WO2024047397A2 - Sistema mecatrónico integrado para administrar cirugias oftalmológicas bajo el concepto manos y pies libres mediante la ejecución de comandos por voz - Google Patents

Sistema mecatrónico integrado para administrar cirugias oftalmológicas bajo el concepto manos y pies libres mediante la ejecución de comandos por voz Download PDF

Info

Publication number
WO2024047397A2
WO2024047397A2 PCT/IB2023/000512 IB2023000512W WO2024047397A2 WO 2024047397 A2 WO2024047397 A2 WO 2024047397A2 IB 2023000512 W IB2023000512 W IB 2023000512W WO 2024047397 A2 WO2024047397 A2 WO 2024047397A2
Authority
WO
WIPO (PCT)
Prior art keywords
surgeries
voice commands
module
movements
central processing
Prior art date
Application number
PCT/IB2023/000512
Other languages
English (en)
French (fr)
Other versions
WO2024047397A3 (es
Inventor
Fabián José BONETTO
Mario Joaquín SARAVIA
Nicolás Oscar GÓNGORA
Original Assignee
Impel Ip, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ARP230100649A external-priority patent/AR128803A1/es
Application filed by Impel Ip, Llc filed Critical Impel Ip, Llc
Publication of WO2024047397A2 publication Critical patent/WO2024047397A2/es
Publication of WO2024047397A3 publication Critical patent/WO2024047397A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Definitions

