WO2024046926A1 - Robot catheter et interface homme machine de commande d'un module d'entrainement d'un instrument medical souple allonge - Google Patents

Robot catheter et interface homme machine de commande d'un module d'entrainement d'un instrument medical souple allonge Download PDF

Info

Publication number
WO2024046926A1
WO2024046926A1 PCT/EP2023/073433 EP2023073433W WO2024046926A1 WO 2024046926 A1 WO2024046926 A1 WO 2024046926A1 EP 2023073433 W EP2023073433 W EP 2023073433W WO 2024046926 A1 WO2024046926 A1 WO 2024046926A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical instrument
flexible medical
elongated flexible
translation
rotation
Prior art date
Application number
PCT/EP2023/073433
Other languages
English (en)
Inventor
Benoît HOEFLER
Arthur CAHAREL
Gaëtan GIGLEUX
Bruno Fournier
Original Assignee
Robocath
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robocath filed Critical Robocath
Publication of WO2024046926A1 publication Critical patent/WO2024046926A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes

Definitions

  • the invention relates to a catheter robot and a human machine interface for controlling a drive module of an elongated flexible medical instrument.
  • the introduction of an elongated flexible medical device into a blood vessel, artery or vein, of a patient is generally monitored under X-rays. In order to prevent the surgeon or other practitioner in charge of this introduction from being subjected to too many teleintervention.
  • the training module transmits to the elongated flexible medical instrument introduced into the blood vessel a translation movement and/or a rotation movement which can optionally be combined together.
  • the translational motion allows the elongated flexible medical instrument to move back and forth within the blood vessel into which it is inserted.
  • the rotational movement facilitates these movements of the elongated flexible medical instrument even in areas of the blood vessel that are highly stenosed or have significant tortuosity, as well as when passing branches between blood vessels.
  • the translation and rotation movements of the elongated flexible medical instrument are usually controlled by a mobile control member which is actuated by the practitioner during the intervention on the patient.
  • the control member is configured to control, in position, the translation and rotation movements of the elongated flexible medical instrument.
  • a movement of the control member causes a movement of the elongated flexible medical instrument with an amplitude which is proportional to the amplitude of movement of the control member.
  • a disadvantage of this first prior art is that the translational movement, although precise, can become too slow at certain times, in particular at the beginning of the introduction of the catheter into the patient, when the catheter must reach the particular area of the blood system. of the patient in which it will be used.
  • the control member is configured to control, in speed, the translation and rotation movements of the elongated flexible medical instrument.
  • controlling the position of the rotation of the elongated flexible medical instrument makes it possible to rotate it around its axis with an angle of rotation proportional to the amplitude of rotation of the control member, which allows the practitioner to rotate the elongated flexible medical instrument through a precise rotation angle intuitively.
  • the speed control of the translation of the elongated flexible medical instrument makes it possible to move it inside the blood vessel corresponding to a speed proportional to the amplitude of movement of the control member, which allows the elongated flexible medical instrument to be moved over a long distance from a compact control member.
  • the speed control it is possible to adapt the translation speed of the elongated flexible medical instrument according to the area of the blood vessel which it passes through. For example, to pass through curved areas of the vessel, the translation speed of the elongated flexible medical instrument may be reduced to avoid damage to the wall of the blood vessel by a collision between the elongated flexible medical instrument and this wall. Consequently, the present invention makes it possible, thanks to the combination of the speed control of the translation of the elongated flexible medical instrument and the position control of the rotation of the elongated flexible medical instrument, to obtain a catheter robot having a better compromise between good precision achieved and great ease of use by the practitioner, resulting in a catheter robot that is both effective and ergonomic.
  • the aim of the present invention is to provide a catheter robot and a human machine interface for controlling a drive module of an elongated flexible medical instrument at least partially overcoming the drawbacks of the aforementioned prior arts.
  • a catheter robot comprising: a drive module for an elongated flexible medical instrument, in translation along a main axis of elongation of said elongated flexible medical instrument and in rotation around the main axis of elongation of said elongated flexible medical instrument, simultaneously or alternatively, a man-machine interface for controlling said drive module, characterized in that said man-machine interface is structured so as to, in a first mode of operation: control, in speed, the translation drive of said elongated flexible medical instrument, control, in position, the rotation drive of said elongated flexible medical instrument.
  • the catheter robot obtained presents a better compromise between good precision achieved and great ease of use by the practitioner, resulting in a catheter robot that is both effective and ergonomic.
  • the invention comprises one or more of the following characteristics which can be used separately or in partial combination with each other or in total combination with each other, with the aforementioned object of the invention.
  • said elongated flexible medical instrument is a catheter guide, and/or said elongated flexible medical instrument is a guiding catheter or a microcatheter.
  • said man-machine interface comprises a mobile control member which is intended to be manipulated by the hand of a user, and which is structured so that, in the first mode of operation: a translational movement of said member control mobile with a translation amplitude causes a translational movement of said elongated flexible medical instrument with a speed proportional to said translation amplitude, a rotational movement of said mobile control member with an amplitude of rotation causes a rotational movement of said elongated flexible medical instrument with an angle of rotation proportional to said amplitude of rotation.
  • said man-machine interface is structured so as to control, in position, the rotational drive of said elongated flexible medical instrument, with a coefficient of proportionality between on the one hand the rotational movement of said control member and on the other hand. on the other hand the rotational movement of said elongated flexible medical instrument, said coefficient of proportionality being modifiable by a selection of the user of the catheter robot.
  • said man-machine control interface comprises: a drive control member, in translation and rotation, of said elongated flexible medical instrument, a safety element, making it possible to block or unblock the drive of said elongated flexible medical instrument by said drive control member.
  • the control unit is intrinsically sensitive. Thanks to the safety element, untimely triggering by the drive control member of the elongated flexible medical instrument can be more easily avoided. Preferably, the safety element at least prevents the untimely triggering of the translation drive of the elongated flexible medical instrument. This translation being controlled by speed, there is a greater risk (than for a position control) for the health of the patient in the event of untimely triggering.
  • said security element comprises a security surface capable of detecting contact or support of a user's hand so as to unlock said drive control member, said security surface preferably being a tactile surface , or a capacitive touch surface, or a capacitive touch surface covered with a coating including titanium, or a capacitive touch surface covered with titanium paint.
  • the safety element therefore presents both ease of use and high operating efficiency.
  • said man-machine control interface includes haptic feedback for only the translation of the elongated flexible medical instrument, preferably in the form of vibrations, or preferably in the form of vibrations whose frequency is proportional to the translation speed of the elongated flexible medical instrument.
  • the user of the catheter robot thus receives feedback on the translation training that he has ordered, which allows him to verify that this training is taking place in the way he wanted.
  • the vibrations have a frequency proportional to the translation speed of the elongated flexible medical instrument, it is possible to detect the passage of the elongated flexible medical instrument in tortuous or stenotic areas, which allows the user to know when it is appropriate to modify or adapt the control of the translation drive of the elongated flexible medical instrument and/or to control the elongated flexible medical instrument in rotation.
  • the man-machine interface is structured so as to, in a second operating mode: control, in speed, the translation drive of said elongated flexible medical instrument, control, in speed, the rotation drive of said medical instrument supple elongated.
  • said man-machine control interface includes a rod: which is movable in translation by the hand of a user so as to drive said elongated flexible medical instrument in translation, which is movable in rotation by the hand of a user of so as to drive said elongated flexible medical instrument in rotation, and which preferably comprises a tactile surface.
  • the rod preferably has an elongated shape like the elongated flexible medical instrument. This makes controlling the drive of the elongated flexible medical instrument more ergonomic.
  • said rod comprises two parts sliding into each other: a first part which is movable in translation and in rotation and which is intended to be manipulated by the hand of a user, a second part which is coupled in rotation with said first part, and which is decoupled in translation from said first part so as to remain fixed in translation.
  • the bulk of the man-machine interface can be reduced while guaranteeing effective control of driving the elongated flexible medical instrument in translation and rotation.
  • said man-machine interface also comprises a rotary ring arranged around said rod, the angle of rotation of said rotary ring around said rod being representative of the rotation speed selected for said elongated flexible medical instrument, during speed control of the rotation drive of said elongated flexible medical instrument.
  • said man-machine interface also comprises an elastic return element, in the rest position, of said rotary ring arranged around said rod, the elastic return element preferably comprising a return spring.
  • the rest position corresponds to the position of the rotating ring before its rotational movement. In other words, in the rest position, the speed of rotational movement of the elongated flexible medical instrument is zero. Also, thanks to the elastic return element, it is possible to stop the rotational drive of the elongated flexible medical instrument when the user stops operating the rotating ring. In addition, the elastic return element also makes it possible to reduce the overall size of the man-machine interface because it makes it possible to reduce the size and stroke of the rotating ring.
  • said man-machine control interface includes a crank which can be rotated by the hand of a user so as to drive said elongated flexible medical instrument in rotation.
  • said man-machine control interface also includes an elastic return element, in the rest position, for driving in translation only, said mobile control member or said rod, said elastic return element preferably comprising a spring reminder.
  • the rest position corresponds to the position of the mobile control member or the rod before their translational movement. In other words, in the rest position, the speed of translational movement of the elongated flexible medical instrument is zero. Also, thanks to the elastic return element, it is possible to stop the translational drive of the elongated flexible medical instrument when the user stops operating the mobile control member. In addition, the elastic return element also makes it possible to reduce the overall size of the man-machine interface because it makes it possible to reduce the size and stroke of the mobile control member.
  • the catheter robot also comprises another module for driving another elongated flexible medical instrument, in translation along a main axis of elongation of said other elongated flexible medical instrument and in rotation around the main axis elongation of said other elongated flexible medical instrument, said man-machine interface also controlling said other drive module and being structured so as to, in the first operating mode: control, in speed, the translation drive of said other elongated flexible medical instrument, control, in position, the rotation drive of said other elongated flexible medical instrument.
  • the catheter robot can therefore be equipped with two separate medical instruments whose translation drive is controlled by speed and the rotation drive is controlled by position. Additional functionalities can therefore be added to the catheter robot. Furthermore, the same man-machine interface makes it possible to control the training of the two medical instruments, which reduces the overall size of the catheter robot.
  • the catheter robot comprises at least one additional module for driving, in translation, an additional elongated flexible medical instrument, said additional elongated flexible medical instrument surrounding over part of its length said elongated flexible medical instrument, said human interface machine also controlling said additional drive module, said man-machine interface being structured to control, in speed, the translation drive of said additional elongated flexible medical instrument.
  • the additional training module also being controlled by the same human machine interface as the first training module, the overall size of the catheter robot is reduced.
  • the additional training module and the additional elongated flexible medical instrument it is possible to add additional functionalities to the catheter robot.
  • said additional elongated flexible medical instrument is a catheter, preferably a stent or balloon catheter.
  • said man-machine control interface also includes a wheel which can be rotated by the hand of a user so as to control the speed and drive in translation said additional elongated flexible medical instrument.
  • the wheel has the advantage of being simple to use and taking up particularly little space. We thus obtain, for a control of a simple nature, such as the translation of the additional elongated flexible medical instrument, an improvement in the compromise between simplicity of use and the overall size of the man-machine interface of the catheter robot.
  • said human machine control interface also includes an additional elastic element for returning the wheel to the rest position, which preferably comprises one or more additional return springs.
  • the rest position corresponds to the position of the wheel before moving it in rotation. In other words, in the rest position, the speed of translational movement of the additional elongated flexible medical instrument is zero. Also, thanks to the additional elastic return element, it is possible to stop the translational drive of the additional elongated flexible medical instrument when the user stops operating the wheel. In addition, the additional elastic return element also makes it possible to reduce the overall size of the man-machine interface, because it makes it possible to reduce the size and travel of the wheel.
  • said man-machine interface is structured so as to: only control, in speed, the translational drive of said elongated flexible medical instrument, only control, in position, the rotational drive of said elongated flexible medical instrument .
  • said man-machine interface is structured, in a third operating mode, so as to control, in position, the translation drive of said elongated flexible medical instrument, step by step, that is to say by movement of 'a predetermined step for each pulse received by the man-machine interface, control, in position, the rotational drive of said elongated flexible medical instrument, step by step, that is to say by moving a predetermined step with each pulse received by the man-machine interface.
  • the invention relates to a man-machine interface for controlling a drive module of an elongated flexible medical instrument, in translation along a main axis of elongation of said elongated flexible medical instrument and in rotation around the main axis of elongation of said elongated flexible medical instrument, in a catheter robot, characterized in that it is structured so as to, in a first mode of operation: control, in speed, the drive in translation of said elongated flexible medical instrument, controlling, in position, the rotational drive of said elongated flexible medical instrument.
  • the man-machine interface comprises a mobile control member which is intended to be manipulated by the hand of a user, and which is structured so that, in the first mode of operation: a translational movement of said mobile control member with a translation amplitude causes a translational movement of said elongated flexible medical instrument with a speed proportional to said translation amplitude, a rotational movement of said mobile control member with a rotation amplitude causes a rotational movement of said instrument flexible medical device elongated with an angle of rotation proportional to said amplitude of rotation.
  • Figure 1 schematically represents an example of a catheter robot according to one embodiment of the invention.
  • Figure 2 represents a schematic view in longitudinal section of an example of an elongated flexible medical instrument.
  • Figure 3 is a schematic perspective view of an example of a human machine interface of the catheter robot of Figure 1 according to one embodiment of the invention.
  • Figure 4 is a schematic perspective view of an example of a part of a mobile control member, or drive control member, of the man-machine interface of Figure 3.
  • Figure 5 is a schematic perspective view of an example of a mobile control member or drive control member of the man-machine interface of Figure 3.
  • Figure 6 represents a schematic side view of an example of a human machine interface of the catheter robot of Figure 1 according to another embodiment of the invention.
  • Figure 7 represents a schematic side view of an example of a human machine interface of the catheter robot of Figure 1 according to another embodiment of the invention.
  • FIG. 8 Figure 8 schematically represents an example of a catheter robot according to another embodiment of the invention.
  • Figure 9 is a schematic perspective view of an example of a human machine interface of the catheter robot of Figure 8 according to one embodiment of the invention. DETAILED DESCRIPTION OF THE MODES OF CARRYING OUT THE INVENTION
  • FIG 1 schematically represents a catheter robot 1 according to a first embodiment of the invention.
  • the catheter robot 1 comprises a training module 2 of an elongated flexible medical instrument 3 (illustrated in Figure 2) and a man-machine interface 4 for controlling the training module 2.
  • the elongated flexible medical instrument 3 can for example be an organ to be introduced into a canal of a patient, and to move in this canal, in particular an artery or a vein of the patient. As illustrated in Figure 2, the elongated flexible medical instrument 3 extends along an axis A, called the main axis of elongation.
  • the elongated flexible medical instrument 3 comprises a catheter guide, and/or a guide catheter, and/or a micro-catheter.
  • the elongated flexible medical instrument 3 may, also or alternatively, comprise a catheter, for example of the balloon or stent type.
  • the elongated flexible medical instrument 3 comprises a guide catheter 3-1, a micro-catheter 3-2 and a coaxial catheter guide 3-3 of axis A.
  • the catheter guide 3-1 and the micro-catheter 3-2 are hollow at least on a portion close to the patient when the elongated flexible medical instrument 3 is introduced into the patient.
  • the 3-3 catheter guide may be a solid metal wire.
  • the diameter of the guide catheter 3-1 is greater than the diameter of the microcatheter 3-2, and the diameter of the guide catheter 3-3 is smaller than the diameter of the microcatheter 3-3.
  • the catheter guide 3-3 is thus inserted, at least partially, into the microcatheter 3-2 which is in turn inserted, at least partially, into the guide catheter 3-1.
  • the training module 2 is structured so as to be able to be connected to the elongated flexible medical instrument 3.
