WO2024047396A1 - Matériau actif en oxyde mixte niobium titane substitué par du tungstène - Google Patents

Matériau actif en oxyde mixte niobium titane substitué par du tungstène Download PDF

Info

Publication number
WO2024047396A1
WO2024047396A1 PCT/IB2023/000493 IB2023000493W WO2024047396A1 WO 2024047396 A1 WO2024047396 A1 WO 2024047396A1 IB 2023000493 W IB2023000493 W IB 2023000493W WO 2024047396 A1 WO2024047396 A1 WO 2024047396A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
average diameter
material according
particles
electrode
Prior art date
Application number
PCT/IB2023/000493
Other languages
English (en)
Inventor
Jean-François COLIN
Sébastien MARTINET
Filippo Farina
Benjamin MERCIER-GUYON
Original Assignee
Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique et aux Energies Alternatives filed Critical Commissariat à l'Energie Atomique et aux Energies Alternatives
Publication of WO2024047396A1 publication Critical patent/WO2024047396A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • TITLE Active material in mixed niobium titanium oxide substituted with tungsten
  • the present invention relates to the field of active materials intended to form an electrode for lithium accumulators.
  • the invention relates to an active material formed of particles of mixed oxide of niobium and titanium, part of the niobium of which is substituted by tungsten and titanium.
  • the invention proposes a process for manufacturing such an active material.
  • the invention proposes an electrode formed from said active material and an electrochemical generator, in particular of the battery type, which comprises a negative electrode in said active material.
  • Lithium batteries are increasingly used as stand-alone energy sources, particularly in portable equipment, where they have replaced nickel-cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) batteries and now also for electric mobility.
  • Ni-Cd nickel-cadmium
  • Ni-MH nickel-metal hydride
  • This development is explained by the continuous improvement in the performance of lithium accumulators associated with a drastic reduction in their production costs, thus giving them mass and volume energy densities significantly higher than those offered by the Ni-Cd and Ni-MH.
  • the first Li-ion accumulators had an energy density of around 85 Wh/kg, more than 200 Wh/kg can now be obtained (energy density relative to the mass of the complete Li-ion cell).
  • Ni-MH accumulators peak at 100-1 10 Wh/kg and Ni-Cd accumulators have an energy density of around 50-70 Wh/kg, this, associated with the drop in costs, explains that lithium batteries are now the most sold.
  • New generations of more efficient lithium batteries are being developed for ever more diversified applications (hybrid or all-electric automobiles, photovoltaic cell energy storage, etc.).
  • power demands per unit of mass and/or volume
  • new, even more efficient Li-ion battery electrode materials are essential.
  • the active electrode compounds used in commercial accumulators are, for the positive electrode, lamellar compounds such as LiCoC>2, LiNiOa and mixed Li(Ni, Co, Mn, AI)C>2 OR structural compounds spinel with a composition close to LiMn2 ⁇ 4.
  • the negative electrode is generally carbon (graphite, coke, etc.) or possibly spinel Li4TisOi2 or a metal forming an alloy with lithium (Sn, Si, etc.).
  • the theoretical and practical specific capacities of the cited negative electrode compounds are approximately 370 mAh/g for graphite and 170 mAh/g for titanium oxide, respectively.
  • the Li4TisOi 2 compound finds its place on the market thanks to its high work potential, around 1.6V vs Li+/Li, which makes it very safe and thanks to very good cyclability at high speeds, which makes it the negative electrode material of choice for power applications.
  • the most interesting compounds are the oxides TiNb2O7 and Ti2NbioC>29. They have very high theoretical capacities (388mAh/g and 396mAh/g, respectively) compared to Li4TisOi2 (175mAh/g) and present a working potential close to that of Li 4 Ti 5 0i2, which allows them to retain the advantages of the latter in terms of security. They are therefore very interesting candidates with a view to replacing it for applications requiring more energy.
  • the TiNb2 ⁇ 7 material more attractive in terms of cost due to the higher Ti/Nb ratio than in the Ti2NbioC>29 material, presents limitations in terms of power performance and cyclability.
  • the present invention aims to remedy the drawbacks mentioned above.
  • the present invention proposes an active material intended for the manufacture of an electrode, the active material comprising a monoclinic mixed oxide of substituted niobium titanium, capable of allowing the insertion and extraction of Li-i- ions, the active material having the following crude formula (I): Ti(1 + x)Nb(2-2x)WxO7 (I) in which the value x is chosen in the range from 0.05 to 0.2.
  • This active material requires the substitution of part of the niobium in the mixed oxide of TiNb2O7 with tungsten and titanium while preserving the initial crystal structure. As will be seen later in Figure 2, only the volume of the mesh increases with the tungsten content. The niobium content decreases at the same time as the tungsten content increases as well as the titanium content to maintain the initial stoichiometry.