  • the present invention refers to an innovative mechatronic system that optimizes time and reduces avoidable movements of the surgeon during procedures performed using surgical microscopes. It is an accessory system for any surgical microscope, which is why its field of action covers the medical practice of microsurgery in general and, in particular, the field of ophthalmology.
  • the system which has a set of quick couplers using magnets for quick assembly on the microscope including magnetic quick coupler lenses, integrates voice command functions, video image processing, automation that corrects focus and/or field of view. visualization with lens positioning in 3D space following the movement of the eye, and can electronically execute mechanical and non-mechanical commands, for example digital, on peripheral devices used in microsurgery in general and, particularly, in ophthalmological surgical procedures.
  • vitreoretinal surgical procedures ie fundus surgery
  • it can be applied during vitreoretinal surgical procedures, ie fundus surgery, to be able to maintain a dynamic and correctly focused visualization throughout the surgery, without the need for the surgeon to use his hands and/or feet.
  • the surgeon does not need to take his hands off the microsurgery he is performing to obtain and maintain proper focus.
  • This system is also applicable to other areas of microsurgery, where this accessory can hold and mobilize instruments for diagnostic-therapeutic purposes, using voice commands.
  • orders and actions to configure medical equipment are transmitted mechanically or electromechanically through the use of a keyboard, touch screens, switches, knobs or manual or peripheral adjustment wheels. like pedals.
  • the present invention consists of an integrated system, which is quickly coupled to a surgical microscope using magnets, which is capable of interpreting voice commands and processing images and videos in real time, to then execute functions in optical and peripheral equipment usable in a microsurgery in in general and in particular in ophthalmology, mainly in surgical procedures of the fundus of the eye, as well as in other ophthalmic surgeries such as anterior, posterior segment, ocular plastic, orbit, oncological and other surgeries.
  • This system which can be mounted and adapted to any surgical microscope using magnetic couplings, facilitates the task of the surgeon and assistants when variations are needed during surgery, such as: visualization variations in the focusing systems (autofocus) or field adjustment (autofield), or performance of the surgical team, avoiding interventions such as the use of commands on the foot and/or touch controls, interventions on existing knobs or levers to control lighting and the like.
  • variations such as: visualization variations in the focusing systems (autofocus) or field adjustment (autofield), or performance of the surgical team, avoiding interventions such as the use of commands on the foot and/or touch controls, interventions on existing knobs or levers to control lighting and the like.
  • the quick coupling system based on the concept of magnets features a gold plating process, which makes it optimal for surgical areas.
  • the gold is deposited on the magnets in the form of a thin layer of the order of 5 nanometers thick, which allows obtaining a biocompatibility that the magnet as such does not possess.
  • the gold-coated magnets have been tested by separating and joining the magnets a large number of times, which made it possible to verify that there is no appreciable deterioration in biocompatibility.
  • gold could be replaced by other precious metals such as platinum, palladium or precious metal alloys.
  • Figure 1 represents a complete diagram of the parts that make up the electromechanical system called “L ⁇ ber”, which includes image and voice processing functions, with analogue and serial digital outputs customized to execute actions in optical display and control systems of peripherals used. in this case in ophthalmological surgeries.
  • the “headset” component (seen individually in Figure 6) is used interacting with Android or iPhone platforms.
  • the voice processing system is configured from the mobile app.
  • the headset can be optionally replaced by a product already developed by the Apple firm, called “Airpods”; and in this case, these devices will be the ones that interact, sending commands (information) to the processing center.
  • Airpods a product already developed by the Apple firm
  • FIG. 2 shows the receiver, central processing unit, of the system, individually.
  • Said module is powered with 5vdc from powerbanks or with a 220 Vac to 5 Vdc power supply.
  • This module has a microcontroller with Wi-Fi functions that allows you to receive orders from the headset by voice command or can receive optical, digital, analog or wireless signals from other peripherals and then process them and issue commands to execute actions in the mechatronic module.
  • Part A of the image is the magnetic support socket of the mechatronic module when it is not used by the professional, waiting in careful rest without contact with outside agents. According to the position of Installation of this module, the part is rotated so that the mechatronic module is suspended vertically when not in use.
  • the parts of the receiver in figure 2 are:
  • FIG. 3 shows a complete diagram of the mechatronic module that is attached to the surgical microscope that allows holding lenses and making movements between them. These commands are generated in the Liber receiver module and sent to the mechatronic module. Below is the description of the parts:
  • FIG. 4 represents the upper part of the mechatronic system, showing the parts detailed below:
  • Figure 5 shows the mechatronic system with lenses, from another position, highlighting the following parts:
  • Figure 6 presents the mechatronic system with lenses, in such a way that all the movements of the parts can be observed and described as stated below:
  • Figure 7 represents the “Headset” of the system, which consists of:
  • the present invention proposes an integrated mechatronic system to manage surgical procedures in general and ophthalmological surgeries in particular, under the “hands and feet free” concept, by executing voice commands.
  • voice commands which comprises four parts: (a) headset-voice command, (b) mechatronic module, (c) receiver-central processing unit and (d) video and image analyzer.
  • headset-voice command it is a voice processing module that includes an input for a voice sensor, and an integrated memory to: save different commands, save different voices, be able to differentiate users, configure commands according to each professional, execute functions without using hands or feet, and display automatic reports on display peripherals or audio reports (voice or sound).
  • Mechatronic module a robotic system to align the axis of the optical/camera complex by sensing the real-time position of the visual axis through a tracking system, comprising: an automated robotic arm that modifies the position in space, modules lenses and mirrors to adjust optical directions in line with the direction of the visual axis, and an image processing module to control the automation that moves microscopes, cameras or devices with image and/or video sensors; an internal memory for sequential and chronological recording of commands used.