  • the training module 2 is configured to move the elongated flexible medical instrument 3 in translation along the main axis of elongation A, and/or in rotation around the main axis of elongation A.
  • the catheter robot 1 may also include an additional training module 2' of an additional elongated flexible medical instrument.
  • the additional elongated flexible medical instrument surrounds the elongated flexible medical instrument 3, at least over part of the length of the instrument elongated flexible medical instrument 3.
  • the additional elongated flexible medical instrument is for example a catheter, preferably a stent or balloon catheter.
  • the additional training module 2' is structured so that it can be connected to the additional elongated flexible medical instrument.
  • the additional drive module 2' is configured to move the additional elongated flexible medical instrument in translation.
  • the human machine interface 4 is also configured to control the additional drive module 2’.
  • the man-machine interface 4 comprises a control member 5 of the elongated flexible medical instrument 3.
  • the control member 5 is for example connected to a box 6 of the man-machine interface 4.
  • control member 5 is a mobile control member intended to be manipulated by a user of the catheter robot 1.
  • control member 5 can be manipulated by a hand of the user.
  • manipululate we mean here that an effort is exerted by the user voluntarily on the control member 5.
  • the manipulation of the control member 5 causes the elongated flexible medical instrument 3 in translation along the main axis of elongation A and/or in rotation around this axis A.
  • the translation of the elongated flexible medical instrument 3 along its main axis of elongation A can be controlled in one direction or the other (advance or withdrawal).
  • the rotation of the elongated flexible medical instrument 3 around its main axis of elongation A can be controlled in one direction or the other (clockwise or counterclockwise).
  • the control member 5 is in particular a drive control member, in translation and in rotation, of the elongated flexible medical instrument 3.
  • the control member 5 can make it possible to control the translation and/or rotation of the elongated flexible medical instrument 3 from two types of controls: a position control or a speed control. These types of commands are described below.
  • control member 5 has an elongated shape like the elongated flexible medical instrument 3. This makes the control of the drive of the elongated flexible medical instrument 3 more ergonomic.
  • the mobile control member 5 comprises a rod 7 extending along a longitudinal axis B.
  • the rod 7 has for example a generally cylindrical shape. In certain cases, the rod 7 is formed in one piece. In other cases, the rod 7 is formed by several distinct parts connected together, as will be detailed later with reference to Figure 4.
  • the rod 7 is partially introduced inside the housing 6 of the man-machine interface 4.
  • a first end portion 7-1 of the rod 7 is inserted into the housing 6, a second end portion 7-2 opposite the first end portion of the rod 7 being exterior to the housing 6.
  • the user of the catheter robot 1 can thus manipulate the rod 7 via its second end portion 7-2.
  • Manipulating the rod 7 may include moving the rod 7 or part of it in translation along its longitudinal axis B in one direction or the other (advance or retraction). Manipulating the rod 7 can also include moving the rod 7 or part of it in rotation around this longitudinal axis B in one direction or the other (clockwise or counterclockwise). As will be explained subsequently, the rod 7 is structured in such a way that the movement of the rod 7 (or part of it) in translation along the axis B or in rotation around the axis B controls a movement of the elongated flexible medical instrument 3 in, respectively, translation along its main axis of elongation A or rotation around the main axis of elongation A.
  • the rod 7 comprises a first part 8 and a second part 9.
  • the first part 8 and the second part 9 form two separate parts.
  • the first part 8 and the second part 9 each comprise a side wall, preferably substantially cylindrical.
  • the first part 8 of the rod 7 is hollow at least at one end portion, so as to form a cavity 10 extending substantially parallel to the axis B and delimited by the side wall of the first part 8.
  • At least one hole 11, for example circular, passes through the side wall of the first part 8 between the exterior of the rod 7 and the cavity 10.
  • two holes 11 arranged opposite one of the other perpendicular to axis B pass through the side wall of the first part 8.
  • the second part 9 is preferably hollow, so as to form a cavity 12 extending substantially parallel to the axis B and delimited by the side wall of the second part 9.
  • a cross section of the second part 9 is smaller than the cross section of the cavity 10 of the first part 8.
  • the second part 9 can therefore be introduced, at least partially, into the cavity 10.
  • a set exists between the side wall of the first part 8 and the side wall of the second part 9 when the second part 9 is introduced into the first part 8.
  • the second part 9 comprises at least one slot 13 passing through the side wall of the second part 9 between the exterior of the rod 7 and the cavity 12.
  • two slots 13 arranged opposite each other -screws one from the other perpendicular to axis B pass through the side wall of the second part 9.
  • Each hole 11 and each slot 13 comprises a first dimension, called here “length”, which extends substantially parallel to the longitudinal axis B of the rod 7.
  • Each hole 11 and each slot 13 also includes a second dimension, called here “width”, which extends around the longitudinal axis B in a plane substantially perpendicular to the axis B.
  • the width of each slot 13 is substantially equal to the width of each hole 11, while the length of each slot 13 is greater than the length of each hole 11.
  • a pin 14 connects the first part 8 and the second part 9 of the rod 7 together.
  • the pin 14 passes through each hole 11 and each slot 13.
  • the pin 14 is mounted tight or adjusted in each hole 11.
  • the second end portion 7-2 of the rod 7 exterior to the housing 6 may comprise an end portion of the first part 8, the remainder of the first part 8 and the second part 9 forming the first end portion 7-1. Also, the first part 8 is partially exterior to the housing 6, which allows the user of the catheter robot 1 to manipulate the rod 7 using a force exerted on the first part 8.
  • the first part 8 can be manipulated so as to move it in translation along the axis B, in one direction or the other (advance or retraction).
  • each slot 13 is greater than the length of each hole 11.
  • the first part 8 can therefore slide on the second part 9 during its translational movement along the axis B without the second part 9 of the rod 7 does not move integrally with the first part 8. Consequently, the second part 9 is decoupled in translation from the first part 8.
  • the translation of the first part 8 on the second part 9 causes an integral movement of the pin 14 along each slot 13.
  • the translation of the first part 8 along the axis B is prevented in a given direction when the pin 14 abuts against one of the ends of the slot 13.
  • the first part 8 can be moved in translation along the axis B in the opposite direction until the pin 14 abuts against the other end of the slot Thanks to the sliding of the first part 8 on the second part 9, the control member 5 can be compacted relative to a control member in which the entire rod 7 moves in translation along the axis B.
  • the first part 8 can also or alternatively be manipulated so as to move it in rotation around axis B, in one direction or the other (clockwise or counterclockwise).
  • each slot 13 is preferably substantially equal to the width of each hole 11. Furthermore, the pin 14 is mounted tight or adjusted in each hole 11. Thus, any rotation of the first part 8 around the axis B causes an integral rotation of the pin 14 and the second part 9. The second part 9 is therefore coupled in rotation with the first part 8.
  • control member 5 may further comprise a support 15 intended to be installed inside the housing 6 of the man-machine interface 4.
  • the rod 7 extends partially inside of the support 15.
  • the support 15 can be positioned around the rod 7 so that the end portion 7-2 exterior to the housing 6 is also arranged outside the support 15.
  • the support 15 may comprise a first base 16 and a second base 17 arranged substantially perpendicular to the axis B, in particular facing each other.
  • the first base 16 and the second base 17 each comprise a respective through hole (not visible) through which the rod 7 passes.
  • the through holes of the support 15 have a shape such that the rod 7 can slide there.
  • each base 16, 17 is preferably substantially opposite the hole of the other base 17, 16.
  • Each hole passes through the respective base 16, 17 preferably substantially parallel to the axis B.
  • the holes in the bases 16, 17 make it possible to guide the translation of the rod 7, or one of the parts thereof, along the axis B.
  • One or more bars 18 connect the bases 16, 17 together.
  • three bars 18 are provided, without this being limiting.
  • each bar 18 extends substantially parallel to axis B.
  • a potentiometer 19 can be provided in the control member 5.
  • the potentiometer 19 can be connected to the support 15.
  • the potentiometer 19 extends substantially parallel to the axis B and is connected to each of the bases 16, 17 of the support 15.
  • the potentiometer 19 is preferably of the linear type.
  • the potentiometer 19 is connected to the rod 7.
  • a pivot 20 can be arranged around the rod 7.
  • the pivot 20 is connected, directly or indirectly, to the potentiometer 19 so as to be able to slide along the potentiometer.
  • a transmission shaft 21 connects the pivot 20 and the potentiometer 19 in a sliding manner.
  • the pivot 20 is for example connected to the rod 7 by the pin 14.
  • the pivot 20 is connected to the rod 7 so as to be moved in translation along the axis B integrally with the rod 7.
  • the pivot 20 follows the same movement, which causes the resistance of the potentiometer 19 to vary.
  • the resistance of the potentiometer therefore varies depending on the position of the rod 7 along of the axis B.
  • the amplitude and the direction of the translation along the axis B of the rod 7 (or part of it) are detected by the potentiometer 19 and translated into a variation of its resistance.
  • the amplitude of translation or the speed of translation of the elongated flexible medical instrument 3 along its axis A vary.
  • the pivot 20 is connected to the part of the movable rod in translation along axis B. This makes it possible to vary the resistance of potentiometer 19 as soon as the rod is moved, even if only partially, along axis B.
  • the pivot 20 is advantageously decoupled in rotation around the axis B of the rod 7. More preferably, the pivot 20 is immobile in rotation around the axis B.
  • the control member 5 may also comprise a quadrature encoder 22.
  • the quadrature encoder 22 is connected to the rod 7.
  • the quadrature encoder 22 is connected to the end of the rod opposite the portion d end 7-2 exterior to the housing 6 of the man-machine interface 4.
  • the quadrature encoder 22 is configured to measure an amplitude and a direction of rotation of the rod 7 around the axis B.
  • the quadrature encoder 22 can be configured to convert the measured amplitude of rotation of the rod 7 into an amplitude of rotation or in a speed of rotation of the elongated flexible medical instrument 3 around its main axis of elongation 1.
  • At least one elastic return element 23, in the rest position, of the control member 5, in particular of the rod 7, can be provided.
  • the rest position of the rod 7 means the position of the rod 7 prior to any translational movement of the latter, or of one of its parts, along the axis B
  • the rod 7 in its rest position, the rod 7 is in the position in which it is before the application of any force causing the translational movement along the longitudinal axis B of the rod 7 or part of it.
  • each elastic return element 23 is a return spring arranged around one of the bars 18 of the support 15, without this being limiting.
  • the movement of the rod 7 (or part thereof) in translation along the axis B or in rotation around the axis B causes a movement of the elongated flexible medical instrument 3 in translation along its main axis of elongation A or in rotation around the main axis of elongation A respectively.
  • the elastic return element 23 as soon as the user of the catheter robot stops manipulating the rod 7, the rod 7 moves progressively along the axis B to its rest position. As will be detailed, this can cause a progressive reduction in the speed of movement of the elongated flexible medical instrument 3 to zero speed, or a retreat of the elongated flexible medical instrument 3 inside the channel in which it moves.
  • the man-machine interface 4 may include a safety element, making it possible to block or unblock the drive of the elongated flexible medical instrument 3 by the control member 5, in this case the rod 7.
  • the security element includes a security surface 24.
  • the security surface 24 is a tactile surface.
  • the security surface 24 is a capacitive touch surface.
  • the security surface 24 is a capacitive touch surface covered with titanium paint.
  • the safety surface 24 is capable of detecting contact or support from the hand or another part of the user's body.
  • the drive of the elongated flexible medical instrument 3 by the control member 5 is unlocked.
  • the translation of the rod 7 or a part thereof along the axis B or its rotation around the axis B causes the displacement of the elongated flexible medical instrument 3 in, respectively, translation the along the axis A or rotation around the axis A.
  • the driving of the elongated flexible medical instrument 3 by the control member 5 is blocked. This prevents an involuntary movement of the rod 7, in translation and/or rotation, from triggering the movement of the elongated flexible medical instrument 3 in, respectively, translation and/or rotation.
  • the safety surface 24 comprises a first zone 24-1, a second zone 24-2 and a third zone 24-3.
  • the first zone 24-1 is arranged on one edge of the housing 6.
  • the second zone 24-2 is arranged on a surface of the housing 6 which is substantially perpendicular to the first zone 24-1.
  • the second zone 24-2 is substantially horizontal in the usual use position of the man-machine interface 4.
  • the third zone 24-3 is included in the end portion 7-2 of the rod 7 exterior to the housing 6.
  • the drive of the elongated flexible medical instrument 3 by the control member 5 is unlocked when the support or contact of the user's hand is detected on the third zone 24-3 included in the rod 7 and on at least one of the first zone 24-1 and the second zone 24-2.
  • the drive of the elongated flexible medical instrument 3 is blocked when the support or contact of the user's hand is detected only on one of the zones 24-1 to 24-3, or on none of the zones. these zones 24-1 to 24-3.
  • the security surface 24 is placed on the rod 7, for example by covering the rod 7 with a tactile surface.
  • the human machine control interface can also include haptic feedback informing the user of the robot catheter 1 of the existence of a movement of the elongated flexible medical instrument 3 inside the patient's canal.
  • the haptic feedback is activated for only the translation of the elongated flexible medical instrument 3. The user of the catheter robot thus receives feedback on the translation training that he has ordered, which allows him to check that this training is taking place in the way he wanted.
  • Haptic feedback is preferably in the form of vibrations. More preferably, the haptic feedback is in the form of vibrations of the control member 5.
  • the frequency of the vibrations is proportional to the translation speed of the elongated flexible medical instrument 3.
  • the user of the man-machine interface 4 can thus detect the passage of the elongated flexible medical instrument 3 in tortuous or stenotic areas of the canal, in which the translation of the elongated flexible medical instrument 3 is hindered, thus reducing its translation speed. This allows the user to know when it is appropriate to modify or adapt the control of the translation drive of the elongated flexible medical instrument 3 and/or to control the elongated flexible medical instrument 3 in rotation.
  • the frequency of the vibrations is proportional to the translation speed of the elongated flexible medical instrument 3 when this speed is less than or equal to a threshold value. Once the translation speed of the elongated flexible medical instrument 3 exceeds this threshold value, the frequency of the vibrations is invariable. whatever the translation speed of the elongated flexible medical instrument 3.
  • the threshold value of the translation speed of the elongated flexible medical instrument 3 may be equal to 10 mm/s.
  • the frequency of the vibrations is such that the user perceives a continuous vibration (that is to say, at no time the user does not stop feeling the vibration). The user of the catheter robot 1 is thus alerted to a translation speed of the elongated flexible medical instrument 3 which may present a major risk to the health of the patient.
  • the man-machine interface 4 can also include a wheel 25 which can be rotated by the user's hand. As will be detailed, the rotation of the wheel 25 makes it possible to control the movement of the additional drive module 2' so as to drive the additional elongated flexible medical instrument in translation.
  • the additional training module 2' being controlled by the same man-machine interface 4 as the training module 2, the overall size of the catheter robot 1 is reduced.
  • said man-machine control interface also includes an additional elastic element for returning the wheel 25 to the rest position (not illustrated).
  • This additional elastic element may include one or more additional return springs (not shown).
  • the rest position corresponds to the position of the wheel before moving it in rotation.
  • the additional elastic return element it is possible to stop the translational drive of the additional elongated flexible medical instrument when the user stops operating the wheel 25.
  • the man-machine interface 4 can also include a display module 26.
  • the display module 26 is for example a screen.
  • the screen can for example be a touch screen without this being limiting.
  • the screen reports information on the operation of the drive module 2, and possibly the additional drive module 2', in response to the control of these modules 2, 2' using the control member 5 or the wheel 25 respectively.
  • the screen 26 can also display one or more virtual buttons making it possible to select various functionalities of the catheter robot 1, such as an operating mode of the man-machine interface 4.
