WO2024047803A1 - Ventilation system, control device, and ventilation control method - Google Patents

Ventilation system, control device, and ventilation control method Download PDF

Info

Publication number
WO2024047803A1
WO2024047803A1 PCT/JP2022/032796 JP2022032796W WO2024047803A1 WO 2024047803 A1 WO2024047803 A1 WO 2024047803A1 JP 2022032796 W JP2022032796 W JP 2022032796W WO 2024047803 A1 WO2024047803 A1 WO 2024047803A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
air
ventilation
amount
exhaust
Prior art date
Application number
PCT/JP2022/032796
Other languages
French (fr)
Japanese (ja)
Inventor
春実 山口
信 齊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/032796 priority Critical patent/WO2024047803A1/en
Publication of WO2024047803A1 publication Critical patent/WO2024047803A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a ventilation system, a control device, and a ventilation control method.
  • ventilation has become important as a measure against infectious diseases in buildings.
  • Patent Document 1 discloses a ventilation system in which each room in a house is provided with an air supply damper that can supply a variable amount of air to supply outside air into the room.
  • the present disclosure has been made to solve the above problems, and provides a ventilation system, etc. that can secure the necessary ventilation amount, prevent the diffusion of pollutants, and ensure thermal comfort for the user.
  • the purpose is to provide
  • the ventilation system includes: a first air supply means for supplying outside air to the first room; a second air supply means for supplying outside air to a second room adjacent to the first room; a first exhaust means for exhausting air from the first room outdoors; a second exhaust means for exhausting the air in the second room outdoors; Necessity determining means for determining whether it is necessary to increase the ventilation amount of the first room; air conditioning determining means for determining whether or not the first room is being air-conditioned by an air conditioner; When it is necessary to increase the amount of ventilation in the first room and the first room is being air-conditioned, if the amount of ventilation in the first room is increased by the required amount, the air conditioning A prediction means for predicting whether or not there will be a shortage of air conditioning capacity of an aircraft; If it is predicted that the air conditioning capacity of the air conditioner will be insufficient, the first exhaust means is controlled to increase the amount of exhaust air from the first room, and the second air supply means is controlled.
  • ventilation control means for increasing the amount of
  • FIG. 1 A diagram showing the overall configuration of a ventilation system in Embodiment 1 Block diagram showing the hardware configuration of the server in Embodiment 1 A diagram showing the configuration of a ventilation device in Embodiment 1 Block diagram showing the configuration of a ventilation unit in Embodiment 1 A diagram showing how a ventilation device, an air conditioner, a supply air damper, an exhaust damper, and a pollutant sensor are installed in Embodiment 1.
  • Block diagram showing the hardware configuration of an air conditioner in Embodiment 1 Block diagram showing the functional configuration of the server in Embodiment 1 Flowchart showing the procedure of ventilation control processing in Embodiment 1 Flowchart showing the procedure of ventilation control processing in Embodiment 2 A diagram showing the overall configuration of a ventilation system in Embodiment 4 A diagram showing how an air conditioner, an air supply fan, an exhaust fan, and a pollutant sensor are installed in Embodiment 4.
  • the ventilation system according to the present disclosure can be applied to various buildings such as residences, office buildings, commercial facilities, public facilities, etc., but in the following embodiments, the case where it is applied to a residence will be explained as an example.
  • FIG. 1 is a diagram showing the overall configuration of a ventilation system 1 in the first embodiment.
  • the ventilation system 1 is a system that ventilates a house H, which is a single-family house or an apartment complex, and is an example of the ventilation system according to the present disclosure.
  • the ventilation system 1 includes a server 2, a ventilation device 3, a plurality of air conditioners 4, a plurality of supply air dampers 5, a plurality of exhaust dampers 6, and a plurality of pollutant sensors 7. , and a router 8.
  • the server 2 is an example of a control device according to the present disclosure.
  • the server 2 is a so-called cloud server, and provides a ventilation control service for properly ventilating each room in the house H.
  • the server 2 has a hardware configuration including a communication interface 20, a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and an auxiliary memory.
  • a device 24 is provided. These components are interconnected via a bus 25.
  • the communication interface 20 is hardware for communicating with other devices via the network N1, which is a wide area network such as the Internet, and is, for example, an interface based on Ethernet (registered trademark).
  • the CPU 21 controls the server 2 in an integrated manner. Details of the functions of the server 2 realized by the CPU 21 will be described later.
  • the ROM 22 stores a plurality of firmwares and data used when executing these firmwares.
  • RAM23 is used as a work area for CPU21.
  • the auxiliary storage device 24 is composed of a readable and writable nonvolatile semiconductor memory, an HDD (Hard Disk Drive), and the like. Examples of the readable and writable nonvolatile semiconductor memory include EEPROM (Electrically Erasable Programmable Read-Only Memory) and flash memory.
  • the auxiliary storage device 24 stores a ventilation control program, which is a program for realizing a ventilation control service, and data used when executing the ventilation control program.
  • the server 2 can acquire the ventilation control program or an update program for updating the ventilation control program from another server through communication via the network N1.
  • These programs can also be used on CD-ROMs (Compact Disc Read-Only Memory), DVDs (Digital Versatile Discs), magneto-optical discs, USB (Universal Serial Bus) memory, HDDs, SSDs (Solid-State Drives), and memory cards. It is also possible to store and distribute it in a computer-readable recording medium such as. When such a recording medium is directly or indirectly attached to the server 2, the server 2 can also read and import the ventilation control program or update program from the recording medium.
  • the ventilation system 3 is a so-called central ventilation system for ensuring ventilation of the entire house H, and as shown in FIG. It includes an air supply duct 33 and a plurality of exhaust ducts 34.
  • the ventilation unit 30 includes an air supply fan 300, an exhaust fan 301, a communication interface 302, and a control circuit 303.
  • the air supply fan 300 is a fan that takes in outdoor air (that is, outside air) through the integrated air supply duct 31 and sends out the taken in outside air to each room of the house H.
  • the rotation speed of the air supply fan 300 that is, the amount of air blown by the air supply fan 300, is adjusted according to a command from the control circuit 303.
  • the exhaust fan 301 is a fan for taking in air from each room and exhausting the taken air to the outdoors via the integrated exhaust duct 32.
  • the rotation speed of the exhaust fan 301 that is, the amount of air blown by the exhaust fan 301, is adjusted according to a command from the control circuit 303.
  • the communication interface 302 is hardware for connecting to the network N2 built in the house H by the router 8 and communicating with the server 2 via the router 8.
  • the amount of outside air taken in by the ventilation device 3 and the amount of air discharged outdoors are adjusted by control commands from the server 2.
  • the communication interface 302 may be hardware for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
  • the ventilation unit 30 may be configured to communicate with the server 2 via an external communication adapter.
  • the control circuit 303 is configured to include a CPU, ROM, RAM, readable/writable nonvolatile semiconductor memory, etc., and controls the ventilation device 3 in an integrated manner.
  • Examples of the readable and writable nonvolatile semiconductor memory include EEPROM and flash memory.
  • Each air supply duct 33 is a duct for distributing and supplying the outside air taken in by the ventilation unit 30 to each room, and is arranged in the ceiling of the house H.
  • the air supply duct 33a is arranged to supply outside air to room A
  • the air supply duct 33b is arranged to supply outside air to room B
  • an air supply duct 33c is arranged to supply outside air to the room C.
  • Each exhaust duct 34 is a duct for taking in air from each room and conveying it to the ventilation unit 30, and is arranged in the ceiling of the house H.
  • the air in each room conveyed to the ventilation unit 30 is exhausted to the outdoors via the integrated exhaust duct 32. That is, each exhaust duct 34 can be said to be a duct for exhausting air from each room.
  • an exhaust duct 34a is arranged to take in air from room A
  • an exhaust duct 34b is arranged to take in air from room B
  • an exhaust duct 34c is arranged to take in air from room B. is arranged so as to take in air from room C.
  • the air conditioner 4 is an example of an air conditioner according to the present disclosure.
  • the air conditioner 4 is an indoor unit of a so-called room air conditioner, and is connected to an outdoor unit (not shown) via a communication line and a refrigerant pipe.
  • the air conditioner 4 is installed in each room of the house H.
  • an air conditioner 4a is installed in room A
  • an air conditioner 4b is installed in room B
  • an air conditioner 4c is installed in room C.
  • the air conditioner 4 includes a heat exchanger 40, a fan 41, a louver 42, a suction temperature sensor 43, an outlet temperature sensor 44, a humidity sensor 45, a thermal image sensor 46, and a communication It includes an interface 47 and a control circuit 48.
  • the heat exchanger 40 exchanges heat between indoor air taken in by the fan 41 and refrigerant from an outdoor unit (not shown).
  • the heat exchanger 40 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
  • the fan 41 takes in indoor air from an inlet (not shown), and sends out the air that has been heat exchanged by the heat exchanger 40 into the room from an outlet (not shown).
  • the rotation speed of the fan 41 that is, the amount of air blown by the fan 41, is adjusted according to a command from the control circuit 48.
  • the louver 42 adjusts the direction of air sent into the room by the fan 41.
  • the angle of the louver 42 that is, the direction of the wind, is adjusted according to commands from the control circuit 48.
  • the suction temperature sensor 43 measures the temperature of the indoor air taken in (that is, sucked in) by the fan 41. Suction temperature sensor 43 outputs a signal indicating the measured temperature to control circuit 48 in response to a request from control circuit 48 .
  • the blowout temperature sensor 44 measures the temperature of the air that has been heat exchanged by the heat exchanger 40, that is, the temperature of the air that is blown into the room from the blowout port. The blowout temperature sensor 44 outputs a signal indicating the measured temperature to the control circuit 48 in response to a request from the control circuit 48 .
  • the humidity sensor 45 measures the humidity of the indoor air taken in by the fan 41. Humidity sensor 45 outputs a signal indicating the measured humidity to control circuit 48 in response to a request from control circuit 48 .
  • the thermal image sensor 46 is an infrared thermograph and acquires a thermal image of the room. In response to a request from the control circuit 48, the thermal image sensor 46 outputs data indicating the acquired thermal image (hereinafter referred to as "thermal image data") to the control circuit 48.
  • the communication interface 47 is hardware for connecting to the network N2 and communicating with the server 2 via the router 8. Note that the communication interface 47 may be hardware for long-distance wireless communication for directly communicating with the server 2 without going through the router 8. Alternatively, the air conditioner 4 may be configured to communicate with the server 2 via an external communication adapter.
  • the air supply damper 5 is an example of a first air supply means or a second air supply means according to the present disclosure.
  • the air supply damper 5 is a so-called VAV (Variable Air Volume), and is installed at the end of each air supply duct 33 in the room direction, that is, near the air supply opening provided in the ceiling, and is installed at the end of each air supply duct 33 in the direction of the room, and is installed at the end of each air supply duct 33 in the direction of the room. Adjust the amount of air supplied (hereinafter referred to as "supply air amount").
  • an air supply damper 5a is installed in the air supply duct 33a
  • an air supply damper 5b is installed in the air supply duct 33b
  • an air supply damper 5c is installed in the air supply duct 33c. has been done.
  • the air supply damper 5 includes a communication interface for connecting to the network N2 and communicating with the server 2 via the router 8, and its opening degree is adjusted in accordance with a control command from the server 2.
  • the air supply damper 5 may be configured to include a communication interface for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
  • the exhaust damper 6 is an example of a first exhaust means or a second exhaust means according to the present disclosure.
  • the exhaust damper 6 is a so-called VAV, and is installed at the end of each exhaust duct 34 in the room direction, that is, near the air intake port provided in the ceiling, and controls the amount of air taken in from the room for exhaust ( (hereinafter referred to as "displacement amount").
  • an exhaust damper 6a is installed in the exhaust duct 34a
  • an exhaust damper 6b is installed in the exhaust duct 34b
  • an exhaust damper 6c is installed in the exhaust duct 34c.
  • the exhaust damper 6 is connected to the network N2 and includes a communication interface for communicating with the server 2 via the router 8, and its opening degree is adjusted in accordance with a control command from the server 2.
  • the exhaust damper 6 may be configured to include a communication interface for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
  • the pollutant sensor 7 is a device that measures the amount of indoor pollutants (for example, CO 2 , odor, PM (particulate matter), viruses, etc.).
  • a pollutant sensor 7a is installed in room A
  • a pollutant sensor 7b is installed in room B
  • a pollutant sensor 7c is installed in room C.
  • the pollutant sensor 7 is equipped with a communication interface for connecting to the network N2 and communicating with the server 2 via the router 8, and periodically transmits data indicating measurement results (hereinafter referred to as "pollutant data") to the server 2.
  • the pollutant sensor 7 may be configured to include a communication interface for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
  • the router 8 is a wireless LAN (Local Area Network) router such as Wi-Fi (registered trademark) or a wired LAN router. Note that the router 8 has both wireless LAN and wired LAN functions, and performs wireless communication with certain devices (ventilation unit 30, air conditioner 4, supply air damper 5, exhaust damper 6, or pollutant sensor 7). The device may be configured to perform wired communication with the device.
  • Wi-Fi registered trademark
  • wired LAN router Local Area Network
  • the device may be configured to perform wired communication with the device.
  • FIG. 7 is a block diagram showing the functional configuration of the server 2.
  • the server 2 includes a data collection section 200, a ventilation amount change necessity determination section 201, an air conditioning determination section 202, a prediction section 203, and a ventilation control section 204. These functional units are realized by the CPU 21 executing the above-mentioned ventilation control program stored in the auxiliary storage device 24.
  • the data collection unit 200 periodically (for example, once every minute Collect data on each. Each piece of data collected will be explained below.
  • the data collection unit 200 requests ventilation data from the ventilation device 3 (specifically, the ventilation unit 30).
  • the ventilation device 3 Upon receiving such a request, the ventilation device 3 transmits ventilation data including its own device ID, the current time, the rotation speed of the air supply fan 300, and the rotation speed of the exhaust fan 301 to the server 2.
  • the device ID (identifier) is information for uniquely identifying each device (that is, the ventilation device 3, each air conditioner 4, each supply air damper 5, each exhaust damper 6, and each pollutant sensor 7).
  • the device ID is, for example, the serial number (also referred to as manufacturing number or serial code) of the device. Note that when the ventilation device 3 includes a sensor that measures outside air temperature, the outside air temperature measured by the sensor may be included in the ventilation data. Further, the ventilation device 3 may spontaneously transmit ventilation data to the server 2.
  • the data collection unit 200 requests air conditioning data from each air conditioner 4.
  • each air conditioner 4 Upon receiving such a request, each air conditioner 4 transmits air conditioning data including its own device ID, current time, and operating state to the server 2.
  • the operating status includes the operating mode (heating mode, cooling mode, etc.), information indicating whether it is running or stopped, suction temperature, outlet temperature, humidity, outside air temperature, thermal image data, fan air volume, refrigerant flow rate, refrigerant temperature, etc. is included.
  • the air conditioner 4 obtains data that cannot be measured by itself, such as the outside air temperature, from the corresponding outdoor unit. Note that each air conditioner 4 may voluntarily transmit air conditioning data to the server 2.
  • the data collection unit 200 requests opening degree data from each intake damper 5 and each exhaust damper 6. Upon receiving such a request, each supply air damper 5 and each exhaust damper 6 transmits opening degree data including its own device ID, current time, and opening degree to the server 2. Note that each air supply damper 5 and each exhaust damper 6 may voluntarily transmit opening degree data to the server 2.
  • the data collection unit 200 requests pollutant data from each pollutant sensor 7. Upon receiving such a request, each pollutant sensor 7 transmits pollutant data including its own device ID, current time, and measurement results to the server 2. Note that each pollutant sensor 7 may voluntarily transmit pollutant data to the server 2.
  • the data collection unit 200 separates the above data collected from each device in chronological order and stores it in the collected data storage unit 240. That is, the collected data storage unit 240 stores the history of data collected from each device.
  • the collected data storage unit 240 is a memory area provided by the auxiliary storage device 24.
  • the ventilation amount change necessity determination unit 201 is an example of necessity determination means according to the present disclosure.
  • the ventilation amount change necessity determining unit 201 uses the property information corresponding to the house H stored in the property information storage unit 241, the air conditioning data of each air conditioner 4 and each pollution stored in the collected data storage 240. Based on the pollutant data from the substance sensor 7, it is determined whether or not the ventilation amount of each room in the house H needs to be changed. Specifically, the ventilation amount change necessity determining unit 201 determines whether or not an increase in ventilation amount is necessary and whether or not a decrease in ventilation amount is necessary.
  • the property information storage unit 241 is a memory area provided by the auxiliary storage device 24.
  • the property information storage unit 241 stores property information of each user's house, that is, each house H.
  • the property information includes room/equipment correspondence information indicating the correspondence between a room and the equipment (air conditioner 4, air supply damper 5, exhaust damper 6, pollutant sensor 7) corresponding to the room.
  • the room/device correspondence information is information that links the room ID and the device ID of each device.
  • the room ID is an ID assigned to each room in each house H.
  • the property information also includes the device ID of the ventilation system 3 installed in the house H. Further, the property information includes floor plan information indicating the floor plan of the house H.
  • the ventilation amount change necessity determination unit 201 acquires the number of people in the room from the thermal image data included in the air conditioning data, and determines that it is necessary to change the ventilation amount of the room when the number of people in the room changes. . Specifically, when the number of people in the room increases, the ventilation amount change necessity determining unit 201 determines that it is necessary to increase the ventilation amount in the room, and when the number of people in the room decreases, the ventilation amount change necessity determination unit 201 It is determined that the ventilation volume needs to be reduced.
  • the ventilation amount change necessity determining unit 201 determines whether or not it is necessary to change the ventilation amount of the room based on the measurement results included in the pollutant data, that is, the amount of pollutants. In detail, the ventilation amount change necessity determination unit 201 determines the degree of pollution (low, low, (indicated by medium or high). Then, the ventilation amount change necessity determination unit 201 determines whether or not a ventilation amount change is necessary based on the current ventilation amount of the room and the obtained degree of contamination.
  • the ventilation rate change necessity determination unit 201 determines whether the ventilation rate in the room is It is determined that the amount needs to be increased. In addition, if the current ventilation rate is larger than the normally set ventilation rate and the pollution level is "low", the ventilation rate change necessity determining unit 201 determines that the ventilation rate of the room needs to be reduced. judge.
  • the air conditioning determination unit 202 is an example of an air conditioning determination unit according to the present disclosure.
  • the air conditioning determining unit 202 determines whether or not the room is being air-conditioned by the air conditioner 4, that is, whether or not the room is being air-conditioned. Specifically, the air conditioning determination unit 202 checks the operating state included in the air conditioning data, and if the air conditioner 4 is in operation, it determines that the room is being air conditioned, and if it is stopped, it determines that the room is being air conditioned. It is determined that the room is not being air-conditioned.
  • the prediction unit 203 is an example of a prediction means according to the present disclosure.
  • the prediction unit 203 determines whether an increase in the ventilation amount is necessary and if there is a room that is being air-conditioned based on the determination results of the ventilation amount change necessity determining unit 201 and the air conditioning determining unit 202, the prediction unit 203 determines whether the ventilation amount of the room is necessary or not. It is predicted whether or not there will be a shortage in the air conditioning capacity of the air conditioner 4 when the amount increases. Specifically, first, the prediction unit 203 calculates the air conditioning load (hereinafter referred to as "L1") of the air conditioner 4 when the ventilation amount of the room is increased by the required amount using the following formula.
  • L1 the air conditioning load
  • L1 Current air conditioning capacity of the air conditioner 5 (hereinafter referred to as "C1”) + ventilation load when the ventilation amount of the room is increased by the required amount (hereinafter referred to as "L2”)
  • C1 can be calculated by the product of the enthalpy change of the refrigerant and the refrigerant flow rate, or the product of the difference between the blowout temperature and the suction temperature, the air volume, the specific heat of the air, and the density of the air.
  • L2 is calculated by the following formula.
  • the prediction unit 203 compares L1 calculated as described above with the maximum air conditioning capacity of the air conditioner 4, and if the maximum air conditioning capacity is greater than L1, the prediction unit 203 determines that there is no shortage of air conditioning capacity of the air conditioner 4. If the maximum air conditioning capacity is less than or equal to L1, it is determined that the air conditioning capacity of the air conditioner 4 is insufficient.
  • the server 2 can acquire the maximum air conditioning capacity from the air conditioner 4 through communication. For example, the server 2 requests product information from each air conditioner 4 at a predetermined timing, and each air conditioner 4 that receives the request sends product information including its own maximum air conditioning capacity to the server 2. Alternatively, the maximum air conditioning capacity may be included in the air conditioning data sent from each air conditioner 4 to the server 2.
  • the prediction unit 203 may obtain the maximum air conditioning capacity of the air conditioner 4 by referring to a product information DB (database) not shown from the device ID of the air conditioner 4.