  • Receiver-central processing unit outputs programmed to adapt to various peripherals and electronic equipment, said outputs selected from: digital outputs, on/off, pulse width; analog outputs; serial outputs, or specific ones adapted to interact with existing products on the market; and comprising an adaptable internal software arrangement to achieve feedback and execute actions in the software and hardware of the various commercial devices (API); and a universal conventional diet.
  • the image and video processing module which comprises an input for video processing, and has the function of executing functions in real time of: focusing through adjustments of optical and/or mechanical systems, adjusting the field through optical, mechanical or digital systems with command center functions, and comprising an arrangement of internal software adaptable to achieve feedback and execute actions in the software and hardware of the different commercial devices (API); and a universal conventional diet.
  • the integrated mechatronic system for managing surgical procedures in general and ophthalmological surgeries in particular, under the hands and feet free concept, through the execution of voice commands is portable, portable and independent, coupling to the surgical microscope. through a system of gold-coated magnets.
  • the voice recognition system comprises a piezoelectric microphone sensing part, a voice recognition module, preferably Elechouse v3 with 16M-Bit serial flash memory to store the voice audios in memory for later recognition. Also preferably, sending data from this module to the processing center is possible via cable and 3.5 mm stereo plug or wirelessly through the use of the esp8266 or esp32 chip.
  • the system is developed in the format of headphones with the capacity to process voice and send it wirelessly to the central module.
  • LEDs or a 2.44 cm (0.96”) OLED screen with 128 x 64 pixels are incorporated into the headphones.
  • an optical adjustment of the lens system is achieved with actuators, for example, adjusting the vertical position of the lower lens as well as its roll and tilt movement is carried out with stepper motors as motors.
  • stepper motors as motors.
  • the stepper motor models used are 28byj, Y15- 50A, or 4-wire, 2-phase replacements with control electronics developed with UNL2003 driver.
  • the direct current motors with reducers are model N20 and have different speeds according to the location they occupy in the equipment, the latter being controlled by the L293 driver.
  • a worm screw responsible for vertical displacement provides a movement of 3 mm per turn and is made, for example, of bronze.
  • the gimbal pulley on the lower lens allows complete movements of up to 120 degrees in roll and tilt direction. In microscope equipment that allows it due to its morphology, the tilt movement will be carried out from its coupling base through the use of stepper or direct current motors mentioned above.
  • the central processing unit comprises an atmega328p or atmega328au microprocessor equipped with a set of components that allow perfect performance in noisy environments.
  • an esp8266 and esp32 microprocessor is also added for models that require wireless WIFI or wireless Bluetooth connections. Through these wireless or wired connections, this central unit will be able to receive information from the voice recognition module and will be able to send signals to execute actions on the devices. actuators. To cover the need for warnings and indications, LEDs or a 2.44 cm (0.96”) OLED screen with 128 x 64 pixels are incorporated into the central module.
  • the video processing unit comprises an HDMI bridge board and a processing board selected from Rockchip RK3399, ARM-Cortex and STM32, depending on the processing power required in image processing.
  • the unit also allows the connection of FullHD quality video cameras up to 15 MegaPixels in those microscopes that do not have cameras installed.
  • the technique used for processing the autofocus function is pixel-wise gradient analysis.
  • the technique used for field adjustment processing is the contrast analysis of the peripheral black zone to the illuminated zone.
  • the technique used to control the illumination in the eye and avoid light toxicity is the control of image contrast and brightness.
  • the central actuator for peripherals and surgical equipment of the integrated mechatronic system for managing ophthalmological surgeries allows the central unit to execute actions towards peripherals installed digitally, wired or wirelessly through the interactions achieved from the voice command module and image processing.
  • the central module can perform movements on knobs, levers, keys and/or buttons existing in the system during surgeries using the aforementioned actuators or incorporating others of greater power such as linear pistons from 5 V direct current to 12 V direct current, with movement capacity up to 500 kg. It can also interact in a wired manner and send HIGH, LOW digital pulses, analog signals, DAC, pulse width or specific serials to be able to connect to existing electronic equipment under specific protocols.
  • a wireless module is wired or installed to inject digital signals into the controls.
  • the control of diaphragms to reduce light toxicity in the eyes during operations, their aperture is adjusted using the video information processed in the central module and an actuator is installed to perform the action. of the movement.
  • the Headset system is replaced by Airpods, for example the noise-canceling model, and the user's own iPhone.
  • Airpods for example the noise-canceling model
  • This set of Airpods + iPhone will be responsible for receiving voice commands and transmitting them to the central receiving station, replacing the Headset system.
  • the iPhone user For its operation, the iPhone user will download a specific application, developed to be able to interact with this integrated mechatronic system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microscoopes, Condenser (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Sistema integrado, acopladle a un microscopio quirúrgico mediante ¡manes, capaz de interpretar órdenes de voz y procesar imágenes y videos en tiempo real, para luego ejecutar funciones en instrumental quirúrgico, como equipos ópticos y periféricos utilizadles en cirugía general o, en particular, en cirugías oftalmológicas, tales como cirugías de segmento anterior, posterior, plástica ocular, órbita, oncológica y otras. El sistema automatiza la tarea del cirujano y auxiliares en el momento de necesitar variaciones durante la cirugía, como por ejemplo: variaciones de visualizaron en los sistemas de enfoque (autofocus) o ajuste de campo (autofield), o de performance del equipo quirúrgico, tales como intervenciones digitales en los mandos pódales y/o táctiles, intervenciones en perillas y/o palancas existentes para control de iluminaciones, y similares. El sistema comprende acoples rápidos magnéticos, partes sensoras tal como micrófono, central de microprocesado para procesamiento de imágenes y video, y partes actuadoras tales como motores paso a paso, motores de corriente continua con reductores, servomotores, de manera que permite reemplazar maniobras de los cirujanos y asistentes reduciendo necesidad de personal en quirófano para ejecutar acciones, simplificando la tarea, disminuyendo tiempos y desvíos o distracciones de las manipulaciones sensibles que realiza el cirujano.