  • the screen 26 also makes it possible to visualize the position of the elongated flexible medical instrument 3, and possibly of the additional elongated flexible medical instrument, in relation to the different organs of the patient. This allows the user to decide and control the various movements of the elongated flexible medical instrument during the intervention on the patient.
  • an imaging system (not illustrated) can be connected to the catheter robot 1 so that the image obtained by the imaging system is visible on the screen 26.
  • Figure 6 shows another embodiment of the man-machine interface 4 which differs from the man-machine interface 4 of Figure 3 in that the control member 5 comprises a crank 27 instead of the rod 7.
  • the crank 27 comprises a first portion 27-1 which is substantially straight with a longitudinal axis C.
  • This first portion 27-1 is similar or identical to the rod 7 and will not be described in detail in what follows.
  • the crank 27 also comprises a second portion 27-2 disposed outside the housing 6 of the man-machine interface 4.
  • the second portion 27-2 comprises for example a first part 28 and a second part 29 integral with one the other.
  • the first part 28 is directly connected to the first portion 27-1 of the crank 27 and extends substantially perpendicular to the longitudinal axis C.
  • the second part 29 extends substantially parallel to the longitudinal axis C from one end of the first part 28. The user of the catheter robot 1 can thus manipulate, for example with his hand, the crank 27 via the second part 29.
  • Manipulating the crank 27 may include moving the crank 27 or part of it in translation along the longitudinal axis C in one direction or the other (advance or retraction). Manipulating the crank 27 can also include moving the crank 27 or part of it in rotation around this longitudinal axis C in one direction or the other (clockwise or counterclockwise). Like the rod 7, the crank 27 is structured so that the movement of the crank 27 (or part thereof) in translation along the axis C or in rotation around the axis C causes a movement of the elongated flexible medical instrument 3 in, respectively, translation along its main axis of elongation A or rotation around the main axis of elongation A.
  • Figure 6 makes it possible to control a continuous rotational movement of the elongated flexible medical instrument 3 while maintaining control in position of the rotational movement of the elongated flexible medical instrument 3.
  • Figure 7 shows another embodiment of the man-machine interface 4 which differs from the man-machine interface 4 of Figure 3 in that a rotating ring 30 is arranged around the rod 7.
  • the rotary ring 30 is arranged around the end portion 7-2 of the rod 7 exterior to the housing 6.
  • the ring 30 can be manipulated by the user of the catheter robot 1 so as to move it in rotation around the axis B of the rod 7.
  • the user can use his hand to manipulate the ring 30.
  • the ring 30 can be rotated around the axis B of the rod without causing an integral rotation of the rod 7.
  • the rotation of the ring 30 causes the elongated flexible medical instrument to rotate. 3 from one of the types of control indicated previously (in position or in speed) of a different nature from that resulting from the rotation of the rod 7 around the axis B.
  • the ring 30 controls in speed the rotation of the elongated flexible medical instrument 3.
  • An elastic return element (not illustrated), in the rest position, of the rotary ring 30 can be provided in the man-machine interface 4.
  • the rest position of the rotary ring 30 means the position of the ring 30 before any rotation of the ring 30 by the user of the catheter robot 1.
  • the elastic return element of the rotating ring 30 preferably comprises a return spring.
  • the embodiment illustrated in Figure 7 allows the user to control the translation of the elongated flexible medical instrument 3 in speed and in position the rotation of the elongated flexible medical instrument 3 according to a first mode of operation using only the rod 7, and to control in speed the translation and rotation of the elongated flexible medical instrument 3 according to a second mode of operation using the rod 7 for the translation and the ring 30 for the rotation.
  • the training module 2 is connected to the elongated flexible medical instrument 3 and allows it to be moved in translation along the axis A and/or in rotation around the axis A inside d 'a patient channel.
  • the drive module 2 moves in translation and/or in rotation, which causes an integral movement of the elongated flexible medical instrument 3 to inside the patient's canal.
  • the man-machine interface 4 is structured so as to control the translation and/or rotation drive of the elongated flexible medical instrument 3.
  • the control member 5 can be moved in translation and/or rotation. or in rotation by the hand of the user of the catheter robot 1.
  • a translation along the axis B of the rod 7 (or of its first part 8 when it has the configuration of Figure 4) or of the The axis C of the crank 27 causes a translation of the drive module 2 so that the elongated flexible medical instrument 3 is driven in translation along the axis A.
  • a rotation around the axis B of the rod 7 (or of its first part 8 when it has the configuration of Figure 4) or of the axis C of the crank 27 causes a rotation of the drive module 2 so that the elongated flexible medical instrument 3 is rotated around axis A.
  • the direction of translation or rotation of the elongated flexible medical instrument 3 inside the patient's canal depends on the direction of movement of the control member 5.
  • the rod 7 (or its first part 8 when it has the configuration of Figure 4) or the crank 27 is moved in translation in the direction of insertion into the housing 6 of the man-machine interface
  • the elongated flexible medical instrument 3 can advance in the patient channel.
  • the rod 7 (or its first part 8 when it has the configuration of Figure 4) or the crank 27 is moved in translation in the direction of extraction of the housing 6 from the man-machine interface 4
  • the elongated flexible medical instrument 3 can move back into the patient's canal.
  • the elongated flexible medical instrument 3 can move in rotation around the axis A in the clockwise direction, while in the case of a rotation of the rod 7 or the crank 27 in the counterclockwise direction, the elongated flexible medical instrument 3 can move in rotation around the axis A in the counterclockwise direction.
  • the potentiometer 19 can be used to detect the amplitude and the direction of the translation of the control member 5. As indicated previously, the resistance of the potentiometer 19 varies depending on the amplitude and the direction of the translation of the control member 5. This generates the signal making it possible to control the translation of the drive module 2, and therefore, the translation of the elongated flexible medical instrument 3 inside the patient's canal.
  • the quadrature encoder 22 detects the amplitude and the direction of the rotation of the control member 5 and generates the signal controlling the rotation of the drive module 2, and therefore, of the elongated flexible medical instrument 3 inside the patient canal.
  • the elongated flexible medical instrument 3 is only driven in translation and/or in rotation when the safety surface 24 detects the contact or support of the user's hand, or another part of their body, as indicated previously. If such contact or support is not detected, the movement in translation and/or rotation of the elongated flexible medical instrument 3 by the control member 5 is blocked even if the control member 5 is moved.
  • the non-detection of contact or the support of the user's hand by the safety surface 24 only blocks the translation of the elongated flexible medical instrument 3, it is driven in rotation as soon as the control member 5 is rotated around its axis B or its axis C, even if such contact or support is not detected by the safety surface 24.
  • the translation and rotation of the elongated flexible medical instrument 3 can be controlled in position or in speed from the manipulation of the control member 5.
  • position control the The amplitude of movement (in translation or rotation) of the elongated flexible medical instrument 3 inside the patient's canal is proportional to the amplitude of movement (in translation or rotation) of the control member 5.
  • speed control the speed of movement (in translation or rotation) of the elongated flexible medical instrument 3 inside the patient's canal is proportional to the amplitude of movement (in translation or in rotation). rotation) of the control member 5.
  • the translational drive of the elongated flexible medical instrument 3 along its axis A is controlled in speed
  • the rotational drive of the elongated flexible medical instrument 3 around its axis A is controlled in position.
  • the translational movement of the control member 5 with a given translation amplitude causes a translational movement of the flexible medical instrument elongated 3 with a speed proportional to the amplitude of translation of the control member 5
  • a rotational movement of the control member 5 with a given amplitude of rotation causes a rotational movement of the medical instrument flexible elongated 3 with an angle of rotation proportional to the amplitude of rotation of the control member 5.
  • the distal end when the rotation of the elongated flexible medical instrument 3 is controlled in position, a difference exists between the angle of rotation at the end of the elongated flexible medical instrument 3 connected to the drive module 2, called the proximal end , and the opposite end of the elongated flexible medical instrument 3 intended to penetrate the patient, called the distal end. This is due to the fact that the distal end of the elongated flexible medical instrument 3 only begins to rotate when the proximal end of the elongated flexible medical instrument 3 has rotated by a certain angle around the axis A.
  • the rotation drive of the elongated flexible medical instrument 3 can be controlled in position with a coefficient of proportionality between on the one hand the rotational movement of the control member 5 and on the other hand the rotational movement of the elongated flexible medical instrument 3.
  • the user of the catheter robot 1 wants to control rapid rotational movements, it can choose a high coefficient of proportionality thanks to which the rotation of the control member 5 causes a large rotational movement of the proximal end of the elongated flexible medical instrument 3 around the axis A Conversely, if the user of the catheter robot 1 wants to control precise rotational movements, he can choose a small proportionality coefficient thanks to which the rotation of the control member 5 causes a small rotational movement of the proximal end of the elongated flexible medical instrument 3.
  • this coefficient of proportionality can be modified by a selection of the user of the catheter robot 1.
  • This selection is for example made from a virtual button displayed on the display module 26 or from an organ physical control, such as a button, provided on the man-machine interface 4.
  • the proportionality ratio can for example vary between 3/1 and 1/25.
  • a ratio of 3/1 means that a rotation of 3° of the rod 7 causes a rotation of 1° of the proximal end of the elongated flexible medical instrument 3 manipulated by the drive module 2.
  • a ratio of 3/1 can be used in particular when precise movements are necessary, for example crossing a junction with a guide.
  • a ratio of 1/25 means that a rotation of 1° of the rod 7 causes a rotation of 25° of the proximal end of the elongated flexible medical instrument 3 manipulated by the drive module 2.
  • a ratio of 1/25 can in particular be used for movement “drilling” (i.e. a continuous rotational movement such as a screwing movement) or “wiggling” (i.e. a succession of large amplitude rotational movements in the opposite direction).
  • the proportionality ratio can vary between 3/1 and 1/20, or between 3/1 and 1/15, or between 1/1 and 1/25, or between 1/1 and 1/20, or between 1/1 and 1/15.
  • the user of the catheter robot 1 can intuitively rotate the elongated flexible medical instrument 3 by an angle of rotation precise around the axis A. Furthermore, thanks to the speed control of the translation of the elongated flexible medical instrument, the user can move the elongated flexible medical instrument 3 over a long distance from an organ command 5 compact. In addition, the user can intuitively adapt the translation speed of the elongated flexible medical instrument 3 during its journey inside the patient's canal. This makes it possible, for example, to reduce the translation speed of the elongated flexible medical instrument 3 to cross curved areas of the canal. Conversely, when the elongated flexible medical instrument 3 passes through straight areas of the canal, the user can increase the translation speed of the elongated flexible medical instrument 3 to reach the area of the canal to be treated more quickly.
  • the man-machine interface 4 can be structured so as to speed control the driving of the elongated flexible medical instrument 3 in translation along the axis A and in rotation around the axis HAS.
  • the speed control of the translation and rotation of the elongated flexible medical instrument 3 makes it possible to provide a continuous combined movement of translation and rotation of the elongated flexible medical instrument 3.
  • the man-machine interface 4 can be structured so as to positionally control the drive of the elongated flexible medical instrument 3 in translation along the axis A and in rotation around the axis HAS.
  • the translational movement of the control member 5 with a given translation amplitude therefore causes a translational movement of the elongated flexible medical instrument 3 with a translation amplitude proportional to the rotation amplitude of the control unit 5.
  • This third mode of operation makes it possible to obtain precise amplitudes of translation and rotation of the elongated flexible medical instrument 3. This is particularly advantageous when the elongated flexible medical instrument has arrived at the particular area of the patient's canal in which it is used, or when passing branches when the elongated flexible medical instrument is in the process of reaching the particular area of the patient's blood system patient in which it will be used.
  • This third mode of operation can for example be used to make rapid advance and withdrawal movements of the elongated flexible medical instrument 3.
  • man-machine interface 4 can be configured so that the user of the catheter robot 1 can choose between the first to third operating modes of the man-machine interface 4 described above.
  • a virtual operating mode selection button can be displayed on the display module 26. This makes it possible to choose the operating mode most suited to the patient or at the time of the intervention.
  • the man-machine interface 4 can be configured to only control the translational drive of the elongated flexible medical instrument 3 in speed and to only control the rotational drive of the instrument in position. flexible medical elongated.
  • the translation and rotation of the elongated flexible medical instrument 3 can be controlled simultaneously or alternatively.
  • the translation of the elongated flexible medical instrument 3 When the translation of the elongated flexible medical instrument 3 is controlled into position, this control can be done step by step.
  • the translation of the elongated flexible medical instrument 3 comprises a movement of the elongated flexible medical instrument 3 along the axis A by a predetermined step with each impulse received by the man-machine interface 4.
  • the elongated flexible medical instrument 3 can for example achieve a millimetric advance or retraction in the patient's canal.
  • the rotation of the elongated flexible medical instrument 3 when the rotation of the elongated flexible medical instrument 3 is controlled in position, this control can be done step by step.
  • the rotation of the elongated flexible medical instrument 3 comprises a movement of the elongated flexible medical instrument 3 around the axis A by a predetermined step with each pulse received by the man-machine interface 4.
  • the elongated flexible medical instrument 3 can for example perform a millimetric rotation in the patient's canal.
  • the control member 5 moves progressively along its axis B or C until its rest position as soon as the user of the catheter robot stops manipulating it. Also, thanks to the elastic return element 23, when the translation of the elongated flexible medical instrument 3 is controlled into position, the elongated flexible medical instrument 3 moves back into the patient's canal when the user stops manipulating the control member 5.
  • the elastic return element 23 causes a progressive reduction in the translation speed of the elongated flexible medical instrument 3 when the user stops manipulating the control member 5, the translation speed of the elongated flexible medical instrument 3 becoming zero if the control member 5 returns to its rest position.
  • the man-machine interface 4 can include the rotating ring 30.
  • the rotating ring 30 rotates around the axis B or C, a rotation command is generated for the elongated flexible medical instrument 3.
  • the rotational control generated for the elongated flexible medical instrument 3 from the rotation of the ring 30 is of a different nature to that of the rotational control generated by the control member 5. For example, if the rotation of the control member 5 controls the rotation of the elongated flexible medical instrument 3 in position, the rotation of the ring 30 controls the speed of the rotation of the elongated flexible medical instrument 3.
  • the elastic return element (not illustrated), in the rest position, of the rotating ring 30 makes it possible to stop the rotation of the medical instrument flexible elongated 3 when the user stops manipulating the ring 30.
  • the presence of the rotating ring 30 has the advantage of allowing the elongated flexible medical instrument 3 to carry out continuous and combined movement in translation and in rotation respectively along and around of its main axis of elongation.
  • the continuous movement in translation of the elongated flexible medical instrument 3 is caused by the speed control of the translation generated by the control member 5, while the continuous movement in rotation of the elongated flexible medical instrument 3 is caused by the speed control of the rotation generated by the rotating ring 30.
  • the catheter robot 1 may include the additional training module 2' which is connected to the additional elongated flexible medical instrument and allows it to be moved in translation.
  • the additional training module 2' which is connected to the additional elongated flexible medical instrument and allows it to be moved in translation.
  • a translation movement command for the additional drive module 2' is generated.
  • the module 2' thus moves in translation, the additional elongated flexible medical instrument moving integrally with the additional module 2'.
  • the translation movement command generated by the rotation of the wheel 25 is for example a speed command.
  • the speed of translation of the additional elongated flexible medical instrument is gradually reduced.
  • the catheter robot 1 according to the second embodiment comprises the training module 2 of the elongated flexible medical instrument 3.
  • the catheter robot 1 according to the second embodiment can also comprise the additional training module 2' of the additional elongated flexible medical instrument.
  • the characteristics and operation of the training module 2, of the additional training module 2', of the elongated flexible medical instrument 3 and of the additional elongated flexible medical instrument described with reference to the first embodiment of the catheter robot 1 are applicable to this second embodiment and are not described in detail in the following.