  • this new active material offers stabilization of cycling performance over time while maintaining a high work potential and limiting performance losses during slow initial cycling.
  • the active material consists of a single monoclinic mixed oxide of substituted niobium titanium of the following crude formula (I):
  • titanium has an oxidation degree +IV and niobium has an oxidation degree +V.
  • the oxidation states of the metals in Ti(i +X )Nb(2-2x)WxO7 are identical to those of the unsubstituted compound TiNb2O7. This is advantageous because a reduction in the degrees of oxidation, from Ti4+ to Ti3+ or from Nb5+ to Nb4+, would de facto limit the number of electrons available during the first lithiation (reduction of metals) and therefore reduce the capacity of the material.
  • the active material may comprise particles having an average diameter Di greater than 100 nm and less than or equal to 0.5 mm. These average diameter Di values meet the density/compactness needs of the active material to provide a satisfactory energy density.
  • the active material consists solely of said particles.
  • the active material consists of a mixed oxide of Ti(1 +x)Nb(2-2x)WxO7.
  • the active material is intended for the manufacture of an electrode for Li-ion accumulators.
  • the particles can be divided into three populations of average diameters Di, a first population having an average diameter D1 with 0.1 pm ⁇ D1 ⁇ 0.8 pm, a second population having an average diameter D2 with 1 pm ⁇ D2 ⁇ 10 pm, and a third population presenting an average diameter D3 with 10 pm ⁇ D3 ⁇ 0.5 mm.
  • the particles are divided into two populations of average diameters Di, a first population having an average diameter D1 with D1 ⁇ 0.8 pm, and a second population having an average diameter D2 with D2 > 1 pm.
  • the first population of particles has an average diameter D1 with 0.1 micrometer ⁇ D1 ⁇ 0.8 pm
  • the second population of particles has an average diameter D2 with 1 pm ⁇ D2 ⁇ 0.5 mm.
  • the invention proposes a process for manufacturing the active material as previously described, which comprises solid-state synthesis.
  • the synthesis by solid route is intended to lead to particles of active material.
  • the synthesis by solid route is carried out from precursor reagents, in particular solid precursor reagents.
  • the precursor reagents are TiOa, Nb20s and WO3.
  • the precursor reagents are used in stoichiometric proportions.
  • the process comprises the steps of:
  • the process comprises after step b) carrying out a step c) of low energy grinding of the active material so as to reduce any agglomerates and obtain a homogeneous powder having particles of an average diameter Di greater than 100 nm and less than or equal to 0.5 mm.
  • low energy grinding is manual grinding, particularly using a mortar and pestle.
  • step a) of grinding the precursor reagents can be carried out at a speed of approximately 400 rpm; it includes in particular an alternation of grinding sequences and rest sequences.
  • solid-state synthesis leads to particles without agglomerate, for example having a diameter greater than 100 nm.
  • the invention proposes an electrode comprising the active material as previously described.
  • the invention proposes an electrochemical generator, in particular of the battery type, which comprises a positive electrode and a negative electrode comprising the active material as previously described and a non-aqueous electrolyte comprising lithium.
  • the active materials proposed by the invention can be adapted to high power requirements (rapid charge/rapid discharge, associated with very good cyclability), and maintaining an energy density at a high level (>100Wh/kg).
  • FIG. 1 represents a laser particle size analysis of different compositions of active materials according to one embodiment of the invention.
  • FIG. 2 represents an X-ray diffraction (XRD) pattern of the different compositions of active materials.
  • FIG. 3 represents a graph illustrating the evolution of the charged capacity as a function of the number of cycles of button cells obtained from the different compositions of active materials.
  • FIG. 4 represents a graph illustrating the specific capacity under load as a function of the number of cycles.
  • the present invention proposes an active material intended for the manufacture of electrodes for lithium accumulators based on a mixed niobium titanium oxide substituted by tungsten:
  • This active material is obtained by solid-state synthesis from a mixture of stoichiometric proportions of powders of precursor reagents comprising TiC>2, Nb 2 O 5 and WO3 (refer to Table 1).
  • TiO 2 is for example obtained from the company Huntsmann (TiO 2 anatase purity 99.0%)
  • Nb20s is obtained from the company Sigma Aldrich (purity 99.9%)
  • WO3 is obtained from the company Sigma Aldrich (purity 99.9%).
  • the initial oxidation states of Ti +IV and Niobium +V are preserved during the reaction.
  • the process for manufacturing the active material comprises a step a) of grinding the precursor reagents present in powder form in a planetary ball mill (PM 100 CM, Retsch - 32 g of agate balls in a bowl also made of agate for a mass of precursor reagents of approximately 7g) with a speed of 400 rpm for 8 hours. Grinding is not carried out continuously but by repetition of grinding sequence and rest sequence lasting 5 min each.