Description

SISTEMA MECATRÓNICO INTEGRADO PARA ADMINISTRAR CIRUGIAS OFTALMOLÓGICAS BAJO EL CONCEPTO MANOS Y PIES LIBRES MEDIANTE LA EJECUCIÓN DE COMANDOS POR VOZ
MEMORIA DESCRIPTIVA
Campo de la Invención
La presente invención se refiere a un sistema mecatrónico innovador que optimiza el tiempo y reduce movimientos evitables al cirujano durante procedimientos que se realizan mediante microscopios quirúrgicos. Se trata de un sistema accesorio de cualquier microscopio quirúrgico, por lo cual su campo de acción abarca la práctica médica de microcirugía en general y, en particular, el ámbito de la oftalmología. Preferentemente, el sistema, que posee un conjunto de acoples rápidos mediante ¡manes para ensamble rápido en el microscopio incluyendo lentes de acople rápido magnéticos, integra funciones de comando por voz, procesamiento de imágenes de video, automatismos que corrigen foco y/o campo de visualización con posicionamiento de lentes en espacio 3D siguiendo el movimiento del ojo, y puede ejecutar electrónicamente los comandos mecánicos y no mecánicos, por ejemplo digitales, en los dispositivos periféricos utilizados en microcirugía en general y, particularmente, en procedimientos quirúrgicos oftalmológicos. En especial, se puede aplicar durante procedimientos quirúrgicos vítreo-retinales, i.e. cirugía del fondo del ojo, para poder mantener una visualización dinámica y correctamente enfocada durante toda la cirugía, sin necesidad de que el cirujano utilice sus manos y/o sus pies. El cirujano no necesita retirar sus manos de la microcirugía que está realizando para obtener y mantener el enfoque adecuado. Este sistema también es aplicable a otros ámbitos de la microcirugía, donde este accesorio puede sostener y movilizar instrumental con finalidad diagnóstica- terapéutica, mediante comandos de voz.
Antecedentes del Arte Previo
La cirugía en general, y la cirugía oftalmológica en particular, utilizan equipamientos complejos que deben ser configurados en sus funciones mientras la cirugía ocurre, principalmente en los procedimientos que utilizan microscopios quirúrgicos. Esta tarea está a cargo tanto del cirujano como del equipo auxiliar.
En general, las órdenes y acciones para configurar los equipos médicos, en particular los microscopios quirúrgicos, se transmiten en forma mecánica o electromecánica mediante la utilización de un teclado, mediante pantallas táctiles (touchscreen), interruptores, perillas o ruedas de ajuste manuales o periféricos como pedales.
Por lo tanto, es necesario contar con un sistema mecatrónico integrado, acoplable a un microscopio quirúrgico mediante ¡manes, para administrar cirugías en general, y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres mediante la ejecución de comandos por voz, que permita reemplazar maniobras de los cirujanos y asistentes reduciendo necesidad de personal en quirófano para ejecutar acciones, simplificando la tarea, disminuyendo tiempos y desvíos o distracciones de las manipulaciones sensibles que realiza el cirujano.
Síntesis de la Invención
La presente invención consiste en un sistema integrado, que se acopla de forma rápida a un microscopio quirúrgico mediante imanes, que es capaz de interpretar órdenes de voz y procesar imágenes y vídeos en tiempo real, para luego ejecutar funciones en equipos ópticos y periféricos utilizables en una microcirugía en general y en particular en oftalmología, principalmente en procedimientos quirúrgicos del fondo del ojo, como también en otras cirugías oftálmicas del tipo cirugías de segmento anterior, posterior, plástica ocular, órbita, oncológica y otras.
Este sistema, que se puede montar y adaptar a cualquier microscopio quirúrgico mediante acoples magnéticos, facilita la tarea del cirujano y auxiliares en el momento de necesitar variaciones durante la cirugía, como por ejemplo: variaciones de visualización en los sistemas de enfoque (autofocus) o ajuste de campo (autofield), o de performance del equipo quirúrgico, evitando intervenciones tales como la utilización de comandos en los mandos pódales y/o táctiles, intervenciones en perillas o palancas existentes para control de iluminaciones y similares.
Estas acciones son comunes en los equipos de microcirugía tanto general como oftalmológica y al ser operados mediante manos y/o pies por el cirujano y/o por auxiliares sin un sistema como el que aquí se presenta, necesariamente interrumpen las tareas específicas y críticas que deben realizarse en una cirugía.
El sistema de acoples rápidos basados en el concepto de ¡manes tiene por característica un proceso de bañado en oro, que lo hace óptimo para áreas quirúrgicas. El oro se deposita sobre los ¡manes en forma de delgada capa del orden de 5 nanómetros de espesor, lo que permite obtener una biocompatibilidad que el imán tal cual no posee. Se han testeado los ¡manes recubiertos de oro separando y uniendo los ¡manes una gran cantidad de veces, lo que permitió comprobar que no hay un deterioro apreciable de la biocompatibilidad.
Cabe consignar que el oro podría reemplazarse por otros metales preciosos tales como platino, paladio o aleaciones de metales preciosos.
Breve Descripción de las Figuras La Figura 1 representa un esquema completo de las partes que integran el sistema electromecánico denominado “Líber”, que comprende funciones de procesamiento de imágenes y voz, con salidas digitales analógicas y seriales customizadas para ejecutar acciones en sistemas ópticos de visualización y control de periféricos utilizados en este caso en cirugías oftalmológicas. El componente “headset” (que se observa individualmente en la Figura 6) se utiliza interactuando con plataformas Android o iPhone. El sistema de procesamiento de voz se configura desde app mobile. Asimismo, para plataforma iPhone, el headset puede ser reemplazado de forma opcional por un producto ya desarrollado por la firma Apple, denominado “Airpods”; y en este caso, estos dispositivos serán los que interactúen, enviando comandos (información) a la central de procesamiento. De esta forma, cada usuario podrá utilizar su propio dispositivo mobile, iPhone o también Android, en el que deberá cargar una aplicación específica, desarrollada para procesar comandos de voz e interactuar con periféricos, enviando órdenes de ejecución.
La Figura 2 muestra el receptor, unidad central de procesamiento, del sistema, de forma individual. Dicho módulo se alimenta con 5vdc desde powerbanks o con fuente de alimentación de 220 Vac a 5 Vdc. Este módulo posee un microcontrolador con funciones wifi que permite recibir órdenes desde el headset por comando de voz o puede recibir señales ópticas, digitales analógicas o inalámbricas de otros periféricos para luego procesarlas y emitir comandos para ejecutar acciones en el módulo mecatrónico.