  • the product information DB may be provided in the server 2 or may be provided in another server that can communicate with the server 2.
  • the ventilation control unit 204 is an example of ventilation control means according to the present disclosure.
  • the ventilation control unit 204 controls the ventilation device 3, each supply air damper 5, and each exhaust damper 6 in the house H based on the determination result of the ventilation amount change necessity determination unit 201 and the prediction result of the prediction unit 203. do.
  • the ventilation control unit 204 performs normal ventilation control (hereinafter referred to as "normal ventilation control").
  • the ventilation control unit 204 controls the air supply damper 5 and exhaust damper 6 of the room to increase or decrease the air supply amount and exhaust amount of the room by the same amount. Specifically, when increasing the ventilation amount of the room in normal ventilation control, the ventilation control unit 204 controls the air supply damper 5 of the room to increase the air supply amount by Q1SUP, and increases the air supply amount by Q1SUP by controlling the air supply damper 5 of the room. is controlled to increase the displacement by Q1EX.
  • Q1SUP and Q1EX are equal to the increase or decrease in the required ventilation volume, and are based on the event that caused the ventilation volume to change (change in the number of people in the room or change in the degree of contamination) and its degree (number of changes or change It is determined by the size of
  • the ventilation control unit 204 controls the air supply damper 5a of room A to increase the air supply volume by 30 m3 , and exhausts the room A.
  • the damper 6a is controlled to increase the displacement by 30 m3.
  • the ventilation control unit 204 controls the air supply damper 5a of room A to reduce the supply air volume by 30 m3, and exhausts the room A.
  • the damper 6a is controlled to reduce the displacement by 30m3 .
  • Q1SUP and Q1EX do not necessarily have to be equal, and may be different as long as no inconvenience occurs.
  • the ventilation control unit 204 controls the ventilation device 3 to adjust the intake amount of outside air and the amount of exhaust air to the outside in order to match the change in the air supply amount and exhaust amount of the room.
  • ventilation control for ensuring thermal comfort (hereinafter referred to as "comfort ensuring control”) executed by the ventilation control unit 204 will be explained. If there is a room that requires an increase in ventilation volume, is currently being air-conditioned, and is predicted to lack the air-conditioning capacity of the corresponding air conditioner 4, the ventilation control unit 204 performs comfort ensuring control for the room. Execute. Specifically, the ventilation control unit 204 controls the exhaust damper 6 of the room (hereinafter referred to as “ventilation target room”) to increase the exhaust amount by Q1EX. Further, the ventilation control unit 204 controls the air supply damper 5 of a room adjacent to the ventilation target room (hereinafter referred to as "adjacent room”) to increase the air supply amount by Q1SUP.
  • the room to be ventilated is an example of a first room according to the present disclosure, and the adjacent room is an example of a second room according to the present disclosure.
  • the ventilation control unit 204 controls the exhaust damper 6a of room A (that is, the room to be ventilated) to increase the exhaust volume by Q1EX. Further, the ventilation control unit 204 controls the air supply damper 5b of the room B adjacent to the room A (that is, the adjacent room) to increase the air supply amount by Q1SUP.
  • the exhaust damper 6a is an example of the first exhaust means according to the present disclosure
  • the air supply damper 5b is an example of the second air supply means according to the present disclosure.
  • the air pressure in the adjacent room becomes higher than the air pressure in the room to be ventilated, creating an airflow from the adjacent room to the room to be ventilated, and the air from the adjacent room passes through door undercuts, vents, gaps, etc. flows into.
  • the amount of air flowing into the room to be ventilated is approximately equal to the difference between the air supply amount in the adjacent room and the air supply amount in the ventilation target room.
  • the ventilation control unit 204 controls the ventilation device 3 to match the change in the exhaust volume of the room to be ventilated with the change in the air supply volume of the adjacent room, and controls the amount of outside air taken in and exhausted to the outdoors. Adjust amount.
  • the ventilation control unit 204 controls the exhaust damper 6 of the room to be ventilated to reduce the exhaust volume to Q2EX, which is smaller than Q1EX. and controls the air supply damper 5 in the adjacent room to increase the air supply amount by Q2SUP, which is smaller than Q1SUP.
  • Q2EX and Q2SUP are, for example, 10m3 .
  • FIG. 8 is a flowchart showing the procedure of ventilation control processing executed by the server 2.
  • the server 2 periodically (for example, every minute) executes the following ventilation control process.
  • Step S100 The server 2 collects data from the ventilation device 3, each air conditioner 4, each supply air damper 5, each exhaust damper 6, and each pollutant sensor 7. After that, the process of the server 2 transitions to step S101.
  • Step S101 The server 2 determines whether there is a room that requires an increase in ventilation volume, is being air-conditioned, and is predicted to have insufficient capacity of the air conditioner 4. If there is a corresponding room (step S101; YES), the process of the server 2 transitions to step S102. On the other hand, if there is no corresponding room (step S101; NO), the process of the server 2 transitions to step S105.
  • Step S102 The server 2 determines whether ventilation control for ensuring thermal comfort (ie, comfort ensuring control) has not been performed for the room. If the comfort ensuring control is not executed (step S102; YES), the process of the server 2 transitions to step S103. On the other hand, if the comfort ensuring control has been executed (step S102; NO), the process of the server 2 transitions to step S104.
  • ventilation control for ensuring thermal comfort ie, comfort ensuring control
  • Step S103 The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q1EX. Further, the server 2 controls the air supply damper 5 of the room adjacent to the room to increase the air supply amount by Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
  • Step S104 The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q2EX, which is smaller than Q1EX. Further, the server 2 controls the air supply damper 5 of the room adjacent to the room to increase the air supply amount by Q2SUP, which is smaller than Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
  • Step S105 The server 2 executes normal ventilation control and ends the ventilation control process in this cycle.
  • the server 2 increases the exhaust volume of the room (ie, the ventilation target room) and increases the air supply volume of the room adjacent to the ventilation target room (ie, the adjacent room). This causes the air pressure in the ventilated room to be lower than the air pressure in the adjacent room, and an amount of air corresponding to the increased air supply volume of the adjacent room (i.e., an amount equivalent to the increased exhaust volume of the ventilated room) is transferred to the adjacent room. and flows into the room to be ventilated.
  • Modification 1 If a dedicated remote controller (not shown) is installed in the house H, which receives instructions regarding ventilation from the user, information indicating the user's instructions (hereinafter referred to as "user instruction information") is transmitted from the dedicated remote controller to the server 2. You may also do so. Alternatively, user instruction information may be transmitted to the server 2 from a user terminal such as a smartphone or a tablet terminal. In such a configuration, the ventilation amount change necessity determination unit 201 of the server 2 may further determine whether or not the ventilation amount change of each room is necessary based on the received user instruction information.
  • each air supply fan is an example of the first air supply means or the second air supply means according to the present disclosure.
  • each air supply damper 5 and each air supply fan may be used together.
  • an exhaust fan corresponding to each room may be installed, and the amount of air taken in from each room may be adjusted by each exhaust fan.
  • each exhaust fan is an example of the first exhaust means or the second exhaust means according to the present disclosure. Note that each exhaust damper 6 and each exhaust fan may be used together.
  • the server 2 If each room is separately installed with a temperature sensor that measures the air temperature, a motion sensor that detects the presence or absence of a person, etc., the server 2 also uses the measurement results of these sensors to control the ventilation in the house H. May be executed. Furthermore, when the air conditioner 4 is equipped with a sensor that measures the amount of indoor pollutants (for example, CO 2 , odor, PM, viruses, etc.), the server 2 also uses the measurement results of the sensor of the air conditioner 4. Ventilation control in the house H may be performed using the air conditioner.
  • a temperature sensor that measures the air temperature
  • a motion sensor that detects the presence or absence of a person, etc.
  • the server 2 also uses the measurement results of these sensors to control the ventilation in the house H. May be executed.
  • the air conditioner 4 is equipped with a sensor that measures the amount of indoor pollutants (for example, CO 2 , odor, PM, viruses, etc.)
  • the server 2 also uses the measurement results of the sensor of the air conditioner 4. Ventilation control in the house H may
  • the ventilation unit 30 may be configured to include a total heat exchanger that performs total heat exchange (sensible heat exchange and latent heat exchange) between indoor air and outdoor air, or may be configured to include a mechanism for purifying the air. It may be.
  • Mechanisms for cleaning the air include, for example, air filters such as medium-high performance filters and HEPA (High Efficiency Particulate Air) filters, electrostatic precipitators, ultraviolet irradiators, and the like.
  • Ventilation control of the house H may be performed by an in-house controller that is installed in the house H and has the same functions as the server 2 (see FIG. 7).
  • the in-home controller is an example of a control device according to the present disclosure.
  • a control circuit 303 included in the ventilation unit 30 of the ventilation system 3 has the same function as the server 2 (see FIG. 7), and the control circuit 303 controls the ventilation of the house H. Good too.
  • the control circuit 303 is an example of a control device according to the present disclosure.
  • the server 2 may be made up of a plurality of servers.
  • the air conditioner 4 may be an indoor unit of a so-called housing air conditioner.
  • All or part of the functional units of the server 2 may be realized by dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application-Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • Embodiment 2 Next, a second embodiment of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
  • the server 2 in Embodiment 2 is configured in advance to perform ventilation control for ensuring thermal comfort (i.e., comfort ensuring control) when there are a plurality of adjacent rooms adjacent to the room to be ventilated (i.e., the first room). It has an air supply room selection function that selects one adjacent room that meets predetermined conditions as the room in which the amount of air supply is to be increased (hereinafter referred to as the "air supply room").
  • the air supply room selection function is a function included in the ventilation control unit 204.
  • the air supply room is an example of the second room according to the present disclosure.
  • the ventilation control unit 204 selects an air supply room from among the multiple adjacent rooms by sequentially narrowing down the rooms based on conditions 1 to 3 below.
  • Condition 1 The air conditioner 4 of the adjacent room is in operation
  • Condition 2 Even if the air supply amount of the adjacent room increases by the required amount (i.e. Q1SUP), the air conditioner corresponding to the adjacent room will not continue to air condition.
  • Condition 3 The COP (Coefficient Of Performance) of the air conditioner 4 after increasing the air supply amount in the adjacent room by Q1SUP is higher than the air conditioner 4 in any other adjacent room.
  • Narrowing down using condition 2 is performed when there are multiple adjacent rooms that meet condition 1
  • narrowing down using condition 3 is performed when there are multiple adjacent rooms that meet condition 2.
  • the ventilation control unit 204 calculates the air conditioning load (hereinafter referred to as "L3") of the air conditioner 4 when the air supply amount of the adjacent room is increased by Q1SUP using the following formula.
  • L3 Current air conditioning capacity of the air conditioner 5 (hereinafter referred to as "C2”) + ventilation load when the air supply amount of the relevant adjacent room is increased by Q1SUP (hereinafter referred to as "L4")
  • C2 can be calculated by the product of the enthalpy change of the refrigerant and the refrigerant flow rate, or the product of the difference between the blowout temperature and the suction temperature, the air volume, the specific heat of the air, and the density of the air.
  • L4 is calculated by the following formula.
  • the ventilation control unit 204 compares L3 calculated as above with the maximum air conditioning capacity of the air conditioner 4, and if the maximum air conditioning capacity is greater than L3, there is no shortage of air conditioning capacity of the air conditioner 4. If the maximum air conditioning capacity is equal to or lower than L3, it is determined that the air conditioning capacity of the air conditioner 4 is insufficient.
  • condition 3 the COP of the air conditioner after increasing the air supply amount is estimated from the COP curve.
  • the COP curve is created based on the rated COP shown in the product information of the air conditioner 4, the air conditioning capacity at that time, the intermediate COP and the air conditioning capacity at that time, and the assumption that the COP is 0 when the air conditioning capacity is 0. Ru.
  • the current COP may be used instead of the COP after the increase in air supply amount.
  • the current COP is calculated by the following formula.
  • the server 2 can acquire product information from the air conditioner 4 through communication.
  • the server 2 may acquire the product information of the air conditioner 4 by referring to a product information DB (not shown) from the device ID of the air conditioner 4.
  • the product information DB may be provided in the server 2 or may be provided in another server that can communicate with the server 2.
  • the server 2 can acquire the current power consumption of the air conditioner 4 as data included in the air conditioning data.
  • FIG. 9 is a flowchart showing the procedure of ventilation control processing executed by the server 2 in the second embodiment.
  • the server 2 periodically (for example, every minute) executes the following ventilation control process.
  • Step S200 The server 2 collects data from the ventilation device 3, each air conditioner 4, each supply air damper 5, each exhaust damper 6, and each pollutant sensor 7. After that, the process of the server 2 transitions to step S201.
  • Step S201 The server 2 determines whether there is a room that requires an increase in ventilation volume, is being air-conditioned, and is predicted to have insufficient capacity of the air conditioner 4. If there is a corresponding room (step S201; YES), the process of the server 2 transitions to step S202. On the other hand, if there is no corresponding room (step S201; NO), the process of the server 2 transitions to step S208.
  • Step S202 The server 2 determines whether there are multiple adjacent rooms. If there are multiple adjacent rooms (step S202; YES), the process of the server 2 transitions to step S203. On the other hand, if a plurality of adjacent rooms do not exist (step S202; NO), the process of the server 2 transitions to step S204.
  • Step S203 The server 2 selects the optimal adjacent room as the air supply room from among the plurality of adjacent rooms based on the above conditions 1 to 3. After that, the process of the server 2 transitions to step S205.
  • Step S204 The server 2 determines the adjacent room as the air supply room. After that, the process of the server 2 transitions to step S205.
  • Step S205 The server 2 determines whether ventilation control for ensuring thermal comfort (ie, comfort ensuring control) has not been performed for the room. If the comfort ensuring control is not executed (step S205; YES), the process of the server 2 transitions to step S206. On the other hand, if the comfort ensuring control has been executed (step S205; NO), the process of the server 2 transitions to step S207.
  • ventilation control for ensuring thermal comfort ie, comfort ensuring control
  • Step S206 The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q1EX. Further, the server 2 controls the air supply damper 5 in the air supply room to increase the amount of air supply by Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
  • Step S207 The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q2EX, which is smaller than Q1EX. Further, the server 2 controls the air supply damper 5 in the air supply room to increase the amount of air supply by Q2SUP, which is smaller than Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
  • Step S208 The server 2 executes normal ventilation control and ends the ventilation control process in this cycle.
  • the server 2 increases the exhaust volume of the room (i.e., the ventilation target room), determines a room adjacent to the ventilation target room (i.e., the adjacent room) as the air supply room, and increases the air supply volume of the ventilation target room. .
  • This causes the air pressure in the ventilated room to be lower than the air pressure in the air supply room, and an amount of air corresponding to the increased air supply volume in the ventilation room (i.e., an amount equivalent to the increased exhaust volume in the ventilated room) is removed. Air flows from the air supply room into the room to be ventilated.
  • the server 2 selects the optimal adjacent room as the air supply room based on predetermined conditions, so that the thermal comfort of the room to be ventilated can be more reliably ensured. , the energy efficiency of the entire house H can be improved.
  • Embodiment 3 Next, Embodiment 3 of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
  • the server 2 in the third embodiment further includes an air pressure distribution information acquisition unit (not shown).
  • the air pressure distribution information acquisition unit is an example of air pressure distribution information acquisition means according to the present disclosure.
  • the air pressure distribution information acquisition unit acquires air pressure distribution information indicating the height relationship of air pressure in each room in the house H.
  • the air pressure distribution information acquisition unit may obtain the air pressure distribution information by estimating the air pressure distribution information based on the air supply amount and exhaust amount of each room, or may obtain the air pressure distribution information by estimating the air pressure distribution information based on the air supply amount and exhaust amount of each room, or may obtain the air pressure distribution information by estimating the air pressure distribution information based on the air supply amount and exhaust amount of each room.
  • the air pressure distribution information may be obtained by estimating the air pressure distribution information based on the measurement result of a sensor, the measurement result of a wind speed sensor installed in the undercut of the door, or the like.
  • the air pressure distribution information can be estimated with high accuracy by taking into account the air supply and exhaust volumes of each room. becomes possible.
  • the air pressure distribution information acquisition unit may acquire the air pressure distribution information by estimating the air pressure distribution information using an analysis method called a so-called digital twin.
  • a digital twin a thermal fluid analysis model and calculation environment are built on Server 2 or another server, and the floor plan of the target building, equipment performance information, and data such as actual room temperature and outside air temperature are input. , analyze future indoor temperature and air pressure.
  • the ventilation control unit 204 in this embodiment controls the ventilation device 3, each air supply damper 5, and each exhaust damper 6 in the house H, taking into account the air pressure distribution information acquired by the air pressure distribution information acquisition unit. Specifically, the ventilation control unit 204 determines a target air pressure distribution, and determines the control content of each air supply damper 5 and each exhaust damper 6 so that the air pressure distribution in the house H approaches the target.
  • the air pressure of room B becomes higher than the air pressure of room A. It is estimated that the air pressure in room C, where the supply air amount and exhaust amount are not changed (the air supply amount remains equal to the exhaust amount), is higher than room A and lower than room B. In such a situation, if the amount of exhaust air from the ventilation fan (not shown) in the bathroom becomes larger than the difference between the air intake and exhaust amount in room B, there is a risk that pollutants generated in room A will move to the bathroom through the hallway. .
  • the ventilation control unit 204 increases the exhaust volume of room A by, for example, Q1EX, and increases the air supply volume of room B so that the exhaust volume of the bathroom is equal to or less than the difference between the exhaust volume and supply air volume in room A. For example, increase Q1SUP.
  • the ventilation control unit 204 determines the amount of increase in the air exhaust amount for room A and the air supply amount for room B so that the air in the hallway and bathroom does not move to room A.
  • the server 2 acquires air pressure distribution information indicating the height relationship of air pressure in each room, and takes into account the acquired air pressure distribution information to ventilate the house H. Execute control. Therefore, it is possible to more reliably prevent contaminants from spreading to other rooms, and it is possible to prevent insufficient air conditioning capacity of the air conditioner 4 in the room to be ventilated.
  • FIG. 10 is a diagram showing the overall configuration of a ventilation system 1A in Embodiment 4.
  • the ventilation system 1A is a system that ventilates a house H, which is a single-family house or an apartment complex, and is an example of the ventilation system according to the present disclosure.
  • the ventilation system 1A includes a server 2, multiple air conditioners 4, multiple air supply fans 9, multiple exhaust fans 10, multiple pollutant sensors 7, and a router 8. Be prepared.
  • the ventilation system 1A is not a central ventilation system, but is equipped with an air supply fan 9 that takes in outside air and an exhaust fan 10 that exhausts indoor air to the outdoors, which are installed in each room. Ventilate the room.
  • an air supply fan 9a and an exhaust fan 10a are installed in room A, in room B, an air supply fan 9b and an exhaust fan 10b are installed, and in room C, an air supply fan 9a and an exhaust fan 10a are installed.
  • a fan 9c and an exhaust fan 10c are installed.
  • the ventilation control unit 204 of the server 2 when there is a room that requires an increase in ventilation volume, is being air-conditioned, and where the air-conditioning capacity of the corresponding air conditioner 4 is expected to be insufficient, Ventilation control to ensure thermal comfort (ie, comfort ensuring control) is executed for the room.
  • the ventilation control unit 204 controls the exhaust fan 10 of the room (that is, the room to be ventilated) to increase the exhaust amount by Q1EX.
  • the ventilation control unit 204 controls the air supply fan 9 of the room adjacent to the room to be ventilated (that is, the adjacent room) to increase the air supply amount by Q1SUP.
  • the ventilation control unit 204 controls the exhaust fan 10a of room A to increase the exhaust volume by Q1EX. Further, the ventilation control unit 204 controls the air supply fan 9b of the room B adjacent to the room A to increase the air supply amount by Q1SUP.
  • the ventilation control unit 204 controls the exhaust fan 10 in the room to be ventilated to increase the exhaust volume by Q2EX, which is smaller than Q1EX. , controls the air supply fan 9 in the adjacent room to increase the air supply amount by Q2SUP, which is smaller than Q1SUP.
  • the ventilation system 1A in this embodiment like the ventilation system 1 in Embodiment 1, it is possible to prevent pollutants from spreading to other rooms while ensuring the necessary ventilation amount. Furthermore, since indoor air is supplied to the room to be ventilated, it is possible to prevent insufficient air conditioning capacity of the air conditioner 4 in the room to be ventilated, and it is possible to ensure thermal comfort for the user.
  • the air supply fan 9 and the exhaust fan 10 have the advantage that the ventilation amount can be adjusted more accurately than the air supply damper 5 and the exhaust damper 6, and the operating noise is reduced.
  • the present disclosure can be suitably employed in a system that performs ventilation within a building.

