WO2024048034A1 - 光学素子および光学素子を含む照明装置 - Google Patents

光学素子および光学素子を含む照明装置 Download PDF

Info

Publication number
WO2024048034A1
WO2024048034A1 PCT/JP2023/023319 JP2023023319W WO2024048034A1 WO 2024048034 A1 WO2024048034 A1 WO 2024048034A1 JP 2023023319 W JP2023023319 W JP 2023023319W WO 2024048034 A1 WO2024048034 A1 WO 2024048034A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrodes
crystal cell
optical element
alignment film
Prior art date
Application number
PCT/JP2023/023319
Other languages
English (en)
French (fr)
Inventor
健夫 小糸
幸次朗 池田
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2024048034A1 publication Critical patent/WO2024048034A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • One embodiment of the present invention relates to an optical element and a lighting device including the optical element.
  • a lighting device that includes a light source and an optical element that can arbitrarily control the area irradiated with light from the light source.
  • Patent Documents 1 and 2 disclose liquid crystal lenses that utilize this characteristic.
  • liquid crystal is arranged between a pair of electrodes, and at least one electrode is composed of a plurality of electrodes arranged concentrically.
  • An object of one embodiment of the present invention is to provide an optical element that can arbitrarily process light incident from a light source, and a lighting device including the optical element.
  • one of the objects of one embodiment of the present invention is to provide the above-mentioned optical element and illumination device at low cost.
  • One embodiment of the present invention is an optical element that includes a liquid crystal cell, a ⁇ /4 film on the liquid crystal cell, and a reflection plate on the ⁇ /4 film.
  • the liquid crystal cell includes a plurality of first electrodes, a first alignment film on the first electrode, a liquid crystal layer located on the first alignment film, a second alignment film on the liquid crystal layer, and a second alignment film. including a plurality of second electrodes located on the membrane.
  • the plurality of first electrodes extend in the first stretching direction and are arranged in stripes.
  • the liquid crystal layer contains liquid crystal molecules.
  • the plurality of second electrodes are arranged in a stripe shape and extend in a second stretching direction that intersects the first stretching direction at an angle of 80° or more and 90° or less.
  • One embodiment of the present invention is an optical element that includes a first liquid crystal cell, a second liquid crystal cell on the first liquid crystal cell, and a reflector on the second liquid crystal cell.
  • Each of the first liquid crystal cell and the second liquid crystal cell includes a plurality of first electrodes arranged in a stripe pattern, a first alignment film on the plurality of first electrodes, and a first alignment film located on the first alignment film.
  • the liquid crystal layer includes a liquid crystal layer containing liquid crystal molecules, a second alignment film on the liquid crystal layer, and a plurality of second electrodes located on the second alignment film.
  • the plurality of second electrodes are arranged in a stripe shape and intersect with the plurality of first electrodes at an angle of 80° or more and 90° or less.
  • One of the embodiments of the present invention is a lighting device including the above-mentioned optical element and a light source configured to irradiate light onto a reflective plate via a liquid crystal cell or a first liquid crystal cell and a second liquid crystal cell. be.
  • FIG. 1 is a schematic perspective view of a lighting device according to an embodiment of the present invention.
  • FIG. 1 is a schematic side view of a lighting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic end view of a light source of a lighting device according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a part of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic end view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic end view of an optical element according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of a first electrode of an optical element according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of a first electrode of an optical element according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of a first electrode of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic end view of a portion of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic end view of a portion of an optical element according to an embodiment of the present invention.
  • FIG. 3 is a schematic end view illustrating the operation of the optical element according to the embodiment of the present invention.
  • FIG. 3 is a schematic end view illustrating the operation of the optical element according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating the operation of an optical element according to an embodiment of the present invention.
  • FIG. 3 is a schematic end view illustrating the operation of the optical element according to the embodiment of the present invention.
  • FIG. 3 is a schematic end view illustrating the operation of the optical element according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating the operation of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view illustrating the operation of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a part of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a timing chart showing a driving method of
  • FIG. 1 is a schematic end view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic end view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic end view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a part of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic top view of a portion of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a part of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic top view of a portion of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic top view of a portion of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view illustrating the operation of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a part of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a timing chart showing a driving method of a lighting device according to an embodiment of the present invention, and a schematic diagram showing an irradiation area obtained by this driving method.
  • FIG. 1 is a schematic end view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view illustrating the operation of an optical element according to an embodiment of the present invention.
  • the expression "a certain structure is exposed from another structure” means that a part of a certain structure is not covered by another structure; The portion not covered by the body also includes embodiments covered by another structure. Furthermore, the aspect expressed by this expression includes an aspect in which a certain structure is not in contact with another structure.
  • a lighting device 100 including an optical element 120 which is one embodiment of the present invention, will be described.
  • FIGS. 1 and 2 show a schematic perspective view and a side view of the lighting device 100, respectively.
  • the lighting device 100 basically includes a light source 110 and an optical element 120, and the optical element 120 includes a ⁇ /4 film 150 and a reflection plate 160 in addition to a liquid crystal cell 130.
  • the total number of liquid crystal cells 130 included in the optical element 120 is one.
  • the optical element 120 may include a rotation mechanism 170 or the like for changing the angle of the liquid crystal cell 130 with respect to the light source 110.
  • relatively highly directional light (collimated light) is irradiated from the light source 110 onto the liquid crystal cell 130 of the optical element 120, and after the light from the light source 110 passes through the liquid crystal cell 130, the light from the light source 110 passes through the liquid crystal cell 130.
  • the light source 110 and the optical element 120 are arranged so that the reflected light passes through the liquid crystal cell 130 again (see the dotted arrow in FIG. 2). Thereby, the light from the light source 110 is diffused and reflected by the optical element 120 at the same time.
  • the light source 110 has a main body 112, and a recess 112a is formed in the main body 112.
  • the recess 112a is a bottomed hole, and one or more light emitting elements 114 are provided in the recess 112a.
  • the recess 112a has a function of imparting directionality to the light emitted from the light emitting element 114 and irradiating the light onto the optical element 120.
  • the main body 112 can be configured to include, for example, a metal such as aluminum or stainless steel, a polymer such as polyimide, polycarbonate, or acrylic resin, or an inorganic oxide such as glass. However, as shown by the dotted arrow in FIG.
  • a material such as glass or polymer that transmits visible light is used.
  • the surface of the recessed portion 112a is constructed of a film that has a high reflectance to visible light.
  • films include films containing metals such as aluminum, silver, gold, chromium, and stainless steel, thin films containing high refractive index materials such as titanium oxide and tantalum oxide, and films containing low refractive index materials such as silicon oxide and magnesium fluoride. Examples include a laminate of thin films containing the same.
  • the shape of the recess 112a is adjusted as appropriate so that highly directional light can be obtained from the light emitting element 114 within the recess 112a.
  • the optical element 120 is provided so as to overlap the concave portion 112a so as to be irradiated with light from the light source 110 (see FIG. 2), and is housed in a housing (not shown) together with the light source 110.
  • the light emitting element 114 is an element that has the function of emitting light by supplying current, and there are no restrictions on its structure.
  • a typical example is a light emitting diode (LED).
  • a light emitting diode has a basic structure of an electroluminescent element in which an inorganic luminescent material such as gallium nitride or gallium nitride containing indium is sandwiched between a pair of electrodes, and a protective film that protects the electroluminescent element.
  • the device is configured to emit visible light using electroluminescence.
  • the emitted light color of the light emitting element 114 can also be arbitrarily selected.
  • one or more light emitting elements 114 that emit white light may be provided in the recess 112a.
  • the light source 110 may be configured such that a red light emitting element 114, a green light emitting element 114, and a blue light emitting element 114 are provided in the recess 112a so that light of various colors can be obtained from the recess 112a.
  • the occupied area is 1.0 ⁇ 10 4 ⁇ m 2 or more and 1.0 ⁇ 10 6 ⁇ m 2 or less, or 4.0 ⁇ 10 4 ⁇ m 2 or more and 5.0 ⁇ 10 5 ⁇ m. 2 or less, or a light emitting diode with a size of 9.0 ⁇ 10 4 ⁇ m 2 or more and 2.5 ⁇ 10 5 ⁇ m 2 or less can be used.
  • a so-called micro LED having a size of about 320 ⁇ m ⁇ 300 ⁇ m can be used as the light emitting element 114.
  • the liquid crystal cell 130 includes a substrate 132, a plurality of first electrodes 136 on the substrate 132, a first alignment film 142 on the plurality of first electrodes 136, and a first alignment film. 142, a second alignment film 144 on the liquid crystal layer 140, a plurality of second electrodes 138 on the second alignment film 144, and a counter substrate 134 on the plurality of second electrodes 138.
  • the main surfaces of the substrate 132 and the counter substrate 134 are xy planes, and the direction perpendicular to this xy plane is the z direction.
  • the substrate 132 and the counter substrate 134 are bonded to each other via a sealing material 146 provided in a frame shape.
  • the substrate 132 and the counter substrate 134 function as base materials for supporting the plurality of first electrodes 136 and the plurality of second electrodes 138, respectively, and seal the liquid crystal layer 140.
  • the substrate 132 and the counter substrate 134 preferably include a material that exhibits high transmittance for light from the light emitting element 114 so that the light from the light source 110 can be transmitted therethrough. Therefore, it is preferable that the substrate 132 and the counter substrate 134 include glass, quartz, or a polymeric material such as polyimide, polycarbonate, polyester, or acrylic resin.
  • the substrate 132 and the opposing substrate 134 may be configured to have a strength that will not be deformed by external force, or may be configured to be elastically deformed. As shown in FIG. 2, the substrate 132 and the counter substrate 134 may be bonded together such that a part of the main surface of the substrate 132 is exposed from the counter substrate 134.
  • the plurality of first electrodes 136 are arranged on the substrate 132 so as to be in contact with the substrate 132 or via an undercoat (not shown). provided.
  • the undercoat can be formed by one or more films containing silicon-containing inorganic compounds such as silicon nitride or silicon oxide.
  • the first electrode 136 is made of a conductive material that exhibits high transmittance to visible light, such as indium-tin oxide (ITO) or indium-zinc oxide (IZO), in order to impart high transparency to the liquid crystal cell 130. It is preferable to form it with a chemical oxide.
  • the plurality of first electrodes 136 extend in the same direction on the xy plane and are arranged in stripes.
  • each first electrode 136 (the length in the extending direction of the first electrode 136) depends on the size of the optical element 120, but is selected from a range of, for example, 5 cm or more and 15 cm or less, or 1 cm or more and 10 cm or less. do it.
  • the interval between two adjacent first electrodes 136 may be selected, for example, from the range of 1 ⁇ m or more and 30 ⁇ m or 3 ⁇ m or more and 20 ⁇ m.
  • the plurality of second electrodes 138 are also provided on the counter substrate 134 (under the counter substrate 134 in FIGS. 5A and 5B) directly or via an undercoat.
  • the second electrode 138 is also preferably formed of a conductive oxide that exhibits high transmittance to visible light, such as ITO or IZO.
  • the plurality of second electrodes 138 also extend in the same direction on the xy plane and are arranged in stripes.
  • the length of each second electrode 138 (the length in the extending direction of the second electrode 138) may also be selected from the range of 5 cm to 15 cm, or 1 cm to 10 cm.
  • the interval between two adjacent second electrodes 138 may be selected from a range of, for example, 1 ⁇ m or more and 30 ⁇ m or 3 ⁇ m and more than 20 ⁇ m.
  • the plurality of first electrodes 136 and second electrodes 138 are arranged in the z direction where they overlap (that is, the direction viewed from the counter substrate 134 side of the liquid crystal cell 130, also referred to as "in top view”). ) are provided so as to intersect with each other.
  • the extending direction of the first electrode 136 and the extending direction of the second electrode 138 may be perpendicular to each other in the z direction, but it is preferable that these directions are not completely perpendicular.
  • the angle between the extending direction of the first electrode 136 and the extending direction of the second electrode 138 in the z direction may be set in a range of 80° or more and less than 90°.
  • every other first electrode 136 selected from the plurality of first electrodes 136 is connected to the first wiring 154-1, and the remaining first electrodes 136 are connected to the first wiring 154-1.
  • the wiring 154-1 is electrically connected to another wiring (second wiring) 154-2.
  • the first wiring 154-1 and the second wiring 154-2 each form a terminal 156 at an end, and the terminal 156 is exposed from the counter substrate 134.
  • every other second electrode 138 selected from the plurality of second electrodes 138 is also connected to a wiring (third wiring) not shown, and the remaining second electrodes 138 are also connected to other electrodes. (fourth wiring).
  • the third wiring and the fourth wiring also form terminals (not shown).
  • Voltage is supplied to the first electrode 136 and the second electrode 138 from an external circuit (not shown) through these terminals.
  • the first electrodes 136 selected every other time, the other first electrodes 136, the second electrodes 138 selected every other time, and the other second electrodes 138 are made independent. and can be driven.