La parte A de la imagen es el zócalo magnético de soporte del módulo mecatrónico cuando no es utilizada por el profesional, quedando a la espera en reposo cuidado sin contacto con agentes del exterior. De acuerdo a la posición de instalación de este módulo, la pieza se rota para que el módulo mecatrónico quede suspendido verticalmente cuando no se usa. Las partes del receptor en figura 2 son:
1 - Par de ¡manes de acople rápido entre receptor y el módulo mecatrónico para descanso cuando no es utilizado por el profesional.
2- Caja con el módulo ¡manes.
3- Caja electrónica.
4- Conectores de entrada y salida del módulo mecatrónico, pedal, LCD.
5- Conector alimentación.
6- Base magnética de acople instalación rápida del módulo receptor.
7- Zona de apoyo del módulo mecatrónico.
La Figura 3 muestra un esquema completo del módulo mecatrónico que se acopla al microscopio quirúrgico que permite sostener lentes y realizar movimientos entre ellas. Esos comandos son generados en el módulo receptor de Líber y enviados al módulo mecatrónico. A continuación se realiza la descripción de las piezas:
1 - Cable y terminación de goma.
2- Aro Seeger de perno.
3- Perno de pivote vertical 360°.
4- Inserto tuerca para ajuste de calibración a cada microscopio.
5- Módulo con ¡manes de acople rápido lado Liber.
6- Módulo de acople rápido a microscopios con ¡manes para conexión a Liber.
7- Brazo soporte lente superior.
8- Lente superior.
9- Guía para automatismo.
10- Tornillo sin fin para automatismo. 11 - Guía para automatismo.
12- Bujes para guía y tornillo sin fin.
13- Prisionero.
14- Guía para liberar lente inferior.
15- Mango soporte lente inferior.
16- Soporte lente inferior.
17- Lente inferior.
18- Extensión conexión Líber a lente inferior.
19- Tope de extensión a lente inferior.
20- Mango módulo extensión a lente inferior.
21 - Perilla.
22- Tope guías automatismo.
23- Brazo principal automatismo.
24- Buje unión motor y tornillo sin fin.
25- Prisioneros de guías automatismo.
26- Tapa de motor.
27- Cuerpo principal Líber.
28- Buje guía módulo extensión lente inferior.
La Figura 4 representa la parte superior del sistema mecatrónico, observándose las partes que se detallan a continuación:
1 - Cable y terminación de goma.
2- Inserto tuerca para ajuste de calibración a cada microscopio.
3- Aro Seeger de perno.
4- Perno de pivote vertical 360°.
5- Módulo con ¡manes de acople rápido lado Líber. 6- Par de ¡manes acople rápido lado módulo encastre a microscopios.
7- Caja módulo encastre a microscopios.
8- Lente superior.
9- Anillo soporte lente superior.
10- Tapa de motor.
11 - Prisioneros de guías automatismo.
12- Guía para automatismo.
13- Buje unión motor y tornillo sin fin.
14- Prisioneros de guías automatismo.
15- Guía para automatismo.
16- Tornillo de tapa motor a cuerpo principal.
17- Cuerpo principal y soporte lente superior.
18- Perno de pivot vertical 360°.
En la Figura 5 se observa el sistema mecatrónico con lentes, desde otra posición, destacándose las siguientes partes:
1 - Lente inferior.
2- Soporte lente inferior.
3- Buje de guía módulo extensión a lente inferior.
4- Guía para liberación lente inferior.
5- Prisionero para la guía de liberación de la lente inferior.
6- Brazo principal automatismo.
7- Buje para guía automatismo.
8- Guía para automatismo.
9- Tornillo sin fin para automatismo.
10- Buje de tornillo sin fin. 11 - Guía para automatismo.
12- Buje para guía automatismo.
13- Rodamiento bancada inferior de tornillo sin fin.
14- Tope guías automatismo.
15- Perilla.
16- Mango módulo extensión a lente inferior.
17- Tope de extensión a lente inferior.
18- Extensión conexión Líber a lente inferior.
19- Acople magnético entre soporte lente inferior y el módulo de extensión a lente inferior.
La Figura 6 presenta el sistema mecatrónico con lentes, de tal forma que se puede observar y describir todos los movimientos de las piezas como se enuncia a continuación:
A- Movimiento acople rápido entre módulo magnético de encastre a microscopios y módulo de ¡manes lado Líber.
B- Movimiento lineal en tornillo de ajuste instalación Líber a microscopios.
C- Movimiento de rotación 360° pivote vertical de Líber.
D- Movimiento de rotación en tornillo de ajuste instalación Liber a microscopios
E- Movimiento vertical de automatismo Liber.
F- Movimiento de rotación perilla, sin fin y motor.
G- Movimiento rotación de lente inferior.
H- Movimiento rotación de módulo extensión a lente inferior en la guía de liberación.
I- Movimiento de acople entre lente soporte lente inferior con el módulo de extensión a lente inferior.
J- Movimiento vertical de liberación para no golpear a pacientes. Por último, la Figura 7 representa el “Headset” del sistema, que consta de:
1 - Brazo frontal iluminación.
2- Brazo sujeción frontal.
3- Módulo electrónico.
4- Brazo sujeción principal.
5- Brazo sujeción superior.
6- Brazo sujeción lateral.
7- Brazo sujeción trasero.
8- Brazo a módulo micrófono.
9- Módulo micrófono y avisos lumínicos.
Descripción detallada de la Invención
Con el objeto de salvar los problemas del arte previo, en la presente invención se propone un sistema mecatrónico integrado para administrar procedimientos quirúrgicos en general y cirugías oftalmológicas en particular, bajo el concepto “manos y pies libres”, mediante la ejecución de comandos por voz, que comprende cuatro partes: (a) headset-comando de voz, (b) módulo mecatrónico, (c) unidad receptora-central de procesamiento y (d) analizador de video e imágenes. Las mismas se describen a continuación: a. Headset-comando de voz: es un módulo de procesamiento de voz que comprende una entrada para un sensor de voz, y una memoria integrada para: guardar diferentes comandos, guardar diferentes voces, poder diferenciar usuarios, configurar comandos acordes a cada profesional, ejecutar funciones sin usar manos o pies, y mostrar reportes automáticos en periféricos de visualización o reportes sonoros (de voz o sonido). b. Módulo mecatrónico: un sistema robótico para alinear el eje del complejo óptico/cámara sensando la posición en tiempo real del eje visual por medio de un sistema de seguimiento (tracking), comprendiendo: un brazo robótico automatizado que modifica la posición en el espacio, módulos de lentes y espejos para ajuste de direcciones ópticas en línea con la dirección del eje visual, y un módulo de procesamiento de imagen para controlar el automatismo que mueve microscopio, cámaras o dispositivos con sensores de imagen y/o video; una memoria interna para la grabación secuencial y cronológica de comandos utilizados. c. Unidad receptora-central de procesamiento: salidas programadas para adaptarse a diversos periféricos y equipos electrónicos, dichas salidas seleccionadas de: salidas digitales, on/off, ancho de pulso; salidas analógicas; salidas seriales, o específicas adaptadas para interactuar con productos existentes en el mercado; y comprendiendo un arreglo de software interno adaptable para lograr retroalimentación (feedback) y ejecutar acciones en los software y hardware de los distintos dispositivos comerciales (API); y una alimentación convencional universal. d. El módulo de procesamiento de imagen y vídeo, que comprende una entrada para procesamiento de video, y tiene la función de ejecutar en tiempo real funciones de: enfocar mediante ajustes de sistemas ópticos y/o mecánicos, ajustar el campo mediante sistemas ópticos, mecánicos o digitalmente con funciones a central de comando, y comprendiendo un arreglo de software interno adaptable para lograr retroalimentación (feedback) y ejecutar acciones en los software y hardware de los distintos dispositivos comerciales (API); y una alimentación convencional universal.