Abstract

This ventilation system comprises: a ventilation amount change necessity determining unit (201) for determining whether it is necessary to increase an amount of ventilation of a first room; an air conditioning determining unit (202) for determining whether air conditioning of the first room is being performed by an air conditioner (4); a predicting unit (203) which, if it is necessary to increase the amount of ventilation of the first room and air conditioning of the first room is being performed, predicts whether an insufficiency would arise in an air conditioning capability of the air conditioner (4) if the amount of ventilation of the first room were increased by the required amount; and a ventilation control unit (204) which, if it is predicted that an insufficiency would arise in the air conditioning capability of the air conditioner (4), controls an exhaust damper (6) for discharging air in the first room to the outside to increase an amount of exhaust from the first room, and controls an air supply damper (5) for supplying outside air to a second room adjacent to the first room to increase an amount of air supplied to the second room. In this way, spreading of contaminants can be prevented, and the thermal comfort of a user can be ensured.

Description

換気システム、制御装置及び換気制御方法Ventilation system, control device and ventilation control method
 本開示は、換気システム、制御装置及び換気制御方法に関する。 The present disclosure relates to a ventilation system, a control device, and a ventilation control method.
 昨今、建物内における感染症対策として換気が重要視されている。また、在室者が増加したときに一時的に換気量を増加し、在室者が居ないときには換気量を減少させる等、適宜換気量を調整して十分な換気を効率的に行うことが求められている。 Recently, ventilation has become important as a measure against infectious diseases in buildings. In addition, it is possible to efficiently provide sufficient ventilation by adjusting the ventilation amount as appropriate, such as temporarily increasing the ventilation amount when the number of people in the room increases and decreasing the ventilation amount when there are no people in the room. It has been demanded.
 従来、各部屋の換気量を調整する技術に関し、種々の提案がなされている。例えば、特許文献1には、住宅内の各部屋に外気を室内に給気する給気量が可変の給気ダンパを設けた換気システムが開示されている。 Conventionally, various proposals have been made regarding techniques for adjusting the amount of ventilation in each room. For example, Patent Document 1 discloses a ventilation system in which each room in a house is provided with an air supply damper that can supply a variable amount of air to supply outside air into the room.
特開平7-103526号公報Japanese Unexamined Patent Publication No. 7-103526
 しかしながら、特許文献1の換気システム及びその他の従来の技術では、室内の汚染物資が他の部屋、廊下等へ拡散してしまうという課題がある。また、換気量の増加が必要な部屋が空調中である場合には、換気量の増加に伴って空調負荷が増大することで、空調機の空調能力が不足し、ユーザの温熱快適性が損なわれるという課題もある。 However, with the ventilation system of Patent Document 1 and other conventional technologies, there is a problem that indoor pollutants spread to other rooms, hallways, etc. Additionally, if a room that requires increased ventilation is being air-conditioned, the increased air conditioning load will increase the air conditioning capacity of the air conditioner, impairing the thermal comfort of the user. There is also the issue of
 本開示は上記課題を解決するためになされたものであり、必要な換気量を確保しつつ、汚染物質の拡散を防止し、且つ、ユーザの温熱快適性を確保することが可能な換気システム等を提供することを目的とする。 The present disclosure has been made to solve the above problems, and provides a ventilation system, etc. that can secure the necessary ventilation amount, prevent the diffusion of pollutants, and ensure thermal comfort for the user. The purpose is to provide
 上記目的を達成するため、本開示に係る換気システムは、
 第1の部屋へ外気を供給する第1の給気手段と、
 前記第1の部屋に隣接する第2の部屋へ外気を供給する第2の給気手段と、
 前記第1の部屋の空気を屋外に排出する第1の排気手段と、
 前記第2の部屋の空気を屋外に排出する第2の排気手段と、
 前記第1の部屋の換気量増加の要否を判定する要否判定手段と、
 前記第1の部屋の空調が空調機により行われているか否かを判定する空調判定手段と、
 前記第1の部屋の換気量増加が必要であり、且つ、前記第1の部屋の空調が行われているとき、前記第1の部屋の換気量を必要とされる分増加した場合に前記空調機の空調能力に不足が生じるか否かを予測する予測手段と、
 前記空調機の空調能力に不足が生じることが予測される場合、前記第1の排気手段を制御して前記第1の部屋からの排気量を増加させるとともに、前記第2の給気手段を制御して前記第2の部屋への給気量を増加させる換気制御手段と、を備える。
In order to achieve the above objective, the ventilation system according to the present disclosure includes:
a first air supply means for supplying outside air to the first room;
a second air supply means for supplying outside air to a second room adjacent to the first room;
a first exhaust means for exhausting air from the first room outdoors;
a second exhaust means for exhausting the air in the second room outdoors;
Necessity determining means for determining whether it is necessary to increase the ventilation amount of the first room;
air conditioning determining means for determining whether or not the first room is being air-conditioned by an air conditioner;
When it is necessary to increase the amount of ventilation in the first room and the first room is being air-conditioned, if the amount of ventilation in the first room is increased by the required amount, the air conditioning A prediction means for predicting whether or not there will be a shortage of air conditioning capacity of an aircraft;
If it is predicted that the air conditioning capacity of the air conditioner will be insufficient, the first exhaust means is controlled to increase the amount of exhaust air from the first room, and the second air supply means is controlled. ventilation control means for increasing the amount of air supplied to the second room.
 本開示によれば、必要な換気量を確保しつつ、汚染物質の拡散を防止し、且つ、ユーザの温熱快適性を確保することが可能となる。 According to the present disclosure, it is possible to prevent the diffusion of pollutants while ensuring the necessary ventilation amount, and to ensure the thermal comfort of the user.
実施の形態1における換気システムの全体構成を示す図A diagram showing the overall configuration of a ventilation system in Embodiment 1 実施の形態1におけるサーバのハードウェア構成を示すブロック図Block diagram showing the hardware configuration of the server in Embodiment 1 実施の形態1における換気装置の構成を示す図A diagram showing the configuration of a ventilation device in Embodiment 1 実施の形態1における換気ユニットの構成を示すブロック図Block diagram showing the configuration of a ventilation unit in Embodiment 1 実施の形態1における、換気装置、空調機、給気ダンパ、排気ダンパ及び汚染物質センサの設置態様を示す図A diagram showing how a ventilation device, an air conditioner, a supply air damper, an exhaust damper, and a pollutant sensor are installed in Embodiment 1. 実施の形態1における空調機のハードウェア構成を示すブロック図Block diagram showing the hardware configuration of an air conditioner in Embodiment 1 実施の形態1におけるサーバの機能構成を示すブロック図Block diagram showing the functional configuration of the server in Embodiment 1 実施の形態1における換気制御処理の手順を示すフローチャートFlowchart showing the procedure of ventilation control processing in Embodiment 1 実施の形態2における換気制御処理の手順を示すフローチャートFlowchart showing the procedure of ventilation control processing in Embodiment 2 実施の形態4における換気システムの全体構成を示す図A diagram showing the overall configuration of a ventilation system in Embodiment 4 実施の形態4における、空調機、給気扇、排気扇及び汚染物質センサの設置態様を示す図A diagram showing how an air conditioner, an air supply fan, an exhaust fan, and a pollutant sensor are installed in Embodiment 4.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。本開示に係る換気システムは、住宅、オフィスビル、商業施設、公共施設等の様々な建物に適用され得るが、以下の実施の形態では、住宅に適用された場合を例にして説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The ventilation system according to the present disclosure can be applied to various buildings such as residences, office buildings, commercial facilities, public facilities, etc., but in the following embodiments, the case where it is applied to a residence will be explained as an example.
(実施の形態1)
 図1は、実施の形態1における換気システム1の全体構成を示す図である。換気システム1は、一戸建て住宅又は集合住宅である住宅Hの換気を行うシステムであり、本開示に係る換気システムの一例である。図1に示すように、換気システム1は、サーバ2と、換気装置3と、複数の空調機4と、複数の給気ダンパ5と、複数の排気ダンパ6と、複数の汚染物質センサ7と、ルータ8とを備える。
(Embodiment 1)
FIG. 1 is a diagram showing the overall configuration of a ventilation system 1 in the first embodiment. The ventilation system 1 is a system that ventilates a house H, which is a single-family house or an apartment complex, and is an example of the ventilation system according to the present disclosure. As shown in FIG. 1, the ventilation system 1 includes a server 2, a ventilation device 3, a plurality of air conditioners 4, a plurality of supply air dampers 5, a plurality of exhaust dampers 6, and a plurality of pollutant sensors 7. , and a router 8.
<サーバ2>
 サーバ2は、本開示に係る制御装置の一例である。サーバ2は、いわゆるクラウドサーバであり、住宅Hにおける各部屋の換気が適切に行われるための換気制御サービスを提供する。
<Server 2>
The server 2 is an example of a control device according to the present disclosure. The server 2 is a so-called cloud server, and provides a ventilation control service for properly ventilating each room in the house H.
 図2に示すように、サーバ2は、ハードウェア構成として、通信インタフェース20と、CPU(Central Processing Unit)21と、ROM(Read Only Memory)22と、RAM(Random Access Memory)23と、補助記憶装置24とを備える。これらの構成部は、バス25を介して相互に接続される。通信インタフェース20は、インターネット等の広域ネットワークであるネットワークN1を介して他の機器と通信するためのハードウェアであり、例えば、Ethernet(登録商標)に基づくインタフェースである。 As shown in FIG. 2, the server 2 has a hardware configuration including a communication interface 20, a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and an auxiliary memory. A device 24 is provided. These components are interconnected via a bus 25. The communication interface 20 is hardware for communicating with other devices via the network N1, which is a wide area network such as the Internet, and is, for example, an interface based on Ethernet (registered trademark).
 CPU21は、サーバ2を統括的に制御する。CPU21によって実現されるサーバ2の機能の詳細については後述する。ROM22は、複数のファームウェア及びこれらのファームウェアの実行時に使用されるデータを記憶する。RAM23は、CPU21の作業領域として使用される。 The CPU 21 controls the server 2 in an integrated manner. Details of the functions of the server 2 realized by the CPU 21 will be described later. The ROM 22 stores a plurality of firmwares and data used when executing these firmwares. RAM23 is used as a work area for CPU21.
 補助記憶装置24は、読み書き可能な不揮発性の半導体メモリ、HDD(Hard Disk Drive)等で構成される。読み書き可能な不揮発性の半導体メモリは、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ等である。補助記憶装置24には、換気制御サービスを実現するためのプログラムである換気制御プログラムと、換気制御プログラムの実行時に使用されるデータとが記憶される。 The auxiliary storage device 24 is composed of a readable and writable nonvolatile semiconductor memory, an HDD (Hard Disk Drive), and the like. Examples of the readable and writable nonvolatile semiconductor memory include EEPROM (Electrically Erasable Programmable Read-Only Memory) and flash memory. The auxiliary storage device 24 stores a ventilation control program, which is a program for realizing a ventilation control service, and data used when executing the ventilation control program.
 サーバ2は、換気制御プログラム又は換気制御プログラムを更新するための更新プログラムを他のサーバからネットワークN1を介した通信により取得することが可能である。また、これらのプログラムは、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、光磁気ディスク、USB(Universal Serial Bus)メモリ、HDD、SSD(Solid-State Drive)、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。サーバ2は、そのような記録媒体が自身に直接又は間接的に装着されると、当該記録媒体から換気制御プログラム又は更新プログラムを読み出して取り込むことも可能である。 The server 2 can acquire the ventilation control program or an update program for updating the ventilation control program from another server through communication via the network N1. These programs can also be used on CD-ROMs (Compact Disc Read-Only Memory), DVDs (Digital Versatile Discs), magneto-optical discs, USB (Universal Serial Bus) memory, HDDs, SSDs (Solid-State Drives), and memory cards. It is also possible to store and distribute it in a computer-readable recording medium such as. When such a recording medium is directly or indirectly attached to the server 2, the server 2 can also read and import the ventilation control program or update program from the recording medium.
<換気装置3>
 換気装置3は、住宅H全体の換気量を確保するためのいわゆるセントラル換気システムであり、図3に示すように、換気ユニット30と、統合給気ダクト31と、統合排気ダクト32と、複数の給気ダクト33と、複数の排気ダクト34とを備える。
<Ventilation device 3>
The ventilation system 3 is a so-called central ventilation system for ensuring ventilation of the entire house H, and as shown in FIG. It includes an air supply duct 33 and a plurality of exhaust ducts 34.
 図4に示すように、換気ユニット30は、給気ファン300と、排気ファン301と、通信インタフェース302と、制御回路303とを備える。給気ファン300は、屋外の空気(即ち、外気)を統合給気ダクト31を介して取り込み、取り込んだ外気を住宅Hの各部屋に送り出すためのファンである。給気ファン300の回転数、すなわち、給気ファン300による送風量は、制御回路303からの指令に従って調整される。排気ファン301は、各部屋から空気を取り込み、取り込んだ空気を統合排気ダクト32を介して屋外に排出するためのファンである。排気ファン301の回転数、すなわち、排気ファン301による送風量は、制御回路303からの指令に従って調整される。 As shown in FIG. 4, the ventilation unit 30 includes an air supply fan 300, an exhaust fan 301, a communication interface 302, and a control circuit 303. The air supply fan 300 is a fan that takes in outdoor air (that is, outside air) through the integrated air supply duct 31 and sends out the taken in outside air to each room of the house H. The rotation speed of the air supply fan 300, that is, the amount of air blown by the air supply fan 300, is adjusted according to a command from the control circuit 303. The exhaust fan 301 is a fan for taking in air from each room and exhausting the taken air to the outdoors via the integrated exhaust duct 32. The rotation speed of the exhaust fan 301, that is, the amount of air blown by the exhaust fan 301, is adjusted according to a command from the control circuit 303.
 通信インタフェース302は、ルータ8によって住宅Hに構築されたネットワークN2に接続してルータ8を介してサーバ2と通信するためのハードウェアである。換気装置3による外気の取込み量と屋外への排出量は、サーバ2からの制御指令によって調整される。なお、通信インタフェース302は、ルータ8を介さずに直接的にサーバ2と通信するための長距離無線通信用のハードウェアであってもよい。あるいは、換気ユニット30は、外付けの通信アダプタを介してサーバ2と通信するように構成されていてもよい。 The communication interface 302 is hardware for connecting to the network N2 built in the house H by the router 8 and communicating with the server 2 via the router 8. The amount of outside air taken in by the ventilation device 3 and the amount of air discharged outdoors are adjusted by control commands from the server 2. Note that the communication interface 302 may be hardware for long-distance wireless communication for directly communicating with the server 2 without going through the router 8. Alternatively, the ventilation unit 30 may be configured to communicate with the server 2 via an external communication adapter.
 制御回路303は、CPU、ROM、RAM、読み書き可能な不揮発性の半導体メモリ等を含んで構成され、換気装置3を統括的に制御する。読み書き可能な不揮発性の半導体メモリは、例えば、EEPROM、フラッシュメモリ等である。 The control circuit 303 is configured to include a CPU, ROM, RAM, readable/writable nonvolatile semiconductor memory, etc., and controls the ventilation device 3 in an integrated manner. Examples of the readable and writable nonvolatile semiconductor memory include EEPROM and flash memory.
 各給気ダクト33は、換気ユニット30が取り込んだ外気を各部屋に分配供給するためのダクトであり、住宅Hの天井裏に配設される。本実施の形態では、図5に示すように、給気ダクト33aが、部屋Aに外気を供給するように配設され、給気ダクト33bが、部屋Bに外気を供給するように配設され、給気ダクト33cが、部屋Cに外気を供給するように配設されている。 Each air supply duct 33 is a duct for distributing and supplying the outside air taken in by the ventilation unit 30 to each room, and is arranged in the ceiling of the house H. In this embodiment, as shown in FIG. 5, the air supply duct 33a is arranged to supply outside air to room A, and the air supply duct 33b is arranged to supply outside air to room B. , an air supply duct 33c is arranged to supply outside air to the room C.
 各排気ダクト34は、各部屋から空気を取り込み、換気ユニット30へ搬送するためのダクトであり、住宅Hの天井裏に配設される。換気ユニット30へ搬送された各部屋の空気は、統合排気ダクト32を介して屋外へ排出される。すなわち、各排気ダクト34は、各部屋の空気を排気するためのダクトともいえる。本実施の形態では、図5に示すように、排気ダクト34aが、部屋Aの空気を取り込むように配設され、排気ダクト34bが、部屋Bの空気を取り込むように配設され、排気ダクト34cが、部屋Cの空気を取り込むように配設されている。 Each exhaust duct 34 is a duct for taking in air from each room and conveying it to the ventilation unit 30, and is arranged in the ceiling of the house H. The air in each room conveyed to the ventilation unit 30 is exhausted to the outdoors via the integrated exhaust duct 32. That is, each exhaust duct 34 can be said to be a duct for exhausting air from each room. In this embodiment, as shown in FIG. 5, an exhaust duct 34a is arranged to take in air from room A, an exhaust duct 34b is arranged to take in air from room B, and an exhaust duct 34c is arranged to take in air from room B. is arranged so as to take in air from room C.
<空調機4>
 空調機4は、本開示に係る空調機の一例である。空調機4は、いわゆるルームエアコンの室内機であり、図示しない室外機と通信線及び冷媒配管を介して接続される。空調機4は、住宅Hの各部屋に設置される。本実施の形態では、図5に示すように、部屋Aに空調機4aが設置され、部屋Bに空調機4bが設置され、部屋Cに空調機4cが設置されている。
<Air conditioner 4>
The air conditioner 4 is an example of an air conditioner according to the present disclosure. The air conditioner 4 is an indoor unit of a so-called room air conditioner, and is connected to an outdoor unit (not shown) via a communication line and a refrigerant pipe. The air conditioner 4 is installed in each room of the house H. In this embodiment, as shown in FIG. 5, an air conditioner 4a is installed in room A, an air conditioner 4b is installed in room B, and an air conditioner 4c is installed in room C.
 図6に示すように、空調機4は、熱交換器40と、ファン41と、ルーバ42と、吸込温度センサ43と、吹出温度センサ44と、湿度センサ45と、熱画像センサ46と、通信インタフェース47と、制御回路48とを備える。熱交換器40は、ファン41により取り込まれた室内の空気と図示しない室外機からの冷媒との熱交換を行う。熱交換器40は、冷房運転時においては、蒸発器として機能し、暖房運転時においては、凝縮器として機能する。 As shown in FIG. 6, the air conditioner 4 includes a heat exchanger 40, a fan 41, a louver 42, a suction temperature sensor 43, an outlet temperature sensor 44, a humidity sensor 45, a thermal image sensor 46, and a communication It includes an interface 47 and a control circuit 48. The heat exchanger 40 exchanges heat between indoor air taken in by the fan 41 and refrigerant from an outdoor unit (not shown). The heat exchanger 40 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
 ファン41は、室内の空気を図示しない吸込口から取り込むとともに、熱交換器40によって熱交換された空気を図示しない吹出口から室内に送り出す。ファン41の回転数、すなわち、ファン41による送風量は、制御回路48からの指令に従って調整される。ルーバ42は、ファン41によって室内に送り出される空気の向きを調整する。ルーバ42の角度、すなわち、風向きは、制御回路48からの指令に従って調整される。 The fan 41 takes in indoor air from an inlet (not shown), and sends out the air that has been heat exchanged by the heat exchanger 40 into the room from an outlet (not shown). The rotation speed of the fan 41, that is, the amount of air blown by the fan 41, is adjusted according to a command from the control circuit 48. The louver 42 adjusts the direction of air sent into the room by the fan 41. The angle of the louver 42, that is, the direction of the wind, is adjusted according to commands from the control circuit 48.
 吸込温度センサ43は、ファン41により取り込まれた(すなわち、吸い込まれた)室内の空気の温度を計測する。吸込温度センサ43は、制御回路48からの要求に応答して、計測した温度を示す信号を制御回路48に出力する。吹出温度センサ44は、熱交換器40によって熱交換された空気の温度、すなわち、吹出口から室内に吹き出される空気の温度を計測する。吹出温度センサ44は、制御回路48からの要求に応答して、計測した温度を示す信号を制御回路48に出力する。湿度センサ45は、ファン41により取り込まれた室内の空気の湿度を計測する。湿度センサ45は、制御回路48からの要求に応答して、計測した湿度を示す信号を制御回路48に出力する。 The suction temperature sensor 43 measures the temperature of the indoor air taken in (that is, sucked in) by the fan 41. Suction temperature sensor 43 outputs a signal indicating the measured temperature to control circuit 48 in response to a request from control circuit 48 . The blowout temperature sensor 44 measures the temperature of the air that has been heat exchanged by the heat exchanger 40, that is, the temperature of the air that is blown into the room from the blowout port. The blowout temperature sensor 44 outputs a signal indicating the measured temperature to the control circuit 48 in response to a request from the control circuit 48 . The humidity sensor 45 measures the humidity of the indoor air taken in by the fan 41. Humidity sensor 45 outputs a signal indicating the measured humidity to control circuit 48 in response to a request from control circuit 48 .
 熱画像センサ46は、赤外線サーモグラフィであり、室内の熱画像を取得する。熱画像センサ46は、制御回路48からの要求に応答して、取得した熱画像を示すデータ(以下「熱画像データ」という。)を制御回路48に出力する。 The thermal image sensor 46 is an infrared thermograph and acquires a thermal image of the room. In response to a request from the control circuit 48, the thermal image sensor 46 outputs data indicating the acquired thermal image (hereinafter referred to as "thermal image data") to the control circuit 48.
 通信インタフェース47は、ネットワークN2に接続してルータ8を介してサーバ2と通信するためのハードウェアである。なお、通信インタフェース47は、ルータ8を介さずに直接的にサーバ2と通信するための長距離無線通信用のハードウェアであってもよい。あるいは、空調機4は、外付けの通信アダプタを介してサーバ2と通信するように構成されていてもよい。 The communication interface 47 is hardware for connecting to the network N2 and communicating with the server 2 via the router 8. Note that the communication interface 47 may be hardware for long-distance wireless communication for directly communicating with the server 2 without going through the router 8. Alternatively, the air conditioner 4 may be configured to communicate with the server 2 via an external communication adapter.
<給気ダンパ5>
 給気ダンパ5は、本開示に係る第1の給気手段又は第2の給気手段の一例である。給気ダンパ5は、いわゆるVAV(Variable Air Volume)であり、各給気ダクト33における部屋方向の末端、すなわち、天井に設けられた空気供給口の近傍に設置され、換気ユニット30から当該部屋へ供給される空気の量(以下「給気量」という。)を調整する。本実施の形態では、図5に示すように、給気ダクト33aに給気ダンパ5aが設置され、給気ダクト33bに給気ダンパ5bが設置され、給気ダクト33cに給気ダンパ5cが設置されている。
<Air supply damper 5>
