WO2024046998A1 - Procédé d'obtention d'un vitrage bombé feuilleté - Google Patents

Procédé d'obtention d'un vitrage bombé feuilleté Download PDF

Info

Publication number
WO2024046998A1
WO2024046998A1 PCT/EP2023/073578 EP2023073578W WO2024046998A1 WO 2024046998 A1 WO2024046998 A1 WO 2024046998A1 EP 2023073578 W EP2023073578 W EP 2023073578W WO 2024046998 A1 WO2024046998 A1 WO 2024046998A1
Authority
WO
WIPO (PCT)
Prior art keywords
enamel
layer
glass
sheet
stack
Prior art date
Application number
PCT/EP2023/073578
Other languages
English (en)
Inventor
Flamary-mespoulie FLORIAN
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2024046998A1 publication Critical patent/WO2024046998A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • B32B17/10211Doped dielectric layer, electrically conductive, e.g. SnO2:F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • B32B17/10229Metallic layers sandwiched by dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10247Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons
    • B32B17/10256Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons created by printing techniques
    • B32B17/10266Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons created by printing techniques on glass pane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10935Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin as a preformed layer, e.g. formed by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Definitions

  • the invention relates to the field of laminated curved glazing for motor vehicles, for example for roofs or windshields, comprising a sheet of glass coated with a stack of thin layers and a layer of enamel.
  • Laminated glazing is glazing in which two sheets of glass are adhesively bonded using a lamination interlayer.
  • the latter makes it possible in particular to retain shards of glass in the event of breakage, but also provides other functionalities, in particular in terms of burglary resistance or improvement of acoustic properties.
  • These glazings often include coatings of various types, intended to impart different properties.
  • Layers of enamel are often deposited on part of the glazing, usually in the form of a peripheral strip intended to conceal and protect against ultraviolet radiation the polymeric seals used for fixing and positioning the glazing on the body bay. Enamelled areas also conceal the interior mirror mounting areas and various connectors and sensors.
  • these layers of enamel are generally arranged on face 2, the faces being traditionally numbered from the face intended to be positioned outside the vehicle. Face 2 is therefore a face in contact with the lamination interlayer.
  • the aesthetic appearance of the enamel layer seen from the outside of the vehicle is of particular importance for automobile manufacturers.
  • the enamel is generally obtained by firing above 500°C a composition comprising a glass frit and pigments.
  • a glass frit consists of fine particles of glass with a low melting point, which soften under the effect of a cooking heat treatment and adhere to the glass sheet.
  • a mineral layer is thus formed, generally opaque, with strong chemical and mechanical resistance, adhering perfectly to the glass while maintaining the pigment particles.
  • the cooking step is generally carried out simultaneously with the bending of the glass sheet.
  • the two sheets of glass of the glazing are often curved together, the sheet of glass intended to be positioned inside the vehicle generally being placed above the other sheet of glass, which bears enamel.
  • each sheet of glass is bent separately.
  • enamels containing bismuth are usually used, that is to say obtained from glass frits containing bismuth oxide, generally bismuth borosilicates.
  • Coatings may also be present on one of the glass sheets of the laminated glazing.
  • These may in particular be electroconductive layers, which can provide two types of functionality.
  • the electroconductive layers can, on the one hand, when current inputs are provided, dissipate heat by the Joule effect. These are then heating layers, useful for example for defrosting or demisting. These layers also present, through their reflection of infrared radiation, solar control or low emissivity properties. The layers are then appreciated for improving thermal comfort or for the energy savings they provide, by reducing consumption for heating or air conditioning.
  • These stacks of layers are generally arranged on face 3 of the laminated glazing, therefore also in contact with the lamination interlayer.
  • Application WO 2019/106264 proposes modifying the stack of thin layers by adding a layer of oxide between the stack and the enamel comprising bismuth. However, it is not always possible to make such a modification.
  • the invention aims to obviate these drawbacks.
  • the subject of the invention is a process for obtaining laminated curved glazing, in particular for the windshield or roof of a motor vehicle, comprising the following successive steps: has. the supply of a first sheet of glass, coated on at least part of one of its faces with a stack of thin layers, b. a step of depositing, on part of the surface of the stack of thin layers, a first layer of enamel, vs. a step of pre-firing the first layer of enamel during which the stack of thin layers located under the first layer of enamel is at least partially dissolved by said first layer of enamel d. a step of depositing, at least on part of the first layer of enamel, a second layer of enamel different from the first layer of enamel, e.
  • the invention also relates to laminated curved glazing, in particular for the windshield or roof of a motor vehicle, obtained by the process of the invention, comprising a first sheet of glass coated, on part of one of its faces, of a stack of thin layers, and, on another part of the same face, of a first layer of enamel itself coated on at least part of its surface with a second layer of enamel different from the first layer of enamel, said first sheet of glass being laminated with an additional sheet of glass by means of a lamination interlayer, said layers of enamel being turned towards said lamination interlayer.
  • the dissolution of the stack of thin layers by the first layer of enamel makes it possible to avoid the aforementioned interactions.
  • the constituent elements of the stack are dissolved in the enamel layer, which is, at least after the bending step (step e), in direct contact with the glass sheet.
  • the deposition of a second layer of enamel prevents any sticking or transfer, whatever the bending process used.
  • the coatings are collectively referred to as “the coatings”.
  • the first sheet of glass can be flat or curved.
  • the first sheet of glass is generally flat at the time of deposition of the stack of thin layers then of the enamel layer, and is then curved during step e.
  • the first sheet of glass is therefore curved in the curved laminated glazing according to the invention.
  • the glass of the first glass sheet is typically soda-lime-silica glass, but other glasses, for example borosilicates or aluminosilicates, can also be used.
  • the first sheet of glass is preferably obtained by floating, that is to say by a process consisting of pouring molten glass onto a bath of molten tin.
  • the first sheet of glass may be clear glass or tinted glass, preferably tinted glass, for example green, gray or blue.
  • the chemical composition of the first sheet of glass advantageously comprises iron oxide, in a weight content ranging from 0.5 to 2%. It may also include other coloring agents, such as cobalt oxide, chromium oxide, nickel oxide, erbium oxide, or even selenium.
  • the first sheet of glass preferably has a thickness in a range ranging from 0.7 to 19 mm, in particular from 1 to 10 mm, particularly from 2 to 6 mm, or even from 2 to 4 mm.
  • the lateral dimensions of the first sheet of glass (and of the additional sheet of glass) must be adapted according to those of the laminated glazing into which it is intended to be integrated.
  • the first sheet of glass (and/or the additional sheet of glass) preferably has a surface area of at least 1 m2.
  • the first glass sheet is preferably coated with the stack of thin layers on at least 70%, in particular on at least 90%, or even on the entire surface of the face of the glass sheet. Certain areas may in fact not be covered in order to provide communication windows allowing the waves to pass through.
  • the stack of thin layers is preferably in contact with the glass sheet.
  • the first layer of enamel is preferably in contact with the stack of thin layers. It is then in direct contact with the glass after bending.
  • contact means physical contact.
  • the layer in question comprises at least 50% by weight of the material considered, in particular 60%, even 70% and even 80% or 90%.
  • the layer may even essentially consist of or consist of this material.
  • essentially consist it must be understood that the layer can include impurities without influence on its properties.
  • oxide or nitride do not necessarily mean that the oxides or nitrides are stoichiometric. They can in fact be sub-stoichiometric, over-stoichiometric or stoichiometric.
  • the stack preferably comprises at least one layer based on a nitride.
  • Nitride is in particular a nitride of at least one element chosen from aluminum, silicon, zirconium, titanium. It may comprise a nitride of at least two or three of these elements, for example a nitride of silicon and zirconium, or a nitride of silicon and aluminum.
  • the layer based on a nitride is a layer based on silicon nitride, more particularly a layer consisting essentially of a silicon nitride.
  • the nitride-based layer preferably has a physical thickness in a range ranging from 2 to 100 nm, in particular from 5 to 80 nm.
  • Nitride-based layers are commonly used in many stacks of thin layers because they have advantageous blocking properties, in the sense that they prevent the oxidation of other layers present in the stack, in particular functional layers. which will be described below.
  • the stack preferably comprises at least one functional layer, in particular an electro-conductive functional layer.
  • the functional layer is preferably between two thin dielectric layers, at least one of which is a nitride-based layer.
  • Other possible dielectric layers are for example layers of oxides or oxynitrides.
  • At least one electro-conductive functional layer is advantageously chosen from: - the metallic layers, in particular silver or niobium, or even gold, and - the layers of a transparent conductive oxide, in particular chosen from indium tin oxide, doped tin oxides (for example with fluorine or antimony) and doped zinc oxides (for example aluminum or gallium).
  • low-emissive glazing allows part of the solar radiation to be reflected outward in hot weather, and therefore to limit the heating of the the passenger compartment of said vehicles, and where applicable to reduce air conditioning expenses. Conversely, in cold weather, these glazings help retain heat within the passenger compartment, and therefore reduce heating energy costs. It is the same in the case of glazing fitted to buildings.
  • the stack of thin layers comprises at least one layer of silver, in particular one, two or three, or even four layers of silver.
  • the physical thickness of the silver layer or, where appropriate, the sum of the thicknesses of the silver layers is preferably between 2 and 50 nm, in particular between 3 and 40 nm.
  • the stack of thin layers comprises at least one layer of indium and tin oxide. Its physical thickness is preferably between 30 and 200 nm, in particular between 40 and 150 nm.
  • each of these layers is preferably framed by at least two dielectric layers.
  • the dielectric layers are preferably based on oxide, nitride and/or oxynitride of at least one element chosen from silicon, aluminum, titanium, zinc, zirconium and tin.
  • At least part of the stack of thin layers can be deposited by various known techniques, for example by chemical vapor deposition (CVD), or by cathode sputtering, in particular assisted by a magnetic field (magnetron process).
  • CVD chemical vapor deposition
  • cathode sputtering in particular assisted by a magnetic field (magnetron process).
  • the stack of thin layers is preferably deposited by cathodic sputtering, in particular assisted by a magnetic field.
  • a plasma is created under a high vacuum in the vicinity of a target comprising the chemical elements to be deposited.
  • the active plasma species by bombarding the target, tear off said elements, which are deposited on the glass sheet forming the desired thin layer.
  • This process is called “reactive” when the layer is made up of a material resulting from a chemical reaction between the elements torn from the target and the gas contained in the plasma.
  • the major advantage of this process lies in the possibility of depositing a very complex stack of layers on the same line by successively scrolling the glass sheet under different targets, generally in a single device.
  • the aforementioned stacks have electrical conduction and infrared reflection properties useful for providing a heating function (defrosting, defogging) and/or a thermal insulation function.
  • enamel composition liquid compositions which are used to deposit the layers of wet enamel during steps b and d are referred to as “enamel composition”.
  • enamel layer is used to describe the layer at each stage of the process, both the wet layer (before bending or even before pre-firing, if necessary before drying) as well as the final layer (after firing).
  • the enamel layer is preferably deposited from an enamel composition comprising at least one pigment, at least one glass frit as well as the refractory particles.
  • the enamel composition like the enamel layer, preferably does not include lead oxide.
  • the enamel composition, like the enamel layer, is normally not electrically conductive.
  • the enamel composition (both for the first and for the second layer of enamel) generally also comprises an organic medium, intended to facilitate the application of the composition to the substrate as well as its temporary adhesion to the latter, and which is removed during pre-firing or firing of the enamel.
  • the medium typically includes solvents, diluents, oils and/or resins.
  • the pigments preferably comprise one or more oxides chosen from chromium, copper, iron, manganese, cobalt and nickel oxides. For example, these may be copper and/or iron chromates.
  • the pigments are preferably black, for the first layer of enamel, and also advantageously for the second layer of enamel.
  • the deposition of the first layer of enamel is preferably carried out by screen printing.
  • a screen printing screen is placed on the glass sheet, which includes meshes, some of which are closed, then the enamel composition is deposited on the screen, then a doctor blade is applied in order to force the composition to enamel to pass through the screen in areas where the mesh of the screen is not blocked, so as to form a layer of wet enamel.