  • a pulsed AC voltage (AC rectangular wave) is applied to the plurality of first electrodes 136. However, the AC voltage is applied so that the phases are reversed between two adjacent first electrodes 136. Similarly, a pulsed AC voltage is applied to the plurality of second electrodes 138 so that the phases are reversed between two adjacent second electrodes 138. Therefore, it is possible to apply an alternating voltage only to the first electrode 136 and not to apply a voltage to the second electrode 138, or to supply a constant voltage, and vice versa.
  • the liquid crystal layer 140 contains liquid crystal molecules.
  • the structure of liquid crystal molecules is not limited. Although positive nematic liquid crystal is used in this embodiment, smectic liquid crystal, cholesteric liquid crystal, or chiral smectic liquid crystal may also be used.
  • the liquid crystal layer 140 is sealed in a space formed by the substrate 132, the counter substrate 134, and the sealant 146 so as to be sandwiched between the first alignment film 142 and the second alignment film 144.
  • the thickness of the liquid crystal layer 140 that is, the distance between the first alignment film 142 and the second alignment film 144 is also arbitrary, but it should be larger than the pitch of the first electrode 136 and the second electrode 138. is preferred.
  • the thickness of the liquid crystal layer 140 is 1.2 times or more and 10 times or less, 1.5 times or more and 5 times or less, or 1.6 times or more than the pitch of the first electrode 136 or the second electrode 138. It is preferable to set it to 3 times or less.
  • the specific thickness of the liquid crystal layer 140 may be selected, for example, from the range of 10 ⁇ m or more and 60 ⁇ m or less, or 10 ⁇ m or more and 50 ⁇ m or less.
  • a spacer may be provided within the liquid crystal layer 140 to maintain this thickness throughout the liquid crystal cell 130. Note that if the thickness of the liquid crystal layer 140 described above is adopted in a liquid crystal display device, it will not be possible to obtain the high responsiveness necessary for displaying moving images, and it will be difficult to realize the function as a liquid crystal display device. Become.
  • the first alignment film 142 and the second alignment film 144 contain polymers such as polyimide and polyester, and sandwich the liquid crystal layer 140 therebetween.
  • the first alignment film 142 is formed in a situation where an electric field (transverse electric field) does not exist between adjacent first electrodes 136 (i.e., when no voltage is applied to the plurality of first electrodes 136 or between adjacent first electrodes 136).
  • the structure is such that the liquid crystal molecules included in the liquid crystal layer 140 are aligned in a certain direction in a situation in which there is no potential difference between the electrodes 136).
  • the second alignment film 144 is also used in a situation where no transverse electric field exists between the plurality of second electrodes 138 (i.e., when no voltage is applied to the plurality of second electrodes 138 or when adjacent second electrodes 138
  • the structure is such that the liquid crystal molecules included in the liquid crystal layer 140 are aligned in a certain direction in a situation in which there is no potential difference between the electrodes 138.
  • the direction in which the first alignment film 142 and the second alignment film 144 align liquid crystal molecules in the absence of an electric field will be referred to as an alignment direction.
  • the orientation direction may be imparted by, for example, rubbing treatment.
  • the alignment direction may be imparted to the first alignment film 142 and the second alignment film 144 by photoalignment.
  • Photoalignment is a rubbing-less alignment process using light, and for example, polarized light in the ultraviolet region is irradiated from a predetermined direction onto an alignment film that has not been subjected to a rubbing process. This causes a photoreaction in the alignment film, introduces anisotropy to the surface of the alignment film, and imparts the ability to control liquid crystal alignment.
  • the orientation directions of the first alignment film 142 and the second alignment film 144 are perpendicular to each other in the z direction, or the angle between them is 80° or more and 90° or less in the z direction.
  • the liquid crystal cell 130 is configured as follows. Further, as shown in FIG. 6A, the plurality of first electrodes 136 and the first alignment film 142 are arranged in the extending direction of the plurality of first electrodes 136 and the alignment direction of the first alignment film 142 (see the white arrow). ) may be arranged so that they are perpendicular to each other in the z-direction, and as shown in FIG. It may be placed so that it is not perpendicular to .
  • the angle between the stretching direction of the plurality of first electrodes 136 and the orientation direction of the first alignment film 142 in the z direction is in the range of 80° or more and less than 90° or 85° or more and less than 90°. You can choose from.
  • the relationship between the plurality of second electrodes 138 and the second alignment film 144 is also similar. That is, the plurality of second electrodes 138 and the second alignment film 144 are arranged such that the extending direction of the plurality of second electrodes 138 is perpendicular to the alignment direction of the second alignment film 144 in the z direction. The arrangement may be such that the angle formed by the stretching direction of the plurality of second electrodes 138 and the orientation direction of the second alignment film 144 is 80° or more and less than 90° or 85° or more and less than 90° in the z direction. You may.
  • each first electrode 136 refers to the extending direction of the first wiring 154-1 or the second wiring 154-1 when the entire first electrode 136 has a linear shape as shown in FIG. 6A. 2 to the tip of the first electrode 136.
  • each first electrode 136 can have a bent structure including a plurality of straight portions.
  • each first electrode 136 can be configured to have a pair of straight portions 136b sandwiching one bending point 136a.
  • the stretching direction of the at least one straight portion 136b and the orientation direction of the first alignment film 142 form a plurality of layers so that the angle formed in the z direction is 80° or more and 90° or less, or 85° or more and 90° or less.
  • a first electrode 136 is placed.
  • the second electrode 138 is placed. That is, when the entire second electrode 138 has a linear shape, the extending direction of each second electrode 138 is defined as the direction from the intersection with the third wiring or the fourth wiring to the tip of the second electrode 138.
  • Each second electrode 138 can also have a bent structure including a plurality of straight parts, and in this case, the angle formed between the extending direction of at least one straight part and the orientation direction of the second alignment film 144 in the z direction.
  • the plurality of second electrodes 138 are arranged such that the angle is greater than or equal to 80° and less than or equal to 90°, or greater than or equal to 85° and less than or equal to 90°.
  • the ⁇ /4 film 150 is one of the retardation films, and is a film that gives a phase difference of ⁇ /4 ( ⁇ /2) between two vertically polarized components of incident light and emits the light. .
  • the ⁇ /4 film 150 is made of a polymer that is highly transparent to visible light, such as polycarbonate, cycloolefin polymer, or polymethacrylic acid ester, which is subjected to stretching and alignment treatment, or a liquid crystal polymer that has been subjected to alignment treatment. can do.
  • the ⁇ /4 film 150 may be provided directly on the counter substrate 134, or may be provided on the counter substrate 134 (on the opposite side from the liquid crystal layer 140) via an adhesive layer (not shown) (see FIGS. 4 to 5B). reference.).
  • the reflector 160 is provided on the ⁇ /4 film 150 and is configured to not transmit visible light and reflect visible light. Therefore, it is formed to include a metal such as silver or aluminum that has a high reflectance in a wide wavelength range of visible light, and to have a thickness that does not transmit visible light (for example, 20 nm or more or 50 nm or more).
  • a reflective plate 160 may be formed by adhering a thin film (foil) or a metal plate containing the metal described above to the ⁇ /4 film 150. Alternatively, as shown in FIG.
  • a laminate including a supporting substrate 164 containing glass, quartz, or a polymer such as polycarbonate, polyester, or polyimide, and a reflective film 162 formed on the supporting substrate 164 is used as the reflecting plate 160.
  • a ⁇ /4 film 150 and a reflection plate 160 may be arranged between the counter substrate 134 and the second electrode 138.
  • the optical element 120 may include a rotation mechanism 170 for changing the angle of the liquid crystal cell 130 with respect to the light source 110 (FIG. 2).
  • the configuration of the rotation mechanism 170 is arbitrary, as long as it can rotate the optical element 120 around a rotation axis perpendicular to the direction of light emitted from the light source 110 (or the direction in which the recess 112a extends) (see FIG. ).
  • the rotation mechanism 170 may be configured to rotate the optical element 120 around a rotation axis parallel to the direction of light emitted from the light source 110 (see the dashed curved arrow in FIG. 2). By providing the rotation mechanism 170, the light from the light source 110 can be emitted in any direction.
  • the optical element 120 further includes an anti-reflection film 160 as a configuration for suppressing light from the light source 110 from being reflected on the substrate 132 and efficiently reaching the reflection plate 160.
  • the antireflection film 166 is provided on the bottom surface of the substrate 132 (the surface opposite to the counter substrate 134).
  • a known anti-reflection film (AR film) may be used as the anti-reflection film 166.
  • a laminate of a base film and an anti-reflection film having different refractive indexes can be used as the anti-reflection film 166.
  • a laminate in which a thin film of fluorine-containing resin, silicon dioxide, or titanium dioxide is deposited on a polymer film such as polyester such as polyethylene terephthalate or cellulose such as triacetyl cellulose may be used as the antireflection film 166.
  • a polymer film such as polyester such as polyethylene terephthalate or cellulose such as triacetyl cellulose
  • the antireflection film 166 it is possible to prevent the light reflected on the substrate 132 from reaching the irradiation area, so that the shape and size of the irradiation area can be controlled more precisely.
  • the light from the light source 110 is diffused by passing through the liquid crystal cell 130 of the optical element 120 twice. It can be processed into light that provides a shaped irradiation area. Therefore, the optical element 120 is arranged so that the liquid crystal cell 130 overlaps the recess 112a of the light source 110, and the light from the light source 110 is reflected by the reflection plate 160 after passing through the liquid crystal cell 130 and the ⁇ /4 film 150. Then, the arrangement is such that the reflected light passes through the ⁇ /4 film 150 and the liquid crystal cell 130 again (see dotted line arrows in FIG. 2 and FIGS. 5A and 5B).
  • the light source 110 and the optical element 120 are arranged so that the light from the light source 110 irradiates the liquid crystal cell 130 at an incident angle of 15° or more and 75° or less. That is, the angle ⁇ formed by the direction parallel to the normal line NL of the surfaces of the substrate 132, the counter substrate 134, and the reflection plate 160 (see FIG. 5A) and the direction in which the light from the light source 110 travels (or the direction in which the recess 112a extends)
  • the light source 110 and the optical element 120 are arranged such that the angle is greater than or equal to 15 degrees and less than or equal to 75 degrees.
  • the rotation mechanism 170 may be configured to rotate the liquid crystal cell 130 within this angle.
  • the optical element 120 described above diffuses the light emitted from the light source 110 in a certain direction. Therefore, by appropriately driving the optical element 120, the light from the light source 110 can be processed into an arbitrary shape, and as a result, the shape of the irradiation area, which is the area where the illumination device 100 irradiates the object, can be arbitrarily controlled. be able to.
  • light diffusion in the liquid crystal cell 130 will be described using an embodiment in which the first electrode 136 and the second electrode 138 extend in the x direction and the y direction, respectively. In the following explanation, to facilitate understanding, a mode will be used in which light from the light source 110 is irradiated perpendicularly to the liquid crystal cell 130, that is, in the z direction. Note that light behaves similarly when incident on optical element 120.
  • FIGS. 8A and 8B are schematic end views showing the state of the liquid crystal cell 130 when not driven.
  • FIGS. 8A and 8B are schematic end views seen from the x direction and the y direction, respectively.
  • liquid crystal molecules are schematically represented by open ellipses or circles.
  • the case where the liquid crystal cell 130 is not driven is a case where no voltage is applied to the plurality of first electrodes 136 and the plurality of second electrodes 138, or a case where a constant voltage is applied.
  • the liquid crystal molecules are aligned in the first alignment film 142 and the second alignment film 144. Orient according to direction.
  • the liquid crystal molecules are aligned along the alignment direction of the first alignment film 142 near the substrate 132 (here, a direction at an angle of 80° or more and 90° or less with respect to the y direction or the x direction), and As it approaches, it turns around the z-direction as its central axis and twists 90 degrees.
  • the light passes through the ⁇ /4 film 150, is further reflected by the reflection plate 160, and passes through the ⁇ /4 film 150 again. Therefore, the phase of the light that has become polarized component y through optical rotation in the liquid crystal layer 140 is shifted by ⁇ /4 twice by the ⁇ /4 film 150, so that the light becomes polarized light whose phase is shifted by ⁇ /2 (that is, 90°). It becomes component x, enters the liquid crystal layer 140 again, and undergoes optical rotation. As a result, the light that initially entered the optical element 120 as the polarized component x exits the optical element 120 as reflected light with the polarized component y.
  • the light that rotates in the liquid crystal layer 140 becomes a polarized light component x, passes through the ⁇ /4 film 150 twice, becomes a polarized light component y, enters the liquid crystal layer 140 again, and rotates.
  • the light that initially entered the optical element 120 as the polarized component y exits the optical element 120 as reflected light with the polarized component x.
  • no electric field exists in the liquid crystal layer 140 no change in the alignment of liquid crystal molecules occurs. Therefore, no refractive index distribution occurs in the liquid crystal layer 140, and light diffusion does not occur. Therefore, when the liquid crystal cell 130 is not driven, the collimated light from the light source 110 is emitted from the optical element 120 with almost no diffusion, so that it is possible to provide light that illuminates a small irradiation area.
  • FIGS. 10A and 10B show schematic end views when the liquid crystal cell 130 is driven. 10A and 10B correspond to FIG. 8A and FIG. 8B, respectively.
  • One aspect of driving the liquid crystal cell 130 is that, with respect to the plurality of first electrodes 136 and the plurality of second electrodes 138, the phases are reversed between adjacent first electrodes 136 and second electrodes 138. In this mode, a pulsed AC voltage is applied.
  • the frequencies of the AC voltages applied to the first electrode 136 and the second electrode 138 are the same.
  • the AC voltage may be selected, for example, from a range of 3V or more and 50V or less, or 3V or more and 30V or less.
  • the liquid crystal molecules on the first electrode 136 side are aligned in the direction of the transverse electric field and are aligned in an upwardly convex arc shape between the adjacent first electrodes 136 ( Figure 10A).
  • the second electrode 138 side the liquid crystal molecules are aligned in the direction of the transverse electric field, and are aligned in a downwardly convex arc shape between the adjacent second electrodes 138 (FIG. 10B).