The air supply damper 5 is an example of a first air supply means or a second air supply means according to the present disclosure. The air supply damper 5 is a so-called VAV (Variable Air Volume), and is installed at the end of each air supply duct 33 in the room direction, that is, near the air supply opening provided in the ceiling, and is installed at the end of each air supply duct 33 in the direction of the room, and is installed at the end of each air supply duct 33 in the direction of the room. Adjust the amount of air supplied (hereinafter referred to as "supply air amount"). In this embodiment, as shown in FIG. 5, an air supply damper 5a is installed in the air supply duct 33a, an air supply damper 5b is installed in the air supply duct 33b, and an air supply damper 5c is installed in the air supply duct 33c. has been done.
 給気ダンパ5は、ネットワークN2に接続してルータ8を介してサーバ2と通信するための通信インタフェースを備え、サーバ2からの制御指令に従って開度が調整される。なお、給気ダンパ5は、ルータ8を介さずに直接的にサーバ2と通信するための長距離無線通信用の通信インタフェースを備える構成であってもよい。 The air supply damper 5 includes a communication interface for connecting to the network N2 and communicating with the server 2 via the router 8, and its opening degree is adjusted in accordance with a control command from the server 2. Note that the air supply damper 5 may be configured to include a communication interface for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
<排気ダンパ6>
 排気ダンパ6は、本開示に係る第1の排気手段又は第2の排気手段の一例である。排気ダンパ6は、いわゆるVAVであり、各排気ダクト34における部屋方向の末端、すなわち、天井に設けられた空気取込口の近傍に設置され、排気のために当該部屋から取り込まれる空気の量(以下「排気量」という。)を調整する。本実施の形態では、図5に示すように、排気ダクト34aに排気ダンパ6aが設置され、排気ダクト34bに排気ダンパ6bが設置され、排気ダクト34cに排気ダンパ6cが設置されている。
<Exhaust damper 6>
The exhaust damper 6 is an example of a first exhaust means or a second exhaust means according to the present disclosure. The exhaust damper 6 is a so-called VAV, and is installed at the end of each exhaust duct 34 in the room direction, that is, near the air intake port provided in the ceiling, and controls the amount of air taken in from the room for exhaust ( (hereinafter referred to as "displacement amount"). In this embodiment, as shown in FIG. 5, an exhaust damper 6a is installed in the exhaust duct 34a, an exhaust damper 6b is installed in the exhaust duct 34b, and an exhaust damper 6c is installed in the exhaust duct 34c.
 排気ダンパ6は、ネットワークN2に接続してルータ8を介してサーバ2と通信するための通信インタフェースを備え、サーバ2からの制御指令に従って開度が調整される。なお、排気ダンパ6は、ルータ8を介さずに直接的にサーバ2と通信するための長距離無線通信用の通信インタフェースを備える構成であってもよい。 The exhaust damper 6 is connected to the network N2 and includes a communication interface for communicating with the server 2 via the router 8, and its opening degree is adjusted in accordance with a control command from the server 2. Note that the exhaust damper 6 may be configured to include a communication interface for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
<汚染物質センサ7>
 汚染物質センサ7は、室内の汚染物質(例えば、CO、臭気、PM(Particulate Matter)、ウイルス等)の量を計測する機器である。本実施の形態では、図5に示すように、部屋Aに汚染物質センサ7aが設置され、部屋Bに汚染物質センサ7bが設置され、部屋Cに汚染物質センサ7cが設置されている。汚染物質センサ7は、ネットワークN2に接続してルータ8を介してサーバ2と通信するための通信インタフェースを備え、周期的に計測結果を示すデータ(以下「汚染物質データ」という。)をサーバ2に送信する。なお、汚染物質センサ7は、ルータ8を介さずに直接的にサーバ2と通信するための長距離無線通信用の通信インタフェースを備える構成であってもよい。
<Contaminant sensor 7>
The pollutant sensor 7 is a device that measures the amount of indoor pollutants (for example, CO 2 , odor, PM (particulate matter), viruses, etc.). In this embodiment, as shown in FIG. 5, a pollutant sensor 7a is installed in room A, a pollutant sensor 7b is installed in room B, and a pollutant sensor 7c is installed in room C. The pollutant sensor 7 is equipped with a communication interface for connecting to the network N2 and communicating with the server 2 via the router 8, and periodically transmits data indicating measurement results (hereinafter referred to as "pollutant data") to the server 2. Send to. Note that the pollutant sensor 7 may be configured to include a communication interface for long-distance wireless communication for directly communicating with the server 2 without going through the router 8.
<ルータ8>
 ルータ8は、Wi-Fi(登録商標)等の無線LAN(Local Area Network)又は有線LANルータである。なお、ルータ8は、無線LAN及び有線LANの両機能を備え、ある機器(換気ユニット30、空調機4、給気ダンパ5、排気ダンパ6又は汚染物質センサ7)とは無線通信を行い、別の機器とは有線通信を行う構成であってもよい。
<Router 8>
The router 8 is a wireless LAN (Local Area Network) router such as Wi-Fi (registered trademark) or a wired LAN router. Note that the router 8 has both wireless LAN and wired LAN functions, and performs wireless communication with certain devices (ventilation unit 30, air conditioner 4, supply air damper 5, exhaust damper 6, or pollutant sensor 7). The device may be configured to perform wired communication with the device.
<サーバ2の機能構成>
 図7は、サーバ2の機能構成を示すブロック図である。図7に示すように、サーバ2は、データ収集部200と、換気量変更要否判定部201と、空調判定部202と、予測部203と、換気制御部204とを備える。これらの機能部は、CPU21が補助記憶装置24に記憶されている上述した換気制御プログラムを実行することで実現される。
<Functional configuration of server 2>
FIG. 7 is a block diagram showing the functional configuration of the server 2. As shown in FIG. As shown in FIG. 7, the server 2 includes a data collection section 200, a ventilation amount change necessity determination section 201, an air conditioning determination section 202, a prediction section 203, and a ventilation control section 204. These functional units are realized by the CPU 21 executing the above-mentioned ventilation control program stored in the auxiliary storage device 24.
 データ収集部200は、住宅Hに設置されている各機器、すなわち、換気装置3、各空調機4、各給気ダンパ5、各排気ダンパ6及び各汚染物質センサ7から周期的(例えば1分毎)に各々に関するデータを収集する。以下、収集される各データについて説明する。 The data collection unit 200 periodically (for example, once every minute Collect data on each. Each piece of data collected will be explained below.
<<換気データ>>
 データ収集部200は、換気装置3(詳細には換気ユニット30)に対して換気データを要求する。かかる要求を受けると、換気装置3は、自身の機器IDと、現在時刻と、給気ファン300の回転数と、排気ファン301の回転数とを含む換気データをサーバ2に送信する。機器ID(identifier)は、各機器(すなわち、換気装置3、各空調機4、各給気ダンパ5、各排気ダンパ6及び各汚染物質センサ7)を一意に識別するための情報である。機器IDは、例えば、当該機器のシリアル番号(製造番号、シリアルコードともいう。)である。なお、換気装置3が外気温度を計測するセンサを備える場合、当該センサにより計測された外気温度が換気データに含まれるようにしてもよい。また、換気装置3は、自発的に換気データをサーバ2に送信してもよい。
<<Ventilation data>>
The data collection unit 200 requests ventilation data from the ventilation device 3 (specifically, the ventilation unit 30). Upon receiving such a request, the ventilation device 3 transmits ventilation data including its own device ID, the current time, the rotation speed of the air supply fan 300, and the rotation speed of the exhaust fan 301 to the server 2. The device ID (identifier) is information for uniquely identifying each device (that is, the ventilation device 3, each air conditioner 4, each supply air damper 5, each exhaust damper 6, and each pollutant sensor 7). The device ID is, for example, the serial number (also referred to as manufacturing number or serial code) of the device. Note that when the ventilation device 3 includes a sensor that measures outside air temperature, the outside air temperature measured by the sensor may be included in the ventilation data. Further, the ventilation device 3 may spontaneously transmit ventilation data to the server 2.
<<空調データ>>
 データ収集部200は、各空調機4に対して空調データを要求する。かかる要求を受けると、各空調機4は、自身の機器IDと、現在時刻と、運転状態とを含む空調データをサーバ2に送信する。運転状態には、運転モード(暖房モード、冷房モード等)、稼働中か停止中かを示す情報、吸込温度、吹出温度、湿度、外気温度、熱画像データ、ファン風量、冷媒流量、冷媒温度等が含まれる。空調機4は、外気温度等の自身で計測できないデータについては、対応する室外機から取得する。なお、各空調機4は、自発的に空調データをサーバ2に送信してもよい。
<<Air conditioning data>>
The data collection unit 200 requests air conditioning data from each air conditioner 4. Upon receiving such a request, each air conditioner 4 transmits air conditioning data including its own device ID, current time, and operating state to the server 2. The operating status includes the operating mode (heating mode, cooling mode, etc.), information indicating whether it is running or stopped, suction temperature, outlet temperature, humidity, outside air temperature, thermal image data, fan air volume, refrigerant flow rate, refrigerant temperature, etc. is included. The air conditioner 4 obtains data that cannot be measured by itself, such as the outside air temperature, from the corresponding outdoor unit. Note that each air conditioner 4 may voluntarily transmit air conditioning data to the server 2.
<<開度データ>>
 データ収集部200は、各給気ダンパ5及び各排気ダンパ6に対して開度データを要求する。かかる要求を受けると、各給気ダンパ5及び各排気ダンパ6は、自身の機器IDと、現在時刻と、開度とを含む開度データをサーバ2に送信する。なお、各給気ダンパ5及び各排気ダンパ6は、自発的に開度データをサーバ2に送信してもよい。
<<Opening data>>
The data collection unit 200 requests opening degree data from each intake damper 5 and each exhaust damper 6. Upon receiving such a request, each supply air damper 5 and each exhaust damper 6 transmits opening degree data including its own device ID, current time, and opening degree to the server 2. Note that each air supply damper 5 and each exhaust damper 6 may voluntarily transmit opening degree data to the server 2.
<<汚染物質データ>>
 データ収集部200は、各汚染物質センサ7に対して汚染物質データを要求する。かかる要求を受けると、各汚染物質センサ7は、自身の機器IDと、現在時刻と、計測結果とを含む汚染物質データをサーバ2に送信する。なお、各汚染物質センサ7は、自発的に汚染物質データをサーバ2に送信してもよい。
<<Contaminant data>>
The data collection unit 200 requests pollutant data from each pollutant sensor 7. Upon receiving such a request, each pollutant sensor 7 transmits pollutant data including its own device ID, current time, and measurement results to the server 2. Note that each pollutant sensor 7 may voluntarily transmit pollutant data to the server 2.
 データ収集部200は、各機器から収集した上記データを時系列で分別して収集データ記憶部240に保存する。つまり、収集データ記憶部240には、各機器から収集したデータの履歴が保存される。収集データ記憶部240は、補助記憶装置24によって提供されるメモリ領域である。 The data collection unit 200 separates the above data collected from each device in chronological order and stores it in the collected data storage unit 240. That is, the collected data storage unit 240 stores the history of data collected from each device. The collected data storage unit 240 is a memory area provided by the auxiliary storage device 24.
 換気量変更要否判定部201は、本開示に係る要否判定手段の一例である。換気量変更要否判定部201は、物件情報記憶部241に記憶されている当該住宅Hに対応する物件情報と、収集データ記憶240に記憶されている、各空調機4の空調データ及び各汚染物質センサ7の汚染物質データとに基づいて、住宅Hにおける各部屋の換気量変更の要否を判定する。詳細には、換気量変更要否判定部201は、換気量増加の要否と、換気量減少の要否とを判定する。 The ventilation amount change necessity determination unit 201 is an example of necessity determination means according to the present disclosure. The ventilation amount change necessity determining unit 201 uses the property information corresponding to the house H stored in the property information storage unit 241, the air conditioning data of each air conditioner 4 and each pollution stored in the collected data storage 240. Based on the pollutant data from the substance sensor 7, it is determined whether or not the ventilation amount of each room in the house H needs to be changed. Specifically, the ventilation amount change necessity determining unit 201 determines whether or not an increase in ventilation amount is necessary and whether or not a decrease in ventilation amount is necessary.
 物件情報記憶部241は、補助記憶装置24によって提供されるメモリ領域である。物件情報記憶部241には、各ユーザ宅、すなわち、各住宅Hの物件情報が記憶されている。物件情報には、部屋と当該部屋に対応する機器(空調機4、給気ダンパ5、排気ダンパ6、汚染物質センサ7)との対応関係を示す部屋・機器対応情報が含まれる。具体的には、部屋・機器対応情報は、部屋IDと各機器の機器IDとを紐付けた情報である。部屋IDは、住宅H毎に各部屋に対して割り振られたIDである。また、物件情報には、当該住宅Hに設置されている換気装置3の機器IDが含まれている。さらに、物件情報には、当該住宅Hの間取りを示す間取り情報が含まれる。 The property information storage unit 241 is a memory area provided by the auxiliary storage device 24. The property information storage unit 241 stores property information of each user's house, that is, each house H. The property information includes room/equipment correspondence information indicating the correspondence between a room and the equipment (air conditioner 4, air supply damper 5, exhaust damper 6, pollutant sensor 7) corresponding to the room. Specifically, the room/device correspondence information is information that links the room ID and the device ID of each device. The room ID is an ID assigned to each room in each house H. The property information also includes the device ID of the ventilation system 3 installed in the house H. Further, the property information includes floor plan information indicating the floor plan of the house H.
 換気量変更要否判定部201は、空調データに含まれる熱画像データから在室者数を取得し、在室者数が変化した場合、当該部屋の換気量を変更する必要があると判定する。詳細には、換気量変更要否判定部201は、在室者数が増加した場合、当該部屋の換気量を増加する必要があると判定し、在室者数が減少した場合、当該部屋の換気量を減少する必要があると判定する。 The ventilation amount change necessity determination unit 201 acquires the number of people in the room from the thermal image data included in the air conditioning data, and determines that it is necessary to change the ventilation amount of the room when the number of people in the room changes. . Specifically, when the number of people in the room increases, the ventilation amount change necessity determining unit 201 determines that it is necessary to increase the ventilation amount in the room, and when the number of people in the room decreases, the ventilation amount change necessity determination unit 201 It is determined that the ventilation volume needs to be reduced.
 また、換気量変更要否判定部201は、汚染物質データに含まれる計測結果、即ち、汚染物質の量に基づいて、当該部屋の換気量変更の要否を判定する。詳細には、換気量変更要否判定部201は、汚染物質の量と、当該汚染物質の種類に応じて予め設定した閾値とに基づいて当該部屋の空気の汚染状況を示す汚染度(低、中又は高で示される。)を取得する。そして、換気量変更要否判定部201は、当該部屋の現在の換気量と、取得した汚染度とに基づいて換気量変更の要否を判定する。 Furthermore, the ventilation amount change necessity determining unit 201 determines whether or not it is necessary to change the ventilation amount of the room based on the measurement results included in the pollutant data, that is, the amount of pollutants. In detail, the ventilation amount change necessity determination unit 201 determines the degree of pollution (low, low, (indicated by medium or high). Then, the ventilation amount change necessity determination unit 201 determines whether or not a ventilation amount change is necessary based on the current ventilation amount of the room and the obtained degree of contamination.
 例えば、現在の換気量が通常設定の換気量である場合であって、汚染度が“低”以外(すなわち、中又は高)の場合、換気量変更要否判定部201は、当該部屋の換気量を増加する必要があると判定する。また、現在の換気量が通常設定の換気量より大きい場合であって、汚染度が“低”の場合、換気量変更要否判定部201は、当該部屋の換気量を減少する必要があると判定する。 For example, if the current ventilation rate is the normally set ventilation rate and the pollution degree is other than "low" (that is, medium or high), the ventilation rate change necessity determination unit 201 determines whether the ventilation rate in the room is It is determined that the amount needs to be increased. In addition, if the current ventilation rate is larger than the normally set ventilation rate and the pollution level is "low", the ventilation rate change necessity determining unit 201 determines that the ventilation rate of the room needs to be reduced. judge.
 空調判定部202は、本開示に係る空調判定手段の一例である。空調判定部202は、当該部屋の空調が空調機4により行われているか否か、すなわち、当該部屋が空調中であるか否かを判定する。具体的には、空調判定部202は、空調データに含まれる運転状態をチェックして、当該空調機4が稼働中の場合、当該部屋が空調中であると判定し、停止中の場合は、当該部屋が空調中でないと判定する。 The air conditioning determination unit 202 is an example of an air conditioning determination unit according to the present disclosure. The air conditioning determining unit 202 determines whether or not the room is being air-conditioned by the air conditioner 4, that is, whether or not the room is being air-conditioned. Specifically, the air conditioning determination unit 202 checks the operating state included in the air conditioning data, and if the air conditioner 4 is in operation, it determines that the room is being air conditioned, and if it is stopped, it determines that the room is being air conditioned. It is determined that the room is not being air-conditioned.
 予測部203は、本開示に係る予測手段の一例である。予測部203は、換気量変更要否判定部201及び空調判定部202の判定結果から、換気量の増加が必要であり、且つ、空調中の部屋がある場合、当該部屋の換気量を必要とされる分増加した場合に当該空調機4の空調能力に不足が生じるか否かを予測する。具体的には、先ず、予測部203は、当該部屋の換気量を必要とされる分増加した場合における当該空調機4の空調負荷(以下「L1」という。)を下記式により算出する。 The prediction unit 203 is an example of a prediction means according to the present disclosure. The prediction unit 203 determines whether an increase in the ventilation amount is necessary and if there is a room that is being air-conditioned based on the determination results of the ventilation amount change necessity determining unit 201 and the air conditioning determining unit 202, the prediction unit 203 determines whether the ventilation amount of the room is necessary or not. It is predicted whether or not there will be a shortage in the air conditioning capacity of the air conditioner 4 when the amount increases. Specifically, first, the prediction unit 203 calculates the air conditioning load (hereinafter referred to as "L1") of the air conditioner 4 when the ventilation amount of the room is increased by the required amount using the following formula.
(式1)
 L1=現在の当該空調機5の空調能力(以下「C1」という。)+当該部屋の換気量を必要とされる分増加した場合における換気負荷(以下「L2」という。)
(Formula 1)
L1 = Current air conditioning capacity of the air conditioner 5 (hereinafter referred to as "C1") + ventilation load when the ventilation amount of the room is increased by the required amount (hereinafter referred to as "L2")
 式1において、C1は、冷媒のエンタルピー変化と冷媒流量の積、あるいは、吹出温度と吸込温度との差と風量と空気の比熱と空気の密度の積によって算出され得る。また、L2は下記式により算出される。 In Equation 1, C1 can be calculated by the product of the enthalpy change of the refrigerant and the refrigerant flow rate, or the product of the difference between the blowout temperature and the suction temperature, the air volume, the specific heat of the air, and the density of the air. Moreover, L2 is calculated by the following formula.
(式2)
 L2=(外気温度-当該部屋の吸込温度)×増加換気量×空気の比熱×空気の密度
(Formula 2)
L2 = (Outside air temperature - Intake temperature of the room) x Increased ventilation amount x Specific heat of air x Density of air
 予測部203は、以上のようにして算出したL1と当該空調機4の最大空調能力とを比較し、当該最大空調能力がL1より大きい場合、当該空調機4の空調能力に不足が生じないと判定し、当該最大空調能力がL1以下の場合、当該空調機4の空調能力に不足が生じると判定する。サーバ2は、通信により空調機4から最大空調能力を取得することが可能である。例えば、サーバ2は、予め定めたタイミングで各空調機4に対して製品情報を要求し、かかる要求を受けた各空調機4が自身の最大空調能力を含む製品情報をサーバ2に送信するようにしてもよいし、各空調機4からサーバ2に送信される空調データに最大空調能力が含まれるようにしてもよい。 The prediction unit 203 compares L1 calculated as described above with the maximum air conditioning capacity of the air conditioner 4, and if the maximum air conditioning capacity is greater than L1, the prediction unit 203 determines that there is no shortage of air conditioning capacity of the air conditioner 4. If the maximum air conditioning capacity is less than or equal to L1, it is determined that the air conditioning capacity of the air conditioner 4 is insufficient. The server 2 can acquire the maximum air conditioning capacity from the air conditioner 4 through communication. For example, the server 2 requests product information from each air conditioner 4 at a predetermined timing, and each air conditioner 4 that receives the request sends product information including its own maximum air conditioning capacity to the server 2. Alternatively, the maximum air conditioning capacity may be included in the air conditioning data sent from each air conditioner 4 to the server 2.
 あるいは、予測部203は、当該空調機4の機器IDから図示しない製品情報DB(データベース)を参照することで、当該空調機4の最大空調能力を取得してもよい。この場合、製品情報DBは、サーバ2が備えるようにしてもよいし、サーバ2と通信可能な他のサーバが備えるようにしてもよい。 Alternatively, the prediction unit 203 may obtain the maximum air conditioning capacity of the air conditioner 4 by referring to a product information DB (database) not shown from the device ID of the air conditioner 4. In this case, the product information DB may be provided in the server 2 or may be provided in another server that can communicate with the server 2.
 換気制御部204は、本開示に係る換気制御手段の一例である。換気制御部204は、換気量変更要否判定部201の判定結果と、予測部203の予測結果とに基づいて、当該住宅Hにおける換気装置3、各給気ダンパ5及び各排気ダンパ6を制御する。例えば、換気量変更要否判定部201によって換気量を増加する必要があると判定され、且つ、予測部203によって当該空調機4の空調能力に不足が生じないと予測された場合、又は、換気量変更要否判定部201によって換気量を減少する必要があると判定された場合、換気制御部204は、通常の換気制御(以下「通常換気制御」という。)を行う。 The ventilation control unit 204 is an example of ventilation control means according to the present disclosure. The ventilation control unit 204 controls the ventilation device 3, each supply air damper 5, and each exhaust damper 6 in the house H based on the determination result of the ventilation amount change necessity determination unit 201 and the prediction result of the prediction unit 203. do. For example, when the ventilation amount change necessity determination unit 201 determines that it is necessary to increase the ventilation amount, and the prediction unit 203 predicts that there will be no shortage of air conditioning capacity of the air conditioner 4, or When the amount change necessity determining unit 201 determines that it is necessary to reduce the ventilation amount, the ventilation control unit 204 performs normal ventilation control (hereinafter referred to as "normal ventilation control").
 通常換気制御では、換気制御部204は、当該部屋の給気ダンパ5及び排気ダンパ6を制御して、当該部屋の給気量及び排気量のそれぞれを同量分増加させ、あるいは、減少させる。具体的には、通常換気制御において当該部屋の換気量を増加させる場合、換気制御部204は、当該部屋の給気ダンパ5を制御して給気量をQ1SUP増加させ、当該部屋の排気ダンパ6を制御して排気量をQ1EX増加させる。Q1SUP及びQ1EXは、必要とされる換気量の増加又は減少分に等しく、換気量を変更する要因となった事象(在室者数の変化又は汚染度の変化)とその程度(変化数又は変化の大きさ)によって定まる。 In normal ventilation control, the ventilation control unit 204 controls the air supply damper 5 and exhaust damper 6 of the room to increase or decrease the air supply amount and exhaust amount of the room by the same amount. Specifically, when increasing the ventilation amount of the room in normal ventilation control, the ventilation control unit 204 controls the air supply damper 5 of the room to increase the air supply amount by Q1SUP, and increases the air supply amount by Q1SUP by controlling the air supply damper 5 of the room. is controlled to increase the displacement by Q1EX. Q1SUP and Q1EX are equal to the increase or decrease in the required ventilation volume, and are based on the event that caused the ventilation volume to change (change in the number of people in the room or change in the degree of contamination) and its degree (number of changes or change It is determined by the size of