  • a planetary ball mill PM 100 CM, Retsch - 32 g of agate balls in a bowl also made of agate for a mass of precursor reagents of approximately 7g
  • the perfectly homogeneous powdery mixture is placed in three alumina crucibles (diameter of 3 cm each) then placed in a muffle furnace (Carbolite, Model CWF 1200) until reaching a temperature of approximately 1,100°C for 16 hours for example (step b). At the end of the heat treatment, the active material is obtained in particulate form.
  • the recovered active material is manually ground in an agate mortar. Five minutes of grinding are enough to obtain a homogeneous powder in the form of particles having an average diameter Di greater than 100 nm and less than or equal to 0.5 mm. As shown in Figure 1 illustrating the laser particle size distribution diagram (left column), the average diameter Di is divided into three populations similar to those of the mixed niobium titanium oxide devoid of tungsten (device used MALVERN MASTERSIZER).
  • These three populations include a first population having an average diameter D1 with 0.4 micrometer ⁇ D1 ⁇ 0.8 micrometer, a second population having an average diameter D2 with 1 micrometer ⁇ D2 ⁇ 10 micrometers, and a third population having an average diameter D3 with 10 micrometers ⁇ D3 ⁇ 0.5 mm.
  • the particles are divided into two populations of average diameters Di, a first population having an average diameter D1 with D1 ⁇ 0.8 pm, and a second population having an average diameter D2 with D2 > 1 pm.
  • the particles of active material subjected to ultrasonic treatment lead to the same particle size distribution, which shows that the particles obtained at the end of step c) are devoid of agglomerate.
  • an X-ray diffraction analysis of the particles obtained at the end of step c) makes it possible to verify that the crystal structure of Ti2NbsO? is identical to that of the active material Ti(i +X )Nb(2-2x)WxO7 for all W substitution rates (x from 0.05 to 0.2).
  • Electrodes and button cells were designed using the traditional method in order to observe the properties obtained by the active material as a function of different values of x and Ti2NbsC>7.
  • the active material Ti(i+x)Nb(2-2x)WxC>7 (with x between 0.05 and 0.25) and a carbon additive (Carbon Black SUPER C65 from TIMCAL) are mixed and crushed manually in a agate mortar in cyclohexane (Purity >99.5%, Merck ENSURE) for 5 minutes.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the ink obtained is then coated on an aluminum strip, using a doctor blade type with a thickness of 100 ⁇ m. After 24 hours of drying at 55°C, electrodes with a diameter of 14 mm are cut and passed under a 10-ton press.
  • the electrodes are then assembled in a glove box to form CR2032 type button cells.
  • the counter electrode is Lithium metal
  • one of the separators is made of polypropylene felt (Viledon, Freudenberg) and the other separator is made of polypropylene (CG2500, Celgard).
  • the electrolyte consists of a mixture of ethylene carbonate (EC) / propylene carbonate (PC) / dimethyl carbonate (DMC) (1:1:3 vol) with lithium hexafluorophosphate (LiPF6) (1 M) (LP100, UBE Industries).
  • the right part of Figure 3 illustrates the evolution of the Lithiation capacity of the same compounds with cycling at the C/10 regime from the 31st cycle.
  • the power handling (on the left respectively with cycling at C/10; C, 2C, 3C, 5C and 10C for ease of comparison) is 120mAh/g at 10C. Although correct, this hold remains lower than the optimum obtained which is greater than 130.
  • the cycling resistance is poor: after 37 cycles, the specific capacity is 207 mAh/g (right part of Figure 4), which is lower than the values obtained at 40 cycles for batteries in which x is between 0.10 and 0.20 (more than 230 mAh/g - figure 3).
  • An estimate made for cycle no. 60 indicates a deterioration of 24.8%.
  • Table 3 Loss of performance compared to initial capacity at C/10 (cycle X. Vs cycle 31)
  • the present invention proposes, according to one embodiment, an active material consisting of a mixed oxide of Ti(i +X )Nb(2-2x)WxO7 intended for the manufacture of an electrode for Li- accumulators. ion.
  • the process for manufacturing the material includes solid-state synthesis, leading for example to particles without agglomerate, which may have a diameter greater than 100 nm, which may make it possible to partially meet the density/compactness requirements necessary to achieve densities satisfactory energy for the intended objective.
  • the active materials proposed by the invention are thus adapted to the needs for high power (rapid charge/rapid discharge, associated with very good cyclability), and maintaining an energy density at a high level (>100Wh/kg).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Materiau actif destiné à la fabrication d'électrode, le materiau actif comprenant un oxyde mixte monoclinique de niobium titane substitue, capable de permettre I'insertion et I'extraction d'ions Li+, le materiau actif presentant la formule brute (I) suivante : Ti(1 +x)Nb(2-2x)WxO7 (I) dans laquelle x est choisi dans la plage allant de 0, 1 a 0,2.

