していてもよいアルキルオキシ基、
     置換基を有していてもよいシクロアルキルオキシ基、
     置換基を有していてもよいアリールオキシ基、
     置換基を有していてもよいアルキルチオ基、
     置換基を有していてもよいシクロアルキルチオ基、
     置換基を有していてもよいアリールチオ基、
     置換基を有していてもよい1価の複素環基、
     置換基を有していてもよい置換アミノ基、
     置換基を有していてもよいイミン残基、
     置換基を有していてもよいアミド基、
     置換基を有していてもよい酸イミド基、
     置換基を有していてもよい置換オキシカルボニル基、
     シアノ基、
     ニトロ基、
     -C(=O)-Rcで表される基、又は
     -SO-Rdで表される基を表し、
     Rc及びRdは、それぞれ独立して、
     水素原子、
     置換基を有していてもよいアルキル基、
     置換基を有していてもよいシクロアルキル基、
     置換基を有していてもよいアリール基、
     置換基を有していてもよいアルキルオキシ基、
     置換基を有していてもよいシクロアルキルオキシ基、
     置換基を有していてもよいアリールオキシ基、又は
     置換基を有していてもよい1価の複素環基を表す。
     式(Z-1)~式(Z-7)中、Rが2つある場合、2つあるRは同一であっても異なっていてもよい。)
    The composition according to claim 1, wherein A is a divalent organic group represented by the following formula (IV).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (IV),
    Ar 2 and Ar 3 each independently represent an optionally substituted trivalent aromatic heterocyclic group,
    Z represents a group represented by any one of the following formulas (Z-1) to (Z-7). )
    Figure JPOXMLDOC01-appb-C000004

    (In the formulas (Z-1) to (Z-7), R is
    hydrogen atom,
    halogen atom,
    an optionally substituted alkyl group,
    a cycloalkyl group optionally having a substituent,
    an optionally substituted alkenyl group,
    a cycloalkenyl group optionally having a substituent,
    an optionally substituted alkynyl group,
    a cycloalkynyl group optionally having a substituent,
    an aryl group optionally having a substituent,
    an optionally substituted alkyloxy group,
    a cycloalkyloxy group optionally having a substituent,
    an optionally substituted aryloxy group,
    an optionally substituted alkylthio group,
    a cycloalkylthio group optionally having a substituent,
    an optionally substituted arylthio group,
    a monovalent heterocyclic group optionally having a substituent,
    a substituted amino group which may have a substituent,
    an imine residue optionally having a substituent,
    an amide group optionally having a substituent,
    an acid imide group optionally having a substituent,
    a substituted oxycarbonyl group optionally having a substituent,
    cyano group,
    nitro group,
    a group represented by —C(=O)—Rc or a group represented by —SO 2 —Rd,
    Rc and Rd are each independently
    hydrogen atom,
    an optionally substituted alkyl group,
    a cycloalkyl group optionally having a substituent,
    an aryl group optionally having a substituent,
    an optionally substituted alkyloxy group,
    a cycloalkyloxy group optionally having a substituent,
    It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
    In formulas (Z-1) to (Z-7), when there are two Rs, the two Rs may be the same or different. )
  3.  前記添加剤がアミド構造を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the additive contains an amide structure.
  4.  赤外分光法により測定したときの前記式(I)で表される構成単位を含む主鎖由来のピーク強度に対する前記式(II)で表される末端構造に由来するピーク強度の割合が8%以上である、請求項1又は2に記載の組成物。 The ratio of the peak intensity derived from the terminal structure represented by the formula (II) to the peak intensity derived from the main chain containing the structural unit represented by the formula (I) when measured by infrared spectroscopy is 8%. 3. The composition according to claim 1 or 2, which is
  5.  前記Bがチアジアゾール骨格を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein said B contains a thiadiazole skeleton.
  6.  前記Aがチオフェン骨格を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein said A contains a thiophene skeleton.
  7.  前記添加剤が、4-メチルカルボスチリル、プロピオンアミド、又はピリジノールである、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the additive is 4-methylcarbostyril, propionamide, or pyridinol.
  8.  請求項1又は2に記載の組成物と、n型半導体材料とを含有するインク組成物。 An ink composition containing the composition according to claim 1 or 2 and an n-type semiconductor material.
  9.  前記n型半導体材料が、フラーレン化合物又は非フラーレン化合物である、請求項8に記載のインク組成物。 The ink composition according to claim 8, wherein the n-type semiconductor material is a fullerene compound or a non-fullerene compound.
  10.  請求項8に記載のインク組成物を固化した固化膜。 A solidified film obtained by solidifying the ink composition according to claim 8.
  11.  請求項10に記載の固化膜を活性層として含む、光電変換素子。 A photoelectric conversion device comprising the solidified film according to claim 10 as an active layer.
PCT/JP2022/037479 2021-10-08 2022-10-06 Composition and ink composition WO2023058725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166474 2021-10-08
JP2021166474 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058725A1 true WO2023058725A1 (en) 2023-04-13