  • a refractive index distribution occurs within the liquid crystal layer 140 due to such changes in the orientation of liquid crystal molecules. As a result, as shown in FIG.
  • the polarization component y which is a component parallel to the transverse electric field formed by the first electrode 136, is It is refracted by the refractive index distribution formed on the substrate 132 side and diffused in the y direction.
  • this light rotates within the liquid crystal layer 140, it becomes a polarized light component x, which is a component parallel to the transverse electric field formed by the second electrode 138. Diffuse in the direction. In this way, the polarized light component y is diffused in the x direction and the y direction when passing through the liquid crystal layer 140 once.
  • this light passes through the ⁇ /4 film 150, is reflected by the reflection plate 160, and passes through the ⁇ /4 film 150 again, it becomes a polarized light component y and enters the liquid crystal layer 140 again.
  • the polarization direction of this polarized light component y is perpendicular to the orientation direction of the liquid crystal molecules formed on the second electrode 138 side of the liquid crystal layer 140 or intersects at an angle of 80° or more and less than 90°, so that the influence of the refractive index distribution is avoided. It is hardly affected and does not spread substantially.
  • the polarization direction of the polarized light component intersect at an angle less than Due to the above mechanism, one polarized light component y becomes a polarized light component y that has been diffused once in the x direction and once in the y direction, and exits from the optical element 120.
  • a similar mechanism works on the polarized light component x that is irradiated onto the optical element 120, and as a result, this polarized light component x is emitted from the optical element 120 as a polarized light component x that has been diffused once in each of the x direction and the y direction.
  • the first electrode 136 and the second electrode 138 can be driven independently. Therefore, since a refractive index distribution can be formed only on the first electrode 136 or second electrode 138 side of the liquid crystal layer 140, the direction of diffusion and the number of times of diffusion can be controlled as appropriate.
  • voltages V 1 and V 2 are alternately applied to the plurality of first electrodes 136 via the first wiring 154-1 and the second wiring 154-2, and Suppose that the voltages V 3 and V 4 are alternately applied to the plurality of second electrodes 138 via the -3 and fourth wirings 154-4 .
  • the voltages V 1 , V 2 , V 3 , and V 4 are set to 0 or constant, the liquid crystal cell 130 is not driven, so that the light provides a relatively narrow irradiation area 174-1 similar to the virtual irradiation area 172 (Fig. 14A).
  • voltages V 1 and V 3 are synchronized, voltages V 2 and V 4 are set to have opposite phases with respect to voltage V 1 or V 3 , and voltages V 1 , V 2 , V 3 , V 4 By making them the same, the light from the light source 110 can be processed into light that provides an irradiation area 174-2 that is evenly diffused in the x and y directions (FIG. 14B). Therefore, although the irradiation area 174-2 has almost the same shape as the virtual irradiation area 172, it is larger than the virtual irradiation area 172.
  • voltages V 1 and V 3 may be synchronized, voltages V 2 and V 4 may be set in opposite phase with respect to voltages V 1 or V 3 , and voltages V 1 and V 2 may be set to be in phase with voltages V 3 and V 4 .
  • the light from the light source 110 can be processed into light that provides an irradiation area 174-3 that is more diffused in the x direction than in the y direction (FIG. 14C). If the virtual irradiation area 172 is a circle, the irradiation area 174-3 will be an ellipse.
  • the light from the light source 110 can be converted to light that provides a vertically elongated irradiation area 174-4 that is diffused in the y direction. It can be processed (FIG. 15A). Conversely, by inverting the voltages V 3 and V 4 and making the voltages V 1 and V 2 0 or constant, the light from the light source 110 is diffused in the x direction to provide a horizontally elongated irradiation area 174-5. (Fig. 15B).
  • both polarization components of the light from the light source 110 can be individually diffused. Irradiation areas of various shapes can be provided. Considering that in conventional lighting devices, it is necessary to use multiple liquid crystal cells to diffuse both polarization components of light from a light source, by implementing this embodiment, it is possible to miniaturize the optical element. Not only that, but it also becomes possible to provide a lighting device that provides a wide variety of irradiation areas at a low cost.
  • the optical element 122 has two liquid crystal cells (a first liquid crystal cell 130-1 and a second liquid crystal cell cell 130-2).
  • the total number of liquid crystal cells 130 included in the optical element 122 is two.
  • the structures of the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 may be the same as the structure of the liquid crystal cell 130 of the optical element 120.
  • the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 are fixed to each other by a transparent adhesive layer 152.
  • the light from the light source 110 passes through the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 in this order, and then is reflected on the reflection plate 160, and then passes through the second liquid crystal cell 130-2 and the first liquid crystal cell again.
  • the light passes through the liquid crystal cell 130-1 in order and is emitted from the optical element 122.
  • the optical element 122 may also include an antireflection film 166 on the bottom surface side of the substrate 132 of the first liquid crystal cell 130-1.
  • the stretching direction of the first electrode 136-1 of the first liquid crystal cell 130-1 is the same as the stretching direction of the first electrode 136-2 of the second liquid crystal cell 130-2. They may be parallel to each other or at an angle of 0° or more and 10° or less. For this reason, the extending direction of the second electrode 138-1 of the first liquid crystal cell 130-1 is also parallel to the extending direction of the second electrode 138-2 of the second liquid crystal cell 130-2 or at an angle of 0° or more. Form an angle of 10° or less. Further, the optical element 122 does not require the ⁇ /4 film 150, and as shown in FIG. 16, a reflecting plate 160 can be provided on the counter substrate 134 directly or via an adhesive layer (not shown).
  • the reflective plate 160 may be provided as a reflective layer between the second electrode 138-2 of the second liquid crystal cell 130-2 and the counter substrate 134-2.
  • an insulating layer 168 that electrically insulates the reflective plate 160 and the second electrode 138-2 from each other may be provided between the reflective plate 160 and the second electrode 138-2.
  • the insulating layer 168 may be formed using one or more films containing a polymer such as acrylic resin or epoxy resin, or a silicon-containing inorganic compound such as silicon oxide or silicon nitride.
  • a reflection plate 160 may be used in place of the counter substrate 134-2. In this case as well, an insulating layer 168 may be provided to electrically insulate the reflective plate 160 and the second electrode 138-2 from each other.
  • a schematic perspective view and a top view showing the arrangement of the electrode 136-2 and one second electrode 138-2 are shown in FIGS. 19A and 19B, respectively.
  • the first electrode 136-1 and the first electrode 136-2 may be parallel to each other and/or the second electrode 138-1 and the second electrode 138-2 may also be parallel to each other. They may be parallel to each other.
  • FIG. 19A the first electrode 136-1 and the first electrode 136-2 may be parallel to each other and/or the second electrode 138-1 and the second electrode 138-2 may also be parallel to each other. They may be parallel to each other.
  • FIG. 19A the first electrode 136-1 and the first electrode 136-2 may be parallel to each other and/or the second electrode 138-1 and the second electrode 138-2 may also be parallel to each other. They may be parallel to each other.
  • FIG. 19A the first electrode 136
  • the extending direction of the first electrode 136-1 and the first electrode 136-2 is shifted in the z direction, and similarly, the extending direction of the first electrode 136-1 and the second electrode 138
  • the direction in which -2 is stretched may also be shifted in the z direction.
  • the first electrode 136-1, the second electrode 138-1, the first electrode 136-2, and the second electrode 138-2 overlap in the z direction.
  • the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 are virtually translated in the xy plane as shown in FIG. .
  • first electrode 136-1, the second electrode 138-1, the first electrode 136-2, or the second electrode 138-2 has a bent structure.
  • first electrode 136-1 and the first electrode 136-2 may completely overlap in the z direction, and/or the second electrode 138-1 and the first electrode 136-2 may overlap completely in the z direction.
  • the two electrodes 138-2 may completely overlap in the z direction.
  • FIG. 20A the first electrode 136-1 and the first electrode 136-2 may completely overlap in the z direction, and/or the second electrode 138-1 and the first electrode 136-2 may overlap completely in the z direction.
  • the two electrodes 138-2 may completely overlap in the z direction.
  • FIG. 20A the first electrode 136-1 and the first electrode 136-2 may completely overlap in the z direction, and/or the second electrode 138-1 and the first electrode 136-2 may overlap completely in the z direction.
  • the two electrodes 138-2 may completely overlap in the z direction.
  • FIG. 20A the first electrode 136-1 and the first electrode 136-2 may completely
  • the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 are configured and arranged so that two adjacent linear portions of the second electrode 138-2 extend in different directions. It's okay.
  • the straight portions of the first electrode 136-1, the second electrode 138-1, the first electrode 136-2, and the second electrode 138-2 extend in different directions in the xy plane.
  • the first electrode 136-1, the second electrode 138-1, the first electrode 136-2, and the second electrode 138-2 are virtually translated in parallel so that the bending points overlap in the z direction.
  • each straight line portion extends in different directions in the xy plane.
  • the optical element 122 including two liquid crystal cells 130 By using the optical element 122 including two liquid crystal cells 130, light can be diffused more effectively. For example, as shown in FIG. 21, if all the first electrodes 136 and second electrodes 138 of the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 are driven, the same as in the first embodiment , a refractive index distribution occurs in the liquid crystal layer 140-1 of the first liquid crystal cell 130-1 and the liquid crystal layer 140-2 of the second liquid crystal cell 130-2. Therefore, one polarized component of the light from the light source 110 (in this case, polarized component while diffusing in the x and y directions.
  • the optical element 122 changes the incident polarized light component x into a polarized light component x that is diffused twice in the x direction and in the y direction.
  • the other polarized light component here, polarized light component y
  • the light from the light source 110 can be multiple-diffused in the x direction and the y direction (for example, diffused three or more times), so it is possible to suppress coloring of the light due to insufficient diffusion.
  • irradiation areas having various shapes such as circular, elliptical, and linear shapes can be obtained.
  • voltages V 1 and V 2 are applied alternately to the plurality of first electrodes 136-1 of the first liquid crystal cell 130-1
  • Voltages V 3 and V 4 are applied alternately to the second electrodes 138-1 of the second liquid crystal cell 130-2
  • voltages V 5 and V 4 are applied alternately to the plurality of first electrodes 136-2 of the second liquid crystal cell 130-2.
  • voltages V 1 and V 7 are synchronized, voltages V 2 and V 8 are set in opposite phase with respect to voltage V 1 or V 7 , and voltages V 3 , V 4 , V 5 , V
  • voltages V 3 , V 4 , V 5 , V By setting 6 to 0 or a constant value, the light emitted from the light source 110 that provides a circular irradiation area 174-1 can be processed into light that provides a cross-shaped irradiation area 174-6.
  • the lengths of the cross-shaped branches can be controlled by appropriately changing the magnitudes of the voltages V 1 , V 2 , V 7 , and V 8 .
  • the configuration of the optical element according to the embodiment of the present invention is not limited to the configuration described above.
  • the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 can be arranged so as to be perpendicular to the stretching direction of the liquid crystal cell 136-2 or to intersect at an angle of 80° or more and 90° or less.
  • the extending direction of the second electrode 138-1 of the first liquid crystal cell 130-1 is also perpendicular or 80° to the extending direction of the second electrode 138-2 of the second liquid crystal cell 130-2. Intersect at an angle of at least 90°.
  • a ⁇ /4 film 150 is arranged.
  • the optical element 124 may also include an antireflection film 166 on the bottom surface side of the substrate 132 of the first liquid crystal cell 130-1.
  • the light source 110 when both the first electrode 136 and the second electrode 138 of the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2 are driven, the light source 110
  • the polarized light component x of the light incident from the liquid crystal layer 140-1 and the liquid crystal layer 140-2 is only rotated by 90 degrees, respectively. However, when this light passes through the ⁇ /4 film 150, is reflected on the reflection plate 160, and then passes through the ⁇ /4 film 150 again, it changes to the polarization component y.
  • this polarized light component y passes through the liquid crystal layer 140-2 and the liquid crystal layer 140-1 in order again, it is diffused in the x direction and the y direction in each of the liquid crystal layer 140-2 and the liquid crystal layer 140-1, and the diffused polarized light component x give.
  • the polarized component y of the light from the light source 110 when it enters the optical element 122, it is diffused in the y direction and the x direction by the liquid crystal layer 140-1 and the liquid crystal layer 140-2, respectively, and is diffused by the reflection plate 160. After reflection, the light is rotated by 90° by the liquid crystal layer 140-1 and the liquid crystal layer 140-2, respectively, to provide a polarized light component y.
  • each polarized light component is diffused by both the first liquid crystal cell 130-1 and the second liquid crystal cell 130-2. Therefore, as described above, by configuring the optical element 124 so that the first electrode 136 does not completely overlap between the two liquid crystal cells 130 and the second electrode 138 does not completely overlap in the z direction, (See FIGS. 19B and 20B.) It is possible to provide a lighting device in which the occurrence of illuminance unevenness and chromaticity unevenness is effectively suppressed.
  • the light from the light source 110 can be multiple-diffused in the x and y directions (for example, diffused three or more times), so it can have various shapes such as circular, elliptical, and linear. Not only can an irradiation area be obtained, but also a larger irradiation area can be obtained. It is also possible to suppress coloring of light due to insufficient diffusion.
  • the light from the light source 110 can be processed into light that provides an arbitrary irradiation area using fewer liquid crystal cells than before. be able to.
  • the light can be diffused many times using the two liquid crystal cells 130, so that coloring of the processed light can be suppressed. Therefore, the lighting device 100 including the optical element 120, 122, or 124 according to the embodiment of the present invention can function as a lighting device capable of providing various illumination areas.
  • the embodiments described above as embodiments of the present invention can be implemented in appropriate combinations as long as they do not contradict each other.
  • the present invention also applies to display devices in which a person skilled in the art appropriately adds, deletes, or changes the design of components based on the display device of each embodiment, or adds, omit, or changes conditions in a process. As long as it has the gist, it is within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