Description

DESCRIPTION
TITRE : Matériau actif en oxyde mixte niobium titane substitué par du tungstène
La présente invention se rapporte au domaine des matériaux actifs destinés à former une électrode pour des accumulateurs au lithium. En particulier, l’invention concerne un matériau actif formé de particules d’oxyde mixte de niobium et titane dont une partie du niobium est substituée par du tungstène et du titane. Selon un deuxième aspect, l’invention propose un procédé de fabrication d’un tel matériau actif. Selon d’autres aspects, l’invention propose une électrode formée à partir dudit matériau actif et un générateur électrochimique, en particulier de type batterie, lequel comprend une électrode négative dans ledit matériau actif.
Les accumulateurs au lithium sont de plus en plus utilisés comme sources d’énergie autonome, en particulier, dans les équipements portables, où ils ont remplacé les accumulateurs nickel-cadmium (Ni-Cd) et nickel-hydrure métallique (Ni-MH) et maintenant également pour la mobilité électrique. Cette évolution s’explique par l’amélioration continue des performances des accumulateurs au lithium associée à une réduction drastique de leur coût de production, leur conférant ainsi des densités d’énergie massiques et volumiques nettement supérieures à celles proposées par les filières Ni-Cd et Ni-MH. Alors que les premiers accumulateurs Li-ion possédaient une densité d’énergie d’environ 85 Wh/kg, plus de 200 Wh/kg peuvent désormais être obtenus (densité d’énergie rapportée à la masse de la cellule Li-ion complète). A titre de comparaison, les accumulateurs Ni-MH plafonnent à 100-1 10 Wh/kg et les accumulateurs Ni-Cd ont une densité d’énergie de l’ordre de 50-70 Wh/kg, ceci, associé à la baisse des coûts, explique que les accumulateurs au lithium sont maintenant les plus vendus. De nouvelles générations d'accumulateurs au lithium plus performantes sont en voie de développement pour des applications toujours plus diversifiées (automobile hybride ou tout électrique, stockage de l'énergie de cellules photovoltaïques, ...). Afin de répondre aux demandes en énergie et parfois en puissance toujours plus importantes (par unité de masse et/ou de volume), de nouveaux matériaux d'électrodes d'accumulateurs Li-ion encore plus performants sont indispensables.
Les composés actifs d’électrodes utilisés dans les accumulateurs commerciaux sont, pour l’électrode positive, des composés lamellaires tels que LiCoC>2, LiNiOa et les mixtes Li(Ni, Co, Mn, AI)C>2 OU des composés de structure spinel le de composition proche de LiMn2Û4. L’électrode négative est généralement du carbone (graphite, coke,...) ou éventuellement le spinelle Li4TisOi2 ou un métal formant un alliage avec le lithium (Sn, Si, ...). Les capacités spécifiques théoriques et pratiques des composés d’électrode négative cités sont respectivement d'environ 370 mAh/g pour le graphite et 170 mAh/g pour l’oxyde de titane.
Malgré sa faible capacité, par comparaison avec le graphite, le composé Li4TisOi 2 trouve sa place sur le marché grâce à son potentiel de travail élevé, environ 1 ,6V vs Li+/Li, qui le rend très sûr et grâce à une très bonne cyclabilité à haut régime, qui en fait le matériau d’électrode négative de choix pour des applications en puissance.
De nombreuses études ont été effectuées pour trouver un composé ayant les mêmes avantages que Li4TisOi2 tant au niveau de la puissance que de la sécurité et ayant une capacité spécifique plus élevée. C’est ainsi que les oxydes de niobium et les oxydes mixtes Ti- Nb ont été envisagés, le niobium ayant un potentiel de travail proche de celui du titane et permettant d’échanger 2 électrons par atome de métal (Nb5+ / Nb3+).
Les composés les plus intéressants sont les oxydes TiNb2Û7 et Ti2NbioC>29. Ils possèdent des capacités théoriques très élevées (388mAh/g et 396mAh/g, respectivement) comparativement à Li4TisOi2 (175mAh/g) et présentent un potentiel de travail proche de celui de Li4Ti50i2, ce qui leur permet de conserver les avantages de ce dernier en matière de sécurité. Ils sont donc des candidats très intéressants en vue du remplacement de celui-ci pour des applications requérant plus d’énergie.
Toutefois, le matériau TiNb2Û7, plus intéressant en terme de coût en raison du ratio plus élevé Ti/Nb que dans le matériau Ti2NbioC>29, présente des limitations en terme de performances en puissance et en cyclabilité.
La présente invention vise à remédier aux inconvénients mentionnés ci-dessus. A cet effet, la présente invention propose un matériau actif destiné à la fabrication d’électrode, le matériau actif comprenant un oxyde mixte monoclinique de niobium titane substitué, capable de permettre l’insertion et l’extraction d’ions Li-i-, le matériau actif présentant la formule brute (I) suivante : Ti(1 +x)Nb(2-2x)WxO7 (I) dans laquelle la valeur x est choisie dans la plage allant de 0,05 à 0,2.
Ce matériau actif requiert la susbstitution d’une partie du niobium de l’oxyde mixte de TiNb2Û7par du tungstène et du titane tout en préservant la structure cristalline initiale. Comme on le verra par la suite à la figure 2, seul le volume de la maille augmente avec la teneur en tunsgtène. La teneur en niobium diminue en même temps que la teneur en tungstène augmente ainsi que la teneur en titane pour conserver la stoechiométrie initiale.