En otra forma preferida de realización, el sistema mecatrónico integrado para administrar procedimientos quirúrgicos en general y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres, mediante la ejecución de comandos por voz, es portable, portátil e independiente, acoplándose al microscopio quirúrgico mediante un sistema de ¡manes recubiertos en oro.
Preferentemente, el sistema de reconocimiento de voz comprende una parte sensora de micrófono piezoeléctrico, un módulo de reconocimiento de voz, en forma preferible Elechouse v3 con memoria flash serial de 16M-Bit para guardar en memoria los audios de voz para su posterior reconocimiento. En forma también preferible, el envío de datos desde este módulo a la central de procesamiento es posible mediante cable y ficha plug estéreo de 3,5 mm o inalámbricamente mediante el uso del chip esp8266 o esp32. Cuando se emplea el método inalámbrico, el sistema se desarrolla en formato de auriculares con capacidad para procesar voz y enviarla inalámbricamente al módulo central. Para poder brindar avisos e indicaciones, se incorpora a los auriculares, leds o pantalla oled de 2,44 cm (0,96”) con 128 x 64 pixeles. Preferiblemente, con actuadores se logra un ajuste óptico del sistema de lentes, por ejemplo, ajustando la posición vertical de la lente inferior como así también para su movimiento de balanceo (roll) e inclinación (tilt) se desarrolla con motores paso a paso como motores de corriente continua con reductores. Preferentemente, los modelos utilizados de motores paso a paso son 28byj, Y15- 50A, o reemplazos de 4 cables y 2 fases con electrónica de control desarrollada con driver UNL2003. Los motores de corriente continua con reductores son modelo N20 y tienen distinta velocidad de acuerdo a la ubicación que ocupan en el equipo, estando estos últimos controlados mediante driver L293.
Un tornillo sin fin encargado del desplazamiento vertical otorga un movimiento de 3 mm por vuelta y está fabricado, por ejemplo, en bronce. La polea gimbal del lente inferior permite realizar movimientos completos de hasta 120 grados en sentido roll y tilt. En los equipos de los microscopios que así lo permitan por su morfología, el movimiento de tilt será realizado desde su base de acople mediante el uso de motores paso a paso o de corriente continua mencionados anteriormente.
En forma preferente, la unidad central de procesamiento comprende un microprocesador atmega328p o atmega328au equipado con un conjunto de componentes que permiten el perfecto comportamiento en entornos ruidosos. Asimismo, en forma también preferente, también se agrega el uso de un microprocesador esp8266 y esp32 para los modelos que necesiten de conexiones inalámbricas WIFI o bluetooth sin cables. A través de estas conexiones inalámbricas o cableadas, esta unidad central podrá recibir información desde el módulo de reconocimiento de voz y podrá enviar señales para que se ejecuten acciones en los actuadores. Para cubrir la necesidad de avisos e indicaciones, se incorpora al módulo central leds o una pantalla oled de 2,44 cm (0,96”) con 128 x 64 pixeles.
Preferiblemente, la unidad de procesamiento de video comprende una placa puente HDMI y una placa de procesamiento seleccionada de Rockchip RK3399, ARM-Cortex y STM32, dependiendo de la potencia de procesado requerida en el procesamiento de imágenes. Asimismo, en forma preferente, la unidad también permite la conexión de cámaras de vídeo calidad HD FullHD hasta de 15 MegaPixeles en aquellos microscopios que no dispongan de cámaras instaladas. Preferiblemente, la técnica empleada para el procesamiento de la función autofoco es el análisis de gradiente por pixeles. Del mismo modo, la técnica empleada para el procesamiento de ajuste de campo (autofield) es el análisis de contraste de zona negra periférica a zona iluminada. Por último, la técnica empleada para el control de la iluminación en ojo y evitar toxicidad lumínica es el control de contraste y brillo de imagen.
También en forma preferible, la central actuadora para periféricos y equipos de cirugía del sistema mecatrónico integrado para administrar cirugías oftalmológicas según la presente invención, permite que la unidad central pueda ejecutar acciones hacia periféricos instalados de manera digital, cableada o inalámbrica mediante las interacciones logradas desde el módulo de comando de voz y el procesamiento de imágenes. De esta manera, el módulo central puede realizar movimientos en perillas, palancas, teclas y/o botones existentes en el sistema durante las cirugías utilizando los actuadores antes mencionados o incorporando otros de mayor potencia como los pistones lineales desde 5 V de corriente continua a 12 V de corriente continua, con capacidad de movimiento hasta 500 kg. También puede interactuar de manera cableada y enviar pulsos digitales HIGH, LOW, señales analógicas, DAC, ancho de pulso o seriales específicos para poder conectarse a equipos electrónicos existentes bajo protocolos específicos. Por ejemplo, en una forma preferida de realización, para que la unidad central automatice los mandos pódales, se cablea o se instala un módulo inalámbrico para inyectar señales digitales en los mandos. De esta manera, se elimina el uso de los pies en cirujanos y/o asistentes. En otro ejemplo de todavía otra forma preferida de realización, el control de diafragmas para disminuir toxicidad lumínica en ojos durante operaciones, se ajusta la apertura de los mismos mediante la información de vídeo procesada en el módulo central y se instala un actuador para realizar la acción del movimiento.
En otra forma preferida de realización, el sistema del Headset se reemplaza por Airpods, por ejemplo el modelo con cancelación de ruido, y el iPhone del propio usuario. Este conjunto de Airpods + iPhone será el encargado de recibir los comandos de voz y transmitirlos a la central receptora, en reemplazo del sistema Headset. Para su funcionamiento, el usuario de iPhone descargará una aplicación específica, desarrollada para poder interactuar con el presente sistema mecatrónico integrado.