光源から入射される光を任意に加工することが可能な光学素子、および当該光学素子を含む照明装置を提供する。光学素子(120)は、液晶セル(130)、液晶セル上のλ/4フィルム(150)、およびλ/4フィルム上の反射板(160)を備える。液晶セルは、複数の第1の電極(136)、第1の電極上の第1の配向膜(142)、第1の配向膜上に位置する液晶層(140)、液晶層上の第2の配向膜(144)、および第2の配向膜上に位置する複数の第2の電極(138)を含む。複数の第1の電極は、第1の延伸方向に延伸し、ストライプ状に配列される。液晶層は、液晶分子を含む。複数の第2の電極は、ストライプ状に配列され、第1の延伸方向と80°以上90°以下の角度で交差する第2の延伸方向に延伸する。

Description

光学素子および光学素子を含む照明装置
 本発明の実施形態の一つは、光学素子および光学素子を含む照明装置に関する。例えば、本発明の実施形態の一つは、光源、および光源からの光の照射領域を任意に制御できる光学素子を含む照明装置に関する。
 ネマチック液晶などの液晶に電界を与えて液晶分子の配向を制御することで、液晶の屈折率を変化させることができる。例えば特許文献1と2には、この特性を利用した液晶レンズが開示されている。これらの液晶レンズでは、一対の電極間に液晶が配置されており、少なくとも一方の電極が同心円状に配置された複数の電極で構成される。一対の電極間に印加する交流電圧を制御することで、液晶レンズを透過する光または液晶レンズ上で反射した光の照射領域の形状を変化させることができる。
特開昭62-170933号公報 特開2010-230887号公報
 本発明の実施形態の一つは、光源から入射される光を任意に加工することが可能な光学素子、および当該光学素子を含む照明装置を提供することを課題の一つとする。あるいは、本発明の実施形態の一つは、照度斑や色度斑を発生することなく光源からの光を任意に加工可能な光学素子、および当該光学素子を含む照明装置を提供することを課題の一つとする。あるいは、本発明の実施形態の一つは、上記光学素子と照明装置を低コストで提供することを課題の一つとする。
 本発明の実施形態の一つは、液晶セル、液晶セル上のλ/4フィルム、およびλ/4フィルム上の反射板を備える光学素子である。液晶セルは、複数の第1の電極、第1の電極上の第1の配向膜、第1の配向膜上に位置する液晶層、液晶層上の第2の配向膜、および第2の配向膜上に位置する複数の第2の電極を含む。複数の第1の電極は、第1の延伸方向に延伸し、ストライプ状に配列される。液晶層は、液晶分子を含む。複数の第2の電極は、ストライプ状に配列され、第1の延伸方向と80°以上90°以下の角度で交差する第2の延伸方向に延伸する。
 本発明の実施形態の一つは、第1の液晶セル、第1の液晶セル上の第2の液晶セル、および第2の液晶セル上の反射板を備える光学素子である。第1の液晶セルと第2の液晶セルの各々は、ストライプ状に配列される複数の第1の電極、複数の第1の電極上の第1の配向膜、第1の配向膜上に位置し、液晶分子を含む液晶層、液晶層上の第2の配向膜、および第2の配向膜上に位置する複数の第2の電極を備える。第1の液晶セルと第2の液晶セルの各々において、複数の第2の電極は、ストライプ状に配列され、複数の第1の電極と80°以上90°以下の角度で交差する。
 本発明の実施形態の一つは、上記光学素子、および液晶セルまたは第1の液晶セルと第2の液晶セルを介して反射板に光を照射するように構成される光源を備える照明装置である。
本発明の実施形態に係る照明装置の模式的斜視図。 本発明の実施形態に係る照明装置の模式的側面図。 本発明の実施形態に係る照明装置の光源の模式的端面図。 本発明の実施形態に係る光学素子の一部の模式的斜視図。 本発明の実施形態に係る光学素子の模式的端面図。 本発明の実施形態に係る光学素子の模式的端面図。 本発明の実施形態に係る光学素子の第1の電極の模式的上面図。 本発明の実施形態に係る光学素子の第1の電極の模式的上面図。 本発明の実施形態に係る光学素子の第1の電極の模式的上面図。 本発明の実施形態に係る光学素子の一部の模式的端面図。 本発明の実施形態に係る光学素子の一部の模式的端面図。 本発明の実施形態に係る光学素子の動作を説明する模式的端面図。 本発明の実施形態に係る光学素子の動作を説明する模式的端面図。 本発明の実施形態に係る光学素子の動作を説明する模式図。 本発明の実施形態に係る光学素子の動作を説明する模式的端面図。 本発明の実施形態に係る光学素子の動作を説明する模式的端面図。 本発明の実施形態に係る光学素子の動作を説明する模式図。 本発明の実施形態に係る光学素子の動作を説明する模式的斜視図。 本発明の実施形態に係る光学素子の一部の模式的斜視図。 本発明の実施形態に係る照明装置の駆動方法を示すタイミングチャート、およびこの駆動方法によって得られる照射領域を示す模式図。 本発明の実施形態に係る照明装置の駆動方法を示すタイミングチャート、およびこの駆動方法によって得られる照射領域を示す模式図。 本発明の実施形態に係る照明装置の駆動方法を示すタイミングチャート、およびこの駆動方法によって得られる照射領域を示す模式図。 本発明の実施形態に係る照明装置の駆動方法を示すタイミングチャート、およびこの駆動方法によって得られる照射領域を示す模式図。 本発明の実施形態に係る照明装置の駆動方法を示すタイミングチャート、およびこの駆動方法によって得られる照射領域を示す模式図。 本発明の実施形態に係る光学素子の模式的端面図。 本発明の実施形態に係る光学素子の模式的端面図。 本発明の実施形態に係る光学素子の模式的端面図。 本発明の実施形態に係る光学素子の一部の模式的斜視図。 本発明の実施形態に係る光学素子の一部の模式的上面図。 本発明の実施形態に係る光学素子の一部の模式的斜視図。 本発明の実施形態に係る光学素子の一部の模式的上面図。 本発明の実施形態に係る光学素子の動作を説明する模式的斜視図。 本発明の実施形態に係る光学素子の一部の模式的斜視図。 本発明の実施形態に係る照明装置の駆動方法を示すタイミングチャート、およびこの駆動方法によって得られる照射領域を示す模式図。 本発明の実施形態に係る光学素子の模式的端面図。 本発明の実施形態に係る光学素子の動作を説明する模式的斜視図。
 以下、本発明の各実施形態について、図面などを参照しつつ説明する。ただし、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状などについて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。同一、あるいは類似する複数の構造を総じて表す際にはこの符号が用いられ、これらを個々に表す際には符号の後にハイフンと自然数が加えられる。
 本明細書および請求項において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りのない限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
 本明細書および請求項において、「ある構造体が他の構造体から露出する」という表現は、ある構造体の一部が他の構造体によって覆われていない態様を意味し、この他の構造体によって覆われていない部分は、さらに別の構造体によって覆われる態様も含む。また、この表現で表される態様は、ある構造体が他の構造体と接していない態様も含む。
<第1実施形態>
 本実施形態では、本発明の実施形態の一つである光学素子120を含む照明装置100について説明する。
1.全体構造
 図1と図2に照明装置100の模式的斜視図と側面図をそれぞれ示す。これらの図に示すように、照明装置100は、光源110と光学素子120を基本的な構成として備え、光学素子120は、液晶セル130に加え、λ/4フィルム150と反射板160を備える。光学素子120が有する液晶セル130の総数は1である。任意の構成として、光学素子120は、液晶セル130の光源110に対する角度を変化させるための回転機構170などを備えてもよい。後述するように、光源110からは指向性の比較的高い光(コリメート光)が光学素子120の液晶セル130に対して照射され、光源110からの光が液晶セル130を通過した後に反射板160によって反射し、反射光が再度液晶セル130を通過するように光源110と光学素子120が配置される(図2における点線矢印参照)。これにより、光源110からの光が光学素子120によって拡散されると同時に反射する。
2.光源
 光源110の模式的端面図を図3に示す。光源110は本体112を有し、本体112には凹部112aが形成される。凹部112aは有底孔であり、凹部112aには、一つまたは複数の発光素子114が設けられる。凹部112aは、発光素子114から出射される光に指向性を付与して光学素子120に照射させる機能を備える。本体112は、例えばアルミニウムやステンレスなどの金属、ポリイミドやポリカーボネート、アクリル樹脂などの高分子、あるいはガラスなどの無機酸化物を含むように構成することができる。ただし、図3の点線矢印で示すように、発光素子114からの光を凹部112a内で反射させて集光し、光学素子120へ指向させるため、ガラスや高分子などの可視光を透過する材料または可視光に対する反射率の小さい材料を用いて本体112を構成する場合には、凹部112aの表面を可視光に対する反射率が高い膜で構成することが好ましい。このような膜としては、アルミニウムや銀、金、クロム、ステンレスなどの金属を含む膜、酸化チタンや酸化タンタルなどの高屈折材料を含む薄膜と酸化ケイ素やフッ化マグネシウムなどの低屈折率材料を含む薄膜の積層体などが例示される。凹部112aの形状は、凹部112a内の発光素子114から指向性の高い光が得られるよう、適宜調整される。光学素子120は、光源110からの光が照射されるよう、凹部112aと重なるように設けられ(図2参照。)、光源110とともに図示しない筐体内に収容される。
 発光素子114は、電流を供給することで発光する機能を有する素子であり、その構造に制約はない。典型的な例として、発光ダイオード(LED)が挙げられる。発光ダイオードは、例えば窒化ガリウム、インジウムを含む窒化ガリウムなどの無機発光体を一対の電極で挟持した電界発光素子、および電解発光素子を保護する保護膜を基本的な構造として有し、電界発光(Electroluminescence)によって可視光を発光するように構成される。
 発光素子114の発光色も任意に選択することができる。例えば、凹部112aに白色発光を与える発光素子114を一つまたは複数設けてもよい。あるいは凹部112aに赤色発光の発光素子114、緑色発光の発光素子114、青色発光の発光素子114を設け、凹部112aから種々の色の光が得られるように光源110を構成してもよい。
 発光素子114の大きさに制約はなく、例えば占有面積が1.0×10μm以上1.0×10μm以下、4.0×10μm以上5.0×10μm以下、あるいは9.0×10μm以上2.5×10μm以下の発光ダイオードを用いることができる。一例として大きさが320μm×300μm程度の所謂マイクロLEDを発光素子114として用いることができる。
3.液晶セル
 光学素子120の模式的展開斜視図を図4に、図4の鎖線A-A´とB-B´に沿った端面の模式図をそれぞれ図5Aと図5Bに示す。図4では、見やすさを考慮し、幾つかの構成は省かれている。これらの図から理解されるように液晶セル130は、基板132、基板132上の複数の第1の電極136、複数の第1の電極136上の第1の配向膜142、第1の配向膜142上の液晶層140、液晶層140上の第2の配向膜144、第2の配向膜144上の複数の第2の電極138、および複数の第2の電極138上の対向基板134を含む。以下の説明では、基板132や対向基板134の主面がxy平面であり、このxy平面に垂直な方向をz方向とする。