Ainsi optimisé, ce nouveau matériau actif offre une stabilisation des performances en cyclage au cours du temps tout en conservant un potentiel de travail élevé et une limitation des pertes performances lors du cyclage initial lent.
Selon une disposition, le matériau actif est constituté d’un unique oxyde mixte monoclinique de niobium titane substitué de la formule brute (I) suivante :
Ti(1 +x)Nb(2-2x)WxO7 (I) dans laquelle la valeur x est choisie dans la plage allant de 0,05 à 0,2.
Selon une possibilité, la valeur x est choisie dans la plage allant de 0,10 à 0,2, notamment dans la plage allant de 0,12 à 0,18, et par exemple x = 0,15. Dans le matériau actif selon l’invention, le titane présente un degré d’oxydation + IV et le niobium présente un degré d’oxydation +V. Les degrés d’oxydation des métaux dans Ti(i+X)Nb(2-2x)WxO7 sont identiques à ceux du composé non substitué TiNb2Û7. Ceci est avantageux car une réduction des degrés d’oxydation, de Ti4+ à Ti3+ ou de Nb5+ à Nb4+ limiterait de facto le nombre d’électrons disponibles lors de la première lithiation (réduction des métaux) et donc réduirait la capacité du matériau.
De manière concrète, le matériau actif peut comprendre des particules présentant un diamètre moyen Di supérieur à 100 nm et inférieur ou égal à 0,5 mm. Ces valeurs de diamètre moyen Di répondent aux besoins de densité/compacité du matériau actif pour fournir une densité d’énergie satisfaisante. Les particules présentant une forme globale sphérique un peu allongée et dont la surface possède des contours comportant une certaine irrégularité, le diamètre moyen Di des particules correspond à la valeur moyenne des trois dimensions mesurées par granulométrie laser.
Selon une disposition, le matériau actif est uniquement constitué desdites particules.
Selon une possibilité, le matériau actif est constitué d’un oxyde mixte de Ti(1 +x)Nb(2-2x)WxO7.
Selon une disposition, le matériau actif est destiné à la fabrication d’une électrode pour des accumulateurs à Li-ion. L’utilisation de ce matériau actif permet d’atteindre une plus grande stabilité de cyclage et de limiter la perte de performance observée avec x = 0.
En particulier, les particules peuvent se partagent en trois populations de diamètres moyens Di, une première population présentant un diamètre moyen D1 avec 0, 1 pm < D1 < 0,8 pm, une deuxième population présentant un diamètre moyen D2 avec 1 pm < D2 < 10 pm, et une troisième population présentant un diamètre moyen D3 avec 10 pm < D3 < 0,5 mm.
Selon un autre mode de réalisation, les particules se partagent en deux populations de diamètres moyens Di, une première population présentant un diamètre moyen D1 avec D1 < 0,8 pm, et une deuxième population présentant un diamètre moyen D2 avec D2 > 1 pm.
Selon une disposition, la première population de particules présente un diamètre moyen D1 avec 0,1 micromètre < D1 < 0,8 pm
Selon une autre possibilité, la deuxième population de particules présente un diamètre moyen D2 avec 1 pm < D2 < 0,5 mm.
Selon un second aspect, l’invention propose un procédé de fabrication du matériau actif tel que précédemment décrit, lequel comprend une synthèse par voie solide.
Selon une disposition, la synthèse par voie solide est prévue pour conduire à des particules de matériau actif. Selon une possibilité, la synthèse par voie solide est réalisée à partir de réactifs précurseurs, notamment des réactifs précurseurs solides.
De manière concrète, les réactifs précurseurs sont du TiOa, du Nb20s et du WO3.
Selon une caractéristique, les réactifs précurseurs sont utilisés dans des proportions stoechiométriques.
Selon une disposition, le procédé comprend les étapes de :
- a) broyage des réactifs précurseurs sous forme de poudre dans un broyeur planétaire à billes de sorte à obtenir un mélange poudreux homogène,
■ b) calcination par application d’un traitement thermique à une température comprise entre 900°C et 1200°C de sorte à obtenir le matériau actif.
Selon une disposition, le procédé comprend après l’étape b) la réalisation d’une étape c) de broyage à basse énergie du matériau actif de sorte à réduire les éventuels agglomérats et obtenir une poudre homogène présentant des particules d’un diamètre moyen Di supérieur à 100 nm et inférieur ou égal à 0,5 mm.
Selon une possibilité, le broyage à basse énergie est un broyage manuel, notamment à l’aide d’un mortier et d’un pilon.
De manière concrète, l’étape a) de broyage des réactifs précurseurs peut-être réalisée à une vitesse d’environ 400 tour/min, elle comprend notamment une alternance de séquences de broyage et de séquences de repos.
Selon un mode de réalisation, la synthèse par voie solide conduit à des particules sans agglomérat, présentant par exemple un diamètre supérieur à 100 nm.
Ceci permet de répondre en partie aux besoins en densité/compacité nécessaires pour atteindre des densités d’énergie satisfaisantes pour l’objectif visé.
Selon un autre aspect, l’invention propose une électrode comprenant le matériau actif tel que précédemment décrit.
Selon encore un autre aspect, l’invention propose un générateur électrochimique, en particulier de type batterie, lequel comprend une électrode positive et une électrode négative comprenant le matériau actif tel que précédemment décrit et un électrolyte non aqueux comprenant du lithium.