Family

ID=85804318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037479 WO2023058725A1 (en) 2021-10-08 2022-10-06 Composition and ink composition

Country Status (2)

Country Link
JP (1) JP2023057055A (en)
WO (1) WO2023058725A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036357A (en) * 2009-10-29 2012-02-23 Sumitomo Chemical Co Ltd Polymeric compound
WO2012165420A1 (en) * 2011-06-03 2012-12-06 株式会社クラレ Composition for organic semiconductors and photoelectric conversion element using same
CN110655639A (en) * 2018-06-29 2020-01-07 华南理工大学 Segmented copolymer containing pyridine heterocyclic unit and preparation method and application thereof
CN110655637A (en) * 2018-06-29 2020-01-07 华南理工大学 Regular polymer containing pyridine heterocyclic unit, preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036357A (en) * 2009-10-29 2012-02-23 Sumitomo Chemical Co Ltd Polymeric compound
WO2012165420A1 (en) * 2011-06-03 2012-12-06 株式会社クラレ Composition for organic semiconductors and photoelectric conversion element using same
CN110655639A (en) * 2018-06-29 2020-01-07 华南理工大学 Segmented copolymer containing pyridine heterocyclic unit and preparation method and application thereof
CN110655637A (en) * 2018-06-29 2020-01-07 华南理工大学 Regular polymer containing pyridine heterocyclic unit, preparation method and application thereof

Also Published As

Publication number Publication date
JP2023057055A (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2022014482A1 (en) Photoelectric conversion element and method for manufacturing same
WO2022014483A1 (en) Photoelectric conversion element and method for manufacturing same
JP6697833B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2022019300A1 (en) Compound and photoelectric conversion element using same
WO2021200316A1 (en) Photodetector element, sensor and biometric device including same, composition, and ink
WO2021065374A1 (en) Photoelectric conversion element
WO2023058724A1 (en) Composition and ink composition
WO2022224893A1 (en) Ink composition and method for producing same
WO2022202439A1 (en) Method for producing ink composition
JP7257440B2 (en) Composition, film, organic photoelectric conversion device, and photodetection device
US20240023422A1 (en) Composition, film, organic photoelectric conversion element, and photodetection element
WO2023058725A1 (en) Composition and ink composition
WO2023100844A1 (en) Compound and photoelectric conversion element employing same
WO2023120359A1 (en) Compound and photoelectric conversion element using same
WO2023008376A1 (en) Compound, composition, and photoelectric conversion element
WO2022124222A1 (en) Composition, film, organic photoelectric conversion element, and photodetection element
WO2023054016A1 (en) Photoelectric conversion element
WO2024135401A1 (en) Ink composition for production of photoelectric conversion elements, method for producing ink composition for production of photoelectric conversion elements, high-molecular-weight compound, and method for producing high-molecular-weight compound
WO2021161793A1 (en) Polymer, composition, ink, and photoelectric conversion element
JP2023020911A (en) Compound, composition and photoelectric conversion element
CN116529311A (en) Composition, film, organic photoelectric conversion element, and photodetector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE