WO2024047710A1 - Electric power conversion control device, electric power conversion device, and protection method - Google Patents

Electric power conversion control device, electric power conversion device, and protection method Download PDF

Info

Publication number
WO2024047710A1
WO2024047710A1 PCT/JP2022/032446 JP2022032446W WO2024047710A1 WO 2024047710 A1 WO2024047710 A1 WO 2024047710A1 JP 2022032446 W JP2022032446 W JP 2022032446W WO 2024047710 A1 WO2024047710 A1 WO 2024047710A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
power conversion
power converter
control device
Prior art date
Application number
PCT/JP2022/032446
Other languages
French (fr)
Japanese (ja)
Inventor
久貴 手塚
裕介 石田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2022/032446 priority Critical patent/WO2024047710A1/en
Publication of WO2024047710A1 publication Critical patent/WO2024047710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • Embodiments of the present invention relate to a power conversion control device, a power conversion device, and a protection method.
  • Arc flash may occur due to accidents such as short circuits and insulation breakdown in the circuits that make up the power converter. Even if a protection circuit (protection device) is provided to detect a fault current caused by an accident involving an arc flash and cut off the fault current, it may not be possible to prevent secondary failures due to this fault. There has been a desire for a power conversion control device that can prevent secondary failures caused by accidents that cause arc flash.
  • the problem to be solved by the present invention is to provide a power conversion control device, a power conversion device, and a protection method that can easily prevent the occurrence of secondary failures caused by accidents that cause arc flash. It is to provide.
  • the power conversion control device of the embodiment includes an optical fiber, a light detection section, and a protection control section.
  • the optical fiber is formed so as to guide the light taken in by the side surface of the extending light guide part in the extending direction, and output it from the end of the light guide part.
  • the light detection section detects the light guided to the end of the light guide section.
  • the protection control unit interrupts power conversion by a power converter related to the optical fiber when light caused by an accident involving an arc flash is detected by the light detection unit.
  • FIG. 1 is a schematic configuration diagram of a power conversion device according to an embodiment.
  • FIG. 1 is a configuration diagram of a power conversion control device according to an embodiment.
  • FIG. 1 is a cross-sectional view of an optical fiber according to an embodiment.
  • FIG. 3 is a cross-sectional view of an optical fiber in a section arranged in a straight line.
  • FIG. 1 is a cross-sectional view showing the arrangement of optical fibers according to an embodiment.
  • FIG. 3 is a plan view showing the arrangement of optical fibers according to the embodiment.
  • FIG. 3 is a diagram for explaining protection control when arc flash occurs according to the embodiment.
  • FIG. 3 is a cross-sectional view showing the arrangement of optical fibers in a first modification of the embodiment.
  • FIG. 7 is a plan view showing the arrangement of optical fibers in a first modified example of the embodiment.
  • FIG. 2 is a schematic configuration diagram of a power conversion control device according to a first modification of the embodiment.
  • FIG. 7 is a cross-sectional view showing the arrangement of optical fibers in a second modification of the embodiment.
  • FIG. 7 is a plan view showing the arrangement of optical fibers in a second modification of the embodiment.
  • FIG. 7 is a schematic configuration diagram of a power conversion control device according to a second modification of the embodiment.
  • connection used in this specification is not limited to a physical connection, but also includes an electrical connection.
  • based on XX means “based on at least XX,” and includes cases where it is based on another element in addition to XX.
  • based on XX is not limited to the case where XX is used directly, but also includes the case where it is based on calculations and processing performed on XX.
  • XX is an arbitrary element (for example, arbitrary information).
  • components having the same or similar functions are given the same reference numerals.
  • FIG. 1 is a schematic configuration diagram of a power conversion device 1 according to an embodiment.
  • Power conversion device 1 shown in FIG. 1 includes a rectifier 110, a reactance 120, a first capacitor 130, an inverter 150, and a control device 20.
  • the rectifier 110 and inverter 150 described above form a main circuit 190 of the power converter 1.
  • the rectifier 110 rectifies AC power.
  • the input terminal of the rectifier 110 is connected to an AC power system PS via a transformer T, and the output terminal of the rectifier 110 is connected to an inverter 150 via a DC link 180.
  • the rectifier 110 is formed as a three-level type.
  • the rectifier 110 includes a positive bridge circuit 110P and a negative bridge circuit 110N.
  • the DC link 180 includes a positive bus line PBL, a neutral line N, and a negative bus line NBL.
  • the positive bridge circuit 110P and the negative bridge circuit 110N perform full-wave rectification on the power supplied from the AC power system PS via the transformer T, and supply the rectified power to the positive bus PBL and the negative bus NBL.
  • the rectifier 110 is an example of a converter (diode converter) that does not have a regeneration circuit.
  • the power supply line connecting the rectifier 110 and the transformer T may be provided with a fuse and a transformer.
  • the first capacitor 130 (not shown) is a capacitor for smoothing the voltage of the DC link 180.
  • the first capacitor 130 includes a positive first capacitor 130P and a negative first capacitor 130N.
  • the first capacitor 130P on the positive side is connected to the positive bus line PBL and the neutral line N of the DC link 180.
  • the negative first capacitor 130N is connected to the negative bus NBL and the neutral line N of the DC link 180.
  • the set of rectifier 110 and first capacitor 130 described above is an example of a power source that supplies power to inverter 150, which will be described later.
  • the positive-side first capacitor 130P is provided with a parallel circuit PCP for discharging
  • the negative-side regeneration amount adjustment section 210N is provided with a parallel circuit PCN for discharging.
  • the inverter 150 is also formed of a three-level type, for example.
  • the inverter 150 converts the power supplied from the rectifier 110 via the DC link 180 under the control of the control device 20 to generate AC power.
  • the electric motor 2 is connected to the output terminal of the inverter 150. Inverter 150 supplies the converted AC power to electric motor 2.
  • the inverter 150 and the electric motor 2 are, for example, a three-phase AC type having U-phase, V-phase, and W-phase, but are not limited thereto, and may be a single-phase AC type, or a multi-phase AC type with other numbers of phases. It's okay.
  • the electric motor 2 is, for example, an induction motor, but is not limited thereto. Note that the electric motor 2 is an example of a load.
  • the inverter 150 includes a plurality of semiconductor switching elements for each of the U-phase, V-phase, and W-phase, and is formed in a full-bridge type.
  • Each of the plurality of semiconductor switching elements described above is provided with a flywheel diode. In order to simplify the explanation below, detailed explanation of the freewheel diode will be omitted.
  • the inverter 150 includes switches QU1 to QU4 as U-phase semiconductor switching elements, switches QV1 to QV4 as V-phase semiconductor switching elements, and switch QW1 as a W-phase semiconductor switching element. Equipped with QW4.
  • the semiconductor switching elements of each phase described above are, for example, IGBTs (Insulated Gate Bipolar Transistors), and are cascade-connected as shown in the figure.
  • the type of semiconductor switching element is not limited and may be a power MOSFET or the like.
  • Protection circuits are provided between the semiconductor switching elements of each phase of the inverter 150 and the DC link 180 to protect the circuits from overcurrent.
  • these protection circuits each include a fuse that blows due to an overcurrent exceeding a predetermined current capacity, and are formed as "fuses with alarm contacts" whose contacts close in response to the blowing of the fuse.
  • Each protection circuit can indicate to the outside world that it is in an alarm condition by closing an alarm contact when the fuse blows.
  • the inverter 150 is provided with an optical fiber 26 connected to the control device 20.
  • the optical fiber 26 is configured separately from other optical fibers for controlling the inverter 150. Details regarding this will be described later.
  • FIG. 2 is a configuration diagram of the control device 20 of the embodiment.
  • Control device 20 is an example of a power conversion control device.
  • Control device 20 monitors and controls the state of inverter 150.
  • the control device 20 is connected to the inverter 150.
  • the semiconductor switching elements of each phase of the inverter 150 are controlled to be turned on or off by a gate pulse (GP3) supplied from the control device 20.
  • a gate pulse of an optical signal is supplied from the control device 20 via an optical fiber, and the OE unit of the inverter 150 converts the optical signal into a gate pulse GP3.
  • the gate pulse GP3 is supplied to the gates of the semiconductor switching elements of each phase via a driver circuit.
  • the control device 20 may include a processor such as a CPU, for example.
  • the control device 20 may be realized at least in part by a software function unit that functions when a processor such as a CPU executes a program, or may be entirely realized by a hardware function unit such as an LSI. There is no limit to the number of processors, and they may be divided as appropriate.
  • the control device 20 includes an inverter control section 21, a GB unit 22 (protection control section), an EO unit 23, an analysis unit 24, and an OE unit 25 (light detection section).
  • An optical fiber 26 used as a sensor is connected to the control device 20.
  • the control device 20 may include an optical fiber 26 or may be provided separately.
  • the inverter control unit 21 controls the inverter 150 based on the detection results of the transformer HCT, protection circuit, etc. provided in the inverter 150.
  • a control method for the inverter 150 PWM (Pulse Width Modulation) control, vector control, etc. may be selected as appropriate.
  • the inverter control unit 21 may stop power conversion of the inverter 150 for protection.
  • the inverter control unit 21 generates a gate pulse GP1 for controlling on/off of the semiconductor switching elements of each phase of the inverter 150, and supplies it to the GB unit 22.
  • the inverter control unit 21 supplies the GB unit 22 with a gate block signal GB1 for instructing the inverter 150 to stop operating, thereby restricting the supply of gate pulses to the inverter 150. .
  • the GB unit 22 acquires the gate pulse GP1 and the gate block signals GB1, GB2, and GB3, and generates the gate pulse GP2. For example, the GB unit 22 determines the output of the gate pulse GP2 according to the signal state of the gate pulse GP1. At this time, the GB unit 22 may limit the supply of gate pulses to the inverter 150 based on the states of the gate block signals GB1, GB2, and GB3. The GB unit 22 limits the output of the gate pulse GP2 when any of the gate block signals GB1, GB2, and GB3 is in a significant state, regardless of the signal state of the gate pulse GP1 supplied from the inverter control unit 21. so that no pulses are output. For example, the GB unit 22 interrupts the power conversion by the inverter 150 by controlling the semiconductor switching elements related to the power conversion of the inverter 150 to an off state using the light detection result by the OE unit 25, which will be described later. It is configured as follows.
  • the EO unit 23 generates a light pulse according to the state of the gate pulse GP2 supplied from the GB unit 22.
  • the EO unit 23 supplies the generated optical pulses to the inverter 150 via a light-shielding optical fiber.
  • the analysis unit 24 receives signals indicating the operating state of the inverter 150 and analyzes the operating state of the inverter 150 based on these signals.
  • the analysis unit 24 includes the output currents Iu, Iv, and Iw of the inverter 150, the output voltages Vu, Vv, and Vw of the inverter 150, and the state OC1 of the protection circuit.
  • the OE unit 25 (photodetection section) includes a photoelectric conversion section such as a photodiode and a phototransistor, and generates an electric signal according to the amount of detected light.
  • the OE unit 25 uses the electrical signal to identify that there is light exceeding a predetermined amount of light. For example, the OE unit 25 detects the light guided to the end 261PA (FIGS. 3A, 3B) of the light guide section 261 (FIGS. 3A, 3B) of the optical fiber 26, and detects light exceeding a predetermined amount of light. When this occurs, the gate block signal GB3 is output.
  • the GB unit 22 (protection control section) limits the output of the gate pulse GP2 when the OE unit 25 detects light exceeding a predetermined amount of light and generates the gate block signal GB3 as described above. Then, by controlling the semiconductor switching elements of inverter 150 to be in an off state, power conversion by inverter 150 is interrupted.
  • FIG. 3A is a cross-sectional view of the optical fiber 26 of the embodiment.
  • FIG. 3B is a cross-sectional view of the optical fiber 26 in a linearly arranged section.
  • 3C and 3D are cross-sectional views of optical fibers 26 arranged in an arc.
  • the arrows shown in FIGS. 3A to 3D indicate an example of the path of external light irradiated onto the optical fiber 26 from a point light source.
  • the position of the point light source shown in FIG. 3C is outside the arc of the arcing optical fiber 26.
  • the position of the point light source shown in FIG. 3D is inside the arc of the arcing optical fiber 26.
  • the optical fiber 26 includes, for example, a light guide section 261.
  • the light guide section 261 extends in the direction in which the optical fiber 26 extends.
  • the light guide portion 261 includes end portions 161PA, 161PB, and a side surface 261SS.
  • the light guide section 261 is made of resin (plastic), quartz glass, or both.
  • the light guide section 261 is formed into a core and a cladding, like an optical fiber for communication.
  • the core and cladding are arranged concentrically with respect to a common axis as shown in the cross-sectional view.
  • both the core and the cladding are made of resin.
  • a second example of the light guide section 261 has a core made of quartz glass and a cladding made of resin.
  • both the core and the cladding are made of quartz glass.
  • the first example can be applied if the distance from the detection position by the optical fiber to the end on the OE unit 25 side is relatively short.
  • the optical fiber may be formed into a multimode step-index type by making the core diameter of the light guiding portion 261 relatively large.
  • the optical fiber 26 is formed so as to guide the light taken in by the side surface 261SS of the light guide section 261 in the extending direction, and output it from the ends 161PA and 161PB of the light guide section 261, for example. In this embodiment, for example, it is assumed that light output from one of the end portions 161PA and 161PB is detected.
  • a shielding member is not provided on the side surface 261SS of the light guide section 261 of the optical fiber 26. At least in the portion where the optical fiber 26 is used as a sensor, no shielding member is provided on the side surface 261SS of the light guide section 261.
  • the shielding member is, for example, a film having a light-shielding property or a cable covering having a light-shielding property.
  • the optical fiber 26 takes in light from outside the light guide section 261 in a portion where a shielding member is not provided.
  • the above-mentioned incident angle when the light can be guided in the extending direction of the light guide portion 261 may be determined geometrically according to Snell's law, for example, or may be determined by the characteristics of the surface treatment of the side surface 261SS.
  • the side surface 261SS may be provided with a coating film or a coating film having a low reflection coefficient as its surface treatment, and may have a property of diffusing transmitted light.
  • the larger the incident angle the more the light can be guided in the extending direction of the light guide section 261. Therefore, it is easier to take in light when the point light source is located outside the arc as shown in FIG. 3C than when the point light source is located inside the arc as shown in FIG. 3D.
  • the optical fiber 26 formed in this way is an example of one that is formed so as to take in light from an arc flash generated in the vicinity thereof.
  • the optical fiber 26 By arranging the optical fiber 26 near a semiconductor switching element forming the inverter 150 (power converter) or a conductor section for passing current through the semiconductor switching element, the optical fiber 26 can be connected to the semiconductor switching element or the conductor section. Can capture light from arc flash.
  • FIG. 4A is a cross-sectional view showing the arrangement of the optical fibers 26 of the embodiment.
  • FIG. 4B is a plan view showing the arrangement of optical fibers according to the embodiment.
  • FIG. 5 is a diagram for explaining protection control when an arc flash occurs according to the embodiment. Omit cross-sectional hatching.
  • FIGS. 4A and 4B show examples of the arrangement of semiconductor switching elements for each phase of the inverter 150.
  • switches QU1 to QU4 related to the U phase are arranged at appropriate distances.
  • Each of the switches QU1 to QU4 is configured as a module.
  • a bus bar (not shown) or the like is used for electrical connection between modules.
  • terminals provided at the top of the switches QU1 to QU4 are connected by a bus bar.
  • the switches QV1 to QV4 related to the V phase and the switches QW1 to QW4 related to the W phase are the same as the switches QU1 to QU4 related to the U phase.
  • the optical fiber 26 is placed near the position where each of the above modules is placed.
  • the optical fiber 26 is held near the semiconductor switching elements of each phase so as to extend in an arc.
  • the optical fibers 26 are wound a plurality of times to form a bundle, and the bundled portion is placed near each module. Instead of gathering them into a bundle, they may be drawn in a meandering arc, or may be formed into a U-shape in which a straight section and this section are combined.
  • the optical fiber 26 arranged as described above is in a position where the light generated due to the accident inside the inverter 150 can be taken in with its side surface 261SS.
  • the light that can be taken in by the optical fiber 26 includes the light from the switches QU1 to QU4 of the inverter 150.
  • Switches QU1 to QU4 of inverter 150 are examples of semiconductor switching elements of a power converter.
  • the V phase and the W phase may also be configured in the same manner as the U phase. In this case, bundles of optical fibers 26 are provided separately for each phase, but each bundle is composed of a common optical fiber 26.
  • the semiconductor switching element of the power converter and the conductor portion of the power converter are placed together with the optical fiber 26 in a housing surrounded by a light-shielding member.
  • the housing 150B accommodates a range indicated by the reference numeral 150.
  • the switches QU1 to QU4 of the inverter 150 and the conductor portion of the inverter 150 are arranged together with the optical fiber 26 in a housing surrounded by a light-shielding member. In this case, it is desirable that no light-shielding member be provided between the switches QU1 to QU4 of the inverter 150 and the optical fiber 26 or between the conductor portion of the inverter 150 and the optical fiber 26.
  • the amount of light detected by the OE unit 25 will be the same as that caused by arc flash.
  • the amount of light is much smaller than the amount of light when it was generated. This lack of influence from other light makes it easier to detect the occurrence of arc flash.
  • the optical fiber 26 arranged as described above extends in an arc with a curvature larger than a predetermined curvature.
  • the predetermined curvature is defined using, for example, a "minimum radius of curvature" from the viewpoint of the strength, transmission loss, etc. of the optical fiber 26.
  • the optical fiber 26 is preferably arranged so that it can receive light from outside the arc. This arrangement position relationship may be defined as follows.
  • the position of the arc and the position of each semiconductor switching element such as the switches QU1 to QU4 of the inverter 150 are determined with respect to the plane F corresponding to the arc.
  • images projected from each semiconductor switching element on the outside of the arc are placed on the plane F.
  • FIG. 5 is a diagram for explaining protection control when an arc flash occurs according to the embodiment.
  • protection control is implemented in the following situations.
  • a plurality of semiconductor switching elements are connected in cascade for each phase.
  • switches QU1 and QU2 form a positive side arm
  • switches QU3 and QU4 form a negative side arm.
  • switches QV1 and QV2 form a positive arm
  • switches QV3 and QV4 form a negative arm
  • switches QW1 and QW2 form a positive arm
  • switches QW3 and QW4 form a negative arm.
  • the GB unit 22 (FIG. 2) detects the gate block signal GB3 and limits the output of the gate pulse GP2 of all phases. As a result, the gate pulse (GP3) supplied to the inverter 150 disappears.
  • the semiconductor switching elements of all phases of the inverter 150 are controlled to be turned off. As a result, the current flowing through each semiconductor switching element is cut off by each semiconductor switching element not only in the fault phase U phase but also in the healthy phase V phase and W phase.
  • the protection circuit may cut off the fault current before the state (5) above is reached. In this case, since the accident point has already been isolated, the risk of the accident spreading is low.
  • the analysis unit 24 detects that the news has blown out from the state OC1 of the protection circuit and outputs a gate block signal GB2.
  • the gate block signal GB3 is generated before the gate block signal GB2.
  • the GB unit 22 detects the gate block signal GB2, but continues to limit the output of gate pulses of all phases, which has already been set based on the gate block signal GB3.
  • the optical fiber 26 guides the light taken in by the side surface 261SS of the extending light guide section 261 in the extending direction, and outputs it from the ends 261PA and 261PB of the light guide section 261. is formed.
  • the OE unit 25 detects the light guided to either end 261PA or 261PB of the light guide section 261.
  • the GB unit 22 interrupts power conversion by the inverter 150 when the OE unit 25 detects light resulting from an accident involving an arc flash. Thereby, the occurrence of secondary failures due to accidents that cause arc flash can be prevented with a simple method.
  • the power conversion device 1 including the inverter 150 includes the control device 20 and the inverter 150.
  • the GB unit 22 may use the light detection result by the OE unit 25 to control a semiconductor switching element related to power conversion of the inverter 150 to an OFF state, thereby interrupting the power conversion by the inverter 150.
  • FIG. 7 is a configuration diagram of a control device 20A according to a first modification of the embodiment.
  • the control device 20A includes a GB unit 22A (protection control section) and an OE unit 25A (light detection section) in place of the GB unit 22 and OE unit 25 of the control device 20.
  • the GB unit 22A further acquires the gate block signal GB4 and uses it in the same way as the gate block signal GB3. For example, when any of the gate block signals GB1, GB2, GB3, and GB4 is in a significant state, the GB unit 22A uses the gate pulse GP2 regardless of the signal state of the gate pulse GP1 supplied from the inverter control unit 21. Limits the output so that there are no pulses to output.
  • the OE unit 25A corresponds to a configuration including two systems of OE units 25.
  • the OE unit 25A detects the light guided from the first optical fiber 26A1, and outputs a gate pulse GP3 indicating significance when detecting light exceeding a predetermined amount of light.
  • the OE unit 25B detects the light guided from the second optical fiber 26A2, and outputs a gate pulse GP4 indicating significance when detecting light exceeding a predetermined amount of light.
  • FIG. 6A is a cross-sectional view showing the arrangement of optical fibers 26A1 and 26A2 in a first modification of the embodiment.
  • FIG. 6B is a plan view showing the arrangement of optical fibers 26A1 and 26A2 in a first modification of the embodiment.
  • the optical fibers 26A1 and 26A2 were shifted in the normal direction of the plane FS and arranged so that their projected images onto the plane FS overlapped. Thereby, the optical fibers 26A1 and 26A2 can each take in the light of the arc flash.
  • the arc flash detection system can be made redundant with a simple configuration.
  • FIG. 9 is a configuration diagram of a control device 20B according to a second modification of the embodiment.
  • the control device 20B includes a GB unit 22B (protection control section) and an OE unit 25B (light detection section) in place of the GB unit 22 and OE unit 25 of the control device 20.
  • the GB unit 22B further acquires gate block signals GB4 and GB5 and uses them in the same way as gate block signal GB3. For example, when any of the gate block signals GB1, GB2, GB3, GB4, and GB5 is in a significant state, the GB unit 22B controls the gate block signal regardless of the signal state of the gate pulse GP1 supplied from the inverter control unit 21. The output of pulse GP2 is limited to a state where no pulse is output.
  • the OE unit 25B corresponds to a configuration including three systems of OE units 25.
  • the OE unit 25B detects the light guided from the first optical fiber 26B1 corresponding to the U phase, and outputs a gate pulse GP3 indicating significance when detecting light exceeding a predetermined amount of light.
  • the OE unit 25B detects the light guided from the second optical fiber 26B2 corresponding to the V phase, and outputs a gate pulse GP4 indicating significance when detecting light exceeding a predetermined amount of light.
  • the OE unit 25B detects the light guided from the third optical fiber 26B3 corresponding to the W phase, and outputs a gate pulse GP5 indicating significance when detecting light exceeding a predetermined amount of light.
  • FIG. 8A is a cross-sectional view showing the arrangement of optical fibers 26B1, 26B2, and 26B3 in a second modification of the embodiment.
  • FIG. 8B is a plan view showing the arrangement of optical fibers 26B1, 26B2, and 26B3 in a second modification of the embodiment.
  • optical fibers 26B1, 26B2, and 26B3 were arranged in each phase. Thereby, the optical fibers 26B1, 26B2, and 26B3 can take in the light of the arc flash generated in each phase.
  • the arc flash detection system can be configured separately for each phase with a simple configuration.
  • the power conversion control device includes an optical fiber, a light detection section, and a protection control section.
  • the optical fiber is formed so that the light taken in by the side surface of the extending light guide section is guided in the extending direction, and is output from the end of the light guide section.
  • the light detection section detects the light guided to the end of the light guide section.
  • the protection control unit uses a protection method that interrupts power conversion by the power converter related to the optical fiber when the light detection unit detects light caused by an accident involving an arc flash. The occurrence of secondary failures caused by accidents can be prevented by a simple method.
  • the power conversion device includes a power conversion control device and a power converter.
  • the protection control unit uses the light detection result to control a semiconductor switching element related to power conversion of the power converter to an OFF state, thereby interrupting power conversion by the power converter related to the optical fiber.
  • the power conversion device can prevent the occurrence of secondary failures due to accidents that cause arc flash using a simple method.
  • the optical fiber for supplying the gate pulse to the inverter 150 has a light-shielding side surface.

Abstract

This electric power conversion control device comprises: an optical fiber; an optical detection part; and a protection control part. The optical fiber is formed to guide light taken in through the side surface of an extending light guide part in the extension direction and to output the light from an end of the light guide part. The optical detection part detects the light guided to the end of the light guide part. When the optical detection part has detected light resulting from an accident accompanied by arc flash, the protection control part halts electric power conversion carried out by an electric power converter relating to the optical fiber.

Description

電力変換制御装置、電力変換装置及び保護方法Power conversion control device, power conversion device and protection method
 本発明の実施形態は、電力変換制御装置、電力変換装置及び保護方法に関する。 Embodiments of the present invention relate to a power conversion control device, a power conversion device, and a protection method.
 電力変換装置を構成する回路の短絡事故、絶縁破壊事故などの事故に起因して、アークフラッシュ(Arc flush)が発生することがある。アークフラッシュを伴う事故による事故電流を検出して、事故電流を遮断する保護回路(保護装置)を設けていても、この事故に起因した2次的な故障を防ぐことができない場合があった。アークフラッシュを発生させる事故に起因する2次的な故障の発生を予防する電力変換制御装置が望まれていた。 Arc flash may occur due to accidents such as short circuits and insulation breakdown in the circuits that make up the power converter. Even if a protection circuit (protection device) is provided to detect a fault current caused by an accident involving an arc flash and cut off the fault current, it may not be possible to prevent secondary failures due to this fault. There has been a desire for a power conversion control device that can prevent secondary failures caused by accidents that cause arc flash.
日本国特許特開2000-065887号公報Japanese Patent Publication No. 2000-065887
 本発明が解決しようとする課題は、アークフラッシュを発生させる事故に起因する2次的な故障の発生を、簡易な方法で予防することが可能な電力変換制御装置、電力変換装置及び保護方法を提供することである。 The problem to be solved by the present invention is to provide a power conversion control device, a power conversion device, and a protection method that can easily prevent the occurrence of secondary failures caused by accidents that cause arc flash. It is to provide.
 実施形態の電力変換制御装置は、光ファイバーと、光検出部と、保護制御部とを備える。前記光ファイバーは、延伸する導光部の側面で取り込んだ光を延伸方向に導き、前記導光部の端部から出力するように形成されている。前記光検出部は、前記導光部の端部に導かれた光を検出する。前記保護制御部は、前記光検出部によってアークフラッシュを伴う事故に起因する光が検出された場合に、前記光ファイバーに関わる電力変換器による電力変換を中断させる。 The power conversion control device of the embodiment includes an optical fiber, a light detection section, and a protection control section. The optical fiber is formed so as to guide the light taken in by the side surface of the extending light guide part in the extending direction, and output it from the end of the light guide part. The light detection section detects the light guided to the end of the light guide section. The protection control unit interrupts power conversion by a power converter related to the optical fiber when light caused by an accident involving an arc flash is detected by the light detection unit.
実施形態の、実施形態の電力変換装置の概略構成図。FIG. 1 is a schematic configuration diagram of a power conversion device according to an embodiment. 実施形態の電力変換制御装置の構成図。FIG. 1 is a configuration diagram of a power conversion control device according to an embodiment. 実施形態の光ファイバーの横断面図。FIG. 1 is a cross-sectional view of an optical fiber according to an embodiment. 直線状に配置された区間の光ファイバーの従断面図。FIG. 3 is a cross-sectional view of an optical fiber in a section arranged in a straight line. 弧を描くように配置された光ファイバーの従断面図。A secondary cross-sectional view of optical fibers arranged in an arc. 弧を描くように配置された光ファイバーの従断面図。A secondary cross-sectional view of optical fibers arranged in an arc. 実施形態の光ファイバーの配置を示す断面図。FIG. 1 is a cross-sectional view showing the arrangement of optical fibers according to an embodiment. 実施形態の光ファイバーの配置を示す平面図。FIG. 3 is a plan view showing the arrangement of optical fibers according to the embodiment. 実施形態のアークフラッシュ発生時の保護制御について説明するための図。FIG. 3 is a diagram for explaining protection control when arc flash occurs according to the embodiment. 実施形態の第1変形例の光ファイバーの配置を示す断面図。FIG. 3 is a cross-sectional view showing the arrangement of optical fibers in a first modification of the embodiment. 実施形態の第1変形例の光ファイバーの配置を示す平面図。FIG. 7 is a plan view showing the arrangement of optical fibers in a first modified example of the embodiment. 実施形態の第1変形例の電力変換制御装置の概略構成図。FIG. 2 is a schematic configuration diagram of a power conversion control device according to a first modification of the embodiment. 実施形態の第2変形例の光ファイバーの配置を示す断面図。FIG. 7 is a cross-sectional view showing the arrangement of optical fibers in a second modification of the embodiment. 実施形態の第2変形例の光ファイバーの配置を示す平面図。FIG. 7 is a plan view showing the arrangement of optical fibers in a second modification of the embodiment. 実施形態の第2変形例の電力変換制御装置の概略構成図。FIG. 7 is a schematic configuration diagram of a power conversion control device according to a second modification of the embodiment.
 以下、実施形態の電力変換制御装置、電力変換装置及び保護方法について説明する。なお、この明細書で言う「接続」とは、物理的に接続される場合に限定されず、電気的に接続される場合も含む。明細書で言う「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。さらに、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。また、同一又は類似の機能を有する構成に同一の符号を付す。 Hereinafter, a power conversion control device, a power conversion device, and a protection method according to an embodiment will be described. Note that the term "connection" used in this specification is not limited to a physical connection, but also includes an electrical connection. In the specification, "based on XX" means "based on at least XX," and includes cases where it is based on another element in addition to XX. Furthermore, "based on XX" is not limited to the case where XX is used directly, but also includes the case where it is based on calculations and processing performed on XX. "XX" is an arbitrary element (for example, arbitrary information). In addition, components having the same or similar functions are given the same reference numerals.
 まず、実施形態の電力変換装置1について説明する。
 図1は、実施形態の電力変換装置1の概略構成図である。
 図1に示す電力変換装置1は、整流器110と、リアクタンス120と、第1コンデンサ130と、インバータ150と、制御装置20とを備える。上記の整流器110と、インバータ150は、電力変換装置1の主回路190を形成する。
First, a power conversion device 1 according to an embodiment will be described.
FIG. 1 is a schematic configuration diagram of a power conversion device 1 according to an embodiment.
Power conversion device 1 shown in FIG. 1 includes a rectifier 110, a reactance 120, a first capacitor 130, an inverter 150, and a control device 20. The rectifier 110 and inverter 150 described above form a main circuit 190 of the power converter 1.
 整流器110は、交流電力を整流する。整流器110の入力端子は、変圧器Tを経て交流電力系統PSに接続され、整流器110の出力端子は、直流リンク180を介してインバータ150に接続されている。例えば、整流器110は、3レベル型で形成される。この場合、整流器110は、正極側ブリッジ回路110Pと負極側ブリッジ回路110Nを備える。直流リンク180は、正極母線PBLと、中性線Nと、負極母線NBLとを備える。正極側ブリッジ回路110Pと負極側ブリッジ回路110Nは、交流電力系統PSから変圧器Tを経て供給される電力を全波整流し、正極母線PBLと負極母線NBLとに供給する。なお、整流器110は、回生用回路を有していないコンバータ(ダイオードコンバータ)の一例である。整流器110と変圧器Tとを繋ぐ給電線には、ヒューズと変成器が設けられていることがある。 The rectifier 110 rectifies AC power. The input terminal of the rectifier 110 is connected to an AC power system PS via a transformer T, and the output terminal of the rectifier 110 is connected to an inverter 150 via a DC link 180. For example, the rectifier 110 is formed as a three-level type. In this case, the rectifier 110 includes a positive bridge circuit 110P and a negative bridge circuit 110N. The DC link 180 includes a positive bus line PBL, a neutral line N, and a negative bus line NBL. The positive bridge circuit 110P and the negative bridge circuit 110N perform full-wave rectification on the power supplied from the AC power system PS via the transformer T, and supply the rectified power to the positive bus PBL and the negative bus NBL. Note that the rectifier 110 is an example of a converter (diode converter) that does not have a regeneration circuit. The power supply line connecting the rectifier 110 and the transformer T may be provided with a fuse and a transformer.
 第1コンデンサ130(不図示)は、直流リンク180の電圧を平滑化するためのコンデンサである。例えば、第1コンデンサ130は、正極側第1コンデンサ130Pと、負極側第1コンデンサ130Nとを備える。正極側第1コンデンサ130Pは、直流リンク180の正極母線PBLと中性線Nとに接続される。負極側第1コンデンサ130Nは、直流リンク180の負極母線NBLと中性線Nとに接続される。上記の整流器110と第1コンデンサ130の組は、後述するインバータ150に電力を供給する電源の一例である。なお、正極側第1コンデンサ130Pには、放電用の並列回路PCPが設けられ、負極側回生量調整部210Nには、放電用の並列回路PCNが設けられている。 The first capacitor 130 (not shown) is a capacitor for smoothing the voltage of the DC link 180. For example, the first capacitor 130 includes a positive first capacitor 130P and a negative first capacitor 130N. The first capacitor 130P on the positive side is connected to the positive bus line PBL and the neutral line N of the DC link 180. The negative first capacitor 130N is connected to the negative bus NBL and the neutral line N of the DC link 180. The set of rectifier 110 and first capacitor 130 described above is an example of a power source that supplies power to inverter 150, which will be described later. Note that the positive-side first capacitor 130P is provided with a parallel circuit PCP for discharging, and the negative-side regeneration amount adjustment section 210N is provided with a parallel circuit PCN for discharging.
 インバータ150は、例えば、同じく3レベル型で形成される。インバータ150は、整流器110から直流リンク180を経て供給される電力を、制御装置20による制御に基づいて変換して、交流電力を生成する。インバータ150の出力端子には電動機2が接続されている。インバータ150は、変換した交流電力を電動機2に供給する。インバータ150と電動機2は、例えばU相V相W相を有する3相交流型であるが、これに制限されず、単相交流型であってもよく、他の相数の多相交流であってもよい。電動機2は、例えば誘導電動機であるが、これに制限されない。なお、電動機2は、負荷の一例である。 The inverter 150 is also formed of a three-level type, for example. The inverter 150 converts the power supplied from the rectifier 110 via the DC link 180 under the control of the control device 20 to generate AC power. The electric motor 2 is connected to the output terminal of the inverter 150. Inverter 150 supplies the converted AC power to electric motor 2. The inverter 150 and the electric motor 2 are, for example, a three-phase AC type having U-phase, V-phase, and W-phase, but are not limited thereto, and may be a single-phase AC type, or a multi-phase AC type with other numbers of phases. It's okay. The electric motor 2 is, for example, an induction motor, but is not limited thereto. Note that the electric motor 2 is an example of a load.
 例えば、インバータ150は、U相V相W相の相ごとに複数の半導体スイッチング素子を備えていて、フルブリッジ型に形成されている。上記の複数の半導体スイッチング素子には、それぞれフライホイールダイオードが設けられている。以下説明を簡略化するためフリーホイールダイオードの詳細な説明を省略する。 For example, the inverter 150 includes a plurality of semiconductor switching elements for each of the U-phase, V-phase, and W-phase, and is formed in a full-bridge type. Each of the plurality of semiconductor switching elements described above is provided with a flywheel diode. In order to simplify the explanation below, detailed explanation of the freewheel diode will be omitted.
 より具体的には、インバータ150は、U相の半導体スイッチング素子として、スイッチQU1からQU4を備え、V相の半導体スイッチング素子として、スイッチQV1からQV4を備え、W相の半導体スイッチング素子として、スイッチQW1からQW4を備える。
 上記の各相の半導体スイッチング素子は、例えばIGBT(Insulated Gate Bipolar Transistor)であり、図に示すようにカスケード接続されている。半導体スイッチング素子の種類には、制限はなく電力用MOSFETなどでもよい。
More specifically, the inverter 150 includes switches QU1 to QU4 as U-phase semiconductor switching elements, switches QV1 to QV4 as V-phase semiconductor switching elements, and switch QW1 as a W-phase semiconductor switching element. Equipped with QW4.
The semiconductor switching elements of each phase described above are, for example, IGBTs (Insulated Gate Bipolar Transistors), and are cascade-connected as shown in the figure. The type of semiconductor switching element is not limited and may be a power MOSFET or the like.
 インバータ150の各相の半導体スイッチング素子と、直流リンク180との間に、過電流から回路を保護するための保護回路(150UP、150UN、150VP、150VN、150WP、150WN)が夫々設けられている。例えば、これらの保護回路は、所定の電流容量を超える過電流によって溶断するヒューズを夫々含み、そのヒューズの溶断に応じて接点が閉じる「警報接点付きのヒューズ」として形成されている。各保護回路は、ヒューズが溶断したときに、警報接点を閉じて警報状態にあることを、その外部に示すことができる。 Protection circuits (150UP, 150UN, 150VP, 150VN, 150WP, 150WN) are provided between the semiconductor switching elements of each phase of the inverter 150 and the DC link 180 to protect the circuits from overcurrent. For example, these protection circuits each include a fuse that blows due to an overcurrent exceeding a predetermined current capacity, and are formed as "fuses with alarm contacts" whose contacts close in response to the blowing of the fuse. Each protection circuit can indicate to the outside world that it is in an alarm condition by closing an alarm contact when the fuse blows.
 インバータ150には、制御装置20に繋がる光ファイバー26が設けられている。光ファイバー26は、インバータ150を制御するための他の光ファイバーと分けて構成されている。これにつての詳細は後述する。 The inverter 150 is provided with an optical fiber 26 connected to the control device 20. The optical fiber 26 is configured separately from other optical fibers for controlling the inverter 150. Details regarding this will be described later.
 図2を参照して、実施形態の制御装置20について説明する。
 図2は、実施形態の制御装置20の構成図である。制御装置20は、電力変換制御装置の一例である。制御装置20は、インバータ150の状態の監視と制御を実施する。
With reference to FIG. 2, the control device 20 of the embodiment will be described.
FIG. 2 is a configuration diagram of the control device 20 of the embodiment. Control device 20 is an example of a power conversion control device. Control device 20 monitors and controls the state of inverter 150.
 図2に示すように、制御装置20は、インバータ150に接続される。インバータ150の各相の半導体スイッチング素子は、制御装置20から供給されるゲートパルス(GP3)により、オン/オフが制御される。図2に示す構成は、光信号のゲートパルスが光ファイバーを介して制御装置20から供給されて、インバータ150のOEユニットが光信号をゲートパルスGP3に変換する。ゲートパルスGP3はドライバ回路を経て、各相の半導体スイッチング素子のゲートに供給される。 As shown in FIG. 2, the control device 20 is connected to the inverter 150. The semiconductor switching elements of each phase of the inverter 150 are controlled to be turned on or off by a gate pulse (GP3) supplied from the control device 20. In the configuration shown in FIG. 2, a gate pulse of an optical signal is supplied from the control device 20 via an optical fiber, and the OE unit of the inverter 150 converts the optical signal into a gate pulse GP3. The gate pulse GP3 is supplied to the gates of the semiconductor switching elements of each phase via a driver circuit.
 制御装置20は、例えばCPUなどのプロセッサを備えていてもよい。制御装置20は、その少なくとも一部を、CPUなどのプロセッサがプログラムを実行することにより機能するソフトウェア機能部で実現してもよく、全てをLSI等のハードウェア機能部で実現してもよい。プロセッサの個数に制限はなく、適宜分けて構成してもよい。 The control device 20 may include a processor such as a CPU, for example. The control device 20 may be realized at least in part by a software function unit that functions when a processor such as a CPU executes a program, or may be entirely realized by a hardware function unit such as an LSI. There is no limit to the number of processors, and they may be divided as appropriate.
 制御装置20は、インバータ制御部21と、GBユニット22(保護制御部)と、EOユニット23と、解析ユニット24と、OEユニット25(光検出部)とを備える。
 制御装置20には、センサーとして利用する光ファイバー26が接続されている。制御装置20は、光ファイバー26を備えていてもよく、別途設けられていてもよい。
The control device 20 includes an inverter control section 21, a GB unit 22 (protection control section), an EO unit 23, an analysis unit 24, and an OE unit 25 (light detection section).
An optical fiber 26 used as a sensor is connected to the control device 20. The control device 20 may include an optical fiber 26 or may be provided separately.
 インバータ制御部21は、インバータ150に設けられた変成器HCT、保護回路などの検出結果に基づいて、インバータ150を制御する。インバータ150の制御方法は、PWM(Pulse Width Modulation)制御、ベクトル制御などを適宜選択してよい。インバータ制御部21は、インバータ150に設けられた保護回路の検出結果などから障害が検出されると、保護のために、インバータ150の電力変換を停止する場合がある。 The inverter control unit 21 controls the inverter 150 based on the detection results of the transformer HCT, protection circuit, etc. provided in the inverter 150. As a control method for the inverter 150, PWM (Pulse Width Modulation) control, vector control, etc. may be selected as appropriate. When a failure is detected from the detection result of a protection circuit provided in the inverter 150, the inverter control unit 21 may stop power conversion of the inverter 150 for protection.
 例えば、インバータ制御部21は、平時の状況にあるときに、インバータ150の各相の半導体スイッチング素子のオン/オフを制御するためのゲートパルスGP1を生成して、GBユニット22に供給する。 For example, in a normal situation, the inverter control unit 21 generates a gate pulse GP1 for controlling on/off of the semiconductor switching elements of each phase of the inverter 150, and supplies it to the GB unit 22.
 インバータ制御部21は、インバータ150を非稼働状態にするために、稼働停止を指令すうるためのゲートブロック信号GB1をGBユニット22に供給して、インバータ150に対するゲートパルスを供給することを制限する。 In order to bring the inverter 150 into a non-operating state, the inverter control unit 21 supplies the GB unit 22 with a gate block signal GB1 for instructing the inverter 150 to stop operating, thereby restricting the supply of gate pulses to the inverter 150. .
 GBユニット22は、ゲートパルスGP1と、ゲートブロック信号GB1、GB2、GB3とを取得して、ゲートパルスGP2を生成する。例えば、GBユニット22は、ゲートパルスGP2の出力を、ゲートパルスGP1の信号状態に応じて決定する。このとき、GBユニット22は、ゲートブロック信号GB1、GB2、GB3の状態に基づいて、インバータ150に対するゲートパルスの供給を制限する場合がある。GBユニット22は、ゲートブロック信号GB1、GB2、GB3の何れかが有意な状態にあるときに、インバータ制御部21から供給されるゲートパルスGP1の信号状態によらず、ゲートパルスGP2の出力を制限して、出力するパルスがない状態にする。例えば、これによりGBユニット22は、後述するOEユニット25による光の検出結果を用いて、インバータ150の電力変換に係る半導体スイッチング素子をオフ状態に制御することにより、インバータ150による電力変換を中断させるように構成されている。 The GB unit 22 acquires the gate pulse GP1 and the gate block signals GB1, GB2, and GB3, and generates the gate pulse GP2. For example, the GB unit 22 determines the output of the gate pulse GP2 according to the signal state of the gate pulse GP1. At this time, the GB unit 22 may limit the supply of gate pulses to the inverter 150 based on the states of the gate block signals GB1, GB2, and GB3. The GB unit 22 limits the output of the gate pulse GP2 when any of the gate block signals GB1, GB2, and GB3 is in a significant state, regardless of the signal state of the gate pulse GP1 supplied from the inverter control unit 21. so that no pulses are output. For example, the GB unit 22 interrupts the power conversion by the inverter 150 by controlling the semiconductor switching elements related to the power conversion of the inverter 150 to an off state using the light detection result by the OE unit 25, which will be described later. It is configured as follows.
 EOユニット23は、GBユニット22から供給されるゲートパルスGP2の状態の応じた光パルスを生成する。EOユニット23は、生成した光パルスを、遮光型の光ファイバーを介して、インバータ150に供給する。 The EO unit 23 generates a light pulse according to the state of the gate pulse GP2 supplied from the GB unit 22. The EO unit 23 supplies the generated optical pulses to the inverter 150 via a light-shielding optical fiber.
 解析ユニット24は、インバータ150の動作状態を示す信号を受けて、これらの信号に基づいて、インバータ150の動作状態を解析する。例えば、解析ユニット24は、インバータ150の出力電流Iu、Iv、Iwと、インバータ150の出力電圧Vu、Vv、Vwと、保護回路の状態OC1等を含む。 The analysis unit 24 receives signals indicating the operating state of the inverter 150 and analyzes the operating state of the inverter 150 based on these signals. For example, the analysis unit 24 includes the output currents Iu, Iv, and Iw of the inverter 150, the output voltages Vu, Vv, and Vw of the inverter 150, and the state OC1 of the protection circuit.
 OEユニット25(光検出部)は、フォトダイオード、フォトトランジスタなどの光電変換部を含み、検出した光の光量に応じた電気信号を生成する。OEユニット25は、その電気信号を用いて、所定の光量を超える光があったことを識別する。例えば、OEユニット25は、光ファイバー26の導光部261(図3A,図3B)の端部261PA(図3A,図3B)に導かれた光を検出して、所定の光量を超える光を検出したときに、ゲートブロック信号GB3を出力する。 The OE unit 25 (photodetection section) includes a photoelectric conversion section such as a photodiode and a phototransistor, and generates an electric signal according to the amount of detected light. The OE unit 25 uses the electrical signal to identify that there is light exceeding a predetermined amount of light. For example, the OE unit 25 detects the light guided to the end 261PA (FIGS. 3A, 3B) of the light guide section 261 (FIGS. 3A, 3B) of the optical fiber 26, and detects light exceeding a predetermined amount of light. When this occurs, the gate block signal GB3 is output.
 上記のGBユニット22(保護制御部)は、上記のようにOEユニット25によって所定の光量を超える光が検出されて、ゲートブロック信号GB3が生成された場合に、ゲートパルスGP2の出力を制限して、インバータ150の半導体スイッチング素子をオフ状態に制御することにより、インバータ150による電力変換を中断させる。 The GB unit 22 (protection control section) limits the output of the gate pulse GP2 when the OE unit 25 detects light exceeding a predetermined amount of light and generates the gate block signal GB3 as described above. Then, by controlling the semiconductor switching elements of inverter 150 to be in an off state, power conversion by inverter 150 is interrupted.
 図3Aから図3Dを参照して、実施形態の光ファイバー26について説明する。
 図3Aは、実施形態の光ファイバー26の横断面図である。図3Bは、直線状に配置された区間の光ファイバー26の従断面図である。図3Cと図3Dは、弧を描くように配置された光ファイバー26の従断面図である。図3Aから図3Dに示す矢印は、点光源から光ファイバー26に照射された外来光の経路の一例を示す。図3Cに示す点光源の位置は、弧を描く光ファイバー26の弧の外側にある。図3Dに示す点光源の位置は、弧を描く光ファイバー26の弧の内側にある。
The optical fiber 26 of the embodiment will be described with reference to FIGS. 3A to 3D.
FIG. 3A is a cross-sectional view of the optical fiber 26 of the embodiment. FIG. 3B is a cross-sectional view of the optical fiber 26 in a linearly arranged section. 3C and 3D are cross-sectional views of optical fibers 26 arranged in an arc. The arrows shown in FIGS. 3A to 3D indicate an example of the path of external light irradiated onto the optical fiber 26 from a point light source. The position of the point light source shown in FIG. 3C is outside the arc of the arcing optical fiber 26. The position of the point light source shown in FIG. 3D is inside the arc of the arcing optical fiber 26.
 光ファイバー26は、例えば導光部261を備える。
 導光部261は、光ファイバー26の延伸方向に延伸する。
 導光部261は、端部161PA、161PBと、側面261SSとを備える。
The optical fiber 26 includes, for example, a light guide section 261.
The light guide section 261 extends in the direction in which the optical fiber 26 extends.
The light guide portion 261 includes end portions 161PA, 161PB, and a side surface 261SS.
 導光部261は、樹脂(プラスチック)と石英ガラスの何れか又は両方によって形成されている。 The light guide section 261 is made of resin (plastic), quartz glass, or both.
 例えば、導光部261は、通信用の光ファイバーのようにコアとクラッドに分かれて形成されている。コアとクラッドは、横断面図に示すように共通の軸を基準にした同心円状に配置されている。導光部261の第1の例が、コアとクラッドがともに樹脂である。導光部261の第2の例が、コアが石英ガラスで、クラッドが樹脂である。導光部261の第3の例が、コアとクラッドがともに石英ガラスである。 For example, the light guide section 261 is formed into a core and a cladding, like an optical fiber for communication. The core and cladding are arranged concentrically with respect to a common axis as shown in the cross-sectional view. In a first example of the light guide section 261, both the core and the cladding are made of resin. A second example of the light guide section 261 has a core made of quartz glass and a cladding made of resin. In a third example of the light guide section 261, both the core and the cladding are made of quartz glass.
 光ファイバーによる検出位置から、OEユニット25側の端部までの距離が比較的短ければ、第1の例を適用できる。この場合の光ファイバーは、導光部261のコア径を比較的大きくして、マルチモード・ステップインデックス型に形成されていてもよい。 The first example can be applied if the distance from the detection position by the optical fiber to the end on the OE unit 25 side is relatively short. In this case, the optical fiber may be formed into a multimode step-index type by making the core diameter of the light guiding portion 261 relatively large.
 光ファイバー26は、導光部261の側面261SSで取り込んだ光を延伸方向に導き、例えば導光部261の端部161PA、161PBから出力するように形成されている。本実施形態では、例えば、端部161PA、161PBの内の一方から出力する光を検出するものとする。 The optical fiber 26 is formed so as to guide the light taken in by the side surface 261SS of the light guide section 261 in the extending direction, and output it from the ends 161PA and 161PB of the light guide section 261, for example. In this embodiment, for example, it is assumed that light output from one of the end portions 161PA and 161PB is detected.
 光ファイバー26の導光部261の側面261SSには、遮蔽部材が設けられていない。少なくとも光ファイバー26をセンサーとして用いる部分には、導光部261の側面261SSに遮蔽部材を設けない。この遮蔽部材とは、例えば、遮光性を有する膜、又は、遮光性を有しているケーブルの被服などのことである。光ファイバー26は、遮蔽部材が設けられていない部分で、導光部261外の光を取り込む。 A shielding member is not provided on the side surface 261SS of the light guide section 261 of the optical fiber 26. At least in the portion where the optical fiber 26 is used as a sensor, no shielding member is provided on the side surface 261SS of the light guide section 261. The shielding member is, for example, a film having a light-shielding property or a cable covering having a light-shielding property. The optical fiber 26 takes in light from outside the light guide section 261 in a portion where a shielding member is not provided.
 例えば、図3Aと図3Bに示すように、光源(点光源)からの光が光ファイバー26に照射されると、光ファイバー26の導光部261内に取り込まれる。導光部261内に取り込まれる光は、導光部261の側面261SSへの入射角によって、導光部261を伝って導光部261の延伸方向に導かれるか、導光部261を通過して、光ファイバー26の側面261SSからその外部に放射される。導光部261の延伸方向に導くことができる場合の上記の入射角は、例えばスネルの法則に従い幾何学的に決定されてもよく、側面261SSの表面処理の特性によって決定されてもよい。側面261SSは、その表面処理として、反射係数の低い塗膜又はコーティング膜を備えていてもよく、透過する光を拡散させる特性を有していてもよい。入射角が大きい方が、導光部261の延伸方向に光を導くことができる。そのため、図3Cに示すように点光源が弧の外側に位置する場合の方が、図3Dに示すように点光源が弧の内側に位置する場合よりも、光を取り込みやすくなる。 For example, as shown in FIGS. 3A and 3B, when light from a light source (point light source) is irradiated onto the optical fiber 26, it is taken into the light guide section 261 of the optical fiber 26. Depending on the angle of incidence on the side surface 261SS of the light guide section 261, the light taken into the light guide section 261 is guided in the extending direction of the light guide section 261 through the light guide section 261, or passes through the light guide section 261. The light is then radiated to the outside from the side surface 261SS of the optical fiber 26. The above-mentioned incident angle when the light can be guided in the extending direction of the light guide portion 261 may be determined geometrically according to Snell's law, for example, or may be determined by the characteristics of the surface treatment of the side surface 261SS. The side surface 261SS may be provided with a coating film or a coating film having a low reflection coefficient as its surface treatment, and may have a property of diffusing transmitted light. The larger the incident angle, the more the light can be guided in the extending direction of the light guide section 261. Therefore, it is easier to take in light when the point light source is located outside the arc as shown in FIG. 3C than when the point light source is located inside the arc as shown in FIG. 3D.
 このように形成された光ファイバー26は、その近傍に生じたアークフラッシュによる光を取り込むように形成されているものの一例である。インバータ150(電力変換器)を形成する半導体スイッチング素子又はその半導体スイッチング素子に電流を流すための導体部の近くに光ファイバー26を配置することにより、光ファイバー26は、半導体スイッチング素子又は導体部に生じたアークフラッシュによる光を取り込むことができる。 The optical fiber 26 formed in this way is an example of one that is formed so as to take in light from an arc flash generated in the vicinity thereof. By arranging the optical fiber 26 near a semiconductor switching element forming the inverter 150 (power converter) or a conductor section for passing current through the semiconductor switching element, the optical fiber 26 can be connected to the semiconductor switching element or the conductor section. Can capture light from arc flash.
 図4Aと図4Bと図5とを参照して、インバータ150における光ファイバー26の配置例と、アークフラッシュの検出について説明する。
 図4Aは、実施形態の光ファイバー26の配置を示す断面図である。図4Bは、実施形態の光ファイバーの配置を示す平面図である。図5は、実施形態のアークフラッシュ発生時の保護制御について説明するための図である。断面のハッチングを省略する。
An example of the arrangement of the optical fibers 26 in the inverter 150 and detection of arc flash will be described with reference to FIGS. 4A, 4B, and 5.
FIG. 4A is a cross-sectional view showing the arrangement of the optical fibers 26 of the embodiment. FIG. 4B is a plan view showing the arrangement of optical fibers according to the embodiment. FIG. 5 is a diagram for explaining protection control when an arc flash occurs according to the embodiment. Omit cross-sectional hatching.
 図4Aと図4Bに、インバータ150の各相の半導体スイッチング素子の配置例を示す。放熱板の平面上に、U相に係るスイッチQU1からQU4が適当な距離を隔てて配置されている。スイッチQU1からQU4は、夫々がモジュールとして構成されている。モジュール間の電気的な接続には、図示しないバスバーなどを用いる。例えば、バスバーによって、スイッチQU1からQU4の上部に設けられた端子が接続されている。V相に係るスイッチQV1からQV4も、W相に係るスイッチQW1からQW4についても、U相に係るスイッチQU1からQU4と同様である。 FIGS. 4A and 4B show examples of the arrangement of semiconductor switching elements for each phase of the inverter 150. On the plane of the heat sink, switches QU1 to QU4 related to the U phase are arranged at appropriate distances. Each of the switches QU1 to QU4 is configured as a module. A bus bar (not shown) or the like is used for electrical connection between modules. For example, terminals provided at the top of the switches QU1 to QU4 are connected by a bus bar. The switches QV1 to QV4 related to the V phase and the switches QW1 to QW4 related to the W phase are the same as the switches QU1 to QU4 related to the U phase.
 光ファイバー26を、上記の各モジュールが配置されている位置の近傍に配置する。例えば、光ファイバー26は、弧を描いて延伸するように、各相の半導体スイッチング素子の近傍に保持されている。例えば光ファイバー26は、複数回巻いた束状に纏めて、纏めた部分が各モジュールの近傍に配置されているとよい。束状に纏めることに代えて、蛇行するように弧を描いてもよく、又は直線区間とこの区間とが組み合わされたU字状に形成されていてもよい。 The optical fiber 26 is placed near the position where each of the above modules is placed. For example, the optical fiber 26 is held near the semiconductor switching elements of each phase so as to extend in an arc. For example, it is preferable that the optical fibers 26 are wound a plurality of times to form a bundle, and the bundled portion is placed near each module. Instead of gathering them into a bundle, they may be drawn in a meandering arc, or may be formed into a U-shape in which a straight section and this section are combined.
 上記のように配置された光ファイバー26は、インバータ150内の事故に伴い発生した光をその側面261SSで取り込み可能な位置にある。このように配置されている場合に、光ファイバー26が取り込み可能な光には、インバータ150のスイッチQU1からQU4からの光が含まれる。インバータ150のスイッチQU1からQU4は、電力変換器の半導体スイッチング素子の一例である。V相W相についてもU相と同様に構成してよい。この場合の光ファイバー26を纏めた束が相ごとに分けて設けられているが、各束は、共通の光ファイバー26によって構成されている。 The optical fiber 26 arranged as described above is in a position where the light generated due to the accident inside the inverter 150 can be taken in with its side surface 261SS. When arranged in this way, the light that can be taken in by the optical fiber 26 includes the light from the switches QU1 to QU4 of the inverter 150. Switches QU1 to QU4 of inverter 150 are examples of semiconductor switching elements of a power converter. The V phase and the W phase may also be configured in the same manner as the U phase. In this case, bundles of optical fibers 26 are provided separately for each phase, but each bundle is composed of a common optical fiber 26.
 例えば、電力変換器の半導体スイッチング素子と、電力変換器の導体部は、光ファイバー26とともに遮光性のある部材で囲まれた筐体内に配置される。例えば、筐体150Bは、符号150で示す範囲を収容する。
 より具体的には、インバータ150のスイッチQU1からQU4と、インバータ150の導体部は、光ファイバー26とともに遮光性のある部材で囲まれた筐体内に配置される。
この場合、インバータ150のスイッチQU1からQU4と光ファイバー26との間、又はインバータ150の導体部と光ファイバー26との間には、遮光性を有する部材を設けないことが望ましい。
 平時における光ファイバーの周囲の明るさが比較的暗い状況にあれば、より具体的には、アークフラッシュなどによる光がない平時の状況にあれば、OEユニット25によって検出される光量は、アークフラッシュが発生したときの光量に比べて十分に少なくなる。このように他の光に影響されないことにより、アークフラッシュの発生の検知が容易になる。
For example, the semiconductor switching element of the power converter and the conductor portion of the power converter are placed together with the optical fiber 26 in a housing surrounded by a light-shielding member. For example, the housing 150B accommodates a range indicated by the reference numeral 150.
More specifically, the switches QU1 to QU4 of the inverter 150 and the conductor portion of the inverter 150 are arranged together with the optical fiber 26 in a housing surrounded by a light-shielding member.
In this case, it is desirable that no light-shielding member be provided between the switches QU1 to QU4 of the inverter 150 and the optical fiber 26 or between the conductor portion of the inverter 150 and the optical fiber 26.
If the brightness around the optical fiber during normal times is relatively dark, more specifically, if there is no light due to arc flash or the like during normal times, the amount of light detected by the OE unit 25 will be the same as that caused by arc flash. The amount of light is much smaller than the amount of light when it was generated. This lack of influence from other light makes it easier to detect the occurrence of arc flash.
 上記のように配置された光ファイバー26は、所定の曲率よりも大きな曲率で弧を描いて延伸している。所定の曲率は、光ファイバー26の強度、伝送損失など観点で、例えば、「最小曲率半径」などを用いて規定される。 The optical fiber 26 arranged as described above extends in an arc with a curvature larger than a predetermined curvature. The predetermined curvature is defined using, for example, a "minimum radius of curvature" from the viewpoint of the strength, transmission loss, etc. of the optical fiber 26.
 光ファイバー26は、上記の弧の外側から光を受けることができるように配置するとよい。この配置位置の関係を、下記のように規定してもよい。 The optical fiber 26 is preferably arranged so that it can receive light from outside the arc. This arrangement position relationship may be defined as follows.
 例えば、前述の図4Aと図4Bに示すように光ファイバー26を配置すると、弧に対応付けられた平面Fに対して、弧の位置と、インバータ150のスイッチQU1からQU4などの各半導体スイッチング素子の位置とを、平面Fの法線方向に夫々射影した射影像が、平面F上で、弧の外側に各半導体スイッチング素子から射影された像が配置される。
 なお、上記の配置関係は、アークフラッシュによる光を、より検出し易くする配置の一例を示すものであり、これに制限されず、適宜変更することができる。
For example, when the optical fiber 26 is arranged as shown in FIGS. 4A and 4B, the position of the arc and the position of each semiconductor switching element such as the switches QU1 to QU4 of the inverter 150 are determined with respect to the plane F corresponding to the arc. On the plane F, images projected from each semiconductor switching element on the outside of the arc are placed on the plane F.
Note that the above-mentioned arrangement relationship is an example of an arrangement that makes it easier to detect light due to arc flash, and is not limited to this, and can be changed as appropriate.
 図5を参照して、実施形態のアークフラッシュ発生時の保護制御について説明する。
 図5は、実施形態のアークフラッシュ発生時の保護制御について説明するための図である。例えば、以下に示す状況になると保護制御が実施される。
With reference to FIG. 5, protection control when an arc flash occurs according to the embodiment will be described.
FIG. 5 is a diagram for explaining protection control when an arc flash occurs according to the embodiment. For example, protection control is implemented in the following situations.
(1)相ごとに複数の半導体スイッチング素子がカスケード接続されている。
 例えば、前述の図1に示したように、U相において、スイッチQU1とQU2が正側アームを形成し、スイッチQU3とQU4が負側アームを形成している。V相において、スイッチQV1とQV2が正側アームを形成し、スイッチQV3とQV4が負側アームを形成している。W相において、スイッチQW1とQW2が正側アームを形成し、スイッチQW3とQW4が負側アームを形成している。
 例えば、U相のスイッチQU1からQU4の中の何れかの半導体スイッチング素子が短絡故障した場合に、U相の正側アームと負側アームが短絡して、U相の短絡破損を招くリスクがある。以下、U相を事故相とする場合を例示して説明する。
(1) A plurality of semiconductor switching elements are connected in cascade for each phase.
For example, as shown in FIG. 1 described above, in the U phase, switches QU1 and QU2 form a positive side arm, and switches QU3 and QU4 form a negative side arm. In the V phase, switches QV1 and QV2 form a positive arm, and switches QV3 and QV4 form a negative arm. In the W phase, switches QW1 and QW2 form a positive arm, and switches QW3 and QW4 form a negative arm.
For example, if any of the semiconductor switching elements in the U-phase switches QU1 to QU4 is short-circuited, there is a risk that the positive and negative arms of the U-phase will short-circuit, resulting in short-circuit damage to the U-phase. . Hereinafter, a case where the U phase is used as the accident phase will be explained as an example.
(2)U相の短絡故障によりU相の正側アームと負側アームに事故電流が流れて、U相の導体(ブス)やスイッチQU1からQU4の何れかが溶断して、アークフラッシュが発生する場合がある。この段階のV相W相は健全相である。
 例えば、図2に示すヒューズ150UPと150UNの何れかがこの事故電流に応答して事故電流を止めるまで、この事故電流が流れてU相にアークフラッシュが発生し得る状態になっている。
(2) Due to a short-circuit failure in the U phase, a fault current flows through the positive and negative arms of the U phase, causing the U phase conductor (bus) or any of the switches QU1 to QU4 to melt, causing an arc flash. There are cases where The V phase and W phase at this stage are healthy phases.
For example, until one of the fuses 150UP and 150UN shown in FIG. 2 responds to the fault current and stops the fault current, the fault current continues to flow and an arc flash can occur in the U phase.
(3)上記の状況で、U相にアークフラッシュが発生すると、光ファイバー26に取り込まれる光量が増加する。これに伴い、光ファイバー26を介してOEユニット25に届く光量が増加する。OEユニット25は、これを検出して、ゲートブロック信号GB3を出力する。 (3) In the above situation, when an arc flash occurs in the U phase, the amount of light taken into the optical fiber 26 increases. Accordingly, the amount of light reaching the OE unit 25 via the optical fiber 26 increases. OE unit 25 detects this and outputs gate block signal GB3.
(4)GBユニット22(図2)は、ゲートブロック信号GB3を検出して、全相のゲートパルスGP2の出力を制限する。これによって、インバータ150に供給されるゲートパルス(GP3)が消失する。 (4) The GB unit 22 (FIG. 2) detects the gate block signal GB3 and limits the output of the gate pulse GP2 of all phases. As a result, the gate pulse (GP3) supplied to the inverter 150 disappears.
(5)インバータ150の全相の半導体スイッチング素子は、オフに制御される。これにより、事故相のU相だけでなく、健全相のV相W相においても、各半導体スイッチング素子に流れる電流が、各半導体スイッチング素子によって遮断される。 (5) The semiconductor switching elements of all phases of the inverter 150 are controlled to be turned off. As a result, the current flowing through each semiconductor switching element is cut off by each semiconductor switching element not only in the fault phase U phase but also in the healthy phase V phase and W phase.
 なお、上記(5)の状態になるまでに、保護回路が事故電流を遮断することがある。この場合には、事故点が既に切り離されているため、事故が波及するリスクは低い。保護回路が応答して事故電流を遮断した場合には、解析ユニット24は、保護回路の状態OC1からニューズが溶断したことを検出して、ゲートブロック信号GB2を出力する。 Note that the protection circuit may cut off the fault current before the state (5) above is reached. In this case, since the accident point has already been isolated, the risk of the accident spreading is low. When the protection circuit responds and interrupts the fault current, the analysis unit 24 detects that the news has blown out from the state OC1 of the protection circuit and outputs a gate block signal GB2.