  • the catheter robot of Figure 8 also comprises a second training module 32 of a second elongated flexible medical instrument (not illustrated).
  • the second training module 32 and the second elongated flexible medical instrument may be identical or similar to, respectively, the training module 2 and the elongated flexible medical instrument 3. Consequently, they will not be described in detail by the following.
  • the second training module 32 is structured so as to be able to be connected to the second elongated flexible medical instrument.
  • the drive module 32 is in particular configured to move the second elongated flexible medical instrument in translation along its main axis of elongation, and/or in rotation around its main axis of elongation.
  • the catheter robot 1 of Figure 8 may include a second additional training module 32' of a second additional elongated flexible medical instrument (not illustrated).
  • the second additional training module 32' and the second additional elongated flexible medical instrument may be identical or similar to, respectively, the additional training module 2' and the additional elongated flexible medical instrument. Therefore, they will not be described in detail below.
  • the second additional training module 32' is structured so as to be able to be connected to the second additional elongated flexible medical instrument.
  • the additional drive module 32' is configured to move the second additional elongated flexible medical instrument in translation.
  • the second elongated flexible medical instrument and the second additional elongated flexible medical instrument can be introduced into a different patient canal of the channel into which the elongated flexible medical instrument 3 and the additional elongated flexible medical instrument are introduced.
  • the second elongated flexible medical instrument and the second additional elongated flexible medical instrument can be introduced into the same canal of the patient as the channel into which the elongated flexible medical instrument 3 and the additional elongated flexible medical instrument are introduced.
  • the catheter robot 1 of Figure 8 also includes a man-machine interface 34.
  • the man-machine interface 34 can include a second control member 5'.
  • the control member 5' is preferably identical or similar to the control member 5 described above. Also, all the characteristics of the control member 5 indicated above are applicable to the second control member 5’.
  • the manipulation of the control member 5' causes the second elongated flexible medical instrument in translation along its main axis of elongation and/or in rotation around this main axis of elongation.
  • the translation of the second elongated flexible medical instrument along its main axis of elongation can be controlled in one direction or the other (advance or withdrawal).
  • the rotation of the second elongated flexible medical instrument around its main axis of elongation can be controlled in one direction or the other (clockwise or counterclockwise).
  • the control member 5' is in particular a drive control member, in translation and in rotation, of the second elongated flexible medical instrument.
  • the control member 5' can in particular make it possible to control the translation and/or rotation of the second elongated flexible medical instrument from a position control or a speed control.
  • the man-machine interface 34 can also include a second wheel 25' which can be rotated by the user's hand.
  • the wheel 25' is preferably identical or similar to the wheel 25 described above. Also, all the characteristics of the 25 wheel indicated above are applicable to the 25’ wheel.
  • the rotation of the wheel 25' makes it possible to control the movement of the second additional drive module 32' so as to drive the second additional elongated flexible medical instrument in translation.
  • the operation of the catheter robot 1 according to the second embodiment is similar to the operation of the catheter robot 1 according to the first embodiment.
  • all the details of the operation of the catheter robot according to the first embodiment described above are applicable to the catheter robot 1 according to the second embodiment.
  • the catheter robot 1 comprises the second control member 5'.
  • the operation of the control member 5' is similar to the operation of the control member 5 described previously.
  • the operation of the second control member 5' is distinguished from that of the control member 5 only in that the commands generated by the second control member 5' cause the movement (in translation and/or in rotation) of the second training module 32 and the second elongated flexible medical instrument. The rest of the characteristics of the operation of the control member 5 indicated previously are therefore applicable to the control member 5’.
  • each of the control members 5, 5' of the man-machine interface 34 can operate according to one of the first to third operating modes described above.
  • the mode of operation of the control member 5 at a given moment may be equal to or different from the mode of operation of the control member 5'. This makes it possible to adapt the manner of controlling the movement of the elongated flexible medical instrument 3 and the second elongated flexible medical instrument to the particularities of the respective channels into which they are introduced.
  • the catheter robot 1 comprises the second wheel 25'.
  • the operation of the wheel 25' is similar to the operation of the wheel 25 described previously.
  • the operation of the wheel 25' differs from that of the wheel 25 only in that the commands generated by the second wheel 25' cause the translational movement of the second additional drive module 32' and of the second flexible medical instrument. additional lengthening. The rest of the characteristics of the operation of the wheel 25 indicated previously are therefore applicable to the wheel 25'.
  • the man-machine interface 4 comprises a tactile surface configured to detect and measure the movement of a user's finger or a stylus along said tactile surface and thus control the translation and rotation of the medical instrument flexible elongated 3.
  • the user moves his finger or the stylus along the tactile surface in a first direction, the direction of movement of the finger or the stylus controlling the direction of translation of the elongated flexible medical instrument 3, while the length of the path carried out by the finger or the stylus in the first direction controlling the translation speed of the elongated flexible medical instrument 3.
  • the user can control a combined movement of translation and rotation of the elongated flexible medical instrument 3 by moving his finger or the stylus along the tactile surface in a third direction which comprises a component according to the first direction and a component according to the second direction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

L'invention concerne un robot cathéter (1) comprenant : - un module d'entraînement (2) d'un instrument médical souple allongé, en translation le long d'un axe principal d'élongation dudit instrument médical souple allongé et en rotation autour de l'axe principal d'élongation dudit instrument médical souple allongé, de manière simultanée ou alternative, - une interface homme machine (4) de commande dudit module d'entraînement, caractérisé en ce que ladite interface homme machine (4) est structurée de manière à, dans un premier mode de fonctionnement : - commander, en vitesse, l'entraînement en translation dudit instrument médical souple allongé, - commander, en position, l'entraînement en rotation dudit instrument médical souple allongé.

Description

DESCRIPTION
TITRE : ROBOT CATHETER ET INTERFACE HOMME MACHINE DE
COMMANDE D’UN MODULE D’ENTRAINEMENT D’UN INSTRUMENT
MEDICAL SOUPLE ALLONGE
DOMAINE DE L’INVENTION
L’invention concerne un robot cathéter et une interface homme machine de commande d’un module d’entraînement d’un instrument médical souple allongé.
ARRIERE PLAN TECHNOLOGIQUE DE L’INVENTION
L’introduction d’un dispositif médical souple allongé dans un vaisseau sanguin, artère ou veine, d’un patient est généralement monitoré sous rayons X. Afin d’éviter que le chirurgien ou un autre praticien en charge de cette introduction ne soit soumis à trop de rayons X, il est connu d’utiliser un robot cathéter muni d’un module d’entrainement de l’instrument médical souple allongé, permettant au praticien de manipuler à distance l’instrument médical souple allongé, effectuant ainsi un télédiagnostic ou une téléintervention. Le module d’entrainement transmet à l’instrument médical souple allongé introduit dans le vaisseau sanguin un mouvement de translation et/ou un mouvement de rotation qui peuvent éventuellement être combinés ensemble.
Le mouvement de translation permet à l’instrument médical souple allongé de se déplacer en avant et en arrière à l’intérieur du vaisseau sanguin dans lequel il est introduit. Le mouvement de rotation facilite ces déplacements de l’instrument médical souple allongé même dans des zones du vaisseau sanguin fortement sténosées ou ayant une tortuosité importante, ainsi que lors du passage d’embranchements entre vaisseaux sanguins.
Les mouvements de translation et de rotation de l’instrument médical souple allongé sont d’ordinaire commandés par un organe de commande mobile qui est actionné par le praticien lors de l’intervention sur le patient.
Selon un premier art antérieur, l’organe de commande est configuré pour commander, en position, les mouvements de translation et de rotation de l’instrument médical souple allongé. Lorsque les mouvements de l’instrument médical souple allongé sont commandés en position, un déplacement de l’organe de commande provoque un déplacement de l’instrument médical souple allongé avec une amplitude qui est proportionnelle à l’amplitude de déplacement de l’organe de commande. Un inconvénient de ce premier art antérieur est que le déplacement en translation, quoique précis, peut devenir trop lent à certains moments, en particulier au début de l’introduction du cathéter dans le patient, lorsque le cathéter doit rejoindre la zone particulière du système sanguin du patient dans laquelle il va être utilisé. Selon un deuxième art antérieur, l’organe de commande est configuré pour commander, en vitesse, les mouvements de translation et de rotation de l’instrument médical souple allongé. Lorsque les mouvements de l’instrument médical souple allongé sont commandés en vitesse, le déplacement de l’organe de commande provoque un déplacement de l’instrument médical souple allongé à une vitesse proportionnelle à l’amplitude de déplacement de l’organe de commande. Un inconvénient de ce deuxième art antérieur est que le déplacement en rotation, quoique rapide, peut manquer de précision à certains moments, en particulier lors du passage d’embranchements lorsque le cathéter est en train de rejoindre la zone particulière du système sanguin du patient dans laquelle il va être utilisé.
Il s’agit d’obtenir un mode d’entraînement de l’instrument médical souple allongé qui puisse être à la fois suffisamment précis et suffisamment rapide, au moins dans la plupart des situations d’utilisation, tout en offrant au praticien une bonne ergonomie de pilotage de cet instrument médical souple allongé.
La réalisation d’un ensemble de tests, auprès d’un panel de praticiens, prenant en compte la plupart des situations usuelles d’utilisation de l’instrument médical souple allongé, a révélé, de manière surprenante, que la configuration considérée comme réalisant le meilleur compromis global entre d’une part efficacité d’entraînement et d’autre part ergonomie de pilotage, est une configuration dans laquelle : l’entraînement en translation de l’instrument médical souple allongé est commandé en vitesse, tandis que l’entraînement en rotation de l’instrument médical souple allongé est commandé en position.
D’une part, la commande en position de la rotation de l’instrument médical souple allongé permet de le tourner autour de son axe avec un angle de rotation proportionnel à l’amplitude de rotation de l’organe de commande, ce qui permet au praticien de tourner l’instrument médical souple allongé d’un angle de rotation précis de manière intuitive.
D’autre part, la commande en vitesse de la translation de l’instrument médical souple allongé permet de le déplacer à l’intérieur du vaisseau sanguin correspondant à une vitesse proportionnelle à l’amplitude de déplacement de l’organe de commande, ce qui permet le déplacement de l’instrument médical souple allongé sur une longue distance à partir d’un organe de commande compact.
De plus, grâce à la commande en vitesse il est possible d’adapter la vitesse de translation de l’instrument médical souple allongé en fonction de la zone du vaisseau sanguin qu’il traverse. Par exemple, pour traverser des zones du vaisseau incurvées, la vitesse de translation de l’instrument médical souple allongé peut être réduite pour éviter d’endommager la paroi du vaisseau sanguin par une collision entre l’instrument médical souple allongé et cette paroi. Par conséquent, la présente invention permet, grâce à la combinaison de la commande en vitesse de la translation de l’instrument médical souple allongé et la commande en position de la rotation de l’instrument médical souple allongé, d’obtenir un robot cathéter présentant un meilleur compromis entre bonne précision atteinte et grande simplicité d’utilisation par le praticien, aboutissant à un robot cathéter efficace et ergonomique à la fois.
OBJETS DE L’INVENTION
Le but de la présente invention est de fournir un robot cathéter et une interface homme machine de commande d’un module d’entraînement d’un instrument médical souple allongé palliant au moins partiellement les inconvénients des arts antérieurs précités.
Selon l’invention, il est prévu un robot cathéter comprenant : un module d’entraînement d’un instrument médical souple allongé, en translation le long d’un axe principal d’élongation dudit instrument médical souple allongé et en rotation autour de l’axe principal d’élongation dudit instrument médical souple allongé, de manière simultanée ou alternative, une interface homme machine de commande dudit module d’entraînement, caractérisé en ce que ladite interface homme machine est structurée de manière à, dans un premier mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé, commander, en position, l’entraînement en rotation dudit instrument médical souple allongé.
Comme expliqué précédemment, grâce à la combinaison de la commande en vitesse de la translation de l’instrument médical souple allongé et la commande en position de la rotation de l’instrument médical souple allongé, le robot cathéter obtenu présente un meilleur compromis entre bonne précision atteinte et grande simplicité d’utilisation par le praticien, aboutissant à un robot cathéter efficace et ergonomique à la fois.
Suivant des modes de réalisation préférés, l’invention comprend une ou plusieurs des caractéristiques suivantes qui peuvent être utilisées séparément ou en combinaison partielle entre elles ou en combinaison totale entre elles, avec l’objet précité de l’invention.
De préférence, ledit instrument médical souple allongé est un guide de cathéter, et/ou ledit instrument médical souple allongé est un cathéter guide ou un micro-cathéter.
De préférence, ladite interface homme machine comprend un organe mobile de commande qui est destiné à être manipulé par la main d’un utilisateur, et qui est structuré de manière à ce que, dans le premier mode de fonctionnement : un déplacement en translation dudit organe mobile de commande avec une amplitude de translation entraîne un déplacement en translation dudit instrument médical souple allongé avec une vitesse proportionnelle à ladite amplitude de translation, un déplacement en rotation dudit organe mobile de commande avec une amplitude de rotation entraîne un déplacement en rotation dudit instrument médical souple allongé avec un angle de rotation proportionnel à ladite amplitude de rotation.
Ainsi, une cinématique assez élaborée de déplacement simultané en translation et en rotation peut être réalisée par une structure simple et robuste de l’organe d’entraînement.
De préférence, ladite interface homme machine est structurée de manière à commander, en position, l’entraînement en rotation, dudit instrument médical souple allongé, avec un coefficient de proportionnalité entre d’une part le déplacement en rotation dudit organe de commande et d’autre part le déplacement en rotation dudit instrument médical souple allongé, ledit coefficient de proportionnalité étant modifiable par une sélection de l’utilisateur du robot cathéter.
De préférence, ladite interface homme machine de commande comprend : un organe de commande d’entraînement, en translation et en rotation, dudit instrument médical souple allongé, un élément de sécurité, permettant de bloquer ou débloquer l’entraînement dudit instrument médical souple allongé par ledit organe de commande d’entraînement.
L’organe de commande est intrinsèquement sensible. Grâce à l’élément de sécurité, un déclenchement intempestif par l’organe de commande de l’entrainement de l’instrument médical souple allongé peut être plus facilement évité. De préférence, l’élément de sécurité évite au moins le déclenchement intempestif de l’entrainement en translation de l’instrument médical souple allongé. Cette translation étant commandée en vitesse, il existe un risque plus important (que pour une commande en position) pour la santé du patient en cas de déclenchement intempestif.
De préférence, ledit élément de sécurité comprend une surface de sécurité capable de détecter le contact ou l’appui de la main d’un utilisateur de manière à débloquer ledit organe de commande d’entraînement, ladite surface de sécurité étant de préférence une surface tactile, ou une surface tactile capacitive, ou une surface tactile capacitive recouverte d’un revêtement incluant du titane, ou une surface tactile capacitive recouverte d’une peinture au titane.
L’élément de sécurité présente donc à la fois une simplicité d’utilisation et une efficacité de fonctionnement élevées.
De préférence, ladite interface homme machine de commande inclut un retour haptique pour seulement la translation de l’instrument médical souple allongé, de préférence sous forme de vibrations, ou de préférence sous forme de vibrations dont la fréquence est proportionnelle à la vitesse en translation de l’instrument médical souple allongé. L’utilisateur du robot cathéter reçoit ainsi un retour sur l’entrainement en translation qu’il a commandé, ce qui lui permet de vérifier que cet entrainement a bien lieu de la manière dont il le souhaitait. Lorsque les vibrations ont une fréquence proportionnelle à la vitesse en translation de l’instrument médical souple allongé, il est possible de détecter le passage de l’instrument médical souple allongé dans des zones tortueuses ou sténosées, ce qui permet à l'utilisateur de savoir quand il est opportun de modifier ou d’adapter la commande de l’entrainement en translation de l’instrument médical souple allongé et/ou de commander en rotation l’instrument médical souple allongé.