Les matériaux actifs proposés par l’invention peuvent être adaptés aux besoins en forte puissance (charge rapide/décharge rapide, associés à une très bonne cyclabilité), et maintenant une densité d’énergie à un niveau élevé (>100Wh/kg).
D’autres caractéristiques et avantages apparaitront à la lecture de la description détaillée ci-après, d’un exemple de mise en œuvre non limitatif, faite en référence aux figures annexées dans lesquelles :
[Fig. 1 ] représente une analyse granulométrique laser de différentes compositions de matériaux actifs selon un mode de réalisation de l’invention. [Fig. 2] représente un diagramme de diffraction par rayons X (DRX) des différentes compositions de matériaux actifs.
[Fig. 3] représente un graphique illustrant l’évolution de la capacité chargée en fonction du nombre de cycles de piles bouton obtenues à partir des différentes compositions de matériaux actifs.
[Fig. 4] représente un graphique illustrant la capacité spécifique en charge en fonction du nombre de cycle.
En référence à la formule brute (I) illustrée ci-dessous, la présente invention propose un matériau actif destiné à la fabrication d’électrode pour des accumulateurs au lithium à base d’un oxyde mixte niobium titane substitué par du tungstène :
Ti(1+x)Nb(2-2x)WxO7 (I) dans laquelle la valeur x est choisie dans la plage allant de 0,05 à 0,25.
Ce matériau actif est obtenu par une synthèse par voie solide à partir d’un mélange de proportions stoechiométriques de poudres des réactifs précurseurs comprenant du TiC>2, du Nb2O5 et du WO3 (se rapporter au Tableau 1 ). Le TiO2 est par exemple obtenu auprès de la société Huntsmann (TiO2 anatase pureté 99,0%), le Nb20s est obtenu auprès de la société Sigma Aldrich (pureté 99,9 %) et le WO3 est obtenu auprès de la société Sigma Aldrich (pureté 99,9 %). Les degrés d’oxydation initiaux du Ti +IV et du Niobium +V sont conservés pendant la réaction.
Tableau 1 : Masses des réactifs précurseurs utilisés pour la synthèse de Ti<i+x> Nb(2-2x)WxO?
Figure imgf000007_0001
Le procédé de fabrication du matériau actif comprend une étape a) de broyage des réactifs précurseurs présents sous forme de poudre dans un broyeur planétaire à billes (PM 100 CM, Retsch - 32 g de billes en agate dans un bol également en agate pour une masse de réactifs précurseurs d’environ 7g) avec une vitesse de 400 tours/ min pendant 8 heures. Le broyage n’est pas effectué de manière continue mais par répétition de séquence de broyage et de séquence de repos d’une durée de 5 min chacune.
Une fois le mélange poudreux parfaitement homogène obtenu, il est placé dans trois creusets en alumine (diamètre de 3 cm chacun) puis mis en four à moufle (Carbolite, Modèle CWF 1200) jusqu’à atteindre une température d’environ 1 100°C pendant 16h par exemple (étape b). A l’issu du traitement thermique, le matériau actif est obtenu sous forme particulaire.
Le matériau actif récupéré est broyé manuellement dans un mortier en agate. Cinq minutes de broyage suffisent pour obtenir une poudre homogène sous forme de particules présentant un diamètre moyen Di supérieur à 100 nm et inférieur ou égal à 0,5 mm. Comme représenté sur la figure 1 illustrant le diagramme de répartition granulométrique laser (colonne gauche), le diamètre moyen Di se partage en trois populations similaires à celles de l’oxyde mixte niobium titane dépourvu de tungstène (appareil utilisé MALVERN MASTERSIZER). Ces trois populations comprennent une première population présentant un diamètre moyen D1 avec 0,4 micromètre < D1 < 0,8 micromètre, une deuxième population présentant un diamètre moyen D2 avec 1 micromètre < D2 < 10 micromètres, et une troisième population présentant un diamètre moyen D3 avec 10 micromètres < D3 < 0,5 mm.
Selon une possibilité, les particules se partagent en deux populations de diamètres moyens Di, une première population présentant un diamètre moyen D1 avec D1 < 0,8 pm, et une deuxième population présentant un diamètre moyen D2 avec D2 > 1 pm.
Egalement illustré à la figure 1 (colonne droite), les particules de matériau actif soumises à un traitement aux ultrasons conduisent à la même distribution granulométrique, ce qui montre que les particules obtenues à l’issue de l’étape c) sont dépourvues d’agglomérat.
Illustrée à la figure 2, une analyse par diffraction aux rayons X des particules obtenues à l’issue de l’étape c) permet de vérifier que la structure cristalline du Ti2NbsO? est identique à celle du matériau actif Ti(i+X)Nb(2-2x)WxO7 pour tous les taux de substitution en W (x de 0,05 à 0,2). La même analyse effectuée sur l’oxyde mixte de niobium et titane substitué avec la valeur x=0,25 (non illustrée) montre que des impuretés sont présentes au sein du matériau actif, notamment du TiO2. Il semblerait que ce degré de dopage en W marque les limites de l’intégration de tungstène dans la structure de l’oxyde mixte.
Des électrodes et des piles bouton ont été conçues par voie traditionnelle afin d’observer les propriétés obtenues par le matériau actif en fonction des différentes valeurs de x et le Ti2NbsC>7.
Le matériau actif en Ti(i+x)Nb(2-2x)WxC>7 (avec x entre 0,05 et 0,25) et un additif carboné (Carbon Black SUPER C65 de TIMCAL) sont mélangés et broyés manuellement dans un mortier en agate dans du cyclohexane (Pureté >99,5%, Merck ENSURE) pendant 5 minutes.