 仮に、応答遅延等により、事故相の保護回路が事故電流を遮断できていない状況にあったとしても、上記(5)の状態になれば、インバータ150における電力変換に係る動作を停止させることができる。これにより、少なくとも健全相の半導体スイッチング素子をオンに制御することがなくなり、健全相に異常な電流が流れることを予防できる。 Even if the protection circuit of the fault phase is unable to cut off the fault current due to response delay, etc., if the above condition (5) occurs, the operation related to power conversion in the inverter 150 cannot be stopped. can. As a result, at least the semiconductor switching element in the healthy phase is not controlled to be turned on, and it is possible to prevent abnormal current from flowing in the healthy phase.
 上記の手順によれば、ゲートブロック信号GB2よりも前に、ゲートブロック信号GB3が生成されている。GBユニット22は、ゲートブロック信号GB2を検出するが、ゲートブロック信号GB3に基づいて既に設定していた全相のゲートパルスの出力制限を継続する。 According to the above procedure, the gate block signal GB3 is generated before the gate block signal GB2. The GB unit 22 detects the gate block signal GB2, but continues to limit the output of gate pulses of all phases, which has already been set based on the gate block signal GB3.
 本実施形態では、ゲートブロック信号GB3を利用することで、保護回路の状態OC1に応じて全相のゲートパルスの出力制限を開始するよりも早い段階で、全相のゲートパルスの出力を制限できる。 In this embodiment, by using the gate block signal GB3, it is possible to limit the output of gate pulses of all phases at an earlier stage than starting to limit the output of gate pulses of all phases according to the state OC1 of the protection circuit. .
 上記の実施形態によれば、制御装置20に係る光ファイバー26は、延伸する導光部261の側面261SSで取り込んだ光を延伸方向に導き、導光部261の端部261PA,261PBから出力するように形成されている。OEユニット25は、導光部261の端部261PA,261PBの何れかに導かれた光を検出する。GBユニット22は、OEユニット25によってアークフラッシュを伴う事故に起因する光が検出された場合に、インバータ150による電力変換を中断させる。これにより、アークフラッシュを発生させる事故に起因する2次的な故障の発生を、簡易な方法で予防することができる。 According to the above embodiment, the optical fiber 26 according to the control device 20 guides the light taken in by the side surface 261SS of the extending light guide section 261 in the extending direction, and outputs it from the ends 261PA and 261PB of the light guide section 261. is formed. The OE unit 25 detects the light guided to either end 261PA or 261PB of the light guide section 261. The GB unit 22 interrupts power conversion by the inverter 150 when the OE unit 25 detects light resulting from an accident involving an arc flash. Thereby, the occurrence of secondary failures due to accidents that cause arc flash can be prevented with a simple method.
 また、インバータ150を備える電力変換装置1は、制御装置20と、インバータ150とを備えている。GBユニット22は、OEユニット25による光の検出結果を用いて、インバータ150の電力変換に係る半導体スイッチング素子をオフ状態に制御してインバータ150による電力変換を中断させるようにするとよい。 Further, the power conversion device 1 including the inverter 150 includes the control device 20 and the inverter 150. The GB unit 22 may use the light detection result by the OE unit 25 to control a semiconductor switching element related to power conversion of the inverter 150 to an OFF state, thereby interrupting the power conversion by the inverter 150.
(実施形態の第1変形例)
 図6Aと図6Bと図7を参照して、第1変形例について説明する。前述の実施形態では、1本の光ファイバー26を利用して、3相を纏めて監視制御する事例について説明した。本変形例では、対になる光ファイバー26A1、26A2を利用して、3相を纏めて監視制御する事例について説明する。
(First modification of the embodiment)
A first modification will be described with reference to FIGS. 6A, 6B, and 7. In the embodiment described above, a case has been described in which one optical fiber 26 is used to collectively monitor and control three phases. In this modification, a case will be described in which three phases are collectively monitored and controlled using a pair of optical fibers 26A1 and 26A2.
 図7は、実施形態の第1変形例の制御装置20Aの構成図である。
 制御装置20Aは、制御装置20のGBユニット22と、OEユニット25に代えて、GBユニット22A(保護制御部)と、OEユニット25A(光検出部)を備える。
FIG. 7 is a configuration diagram of a control device 20A according to a first modification of the embodiment.
The control device 20A includes a GB unit 22A (protection control section) and an OE unit 25A (light detection section) in place of the GB unit 22 and OE unit 25 of the control device 20.
 GBユニット22Aは、さらにゲートブロック信号GB4を取得して、ゲートブロック信号GB3と同様に利用する。例えば、GBユニット22Aは、ゲートブロック信号GB1、GB2、GB3、GB4の何れかが有意な状態にあるときに、インバータ制御部21から供給されるゲートパルスGP1の信号状態によらず、ゲートパルスGP2の出力を制限して、出力するパルスがない状態にする。 The GB unit 22A further acquires the gate block signal GB4 and uses it in the same way as the gate block signal GB3. For example, when any of the gate block signals GB1, GB2, GB3, and GB4 is in a significant state, the GB unit 22A uses the gate pulse GP2 regardless of the signal state of the gate pulse GP1 supplied from the inverter control unit 21. Limits the output so that there are no pulses to output.
 OEユニット25Aは、OEユニット25を2系統分備えた構成に相当する。OEユニット25Aは、第1系統の光ファイバー26A1から導かれた光を検出して、所定の光量を超える光を検出したときに、有意を示すゲートパルスGP3を出力する。OEユニット25Bは、第2系統の光ファイバー26A2から導かれた光を検出して、所定の光量を超える光を検出したときに、有意を示すゲートパルスGP4を出力する。 The OE unit 25A corresponds to a configuration including two systems of OE units 25. The OE unit 25A detects the light guided from the first optical fiber 26A1, and outputs a gate pulse GP3 indicating significance when detecting light exceeding a predetermined amount of light. The OE unit 25B detects the light guided from the second optical fiber 26A2, and outputs a gate pulse GP4 indicating significance when detecting light exceeding a predetermined amount of light.
 図6Aは、実施形態の第1変形例の光ファイバー26A1、26A2の配置を示す断面図である。図6Bは、実施形態の第1変形例の光ファイバー26A1、26A2の配置を示す平面図である。
 図6Aに示すように光ファイバー26A1、26A2を、平面FSの法線方向にずらして平面FSへの射影像が重なるように配置した。これにより、光ファイバー26A1、26A2は、それぞれアークフラッシュの光を取り込むことができる。
FIG. 6A is a cross-sectional view showing the arrangement of optical fibers 26A1 and 26A2 in a first modification of the embodiment. FIG. 6B is a plan view showing the arrangement of optical fibers 26A1 and 26A2 in a first modification of the embodiment.
As shown in FIG. 6A, the optical fibers 26A1 and 26A2 were shifted in the normal direction of the plane FS and arranged so that their projected images onto the plane FS overlapped. Thereby, the optical fibers 26A1 and 26A2 can each take in the light of the arc flash.
 これにより、実施形態と同様の効果を奏することの他、簡易な構成でアークフラッシュの検出系を冗長化できる。 As a result, in addition to producing the same effects as the embodiment, the arc flash detection system can be made redundant with a simple configuration.
(実施形態の第2変形例)
 図8Aと図8Bと図9を参照して、第2変形例について説明する。前述の実施形態では、1本の光ファイバー26を利用して、3相を纏めて監視制御する事例について説明した。本変形例では、光ファイバー26B1、26B2、26B3を利用して、3相を夫々監視して、3相を纏めて制御する事例について説明する。
(Second modification of embodiment)
A second modification will be described with reference to FIGS. 8A, 8B, and 9. In the embodiment described above, a case has been described in which one optical fiber 26 is used to collectively monitor and control three phases. In this modification, a case will be described in which the optical fibers 26B1, 26B2, and 26B3 are used to monitor each of the three phases and control the three phases collectively.
 図9は、実施形態の第2変形例の制御装置20Bの構成図である。
 制御装置20Bは、制御装置20のGBユニット22と、OEユニット25に代えて、GBユニット22B(保護制御部)と、OEユニット25B(光検出部)を備える。
FIG. 9 is a configuration diagram of a control device 20B according to a second modification of the embodiment.
The control device 20B includes a GB unit 22B (protection control section) and an OE unit 25B (light detection section) in place of the GB unit 22 and OE unit 25 of the control device 20.
 GBユニット22Bは、さらにゲートブロック信号GB4、GB5を取得して、ゲートブロック信号GB3と同様に利用する。例えば、GBユニット22Bは、ゲートブロック信号GB1、GB2、GB3、GB4、GB5の何れかが有意な状態にあるときに、インバータ制御部21から供給されるゲートパルスGP1の信号状態によらず、ゲートパルスGP2の出力を制限して、出力するパルスがない状態にする。 The GB unit 22B further acquires gate block signals GB4 and GB5 and uses them in the same way as gate block signal GB3. For example, when any of the gate block signals GB1, GB2, GB3, GB4, and GB5 is in a significant state, the GB unit 22B controls the gate block signal regardless of the signal state of the gate pulse GP1 supplied from the inverter control unit 21. The output of pulse GP2 is limited to a state where no pulse is output.
 OEユニット25Bは、OEユニット25を3系統分備えた構成に相当する。OEユニット25Bは、U相に対応させた第1系統の光ファイバー26B1から導かれた光を検出して、所定の光量を超える光を検出したときに、有意を示すゲートパルスGP3を出力する。OEユニット25Bは、V相に対応させた第2系統の光ファイバー26B2から導かれた光を検出して、所定の光量を超える光を検出したときに、有意を示すゲートパルスGP4を出力する。OEユニット25Bは、W相に対応させた第3系統の光ファイバー26B3から導かれた光を検出して、所定の光量を超える光を検出したときに、有意を示すゲートパルスGP5を出力する。 The OE unit 25B corresponds to a configuration including three systems of OE units 25. The OE unit 25B detects the light guided from the first optical fiber 26B1 corresponding to the U phase, and outputs a gate pulse GP3 indicating significance when detecting light exceeding a predetermined amount of light. The OE unit 25B detects the light guided from the second optical fiber 26B2 corresponding to the V phase, and outputs a gate pulse GP4 indicating significance when detecting light exceeding a predetermined amount of light. The OE unit 25B detects the light guided from the third optical fiber 26B3 corresponding to the W phase, and outputs a gate pulse GP5 indicating significance when detecting light exceeding a predetermined amount of light.
 図8Aは、実施形態の第2変形例の光ファイバー26B1、26B2、26B3の配置を示す断面図である。図8Bは、実施形態の第2変形例の光ファイバー26B1、26B2、26B3の配置を示す平面図である。
 図9に示すように光ファイバー26B1、26B2、26B3を、各相に夫々配置した。これにより、光ファイバー26B1、26B2、26B3は、夫々の相で生じたアークフラッシュの光を取り込むことができる。
FIG. 8A is a cross-sectional view showing the arrangement of optical fibers 26B1, 26B2, and 26B3 in a second modification of the embodiment. FIG. 8B is a plan view showing the arrangement of optical fibers 26B1, 26B2, and 26B3 in a second modification of the embodiment.
As shown in FIG. 9, optical fibers 26B1, 26B2, and 26B3 were arranged in each phase. Thereby, the optical fibers 26B1, 26B2, and 26B3 can take in the light of the arc flash generated in each phase.
 これにより、実施形態と同様の効果を奏することの他、簡易な構成でアークフラッシュの検出系を相ごとに分けて構成できる。 As a result, in addition to producing the same effects as the embodiment, the arc flash detection system can be configured separately for each phase with a simple configuration.
 以上説明した少なくとも一つの実施形態によれば、電力変換制御装置は、光ファイバーと、光検出部と、保護制御部とを備える。光ファイバーは、延伸する導光部の側面で取り込んだ光を延伸方向に導き、導光部の端部から出力するように形成されている。光検出部は、導光部の端部に導かれた光を検出する。保護制御部は、光検出部によってアークフラッシュを伴う事故に起因する光が検出された場合に、光ファイバーに係る電力変換器による電力変換を中断させる保護方法により、電力変換制御装置は、アークフラッシュを発生させる事故に起因する2次的な故障の発生を、簡易な方法で予防することができる。 According to at least one embodiment described above, the power conversion control device includes an optical fiber, a light detection section, and a protection control section. The optical fiber is formed so that the light taken in by the side surface of the extending light guide section is guided in the extending direction, and is output from the end of the light guide section. The light detection section detects the light guided to the end of the light guide section. The protection control unit uses a protection method that interrupts power conversion by the power converter related to the optical fiber when the light detection unit detects light caused by an accident involving an arc flash. The occurrence of secondary failures caused by accidents can be prevented by a simple method.
 また、少なくとも一つの実施形態によれば、電力変換装置は、電力変換制御装置と、電力変換器とを備える。保護制御部は、光の検出結果を用いて、電力変換器の電力変換に係る半導体スイッチング素子をオフ状態に制御して光ファイバーに係る電力変換器による電力変換を中断させる。これにより、電力変換装置は、アークフラッシュを発生させる事故に起因する2次的な故障の発生を、簡易な方法で予防することができる。 According to at least one embodiment, the power conversion device includes a power conversion control device and a power converter. The protection control unit uses the light detection result to control a semiconductor switching element related to power conversion of the power converter to an OFF state, thereby interrupting power conversion by the power converter related to the optical fiber. Thereby, the power conversion device can prevent the occurrence of secondary failures due to accidents that cause arc flash using a simple method.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 Several embodiments of the present invention have been described above, but these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the claimed invention and its equivalents. Further, each of the embodiments described above can be implemented in combination with each other.
 上記の実施形態によれば、インバータ150にゲートパルスを供給するための光ファイバーは、その側面が遮光性を有するものを用いるとよい。 According to the above embodiment, it is preferable that the optical fiber for supplying the gate pulse to the inverter 150 has a light-shielding side surface.
 1 電力変換装置、20 制御装置(電力変換制御装置)、21 インバータ制御部、22 GBユニット(保護制御部)、23 EOユニット、24 解析ユニット、25 OEユニット(光検出部)、26 光ファイバー、150 インバータ 1 Power conversion device, 20 Control device (power conversion control device), 21 Inverter control section, 22 GB unit (protection control section), 23 EO unit, 24 Analysis unit, 25 OE unit (light detection section), 26 Optical fiber, 150 inverter