De préférence, l’interface homme machine est structurée de manière à, dans un deuxième mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé, commander, en vitesse, l’entraînement en rotation dudit instrument médical souple allongé.
De préférence, ladite interface homme machine de commande inclut une tige : qui est déplaçable en translation par la main d’un utilisateur de manière à entraîner ledit instrument médical souple allongé en translation, qui est déplaçable en rotation par la main d’un utilisateur de manière à entraîner ledit instrument médical souple allongé en rotation, et qui de préférence comprend une surface tactile.
La tige a de préférence une forme allongée comme l’instrument médical souple allongé. Ceci rend la commande de l’entrainement de l’instrument médical souple allongé plus ergonomique.
De préférence, ladite tige comprend deux parties coulissant l’une dans l’autre : une première partie qui est mobile en translation et en rotation et qui est destinée à être manipulée par la main d’un utilisateur, une deuxième partie qui est couplée en rotation avec ladite première partie, et qui est découplée en translation de ladite première partie de manière à rester fixe en translation.
Les deux parties de la tige coulissant l’une dans l’autre, et la deuxième partie de la tige étant découplée en translation de la première partie, l’encombrement de l’interface homme machine peut être réduit tout en garantissant une commande effective de l’entrainement en translation et en rotation de l’instrument médical souple allongé.
De préférence, ladite interface homme machine comprend aussi une bague rotative disposée autour de ladite tige, l’angle de rotation de ladite bague rotative autour de ladite tige étant représentatif de la vitesse de rotation sélectionnée pour ledit instrument médical souple allongé, lors d’une commande, en vitesse, de l’entraînement en rotation dudit instrument médical souple allongé.
De préférence, ladite interface homme machine comprend aussi un élément élastique de rappel, en position de repos, de ladite bague rotative disposée autour de ladite tige, l’élément élastique de rappel comprenant de préférence un ressort de rappel.
La position de repos correspond à la position de la bague rotative avant son déplacement en rotation. Autrement dit, dans la position de repos, la vitesse du déplacement en rotation de l’instrument médical souple allongé est nulle. Aussi, grâce à l’élément élastique de rappel, il est possible d’arrêter l’entrainement en rotation de l’instrument médical souple allongé lorsque l’utilisateur cesse d’actionner la bague rotative. De plus, l’élément élastique de rappel permet aussi de réduire l’encombrement global de l’interface homme machine car il permet de réduire la taille et la course de la bague rotative.
De préférence, ladite interface homme machine de commande inclut une manivelle qui est déplaçable en rotation par la main d’un utilisateur de manière à entraîner ledit instrument médical souple allongé en rotation.
De préférence, ladite interface homme machine de commande inclut aussi un élément élastique de rappel, en position de repos, pour l’entraînement en translation seulement, dudit organe mobile de commande ou de ladite tige, ledit élément élastique de rappel comprenant de préférence un ressort de rappel.
La position de repos correspond à la position de l’organe mobile de commande ou de la tige avant leur déplacement en translation. Autrement dit, dans la position de repos, la vitesse du déplacement en translation de l’instrument médical souple allongé est nulle. Aussi, grâce à l’élément élastique de rappel, il est possible d’arrêter l’entrainement en translation de l’instrument médical souple allongé lorsque l’utilisateur cesse d’actionner l’organe mobile de commande. De plus, l’élément élastique de rappel permet aussi de réduire l’encombrement global de l’interface homme machine car il permet de réduire la taille et la course de l’organe mobile de commande.
L’angle de rotation de l’organe de commande ou de la tige avant leur rappel en position de repos est ainsi conservé.
De préférence, le robot cathéter comprend aussi un autre module d’entraînement d’un autre instrument médical souple allongé, en translation le long d’un axe principal d’élongation dudit autre instrument médical souple allongé et en rotation autour de l’axe principal d’élongation dudit autre instrument médical souple allongé, ladite interface homme machine commandant aussi ledit autre module d’entraînement et étant structurée de manière à, dans le premier mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit autre instrument médical souple allongé, commander, en position, l’entraînement en rotation dudit autre instrument médical souple allongé.
Le robot cathéter peut donc être muni de deux instruments médicaux distincts dont l’entrainement en translation est commandé en vitesse et l’entrainement en rotation est commandé en position. Des fonctionnalités supplémentaires peuvent donc être ajoutées au robot cathéter. Par ailleurs, la même interface homme machine permet de commander l’entrainement des deux instruments médicaux, ce qui permet de réduire l’encombrement global du robot cathéter.
De préférence, le robot cathéter comprend au moins un module supplémentaire d’entraînement, en translation, d’un instrument médical souple allongé supplémentaire, ledit instrument médical souple allongé supplémentaire entourant sur une partie de sa longueur ledit instrument médical souple allongé, ladite interface homme machine commandant aussi ledit module supplémentaire d’entraînement, ladite interface homme machine étant structurée pour commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé supplémentaire.
Le module supplémentaire d’entrainement étant aussi commandé par la même interface homme machine que le premier module d’entrainement, l’encombrement global du robot cathéter est réduit. De plus, grâce au module supplémentaire d’entrainement et à l’instrument médical souple allongé supplémentaire, il est possible d’ajouter des fonctionnalités supplémentaires au robot cathéter.
De préférence, ledit instrument médical souple allongé supplémentaire est un cathéter, de préférence un cathéter stent ou ballon.
De préférence, ladite interface homme machine de commande inclut aussi une molette qui est déplaçable en rotation par la main d’un utilisateur de manière à commander en vitesse et à entraîner en translation ledit instrument médical souple allongé supplémentaire.
La molette présente l’avantage d’être simple à utiliser et de présenter un encombrement particulièrement réduit. On obtient ainsi, pour une commande de nature simple, comme la translation de l’instrument médical souple allongé supplémentaire, une amélioration du compromis entre la simplicité d’utilisation et l’encombrement global de l’interface homme machine du robot cathéter. De préférence, ladite interface homme machine de commande inclut aussi un élément élastique supplémentaire de rappel de la molette en position de repos, qui comprend de préférence un ou plusieurs ressorts de rappel supplémentaires.
La position de repos correspond à la position de la molette avant de la déplacer en rotation. Autrement dit, dans la position de repos, la vitesse du déplacement en translation de l’instrument médical souple allongé supplémentaire est nulle. Aussi, grâce à l’élément élastique supplémentaire de rappel, il est possible d’arrêter l’entrainement en translation de l’instrument médical souple allongé supplémentaire lorsque l’utilisateur cesse d’actionner la molette. De plus, l’élément élastique supplémentaire de rappel permet aussi de réduire l’encombrement global de l’interface homme machine, car il permet de réduire la taille et la course de la molette.
De préférence, ladite interface homme machine est structurée de manière à : ne commander, qu’en vitesse, l’entraînement en translation dudit instrument médical souple allongé, ne commander, qu’en position, l’entraînement en rotation dudit instrument médical souple allongé.
De préférence, ladite interface homme machine est structurée, dans un troisième mode de fonctionnement, de manière à commander, en position, l’entraînement en translation dudit instrument médical souple allongé, pas à pas, c’est-à-dire par déplacement d’un pas prédéterminé à chaque impulsion reçue par l’interface homme machine, commander, en position, l’entraînement en rotation, dudit instrument médical souple allongé, pas à pas, c’est-à-dire par déplacement d’un pas prédéterminé à chaque impulsion reçue par l’interface homme machine.
Selon un autre aspect, l’invention se rapporte à une interface homme machine de commande d’un module d’entraînement d’un instrument médical souple allongé, en translation le long d’un axe principal d’élongation dudit instrument médical souple allongé et en rotation autour de l’axe principal d’élongation dudit instrument médical souple allongé, dans un robot cathéter, caractérisée en ce qu’elle est structurée de manière à, dans un premier mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé, commander, en position, l’entraînement en rotation dudit instrument médical souple allongé. De préférence, l’interface homme machine comprend un organe mobile de commande qui est destiné à être manipulé par la main d’un utilisateur, et qui est structuré de manière à ce que, dans le premier mode de fonctionnement : un déplacement en translation dudit organe mobile de commande avec une amplitude de translation entraîne un déplacement en translation dudit instrument médical souple allongé avec une vitesse proportionnelle à ladite amplitude de translation, un déplacement en rotation dudit organe mobile de commande avec une amplitude de rotation entraîne un déplacement en rotation dudit instrument médical souple allongé avec un angle de rotation proportionnel à ladite amplitude de rotation.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d’un mode de réalisation préféré de l'invention, donnée à titre d'exemple et en référence aux dessins annexés.
BREVE DESCRIPTION DES DESSINS
[Fig. 1] La figure 1 représente schématiquement un exemple de robot cathéter selon un mode de réalisation de l’invention.
[Fig. 2] La figure 2 représente une vue schématique en coupe longitudinale d’un exemple d’instrument médical souple allongé.
[Fig. 3] La figure 3 est une vue schématique en perspective d’un exemple d’interface homme machine du robot cathéter de la figure 1 selon un mode de réalisation de l’invention.
[Fig. 4] La figure 4 est une vue schématique en perspective d’un exemple d’une partie d’un organe mobile de commande, ou organe de commande d’entrainement, de l’interface homme machine de la figure 3.
[Fig. 5] La figure 5 est une vue schématique en perspective d’un exemple d’organe mobile de commande ou organe de commande d’entrainement de l’interface homme machine de la figure 3.
[Fig. 6] La figure 6 représente une vue schématique de côté d’un exemple d’interface homme machine du robot cathéter de la figure 1 selon un autre mode de réalisation de l’invention.
[Fig. 7] La figure 7 représente une vue schématique de côté d’un exemple d’interface homme machine du robot cathéter de la figure 1 selon un autre mode de réalisation de l’invention.
[Fig. 8] La figure 8 représente schématiquement un exemple de robot cathéter selon un autre mode de réalisation de l’invention. [Fig. 9] La figure 9 est une vue schématique en perspective d’un exemple d’interface homme machine du robot cathéter de la figure 8 selon un mode de réalisation de l’invention. DESCRIPTION DETAILLEE DES MODES DE REALISATION DE L’INVENTION
Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
La figure 1 représente schématiquement un robot cathéter 1 selon un premier mode de réalisation de l’invention. Le robot cathéter 1 comprend un module d’entrainement 2 d’un instrument médical souple allongé 3 (illustré sur la figure 2) et une interface homme machine 4 de commande du module d’entrainement 2.
L’instrument médical souple allongé 3 peut par exemple s'agir d'un organe à introduire dans un canal d'un patient, et à déplacer dans ce canal, notamment une artère ou une veine du patient. Comme illustré sur la figure 2, l’instrument médical souple allongé 3 s’étend le long d’un axe A, dit axe principal d’élongation.
De préférence, l’instrument médical souple allongé 3 comprend un guide de cathéter, et/ou un cathéter guide, et/ou un micro-cathéter. L’instrument médical souple allongé 3 peut, également ou alternativement, comprendre un cathéter, par exemple de type ballon ou stent. Sur l’exemple non-limitatif de la figure 2, l’instrument médical souple allongé 3 comprend un cathéter guide 3-1, un micro-cathéter 3-2 et un guide de cathéter 3-3 coaxiaux d’axe A. Le cathéter guide 3-1 et le micro-cathéter 3-2 sont creux au moins sur une portion proche du patient lorsque l’instrument médical souple allongé 3 est introduit dans le patient. Le guide de cathéter 3-3 peut être un fil métallique plein. Le diamètre du cathéter guide 3-1 est supérieur au diamètre du micro-cathéter 3-2, et le diamètre du guide de cathéter 3-3 est inférieur au diamètre du microcathéter 3-3. Le guide de cathéter 3-3 est ainsi inséré, au moins partiellement, dans le microcathéter 3-2 qui est à son tour inséré, au moins partiellement, dans le cathéter guide 3-1.
Avantageusement, le module d’entrainement 2 est structuré de manière à pouvoir être relié à l’instrument médical souple allongé 3. Comme il va être détaillé, le module d’entrainement 2 est configuré pour déplacer l’instrument médical souple allongé 3 en translation le long de l’axe principal d’élongation A, et/ou en rotation autour de l’axe principal d’élongation A.
Dans certains cas, le robot cathéter 1 peut en outre comprendre un module supplémentaire d’entrainement 2’ d’un instrument médical souple allongé supplémentaire.
Avantageusement, l’instrument médical souple allongé supplémentaire entoure l’instrument médical souple allongé 3, au moins sur une partie de la longueur de l’instrument médical souple allongé 3. Aussi, l’instrument médical souple allongé supplémentaire est par exemple un cathéter, de préférence un cathéter stent ou ballon.
Le module supplémentaire d’entrainement 2’ est structuré de manière à pouvoir être relié à l’instrument médical souple allongé supplémentaire. Le module supplémentaire d’entrainement 2’ est configuré pour déplacer l’instrument médical souple allongé supplémentaire en translation.
Comme il va être détaillé, l’interface homme machine 4 est aussi configurée pour commander le module supplémentaire d’entrainement 2’.
Maintenant sera décrite l’interface homme machine 4 en référence aux figures 3 à 5.
L’interface homme machine 4 comprend un organe de commande 5 de l’instrument médical souple allongé 3. L’organe de commande 5 est par exemple relié à un boitier 6 de l’interface homme-machine 4.
De préférence, l’organe de commande 5 est un organe mobile de commande destiné à être manipulé par un utilisateur du robot cathéter 1. Par exemple, l’organe de commande 5 peut être manipulé par une main de l’utilisateur. Par « manipuler » on entend ici qu’un effort est exercé par l’utilisateur de manière volontaire sur l’organe de commande 5.
Comme il va être détaillé, la manipulation de l’organe de commande 5 entraine l’instrument médical souple allongé 3 en translation le long de l’axe principal d’élongation A et/ou en rotation autour de cet axe A. En particulier, à partir de l’organe de commande 5, la translation de l’instrument médical souple allongé 3 le long de son axe principal d’élongation A peut être commandée dans un sens ou dans l'autre (avance ou retrait). De même, à partir de l’organe de commande 5, la rotation de l’instrument médical souple allongé 3 autour de son axe principal d’élongation A peut être commandée dans un sens ou dans l'autre (sens horaire ou sens antihoraire). Aussi, l’organe de commande 5 est notamment un organe de commande d’entrainement, en translation et en rotation, de l’instrument médical souple allongé 3. Comme il va être détaillé, l’organe de commande 5 peut permettre de commander la translation et/ou la rotation de l’instrument médical souple allongé 3 à partir de deux types de commandes : une commande en position ou une commande en vitesse. Ces types de commandes sont décrites par la suite.
Avantageusement, l’organe de commande 5 a une forme allongée comme l’instrument médical souple allongé 3. Ceci rend la commande de l’entrainement de l’instrument médical souple allongé 3 plus ergonomique.
Sur les figures 3 à 5, l’organe mobile de commande 5 comprend une tige 7 s’étendant selon un axe longitudinal B. La tige 7 a par exemple une forme générale cylindrique. Dans certains cas, la tige 7 est formée d’une seule pièce. Dans d’autres cas, la tige 7 est formée par plusieurs pièces distinctes reliées entre elles, comme il va être détaillé ultérieurement en référence à la figure 4.
La tige 7 est partiellement introduite à l’intérieur du boitier 6 de l’interface homme- machine 4. Avantageusement, une première portion d’extrémité 7-1 de la tige 7 est insérée dans le boitier 6, une seconde portion d’extrémité 7-2 opposée à la première portion d’extrémité de la tige 7 étant extérieure au boitier 6. L’utilisateur du robot cathéter 1 peut ainsi manipuler la tige 7 par sa seconde portion d’extrémité 7-2.