Claims

REIVINDICACIONES
1. Un sistema mecatrónico integrado, acopladle a un microscopio quirúrgico mediante ¡manes, para administrar cirugías en general, y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres mediante la ejecución de comandos por voz, que está encargado de realizar movimientos de estructuras que pueden sostener diferentes tipos de instrumental quirúrgico, tales como lentes acoplados en aparatos y cámaras de visualización de no contacto, en donde dicho sistema está compuesto por: un módulo de procesamiento central que comprende un microprocesador, un driver para el movimiento de actuadores instalados en el sistema de lentes y módulo de comando de voz capaz de trabajar sin intervención mecánica, en donde el movimiento del sistema que puede sostener lentes para facilitar el enfoque y desenfoque es vertical desde la cámara hacia el paciente y responde mediante los comandos de voz recibidos por el personal médico; y en donde un sistema que puede sostener instrumental quirúrgico tal como lentes con actuadores para ajuste óptico es un sistema integrado por lentes y actuadores para realizar movimientos que mejoran la calidad de imagen en monitores de visualización de cirugía.
2. El sistema mecatrónico integrado, acoplable a un microscopio quirúrgico mediante imanes, para administrar cirugías en general, y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres mediante la ejecución de comandos por voz, que está encargado de realizar movimientos de estructuras que pueden sostener diferentes tipos de instrumental quirúrgico, tales como lentes acoplados en aparatos y cámaras de visualización de no contacto, de la reivindicación 1 , en donde dicho sistema está compuesto además por: auriculares que comprenden micrófono, parlantes, procesador de comando de voz y sistema WIFI para envío de comandos y recepción de señales de la unidad central de procesamiento, o que integra “Airpods + iPhone”, con una aplicación propia desarrollada para poder recibir los comandos de voz, procesarlos y conectarse por sistema WIFI a la unidad central de procesamiento; un módulo de procesamiento central que comprende un microprocesador, sistema WIFI para comunicación con auriculares de los médicos, driver para realizar movimientos en el sistema de lentes, entrada adicional de sensores de fin de carrera o control en tiempo real de consumo PDM (Power Distribution Module)', y una estructura acopladle mediante un sistema de ¡manes recubiertos en oro, que puede sostener/incorporar instrumental quirúrgico, tal como un sistema de lentes con actuadores para ajuste óptico, que comprende una estructura de metal y/o plástico e impresión 3D en resina, actuadores y sensores, con capacidad para realizar movimientos en diferentes direcciones que se puede emplear para llevar a cabo una función de enfoque y movimiento.
3. El sistema mecatrónico integrado, acopladle a un microscopio quirúrgico mediante ¡manes, para administrar cirugías en general, y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres mediante la ejecución de comandos por voz, que está encargado de realizar movimientos de estructuras que pueden sostener diferentes tipos de instrumental quirúrgico, tales como lentes acoplados en aparatos y cámaras de visualización de no contacto, interviniendo en los periféricos y aparatos electrónicos existentes en cirugías para automatizarlos, de la reivindicación 1 , en donde dicho sistema está compuesto además por: auriculares que comprenden micrófono, parlantes, procesador de comando de voz y sistema WIFI para envío de comandos y recepción de señales de la unidad central de procesamiento, o que integra “Airpods + iPhone”, con una aplicación propia desarrollada para poder recibir los comandos de voz, procesarlos y conectarse por sistema WIFI a la unidad central de procesamiento; un módulo de procesamiento central que comprende un microprocesador, sistema WIFI para comunicación con auriculares de los médicos, driver para realizar movimientos en el sistema de lentes, entrada adicional de sensores de fin de carrera o control en tiempo real de consumo PDM (Power Distribution Module), procesamiento de video o imagen para realizar acciones en tiempo real, tales como ajustes ópticos, accionamiento de periféricos y accionamiento de aparatos electrónicos usados en quirófanos; una estructura acoplable mediante un sistema de ¡manes recubiertos en oro, que puede sostener/incorporar instrumental quirúrgico, tal como un sistema de lentes con actuadores para ajuste óptico que comprende una estructura de metal y/o plástico e impresión 3D en resina, actuadores y sensores, con capacidad para realizar movimientos en diferentes direcciones que se puede emplear para llevar a cabo funciones de enfoque y movimiento; y una central actuadora para periféricos y equipos de cirugía que comprende drivers y microprocesadores programados para que el módulo de procesamiento central pueda comandar otros equipos instalados en el quirófano, automatizando de esta forma palancas, pedales, perillas, teclas, o inyectando señales digitales para lograr un efectivo freehand en una operación oftalmológica.
4. El sistema mecatrónico integrado, acopladle a un microscopio quirúrgico mediante ¡manes, para administrar cirugías en general, y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres mediante la ejecución de comandos por voz, que está encargado de realizar movimientos de estructuras que pueden sostener diferentes tipos de instrumental quirúrgico, tales como lentes acoplados en aparatos y cámaras de visualización de no contacto en microscopios de cirugías oftalmológicas, interviniendo en los periféricos y aparatos electrónicos existentes en cirugías para automatizarlos, de la reivindicación 1 , en donde dicho sistema está compuesto además por: un sistema de reconocimiento de voz inalámbrico capaz de manipular multi- periféricos y equipos electrónicos utilizados en salas de cirugías médicas, bajo el concepto de manos libres, que comprende: auriculares que comprenden micrófono, parlantes, procesador de comando de voz y sistema WIFI para enviar comandos y recibir señales de la unidad central de procesamiento, o que integra “Airpods + iPhone”, con una aplicación propia desarrollada para poder recibir los comandos de voz, procesarlos y conectarse por sistema WIFI a la unidad central de procesamiento y un módulo de procesamiento central que comprende un microprocesador, sistema WIFI para comunicación con auriculares de los médicos, driver para realizar movimientos en actuadores externos, entrada adicional de sensores de fin de carrera o control en tiempo real de consumo PDM (Power Distribution Module), procesamiento de video o imágenes para realizar acciones en tiempo real seleccionadas de ajustes ópticos, accionamiento de periféricos y de aparatos electrónicos usados en quirófanos, en donde estas acciones se realizan mediante entradas y salidas programadas para interactuar con el mundo exterior a través de dispositivos electrónicos y mecánicos instalados en salas de quirófano.
5. El sistema mecatrónico integrado, acopladle a un microscopio quirúrgico mediante ¡manes, para administrar cirugías en general, y cirugías oftalmológicas en particular, bajo el concepto manos y pies libres mediante la ejecución de comandos por voz, que está encargado de realizar movimientos de estructuras que pueden sostener diferentes tipos de instrumental quirúrgico, tales como lentes acoplados en aparatos y cámaras de visualización de no contacto en microscopios de cirugías oftalmológicas, interviniendo en los periféricos y aparatos electrónicos existentes en cirugías para automatizarlos, de la reivindicación 1 , en donde dicho sistema está compuesto además por: auriculares que comprenden micrófono, parlantes, pantalla, led de avisos, módulo de reconocimiento de voz y microprocesador con función WIFI para el envío de comando de voz inalámbricamente al módulo de procesamiento central, o que integra “Airpods + iPhone”, con una aplicación propia desarrollada para poder recibir los comandos de voz, procesarlos y conectarse por sistema WIFI a la unidad central de procesamiento; un módulo de procesamiento central con microprocesador con función WIFI para recibir comandos de voz desde los auriculares; drivers para manipular actuadores acoplados a equipos médicos que deben automatizarse; entradas de sensores de final de carrera, posición, potenciómetros, desde el exterior; conectores para vincularse mediante señales digitales a equipos electrónicos diversos para operarlos; un módulo de procesamiento de video con o sin cámara para ajustes en tiempo real seleccionados de autofoco (autofocus), ajuste de campo (autofield) y toxicidad lumínica; un módulo de actuadores para automatizar el ajuste óptico en lentes, ajustes de diafragma y movimientos de perillas o pedales existentes en quirófanos; y función de comando de voz para disminuir movimientos mecánicos de personal médico en cirugías.
PCT/IB2023/000512 2022-09-01 2023-09-01 Sistema mecatrónico integrado para administrar cirugias oftalmológicas bajo el concepto manos y pies libres mediante la ejecución de comandos por voz WO2024047397A2 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263403102P 2022-09-01 2022-09-01
US63/403,102 2022-09-01
ARP20230100649 2023-03-15
ARP230100649A AR128803A1 (es) 2023-03-15 2023-03-15 Accesorio de microscopio quirúrgico articulado-motorizado, guiado por comandos de voz