  • the deposition of the first layer of enamel can also be done by digital printing.
  • the deposition of the second layer of enamel is preferably carried out by screen printing, as described in the previous paragraph, or by digital printing.
  • Digital printing is preferably carried out using a print head whose movement (in particular the position and speed) is controlled by computer or using 'a series of fixed print heads in front of which the glass moves at a controlled speed.
  • the or each print head includes nozzles through which drops of ink are projected locally onto the sheet of glass. This technique is sometimes called “ drop on demand” (DOD).
  • DOD drop on demand
  • the thickness of the first and/or second layer of wet enamel is preferably between 15 and 40 ⁇ m, in particular between 20 and 30 ⁇ m.
  • Step b and/or step d is preferably immediately followed by a drying step, intended to eliminate at least part of the solvent contained in the enamel composition.
  • a drying step intended to eliminate at least part of the solvent contained in the enamel composition.
  • Such drying is typically carried out at a temperature between 120 and 180°C.
  • the glass frit of the first layer of enamel is capable of dissolving the underlying stack of layers.
  • the glass frit is based on borosilicate, or borate, bismuth and zinc.
  • the bismuth and/or boron contents are preferably higher, and/or the silica content is preferably lower (and can be even be zero), than those of the glass frits usually used.
  • the stack is preferably coated with the first layer of enamel on 2 to 25%, in particular 3 to 20%, or even 5 to 15% of its surface.
  • the first layer of enamel preferably comprises a peripheral strip, that is to say a strip closed on itself which, from each point of the periphery of the first sheet of glass, extends towards the interior of the first sheet of glass over a certain width, generally variable, typically between 1 and 20 cm.
  • the second layer of enamel is deposited at least on part of the first layer of enamel. Preferably, it is deposited only on the entire surface of the first layer of enamel. In practice, a perfect coincidence between the two layers of enamel can easily be obtained by digital printing, but more difficult in the case of deposition by screen printing. It is therefore possible that an area of the first layer of enamel is not coated with the second layer of enamel or conversely that an area of the second layer of enamel is deposited directly on the first sheet of glass, on a space typically 0.1 to 1 mm wide. Alternatively, the second layer of enamel can be in direct contact with the first sheet of glass over a wider area, and in this case a transition zone, based for example on a gradient of points, can advantageously be provided.
  • the second layer of enamel is different from the first layer of enamel.
  • the chemical composition of the glass frit used for the second layer of enamel is different from that used for the first layer of enamel.
  • the second layer of enamel is preferably deposited from an enamel composition comprising a glass frit based on bismuth borosilicate, or even bismuth and zinc borosilicate.
  • the second layer of enamel therefore preferably comprises a vitreous or vitrocrystalline binder based on bismuth borosilicate, or even bismuth and zinc borosilicate.
  • the bismuth content is reduced and/or the silica content is increased, relative to the glass frit used for the first enamel layer, in order to avoid any reaction between the two enamel layers during the bending likely to cause the appearance of an undesirable color.
  • Such enamels have the advantage of avoiding sticking or transfer of enamel during the bending step, whether between the first sheet of glass and the bending tools, when the first sheet of glass is bent alone, or between the first sheet of glass and the additional sheet of glass, when they are curved together.
  • the method comprises, between step b and step d, a step c of pre-firing the first layer of enamel during which the stack of thin layers located under the first layer of enamel is at least partially dissolved. by said first layer of enamel.
  • the pre-cooking step is preferably carried out at a temperature between 150 and 800°C, in particular between 500 and 700°C.
  • Such pre-firing makes it possible to eliminate the organic medium, or generally any organic component possibly present in the enamel layer.
  • the stack of thin layers is at least partially dissolved by the enamel layer.
  • the stacking can even be completely dissolved by the enamel layer during pre-firing. Alternatively, it may only be partially dissolved during pre-cooking, and it is then completely dissolved during bending (step e).
  • step d it is not necessary to carry out a second pre-cooking between step d and step e.
  • Bending can in particular be carried out by gravity (the glass deforming under its own weight) or by pressing, at temperatures typically ranging from 550 to 650°C. Pressing may optionally be followed by rapid cooling to provide surface reinforcement (quenching or hardening).
  • the first sheet of glass is curved alone, in particular by pressing.
  • the two sheets of glass are then curved separately.
  • the first sheet of glass and the additional sheet of glass are curved together, the enamel layer being turned towards said additional glass sheet.
  • the glass sheets can be kept apart by placing between them an interlayer powder ensuring a space of a few tens of micrometers, typically 20 to 50 ⁇ m.
  • the interlayer powder is for example based on calcium carbonate and/or magnesium.
  • the interior sheet of glass (intended to be positioned inside the passenger compartment) is normally placed above the exterior sheet of glass.
  • the additional sheet of glass is placed above the first sheet of glass.
  • This embodiment is less preferred because it may require in certain cases to carry out a pre-firing step between the step of depositing the second layer of enamel and the bending step to avoid any sticking during bending.
  • the first layer of enamel is opaque, black in color. Its clarity L* measured in reflection on the glass side is preferably less than 5. As indicated previously, it advantageously forms a band around the periphery of the first sheet of glass. In this way, the enamel layer is able to conceal and protect against ultraviolet radiation from joints, connector elements, or even sensors.
  • the second layer of enamel is also preferably opaque and black in color.
  • the total dissolution of the stack of thin layers can in particular be observed by electron microscopy. Electrical measurements, in particular of square resistance, also make it possible to observe the dissolution of the stack.
  • the lamination step can be carried out by autoclave treatment, for example at temperatures of 110 to 160°C and under a pressure ranging from 10 to 15 bars. Prior to autoclave treatment, the air trapped between the glass sheets and the lamination interlayer can be eliminated by calendering or vacuum.
  • the additional sheet is preferably the interior sheet of the laminated glazing, that is to say the sheet located on the concave side of the glazing, intended to be positioned inside the passenger compartment of the vehicle.
  • the coverings are arranged on face 2 of the laminated glazing.
  • the additional glass sheet can be soda-lime-silico glass, or even borosilicate or aluminosilicate glass. It can be clear or tinted glass. Its thickness is preferably between 0.5 and 4 mm, in particular between 1 and 3 mm.
  • the additional glass sheet has a thickness of between 0.5 and 1.2 mm.
  • the additional glass sheet is in particular made of sodium aluminosilicate glass, preferably chemically reinforced.
  • the additional sheet of glass is preferably the inner sheet of the laminated glazing.
  • the invention is particularly useful for this type of configuration, for which it is difficult to arrange the stack of thin layers on face 3.
  • Chemical reinforcement also called "ion exchange" consists of bringing the surface of the glass into contact with a molten potassium salt (for example potassium nitrate), so as to strengthen the surface of the glass by exchanging ions of the glass (here sodium ions) with ions of greater ionic radius (here potassium ions).
  • the surface stress is at least 300 MPa, in particular 400 and even 500 MPa, and at most 700 MPa
  • the thickness of the compressive zone is at least 20 ⁇ m, typically between 20 and 50 ⁇ m.
  • the stress profile can be determined in a known manner using a polarizing microscope equipped with a Babinet compensator.
  • the chemical quenching step is preferably carried out at a temperature ranging from 380 to 550°C, and for a duration ranging from 30 minutes to 3 hours.
  • the chemical reinforcement is preferably carried out after the bending step but before the lamination step.
  • the glazing obtained is preferably a motor vehicle windshield, in particular a heated windshield.
  • the additional glass sheet carries on the face opposite the face facing the lamination interlayer (preferably face 4, the additional sheet being the inner sheet) a stack of additional thin layers, in particular a low-emissivity stack, comprising a transparent conductive oxide, in particular indium tin oxide (ITO).
  • ITO indium tin oxide
  • the lamination interlayer and/or the additional glass sheet is preferably tinted, the glass sheet carrying the coatings possibly being made of clear glass.
  • the glazing obtained is preferably a motor vehicle roof.
  • a laminated curved roof comprising, from the outside of the vehicle, a sheet of clear glass coated on face 2 with a stack of thin layers comprising at least one layer of silver then a layer of enamel, a tinted PVB lamination interlayer, and an additional sheet of tinted glass, carrying on face 4 a stack of thin low-emissivity layers, in particular based on ITO.
  • the lamination interlayer preferably comprises at least one sheet of polyvinyl acetal, in particular polyvinyl butyral (PVB).
  • PVB polyvinyl butyral
  • the lamination interlayer can be tinted or untinted in order, if necessary, to regulate the optical or thermal properties of the glazing.
  • the lamination interlayer can advantageously have acoustic absorption properties in order to absorb sounds of airborne or solid-borne origin. It can in particular be made up for this purpose of three polymeric sheets, including two so-called external PVB sheets framing an internal polymeric sheet, possibly made of PVB, of lower hardness than that of the external sheets.
  • the lamination interlayer can also have thermal insulation properties, in particular reflection of infrared radiation.
  • it may comprise a coating of thin layers with low emissivity, for example a coating comprising a thin layer of silver or a coating alternating dielectric layers of different refractive indices, deposited on an internal PET sheet framed by two external PVB sheets.
  • the thickness of the lamination interlayer is generally in a range ranging from 0.3 to 1.5 mm, in particular from 0.5 to 1 mm.
  • the lamination spacer may have a thinner thickness on one edge of the glazing than in the center of the glazing in order to avoid the formation of a double image when using a head-up vision system, known as HUD ( head-up display ).
  • FIG. 1 schematically illustrates an embodiment of the method according to the invention. It represents a schematic section of a part of the glass sheets and the elements deposited on the glass sheets, near their periphery. The various elements are obviously not represented to scale, so as to be able to visualize them.
  • the first sheet of glass 10 coated with the stack of thin layers 12 is provided in step a, then part of the stack 12 is coated with a first layer of enamel 14, in particular by screen printing (step b).
  • step c The assembly then undergoes pre-firing (step c), which in the case shown, leads to a partial dissolution of the stack 12 by the enamel 14. Alternatively, the dissolution can be total.
  • a second layer of enamel 16 is then deposited on the first layer of enamel 14 (step d), in particular by screen printing or digital printing.
  • the coincidence is perfect, but as described previously, the second layer of enamel 16 can also "overflow" the first layer of enamel 14 or on the contrary not cover the entirety of the latter, preferably on a small width, for example 0.5 or 1 mm.
  • the first sheet of glass 10 is then curved, for example by pressing (step e).
  • the view shown being only that of the end of the glass sheet, the bending is not shown here.
  • the diagram illustrates the fact that at the end of the bending, the first layer of enamel 14 has completely dissolved the underlying stack of thin layers 12.
  • step f the first sheet of glass 10 coated with the stack of thin layers 12 and the enamel layers 14 and 16 and an additional sheet of glass 20 coated with a stack of additional thin layers 22 are assembled at using the lamination insert 30.
  • the diagram here represents each of the separate elements, in exploded view.
  • the method implemented by the examples corresponds to the embodiment of the .
  • the enamel was then dried (150°C, 1 to 2 minutes) then pre-fired at approximately 640°C-680°C, resulting in complete dissolution of the stack.
  • the clarity L* in reflection (illuminant D65, reference observer 10°) on the glass side was 4.0 at the end of this step.
  • a second layer of enamel based on bismuth and zinc borosilicate (according to the tests, enamels marketed under the references 1T1417 by the company Fenzi, and 14331 or 14251 by the company Vibrantz) was then deposited by screen printing on the first layer enamel.
  • the first sheet of glass thus coated was then bent by pressing against a shape at a temperature of 630-660°C.
  • the first sheet of glass was then laminated with an additional sheet of glass made of silico-soda-lime glass provided on face 4 with a stack comprising a layer of ITO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne un procédé d'obtention d'un vitrage bombé feuilleté, notamment pour pare-brise ou toit de véhicule automobile, comprenant (a) la fourniture d'une première feuille de verre (10) revêtue d'un empilement de couches minces (12), (b) le dépôt, sur une partie de la surface de l'empilement de couches minces (12), d'une première couche d'émail (14), (c) une pré-cuisson de la première couche d'émail (14), (d) le dépôt, au moins sur une partie de la première couche d'émail (14), d'une deuxième couche d'émail (16) différente de la première couche d'émail (14), (e) le bombage de la première feuille de verre (10), l'empilement de couches minces (12) situé sous la première couche d'émail (14) étant totalement dissout au moins à l'issue de cette étape, puis (f) le feuilletage de ladite première feuille de verre (10) avec une feuille de verre supplémentaire (20) au moyen d'un intercalaire de feuilletage (30).