 例えば、部屋Aの在室者数が1人から2人に増加した場合、換気制御部204は、部屋Aの給気ダンパ5aを制御して給気量を30m増加させ、部屋Aの排気ダンパ6aを制御して排気量を30m増加させる。また、部屋Aの在室者数が2人から1人に減少した場合、換気制御部204は、部屋Aの給気ダンパ5aを制御して給気量を30m減少させ、部屋Aの排気ダンパ6aを制御して排気量を30m減少させる。 For example, when the number of people in room A increases from one to two, the ventilation control unit 204 controls the air supply damper 5a of room A to increase the air supply volume by 30 m3 , and exhausts the room A. The damper 6a is controlled to increase the displacement by 30 m3. Further, when the number of people in room A decreases from two to one, the ventilation control unit 204 controls the air supply damper 5a of room A to reduce the supply air volume by 30 m3, and exhausts the room A. The damper 6a is controlled to reduce the displacement by 30m3 .
 なお、Q1SUPとQ1EXは必ずしも等しくする必要はなく、不都合が生じない範囲で相違しても構わない。 Note that Q1SUP and Q1EX do not necessarily have to be equal, and may be different as long as no inconvenience occurs.
 また、換気制御部204は、当該部屋の給気量及び排気量の変更分と整合させるために換気装置3を制御して、外気の取込み量と屋外への排出量を調整する。 Furthermore, the ventilation control unit 204 controls the ventilation device 3 to adjust the intake amount of outside air and the amount of exhaust air to the outside in order to match the change in the air supply amount and exhaust amount of the room.
 続いて、換気制御部204によって実行される温熱快適性を確保する換気制御(以下「快適性確保制御」という。)について説明する。換気制御部204は、換気量を増加する必要があり、空調中であり、且つ、対応する空調機4の空調能力不足が予測される部屋がある場合、当該部屋に対して快適性確保制御を実行する。具体的には、換気制御部204は、当該部屋(以下「換気対象部屋」という。)の排気ダンパ6を制御して排気量をQ1EX増加させる。また、換気制御部204は、換気対象部屋に隣接する部屋(以下「隣接部屋」という。)の給気ダンパ5を制御して給気量をQ1SUP増加させる。換気対象部屋は、本開示に係る第1の部屋の一例であり、隣接部屋は、本開示に係る第2の部屋の一例である。 Next, ventilation control for ensuring thermal comfort (hereinafter referred to as "comfort ensuring control") executed by the ventilation control unit 204 will be explained. If there is a room that requires an increase in ventilation volume, is currently being air-conditioned, and is predicted to lack the air-conditioning capacity of the corresponding air conditioner 4, the ventilation control unit 204 performs comfort ensuring control for the room. Execute. Specifically, the ventilation control unit 204 controls the exhaust damper 6 of the room (hereinafter referred to as "ventilation target room") to increase the exhaust amount by Q1EX. Further, the ventilation control unit 204 controls the air supply damper 5 of a room adjacent to the ventilation target room (hereinafter referred to as "adjacent room") to increase the air supply amount by Q1SUP. The room to be ventilated is an example of a first room according to the present disclosure, and the adjacent room is an example of a second room according to the present disclosure.
 例えば、部屋Aに対して快適性確保制御を実行する場合、換気制御部204は、部屋A(すなわち換気対象部屋)の排気ダンパ6aを制御して排気量をQ1EX増加させる。また、換気制御部204は、部屋Aに隣接する部屋B(すなわち隣接部屋)の給気ダンパ5bを制御して給気量をQ1SUP増加させる。この場合、排気ダンパ6aは、本開示に係る第1の排気手段の一例であり、給気ダンパ5bは、本開示に係る第2の給気手段の一例である。 For example, when performing comfort ensuring control for room A, the ventilation control unit 204 controls the exhaust damper 6a of room A (that is, the room to be ventilated) to increase the exhaust volume by Q1EX. Further, the ventilation control unit 204 controls the air supply damper 5b of the room B adjacent to the room A (that is, the adjacent room) to increase the air supply amount by Q1SUP. In this case, the exhaust damper 6a is an example of the first exhaust means according to the present disclosure, and the air supply damper 5b is an example of the second air supply means according to the present disclosure.
 これにより、隣接部屋の空気圧が換気対象部屋の空気圧より高くなり、隣接部屋から換気対象部屋へ向かう気流が発生し、隣接部屋の空気がドアのアンダーカット、通気口、隙間等を経て換気対象部屋に流入する。換気対象部屋に流入する空気量は、隣接部屋の給気量と換気対象部屋の給気量の差にほぼ等しくなる。 As a result, the air pressure in the adjacent room becomes higher than the air pressure in the room to be ventilated, creating an airflow from the adjacent room to the room to be ventilated, and the air from the adjacent room passes through door undercuts, vents, gaps, etc. flows into. The amount of air flowing into the room to be ventilated is approximately equal to the difference between the air supply amount in the adjacent room and the air supply amount in the ventilation target room.
 また、換気制御部204は、換気対象部屋の排気量の変更分と隣接部屋の給気量の変更分とに整合させるために換気装置3を制御して、外気の取込み量と屋外への排出量を調整する。 In addition, the ventilation control unit 204 controls the ventilation device 3 to match the change in the exhaust volume of the room to be ventilated with the change in the air supply volume of the adjacent room, and controls the amount of outside air taken in and exhausted to the outdoors. Adjust amount.
 なお、快適性確保制御を実行済みであっても、空調機4の空調能力不足が解消されない場合、換気制御部204は、換気対象部屋の排気ダンパ6を制御して排気量をQ1EXより小さいQ2EX増加させ、隣接部屋の給気ダンパ5を制御して給気量をQ1SUPより小さいQ2SUP増加させる。Q2EX及びQ2SUPは、例えば10mである。 Note that even if the comfort ensuring control has been executed, if the insufficient air conditioning capacity of the air conditioner 4 is not resolved, the ventilation control unit 204 controls the exhaust damper 6 of the room to be ventilated to reduce the exhaust volume to Q2EX, which is smaller than Q1EX. and controls the air supply damper 5 in the adjacent room to increase the air supply amount by Q2SUP, which is smaller than Q1SUP. Q2EX and Q2SUP are, for example, 10m3 .
<換気制御処理>
 図8は、サーバ2によって実行される換気制御処理の手順を示すフローチャートである。サーバ2は、周期的(例えば1分毎)に下記の換気制御処理を実行する。
<Ventilation control processing>
FIG. 8 is a flowchart showing the procedure of ventilation control processing executed by the server 2. The server 2 periodically (for example, every minute) executes the following ventilation control process.
(ステップS100)
 サーバ2は、換気装置3、各空調機4、各給気ダンパ5、各排気ダンパ6及び各汚染物質センサ7から各々に関するデータを収集する。その後、サーバ2の処理は、ステップS101に遷移する。
(Step S100)
The server 2 collects data from the ventilation device 3, each air conditioner 4, each supply air damper 5, each exhaust damper 6, and each pollutant sensor 7. After that, the process of the server 2 transitions to step S101.
(ステップS101)
 サーバ2は、換気量の増加が必要であり、空調中であり、且つ、空調機4の能力不足が予測される部屋があるか否かを判定する。該当する部屋がある場合(ステップS101;YES)、サーバ2の処理は、ステップS102に遷移する。一方、該当する部屋がない場合(ステップS101;NO)、サーバ2の処理は、ステップS105に遷移する。
(Step S101)
The server 2 determines whether there is a room that requires an increase in ventilation volume, is being air-conditioned, and is predicted to have insufficient capacity of the air conditioner 4. If there is a corresponding room (step S101; YES), the process of the server 2 transitions to step S102. On the other hand, if there is no corresponding room (step S101; NO), the process of the server 2 transitions to step S105.
(ステップS102)
 サーバ2は、当該部屋に対し温熱快適性を確保する換気制御(すなわち快適性確保制御)を未実行であるか否かを判定する。快適性確保制御を未実行の場合(ステップS102;YES)、サーバ2の処理は、ステップS103に遷移する。一方、快適性確保制御を実行済みの場合(ステップS102;NO)、サーバ2の処理は、ステップS104に遷移する。
(Step S102)
The server 2 determines whether ventilation control for ensuring thermal comfort (ie, comfort ensuring control) has not been performed for the room. If the comfort ensuring control is not executed (step S102; YES), the process of the server 2 transitions to step S103. On the other hand, if the comfort ensuring control has been executed (step S102; NO), the process of the server 2 transitions to step S104.
(ステップS103)
 サーバ2は、当該部屋の排気ダンパ6を制御して排気量をQ1EX増加させる。また、サーバ2は、当該部屋に隣接する部屋の給気ダンパ5を制御して給気量をQ1SUP増加させる。その後、サーバ2は、本周期での換気制御処理を終了する。
(Step S103)
The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q1EX. Further, the server 2 controls the air supply damper 5 of the room adjacent to the room to increase the air supply amount by Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
(ステップS104)
 サーバ2は、当該部屋の排気ダンパ6を制御して排気量をQ1EXより小さいQ2EX増加させる。また、サーバ2は、当該部屋に隣接する部屋の給気ダンパ5を制御して給気量をQ1SUPより小さいQ2SUP増加させる。その後、サーバ2は、本周期での換気制御処理を終了する。
(Step S104)
The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q2EX, which is smaller than Q1EX. Further, the server 2 controls the air supply damper 5 of the room adjacent to the room to increase the air supply amount by Q2SUP, which is smaller than Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
(ステップS105)
 サーバ2は、通常換気制御を実行し、本周期での換気制御処理を終了する。
(Step S105)
The server 2 executes normal ventilation control and ends the ventilation control process in this cycle.
 以上説明したように、本実施の形態における換気システム1では、ある部屋について、換気量の増加が必要であり、空調中であり、且つ、対応する空調機4の能力不足が予測される場合、サーバ2は、当該部屋(すなわち換気対象部屋)の排気量を増加させ、換気対象部屋に隣接する部屋(すなわち隣接部屋)の給気量を増加させる。これにより、換気対象部屋の空気圧が隣接部屋の空気圧より低くなり、隣接部屋の増加した給気量に相当する量(すなわち、換気対象部屋の増加した排気量に相当する量)の空気が隣接部屋から換気対象部屋へ流入する。 As explained above, in the ventilation system 1 according to the present embodiment, when an increase in the ventilation amount is required for a certain room, the room is being air-conditioned, and the capacity of the corresponding air conditioner 4 is predicted to be insufficient, The server 2 increases the exhaust volume of the room (ie, the ventilation target room) and increases the air supply volume of the room adjacent to the ventilation target room (ie, the adjacent room). This causes the air pressure in the ventilated room to be lower than the air pressure in the adjacent room, and an amount of air corresponding to the increased air supply volume of the adjacent room (i.e., an amount equivalent to the increased exhaust volume of the ventilated room) is transferred to the adjacent room. and flows into the room to be ventilated.
 このため、必要な換気量を確保しつつ、汚染物質の他の部屋への拡散を防止できる。さらに、換気対象部屋へ室内空気が供給されるため、換気対象部屋の空調機4の空調能力不足を防止でき、ユーザの温熱快適性を確保することが可能となる。 Therefore, it is possible to prevent the spread of pollutants to other rooms while ensuring the necessary amount of ventilation. Furthermore, since indoor air is supplied to the room to be ventilated, it is possible to prevent insufficient air conditioning capacity of the air conditioner 4 in the room to be ventilated, and it is possible to ensure thermal comfort for the user.
(変形例1)
 住宅Hに、ユーザから換気に関する指示を受け付ける図示しない専用リモコンが設置されている場合、かかる専用リモコンからユーザの指示を示す情報(以下「ユーザ指示情報」という。)がサーバ2に送信されるようにしてもよい。あるいは、スマートフォン、タブレット端末等のユーザ端末からユーザ指示情報がサーバ2に送信されるようにしてもよい。このような構成の場合、サーバ2の換気量変更要否判定部201は、さらに、受信したユーザ指示情報に基づいて各部屋の換気量変更の要否を判定してもよい。
(Modification 1)
If a dedicated remote controller (not shown) is installed in the house H, which receives instructions regarding ventilation from the user, information indicating the user's instructions (hereinafter referred to as "user instruction information") is transmitted from the dedicated remote controller to the server 2. You may also do so. Alternatively, user instruction information may be transmitted to the server 2 from a user terminal such as a smartphone or a tablet terminal. In such a configuration, the ventilation amount change necessity determination unit 201 of the server 2 may further determine whether or not the ventilation amount change of each room is necessary based on the received user instruction information.
(変形例2)
 各給気ダンパ5に替えて各部屋に対応する給気ファンが設置され、各給気ファンによって、換気ユニット30から各部屋へ供給される空気の量が調整されるようにしてもよい。この場合、各給気ファンは、本開示に係る第1の給気手段又は第2の給気手段の一例となる。なお、各給気ダンパ5と各給気ファンとが併用されるようにしてもよい。また、各排気ダンパ6に替えて各部屋に対応する排気ファンが設置され、各排気ファンによって各部屋から取り込まれる空気の量が調整されるようにしてもよい。この場合、各排気ファンは、本開示に係る第1の排気手段又は第2の排気手段の一例となる。なお、各排気ダンパ6と各排気ファンとが併用されるようにしてもよい。
(Modification 2)
Instead of each air supply damper 5, an air supply fan corresponding to each room may be installed, and the amount of air supplied from the ventilation unit 30 to each room may be adjusted by each air supply fan. In this case, each air supply fan is an example of the first air supply means or the second air supply means according to the present disclosure. Note that each air supply damper 5 and each air supply fan may be used together. Furthermore, instead of each exhaust damper 6, an exhaust fan corresponding to each room may be installed, and the amount of air taken in from each room may be adjusted by each exhaust fan. In this case, each exhaust fan is an example of the first exhaust means or the second exhaust means according to the present disclosure. Note that each exhaust damper 6 and each exhaust fan may be used together.
(変形例3)
 各部屋に、空気温度を計測する温度センサ、人の存否を検知する人感センサ等が別途設置されている場合、サーバ2は、これらのセンサの計測結果も使用して住宅Hにおける換気制御を実行してもよい。また、空調機4が、室内の汚染物質(例えば、CO、臭気、PM、ウイルス等)の量を計測するセンサを備える場合、サーバ2は、空調機4の当該センサの計測結果も使用して住宅Hにおける換気制御を実行してもよい。
(Modification 3)
If each room is separately installed with a temperature sensor that measures the air temperature, a motion sensor that detects the presence or absence of a person, etc., the server 2 also uses the measurement results of these sensors to control the ventilation in the house H. May be executed. Furthermore, when the air conditioner 4 is equipped with a sensor that measures the amount of indoor pollutants (for example, CO 2 , odor, PM, viruses, etc.), the server 2 also uses the measurement results of the sensor of the air conditioner 4. Ventilation control in the house H may be performed using the air conditioner.
(変形例4)
 換気ユニット30は、室内空気と外気との全熱交換(顕熱交換及び潜熱交換)を行う全熱交換器を備える構成であってもよく、あるいは、空気を清浄化するための機構を備える構成であってもよい。空気を清浄化するための機構には、例えば、中高性能フィルタ、HEPA (High Efficiency Particulate Air)フィルタ等のエアフィルタ、電気集塵器、紫外線照射器等が含まれる。
(Modification 4)
The ventilation unit 30 may be configured to include a total heat exchanger that performs total heat exchange (sensible heat exchange and latent heat exchange) between indoor air and outdoor air, or may be configured to include a mechanism for purifying the air. It may be. Mechanisms for cleaning the air include, for example, air filters such as medium-high performance filters and HEPA (High Efficiency Particulate Air) filters, electrostatic precipitators, ultraviolet irradiators, and the like.
(変形例5)
 サーバ2に替えて、住宅Hに設置されるとともに、サーバ2と同様の機能(図7参照)を備える宅内コントローラによって当該住宅Hの換気制御が行われるようにしてもよい。この場合、当該宅内コントローラは、本開示に係る制御装置の一例となる。
(Modification 5)
Instead of the server 2, ventilation control of the house H may be performed by an in-house controller that is installed in the house H and has the same functions as the server 2 (see FIG. 7). In this case, the in-home controller is an example of a control device according to the present disclosure.
(変形例6)
 サーバ2に替えて、換気装置3の換気ユニット30が備える制御回路303が、サーバ2と同様の機能(図7参照)を備え、制御回路303によって当該住宅Hの換気制御が行われるようにしてもよい。この場合、制御回路303は、本開示に係る制御装置の一例となる。
(Modification 6)
Instead of the server 2, a control circuit 303 included in the ventilation unit 30 of the ventilation system 3 has the same function as the server 2 (see FIG. 7), and the control circuit 303 controls the ventilation of the house H. Good too. In this case, the control circuit 303 is an example of a control device according to the present disclosure.
(変形例7)
 サーバ2が、複数のサーバで構成されるようにしてもよい。
(Modification 7)
The server 2 may be made up of a plurality of servers.
(変形例8)
 空調機4が、いわゆるハウジングエアコンの室内機であってもよい。
(Modification 8)
The air conditioner 4 may be an indoor unit of a so-called housing air conditioner.
(変形例9)
 サーバ2の機能部(図7参照)の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application-Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はこれらの組合せである。
(Modification 9)
All or part of the functional units of the server 2 (see FIG. 7) may be realized by dedicated hardware. The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application-Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
 上記の各変形例に係る技術思想は、それぞれ単独で実現されてもよいし、適宜組み合わされて実現されてもよい。 The technical ideas related to each of the above-mentioned modifications may be realized individually, or may be realized in combination as appropriate.
(実施の形態2)
 続いて、本開示の実施の形態2について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 2)
Next, a second embodiment of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 実施の形態2におけるサーバ2は、温熱快適性を確保する換気制御(すなわち快適性確保制御)の実行時において換気対象部屋(すなわち第1の部屋)に隣接する隣接部屋が複数存在する場合、予め定めた条件に適合する一の隣接部屋を給気量を増加する部屋(以下「給気部屋」という。)として選択する給気部屋選択機能を有する。給気部屋選択機能は、換気制御部204に含まれる機能である。給気部屋は、本開示に係る第2の部屋の一例である。 The server 2 in Embodiment 2 is configured in advance to perform ventilation control for ensuring thermal comfort (i.e., comfort ensuring control) when there are a plurality of adjacent rooms adjacent to the room to be ventilated (i.e., the first room). It has an air supply room selection function that selects one adjacent room that meets predetermined conditions as the room in which the amount of air supply is to be increased (hereinafter referred to as the "air supply room"). The air supply room selection function is a function included in the ventilation control unit 204. The air supply room is an example of the second room according to the present disclosure.
 詳細には、換気制御部204は、隣接部屋が複数存在する場合、当該複数の隣接部屋のうちから下記の条件1~3により順次絞り込むことで給気部屋を選択する。 Specifically, when there are multiple adjacent rooms, the ventilation control unit 204 selects an air supply room from among the multiple adjacent rooms by sequentially narrowing down the rooms based on conditions 1 to 3 below.
 条件1:当該隣接部屋の空調機4が稼働中であること
 条件2:当該隣接部屋の給気量を必要とされる分(すなわちQ1SUP)増加しても当該隣接部屋に対応する空調機の空調能力に不足が生じないこと
 条件3:当該隣接部屋の給気量をQ1SUP増加した後の当該空調機4のCOP(Coefficient Of Performance)が他のいずれの隣接部屋の空調機4よりも高いこと
Condition 1: The air conditioner 4 of the adjacent room is in operation Condition 2: Even if the air supply amount of the adjacent room increases by the required amount (i.e. Q1SUP), the air conditioner corresponding to the adjacent room will not continue to air condition. There is no shortage of capacity Condition 3: The COP (Coefficient Of Performance) of the air conditioner 4 after increasing the air supply amount in the adjacent room by Q1SUP is higher than the air conditioner 4 in any other adjacent room.
 条件2での絞り込みは、条件1に該当する隣接部屋が複数存在する場合に実行し、条件3での絞り込みは、条件2に該当する隣接部屋が複数存在する場合に実行する。 Narrowing down using condition 2 is performed when there are multiple adjacent rooms that meet condition 1, and narrowing down using condition 3 is performed when there are multiple adjacent rooms that meet condition 2.
 条件2において、先ず、換気制御部204は、当該隣接部屋の給気量をQ1SUP増加した場合における当該空調機4の空調負荷(以下「L3」という。)を下記式により算出する。 In condition 2, first, the ventilation control unit 204 calculates the air conditioning load (hereinafter referred to as "L3") of the air conditioner 4 when the air supply amount of the adjacent room is increased by Q1SUP using the following formula.
(式3)
 L3=現在の当該空調機5の空調能力(以下「C2」という。)+当該隣接部屋の給気量をQ1SUP増加した場合における換気負荷(以下「L4」という。)
(Formula 3)
L3 = Current air conditioning capacity of the air conditioner 5 (hereinafter referred to as "C2") + ventilation load when the air supply amount of the relevant adjacent room is increased by Q1SUP (hereinafter referred to as "L4")
 式3において、C2は、冷媒のエンタルピー変化と冷媒流量の積、あるいは、吹出温度と吸込温度との差と風量と空気の比熱と空気の密度の積によって算出され得る。また、L4は下記式により算出される。 In Equation 3, C2 can be calculated by the product of the enthalpy change of the refrigerant and the refrigerant flow rate, or the product of the difference between the blowout temperature and the suction temperature, the air volume, the specific heat of the air, and the density of the air. Moreover, L4 is calculated by the following formula.
(式4)
 L4=(外気温度-当該隣接部屋の吸込温度)×Q1SUP×空気の比熱×空気の密度
(Formula 4)
L4 = (Outside air temperature - Suction temperature of the adjacent room) x Q1SUP x Specific heat of air x Density of air
 換気制御部204は、以上のようにして算出したL3と当該空調機4の最大空調能力とを比較し、当該最大空調能力がL3より大きい場合、当該空調機4の空調能力に不足が生じないと判定し、当該最大空調能力がL3以下の場合、当該空調機4の空調能力に不足が生じると判定する。 The ventilation control unit 204 compares L3 calculated as above with the maximum air conditioning capacity of the air conditioner 4, and if the maximum air conditioning capacity is greater than L3, there is no shortage of air conditioning capacity of the air conditioner 4. If the maximum air conditioning capacity is equal to or lower than L3, it is determined that the air conditioning capacity of the air conditioner 4 is insufficient.
 条件3において、給気量増加後の空調機のCOPは、COPカーブから推算される。COPカーブは、当該空調機4の製品情報で示される定格COPとその時の空調能力と、中間COPとその時の空調能力と、空調能力が0の時のCOPは0という前提とに基づいて作成される。なお、給気量増加後のCOPに替えて現在のCOPを使用してもよい。現在のCOPは下記式により算出される。 In condition 3, the COP of the air conditioner after increasing the air supply amount is estimated from the COP curve. The COP curve is created based on the rated COP shown in the product information of the air conditioner 4, the air conditioning capacity at that time, the intermediate COP and the air conditioning capacity at that time, and the assumption that the COP is 0 when the air conditioning capacity is 0. Ru. Note that the current COP may be used instead of the COP after the increase in air supply amount. The current COP is calculated by the following formula.