La manipulation de la tige 7 peut comprendre le déplacement de la tige 7 ou d’une partie de celle-ci en translation le long de son axe longitudinal B dans un sens ou dans l’autre (avance ou retrait). La manipulation de la tige 7 peut également comprendre le déplacement de la tige 7 ou d’une partie de celle-ci en rotation autour de cet axe longitudinal B dans un sens ou dans l'autre (sens horaire ou sens antihoraire). Comme il va être expliqué par la suite, la tige 7 est structurée de manière à ce que le déplacement de la tige 7 (ou d’une partie de celle-ci) en translation le long de l’axe B ou en rotation autour de l’axe B commande un déplacement de l’instrument médical souple allongé 3 en, respectivement, translation le long de son axe principal d’élongation A ou rotation autour de l’axe principal d’élongation A.
Sur l’exemple de réalisation non-limitatif illustré par la figure 4, la tige 7 comprend une première partie 8 et une deuxième partie 9. La première partie 8 et la deuxième partie 9 forment deux pièces distinctes.
La première partie 8 et la deuxième partie 9 comprennent chacune une paroi latérale, de préférence sensiblement cylindrique.
La première partie 8 de la tige 7 est creuse au moins à une portion d’extrémité, de sorte à former une cavité 10 s’étendant sensiblement parallèlement à l’axe B et délimitée par la paroi latérale de la première partie 8.
Au moins un trou 11, par exemple circulaire, traverse la paroi latérale de la première partie 8 entre l’extérieur de la tige 7 et la cavité 10. Avantageusement, deux trous 11 disposés en vis-à-vis l’un de l’autre perpendiculairement à l’axe B traversent la paroi latérale de la première partie 8.
La deuxième partie 9 est de préférence creuse, de manière à former une cavité 12 s’étendant sensiblement parallèlement à l’axe B et délimitée par la paroi latérale de la deuxième partie 9.
De préférence, une section transversale de la deuxième partie 9 est plus petite que la section transversale de la cavité 10 de la première partie 8. La deuxième partie 9 peut donc être introduite, au moins partiellement, dans la cavité 10. Avantageusement, un jeu existe entre la paroi latérale de la première partie 8 et la paroi latérale de la deuxième partie 9 lorsque la deuxième partie 9 est introduite dans la première partie 8.
Comme il ressort de la figure 4, la deuxième partie 9 comprend au moins une fente 13 traversant la paroi latérale de la deuxième partie 9 entre l’extérieur de la tige 7 et la cavité 12. Avantageusement, deux fentes 13 disposées en vis-à-vis l’une de l’autre perpendiculairement à l’axe B traversent la paroi latérale de la deuxième partie 9.
Chaque trou 11 et chaque fente 13 comprend une première dimension, appelée ici « longueur », qui s’étend sensiblement parallèlement à l’axe longitudinal B de la tige 7. Chaque trou 11 et chaque fente 13 comprend aussi une deuxième dimension, appelée ici « largeur », qui s’étend autour de l’axe longitudinal B dans un plan sensiblement perpendiculaire à l’axe B. Avantageusement, la largeur de chaque fente 13 est sensiblement égale à la largeur de chaque trou 11, tandis que la longueur de chaque fente 13 est supérieure à la longueur de chaque trou 11.
Comme il ressort de la figure 4, une goupille 14 relie la première partie 8 et la deuxième partie 9 de la tige 7 entre elles. La goupille 14 traverse chaque trou 11 et chaque fente 13. Avantageusement, la goupille 14 est montée serrée ou ajustée dans chaque trou 11.
Dans cette configuration de la tige 7, la seconde portion d’extrémité 7-2 de la tige 7 extérieure au boitier 6 peut comprendre une portion d’extrémité de la première partie 8, le reste de la première partie 8 et la deuxième partie 9 formant la première portion d’extrémité 7-1. Aussi, la première partie 8 est partiellement extérieure au boitier 6, ce qui permet à l’utilisateur du robot cathéter 1 de manipuler la tige 7 à partir d’un effort exercé sur la première partie 8.
La première partie 8 peut être manipulée de sorte à la déplacer en translation le long de l’axe B, dans un sens ou dans l’autre (avance ou retrait).
Comme indiqué précédemment, la longueur de chaque fente 13 est supérieure à la longueur de chaque trou 11. La première partie 8 peut donc glisser sur la deuxième partie 9 lors de son déplacement en translation le long de l’axe B sans que la deuxième partie 9 de la tige 7 ne se déplace solidairement avec la première partie 8. Par conséquent, la deuxième partie 9 est découplée en translation de la première partie 8.
La goupille 14 étant montée serrée ou ajustée dans chaque trou 11, la translation de la première partie 8 sur la deuxième partie 9 provoque un déplacement solidaire de la goupille 14 le long de chaque fente 13. La translation de la première partie 8 le long de l’axe B est empêchée dans un sens donné lorsque la goupille 14 vient en butée contre l’une des extrémités de la fente 13. Dans un tel cas, la première partie 8 peut être déplacée en translation le long de l’axe B dans le sens contraire jusqu’à ce que la goupille 14 vient en butée contre l’autre extrémité de la fente Grâce au glissement de la première partie 8 sur la deuxième partie 9, l’organe de commande 5 peut être compacté par rapport à un organe de commande dans lequel la totalité de la tige 7 se déplace en translation le long de l’axe B.
La première partie 8 peut également ou alternativement être manipulée de sorte à la déplacer en rotation autour de l’axe B, dans un sens ou dans l’autre (sens horaire ou sens antihoraire).
Comme expliqué précédemment, la largeur de chaque fente 13 est de préférence sensiblement égale à la largeur de chaque trou 11. Par ailleurs, la goupille 14 est montée serrée ou ajustée dans chaque trou 11. Ainsi, toute rotation de la première partie 8 autour de l’axe B provoque une rotation solidaire de la goupille 14 et de la deuxième partie 9. La deuxième partie 9 est donc couplée en rotation avec la première partie 8.
Comme visible sur la figure 5, l’organe de commande 5 peut comprendre en outre un support 15 destiné à être installé à l’intérieur du boitier 6 de l’interface homme machine 4. La tige 7 s’étend partiellement à l’intérieur du support 15. Par exemple, le support 15 peut être positionné autour de la tige 7 de sorte que la portion d’extrémité 7-2 extérieure au boitier 6 soit également disposée à l’extérieur du support 15.
Le support 15 peut comprendre une première base 16 et une deuxième base 17 disposées sensiblement perpendiculairement à l’axe B, notamment en vis-à-vis l’une de l’autre. Avantageusement, la première base 16 et la deuxième base 17 comprennent chacune un trou traversant (non visible) respectif à travers lequel passe la tige 7. Avantageusement, les trous traversant du support 15 ont une forme telle que la tige 7 peut y coulisser.
Le trou traversant de chaque base 16, 17 est de préférence sensiblement en vis-à-vis du trou de l’autre base 17, 16. Chaque trou traverse la base 16, 17 respective de préférence sensiblement parallèlement à l’axe B. Les trous des bases 16, 17 permettent de guider la translation de la tige 7, ou de l’une des parties de celle-ci, le long de l’axe B.
Une ou plusieurs barres 18 relient les bases 16, 17 entre elles. En l’espèce, trois barres 18 sont prévues, sans que ceci ne soit limitatif. De préférence, chaque barre 18 s’étend sensiblement parallèlement à l’axe B.
Un potentiomètre 19 peut être prévu dans l’organe de commande 5. Le potentiomètre 19 peut être relié au support 15. Sur l’exemple de la figure 5, le potentiomètre 19 s’étend sensiblement parallèlement à l’axe B et est relié à chacune des bases 16, 17 du support 15. Le potentiomètre 19 est de préférence de type linéaire.
Comme il ressort de la figure 5, le potentiomètre 19 est relié à la tige 7. A cet effet, un pivot 20 peut être agencé autour de la tige 7. Le pivot 20 est relié, directement ou indirectement, au potentiomètre 19 de manière à pouvoir coulisser le long du potentiomètre. Sur l’exemple de la figure 5, un arbre de transmission 21 relie le pivot 20 et le potentiomètre 19 de manière coulissante.
Le pivot 20 est par exemple relié à la tige 7 par la goupille 14. De manière avantageuse, le pivot 20 est relié à la tige 7 de sorte à être déplacé en translation le long de l’axe B solidairement avec la tige 7. Aussi, lorsque la tige 1 est translatée le long de l’axe B, le pivot 20 suit le même mouvement, ce qui fait varier la résistance du potentiomètre 19. La résistance du potentiomètre varie donc en fonction de la position de la tige 7 le long de l’axe B. Autrement dit, l’amplitude et le sens de la translation le long de l’axe B de la tige 7 (ou d’une partie de celle-ci) sont détectées par le potentiomètre 19 et traduites dans une variation de sa résistance. En fonction de la variation de résistance du potentiomètre 19, l’amplitude de translation ou la vitesse de translation de l’instrument médical souple allongé 3 le long de son axe A varient.
On note que lorsque la tige 7 comprend deux parties dont une seule est configurée pour être déplacée en translation le long de l’axe B, comme la première partie 8 de la figure 4, le pivot 20 est relié à la partie de la tige déplaçable en translation le long de l’axe B. Ceci permet de faire varier la résistance du potentiomètre 19 dès que la tige est déplacée, même si ce n'est que partiellement, le long de l'axe B .
Le pivot 20 est avantageusement découplé en rotation autour de l’axe B de la tige 7. De préférence encore, le pivot 20 est immobile en rotation autour de l’axe B.
L’organe de commande 5 peut par ailleurs comprendre un codeur à quadrature 22. Le codeur à quadrature 22 est relié à la tige 7. Par exemple, le codeur à quadrature 22 est relié à l’extrémité de la tige opposée à la portion d’extrémité 7-2 extérieure au boitier 6 de l’interface homme machine 4.
Le codeur à quadrature 22 est configuré pour mesurer une amplitude et un sens de rotation de la tige 7 autour de l’axe B. Le codeur à quadrature 22 peut être configuré pour convertir l’amplitude de rotation de la tige 7 mesurée en une amplitude de rotation ou en une vitesse de rotation de l’instrument médical souple allongé 3 autour de son axe principal d’élongation 1.
Dans certains cas, au moins un élément élastique de rappel 23, en position de repos, de l’organe de commande 5, notamment de la tige 7, peut être prévu. Dans le présent texte, la position de repos de la tige 7 s’entend de la position de la tige 7 préalablement à tout déplacement en translation de celle-ci, ou de l’une de ses parties, le long de l’axe B. Autrement dit, dans sa position de repos, la tige 7 se trouve dans la position dans laquelle elle se trouve avant l’application de tout effort provoquant le déplacement en translation le long de l’axe longitudinal B de la tige 7 ou d’une partie de celle-ci. Sur la figure 5, chaque élément élastique de rappel 23 est un ressort de rappel agencé autour de l’une des barres 18 du support 15, sans que ceci ne soit limitatif.
Comme indiqué, le déplacement de la tige 7 (ou d’une partie de celle-ci) en translation le long de l’axe B ou en rotation autour de l’axe B provoque un déplacement de l’instrument médical souple allongé 3 en translation le long de son axe principal d’élongation A ou en rotation autour de l’axe principal d’élongation A respectivement. Grâce à l’élément élastique de rappel 23, dès que l’utilisateur du robot cathéter cesse de manipuler la tige 7, la tige 7 se déplace progressivement le long de l’axe B jusqu’à sa position de repos. Comme il va être détaillé, ceci peut provoquer une réduction progressive de la vitesse de déplacement de l’instrument médical souple allongé 3 jusqu’à une vitesse nulle, ou un recul de l’instrument médical souple allongé 3 à l’intérieur du canal dans lequel il se déplace.
L’interface homme-machine 4 peut comprendre un élément de sécurité, permettant de bloquer ou débloquer l’entraînement de l’instrument médical souple allongé 3 par l’organe de commande 5, en l’occurrence la tige 7.
L’élément de sécurité comprend une surface de sécurité 24. Dans certains cas, la surface de sécurité 24 est une surface tactile. Dans d’autres cas, la surface de sécurité 24 est une surface tactile capacitive. Dans d’autres cas, la surface de sécurité 24 est une surface tactile capacitive recouverte de peinture au titane.
La surface de sécurité 24 est capable de détecter le contact ou l’appui de la main ou d’une autre partie du corps de l’utilisateur. Lorsqu’un tel contact ou appui est détecté, l’entrainement de l’instrument médical souple allongé 3 par l’organe de commande 5 est débloqué. Ainsi, la translation de la tige 7 ou d’une partie de celle-ci le long de l’axe B ou sa rotation autour de l’axe B provoque le déplacement de l’instrument médical souple allongé 3 en, respectivement, translation le long de l’axe A ou rotation autour de l’axe A. Au contraire, lorsqu’un tel contact ou appui n’est pas détecté, l’entrainement de l’instrument médical souple allongé 3 par l’organe de commande 5 est bloqué. On évite ainsi qu’un déplacement involontaire de la tige 7, en translation et/ou en rotation, ne déclenche le mouvement de l’instrument médical souple allongé 3 en, respectivement, translation et/ou rotation.
Dans certains cas, si aucun contact ou appui de la main de l'utilisateur (ou d’une autre partie de son corps) n'est détecté par la surface de sécurité 24, uniquement l’entrainement en translation de l’instrument médical souple allongé 3 est bloqué. En effet, un déclenchement intempestif de la translation de l’instrument médical souple allongé 3 dans le canal du patient présente un risque plus important pour la santé du patient qu’un déclenchement intempestif de la rotation de l’instrument médical souple allongé 3, notamment lorsque la translation est commandée en vitesse. Sur l’exemple non limitatif de la figure 3, la surface de sécurité 24 comprend une première zone 24-1, une deuxième zone 24-2 et une troisième zone 24-3.
La première zone 24-1 est disposée sur un bord du boitier 6. La deuxième zone 24-2 est disposée sur une surface du boitier 6 qui est sensiblement perpendiculaire à la première zone 24-1. De préférence, la deuxième zone 24-2 est sensiblement horizontale dans la position d’utilisation usuelle de l’interface homme machine 4. La troisième zone 24-3 est comprise dans la portion d’extrémité 7-2 de la tige 7 extérieure au boitier 6. Dans cet exemple, l’entrainement de l’instrument médical souple allongé 3 par l’organe de commande 5 est débloqué lorsque l’appui ou contact de la main de l’utilisateur est détectée sur la troisième zone 24-3 comprise dans la tige 7 et sur au moins l’une parmi la première zone 24-1 et la deuxième zone 24-2. Au contraire, l’entrainement de l’instrument médical souple allongé 3 est bloqué lorsque l’appui ou contact de la main de l’utilisateur est détecté uniquement sur l’une des zones 24-1 à 24-3, ou sur aucune de ces zones 24-1 à 24-3.
Selon un mode de réalisation possible, la surface de sécurité 24 est disposée sur la tige 7, par exemple en recouvrant la tige 7 d’une surface tactile.
L’interface homme machine de commande peut par ailleurs inclure un retour haptique informant l’utilisateur du robot cathéter 1 de l’existence d’un mouvement de l’instrument médical souple allongé 3 à l’intérieur du canal du patient. Dans certains cas, le retour haptique est activé pour seulement la translation de l’instrument médical souple allongé 3. L’utilisateur du robot cathéter reçoit ainsi un retour sur l’entrainement en translation qu’il a commandé, ce qui lui permet de vérifier que cet entrainement a bien lieu de la manière dont il le souhaitait.
Le retour haptique est de préférence sous forme de vibrations. De préférence encore, le retour haptique est sous forme de vibrations de l’organe de commande 5.