(1)基板と対向基板
 基板132と対向基板134は、枠状に設けられる封止材146を介して互いに接合される。基板132と対向基板134は、それぞれ複数の第1の電極136と複数の第2の電極138を支持するための基材として機能するとともに、液晶層140を封止する。基板132と対向基板134は、光源110からの光が透過できるよう、発光素子114からの光に対して高い透過率を示す材料を含むことが好ましい。したがって、例えばガラスや石英、またはポリイミドやポリカルボナート、ポリエステル、アクリル樹脂などの高分子材料を含むように基板132と対向基板134を構成することが好ましい。基板132と対向基板134は、外部からの力によって変形しない強度を有するように構成してもよく、あるいは弾性変形するように構成してもよい。図2に示すように、基板132と対向基板134は、基板132の主面の一部が対向基板134から露出するように接合してもよい。
(2)第1の電極と第2の電極
 図4から図5Bに示すように、複数の第1の電極136は、基板132と接するように、あるいは図示しないアンダーコートを介して基板132上に設けられる。アンダーコートは、窒化ケイ素や酸化ケイ素などのケイ素含有無機化合物を含む一つまたは複数の膜によって形成することができる。第1の電極136は、液晶セル130に高い透光性を付与するため、インジウム-スズ酸化物(ITO)やインジウム-亜鉛酸化物(IZO)などの可視光に対して高い透過率を示す導電性酸化物で形成することが好ましい。複数の第1の電極136は、xy平面上で互いに同一の方向に延伸するとともに、ストライプ状に配置される。各第1の電極136の長さ(第1の電極136の延伸方向の長さ)は、光学素子120の大きさにも依存するが、例えば5cm以上15cm以下または1cm以上10cm以下の範囲から選択すればよい。隣り合う二つの第1の電極136の間隔は、例えば1μm以上30μmまたは3μm以上20μmの範囲から選択すればよい。
 同様に、複数の第2の電極138も対向基板134上(図5A、図5Bでは対向基板134の下。)に直接またはアンダーコートを介して設けられる。液晶セル130に高い透光性を付与するため、第2の電極138もITOやIZOなどの可視光に対して高い透過率を示す導電性酸化物で形成することが好ましい。複数の第2の電極138もxy平面上で互いに同一の方向に延伸するとともに、ストライプ状に配置される。各第2の電極138の長さ(第2の電極138の延伸方向の長さ)も5cm以上15cm以下または1cm以上10cm以下の範囲から選択すればよい。また、隣り合う二つの第2の電極138の間隔も、例えば1μm以上30μmまたは3μm以上20μmの範囲から選択すればよい。
 ここで、複数の第1の電極136と第2の電極138は、これらが重なるz方向において(すなわち、液晶セル130の対向基板134側から見た方向であり、「上面視において」とも言う。)互いに交差するように設けられる。第1の電極136の延伸方向と第2の電極138の延伸方向は、z方向において互いに垂直でもよいが、これらの方向が完全に垂直でないことが好ましい。例えば、第1の電極136の延伸方向と第2の電極138の延伸方向がz方向においてなす角度を80°以上90°未満の範囲で設定してもよい。
 図4に示すように、複数の第1の電極136から一つおきに選択される第1の電極136は第1の配線154-1と接続され、残りの第1の電極136は、第1の配線154-1から電気的に独立した他の配線(第2の配線)154-2と接続される。第1の配線154-1と第2の配線154-2は、それぞれ端部で端子156を形成し、端子156は対向基板134から露出する。同様に、図示しないが、複数の第2の電極138から一つおきに選択される第2の電極138も図示しない配線(第3の配線)と接続され、残りの第2の電極138も他の配線(第4の配線)と接続される。第3の配線と第4の配線も図示しない端子を形成する。これらの端子を介して図示しない外部回路から電圧が第1の電極136と第2の電極138に供給される。このような構成により、一つおきに選択される第1の電極136、他の第1の電極136、一つおきに選択される第2の電極138、および他の第2の電極138を独立して駆動することができる。
 複数の第1の電極136には、パルス状の交流電圧(交流矩形波)が印加される。ただし、隣り合う二つの第1の電極136間で位相が逆転するように交流電圧が印加される。同様に、複数の第2の電極138にも、隣り合う二つの第2の電極138間で位相が逆転するようにパルス状の交流電圧が印加される。したがって、第1の電極136だけに交流電圧を印加し、第2の電極138には電圧を印加しない、または一定電圧を供給することも可能であり、その逆も可能である。
(3)液晶層、第1の配向膜、および第2の配向膜
 液晶層140には液晶分子が含まれる。液晶分子の構造は限定されない。本実施形態においてはポジ型のネマチック液晶を用いているが、スメクチック液晶、コレステリック液晶、キラルスメチック液晶を採用してもよい。液晶層140は、第1の配向膜142と第2の配向膜144に挟まれるように、基板132、対向基板134、および封止材146によって形成される空間に封止される。
 液晶層140の厚さ、すなわち、第1の配向膜142と第2の配向膜144との間の距離も任意であるが、第1の電極136や第2の電極138のピッチよりも大きいことが好ましい。例えば、液晶層140の厚さは、第1の電極136または第2の電極138のピッチに対して1.2倍以上10倍以下、1.5倍以上5倍以下、または1.6倍以上3倍以下に設定することが好ましい。具体的な液晶層140の厚さは、例えば10μm以上60μm以下または10μm以上50μm以下の範囲から選択すればよい。図示しないが、この厚さを液晶セル130の全体に亘って維持するためのスペーサを液晶層140内に設けてもよい。なお、上述した液晶層140の厚さを液晶表示装置において採用した場合、動画を表示するために必要な高い応答性を得ることができず、液晶表示装置としての機能を発現することが困難となる。
 第1の配向膜142と第2の配向膜144は、ポリイミドやポリエステルなどの高分子を含み、液晶層140を挟持する。第1の配向膜142は、隣り合う第1の電極136間に電界(横電界)が存在しない状況(すなわち、複数の第1の電極136に電圧が与えられていない、または隣り合う第1の電極136間に電位差が存在しない状況)において、液晶層140に含まれる液晶分子を一定方向に配向するように構成される。同様に、第2の配向膜144も、複数の第2の電極138間に横電界が存在しない状況(すなわち、複数の第2の電極138に電圧が与えられていない、または隣り合う第2の電極138間に電位差が存在しない状況)において、液晶層140に含まれる液晶分子を一定方向に配向するように構成される。以下、第1の配向膜142と第2の配向膜144が電界の非存在下で液晶分子を配向させる方向を配向方向と呼ぶ。配向方向は、例えばラビング処理によって付与すればよい。あるいは、光配向によって第1の配向膜142と第2の配向膜144に配向方向を付与してもよい。光配向は、光を用いたラビングレスの配向処理であり、例えば、紫外領域の偏光を所定方向からラビング処理していない配向膜に照射する。これによって配向膜中で光反応を生じさせ、その配向膜表面に異方性を導入して液晶配向制御能を付与する。
 図5Aと図5Bに示すように、第1の配向膜142と第2の配向膜144の配向方向は、z方向において互いに直交する、またはz方向において互いになす角度が80°以上90°以下となるように液晶セル130が構成される。また、複数の第1の電極136と第1の配向膜142は、図6Aに示すように、複数の第1の電極136の延伸方向と第1の配向膜142の配向方向(白抜き矢印参照。)がz方向において互いに垂直になるように配置してもよく、図6Bに示すように、複数の第1の電極136の延伸方向と第1の配向膜142の配向方向がz方向において完全に垂直にならないように配置してもよい。後者の場合には、複数の第1の電極136の延伸方向と第1の配向膜142の配向方向がz方向おいてなす角度は、80°以上90°未満または85°以上90°未満の範囲から選択すればよい。図示しないが、複数の第2の電極138と第2の配向膜144との関係も同様である。すなわち、複数の第2の電極138と第2の配向膜144は、複数の第2の電極138の延伸方向が第2の配向膜144の配向方向に対してz方向において垂直になるように配置してもよく、複数の第2の電極138の延伸方向と第2の配向膜144の配向方向がなす角度がz方向において80°以上90°未満または85°以上90°未満となるように配置してもよい。
 ここで、各第1の電極136の延伸方向とは、第1の電極136全体が図6Aに示すように直線形状を有する場合には、第1の配線154-1または第2の配線154-2との交点から第1の電極136の先端までの方向である。ただし、図6Cに示すように、各第1の電極136は、複数の直線部を含む屈曲構造を有することができる。例えば、各第1の電極136は、一つの屈曲点136aを挟む一対の直線部136bを有するように構成することができる。この場合には、少なくとも一つの直線部136bの延伸方向と第1の配向膜142の配向方向がz方向においてなす角度が80°以上90°以下または85°以上90°以下となるように複数の第1の電極136を配置する。第2の電極138についても同様である。すなわち、各第2の電極138の延伸方向とは、第2の電極138全体が直線形状を有する場合には、第3の配線または第4の配線との交点から第2の電極138の先端までの方向である。各第2の電極138も複数の直線部を含む屈曲構造を有することができ、この場合には、少なくとも一つの直線部の延伸方向と第2の配向膜144の配向方向がz方向においてなす角度が80°以上90°以下または85°以上90°以下となるように複数の第2の電極138を配置する。
4.λ/4フィルム
 λ/4フィルム150は位相差フィルムの一つであり、入射された光の二つの垂直偏光成分間にλ/4(π/2)の位相差を与えて出射させるフィルムである。λ/4フィルム150は、ポリカーボネートやシクロオレフィンポリマー、ポリメタクリル酸エステルなどの可視光に対して透光性の高い高分子に延伸配向処理を施す、あるいは配向処理が施された液晶ポリマーなどによって構成することができる。λ/4フィルム150は、対向基板134に直接設けられてもよく、図示しない接着層を介して対向基板134上(液晶層140とは反対側)に設けられてもよい(図4から図5B参照。)。
5.反射板
 図4から図5Bに示すように、反射板160はλ/4フィルム150上に設けられ、可視光を透過せず、かつ、可視光を反射するように構成される。このため、例えば銀やアルミニウムなど、可視光領域の広い波長範囲で反射率の高い金属を含み、かつ、可視光を透過しない程度の厚さ(例えば、20nm以上または50nm以上)で形成される。図4から図5Bに示すように、上述した金属を含む薄膜(ホイル)または金属板をλ/4フィルム150に接着することで反射板160を形成してもよい。あるいは、図7Aに示すように、ガラス、石英、またはポリカーボネートやポリエステル、ポリイミドなどの高分子を含む支持基板164と支持基板164上に形成された反射膜162を含む積層体を反射板160としてλ/4フィルム150に接着してもよい。あるいは、図7Bに示すように、対向基板134と第2の電極138の間にλ/4フィルム150と反射板160を配置してもよい。
6.その他の構成
 任意の構成として、光学素子120は、光源110に対する液晶セル130の角度を変化させるための回転機構170を備えてもよい(図2)。回転機構170の構成は任意であり、光源110から照射される光の方向(あるいは、凹部112aが延伸する方向)に垂直な回転軸を中心に光学素子120を回転可能であればよい(図2の実線の曲線矢印参照。)。さらに、回転機構170は、光源110から照射される光の方向に平行な回転軸を中心に光学素子120を回転できるように構成してもよい(図2の鎖線の曲線矢印参照。)。回転機構170を設けることで、光源110からの光を任意の方向に射出することができる。