(式5)
 現在のCOP=当該空調機4の現在の空調能力÷当該空調機4の現在の消費電力
(Formula 5)
Current COP = Current air conditioning capacity of the air conditioner 4 ÷ Current power consumption of the air conditioner 4
 サーバ2は、通信により空調機4から製品情報を取得することが可能である。あるいは、サーバ2は、当該空調機4の機器IDから図示しない製品情報DBを参照することで当該空調機4の製品情報を取得してもよい。この場合、製品情報DBは、サーバ2が備えるようにしてもよいし、サーバ2と通信可能な他のサーバが備えるようにしてもよい。また、サーバ2は、空調機4の現在の消費電力を空調データに含まれるデータとして取得することが可能である。 The server 2 can acquire product information from the air conditioner 4 through communication. Alternatively, the server 2 may acquire the product information of the air conditioner 4 by referring to a product information DB (not shown) from the device ID of the air conditioner 4. In this case, the product information DB may be provided in the server 2 or may be provided in another server that can communicate with the server 2. Furthermore, the server 2 can acquire the current power consumption of the air conditioner 4 as data included in the air conditioning data.
<換気制御処理>
 図9は、実施の形態2におけるサーバ2によって実行される換気制御処理の手順を示すフローチャートである。サーバ2は、周期的(例えば1分毎)に下記の換気制御処理を実行する。
<Ventilation control processing>
FIG. 9 is a flowchart showing the procedure of ventilation control processing executed by the server 2 in the second embodiment. The server 2 periodically (for example, every minute) executes the following ventilation control process.
(ステップS200)
 サーバ2は、換気装置3、各空調機4、各給気ダンパ5、各排気ダンパ6及び各汚染物質センサ7から各々に関するデータを収集する。その後、サーバ2の処理は、ステップS201に遷移する。
(Step S200)
The server 2 collects data from the ventilation device 3, each air conditioner 4, each supply air damper 5, each exhaust damper 6, and each pollutant sensor 7. After that, the process of the server 2 transitions to step S201.
(ステップS201)
 サーバ2は、換気量の増加が必要であり、空調中であり、且つ、空調機4の能力不足が予測される部屋があるか否かを判定する。該当する部屋がある場合(ステップS201;YES)、サーバ2の処理は、ステップS202に遷移する。一方、該当する部屋がない場合(ステップS201;NO)、サーバ2の処理は、ステップS208に遷移する。
(Step S201)
The server 2 determines whether there is a room that requires an increase in ventilation volume, is being air-conditioned, and is predicted to have insufficient capacity of the air conditioner 4. If there is a corresponding room (step S201; YES), the process of the server 2 transitions to step S202. On the other hand, if there is no corresponding room (step S201; NO), the process of the server 2 transitions to step S208.
(ステップS202)
 サーバ2は、隣接部屋が複数存在するか否かを判定する。隣接部屋が複数存在する場合(ステップS202;YES)、サーバ2の処理は、ステップS203に遷移する。一方、隣接部屋が複数存在しない場合(ステップS202;NO)、サーバ2の処理は、ステップS204に遷移する。
(Step S202)
The server 2 determines whether there are multiple adjacent rooms. If there are multiple adjacent rooms (step S202; YES), the process of the server 2 transitions to step S203. On the other hand, if a plurality of adjacent rooms do not exist (step S202; NO), the process of the server 2 transitions to step S204.
(ステップS203)
 サーバ2は、複数の隣接部屋から上記の条件1~3に基づいて最適な隣接部屋を給気部屋として選択する。その後、サーバ2の処理は、ステップS205に遷移する。
(Step S203)
The server 2 selects the optimal adjacent room as the air supply room from among the plurality of adjacent rooms based on the above conditions 1 to 3. After that, the process of the server 2 transitions to step S205.
(ステップS204)
 サーバ2は、当該隣接部屋を給気部屋に決定する。その後、サーバ2の処理は、ステップS205に遷移する。
(Step S204)
The server 2 determines the adjacent room as the air supply room. After that, the process of the server 2 transitions to step S205.
(ステップS205)
 サーバ2は、当該部屋に対し温熱快適性を確保する換気制御(すなわち快適性確保制御)を未実行であるか否かを判定する。快適性確保制御を未実行の場合(ステップS205;YES)、サーバ2の処理は、ステップS206に遷移する。一方、快適性確保制御を実行済みの場合(ステップS205;NO)、サーバ2の処理は、ステップS207に遷移する。
(Step S205)
The server 2 determines whether ventilation control for ensuring thermal comfort (ie, comfort ensuring control) has not been performed for the room. If the comfort ensuring control is not executed (step S205; YES), the process of the server 2 transitions to step S206. On the other hand, if the comfort ensuring control has been executed (step S205; NO), the process of the server 2 transitions to step S207.
(ステップS206)
 サーバ2は、当該部屋の排気ダンパ6を制御して排気量をQ1EX増加させる。また、サーバ2は、給気部屋の給気ダンパ5を制御して給気量をQ1SUP増加させる。その後、サーバ2は、本周期での換気制御処理を終了する。
(Step S206)
The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q1EX. Further, the server 2 controls the air supply damper 5 in the air supply room to increase the amount of air supply by Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
(ステップS207)
 サーバ2は、当該部屋の排気ダンパ6を制御して排気量をQ1EXより小さいQ2EX増加させる。また、サーバ2は、給気部屋の給気ダンパ5を制御して給気量をQ1SUPより小さいQ2SUP増加させる。その後、サーバ2は、本周期での換気制御処理を終了する。
(Step S207)
The server 2 controls the exhaust damper 6 of the room to increase the exhaust amount by Q2EX, which is smaller than Q1EX. Further, the server 2 controls the air supply damper 5 in the air supply room to increase the amount of air supply by Q2SUP, which is smaller than Q1SUP. After that, the server 2 ends the ventilation control process in this cycle.
(ステップS208)
 サーバ2は、通常換気制御を実行し、本周期での換気制御処理を終了する。
(Step S208)
The server 2 executes normal ventilation control and ends the ventilation control process in this cycle.
 以上説明したように、本実施の形態における換気システム1では、ある部屋について、換気量の増加が必要であり、空調中であり、且つ、対応する空調機4の能力不足が予測される場合、サーバ2は、当該部屋(すなわち換気対象部屋)の排気量を増加させ、換気対象部屋に隣接する部屋(すなわち隣接部屋)を給気部屋に決定し、当該給気部屋の給気量を増加させる。これにより、換気対象部屋の空気圧が給気部屋の空気圧より低くなり、給気部屋の増加した給気量に相当する量(すなわち、換気対象部屋の増加した排気量に相当する量)の空気が給気部屋から換気対象部屋へ流入する。 As explained above, in the ventilation system 1 according to the present embodiment, when an increase in the ventilation amount is required for a certain room, the room is being air-conditioned, and the capacity of the corresponding air conditioner 4 is predicted to be insufficient, The server 2 increases the exhaust volume of the room (i.e., the ventilation target room), determines a room adjacent to the ventilation target room (i.e., the adjacent room) as the air supply room, and increases the air supply volume of the ventilation target room. . This causes the air pressure in the ventilated room to be lower than the air pressure in the air supply room, and an amount of air corresponding to the increased air supply volume in the ventilation room (i.e., an amount equivalent to the increased exhaust volume in the ventilated room) is removed. Air flows from the air supply room into the room to be ventilated.
 このため、必要な換気量を確保しつつ、汚染物質の他の部屋への拡散を防止できる。さらに、換気対象部屋へ室内空気が供給されるため、換気対象部屋の空調機4の空調能力不足を防止でき、ユーザの温熱快適性を確保することが可能となる。 Therefore, it is possible to prevent the spread of pollutants to other rooms while ensuring the necessary amount of ventilation. Furthermore, since indoor air is supplied to the room to be ventilated, it is possible to prevent insufficient air conditioning capacity of the air conditioner 4 in the room to be ventilated, and it is possible to ensure thermal comfort for the user.
 また、隣接部屋が複数存在する場合には、サーバ2は、予め定めた条件に基づき給気部屋として最適な隣接部屋を選択するため、より確実に換気対象部屋の温熱快適性が確保でき、また、住宅H全体のエネルギー効率の向上が図れる。 In addition, if there are multiple adjacent rooms, the server 2 selects the optimal adjacent room as the air supply room based on predetermined conditions, so that the thermal comfort of the room to be ventilated can be more reliably ensured. , the energy efficiency of the entire house H can be improved.
 なお、実施の形態1の各変形例は、本実施の形態においても適用され得る。 Note that each modification of Embodiment 1 can be applied to this embodiment as well.
(実施の形態3)
 続いて、本開示の実施の形態3について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 3)
Next, Embodiment 3 of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 実施の形態3におけるサーバ2は、図示しない空気圧分布情報取得部をさらに備える。空気圧分布情報取得部は、本開示に係る空気圧分布情報取得手段の一例である。空気圧分布情報取得部は、住宅Hにおける各部屋の空気圧の高低関係を示す空気圧分布情報を取得する。例えば、空気圧分布情報取得部は、各部屋の給気量及び排気量に基づいて空気圧分布情報を推定することで取得してもよいし、住宅Hにおける部屋間の壁内に設置された差圧センサの計測結果、扉のアンダーカットに設置された風速センサの計測結果等に基づいて空気圧分布情報を推定することで取得してもよい。なお、風速センサの計測結果を使用する場合は、空気の流れの向きが不明であるため、さらに、各部屋の給気量及び排気量を加味することで、高い精度で空気圧分布情報を推定することが可能になる。 The server 2 in the third embodiment further includes an air pressure distribution information acquisition unit (not shown). The air pressure distribution information acquisition unit is an example of air pressure distribution information acquisition means according to the present disclosure. The air pressure distribution information acquisition unit acquires air pressure distribution information indicating the height relationship of air pressure in each room in the house H. For example, the air pressure distribution information acquisition unit may obtain the air pressure distribution information by estimating the air pressure distribution information based on the air supply amount and exhaust amount of each room, or may obtain the air pressure distribution information by estimating the air pressure distribution information based on the air supply amount and exhaust amount of each room, or may obtain the air pressure distribution information by estimating the air pressure distribution information based on the air supply amount and exhaust amount of each room. The air pressure distribution information may be obtained by estimating the air pressure distribution information based on the measurement result of a sensor, the measurement result of a wind speed sensor installed in the undercut of the door, or the like. In addition, when using the measurement results of the wind speed sensor, since the direction of the air flow is unknown, the air pressure distribution information can be estimated with high accuracy by taking into account the air supply and exhaust volumes of each room. becomes possible.
 あるいは、空気圧分布情報取得部は、いわゆるデジタルツインと呼ばれる解析方法により空気圧分布情報を推定することで取得してもよい。デジタルツインでは、サーバ2あるいは他のサーバ上に熱流体解析モデルと計算環境とを構築し、対象の建物の間取り、機器性能情報を入力し、実際の室温、外気温度等のデータを入力しながら、将来の室内の温度及び空気圧を解析する。 Alternatively, the air pressure distribution information acquisition unit may acquire the air pressure distribution information by estimating the air pressure distribution information using an analysis method called a so-called digital twin. With a digital twin, a thermal fluid analysis model and calculation environment are built on Server 2 or another server, and the floor plan of the target building, equipment performance information, and data such as actual room temperature and outside air temperature are input. , analyze future indoor temperature and air pressure.
 本実施の形態における換気制御部204は、空気圧分布情報取得部によって取得された空気圧分布情報も加味して当該住宅Hにおける換気装置3、各給気ダンパ5及び各排気ダンパ6を制御する。詳細には、換気制御部204は、空気圧分布の目標を決定し、住宅Hにおける空気圧分布を当該目標に近づけるように各給気ダンパ5及び各排気ダンパ6の制御内容を決定する。 The ventilation control unit 204 in this embodiment controls the ventilation device 3, each air supply damper 5, and each exhaust damper 6 in the house H, taking into account the air pressure distribution information acquired by the air pressure distribution information acquisition unit. Specifically, the ventilation control unit 204 determines a target air pressure distribution, and determines the control content of each air supply damper 5 and each exhaust damper 6 so that the air pressure distribution in the house H approaches the target.
 例えば、図5において、快適性確保制御の実行によって部屋Aの排気量を増加させ、部屋Bの給気量を増加させた場合、部屋Bの空気圧は部屋Aの空気圧より高くなる。給気量と排気量を変化させていない(給気量=排気量のままになっている)部屋Cの空気圧は、部屋Aより高く、部屋Bより低くなることが推測される。このような状況において、浴室の図示しない換気扇による排気量が部屋Bにおける給気量と排気量の差より大きくなると、部屋Aで発生した汚染物質が、廊下を通って浴室へ移動するおそれがある。 For example, in FIG. 5, when the exhaust volume of room A is increased and the air supply volume of room B is increased by executing the comfort ensuring control, the air pressure of room B becomes higher than the air pressure of room A. It is estimated that the air pressure in room C, where the supply air amount and exhaust amount are not changed (the air supply amount remains equal to the exhaust amount), is higher than room A and lower than room B. In such a situation, if the amount of exhaust air from the ventilation fan (not shown) in the bathroom becomes larger than the difference between the air intake and exhaust amount in room B, there is a risk that pollutants generated in room A will move to the bathroom through the hallway. .
 上記の場合、換気制御部204は、浴室の排気量が部屋Aにおける排気量と給気量の差以下となるように、部屋Aの排気量を例えばQ1EX増加させ、部屋Bの給気量を例えばQ1SUP増加させる。なお、部屋Aの排気量を必要以上に大きくすると、廊下から部屋Aへの空気の流入により部屋Aにおける空調機4aの空調能力の超過を招くおそれがあり、また、浴室の臭い、湿気等が部屋Aに移動するおそれがあるため、換気制御部204は、廊下及び浴室の空気が部屋Aに移動しないように部屋Aの排気量及び部屋Bの給気量の増加量を決定する。 In the above case, the ventilation control unit 204 increases the exhaust volume of room A by, for example, Q1EX, and increases the air supply volume of room B so that the exhaust volume of the bathroom is equal to or less than the difference between the exhaust volume and supply air volume in room A. For example, increase Q1SUP. In addition, if the exhaust volume of room A is increased more than necessary, there is a risk that the air conditioning capacity of the air conditioner 4a in room A will be exceeded due to air flowing into room A from the hallway, and the smell and humidity of the bathroom may be increased. Since there is a risk that the air may move to room A, the ventilation control unit 204 determines the amount of increase in the air exhaust amount for room A and the air supply amount for room B so that the air in the hallway and bathroom does not move to room A.
 以上説明したように、本実施の形態における換気システム1では、サーバ2は、各部屋の空気圧の高低関係を示す空気圧分布情報を取得し、取得した空気圧分布情報も加味して当該住宅Hにおける換気制御を実行する。このため、より確実に汚染物質の他の部屋への拡散を防止でき、換気対象部屋の空調機4の空調能力不足を防止することが可能となる。 As explained above, in the ventilation system 1 according to the present embodiment, the server 2 acquires air pressure distribution information indicating the height relationship of air pressure in each room, and takes into account the acquired air pressure distribution information to ventilate the house H. Execute control. Therefore, it is possible to more reliably prevent contaminants from spreading to other rooms, and it is possible to prevent insufficient air conditioning capacity of the air conditioner 4 in the room to be ventilated.
 なお、実施の形態1の各変形例及び実施の形態2は、本実施の形態においても適用され得る。 Note that each modification of Embodiment 1 and Embodiment 2 can be applied to this embodiment as well.
(実施の形態4)
 続いて、本開示の実施の形態4について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 4)
Next, a fourth embodiment of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 図10は、実施の形態4における換気システム1Aの全体構成を示す図である。換気システム1Aは、一戸建て住宅又は集合住宅である住宅Hの換気を行うシステムであり、本開示に係る換気システムの一例である。図10に示すように、換気システム1Aは、サーバ2と、複数の空調機4と、複数の給気扇9と、複数の排気扇10と、複数の汚染物質センサ7と、ルータ8とを備える。 FIG. 10 is a diagram showing the overall configuration of a ventilation system 1A in Embodiment 4. The ventilation system 1A is a system that ventilates a house H, which is a single-family house or an apartment complex, and is an example of the ventilation system according to the present disclosure. As shown in FIG. 10, the ventilation system 1A includes a server 2, multiple air conditioners 4, multiple air supply fans 9, multiple exhaust fans 10, multiple pollutant sensors 7, and a router 8. Be prepared.
 換気システム1Aは、実施の形態1の換気システム1とは異なり、セントラル換気システムではなく、各部屋に設置された、外気を取り込む給気扇9及び室内空気を屋外に排出する排気扇10によって各部屋の換気を行う。図11に示すように、部屋Aには、給気扇9aと排気扇10aとが設置され、部屋Bには、給気扇9bと排気扇10bとが設置され、部屋Cには、給気扇9cと排気扇10cとが設置されている。 Unlike the ventilation system 1 of Embodiment 1, the ventilation system 1A is not a central ventilation system, but is equipped with an air supply fan 9 that takes in outside air and an exhaust fan 10 that exhausts indoor air to the outdoors, which are installed in each room. Ventilate the room. As shown in FIG. 11, in room A, an air supply fan 9a and an exhaust fan 10a are installed, in room B, an air supply fan 9b and an exhaust fan 10b are installed, and in room C, an air supply fan 9a and an exhaust fan 10a are installed. A fan 9c and an exhaust fan 10c are installed.
 サーバ2の換気制御部204は、実施の形態1と同様、換気量を増加する必要があり、空調中であり、且つ、対応する空調機4の空調能力不足が予測される部屋がある場合、当該部屋に対して、温熱快適性を確保する換気制御(すなわち快適性確保制御)を実行する。本実施の形態の快適性確保制御では、換気制御部204は、当該部屋(すなわち換気対象部屋)の排気扇10を制御して排気量をQ1EX増加させる。また、換気制御部204は、換気対象部屋に隣接する部屋(すなわち隣接部屋)の給気扇9を制御して給気量をQ1SUP増加させる。 As in Embodiment 1, the ventilation control unit 204 of the server 2, when there is a room that requires an increase in ventilation volume, is being air-conditioned, and where the air-conditioning capacity of the corresponding air conditioner 4 is expected to be insufficient, Ventilation control to ensure thermal comfort (ie, comfort ensuring control) is executed for the room. In the comfort ensuring control of this embodiment, the ventilation control unit 204 controls the exhaust fan 10 of the room (that is, the room to be ventilated) to increase the exhaust amount by Q1EX. Further, the ventilation control unit 204 controls the air supply fan 9 of the room adjacent to the room to be ventilated (that is, the adjacent room) to increase the air supply amount by Q1SUP.
 例えば、部屋Aに対して快適性確保制御を実行する場合、換気制御部204は、部屋Aの排気扇10aを制御して排気量をQ1EX増加させる。また、換気制御部204は、部屋Aに隣接する部屋Bの給気扇9bを制御して給気量をQ1SUP増加させる。 For example, when performing comfort ensuring control for room A, the ventilation control unit 204 controls the exhaust fan 10a of room A to increase the exhaust volume by Q1EX. Further, the ventilation control unit 204 controls the air supply fan 9b of the room B adjacent to the room A to increase the air supply amount by Q1SUP.
 快適性確保制御を実行済みであっても、空調機4の空調能力不足が解消されない場合、換気制御部204は、換気対象部屋の排気扇10を制御して排気量をQ1EXより小さいQ2EX増加させ、隣接部屋の給気扇9を制御して給気量をQ1SUPより小さいQ2SUP増加させる。 If the lack of air conditioning capacity of the air conditioner 4 is not resolved even after the comfort ensuring control has been executed, the ventilation control unit 204 controls the exhaust fan 10 in the room to be ventilated to increase the exhaust volume by Q2EX, which is smaller than Q1EX. , controls the air supply fan 9 in the adjacent room to increase the air supply amount by Q2SUP, which is smaller than Q1SUP.
 本実施の形態における換気システム1Aによれば、実施の形態1における換気システム1と同様、必要な換気量を確保しつつ、汚染物質の他の部屋への拡散を防止できる。さらに、換気対象部屋へ室内空気が供給されるため、換気対象部屋の空調機4の空調能力不足を防止でき、ユーザの温熱快適性を確保することが可能となる。 According to the ventilation system 1A in this embodiment, like the ventilation system 1 in Embodiment 1, it is possible to prevent pollutants from spreading to other rooms while ensuring the necessary ventilation amount. Furthermore, since indoor air is supplied to the room to be ventilated, it is possible to prevent insufficient air conditioning capacity of the air conditioner 4 in the room to be ventilated, and it is possible to ensure thermal comfort for the user.
 また、給気ダンパ5及び排気ダンパ6よりも給気扇9及び排気扇10の方がより精度よく換気量を調整でき、動作音が軽減されるというメリットがある。 Additionally, the air supply fan 9 and the exhaust fan 10 have the advantage that the ventilation amount can be adjusted more accurately than the air supply damper 5 and the exhaust damper 6, and the operating noise is reduced.
 なお、実施の形態1の変形例1,3,5,7~9、実施の形態2及び3は、本実施の形態においても適用され得る。 Note that Modifications 1, 3, 5, 7 to 9 of Embodiment 1, and Embodiments 2 and 3 can also be applied to this embodiment.
 本開示は、広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能である。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 Various embodiments and modifications can be made to the present disclosure without departing from its broad spirit and scope. Further, the embodiments described above are for explaining the present disclosure, and do not limit the scope of the present disclosure. In other words, the scope of the present disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and the meaning of the disclosure equivalent thereto are considered to be within the scope of the present disclosure.
 本開示は、建物内の換気を行うシステムに好適に採用され得る。 The present disclosure can be suitably employed in a system that performs ventilation within a building.
 1,1A 換気システム、2 サーバ、3 換気装置、4,4a~4c 空調機、5,5a~5c 給気ダンパ、6,6a~6c 排気ダンパ、7,7a~7c 汚染物資センサ、8 ルータ、9,9a~9c 給気扇、10,10a~10c 排気扇、20,47,302 通信インタフェース、21 CPU、22 ROM、23 RAM、24 補助記憶装置、25 バス、30 換気ユニット、31 統合給気ダクト、32 統合排気ダクト、33,33a~33c 給気ダクト、34,34a~34c 排気ダクト、40 熱交換器、41 ファン、42 ルーバ、43 吸込温度センサ、44 吹出温度センサ、45 湿度センサ、46 熱画像センサ、48,303 制御回路、200 データ収集部、201 換気量変更要否判定部、202 空調判定部、203 予測部、204 換気制御部、240 収集データ記憶部、241 物件情報記憶部、300 給気ファン、301 排気ファン 1, 1A ventilation system, 2 server, 3 ventilation system, 4, 4a to 4c air conditioner, 5, 5a to 5c supply air damper, 6, 6a to 6c exhaust damper, 7, 7a to 7c pollutant sensor, 8 router, 9, 9a to 9c air supply fan, 10, 10a to 10c exhaust fan, 20, 47, 302 communication interface, 21 CPU, 22 ROM, 23 RAM, 24 auxiliary storage device, 25 bus, 30 ventilation unit, 31 integrated air supply Duct, 32 Integrated exhaust duct, 33, 33a-33c Supply air duct, 34, 34a-34c Exhaust duct, 40 Heat exchanger, 41 Fan, 42 Louver, 43 Suction temperature sensor, 44 Outlet temperature sensor, 45 Humidity sensor, 46 thermal image sensor, 48, 303 control circuit, 200 data collection unit, 201 ventilation amount change necessity determination unit, 202 air conditioning determination unit, 203 prediction unit, 204 ventilation control unit, 240 collected data storage unit, 241 property information storage unit, 300 Air supply fan, 301 Exhaust fan