Claims (9)

  1.  延伸する導光部の側面で取り込んだ光を延伸方向に導き、前記導光部の端部から出力するように形成された光ファイバーと、
     前記導光部の端部に導かれた光を検出する光検出部と、
     前記光検出部によってアークフラッシュを伴う事故に起因する光が検出された場合に、前記光ファイバーに関わる電力変換器による電力変換を中断させる保護制御部と、
     を備える電力変換制御装置。
    an optical fiber formed so as to guide light taken in by a side surface of a stretching light guide in the stretching direction and output from an end of the light guide;
    a light detection section that detects the light guided to the end of the light guide section;
    a protection control unit that interrupts power conversion by a power converter related to the optical fiber when light caused by an accident involving an arc flash is detected by the light detection unit;
    A power conversion control device comprising:
  2.  前記光ファイバーは、
     前記導光部の側面に遮蔽部材が設けられていない部分で、前記導光部外の光を取り込む、
     請求項1に記載の電力変換制御装置。
    The optical fiber is
    Taking in light outside the light guide in a portion where a shielding member is not provided on a side surface of the light guide;
    The power conversion control device according to claim 1.
  3.  前記光ファイバーは、
     前記電力変換器内の事故に伴い発生した光を前記導光部の側面で前記取り込み可能な位置に配置されている、
     請求項1に記載の電力変換制御装置。
    The optical fiber is
    disposed at a position where light generated due to an accident within the power converter can be taken in on a side surface of the light guide section;
    The power conversion control device according to claim 1.
  4.  前記光ファイバーは、
     所定の曲率よりも大きな曲率で弧を描いて前記延伸していて、
     前記弧に対応付けられた平面に前記弧の位置と前記電力変換器の半導体スイッチング素子の位置とを前記平面の法線方向に射影した射影像が、前記平面上で前記弧の外側に前記半導体スイッチング素子から射影された像が配置される、
     請求項3に記載の電力変換制御装置。
    The optical fiber is
    The stretching draws an arc with a curvature larger than a predetermined curvature,
    A projected image obtained by projecting the position of the arc and the position of the semiconductor switching element of the power converter in the normal direction of the plane onto a plane corresponding to the arc is a projection image of the semiconductor switching element on the outside of the arc on the plane. An image projected from the switching element is arranged.
    The power conversion control device according to claim 3.
  5.  前記光ファイバーは、
     前記電力変換器の半導体スイッチング素子又は前記半導体スイッチング素子に電流を流すための導体部から生じたアークフラッシュによる光を取り込むように形成されている、
     請求項1に記載の電力変換制御装置。
    The optical fiber is
    It is formed to capture light due to an arc flash generated from a semiconductor switching element of the power converter or a conductor portion for causing current to flow through the semiconductor switching element.
    The power conversion control device according to claim 1.
  6.  請求項4又は請求項5に記載の電力変換制御装置と、
     前記光ファイバーに関わる電力変換器と、
     を備え、
     前記保護制御部は、
     前記光の検出結果を用いて、前記電力変換器の電力変換に係る半導体スイッチング素子をオフ状態に制御して前記電力変換器による電力変換を中断させる、
     電力変換装置。
    The power conversion control device according to claim 4 or claim 5,
    a power converter related to the optical fiber;
    Equipped with
    The protection control section includes:
    using the light detection result to control a semiconductor switching element related to power conversion of the power converter to an OFF state to interrupt power conversion by the power converter;
    Power converter.
  7.  前記保護制御部は、
     前記光の検出結果により、動作継続に係る前記電力変換器の半導体スイッチング素子のオン/オフ状態の制御よりも優先させて、前記電力変換器による電力変換を中断させる、
     請求項6に記載の電力変換装置。
    The protection control section includes:
    Based on the light detection result, suspending power conversion by the power converter with priority over control of an on/off state of a semiconductor switching element of the power converter related to continued operation;
    The power conversion device according to claim 6.
  8.  前記電力変換器の半導体スイッチング素子と、前記電力変換器の導体部と、前記光ファイバーとを収納する筐体
     を備え、
     前記筐体は、遮光性のある部材で形成されている
     請求項6に記載の電力変換装置。
    A casing that houses the semiconductor switching element of the power converter, the conductor part of the power converter, and the optical fiber,
    The power conversion device according to claim 6, wherein the casing is formed of a light-shielding member.
  9.  電力変換装置の保護方法であって、
     延伸する導光部の側面で取り込んだ光を延伸方向に導き、前記導光部の端部から出力するように形成された光ファイバーと、
     前記導光部の端部に導かれた光を検出する光検出部と、
     を用いて、前記光ファイバーの周りの光を検出するステップと、
     前記光検出部によってアークフラッシュを伴う事故に起因する光が検出された場合に、前記光ファイバーに関わる電力変換器による電力変換を中断させるステップ、
     を含む保護方法。
    A method for protecting a power conversion device, the method comprising:
    an optical fiber formed to guide light taken in by a side surface of a stretching light guide in the stretching direction and output from an end of the light guide;
    a light detection section that detects the light guided to the end of the light guide section;
    detecting light around the optical fiber using a
    a step of interrupting power conversion by a power converter associated with the optical fiber when light caused by an accident involving an arc flash is detected by the light detection unit;
    Protection methods including.
PCT/JP2022/032446 2022-08-29 2022-08-29 Electric power conversion control device, electric power conversion device, and protection method WO2024047710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032446 WO2024047710A1 (en) 2022-08-29 2022-08-29 Electric power conversion control device, electric power conversion device, and protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032446 WO2024047710A1 (en) 2022-08-29 2022-08-29 Electric power conversion control device, electric power conversion device, and protection method