 図4から図5Bに示すように、光学素子120はさらに、光源110からの光が基板132上で反射することを抑制して効率よく反射板160に到達させるための構成として、反射防止膜166を含んでもよい。反射防止膜166は、基板132の底面(対向基板134に対して反対側の面)に設けられる。反射防止膜166としては公知の反射防止膜(ARフィルム)を用いればよく、例えば屈折率の異なるベースフィルムと反射防止膜の積層体を反射防止膜166として使用することができる。一例として、ポリエチレンテレフタレートなどのポリエステル、トリアセチルセルロースなどのセルロースに例示される高分子フィルム上にフッ素含有樹脂または二酸化ケイ素や二酸化チタンの薄膜を堆積した積層体を反射防止膜166として使用すればよい。反射防止膜166を設けることで、基板132上で反射する光が照射領域に到達することを防止することができるので、照射領域の形状や大きさをより精密に制御することができる。
7.光源に対する光学素子の配置
 後述するように、照明装置100では、光源110からの光が光学素子120の液晶セル130を2回通過することで拡散し、これにより、光源110からの光を様々な形状の照射領域を与える光に加工することができる。このため、光学素子120は、液晶セル130が光源110の凹部112aと重なるように配置されるとともに、光源110からの光が液晶セル130とλ/4フィルム150を通過した後に反射板160で反射し、反射光が再度λ/4フィルム150と液晶セル130を通過するように配置される(図2および図5Aと図5Bの点線矢印参照。)。より具体的には、光源110の光が液晶セル130に対して15°以上75°以下の入射角で照射されるように光源110と光学素子120が配置される。すなわち、基板132や対向基板134、反射板160の表面の法線NLに平行な方向(図5A参照。)と光源110の光が進行する方向(あるいは、凹部112aの延伸方向)がなす角度θが15°以上75°以下となるように光源110と光学素子120が配置される。回転機構170は、この角度内で液晶セル130を回転するように構成すればよい。
8.光学素子による配光制御
 上述した光学素子120は、光源110から照射される光を一定方向に拡散する。このため、光学素子120を適宜駆動することで、光源110からの光を任意の形状に加工し、その結果、照明装置100が対象物を照射する領域である照射領域の形状を任意に制御することができる。以下、第1の電極136と第2の電極138がそれぞれx方向とy方向に延伸する態様を用い、液晶セル130における光の拡散について説明する。なお、以下の説明では、理解の促進のため、光源110からの光が液晶セル130に対して垂直に、すなわち、z方向に照射される態様を用いるが、z方向からずれた方向で光が光学素子120に入射された場合も光は同様に挙動する点に留意されたい。
(1)非駆動時
 液晶セル130の非駆動時の状態を表す模式的端面図を図8Aと図8Bに示す。図8Aと図8Bは、それぞれx方向とy方向から見た模式的端面図である。以下の図では、液晶分子は白抜きの楕円または円で模式的に表されている。
 液晶セル130を駆動しない場合とは、複数の第1の電極136と複数の第2の電極138に電圧を与えない、または、一定の電圧を与える場合である。この場合、複数の第1の電極136の間にも複数の第2の電極138の間にも横電界は生じないので、液晶分子は第1の配向膜142と第2の配向膜144の配向方向に従って配向する。液晶分子は、基板132付近では第1の配向膜142の配向方向(ここでは、y方向またはx方向に対して80°以上90°以下の角度の方向)に沿って配向し、対向基板134に近づくにつれてz方向を中心軸として旋回し、90°捻じれる。
 このため、光源110から出射した光は、液晶セル130を反射板160に向かって進行する際には、拡散せずに旋光するに留まる。具体的には、図9に示すように、光源110からのx方向に偏光成分を有する光(偏光成分x)は、液晶層140を通過すると90°旋光してy方向に偏光成分を有する光(偏光成分y)となり、同様に、偏光成分xに垂直な偏光成分yも90°偏光して偏光成分xとなる。
 この後、光はλ/4フィルム150を通過し、さらに反射板160で反射して再度λ/4フィルム150を通過する。したがって、液晶層140で旋光することで偏光成分yとなった光は、λ/4フィルム150によって2回位相がλ/4シフトするので、位相がλ/2(すなわち、90°)ずれた偏光成分xとなって再度液晶層140に入って旋光する。その結果、当初偏光成分xとして光学素子120に入射した光は、偏光成分yの反射光として光学素子120から射出する。同様に、液晶層140で旋光することで偏光成分xとなった光は、λ/4フィルム150を2回通過することで偏光成分yとなって再度液晶層140に入って旋光する。その結果、当初偏光成分yとして光学素子120に入射した光は、偏光成分xの反射光として光学素子120から射出する。しかしながら、液晶層140には電界が存在しないため、液晶分子の配向変化は生じない。このため、液晶層140に屈折率分布が発生せず、光の拡散は生じない。したがって、液晶セル130の非駆動時には、光源110からのコリメート光が殆ど拡散せずに光学素子120から射出されるので、小さな照射領域を与える光を提供することができる。
(2)駆動時
 液晶セル130が駆動された際の模式的端面図を図10Aと図10Bに示す。図10Aと図10Bは、それぞれ図8Aと図8Bに対応する。液晶セル130の駆動時の一つの態様は、複数の第1の電極136と複数の第2の電極138に対し、隣り合う第1の電極136間と第2の電極138間で位相が反転するようにパルス状の交流電圧が印加される態様である。第1の電極136と第2の電極138に印加される交流電圧の周波数は同一である。交流電圧は、例えば3V以上50V以下、または3V以上30V以下の範囲から選択すればよい。第1の電極136と第2の電極138の延伸する方向は直交するまたは80°以上90°未満の角度で交差するので、交流電圧の印加により、隣り合う第1の電極136間および隣り合う第2の電極138間に、互いに直交するまたは80°以上90°未満の角度で交差する横電界が発生する(図10Aと図10Bの矢印参照。)。第1の電極136と第2の電極138間でも電界(縦電界)が発生するが、液晶層140の厚さは、隣り合う第1の電極136間や第2の電極138間の間隔と比較して大きい。このため、縦電界は横電界に対して著しく小さく、無視することができるので、各液晶分子は横電界に従って配向する。
 液晶層140内に横電界が発生すると、第1の電極136側の液晶分子は、横電界の方向に配向しつつ、隣り合う第1の電極136間で上に凸の円弧状に配向する(図10A)。第2の電極138側でも同様であり、液晶分子は横電界の方向に配向しつつ、隣り合う第2の電極138間で下に凸の円弧状に配向する(図10B)。このような液晶分子の配向変化によって液晶層140内に屈折率分布が生じる。その結果、図11に示すように、液晶セル130の基板132から液晶層140に入射した光のうち第1の電極136が形成する横電界に平行な成分である偏光成分yが液晶層140の基板132側に形成された屈折率分布によって屈折し、y方向に拡散する。この光が液晶層140内で旋光すると第2の電極138が形成する横電界に平行な成分である偏光成分xとなるので、液晶層140の対向基板134側に形成された屈折率分布によってx方向に拡散する。このように、偏光成分yは液晶層140を一度通過する際にx方向とy方向に拡散する。
 さらにこの光がλ/4フィルム150を透過し、反射板160で反射して再度λ/4フィルム150を透過すると偏光成分yとなって再度液晶層140に入る。この偏光成分yの偏光方向は、液晶層140の第2の電極138側で形成される液晶分子の配向方向と直交または80°以上90°未満の角度で交差するので、屈折率分布の影響を殆んど受けず、実質的に拡散しない。また、この光が液晶層140によって偏光成分xに変化すると、偏光成分xの偏光方向は液晶層140の第1の電極136側で形成される液晶分子の配向方向と直交または80°以上90°未満の角度で交差するので、実質的に拡散しない。以上のメカニズムにより、一方の偏光成分yは、x方向とy方向にそれぞれ1回拡散した偏光成分yとなって光学素子120から射出する。同様のメカニズムが光学素子120に照射される偏光成分xにも働き、その結果、この偏光成分xはx方向とy方向にそれぞれ1回拡散した偏光成分xとなって光学素子120から射出する。
 上述したように、第1の電極136と第2の電極138は独立して駆動することができる。したがって、液晶層140の第1の電極136または第2の電極138側だけに屈折率分布を形成することもできるので、拡散方向や拡散回数も適宜制御することができる。
(3)光の加工
 このようなメカニズムを利用することで、図12に示すように、光学素子120が存在しないと仮定した際に光源110が照射対象上に形成する仮想照射領域172と比較して大きく拡大された照射領域174を形成することができる。また、第1の電極136と第2の電極138に供給される電圧を適宜制御することで、照射領域を任意に制御することができる。例えば図13に示すように、第1の配線154-1と第2の配線154-2を介して複数の第1の電極136に交互に電圧V、Vを与え、第3の配線154-3と第4の配線154-4を介して複数の第2の電極138に交互に電圧V、Vを与えるとする。電圧V、V、V、Vを0または一定にすると、液晶セル130は非駆動となるので、光は仮想照射領域172と同様、比較的狭い照射領域174-1を与える(図14A)。これに対し、電圧VとVを同期させ、電圧VとVを電圧VまたはVに対して逆位相に設定し、かつ、電圧V、V、V、Vを同一にすることで、光源110からの光をx方向とy方向に均等に拡散された照射領域174-2を与える光に加工することができる(図14B)。このため、照射領域174-2は、仮想照射領域172とほぼ同一の形状であるものの、仮想照射領域172と比較して大きい。あるいは、電圧VとVを同期させ、電圧VとVを電圧VまたはVに対して逆位相に設定し、かつ、電圧VとVを電圧VとVよりも小さくすることで、光源110からの光をy方向よりもx方向により大きく拡散した照射領域174-3を与える光に加工することができる(図14C)。仮想照射領域172が円であれば、照射領域174-3は楕円となる。あるいは、電圧VとVを反転させ、電圧VとVを0または一定にすることで、光源110からの光をy方向に拡散した縦長状の照射領域174-4を与える光に加工することができる(図15A)。逆に、電圧VとVを反転させ、電圧VとVを0または一定にすることで、光源110からの光をx方向に拡散した横長状の照射領域174-5を与える光に加工することができる(図15B)。
 上述したように、本実施形態に係る照明装置100では、単一の液晶セル130を含む光学素子120を用いることで、光源110からの光の両偏光成分を個別に拡散することができるので、様々な形状の照射領域を与えることができる。従来の照明装置では、光源からの光の両偏光成分を拡散するためには複数の液晶セルを利用する必要があることを考慮すると、本実施形態を実施することにより、光学素子の小型化ができるだけでなく、バリエーションに富んだ照射領域を与える照明装置を低コストで提供することが可能となる。
<第2実施形態>
 本実施形態では、第1実施形態で述べた光学素子120とは構造が異なる光学素子122について説明する。第1実施形態で述べた構成と同様または類似する構成については説明を割愛することがある。