Après évaporation totale du solvant, une solution de polyfluorure de vinylidène (PVDF, Solef 5130, Solvay) à 8% massique dans de la N-méthyl-2-pyrrolidone (NMP, Pureté >99%, Merck) est ajoutée sur le mélange broyé jusqu’à atteindre une formulation massique de 80% de matériau actif, de 10% de conducteur électronique et de 10% de liant pour un extrait sec de 30%. Le tableau 2 illustre les proportions des réactifs utilisés. Tableau 2 : Masses typiques pour la préparation des encres de Ti(i+x)Nb(2-2x)WxO7
Figure imgf000009_0001
L’encre obtenue est ensuite enduite sur un feuillard d’aluminium, à l’aide d’une racle de type doctor blade avec une épaisseur de 100 pm. Après 24 heures de séchage à 55 °C, des électrodes d’un diamètre 14 mm sont découpées et passées sous une presse à 10 tonnes.
Les électrodes sont ensuite assemblées en boite à gants pour former des piles bouton de type CR2032. La contre électrode est du Lithium métal, l’un des séparateurs est en feutre de polypropylène (Viledon, Freudenberg) et l’autre séparateur en polypropylene (CG2500, Celgard). L’électrolyte est constitué d’un mélange carbonate d’éthylène (EC) /carbonate de propylène (PC) / carbonate de diméthyle (DMC) (1 :1 :3 vol) avec de l’hexafluorophosphate de lithium (LiPF6) (1 M) (LP100, UBE Industries).
Les performances des piles bouton obtenues sont rassemblées à la figure 3 qui illustre, en partie gauche, l’évolution de la capacité en Lithiation des composés Ti(i+X)Nb(2-2x)WxO7 avec x = 0; 0,05; 0,1 ; 0,15 et 0,2 en fonction du nombre de cycles et à différents régimes (respectivement cyclage à C/10, C, 2C, 3C, 5C et 10C). La partie droite de la figure 3 illustre l’évolution de la capacité en Lithiation des mêmes composés avec un cyclage au régime de C/10 à partir du 31 e cycle.
Comme on peut l’observer, les performances les moins bonnes sont obtenues lorsque l’électrode est du TiNb2C>7 pour lequel la perte est rapidement très importante. La stabilité en cyclage et les pertes en performances au cours des cycles est meilleure avec le matériau actif substitué Ti(i+x)Nb(2-2x)WxO7. Egalement illustré au tableau 3 qui rapporte les valeurs de dégradation à C/10 pour chacun des matériaux actifs, les meilleurs résultats sont obtenus avec x = 0,1 et x = 0,15. Les pertes de performances varient du simple au double après 100 cycles entre un matériau actif dans lequel x = 0 (perte d’environ 30%) et un matériau actif dans lequel x = 0.1 et 0.15 (perte respectivement de 16,7 et 14,1 %). L’amélioration des capacités en lithiation est également la meilleure pour x = 0,1 et 0,15.
La figure 4 illustre les performances d’une pile bouton obtenue avec x = 0.25, soit la stabilité en cyclage et les pertes de performance au cours des cycles pour x = 0.25 (en abscisse le nombre de cycle et en ordonnée les valeurs de capacité spécifique en mAh/g). Au jour du depot de la présente demande, les analyses ne sont pas encore terminées. Néanmoins, il est déjà possible de constater que la capacité initiale à C/10 de la pile bouton pour x = 0.25 est inférieure à celles obtenues avec des valeurs de x compris entre 0,10 et 0.20.
La tenue en puissance (à gauche respectivement avec des cyclages à C/10 ; C, 2C, 3C, 5C et 10C pour faciliter la comparaison) est de 120mAh/g à 10C. Bien que correcte, cette tenue reste inférieure à l’optimum obtenu qui est supérieur à 130.
Enfin, la tenue en cyclage est mauvaise : après 37 cycles, la capacité spécifique est de 207 mAh/g (partie droite de la figure 4), ce qui est inférieur aux valeurs obtenues à 40 cycles pour des piles dans lesquelles x est compris entre 0,10 et 0,20 (plus de 230 mAh/g -figure 3). La dégradation des performances au cycle n°40 est de 10,2, ce qui équivaut déjà à la perte de performance pour le cycle n°60 avec x = 0.2 (se reporter au Tableau 3). Une estimation réalisée pour le cycle n°60 indique une dégradation de 24,8%. Ces résultats semblent corroborer le fait que l’intégration du tungstène à l’oxyde mixte de niobiume et titane atteindrait des limites vers x = 0.25.
Tableau 3 : Perte de performance par rapport à la capacité initiale à C/10 (cycle X. Vs cycle 31 )
Figure imgf000010_0001
Ainsi, la présente invention propose, selon un mode de réalisation, un matériau actif constitué d’un oxyde mixte de Ti(i+X)Nb(2-2x)WxO7 destiné à la fabrication d’une électrode pour des accumulateurs à Li-ion. L’utilisation de ce matériau actif permet d’atteindre une plus grande stabilité de cyclage et de limiter la perte de performance observée avec x = 0. Comme visible sur la figure 3 et le tableau 3, l’optimum est obtenu pour une substitution de tungstène avec une valeur de x= 0,15. Le procédé de fabrication du matériau comprend une synthèse par voie solide, conduisant par exemple à des particules sans agglomérat, pouvant présenter un diamètre supérieur à 100 nm, ce qui peut permettre de répondre en partie aux besoins en densité/compacité nécessaires pour atteindre des densités d’énergie satisfaisantes pour l’objectif visé. Les matériaux actifs proposés par l’invention sont ainsi adaptés aux besoins en forte puissance (charge rapide/décharge rapide, associés à une très bonne cyclabilité), et maintenant une densité d’énergie à un niveau élevé (>100Wh/kg).
Il va de soi que l’invention n’est pas limitée aux variantes de réalisation décrites ci- dessus à titre d’exemple mais qu’elle comprend tous les équivalents techniques et les variantes des moyens décrits ainsi que leurs combinaisons.