Description

Procédé d’obtention d’un vitrage bombé feuilleté
L’invention se rapporte au domaine des vitrages bombés feuilletés pour véhicules automobiles, par exemple pour toits ou pare-brise, comprenant une feuille de verre revêtue d’un empilement de couches minces et d’une couche d’émail.
Les vitrages feuilletés sont des vitrages dans lesquels deux feuilles de verre sont liées adhésivement au moyen d’un intercalaire de feuilletage. Ce dernier permet en particulier de retenir les éclats de verre en cas de casse, mais apporte aussi d’autres fonctionnalités, en particulier en termes de résistance à l’effraction ou d’amélioration des propriétés acoustiques.
Ces vitrages comprennent souvent des revêtements de divers types, destinés à conférer différentes propriétés.
Des couches d’émail, généralement noir et opaque, sont souvent déposées sur une partie du vitrage, habituellement sous forme d’une bande périphérique destinée à dissimuler et protéger contre le rayonnement ultraviolet les joints polymériques servant à la fixation et au positionnement du vitrage sur la baie de carrosserie. Des zones émaillées dissimulent également les zones de fixation du rétroviseur intérieur et différents connecteurs et capteurs.
Dans un vitrage feuilleté, ces couches d’émail sont généralement disposées en face 2, les faces étant traditionnellement numérotées à partir de la face destinée à être positionnée à l’extérieur du véhicule. La face 2 est donc une face en contact avec l’intercalaire de feuilletage. L’aspect esthétique de la couche d’émail vue depuis l’extérieur du véhicule revêt une importance particulière pour les constructeurs automobiles. L’émail est généralement obtenu par cuisson au-dessus de 500°C d’une composition comprenant une fritte de verre et des pigments. Une fritte de verre se compose de fines particules d’un verre à bas point de fusion, qui sous l’effet d’un traitement thermique de cuisson se ramollit et adhère à la feuille de verre. On forme ainsi une couche minérale, généralement opaque, à forte résistance chimique et mécanique, adhérant parfaitement au verre en maintenant les particules de pigment. L’étape de cuisson est généralement réalisée simultanément avec le bombage de la feuille de verre.
Dans le contexte de la fabrication de vitrages feuilletés, les deux feuilles de verre du vitrage sont souvent bombées ensemble, la feuille de verre destinée à être positionnée à l’intérieur du véhicule étant généralement disposée au-dessus de l’autre feuille de verre, qui porte l’émail. Dans d’autres procédés, chaque feuille de verre est bombée séparément. Dans tous les cas, il est nécessaire que l’émail possède des propriétés antiadhésives afin d’empêcher, durant le bombage, tout collage entre les deux feuilles de verre ou entre la feuille de verre et les outils de bombage. Pour ce faire, on emploie habituellement des émaux contenant du bismuth, c’est-à-dire obtenus à partir de frittes de verre contenant de l’oxyde de bismuth, généralement des borosilicates de bismuth.
Des revêtements, généralement sous forme d’empilements de couches minces, peuvent aussi être présents sur une des feuilles de verre du vitrage feuilleté. Il peut notamment s’agir de couches électroconductrices, lesquelles peuvent apporter deux types de fonctionnalités. Les couches électroconductrices peuvent d’une part, lorsque des amenées de courant sont prévues, dissiper de la chaleur par effet Joule. Il s’agit alors de couches chauffantes, utiles par exemple pour le dégivrage ou le désembuage. Ces couches présentent d’autre part, de par leur réflexion du rayonnement infrarouge, des propriétés de contrôle solaire ou de faible émissivité. Les couches sont alors appréciées pour l’amélioration du confort thermique ou pour les économies d’énergie qu’elles apportent, en diminuant la consommation destinée au chauffage ou à la climatisation. Ces empilements de couches sont généralement disposés en face 3 du vitrage feuilleté, donc également en contact avec l’intercalaire de feuilletage.
Il peut toutefois être intéressant, dans certains cas qui seront détaillés par la suite, de disposer la couche d’émail et l’empilement de couches minces sur la même feuille de verre, et donc sur la même face de la feuille de verre en question afin que ces revêtements soient protégés à l’intérieur du vitrage feuilleté.
Il a toutefois été observé que lorsqu’une feuille de verre revêtue d’un empilement de couches minces devait être pourvue d’une couche d’émail, des interactions indésirables pouvaient se produire lors du bombage entre l’empilement et l’émail, conduisant notamment à une dégradation de l’aspect esthétique de l’émail. Il a notamment été observé, en particulier lorsque l’empilement contenait au moins une couche de nitrure et que l’émail contenait du bismuth, que des bulles se créaient au sein de l’émail, près de l’interface entre ce dernier et l’empilement, occasionnant une baisse significative d’adhésion de l’émail, modifiant son aspect optique (en particulier la couleur côté verre, c’est-à-dire du côté opposé à l’émail) et réduisant sa résistance chimique, en particulier aux acides.
Plusieurs solutions ont été proposées à ce problème.
Il est possible de retirer au préalable l’empilement de couches minces aux endroits où la couche d’émail doit être déposée, par exemple au moyen d’abrasifs, afin que l’émail soit déposé au contact direct de la feuille de verre et d’éviter tous problèmes d’adhésion entre la couche d’émail et l’empilement de couches minces. L’abrasion mécanique génère toutefois des rayures visibles, y compris au niveau de la couche d’émail.
La demande WO 2014/133929, et avant elle la demande WO0029346 ont proposé l’idée d’utiliser pour l’émail des frittes de verre spéciales capables lors de la cuisson ou d’une pré-cuisson de dissoudre l’empilement de couches minces pour se fixer directement au verre. De tels émaux ne possèdent toutefois pas de bonnes propriétés antiadhésives, entraînant durant le bombage un collage des deux feuilles de verre entre elles. La demande WO 2022/074333 propose pour éviter ce collage de déposer sur l’émail des particules réfractaires à base d’oxydes, de carbures ou de métaux, ayant au moins une dimension supérieure ou égale à 30 µm. Mais d’une part l’étape de dépôt des particules est délicate à mettre en œuvre à l’échelle industrielle, et d’autre part un transfert d’émail est parfois observé dans le cas où les feuilles de verre sont bombées séparément par pressage.
La demande WO 2019/106264 propose quant à elle de modifier l’empilement de couches minces en ajoutant une couche d’oxyde entre l’empilement et l’émail comprenant du bismuth. Il n’est toutefois pas toujours possible de procéder à une telle modification.
L’invention a pour but d’obvier à ces inconvénients.
A cet effet, l’invention a pour objet un procédé d’obtention d’un vitrage bombé feuilleté, notamment pour pare-brise ou toit de véhicule automobile, comprenant les étapes successives suivantes :
a. la fourniture d’une première feuille de verre, revêtue sur au moins une partie d’une de ses faces d’un empilement de couches minces,
b. une étape de dépôt, sur une partie de la surface de l’empilement de couches minces, d’une première couche d’émail,
c. une étape de pré-cuisson de la première couche d’émail durant laquelle l’empilement de couches minces situé sous la première couche d’émail est au moins partiellement dissout par ladite première couche d’émail
d. une étape de dépôt, au moins sur une partie de la première couche d’émail, d’une deuxième couche d’émail différente de la première couche d’émail,
e. une étape de bombage de la première feuille de verre, l’empilement de couches minces situé sous la première couche d’émail étant totalement dissout par ladite première couche d’émail au moins à l’issue de cette étape, puis
f. une étape de feuilletage de ladite première feuille de verre avec une feuille de verre supplémentaire au moyen d’un intercalaire de feuilletage, de sorte que les couches d’émail soient tournées vers ledit intercalaire.
L’invention a aussi pour objet un vitrage bombé feuilleté, notamment pour pare-brise ou toit de véhicule automobile, obtenu par le procédé de l’invention, comprenant une première feuille de verre revêtue, sur une partie d’une de ses faces, d’un empilement de couches minces, et, sur une autre partie de la même face, d’une première couche d’émail elle-même revêtue sur au moins une partie de sa surface d’une deuxième couche d’émail différente de la première couche d’émail, ladite première feuille de verre étant feuilletée avec une feuille de verre supplémentaire au moyen d’un intercalaire de feuilletage, lesdites couches d’émail étant tournées vers ledit intercalaire de feuilletage.
La dissolution de l’empilement de couches minces par la première couche d’émail permet d’éviter les interactions susmentionnées. Les éléments constitutifs de l’empilement se trouvent dissous dans la couche d’émail, laquelle se trouve, au moins à l’issue de l’étape de bombage (étape e), au contact direct de la feuille de verre. Le dépôt d’une deuxième couche d’émail permet quant à lui d’éviter tout collage ou transfert, quel que soit le procédé de bombage employé.
Dans le présent texte, l’empilement de couches minces et les couches d’émail sont qualifiés collectivement « les revêtements ».
Etape a
La première feuille de verre peut être plane ou bombée. La première feuille de verre est généralement plane au moment du dépôt de l’empilement de couches minces puis de la couche d’émail, et est ensuite bombée lors de l’étape e. La première feuille de verre est donc bombée dans le vitrage feuilleté bombé selon l’invention.
Le verre de la première feuille de verre est typiquement un verre silico-sodo-calcique, mais d’autres verres, par exemple des borosilicates ou des aluminosilicates peuvent également être employés. La première feuille de verre est de préférence obtenue par flottage, c’est-à-dire par un procédé consistant à déverser du verre fondu sur un bain d’étain en fusion.
La première feuille de verre peut être en verre clair ou en verre teinté, de préférence en verre teinté, par exemple en vert, gris ou bleu. Pour ce faire, la composition chimique de la première feuille de verre comprend avantageusement de l’oxyde de fer, en une teneur pondérale allant de 0,5 à 2%. Elle peut également comprendre d’autres agents colorants, tels que l’oxyde de cobalt, l’oxyde de chrome, l’oxyde de nickel, l’oxyde d’erbium, ou encore le sélénium.
La première feuille de verre présente de préférence une épaisseur comprise dans un domaine allant de 0,7 à 19 mm, notamment de 1 à 10 mm, particulièrement de 2 à 6 mm, voire de 2 à 4 mm.
Les dimensions latérales de la première feuille de verre (et de la feuille de verre supplémentaire) sont à adapter en fonction de celles du vitrage feuilleté auquel elle est destinée à être intégrée. La première feuille de verre (et/ou la feuille de verre supplémentaire) présente de préférence une surface d’au moins 1 m².
La première feuille de verre est de préférence revêtue de l’empilement de couches minces sur au moins 70%, notamment sur au moins 90%, voire sur la totalité de la surface de la face de la feuille de verre. Certaines zones peuvent en effet ne pas être revêtues afin notamment de ménager des fenêtres de communication laissant passer les ondes.
L’empilement de couches minces est de préférence au contact de la feuille de verre. Lors de son dépôt, la première couche d’émail est de préférence au contact de l’empilement de couches minces. Elle est alors ensuite au contact direct du verre après bombage.
Par « contact », on entend dans le présent texte un contact physique. Par l’expression « à base de » on entend de préférence le fait que la couche en question comprend au moins 50% en poids du matériau considéré, notamment 60%, voire 70% et même 80% ou 90%. La couche peut même essentiellement consister ou consister en ce matériau. Par « essentiellement consister », il faut comprendre que la couche peut comprendre des impuretés sans influence sur ses propriétés. Les termes « oxyde » ou « nitrure » ne signifient pas nécessairement que les oxydes ou nitrures sont stœchiométriques. Ils peuvent en effet être sous-stœchiométriques, sur-stœchiométriques ou stœchiométriques.
L’empilement comprend de préférence au moins une couche à base d’un nitrure. Le nitrure est notamment un nitrure d’au moins un élément choisi parmi l’aluminium, le silicium, le zirconium, le titane. Elle peut comprendre un nitrure d’au moins deux ou trois de ces éléments, par exemple un nitrure de silicium et de zirconium, ou un nitrure de silicium et d’aluminium. De façon préférée, la couche à base d’un nitrure est une couche à base de nitrure de silicium, plus particulièrement une couche consistant essentiellement en un nitrure de silicium. Lorsque la couche de nitrure de silicium est déposée par pulvérisation cathodique elle contient généralement de l’aluminium, car il est d’usage de doper les cibles de silicium par de l’aluminium afin d’accélérer les vitesses de dépôt.
La couche à base d’un nitrure présente de préférence une épaisseur physique comprise dans un domaine allant de 2 à 100 nm, notamment de 5 à 80 nm.
Les couches à base de nitrure sont couramment employées dans nombre d’empilements de couches minces car elles possèdent des propriétés de blocage avantageuses, en ce sens qu’elles évitent l’oxydation d’autres couches présentes dans l’empilement, notamment des couches fonctionnelles qui seront décrites ci-après.
L’empilement comprend de préférence au moins une couche fonctionnelle, notamment une couche fonctionnelle électro-conductrice. La couche fonctionnelle est de préférence comprise entre deux couches minces diélectriques, dont une au moins est une couche à base de nitrure. D’autres couches diélectriques possibles sont par exemple des couches d’oxydes ou d’oxynitrures.
Au moins une couche fonctionnelle électro-conductrice est avantageusement choisie parmi :
- les couches métalliques, notamment en argent ou en niobium, voire en or, et
- les couches d’un oxyde transparent conducteur, notamment choisi parmi l’oxyde d’indium et d’étain, les oxydes d’étain dopés (par exemple au fluor ou à l’antimoine) et les oxydes de zinc dopés (par exemple à l’aluminium ou au gallium).
Ces couches sont particulièrement appréciées pour leur faible émissivité, qui confère aux vitrages d’excellentes propriétés d’isolation thermique. Dans les vitrages équipant les véhicules terrestres, notamment automobiles, ferroviaires, ou encore les véhicules aériens ou maritimes, les vitrages bas-émissifs permettent par temps chaud de réfléchir vers l’extérieur une partie du rayonnement solaire, et donc de limiter l’échauffement de l’habitacle desdits véhicules, et le cas échéant de réduire les dépenses de climatisation. A l’inverse, par temps froid, ces vitrages permettent de conserver la chaleur au sein de l’habitacle, et par conséquent de réduire l’effort énergétique de chauffage. Il en est de même dans le cas des vitrages équipant les bâtiments.
Selon un mode de réalisation préféré, l’empilement de couches minces comprend au moins une couche d’argent, notamment une, deux ou trois, voire quatre couches d’argent. L’épaisseur physique de la couche d’argent ou le cas échéant la somme des épaisseurs des couches d’argent est de préférence comprise entre 2 et 50 nm, notamment entre 3 et 40 nm.
Selon un autre mode de réalisation préféré, l’empilement de couches minces comprend au moins une couche d’oxyde d’indium et d’étain. Son épaisseur physique est de préférence comprise entre 30 et 200 nm, notamment entre 40 et 150 nm.
Afin de protéger la ou chaque couche mince électroconductrice (qu’elle soit métallique ou à base d’oxyde transparent conducteur) durant l’étape de bombage, chacune de ces couches est de préférence encadrée par au moins deux couches diélectriques. Les couches diélectriques sont de préférence à base d’oxyde, de nitrure et/ou d’oxynitrure d’au moins un élément choisi parmi le silicium, l’aluminium, le titane, le zinc, le zirconium et l’étain.
Au moins une partie de l’empilement de couches minces peut être déposée par diverses techniques connues, par exemple par dépôt chimique en phase vapeur (CVD), ou par pulvérisation cathodique, notamment assistée par champ magnétique (procédé magnétron).
L’empilement de couches minces est de préférence déposée par pulvérisation cathodique, notamment assistée par champ magnétique. Dans ce procédé, un plasma est créé sous un vide poussé au voisinage d’une cible comprenant les éléments chimiques à déposer. Les espèces actives du plasma, en bombardant la cible, arrachent lesdits éléments, qui se déposent sur la feuille de verre en formant la couche mince désirée. Ce procédé est dit « réactif » lorsque la couche est constituée d’un matériau résultant d’une réaction chimique entre les éléments arrachés de la cible et le gaz contenu dans le plasma. L’avantage majeur de ce procédé réside dans la possibilité de déposer sur une même ligne un empilement très complexe de couches en faisant successivement défiler la feuille de verre sous différentes cibles, ce généralement dans un seul et même dispositif.
Les empilements précités possèdent des propriétés de conduction de l’électricité et de réflexion de l’infrarouge utiles pour procurer une fonction de chauffage (dégivrage, désembuage) et/ou une fonction d’isolation thermique.
Lorsque l’empilement de couches minces est destiné à procurer une fonction de chauffage, des amenées de courant doivent être prévues. Il peut notamment s’agir de bandes en pâte d’argent déposées par sérigraphie sur l’empilement de couches minces, au niveau de deux bords opposés de la feuille de verre.
Couches d’émail
Les détails qui suivent valent aussi bien pour la première couche d’émail que pour la deuxième couche d’émail.
Dans le présent texte on qualifie de « composition d’émail » les compositions liquides qui sont utilisées pour déposer lors des étapes b et d les couches d’émail humide. Le terme « couche d’émail » est utilisé pour qualifier la couche à chaque étape du procédé, aussi bien la couche humide (avant bombage voire avant pré-cuisson, le cas échéant avant séchage) que la couche finale (après cuisson).
Lors des étapes b et d, la couche d’émail est de préférence déposée à partir d’une composition d’émail comprenant au moins un pigment, au moins une fritte de verre ainsi que les particules réfractaires. La composition d’émail, comme la couche d’émail, ne comprend de préférence pas d’oxyde de plomb. La composition d’émail, comme la couche d’émail, n’est normalement pas électro-conductrice.
La composition d’émail (aussi bien pour la première que pour la deuxième couche d’émail) comprend généralement en outre un médium organique, destiné à faciliter l’application de la composition sur le substrat ainsi que son adhésion temporaire à ce dernier, et qui est éliminé lors de la pré-cuisson ou de la cuisson de l’émail. Le médium comprend typiquement des solvants, des diluants, des huiles et/ou des résines.
Les pigments comprennent de préférence un ou plusieurs oxydes choisis parmi les oxydes de chrome, de cuivre, de fer, de manganèse, de cobalt et de nickel. Il peut s’agir à titre d’exemple de chromates de cuivre et/ou de fer. Les pigments sont de préférence noirs, pour la première couche d’émail, et également avantageusement pour la deuxième couche d’émail.
Le dépôt de la première couche d’émail est de préférence réalisé par sérigraphie. Pour ce faire, on dispose sur la feuille de verre un écran de sérigraphie, lequel comprend des mailles dont certaines sont obturées, puis on dépose la composition d’émail sur l’écran, puis on applique un racle afin de forcer la composition d’émail à traverser l’écran dans les zones où les mailles de l’écran ne sont pas obturées, de manière à former une couche d’émail humide. Le dépôt de la première couche d’émail peut aussi être réalisé par impression numérique.
Le dépôt de la deuxième couche d’émail est de préférence réalisé par sérigraphie, comme décrit dans le paragraphe précédent, ou par impression numérique.
L’impression numérique (notamment du type jet d’encre) est de préférence réalisée à l’aide d’une tête d’impression dont le mouvement (en particulier la position et la vitesse) est contrôlé par ordinateur ou à l’aide d’une série de têtes d’impression fixes en regard de laquelle le verre défile à une vitesse contrôlée. Pour ce faire, la ou chaque tête d’impression comprend des buses au travers desquelles des gouttes d’encre sont projetées localement sur la feuille de verre. Cette technique est parfois appelée « drop on demand » (DOD).
L’épaisseur de la première et/ou de la deuxième couche d’émail humide est de préférence comprise entre 15 et 40 µm, notamment entre 20 et 30 µm.
L’étape b et/ou l’étape d est de préférence immédiatement suivie d’une étape de séchage, destinée à éliminer au moins une partie du solvant contenu dans la composition d’émail. Un tel séchage est typiquement réalisé à une température comprise entre 120 et 180°C.
Etape b
La fritte de verre de la première couche d’émail est apte à dissoudre l’empilement de couches sous-jacent. De préférence la fritte de verre est à base de borosilicate, ou de borate, de bismuth et de zinc. Afin de la rendre plus « agressive » vis-à-vis de l’empilement de couches, les teneurs en bismuth et/ou en bore sont de préférence plus élevées, et/ou la teneur en silice est de préférence plus faible (et peut même être nulle), que celles des frittes de verre habituellement employées.
L’empilement est de préférence revêtu par la première couche d’émail sur 2 à 25%, notamment 3 à 20%, voire 5 à 15% de sa surface. La première couche d’émail comprend de préférence une bande périphérique, c’est-à-dire une bande refermée sur elle-même qui, de chaque point de la périphérie de la première feuille de verre, s’étend vers l’intérieur de la première feuille de verre sur une certaine largeur, généralement variable, typiquement comprise entre 1 et 20 cm.
Etape d
La deuxième couche d’émail est déposée au moins sur une partie de la première couche d’émail. De préférence, elle est déposée uniquement sur toute la surface de la première couche d’émail. En pratique, une coïncidence parfaite entre les deux couches d’émail peut aisément être obtenue par impression numérique, mais plus difficilement dans le cas d’un dépôt par sérigraphie. Il est donc possible qu’une zone de la première couche d’émail ne soit pas revêtue de la deuxième couche d’émail ou inversement qu’une zone de la deuxième couche d’émail soit déposée directement sur la première feuille de verre, sur un espace typiquement de 0,1 à 1 mm de largeur. Alternativement, la deuxième couche d’émail peut être en contact direct avec la première feuille de verre sur une zone plus large, et dans ce cas une zone de transition, à base par exemple de dégradé de points, peut avantageusement être ménagée.
La deuxième couche d’émail est différente de la première couche d’émail. Typiquement, la composition chimique de la fritte de verre utilisée pour la deuxième couche d’émail est différente de celle utilisée pour la première couche d’émail.
La deuxième couche d’émail est de préférence déposée à partir d’une composition d’émail comprenant une fritte de verre à base de borosilicate de bismuth, voire de borosilicate de bismuth et de zinc. La deuxième couche d’émail comprend donc de préférence un liant vitreux ou vitrocristallin à base de borosilicate de bismuth, voire de borosilicate de bismuth et de zinc.
De préférence, la teneur en bismuth est réduite et/ou la teneur en silice est augmentée, par rapport à la fritte de verre utilisée pour la première couche d’émail, afin d’éviter toute réaction entre les deux couches d’émail pendant le bombage susceptible d’entraîner l’apparition d’une teinte indésirable.
De tels émaux présentent l’avantage d’éviter le collage ou le transfert d’émail pendant l’étape de bombage, que ce soit entre la première feuille de verre et les outils de bombage, lorsque la première feuille de verre est bombée seule, ou entre la première feuille de verre et la feuille de verre supplémentaire, lorsqu’elles sont bombées ensemble.
Etape de pré-cuisson (c)
Le procédé comprend, entre l’étape b et l’étape d, une étape c de pré-cuisson de la première couche d’émail durant laquelle l’empilement de couches minces situé sous la première couche d’émail est au moins partiellement dissout par ladite première couche d’émail.
L’étape de pré-cuisson est de préférence mise en œuvre à une température comprise entre 150 et 800°C, notamment entre 500 et 700°C.
Une telle pré-cuisson permet d’éliminer le médium organique, ou de manière générale tout composant organique éventuellement présent dans la couche d’émail.
Lors de la pré-cuisson, l’empilement de couches minces est au moins partiellement dissout par la couche d’émail. Selon la température employée et le type d’émail ou d’empilement, l’empilement peut même être totalement dissout par la couche d’émail lors de la pré-cuisson. Alternativement, il peut n’être que partiellement dissout lors de la pré-cuisson, et il est alors totalement dissout lors du bombage (étape e).
En particulier dans le cas où la première feuille de verre est bombée seule, notamment par pressage, il n’est pas nécessaire de procéder à une deuxième pré-cuisson entre l’étape d et l’étape e.
Etape e
Le bombage peut notamment être réalisé par gravité (le verre se déformant sous son propre poids) ou par pressage, à des températures allant typiquement de 550 à 650°C. Le pressage peut éventuellement être suivi d’un refroidissement rapide afin de procurer un renforcement superficiel (trempe ou durcissement).
De préférence, la première feuille de verre est bombée seule, notamment par pressage. Les deux feuilles de verre (première feuille de verre et feuille de verre supplémentaire) sont alors bombées séparément. Il importe dans ce cas d’éviter tout collage ou tout transfert d’émail entre la première feuille de verre et les outils de bombage.
Selon un autre mode de réalisation, la première feuille de verre et la feuille de verre supplémentaire sont bombées ensemble, la couche d’émail étant tournée vers ladite feuille de verre supplémentaire. Il importe dans ce cas d’éviter tout collage entre les deux feuilles de verre. Les feuilles de verre peuvent être maintenues à distance en disposant entre elles une poudre intercalaire assurant un espace de quelques dizaines de micromètres, typiquement de 20 à 50 µm. La poudre intercalaire est par exemple à base de carbonate de calcium et/ou de magnésium. Lors du bombage, la feuille de verre intérieure (destinée à être positionnée à l’intérieur de l’habitacle), est normalement placée au-dessus de la feuille de verre extérieure. Ainsi, lors de l’étape de bombage, la feuille de verre supplémentaire est placée au-dessus de la première feuille de verre. Ce mode de réalisation est moins préféré car il peut imposer dans certains cas de réaliser une étape de pré-cuisson entre l’étape de dépôt de la deuxième couche d’émail et l’étape de bombage pour éviter tout collage lors du bombage.
De préférence, après l’étape e, la première couche d’émail est opaque, de teinte noire. Sa clarté L* mesurée en réflexion côté verre est de préférence inférieure à 5. Comme indiqué précédemment, elle forme avantageusement une bande en périphérie de la première feuille de verre. De la sorte, la couche d’émail est capable de dissimuler et protéger contre le rayonnement ultraviolet des joints, des éléments de connectique, ou encore des capteurs. La deuxième couche d’émail est aussi, de préférence, opaque et de teinte noire.
Si la première couche d’émail n’a pas déjà totalement dissout l’empilement de couches minces à l’issue de la pré-cuisson décrite ci-après, cette dissolution totale est obtenue lors du bombage, qui achève la cuisson de l’émail.
La dissolution totale de l’empilement de couches minces peut notamment être observée par microscopie électronique. Des mesures électriques, notamment de résistance carrée, permettent aussi de constater la dissolution de l’empilement.