1.構成
 光学素子122が光学素子120と異なる点の一つは、図16に示すように、光学素子122は互いにz方向で重なる二つの液晶セル(第1の液晶セル130-1と第2の液晶セル130-2)を備える点である。換言すると、光学素子122に含まれる液晶セル130の総数は2である。第1の液晶セル130-1と第2の液晶セル130-2の構造は、いずれも光学素子120の液晶セル130の構造と同一でもよい。同一の構造を有する第1の液晶セル130-1と第2の液晶セル130-2を用いることで、光学素子122の生産性を向上させることができ、より低コストで光学素子122やそれを含む照明装置100を提供することができる。第1の液晶セル130-1と第2の液晶セル130-2は、透光性の接着層152によって互いに固定される。光源110からの光は、第1の液晶セル130-1と第2の液晶セル130-2の順に透過した後に反射板160上で反射し、再度第2の液晶セル130-2と第1の液晶セル130-1を順に透過し、光学素子122から射出される。図示しないが、光学素子122も第1の液晶セル130-1の基板132の底面側に反射防止膜166を備えてもよい。
 後述するように、光学素子122では、第1の液晶セル130-1の第1の電極136-1の延伸方向は第2の液晶セル130-2の第1の電極136-2の延伸方向に対して平行または0°以上10°以下の角度をなしてもよい。このため、第1の液晶セル130-1の第2の電極138-1の延伸方向も第2の液晶セル130-2の第2の電極138-2の延伸方向に対して平行または0°以上10°以下の角度をなす。また、光学素子122はλ/4フィルム150を必要とせず、図16に示すように、対向基板134上に直接または図示しない接着層を介して反射板160を設けることができる。あるいは、図17に示すように、反射板160は、反射層として第2の液晶セル130-2の第2の電極138-2と対向基板134-2の間に設けてもよい。この場合には、反射板160と第2の電極138-2を互いに電気的に絶縁する絶縁層168を反射板160と第2の電極138-2の間に設ければよい。絶縁層168は、例えばアクリル樹脂やエポキシ樹脂などの高分子または酸化ケイ素や窒化ケイ素などのケイ素含有無機化合物を含む一つまたは複数の膜を用いて形成すればよい。あるいは、図18に示すように、対向基板134-2に替わって反射板160を用いてもよい。この場合も、反射板160と第2の電極138-2を互いに電気的に絶縁する絶縁層168を配置すればよい。
 第1の液晶セル130-1から選択される一つの第1の電極136-1と一つの第2の電極138-1、および第2の液晶セル130-2から選択される一つの第1の電極136-2と一つの第2の電極138-2の配置を示す模式的斜視図と上面図を図19Aと図19Bにそれぞれ示す。図19Aに示すように、第1の電極136-1と第1の電極136-2は互いに平行であってもよく、さらに/または第2の電極138-1と第2の電極138-2も互いに平行でもよい。あるいは、図19Bに示すように、第1の電極136-1と第1の電極136-2が延伸する方向がz方向においてずれ、同様に、第2の電極138-1と第2の電極138-2が延伸する方向もz方向においてずれてもよい。図19Bに示す配置関係を採用する場合には、第1の電極136-1、第2の電極138-1、第1の電極136-2、および第2の電極138-2がz方向において重なるようにxy平面内を仮想的に平行移動すると、これらの電極の延伸方向はz方向において互いに異なるように第1の液晶セル130-1と第2の液晶セル130-2を構成することができる。
 第1の電極136-1、第2の電極138-1、第1の電極136-2、または第2の電極138-2が屈曲構造を有する場合も同様である。具体的には、図20Aに示すように、第1の電極136-1と第1の電極136-2がz方向において完全に重なってもよく、さらに/または第2の電極138-1と第2の電極138-2がz方向において完全に重なってもよい。あるいは、図20Bに示すように、第1の電極136-1の隣接する二つの直線部、第2の電極138-1の隣接する二つの直線部、第1の電極136-2の隣接する二つの直線部、第2の電極138-2の隣接する二つの直線部がいずれも異なる方向に延伸するように第1の液晶セル130-1と第2の液晶セル130-2を構成、配置してもよい。この場合、第1の電極136-1、第2の電極138-1、第1の電極136-2、および第2の電極138-2の直線部は、xy平面において異なる方向に延伸する。換言すると、屈曲点がz方向に重なるように第1の電極136-1、第2の電極138-1、第1の電極136-2、および第2の電極138-2を仮想的に平行移動した場合、それぞれの直線部はxy平面において異なる方向に延伸する。
 このように、二つの液晶セル130の間で第1の電極136がz方向において完全に重ならず、第2の電極138も完全に重ならないように光学素子122を構成することにより、これらの電極に起因する光の干渉が抑制され、その結果、光学素子122から出射する光に照度斑や色度斑が発生することを防止することができる。このため、照射領域において光源110からの光の色を忠実に再現することができる。
2.光学素子による配光制御
 二つの液晶セル130を備える光学素子122を用いることで、より効果的に光を拡散することができる。例えば図21に示すように、第1の液晶セル130-1と第2の液晶セル130-2の第1の電極136と第2の電極138の全てを駆動させると、第1実施形態と同様、第1の液晶セル130-1の液晶層140-1と第2の液晶セル130-2の液晶層140-2に屈折率分布が発生する。このため、光源110からの光の一方の偏光成分(ここでは偏光成分x)は、液晶層140-1では拡散せずに90°旋光するに留まるものの、液晶層140-2において90°旋光しつつx方向とy方向に拡散する。この光はさらに反射板160で反射したのち、液晶層140-2において再度90°旋光しつつx方向とy方向に拡散し、液晶層140-1において拡散せずに90°旋光する。その結果、光学素子122は、入射する偏光成分xをx方向とy方向にそれぞれ2回拡散した偏光成分xに変化させる。光源110からの光の他の偏光成分(ここでは、偏光成分y)も同様であり、x方向とy方向にそれぞれ2回拡散した偏光成分yを与える。
 このように、光源110からの光をx方向とy方向に多重拡散(例えば3回以上の拡散)させることができるので、拡散不足に起因する光の着色を抑制することができる。また、円形、楕円形、ライン状などの多様な形状を有する照射領域を得ることができる。例えば図22に示すように、第1の液晶セル130-1の複数の第1の電極136-1に対して交互に電圧V、Vを与え、第1の液晶セル130-1の複数の第2の電極138-1に対して交互に電圧V、Vを与え、第2の液晶セル130-2の複数の第1の電極136-2に対して交互に電圧V、Vを与え、第2の液晶セル130-2の複数の第2の電極138-2に対して交互に電圧V、Vを与えるとする。図23に示すように、電圧VとVを同期させ、電圧VとVを電圧VまたはVに対して逆位相に設定し、電圧V、V、V、Vを0または一定に設定することで、光源110から照射される円形の照射領域174-1を与える光を十字形状の照射領域174-6を与える光に加工することができる。十字形状の枝の長さは、電圧V、V、V、Vの大きさを適宜変更することで制御することができる。
3.変形例
 本発明の実施形態に係る光学素子の構成は上述した構成に限られない。例えば図24に示す本変形例に係る光学素子124のように、第1の液晶セル130-1の第1の電極136-1の延伸方向が第2の液晶セル130-2の第1の電極136-2の延伸方向に対して垂直または80°以上90°以下の角度で交差するように第1の液晶セル130-1と第2の液晶セル130-2を配置することができる。この構成では、第1の液晶セル130-1の第2の電極138-1の延伸方向も第2の液晶セル130-2の第2の電極138-2の延伸方向に対して垂直または80°以上90°以下の角度で交差する。また、光学素子120と同様、λ/4フィルム150が配置される。図示しないが、光学素子124も第1の液晶セル130-1の基板132の底面側に反射防止膜166を備えてもよい。
 図25に示すように、光学素子124では、第1の液晶セル130-1と第2の液晶セル130-2の第1の電極136と第2の電極138をいずれも駆動した際、光源110から入射する光の偏光成分xは、液晶層140-1と液晶層140-2によってそれぞれ90°旋光するに留まる。しかしながら、この光がλ/4フィルム150を通過し、反射板160上で反射した後に再度λ/4フィルム150を通過すると偏光成分yへ変化する。この偏光成分yが再度液晶層140-2、液晶層140-1を順に透過すると、液晶層140-2と液晶層140-1の各々においてx方向とy方向に拡散され、拡散した偏光成分xを与える。光源110からの光の偏光成分yについても同様であり、光学素子122に入射する際に液晶層140-1と液晶層140-2の各々によってy方向とx方向に拡散し、反射板160で反射後、液晶層140-1と液晶層140-2によってそれぞれ90°旋光して偏光成分yを与える。このように、光学素子124では、各偏光成分は、第1の液晶セル130-1と第2の液晶セル130-2の両者で拡散される。このため、上述したように二つの液晶セル130の間で第1の電極136が完全に重ならず、第2の電極138もz方向において完全に重ならないように光学素子124を構成することにより(図19B、図20B参照。)、照度斑や色度斑の発生が効果的に抑制された照明装置を提供することができる。
 したがって、光学素子122と同様、光源110からの光をx方向とy方向に多重拡散(例えば3回以上の拡散)させることができるので、円形、楕円形、ライン状などの多様な形状を有する照射領域を得ることができるとともに、より大きな照射領域を得ることができる。また、拡散不足に起因する光の着色を抑制することも可能である。
 以上述べたように、本発明の実施形態に係る光学素子120、122、124を用いることで、従来よりも少ない液晶セルを用いて光源110からの光を任意の照射領域を与える光に加工することができる。また、特に光学素子122、124を用いることで、二つの液晶セル130を用いて光を多数回拡散することができるので、加工された光への着色を抑制することができる。したがって、本発明の実施形態に係る光学素子120、122、または124を含む照明装置100は、様々な照射領域を与えることが可能な照明装置として機能することができる。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 100:照明装置、110:光源、112:本体、112a:凹部、114:発光素子、120:光学素子、122:光学素子、124:光学素子、130:液晶セル、130-1:第1の液晶セル、130-2:第2の液晶セル、132:基板、134:対向基板、134-2:対向基板、136:第1の電極、136-1:第1の電極、136-2:第1の電極、136a:屈曲点、136b:直線部、138:第2の電極、138-1:第2の電極、138-2:第2の電極、140:液晶層、140-1:液晶層、140-2:液晶層、142:第1の配向膜、144:第2の配向膜、146:封止材、150:λ/4フィルム、152:接着層、154-1:第1の配線、154-2:第2の配線、154-3:第3の配線、154-4:第4の配線、156:端子、160:反射板、162:反射膜、164:支持基板、166:反射防止膜、168:絶縁層、170:回転機構、172:仮想照射領域、174:照射領域、174-1:照射領域、174-2:照射領域、174-3:照射領域、174-4:照射領域、174-5:照射領域、174-6:照射領域
 