Publications (2)

Publication Number Publication Date
WO2024047397A2 true WO2024047397A2 (es) 2024-03-07
WO2024047397A3 WO2024047397A3 (es) 2024-04-25

Family

ID=90098855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/000512 WO2024047397A2 (es) 2022-09-01 2023-09-01 Sistema mecatrónico integrado para administrar cirugias oftalmológicas bajo el concepto manos y pies libres mediante la ejecución de comandos por voz

Country Status (1)

Country Link
WO (1) WO2024047397A2 (es)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807989A (en) * 1986-01-14 1989-02-28 Olympus Optical Co., Ltd. Surgical microscope system
US20140222526A1 (en) * 2013-02-07 2014-08-07 Augmedix, Inc. System and method for augmenting healthcare-provider performance
US9844321B1 (en) * 2016-08-04 2017-12-19 Novartis Ag Enhanced ophthalmic surgical experience using a virtual reality head-mounted display
JP2019092844A (ja) * 2017-11-22 2019-06-20 株式会社トプコン 前置レンズ装置及び眼科用顕微鏡
AU2019261643B2 (en) * 2018-04-27 2024-06-27 Alcon Inc. Stereoscopic visualization camera and integrated robotics platform
US11628037B2 (en) * 2020-04-29 2023-04-18 Medtronic Navigation, Inc. System and method for viewing a subject

Also Published As

Publication number Publication date
WO2024047397A3 (es) 2024-04-25

Similar Documents

Publication Publication Date Title
JP7090247B2 (ja) ヘッド装着式可動表示装置を備えた外科手術用立体視覚化システム
KR102265060B1 (ko) 로봇 수술을 위한 몰입형 3차원 디스플레이
AU2003234910B2 (en) Medical cockpit system
US9717401B1 (en) Wireless surgical headlight
JP6396658B2 (ja) 立体視ビデオ画像を観察および追跡するためのシステムおよび方法
WO2020147691A1 (zh) 一种用于手术机器人的成像系统及手术机器人
JP6550885B2 (ja) 表示装置、表示装置の制御方法、及び、プログラム
JP5553854B2 (ja) 観察装置を含む手術アセンブリ、そのような手術アセンブリの使用、および手術施設
WO2017111071A1 (ja) メディカルシステム
US8791995B2 (en) Stereo video microscope system
WO2024047397A2 (es) Sistema mecatrónico integrado para administrar cirugias oftalmológicas bajo el concepto manos y pies libres mediante la ejecución de comandos por voz
CN112585663A (zh) 目镜、眼睛模拟器装置、人体模拟器及训练方法
US20130021034A1 (en) Magnetic resonance device
JP3812847B2 (ja) 撮影用クレーン
JP2013225278A (ja) 耳掛け式視線入力装置
JP2013020202A (ja) 医療用実習システム
JP7023022B1 (ja) 首掛け型装置及び遠隔作業支援システム
EP4032460A1 (en) Medical optical imaging device
US10799114B2 (en) Open retinoscope couplable to a smartphone
CN211460506U (zh) 提升沉浸感的主操作台及手术机器人
JP2012050743A (ja) 遠隔診療システム
WO2020008652A1 (ja) 支持装置及び手術支援システム
JP2007003844A (ja) 遠隔地にある顕微鏡を操作する装置
JP2019051006A (ja) 検眼装置
JP2023551529A (ja) 立体視画像再生のための3d出力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859547

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)