Claims (7)

  1.  第1の部屋へ外気を供給する第1の給気手段と、
     前記第1の部屋に隣接する第2の部屋へ外気を供給する第2の給気手段と、
     前記第1の部屋の空気を屋外に排出する第1の排気手段と、
     前記第2の部屋の空気を屋外に排出する第2の排気手段と、
     前記第1の部屋の換気量増加の要否を判定する要否判定手段と、
     前記第1の部屋の空調が空調機により行われているか否かを判定する空調判定手段と、
     前記第1の部屋の換気量増加が必要であり、且つ、前記第1の部屋の空調が行われているとき、前記第1の部屋の換気量を必要とされる分増加した場合に前記空調機の空調能力に不足が生じるか否かを予測する予測手段と、
     前記空調機の空調能力に不足が生じることが予測される場合、前記第1の排気手段を制御して前記第1の部屋からの排気量を増加させるとともに、前記第2の給気手段を制御して前記第2の部屋への給気量を増加させる換気制御手段と、を備える、換気システム。
    a first air supply means for supplying outside air to the first room;
    a second air supply means for supplying outside air to a second room adjacent to the first room;
    a first exhaust means for exhausting air from the first room outdoors;
    a second exhaust means for exhausting the air in the second room outdoors;
    Necessity determining means for determining whether it is necessary to increase the ventilation amount of the first room;
    air conditioning determining means for determining whether or not the first room is being air-conditioned by an air conditioner;
    When it is necessary to increase the amount of ventilation in the first room and the first room is being air-conditioned, if the amount of ventilation in the first room is increased by the required amount, the air conditioning A prediction means for predicting whether or not there will be a shortage of air conditioning capacity of an aircraft;
    If it is predicted that the air conditioning capacity of the air conditioner will be insufficient, the first exhaust means is controlled to increase the amount of exhaust air from the first room, and the second air supply means is controlled. ventilation control means for increasing the amount of air supplied to the second room.
  2.  前記要否判定手段は、前記第1の部屋の在室者数に基づいて前記要否を判定する、請求項1に記載の換気システム。 The ventilation system according to claim 1, wherein the necessity determining means determines the necessity based on the number of people in the first room.
  3.  前記要否判定手段は、前記第1の部屋の汚染物資の量に基づいて前記要否を判定する、請求項1又は2に記載の換気システム。 The ventilation system according to claim 1 or 2, wherein the necessity determining means determines the necessity based on the amount of pollutants in the first room.
  4.  前記換気制御手段は、前記第1の部屋に隣接する部屋が複数存在する場合、予め定めた条件に基づいて一の部屋を前記第2の部屋として選択する、請求項1から3のいずれか1項に記載の換気システム。 Any one of claims 1 to 3, wherein the ventilation control means selects one room as the second room based on predetermined conditions when there are multiple rooms adjacent to the first room. Ventilation systems as described in Section.
  5.  前記第1の部屋及び前記第2の部屋が属する建物における各部屋の空気圧の高低関係を示す空気圧分布情報を取得する空気圧分布情報取得手段をさらに備え、
     前記換気制御手段は、前記空気圧分布情報も加味して前記第1の排気手段及び前記第2の給気手段を制御する、請求項1から4のいずれか1項に記載の換気システム。
    further comprising air pressure distribution information acquisition means for acquiring air pressure distribution information indicating a height relationship of air pressure in each room in the building to which the first room and the second room belong,
    The ventilation system according to any one of claims 1 to 4, wherein the ventilation control means controls the first exhaust means and the second air supply means in consideration of the air pressure distribution information.
  6.  第1の部屋の換気量増加の要否を判定する要否判定手段と、
     前記第1の部屋の空調が空調機により行われているか否かを判定する空調判定手段と、
     前記第1の部屋の換気量増加が必要であり、且つ、前記第1の部屋の空調が行われているとき、前記第1の部屋の換気量を必要とされる分増加した場合に前記空調機の空調能力に不足が生じるか否かを予測する予測手段と、
     前記空調機の空調能力に不足が生じることが予測される場合、前記第1の部屋の空気を屋外に排出する第1の排気手段を制御して前記第1の部屋からの排気量を増加させるとともに、前記第1の部屋に隣接する第2の部屋へ外気を供給する第2の給気手段を制御して前記第2の部屋への給気量を増加させる換気制御手段と、を備える、制御装置。
    Necessity determining means for determining whether or not it is necessary to increase the ventilation amount of the first room;
    air conditioning determining means for determining whether or not the first room is being air-conditioned by an air conditioner;
    When it is necessary to increase the amount of ventilation in the first room and the first room is being air-conditioned, if the amount of ventilation in the first room is increased by the required amount, the air conditioning A prediction means for predicting whether or not there will be a shortage of air conditioning capacity of an aircraft;
    If it is predicted that the air conditioning capacity of the air conditioner will be insufficient, a first exhaust means for discharging air from the first room outdoors is controlled to increase the amount of exhaust air from the first room. and ventilation control means for increasing the amount of air supplied to the second room by controlling a second air supply means for supplying outside air to a second room adjacent to the first room. Control device.
  7.  要否判定手段が、第1の部屋の換気量増加の要否を判定し、
     空調判定手段が、前記第1の部屋の空調が空調機により行われているか否かを判定し、
     予測手段が、前記第1の部屋の換気量増加が必要であり、且つ、前記第1の部屋の空調が行われているとき、前記第1の部屋の換気量を必要とされる分増加した場合に前記空調機の空調能力に不足が生じるか否かを予測し、
     換気制御手段が、前記空調機の空調能力に不足が生じることが予測される場合、前記第1の部屋の空気を屋外に排出する第1の排気手段を制御して前記第1の部屋からの排気量を増加させるとともに、前記第1の部屋に隣接する第2の部屋へ外気を供給する第2の給気手段を制御して前記第2の部屋への給気量を増加させる、換気制御方法。
    The necessity determining means determines the necessity of increasing the ventilation amount of the first room,
    an air conditioning determination means determines whether or not the first room is air conditioned by an air conditioner;
    The prediction means increases the ventilation amount of the first room by the required amount when it is necessary to increase the ventilation amount of the first room and the first room is being air-conditioned. predicting whether or not there will be a shortage in the air conditioning capacity of the air conditioner in the case;
    When it is predicted that the air conditioning capacity of the air conditioner will be insufficient, the ventilation control means controls the first exhaust means for exhausting the air from the first room to the outdoors. Ventilation control that increases the amount of air exhausted and controls a second air supply means that supplies outside air to a second room adjacent to the first room to increase the amount of air supplied to the second room. Method.
PCT/JP2022/032796 2022-08-31 2022-08-31 Ventilation system, control device, and ventilation control method WO2024047803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032796 WO2024047803A1 (en) 2022-08-31 2022-08-31 Ventilation system, control device, and ventilation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032796 WO2024047803A1 (en) 2022-08-31 2022-08-31 Ventilation system, control device, and ventilation control method