Claims (10)

  1.  液晶セル、
     前記液晶セル上のλ/4フィルム、および
     前記λ/4フィルム上の反射板を備え、
     前記液晶セルは、
      第1の延伸方向に延伸し、ストライプ状に配列された複数の第1の電極、
      前記第1の電極上の第1の配向膜、
      前記第1の配向膜上に位置し、液晶分子を含む液晶層、
      前記液晶層上の第2の配向膜、および
      前記第2の配向膜上に位置し、ストライプ状に配列され、前記第1の延伸方向と80°以上90°以下の角度で交差する第2の延伸方向に延伸する複数の第2の電極を含む、光学素子。
  2.  前記第1の配向膜と前記第2の配向膜は、電界の非存在下、それぞれ、互いに交差する第1の配向方向と第2の配向方向に前記液晶分子を配向するように構成され、
     前記第1の配向方向は、前記第1の延伸方向と80°以上90°以下の角度で交差し、
     前記第2の配向方向は、前記第2の延伸方向と80°以上90°以下の角度で交差する、請求項1に記載の光学素子。
  3.  前記複数の第1の電極は、隣り合う前記第1の電極間で逆位相となる第1の交流電圧が印加されるように構成され、
     前記複数の第2の電極は、隣り合う前記第2の電極間で逆位相となる第2の交流電圧が印加されるように構成される、請求項1に記載の光学素子。
  4.  請求項1に記載の前記光学素子、および
     前記液晶セルを介して前記反射板に光を照射するように構成される光源を備える照明装置。
  5.  第1の液晶セル、
     前記第1の液晶セル上の第2の液晶セル、および
     前記第2の液晶セル上の反射板を備え、
     前記第1の液晶セルと前記第2の液晶セルの各々は、
      ストライプ状に配列される複数の第1の電極、
      前記複数の第1の電極上の第1の配向膜、
      前記第1の配向膜上に位置し、液晶分子を含む液晶層、
      前記液晶層上の第2の配向膜、および
      前記第2の配向膜上に位置し、ストライプ状に配列され、前記複数の第1の電極と80°以上90°以下の角度で交差する複数の第2の電極を備える、光学素子。
  6.  前記第1の液晶セルと前記第2の液晶セルの各々において、
      前記第1の配向膜と前記第2の配向膜は、電界の非存在下、それぞれ、互いに80°以上90°以下の角度で交差する方向に前記液晶分子を配向するように構成され、
      電界の非存在下において前記第1の配向膜が前記液晶分子を配向する前記方向は、前記複数の第1の電極が延伸する方向と80°以上90°以下の角度で交差し、
      電界の非存在下において前記第2の配向膜が前記液晶分子を配向する前記方向は、前記複数の第2の電極が延伸する方向と80°以上90°以下の角度で交差する、請求項5に記載の光学素子。
  7.  前記第1の液晶セルの前記複数の前記第1の電極が延伸する方向と前記第2の液晶セルの前記複数の第1の電極が延伸する方向がなす角度は、0°以上10°以下である、請求項5に記載の光学素子。
  8.  前記第2の液晶セルと前記反射板との間にλ/4フィルムをさらに備え、
     前記第1の液晶セルの前記複数の前記第1の電極が延伸する方向と前記第2の液晶セルの前記複数の第1の電極が延伸する方向がなす角度は、80°以上90°以下である、請求項5に記載の光学素子。
  9.  前記第1の液晶セルと前記第2の液晶セルの各々において、
      前記複数の第1の電極は、隣り合う前記第1の電極間で逆位相となる第1の交流電圧が印加されるように構成され、
      前記複数の第2の電極は、隣り合う前記第2の電極間で逆位相となる第2の交流電圧が印加されるように構成される、請求項5に記載の光学素子。
  10.  請求項5に記載の前記光学素子、および
     前記第1の液晶セルと前記第2の液晶セルを介して前記反射板に光を照射するように構成される光源を備える照明装置。
     
PCT/JP2023/023319 2022-08-31 2023-06-23 光学素子および光学素子を含む照明装置 WO2024048034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138571 2022-08-31
JP2022-138571 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048034A1 true WO2024048034A1 (ja) 2024-03-07

Family

ID=90099401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023319 WO2024048034A1 (ja) 2022-08-31 2023-06-23 光学素子および光学素子を含む照明装置

Country Status (1)

Country Link
WO (1) WO2024048034A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057701A1 (en) * 2002-02-15 2005-03-17 Elop Electro-Optics Industries Ltd. System and method for varying the reflectance or transmittance of light
US20180196318A1 (en) * 2015-09-12 2018-07-12 Lensvector Inc. Liquid crystal beam control device
JP2018189913A (ja) * 2017-05-11 2018-11-29 株式会社ジャパンディスプレイ 表示装置
US20190377248A1 (en) * 2016-12-14 2019-12-12 UNIVERSITé LAVAL Method and apparatus for dynamically variable electrical control of light beam reflective liquid crystal devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057701A1 (en) * 2002-02-15 2005-03-17 Elop Electro-Optics Industries Ltd. System and method for varying the reflectance or transmittance of light
US20180196318A1 (en) * 2015-09-12 2018-07-12 Lensvector Inc. Liquid crystal beam control device
US20190377248A1 (en) * 2016-12-14 2019-12-12 UNIVERSITé LAVAL Method and apparatus for dynamically variable electrical control of light beam reflective liquid crystal devices
JP2018189913A (ja) * 2017-05-11 2018-11-29 株式会社ジャパンディスプレイ 表示装置

Similar Documents

Publication Publication Date Title
CN111965879B (zh) 光调制元件
KR102236479B1 (ko) 액정 표시 장치
US8111338B2 (en) Beam shaping device
WO2005121641A1 (en) Illumination system
US20100277669A1 (en) Illuminating device and liquid crystal display device
KR20130026277A (ko) 표시 장치용 배향막, 표시 장치용 배향막을 포함하는 액정 표시 장치, 표시 장치용 배향막 처리 방법 및 처리 장치
US20240004243A1 (en) Liquid crystal light control device
US20230375883A1 (en) Liquid crystal light control device
US20240045276A1 (en) Optical device
TWI337683B (en) Liquid crystal display device
US20230375159A1 (en) Optical element and lighting device
WO2024048034A1 (ja) 光学素子および光学素子を含む照明装置
WO2018150673A1 (ja) 光学デバイス
JP2002202506A (ja) 液晶光学素子
WO2023135937A1 (ja) 照明装置
WO2023234109A1 (ja) 光学素子および光学素子を含む照明装置
JP4923916B2 (ja) 液晶表示素子
WO2023157508A1 (ja) 照明装置
JP7496037B2 (ja) 液晶光学素子及び照明装置
WO2022244661A1 (ja) 照明装置および光学素子
WO2022244662A1 (ja) 照明装置および光学素子
US20230384628A1 (en) Optical element and display device
TWI808916B (zh) 裝飾薄膜元件及其製造方法
JP6681588B2 (ja) 光学デバイス及び光学デバイスの製造方法
US20240102633A1 (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859804

Country of ref document: EP

Kind code of ref document: A1