Selon un exemple non limitatif, la fréquence des vibrations est proportionnelle à la vitesse en translation de l’instrument médical souple allongé 3. L’utilisateur de l’interface homme machine 4 peut ainsi détecter le passage de l’instrument médical souple allongé 3 dans des zones tortueuses ou sténosées du canal, dans lesquelles la translation de l’instrument médical souple allongé 3 est entravée, réduisant ainsi sa vitesse en translation. Ceci permet à l'utilisateur de savoir quand il est opportun de modifier ou d’adapter la commande de l’entrainement en translation de l’instrument médical souple allongé 3 et/ou de commander en rotation l’instrument médical souple allongé 3.
Selon un autre exemple non limitatif, la fréquence des vibrations est proportionnelle à la vitesse en translation de l’instrument médical souple allongé 3 lorsque cette vitesse est inférieure ou égale à une valeur seuil. Une fois que la vitesse en translation de l’instrument médical souple allongé 3 dépasse cette valeur seuil, la fréquence des vibrations est invariable quelle que soit la vitesse en translation de l’instrument médical souple allongé 3. Par exemple, la valeur seuil de la vitesse en translation de l’instrument médical souple allongé 3 peut être égale à 10 mm/s. Avantageusement, lorsque la vitesse en translation de l’instrument médical souple allongé 3 est supérieure à la valeur seuil, la fréquence des vibrations est telle que l’utilisateur perçoit une vibration continue (c'est-à-dire, à aucun moment l'utilisateur ne cesse de ressentir la vibration). L’utilisateur du robot cathéter 1 est ainsi alerté d’une vitesse de translation de l’instrument médical souple allongé 3 qui peut présenter un risque majeur pour la santé du patient.
Comme visible sur la figure 3, l’interface homme machine 4 peut en outre comprendre une molette 25 qui est déplaçable en rotation par la main de l’utilisateur. Comme il va être détaillé, la rotation de la molette 25 permet de commander le déplacement du module supplémentaire d’entrainement 2’ de manière à entrainer en translation l’instrument médical souple allongé supplémentaire.
Le module supplémentaire d’entrainement 2’ étant commandé par la même interface homme machine 4 que le module d’entrainement 2, l’encombrement global du robot cathéter 1 est réduit.
De préférence, ladite interface homme machine de commande inclut aussi un élément élastique supplémentaire de rappel (non illustré) de la molette 25 en position de repos. Cet élément élastique supplémentaire peut comprendre un ou plusieurs ressorts de rappel supplémentaires (non illustrés). Dans le cas de la molette 25, la position de repos correspond à la position de la molette avant de la déplacer en rotation. Comme expliqué ultérieurement, grâce à l’élément élastique supplémentaire de rappel, il est possible d’arrêter l’entrainement en translation de l’instrument médical souple allongé supplémentaire lorsque l’utilisateur cesse d’actionner la molette 25.
L’interface homme machine 4 peut aussi comprendre un module d’affichage 26. Le module d’affichage 26 est par exemple un écran. L’écran peut par exemple être un écran tactile sans que ceci ne soit limitatif.
L'écran reporte des informations sur le fonctionnement du module d’entrainement 2, et éventuellement du module supplémentaire d’entrainement 2’, en réponse à la commande de ces modules 2, 2’ à l'aide de l’organe de commande 5 ou de la molette 25 respectivement.
L’écran 26 peut aussi afficher un ou plusieurs boutons virtuels permettant de sélectionner diverses fonctionnalités du robot cathéter 1, tels un mode de fonctionnement de l’interface homme machine 4. L’écran 26 permet aussi de visualiser la position de l’instrument médical souple allongé 3, et éventuellement de l’instrument médical souple allongé supplémentaire, en relation avec les différents organes du patient. Ceci permet à l’utilisateur de décider et commander les divers mouvements de l’instrument médical souple allongé lors de l’intervention sur le patient. A cet effet, un système d'imagerie (non illustré) peut être relié au robot cathéter 1 de sorte que l'image obtenue par le système d'imagerie soit visible à l'écran 26.
La figure 6 montre un autre mode de réalisation de l’interface homme machine 4 qui se distingue de l’interface homme machine 4 de la figure 3 en ce que l’organe de commande 5 comprend une manivelle 27 au lieu de la tige 7.
La manivelle 27 comprend une première portion 27-1 sensiblement droite d’axe longitudinal C. Cette première portion 27-1 est similaire ou identique à la tige 7 et ne sera pas décrite en détails dans ce qui suit.
La manivelle 27 comprend par ailleurs une seconde portion 27-2 disposée à l’extérieur du boitier 6 de l’interface homme machine 4. La seconde portion 27-2 comprend par exemple une première partie 28 et une seconde partie 29 solidaires l’une de l’autre. La première partie 28 est directement relié à la première portion 27-1 de la manivelle 27 et s’étend sensiblement perpendiculairement à l’axe longitudinal C. La seconde partie 29 s’étend sensiblement parallèlement à l’axe longitudinal C depuis une extrémité de la première partie 28. L’utilisateur du robot cathéter 1 peut ainsi manipuler, par exemple avec sa main, la manivelle 27 par la seconde partie 29.
La manipulation de la manivelle 27 peut comprendre le déplacement de la manivelle 27 ou d’une partie de celle-ci en translation le long de l’axe longitudinal C dans un sens ou dans l’autre (avance ou retrait). La manipulation de la manivelle 27 peut également comprendre le déplacement de la manivelle 27 ou d’une partie de celle-ci en rotation autour de cet axe longitudinal C dans un sens ou dans l'autre (sens horaire ou sens antihoraire). Comme la tige 7, la manivelle 27 est structurée de manière à ce que le déplacement de la manivelle 27 (ou d’une partie de celle-ci) en translation le long de l’axe C ou en rotation autour de l’axe C provoque un déplacement de l’instrument médical souple allongé 3 en, respectivement, translation le long de son axe principal d’élongation A ou rotation autour de l’axe principal d’élongation A.
Le reste d’éléments décrits précédemment en référence à l’interface homme machine de la figure 3 peuvent être compris aussi dans l’interface homme machine 4 de la figure 6. Par souci de concision, ces éléments ne sont pas décrits en détails de nouveau dans ce qui suit.
Le mode de réalisation illustré à la figure 6 permet de commander un mouvement de rotation continue de l’instrument médical souple allongé 3 tout en gardant une commande en position du mouvement de rotation de l’instrument médical souple allongé 3. La figure 7 montre un autre mode de réalisation de l’interface homme machine 4 qui se distingue de l’interface homme machine 4 de la figure 3 en ce qu’une bague rotative 30 est disposée autour de la tige 7. En particulier, la bague rotative 30 est disposée autour de la portion d’extrémité 7-2 de la tige 7 extérieure au boitier 6.
La bague 30 peut être manipulée par l’utilisateur du robot cathéter 1 de manière à la déplacer en rotation autour de l’axe B de la tige 7. Par exemple, l’utilisateur peut utiliser sa main pour manipuler la bague 30. De préférence, la bague 30 peut être tournée autour de l’axe B de la tige sans provoquer une rotation solidaire de la tige 7. Comme il va être expliqué ci- après, la rotation de la bague 30 entraine en rotation l’instrument médical souple allongé 3 à partir de l’un des types de commande indiqués précédemment (en position ou en vitesse) de différente nature de celle résultant de la rotation de la tige 7 autour de l’axe B. De manière préférentielle, la bague 30 commande en vitesse la rotation de l’instrument médical souple allongé 3.
Un élément élastique de rappel (non illustré), en position de repos, de la bague rotative 30 peut être prévu dans l’interface homme-machine 4. La position de repos de la bague rotative 30 s’entend de la position de la bague 30 avant toute rotation de la bague 30 par l’utilisateur du robot cathéter 1. L’élément élastique de rappel de la bague rotative 30 comprend de préférence un ressort de rappel.
Le reste d’éléments décrits précédemment en référence à l’interface homme machine de la figure 3 peuvent être compris aussi dans l’interface homme machine 4 de la figure 7. Par souci de concision, ces éléments ne sont pas décrits en détails de nouveau dans ce qui suit.
Le mode de réalisation illustré sur la figure 7 permet à l’utilisateur de commander en vitesse la translation de l’instrument médical souple allongé 3 et en position la rotation de l’instrument médical souple allongé 3 selon un premier mode de fonctionnement en utilisant uniquement la tige 7, et de commander en vitesse la translation et la rotation de l’instrument médical souple allongé 3 selon un deuxième mode de fonctionnement en utilisant la tige 7 pour la translation et la bague 30 pour la rotation.
Maintenant sera décrit le fonctionnement du robot cathéter 1 selon le mode de réalisation de la figure 1.
Par souci de concision, dans ce qui suit, lorsqu’il est fait référence au déplacement de l’organe de commande 5, on inclut le déplacement de la totalité de l’organe de commande 5 ou d’une partie de celui-ci (notamment, la première partie 8 lorsque l’organe de commande 5 est la tige 7 de la figure 4).
Par ailleurs, dans ce qui suit, lorsqu’il est fait référence au « déplacement en translation » ou à la « translation » de l’instrument médical souple allongé 3, il s’agit du déplacement en translation de cet instrument médical souple allongé 3 le long de son axe principal d’élongation. De même, lorsqu’il est fait référence dans ce qui suit au « déplacement en rotation » ou à la « rotation » de l’instrument médical souple allongé 3, il s’agit du déplacement en rotation de l’instrument médical souple allongé 3 autour de son axe principal d’élongation.
Comme indiqué précédemment, le module d’entrainement 2 est relié à l’instrument médical souple allongé 3 et permet de le déplacer en translation le long de l’axe A et/ou en rotation autour de l’axe A à l’intérieur d’un canal du patient.
Avantageusement, lorsque l’organe de commande 5 de l’interface homme machine 4 est déplacé, le module d’entrainement 2 se déplace en translation et/ou en rotation, ce qui provoque un déplacement solidaire de l’instrument médical souple allongé 3 à l’intérieur du canal du patient. Ainsi, l’interface homme machine 4 est structurée de manière à commander l’entrainement en translation et/ou en rotation de l’instrument médical souple allongé 3. Comme indiqué précédemment, l’organe de commande 5 peut être déplacé en translation et/ou en rotation par la main de l’utilisateur du robot cathéter 1.
Lorsque l’organe de commande 5 est la tige 7 ou la manivelle 27, une translation le long de l’axe B de la tige 7 (ou de sa première partie 8 lorsqu’elle a la configuration de la figure 4) ou de l’axe C de la manivelle 27 provoque une translation du module d’entrainement 2 de manière que l’instrument médical souple allongé 3 est entrainé en translation le long de l’axe A. De manière analogue, une rotation autour de l’axe B de la tige 7 (ou de sa première partie 8 lorsqu’elle a la configuration de la figure 4) ou de l’axe C de la manivelle 27 provoque une rotation du module d’entrainement 2 de manière que l’instrument médical souple allongé 3 est entrainé en rotation autour de l’axe A.
Avantageusement, le sens de la translation ou de la rotation de l’instrument médical souple allongé 3 à l’intérieur du canal du patient dépend du sens du déplacement de l’organe de commande 5. Par exemple, lorsque la tige 7 (ou sa première partie 8 lorsqu’elle a la configuration de la figure 4) ou la manivelle 27 est déplacée en translation dans le sens d’introduction dans le boitier 6 de l’interface homme machine, l’instrument médical souple allongé 3 peut avancer dans le canal du patient. Inversement, lorsque la tige 7 (ou sa première partie 8 lorsqu’elle a la configuration de la figure 4) ou la manivelle 27 est déplacée en translation dans le sens d’extraction du boitier 6 de l’interface homme machine 4, l’instrument médical souple allongé 3 peut reculer dans le canal du patient. Dans le cas d’une rotation de la tige 7 ou la manivelle 27 dans le sens horaire, l’instrument médical souple allongé 3 peut se déplacer en rotation autour de l’axe A dans le sens horaire, tandis que dans le cas d’une rotation de la tige 7 ou la manivelle 27 dans le sens antihoraire, l’instrument médical souple allongé 3 peut se déplacer en rotation autour de l’axe A dans le sens antihoraire. Le potentiomètre 19 peut être employé pour détecter l’amplitude et le sens de la translation de l’organe de commande 5. Comme indiqué précédemment, la résistance du potentiomètre 19 varie en fonction de l’amplitude et le sens de la translation de l’organe de commande 5. Ceci génère le signal permettant de commander la translation du module d’entrainement 2, et donc, la translation de l’instrument médical souple allongé 3 à l’intérieur du canal du patient. Concernant la rotation de l’organe de commande 5, celle-ci peut être détectée par le codeur à quadrature 22. Le codeur à quadrature 22 détecte l’amplitude et le sens de la rotation de l’organe de commande 5 et génère le signal de commande de la rotation du module d’entrainement 2, et donc, de l’instrument médical souple allongé 3 à l’intérieur du canal du patient.
On note que lorsque l’interface homme machine 4 est munie de la surface de sécurité 24, l’instrument médical souple allongé 3 est uniquement entrainé en translation et/ou en rotation lorsque la surface de sécurité 24 détecte le contact ou l’appui de la main de l’utilisateur, ou d’une autre partie de son corps, comme indiqué précédemment. Si un tel contact ou appui n’est pas détecté, le déplacement en translation et/ou en rotation de l’instrument médical souple allongé 3 par l’organe de commande 5 est bloqué même si l’organe de commande 5 est déplacé.
Si, dans un mode de réalisation possible, la non-détection du contact ou l’appui de la main de l’utilisateur par la surface de sécurité 24 bloque uniquement la translation de l’instrument médical souple allongé 3, celui-ci est entrainé en rotation dès que l’organe de commande 5 est tourné autour de son axe B ou son axe C, même si un tel contact ou appui n’est pas détecté par la surface de sécurité 24.
Comme également indiqué précédemment, la translation et la rotation de l’instrument médical souple allongé 3 peuvent être commandées en position ou en vitesse à partir de la manipulation de l’organe de commande 5. Dans le cas d’une commande en position, l’amplitude de déplacement (en translation ou en rotation) de l’instrument médical souple allongé 3 à l’intérieur du canal du patient est proportionnelle à l’amplitude de déplacement (en translation ou en rotation) de l’organe de commande 5. Dans le cas d’une commande en vitesse, la vitesse de déplacement (en translation ou en rotation) de l’instrument médical souple allongé 3 à l’intérieur du canal du patient est proportionnelle à l’amplitude de déplacement (en translation ou en rotation) de l’organe de commande 5.
Selon un premier mode de fonctionnement, l’entrainement en translation de l’instrument médical souple allongé 3 le long de son axe A, est commandé en vitesse, et l’entrainement en rotation de l’instrument médical souple allongé 3 autour de son axe A, est commandé en position. Ainsi, le déplacement en translation de l’organe de commande 5 avec une amplitude de translation donnée entraîne un déplacement en translation de l’instrument médical souple allongé 3 avec une vitesse proportionnelle à l’amplitude de translation de l’organe de commande 5, tandis qu’un déplacement en rotation de l’organe de commande 5 avec une amplitude de rotation donnée entraîne un déplacement en rotation de l’instrument médical souple allongé 3 avec un angle de rotation proportionnel à l’amplitude de rotation de l’organe de commande 5.
Généralement, lorsque la rotation de l’instrument médical souple allongé 3 est commandée en position, une différence existe entre l’angle de rotation à l’extrémité de l’instrument médical souple allongé 3 reliée au module d’entrainement 2, dite extrémité proximale, et l’extrémité de l’instrument médical souple allongé 3 opposée destinée à pénétrer dans le patient, dite extrémité distale. Ceci est dû au fait que l'extrémité distale de l’instrument médical souple allongé 3 ne commence à tourner que lorsque l’extrémité proximale de l’instrument médical souple allongé 3 a tourné d’un certain angle autour de l’axe A.