Etape f
L’étape de feuilletage peut être réalisée par un traitement en autoclave, par exemple à des températures de 110 à 160°C et sous une pression allant de 10 à 15 bars. Préalablement au traitement en autoclave, l’air emprisonné entre les feuilles de verre et l’intercalaire de feuilletage peut être éliminé par calandrage ou par dépression.
Comme dit précédemment, la feuille supplémentaire est de préférence la feuille intérieure du vitrage feuilleté, c’est-à-dire la feuille située du côté concave du vitrage, destinée à être positionnée à l’intérieur de l’habitacle du véhicule. De la sorte, les revêtements sont disposés en face 2 du vitrage feuilleté.
La feuille de verre supplémentaire peut être en verre silico-sodo-calcique, ou encore en verre de borosilicate ou d’aluminosilicate. Elle peut être en verre clair ou teinté. Son épaisseur est de préférence comprise entre 0,5 et 4 mm, notamment entre 1 et 3 mm.
Selon un mode de réalisation préféré, la feuille de verre supplémentaire présente une épaisseur comprise entre 0,5 et 1,2 mm. La feuille de verre supplémentaire est notamment en verre d’aluminosilicate de sodium, de préférence renforcé chimiquement. La feuille de verre supplémentaire est de préférence la feuille intérieure du vitrage feuilleté. L’invention est particulièrement utile pour ce type de configuration, pour lequel il est difficile de disposer l’empilement de couches minces en face 3. Le renforcement chimique (aussi appelé « échange ionique ») consiste à mettre en contact la surface du verre avec un sel de potassium fondu (par exemple du nitrate de potassium), de manière à renforcer la surface du verre en échangeant des ions du verre (ici des ions sodium) par des ions de plus grand rayon ionique (ici des ions potassium). Cet échange ionique permet de former des contraintes de compression à la surface du verre et sur une certaine épaisseur. De préférence, la contrainte de surface est d’au moins 300 MPa, notamment 400 et même 500 MPa, et d’au plus 700 MPa, et l’épaisseur de la zone en compression est d’au moins 20 µm, typiquement entre 20 et 50 µm. Le profil de contraintes peut être déterminé de manière connue à l’aide d’un microscope polarisant équipé d’un compensateur de Babinet. L’étape de trempe chimique est de préférence mise en œuvre à une température allant de 380 à 550°C, et pour une durée allant de 30 minutes à 3 heures. Le renforcement chimique est de préférence réalisé après l’étape de bombage mais avant l’étape de feuilletage. Le vitrage obtenu est de préférence un pare-brise de véhicule automobile, en particulier un pare-brise chauffant.
Selon un autre mode de réalisation préféré, la feuille de verre supplémentaire porte sur la face opposée à la face tournée vers l’intercalaire de feuilletage (de préférence la face 4, la feuille supplémentaire étant la feuille intérieure) un empilement de couches minces supplémentaire, notamment un empilement à faible émissivité, comprenant un oxyde transparent conducteur, notamment l’oxyde d’indium et d’étain (ITO). L’invention est aussi particulièrement utile pour ce type de configuration, pour lequel il est délicat de disposer des empilements de couches minces sur les deux faces de la même feuille de verre (face 3 et 4). Dans ce mode de réalisation, l’intercalaire de feuilletage et/ou la feuille de verre supplémentaire est de préférence teinté(e), la feuille de verre portant les revêtements pouvant être en verre clair. Le vitrage obtenu est de préférence un toit de véhicule automobile.
Comme exemple de ce dernier mode de réalisation préféré, on peut citer un toit bombé feuilleté comprenant, depuis l’extérieur du véhicule, une feuille de verre clair revêtue en face 2 d’un empilement de couches minces comprenant au moins une couche d’argent puis d’une couche d’émail, un intercalaire de feuilletage en PVB teinté, et une feuille de verre supplémentaire en verre teinté, portant en face 4 un empilement de couches minces à faible émissivité, notamment à base d’ITO.
L’intercalaire de feuilletage comprend de préférence au moins une feuille de polyvinylacétal, notamment de polyvinylbutyral (PVB).
L’intercalaire de feuilletage peut être teinté ou non-teinté afin si nécessaire de réguler les propriétés optiques ou thermiques du vitrage.
L’intercalaire de feuilletage peut avantageusement posséder des propriétés d’absorption acoustique afin d’absorber les sons d’origine aérienne ou solidienne. Il peut notamment être constitué à cet effet de trois feuilles polymériques, dont deux feuilles de PVB dites externes encadrant une feuille polymérique interne, éventuellement en PVB, de dureté plus faible que celle des feuilles externes.
L’intercalaire de feuilletage peut également posséder des propriétés d’isolation thermique, en particulier de réflexion du rayonnement infrarouge. Il peut à cet effet comprendre un revêtement de couches mince à faible émissivité, par exemple un revêtement comprenant une couche mince d’argent ou un revêtement alternant des couches diélectriques d’indices de réfractions différents, déposé sur une feuille de PET interne encadrée par deux feuilles de PVB externes.
L’épaisseur de l’intercalaire de feuilletage est généralement comprise dans un domaine allant de 0,3 à 1,5 mm, notamment de 0,5 à 1 mm. L’intercalaire de feuilletage peut présenter une épaisseur plus faible sur un bord du vitrage qu’au centre du vitrage afin d’éviter la formation d’une double image en cas d’utilisation d’un système de vision tête haute, dit HUD (head-up display).
Exemples
Les exemples de réalisation qui suivent illustrent l’invention de manière non limitative, en lien avec la .
illustre de manière schématique un mode de réalisation du procédé selon l’invention. Elle représente une coupe schématique d’une partie des feuilles de verre et des éléments déposés sur les feuilles de verre, près de leur périphérie. Les divers éléments ne sont évidemment pas représentés à l’échelle, de manière à pouvoir les visualiser.
La première feuille de verre 10 revêtue de l’empilement de couches minces 12 est fournie dans l’étape a, puis une partie de l’empilement 12 est revêtue par une première couche d’émail 14, notamment par sérigraphie (étape b).
L’ensemble subit ensuite une pré-cuisson (étape c), qui dans le cas représenté, conduit à une dissolution partielle de l’empilement 12 par l’émail 14. Alternativement, la dissolution peut être totale.
Une deuxième couche d’émail 16 est ensuite déposée sur la première couche d’émail 14 (étape d), notamment par sérigraphie ou impression numérique. Dans l’exemple illustré, la coïncidence est parfaite, mais comme décrit précédemment, la deuxième couche d’émail 16 peut également « déborder » la première couche d’émail 14 ou au contraire ne pas recouvrir la totalité de cette dernière, de préférence sur une faible largeur, par exemple de 0,5 ou 1 mm.
La première feuille de verre 10 est ensuite bombée, par exemple par pressage (étape e). La vue représentée n’étant que celle de l’extrémité de la feuille de verre, le bombage n’est ici pas représenté. Le schéma illustre le fait qu’à l’issue du bombage, la première couche d’émail 14 a totalement dissout l’empilement de couches minces 12 sous-jacent.
Dans l’étape f, la première feuille de verre 10 revêtue de l’empilement de couches minces 12 et des couches d’émail 14 et 16 et une feuille de verre supplémentaire 20 revêtue d’un empilement de couches minces supplémentaire 22 sont assemblées à l’aide de l’intercalaire de feuilletage 30. Le schéma représente ici chacun des éléments séparés, en vue éclatée.
Le procédé mis en œuvre par les exemples correspond au mode de réalisation de la .
Des feuilles de verre de 2,1 mm d’épaisseur, préalablement revêtues par pulvérisation cathodique d’un empilement de couches minces comprenant trois couches d’argent protégées par des couches d’oxyde de zinc, des couches de nitrure de silicium et des bloqueurs NiCr, ont été revêtues par sérigraphie de couches d’émail à base de borate de bismuth d’une épaisseur humide de 25 µm.
L’émail a ensuite été séché (150°C, 1 à 2 minutes) puis pré-cuit à environ 640°C-680°C, entraînant une dissolution complète de l’empilement. La clarté L* en réflexion (illuminant D65, observateur de référence 10°) côté verre était de 4,0 à l’issue de cette étape.
Une deuxième couche d’émail à base de borosilicate de bismuth et de zinc (selon les essais, émaux commercialisés sous les références 1T1417 par la société Fenzi, et 14331 ou 14251 par la société Vibrantz) a ensuite été déposée par sérigraphie sur la première couche d’émail.
La première feuille de verre ainsi revêtue a ensuite été bombée par pressage contre une forme à une température de 630-660°C.
A l’issue de cette étape, la valeur de L* était de 4,4 dans le cas des émaux 14331 et 14251 et de 5,0 dans le cas de l’émail 1T1417. Les résultats en termes de collage ou de transfert d’émail étaient satisfaisants, les meilleurs résultats étant obtenus avec l’émail 14251, plus riche en bismuth et moins riche en zinc.
Dans un exemple comparatif, en l’absence de deuxième couche d’émail, une partie de l’émail est resté collé sur le tissu de la forme et des marques de tissu ont été observées sur l’émail.
La première feuille de verre a ensuite été feuilletée avec une feuille de verre supplémentaire en verre silico-sodo-calcique muni en face 4 d’un empilement comprenant une couche d’ITO.