Publications (1)

Publication Number Publication Date
WO2024047710A1 true WO2024047710A1 (en) 2024-03-07

Family

ID=90099160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032446 WO2024047710A1 (en) 2022-08-29 2022-08-29 Electric power conversion control device, electric power conversion device, and protection method

Country Status (1)

Country Link
WO (1) WO2024047710A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925116A (en) * 1981-07-23 1984-02-09 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボベリ・ウント・コンパニ− Optical fiber for detecting arc discharge
FR2674337A1 (en) * 1991-03-21 1992-09-25 Alsthom Gec Device for the detection of visible discharges in a closed vessel and the equipping of an electrical control panel with such a device
JP2005012913A (en) * 2003-06-19 2005-01-13 Hitachi Ltd Power converter
GB2477970A (en) * 2010-02-19 2011-08-24 Vestas Wind Sys As Optical electrical fault detection in a wind energy electrical cabinet
JP2012157156A (en) * 2011-01-26 2012-08-16 Toshiba Mitsubishi-Electric Industrial System Corp Electric power conversion apparatus protection device
JP2015226387A (en) * 2014-05-28 2015-12-14 東芝三菱電機産業システム株式会社 Power conversion device
JP2018063955A (en) * 2013-03-29 2018-04-19 旭東電気株式会社 Arc generation detector and switch
JP2019087684A (en) * 2017-11-09 2019-06-06 三菱電機株式会社 Power module and power converter
JP2020014295A (en) * 2018-07-13 2020-01-23 株式会社日立製作所 Power conversion device and current control method in the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925116A (en) * 1981-07-23 1984-02-09 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボベリ・ウント・コンパニ− Optical fiber for detecting arc discharge
FR2674337A1 (en) * 1991-03-21 1992-09-25 Alsthom Gec Device for the detection of visible discharges in a closed vessel and the equipping of an electrical control panel with such a device
JP2005012913A (en) * 2003-06-19 2005-01-13 Hitachi Ltd Power converter
GB2477970A (en) * 2010-02-19 2011-08-24 Vestas Wind Sys As Optical electrical fault detection in a wind energy electrical cabinet
JP2012157156A (en) * 2011-01-26 2012-08-16 Toshiba Mitsubishi-Electric Industrial System Corp Electric power conversion apparatus protection device
JP2018063955A (en) * 2013-03-29 2018-04-19 旭東電気株式会社 Arc generation detector and switch
JP2015226387A (en) * 2014-05-28 2015-12-14 東芝三菱電機産業システム株式会社 Power conversion device
JP2019087684A (en) * 2017-11-09 2019-06-06 三菱電機株式会社 Power module and power converter
JP2020014295A (en) * 2018-07-13 2020-01-23 株式会社日立製作所 Power conversion device and current control method in the same

Similar Documents

Publication Publication Date Title
RU2550138C2 (en) Failure correction method in high-voltage direct current line, installation for current transmission through high-voltage direct current line and alternating current converter
JP6436028B2 (en) Power supply device and switch control method thereof
CN107147305B (en) Multilevel converter submodule by-pass switch automatic triggering circuit
US20110304941A1 (en) Switching device
US9293936B2 (en) Power relay assembly driving apparatus and driving method thereof
CN103001187A (en) Frequency inverter and method for detecting and blocking a fault current in a frequency inverter
CN102484368A (en) Reverse current sensor
KR101052471B1 (en) Neutral wire replacement device in power system and method
JP2019527017A (en) Method for controlling a device capable of transmitting a DC current in a network while protecting the network from short circuit failure
JP2016171736A (en) Vehicle charging device and method for protecting internal circuit of device
WO2017175326A1 (en) Power module
CN105814782B (en) For the circuit device by means of special operation method urgent operation polyphase voltage converter
WO2024047710A1 (en) Electric power conversion control device, electric power conversion device, and protection method
CN105191107A (en) Multilevel inverter
JP6772645B2 (en) Inverter device
JP2007060817A (en) Power supply unit
JP3157691B2 (en) Feeding equipment protection device
JP6540468B2 (en) Power converter
JP2010022104A (en) Power converter for fuel cell
JP2001119960A (en) Method and device for urgently interrupting vehicle feeder circuit and vehicle voltage converter
CN105811368A (en) Self-adaptive zero line broken protection device and system
US20200028350A1 (en) Dc overvoltage protection for an energy system
EP4358396A1 (en) Electric motor control device and electric motor control method
CN109842096A (en) Electronic protection circuit
JPS5921234A (en) Parallel operation automatic deenergizing device for motor-driven generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957314

Country of ref document: EP

Kind code of ref document: A1