Publications (1)

Publication Number Publication Date
WO2024047803A1 true WO2024047803A1 (en) 2024-03-07

Family

ID=90098944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032796 WO2024047803A1 (en) 2022-08-31 2022-08-31 Ventilation system, control device, and ventilation control method

Country Status (1)

Country Link
WO (1) WO2024047803A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078254A (en) * 1996-09-03 1998-03-24 Daikin Ind Ltd Ventilating and air-conditioning system
JPH11173623A (en) * 1997-12-08 1999-07-02 Toshiba Corp Ventilation system device for housing
JP2018100791A (en) * 2016-12-20 2018-06-28 三菱電機株式会社 Air Conditioning System
WO2022024374A1 (en) * 2020-07-31 2022-02-03 三菱電機株式会社 Air conditioning system and condensation prevention method
JP2022085774A (en) * 2020-11-27 2022-06-08 アズビル株式会社 Ventilation control device and ventilation control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078254A (en) * 1996-09-03 1998-03-24 Daikin Ind Ltd Ventilating and air-conditioning system
JPH11173623A (en) * 1997-12-08 1999-07-02 Toshiba Corp Ventilation system device for housing
JP2018100791A (en) * 2016-12-20 2018-06-28 三菱電機株式会社 Air Conditioning System
WO2022024374A1 (en) * 2020-07-31 2022-02-03 三菱電機株式会社 Air conditioning system and condensation prevention method
JP2022085774A (en) * 2020-11-27 2022-06-08 アズビル株式会社 Ventilation control device and ventilation control method

Similar Documents

Publication Publication Date Title
KR100629345B1 (en) Multi-Air Conditioner central control system
KR101034936B1 (en) Ventilation apparatus of heat exchanging type and controlling method thereof
US8195335B2 (en) Economizer control
US20110168793A1 (en) Economizer control
US20220146123A1 (en) Air treatment system
WO2019010603A1 (en) A condition based energy smart air circulation system
CN110017564B (en) Double-cold-source fresh air unit and control method thereof
JP7361247B2 (en) Air conditioning system, air conditioned room
JP2019163885A (en) Air-conditioning control device, air-conditioning control method and computer program
WO2020166503A1 (en) Air-conditioning system
JP6458256B2 (en) Ventilation equipment
WO2024047803A1 (en) Ventilation system, control device, and ventilation control method
JP2024009120A (en) ventilation system
JP2006052928A (en) Air-conditioning management system
JP6842858B2 (en) Ventilation device and air supply adjustment method
JP7352780B2 (en) Air conditioning system, air conditioning system controller
JP7360876B2 (en) Ventilation equipment and ventilation systems
JP7336630B2 (en) ventilation system
JP6950378B2 (en) Ventilation system
JP4661135B2 (en) Air conditioning system, air conditioning control device, air control method
WO2024084767A1 (en) Method for controlling ventilation system, and ventilation system
JP2022174618A (en) Air conditioning device, air conditioning system, air conditioning method, and ventilation method
CN113551325B (en) Air conditioning system and air conditioning system controller
KR102628717B1 (en) Indoor air comprehensive management system and indoor air comprehensive management method
JP7411869B2 (en) Air conditioning system, air conditioning system controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957401

Country of ref document: EP

Kind code of ref document: A1