Claims (14)

  1. Procédé d’obtention d’un vitrage bombé feuilleté, notamment pour pare-brise ou toit de véhicule automobile, comprenant les étapes successives suivantes :
    a. la fourniture d’une première feuille de verre (10), revêtue sur au moins une partie d’une de ses faces d’un empilement de couches minces (12),
    b. une étape de dépôt, sur une partie de la surface de l’empilement de couches minces (12), d’une première couche d’émail (14),
    c. une étape de pré-cuisson de la première couche d’émail (14) durant laquelle l’empilement de couches minces (12) situé sous la première couche d’émail (14) est au moins partiellement dissout par ladite première couche d’émail (14),
    d. une étape de dépôt, au moins sur une partie de la première couche d’émail (14), d’une deuxième couche d’émail (16) différente de la première couche d’émail (14),
    e. une étape de bombage de la première feuille de verre (10), l’empilement de couches minces (12) situé sous la première couche d’émail (14) étant totalement dissout par ladite première couche d’émail (14, 16) au moins à l’issue de cette étape, puis
    f. une étape de feuilletage de ladite première feuille de verre (10) avec une feuille de verre supplémentaire (20) au moyen d’un intercalaire de feuilletage (30), de sorte que les couches d’émail (14) soient tournées vers ledit intercalaire (30).
  2. Procédé selon la revendication 1, tel que l’empilement de couches minces (12) comprend au moins une couche fonctionnelle, notamment une couche fonctionnelle électro-conductrice.
  3. Procédé selon la revendication précédente, dans lequel la au moins une couche fonctionnelle électro-conductrice est choisie parmi les couches métalliques, notamment en argent ou en niobium, et les couches d’un oxyde transparent conducteur, notamment choisi parmi l’oxyde d’indium et d’étain, les oxydes d’étain dopés et les oxydes de zinc dopés.
  4. Procédé selon l’une des revendications précédentes, tel qu’après l’étape e, la première couche d’émail (14) est opaque, de teinte noire, et forme une bande en périphérie de la première feuille de verre (10).
  5. Procédé selon l’une des revendications précédentes, dans lequel le dépôt de la première couche d’émail (14) est réalisé par sérigraphie.
  6. Procédé selon l’une des revendications précédentes, dans lequel l’empilement de couches minces (12) est revêtu par la première couche d’émail (14) sur 2 à 25%, notamment 3 à 20%, de sa surface.
  7. Procédé selon l’une des revendications précédentes, dans lequel le dépôt de la deuxième couche d’émail (16) est réalisé par sérigraphie.
  8. Procédé selon l’une des revendications 1 à 6, dans lequel le dépôt de la deuxième couche d’émail (16) est réalisé par impression numérique.
  9. Procédé selon l’une des revendications précédentes, dans lequel la deuxième couche d’émail (16) est déposée à partir d’une composition d’émail comprenant une fritte de verre à base de borosilicate de bismuth, notamment à base de borosilicate de bismuth et de zinc.
  10. Procédé selon la revendication précédente, dans lequel la première couche d’émail (14) est déposée à partir d’une composition d’émail comprenant une fritte de verre à base de borosilicate, ou de borate, de bismuth et de zinc, dont la teneur en bismuth est plus élevée, ou la teneur en silice est plus faible, que celle de la fritte de verre utilisée pour la deuxième couche d’émail (16).
  11. Procédé selon l'une des revendications précédentes, dans lequel la deuxième couche d’émail (16) est déposée uniquement sur toute la surface de la première couche d’émail (14).
  12. Procédé selon l’une des revendications précédentes, dans lequel durant l’étape e, la première feuille de verre (10) est bombée seule, notamment par pressage.
  13. Procédé selon l’une des revendications précédentes, dans lequel la feuille de verre supplémentaire (20) porte, sur la face opposée à la face tournée vers l’intercalaire de feuilletage (30), un empilement de couches minces supplémentaire (22), notamment un empilement à faible émissivité comprenant un oxyde transparent conducteur.
  14. Vitrage bombé feuilleté, notamment pour pare-brise ou toit de véhicule automobile, obtenu par le procédé de l’une des revendications précédentes, comprenant une première feuille de verre (10) revêtue, sur une partie d’une de ses faces, d’un empilement de couches minces (12), et, sur une autre partie de la même face, d’une première couche d’émail (14) elle-même revêtue sur au moins une partie de sa surface d’une deuxième couche d’émail (16) différente de la première couche d’émail (14), ladite première feuille de verre (10) étant feuilletée avec une feuille de verre supplémentaire (20) au moyen d’un intercalaire de feuilletage (30), lesdites couches d’émail (14, 16) étant tournées vers ledit intercalaire de feuilletage (30).
PCT/EP2023/073578 2022-08-30 2023-08-29 Procédé d'obtention d'un vitrage bombé feuilleté WO2024046998A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2208666 2022-08-30
FR2208666A FR3139137A1 (fr) 2022-08-30 2022-08-30 Procédé d’obtention d’un vitrage bombé feuilleté