Claims

REVENDICATIONS
1 . Matériau actif destiné à la fabrication d’électrode, le matériau actif comprenant un oxyde mixte monoclinique de niobium titane substitué, capable de permettre l’insertion et l’extraction d’ions Li+, le matériau actif présentant la formule brute (I) suivante :
Ti(1 +x)Nb(2-2x)WxO7 (I) dans laquelle x est choisi dans la plage allant de 0,10 à 0,20.
2. Matériau actif selon la revendication 1 , lequel comprend des particules se partageant en deux populations de diamètres moyens Di, une première population présentant un diamètre moyen D1 avec D1 < 0,8 pm, une deuxième population présentant un diamètre moyen D2 avec D2 > 1 pm.
3. Matériau actif selon la revendication 1 ou 2, lequel comprend des particules présentant un diamètre moyen Di supérieur à 100 nm et inférieur ou égal à 0,5 mm.
4. Procédé de fabrication du matériau actif selon l’une des revendications 1 à 3, lequel comprend une synthèse par voie solide.
5. Procédé de fabrication selon la revendication 4, dans lequel les réactifs précurseurs sont du TiC , du Nb20s et du WO3.
6. Procédé de fabrication selon la revendication 4 ou 5, dans lequel les réactifs précurseurs sont utilisés dans des proportions stoechiométriques.
7. Procédé de fabrication selon l’une des revendications 4 à 6, le procédé comprenant les étapes de :
- a) broyage des réactifs précurseurs sous forme de poudre dans un broyeur planétaire à billes de sorte à obtenir un mélange poudreux homogène,
■ b) calcination par application d’un traitement thermique à une température comprise entre 900°C et 1200°C de sorte à obtenir le matériau actif.
8. Procédé de fabrication du matériau actif selon la revendication 7, lequel comprend après l’étape b) la réalisation d’une étape c) de broyage à basse énergie du matériau actif de sorte à réduire les éventuels agglomérats et obtenir une poudre homogène présentant des particules d’un diamètre moyen Di supérieur à 100 nm et inférieur ou égal à 0,5 mm.
9. Electrode comprenant le matériau actif selon l’une des revendications 1 à 3.
10. Générateur électrochimique, en particulier de type batterie, lequel comprend une électrode positive et une électrode négative comprenant le matériau actif selon l’une des revendications 1 à 3 et un électrolyte non aqueux comprenant du lithium.
PCT/IB2023/000493 2022-08-31 2023-09-01 Matériau actif en oxyde mixte niobium titane substitué par du tungstène WO2024047396A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2208740A FR3139132A1 (fr) 2022-08-31 2022-08-31 Matériau actif en oxyde mixte niobium titane substitué par du tungstène
FRFR2208740 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024047396A1 true WO2024047396A1 (fr) 2024-03-07

Family

ID=84359642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/000493 WO2024047396A1 (fr) 2022-08-31 2023-09-01 Matériau actif en oxyde mixte niobium titane substitué par du tungstène

Country Status (2)

Country Link
FR (1) FR3139132A1 (fr)
WO (1) WO2024047396A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160276662A1 (en) * 2015-03-19 2016-09-22 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US20170077495A1 (en) * 2015-09-14 2017-03-16 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
US10312511B2 (en) * 2014-03-18 2019-06-04 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312511B2 (en) * 2014-03-18 2019-06-04 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
US20160276662A1 (en) * 2015-03-19 2016-09-22 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US20170077495A1 (en) * 2015-09-14 2017-03-16 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle

Also Published As

Publication number Publication date
FR3139132A1 (fr) 2024-03-01

Similar Documents

Publication Publication Date Title
EP1784358B1 (fr) Compose pulverulent d&#39;oxyde mixte de titane et de lithium dense, procede de fabrication d&#39;un tel compose et electrode comportant un tel compose
CA2428090C (fr) Particules a base de li4ti5o12, de li(4-.alpha.)z.alpha.ti5o12, ou li4z.beta.ti(5-.beta.)o12, leurs procedes d&#39;obtention et leur utilisation dans des dispositifs electrochimiques
EP1870949B1 (fr) Accumulateur lithium-ion comprenant TiO2-B comme matériau actif d&#39;électrode négative
EP2661779B1 (fr) Matériau composite silicium/carbone, procédé de synthèse et utilisation d&#39;un tel matériau
EP1999810B1 (fr) Compose a base de disphosphate de titane et de carbone, procede de preparation et utilisation comme materiau actif d&#39;une electrode pour accumulateur au lithium
CA2464740C (fr) Oxyde de lithium et de vanadium, un procede pour sa preparation, son utilisation comme matiere active d&#39;electrode
FR2890241A1 (fr) Materiau d&#39;electrode positive haute tension de structure spinelle a base de nickel et de manganese pour accumulateurs au lithium
WO2008132336A2 (fr) Synthèse d&#39;un composé limpo4 et utilisation comme matériau d&#39;électrode dans un accumulateur au lithium
EP1794828B1 (fr) Materiau composite d&#39;electrode negative, procede de fabrication, electrode negative et accumulateur lithium-ion
FR2941875A1 (fr) Procede de preparation d&#39;un melange d&#39;une poudre d&#39;un compose actif d&#39;electrode et d&#39;une poudre d&#39;un compose conducteur electronique, melange ainsi obtenu, electrode, cellule et accumulateur
KR20080076291A (ko) 복합체 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지
FR2862431A1 (fr) Matiere electrochimiquement active pour electrode positive de generateur electrochimique rechargeable au lithium
FR3000956A1 (fr) Procede de synthese d&#39;un compose lim1-x-y-znyqzfexpo4 et son utilisation comme materiau d&#39;electrode pour accumulateur au lithium
EP2896083A1 (fr) Procede de fonctionnement d&#39;un accumulateur du type lithium-ion
WO2014041029A1 (fr) Materiau d&#39;electrode positive pour accumulateur lithium-ion
WO2024047396A1 (fr) Matériau actif en oxyde mixte niobium titane substitué par du tungstène
EP3230207A1 (fr) Materiau d&#39;electrode de formule life1-xcoxbo3, et son procede de preparation
CA3096595A1 (fr) Ceramiques, leurs procedes de preparation et leurs utilisations
EP3626682B1 (fr) Materiau lithie
JP2007076929A (ja) メソカーボン小球体黒鉛化粉の製造方法
EP3218306A1 (fr) MATERIAU D&#39;ELECTRODE DE FORMULE LiMnxCo1-xBO3, ET SON PROCEDE DE PREPARATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773329

Country of ref document: EP

Kind code of ref document: A1