Publications (1)

Publication Number Publication Date
WO2024046998A1 true WO2024046998A1 (fr) 2024-03-07

Family

ID=84361978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/073578 WO2024046998A1 (fr) 2022-08-30 2023-08-29 Procédé d'obtention d'un vitrage bombé feuilleté

Country Status (2)

Country Link
FR (1) FR3139137A1 (fr)
WO (1) WO2024046998A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029346A1 (fr) 1998-11-06 2000-05-25 Glaverbel Panneaux vitres
WO2014133929A2 (fr) 2013-02-28 2014-09-04 Guardian Industries Corp. Blocs-fenêtres fabriqués à l'aide d'une fritte céramique qui dissout les revêtements déposés par des procédés de dépôt physique en phase vapeur (pvd), et/ou procédés associés
WO2019106264A1 (fr) 2017-11-30 2019-06-06 Saint-Gobain Glass France Feuille de verre revetue d'un empilement de couches minces et d'une couche d'email.
WO2022074333A1 (fr) 2020-10-09 2022-04-14 Saint-Gobain Glass France Procede d'obtention d'un vitrage bombe feuillete
FR3118769A1 (fr) * 2021-01-14 2022-07-15 Saint-Gobain Glass France Procédé d’obtention d’un vitrage bombé feuilleté

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029346A1 (fr) 1998-11-06 2000-05-25 Glaverbel Panneaux vitres
WO2014133929A2 (fr) 2013-02-28 2014-09-04 Guardian Industries Corp. Blocs-fenêtres fabriqués à l'aide d'une fritte céramique qui dissout les revêtements déposés par des procédés de dépôt physique en phase vapeur (pvd), et/ou procédés associés
WO2019106264A1 (fr) 2017-11-30 2019-06-06 Saint-Gobain Glass France Feuille de verre revetue d'un empilement de couches minces et d'une couche d'email.
WO2022074333A1 (fr) 2020-10-09 2022-04-14 Saint-Gobain Glass France Procede d'obtention d'un vitrage bombe feuillete
FR3118769A1 (fr) * 2021-01-14 2022-07-15 Saint-Gobain Glass France Procédé d’obtention d’un vitrage bombé feuilleté

Also Published As

Publication number Publication date
FR3139137A1 (fr) 2024-03-01

Similar Documents

Publication Publication Date Title
FR3074167B1 (fr) Feuille de verre revetue d'un empilement de couches minces et d'une couche d'email.
EP4225711B1 (fr) Procede d'obtention d'un vitrage bombe feuillete
EP3927671B1 (fr) Feuille de verre revetue d'une couche de peinture minerale et d'un empilement de couches minces
WO2022153002A1 (fr) Procédé d'obtention d'un vitrage bombé feuilleté
EP4244057B1 (fr) Vitrage feuillete pour vehicule, notamment automobile
WO2024046998A1 (fr) Procédé d'obtention d'un vitrage bombé feuilleté
EP4118043A1 (fr) Feuille de verre revetue d'un empilement de couches minces et d'une couche d'email
WO2023061925A1 (fr) Procédé d'obtention d'un vitrage bombé feuilleté
EP4263454B1 (fr) Procede d'obtention d'un vitrage bombe feuillete
WO2023209025A1 (fr) Vitrage comprenant une zone de décor
WO2023242040A1 (fr) Procédé d'obtention d'un vitrage bombé feuilleté
FR3118768A1 (fr) Procédé d’obtention d’un vitrage bombé feuilleté
WO2022058691A1 (fr) Procede d'obtention d'un vitrage bombe feuillete
EP4277790A1 (fr) Procédé d'obtention d'un vitrage bombé feuilleté
FR3118963A1 (fr) Procédé d’obtention d’un vitrage bombé feuilleté
FR3119793A1 (fr) Procédé d’obtention d’un vitrage bombé feuilleté
WO2023067133A1 (fr) Vitrage feuilleté bombé
WO2023036829A1 (fr) Lunette arrière ou custode de véhicule automobile comprenant une feuille de verre
FR3077028A1 (fr) Procede de traitement et d'assemblage de vitrage comprenant une couche a faible emissivite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762413

Country of ref document: EP

Kind code of ref document: A1