Afin de compenser cette différence entre l’angle de rotation à l’extrémité proximale et à l’extrémité distale de l’instrument médical souple allongé 3, l’entraînement en rotation de l’instrument médical souple allongé 3 peut être commandé en position avec un coefficient de proportionnalité entre d’une part le déplacement en rotation de l’organe de commande 5 et d’autre part le déplacement en rotation de l’instrument médical souple allongé 3. Ainsi, lorsque l’utilisateur du robot cathéter 1 veut commander des mouvements de rotation rapides, il peut choisir un coefficient de proportionnalité élevé grâce auquel la rotation de l’organe de commande 5 entraine un grand mouvement de rotation de l’extrémité proximale de l’instrument médical souple allongé 3 autour de l’axe A. Inversement, si l’utilisateur du robot cathéter 1 veut commander des mouvements de rotation précis, il peut choisir un coefficient de proportionnalité petit grâce auquel la rotation de l’organe de commande 5 entraine un petit mouvement de rotation de l’extrémité proximale de l’instrument médical souple allongé 3.
De manière avantageuse, ce coefficient de proportionnalité est modifiable par une sélection de l’utilisateur du robot cathéter 1. Cette sélection est par exemple faite à partir d’une bouton virtuel affiché sur le module d’affichage 26 ou à partir d’un organe de commande physique, tel un bouton, prévu sur l’interface homme machine 4. Le rapport de proportionnalité peut par exemple varier entre 3/1 et 1/25. Un rapport de 3/1 veut dire qu’une rotation de 3° de la tige 7 entraine une rotation de 1° de l’extrémité proximale de l’instrument médical souple allongé 3 manipulée par le module d’entrainement 2. Un rapport de 3/1 peut notamment être utilisé lorsque des mouvements précis sont nécessaires, par exemple passer une bifurcation avec un guide. Un rapport de 1/25 veut dire qu’une rotation de 1° de la tige 7 entraine une rotation de 25° de l’extrémité proximale de l’instrument médical souple allongé 3 manipulée par le module d’entrainement 2. Un rapport de 1/25 peut notamment être utilisé pour un mouvement de « drilling » (c’est-à-dire un mouvement de rotation continu tel un mouvement de vissage) ou de « wiggling » (c’est-à-dire une succession de mouvements de rotation de grande amplitude en sens inverse). Le rapport de proportionnalité peut varier entre 3/1 et 1/20, ou entre 3/1 et 1/15, ou entre 1/1 et 1/25, ou entre 1/1 et 1/20, ou entre 1/1 et 1/15.
Dans ce premier mode de fonctionnement, grâce à la commande en position de la rotation de l’instrument médical souple allongé 3, l’utilisateur du robot cathéter 1 peut tourner de manière intuitive l’instrument médical souple allongé 3 d’un angle de rotation précis autour de l’axe A. Par ailleurs, grâce à la commande en vitesse de la translation de l’instrument médical souple allongé, l’utilisateur peut déplacer l’instrument médical souple allongé 3 sur une longue distance à partir d’un organe de commande 5 compact. De surcroit, l’utilisateur peut adapter de manière intuitive la vitesse de translation de l’instrument médical souple allongé 3 pendant son trajet à l’intérieur du canal du patient. Ceci permet par exemple de réduire la vitesse de translation de l’instrument médical souple allongé 3 pour traverser des zones du canal incurvées. Inversement, quand l’instrument médical souple allongé 3 traverse des zones droites du canal, l’utilisateur peut augmenter la vitesse de translation de l’instrument médical souple allongé 3 pour atteindre plus rapidement la zone du canal à traiter.
Dans un deuxième mode de fonctionnement, l’interface homme machine 4 peut être structurée de manière à commander en vitesse l’entrainement de l’instrument médical souple allongé 3 en translation le long de l’axe A et en rotation autour de l’axe A.
Dans ce deuxième mode de fonctionnement, le déplacement en rotation de l’organe de commande 5 avec une amplitude de rotation donnée entraîne donc un déplacement en rotation de l’instrument médical souple allongé 3 avec une vitesse de rotation proportionnelle à l’amplitude de rotation de l’organe de commande 5.
La commande en vitesse de la translation et la rotation de l’instrument médical souple allongé 3 permet de fournir un mouvement combiné continu de translation et de rotation de l’instrument médical souple allongé 3.
Dans un troisième mode de fonctionnement, l’interface homme machine 4 peut être structurée de manière à commander en position l’entrainement de l’instrument médical souple allongé 3 en translation le long de l’axe A et en rotation autour de l’axe A.
Dans ce troisième mode de fonctionnement, le déplacement en translation de l’organe de commande 5 avec une amplitude de translation donnée entraîne donc un déplacement en translation de l’instrument médical souple allongé 3 avec une amplitude de translation proportionnelle à l’amplitude de rotation de l’organe de commande 5.
Ce troisième mode de fonctionnement permet d’obtenir des amplitudes de translation et de rotation de l’instrument médical souple allongé 3 précises. Ceci est particulièrement avantageux quand l’instrument médical souple allongé est arrivé à la zone particulière du canal du patient dans laquelle il est utilisé, ou lors du passage d’embranchements lorsque l’instrument médical souple allongé est en train de rejoindre la zone particulière du système sanguin du patient dans laquelle il va être utilisé. Ce troisième mode de fonctionnement peut par exemple être utilisé pour faire des mouvements rapides d’avancé et de retrait de l’instrument médical souple allongé 3.
On note que l’interface homme machine 4 peut être configurée de manière à ce que l’utilisateur du robot cathéter 1 puisse choisir entre les premier à troisième modes de fonctionnement de l’interface homme machine 4 décrits ci-avant. Par exemple, un bouton virtuel de sélection du mode de fonctionnement peut être affiché sur le module d’affichage 26. Ceci permet de choisir le mode de fonctionnement le plus adapté au patient ou au moment de l’intervention.
Dans certains cas, l’interface homme machine 4 peut être configurée pour ne commander qu’en vitesse l’entrainement en translation de l’instrument médical souple allongé 3 et pour ne commander qu’en position l’entrainement en rotation de l’instrument médical souple allongé.
Dans chacun des modes de fonctionnement de l’interface homme machine 4 présentés ci- avant, la translation et la rotation de l’instrument médical souple allongé 3 peuvent être commandées simultanément ou alternativement.
Lorsque la translation de l’instrument médical souple allongé 3 est commandée en position, cette commande peut se faire pas à pas. Dans de tels cas, la translation de l’instrument médical souple allongé 3 comprend un déplacement de l’instrument médical souple allongé 3 le long de l’axe A d’un pas prédéterminé à chaque impulsion reçue par l’interface homme machine 4. Ainsi, l’instrument médical souple allongé 3 peut par exemple réaliser une avance ou un retrait millimétrique dans le canal du patient.
De manière analogue, lorsque la rotation de l’instrument médical souple allongé 3 est commandée en position, cette commande peut se faire pas à pas. Dans de tels cas, la rotation de l’instrument médical souple allongé 3 comprend un déplacement de l’instrument médical souple allongé 3 autour de l’axe A d’un pas prédéterminé à chaque impulsion reçue par l’interface homme machine 4. Ainsi, l’instrument médical souple allongé 3 peut par exemple réaliser une rotation millimétrique dans le canal du patient.
Comme expliqué précédemment, lorsque l’élément élastique de rappel 23 de l’organe de commande 5 est prévu, l’organe de commande 5 se déplace progressivement le long de son axe B ou C jusqu’à sa position de repos dès que l’utilisateur du robot cathéter cesse de le manipuler. Aussi, grâce à l’élément élastique de rappel 23, lorsque la translation de l’instrument médical souple allongé 3 est commandée en position, l’instrument médical souple allongé 3 recule dans le canal du patient lorsque l’utilisateur cesse de manipuler l’organe de commande 5. Lorsque la translation de l’instrument médical souple allongé 3 est commandée en vitesse, l’élément élastique de rappel 23 provoque une réduction progressive de la vitesse de translation de l’instrument médical souple allongé 3 lorsque l’utilisateur cesse de manipuler l’organe de commande 5, la vitesse de translation de l’instrument médical souple allongé 3 devenant nulle si l’organe de commande 5 revient à sa position de repos.
Par ailleurs, comme sur l’exemple de la figure 7, l’interface homme machine 4 peut comprendre la bague rotative 30. Lors de la rotation de la bague tournante 30 autour de l'axe B ou C, une commande de rotation est générée pour l'instrument médical flexible allongé 3. De manière avantageuse, la commande en rotation générée pour l’instrument médical souple allongé 3 à partir de la rotation de la bague 30 est de nature différente à celle de la commande en rotation générée par l’organe de commande 5. Par exemple, si la rotation de l’organe de commande 5 commande en position la rotation de l’instrument médical souple allongé 3, la rotation de la bague 30 commande en vitesse la rotation de l’instrument médical souple allongé 3.
Lorsque la bague 30 commande en vitesse la rotation de l’instrument médical souple allongé 3, l’élément élastique de rappel (non illustré), en position de repos, de la bague rotative 30 permet d’arrêter la rotation de l’instrument médical souple allongé 3 quand l’utilisateur cesse de manipuler la bague 30.
Dans le cas du premier mode de fonctionnement décrit ci-avant, la présence de la bague rotative 30 présente l’avantage de permettre que l’instrument médical souple allongé 3 réalise un déplacement continu et combiné en translation et en rotation respectivement le long et autour de son axe principal d’élongation. En particulier, le déplacement continu en translation de l’instrument médical souple allongé 3 est provoqué par la commande en vitesse de la translation générée par l’organe de commande 5, tandis que le déplacement continu en rotation de l’instrument médical souple allongé 3 est provoqué par la commande en vitesse de la rotation générée par la bague rotative 30.
Comme également indiqué, le robot cathéter 1 peut comprendre le module supplémentaire d’entrainement 2’ qui est relié à l’instrument médical souple allongé supplémentaire et permet de le déplacer en translation. En particulier, lorsque la molette 25 est tournée, une commande de déplacement en translation pour le module supplémentaire d’entrainement 2’ est générée. Le module 2’ se déplace ainsi en translation, l’instrument médical souple allongé supplémentaire se déplaçant solidairement avec le module supplémentaire 2’.
La commande de déplacement en translation générée par la rotation de la molette 25 est par exemple une commande en vitesse. Dans ce cas, grâce à l’élément élastique supplémentaire de rappel de la molette 25 en position de repos, lorsque la molette n’est plus manipulée par l’utilisateur, la vitesse de la translation de l’instrument médical souple allongé supplémentaire est progressivement réduite.
Maintenant sera décrit le robot cathéter 1 selon un deuxième mode de réalisation de l’invention illustré sur la figure 8.
Le robot cathéter 1 selon le deuxième mode de réalisation comprend le module d’entrainement 2 de l’instrument médical souple allongé 3. Le robot cathéter 1 selon le deuxième mode de réalisation peut également comprendre le module supplémentaire d’entrainement 2’ de l’instrument médical souple allongé supplémentaire. Les caractéristiques et le fonctionnement du module d’entrainement 2, du module supplémentaire d’entrainement 2’, de l’instrument médical souple allongé 3 et de l’instrument médical souple allongé supplémentaire décrits en référence au premier mode de réalisation du robot cathéter 1 sont applicables à ce deuxième mode de réalisation et ne sont pas décrits en détails dans ce qui suit.
Le robot cathéter de la figure 8 comprend par ailleurs un deuxième module d’entrainement 32 d’un deuxième instrument médical souple allongé (non illustré). Le deuxième module d’entrainement 32 et le deuxième instrument médical souple allongé peuvent être identiques ou similaires à, respectivement, le module d’entrainement 2 et l’instrument médical souple allongé 3. Par conséquent, ils ne seront pas décrits en détails par la suite.
Le deuxième module d’entrainement 32 est structuré de manière à pouvoir être relié au deuxième instrument médical souple allongé. Le module d’entrainement 32 est en particulier configuré pour déplacer le deuxième instrument médical souple allongé en translation le long de son axe principal d’élongation, et/ou en rotation autour de son axe principal d’élongation.
Par ailleurs, le robot cathéter 1 de la figure 8 peut comprendre un deuxième module supplémentaire d’entrainement 32’ d’un deuxième instrument médical souple allongé supplémentaire (non illustré). Le deuxième module supplémentaire d’entrainement 32’ et le deuxième instrument médical souple allongé supplémentaire peuvent être identiques ou similaires à, respectivement, le module supplémentaire d’entrainement 2’ et l’instrument médical souple allongé supplémentaire. Par conséquent, ils ne seront pas décrits en détails par la suite.
Avantageusement, le deuxième module supplémentaire d’entrainement 32’ est structuré de manière à pouvoir être relié au deuxième instrument médical souple allongé supplémentaire. Le module supplémentaire d’entrainement 32’ est configuré pour déplacer le deuxième instrument médical souple allongé supplémentaire en translation.
On note que le deuxième instrument médical souple allongé et le deuxième instrument médical souple allongé supplémentaire peuvent être introduits dans un canal du patient différent du canal dans lequel sont introduits l’instrument médical souple allongé 3 et l’instrument médical souple allongé supplémentaire. De manière préférentielle, le deuxième instrument médical souple allongé et le deuxième instrument médical souple allongé supplémentaire peuvent être introduits dans le même canal du patient que le canal dans lequel sont introduits l’instrument médical souple allongé 3 et l’instrument médical souple allongé supplémentaire.
Le robot cathéter 1 de la figure 8 comprend par ailleurs une interface homme machine 34.
Les caractéristiques des interfaces homme machine 4 décrites ci-avant en référence aux figures 3 à 7 sont applicables à l’interface homme machine 34 et ne seront pas décrites en détails de nouveau.
Par ailleurs, comme il ressort clairement de la figure 9, l’interface homme machine 34 peut comprendre un deuxième organe de commande 5’. L’organe de commande 5’ est de préférence identique ou similaire à l’organe de commande 5 décrit ci-avant. Aussi, toutes les caractéristiques de l’organe de commande 5 indiquées ci-avant sont applicables au deuxième organe de commande 5’.
Comme il va être détaillé, la manipulation de l’organe de commande 5’ entraine le deuxième instrument médical souple allongé en translation le long de son axe principal d’élongation et/ou en rotation autour de cet axe principal d’élongation. En particulier, à partir de l’organe de commande 5’, la translation du deuxième instrument médical souple allongé le long de son axe principal d’élongation peut être commandée dans un sens ou dans l'autre (avance ou retrait). De même, à partir de l’organe de commande 5’, la rotation du deuxième instrument médical souple allongé autour de son axe principal d’élongation peut être commandée dans un sens ou dans l'autre (sens horaire ou sens antihoraire). Aussi, l’organe de commande 5’ est notamment un organe de commande d’entrainement, en translation et en rotation, du deuxième instrument médical souple allongé. L’organe de commande 5’ peut en particulier permettre de commander la translation et/ou la rotation du deuxième instrument médical souple allongé à partir d’une commande en position ou une commande en vitesse.
Comme visible sur la figure 9, l’interface homme machine 34 peut en outre comprendre une deuxième molette 25’ qui est déplaçable en rotation par la main de l’utilisateur. La molette 25’ est de préférence identique ou similaire à la molette 25 décrite ci-avant. Aussi, toutes les caractéristiques de la molette 25 indiquées ci-avant sont applicables à la molette 25’.
Comme il va être détaillé, la rotation de la molette 25’ permet de commander le déplacement du deuxième module supplémentaire d’entrainement 32’ de manière à entrainer en translation le deuxième instrument médical souple allongé supplémentaire.
Le fonctionnement du robot cathéter 1 selon le deuxième mode de réalisation est similaire au fonctionnement du robot cathéter 1 selon le premier mode de réalisation. En particulier, tous les détails du fonctionnement du robot cathéter selon le premier mode de réalisation décrits ci- avant sont applicables au robot cathéter 1 selon le deuxième mode de réalisation.
Par ailleurs, comme indiqué ci-avant, le robot cathéter 1 selon le deuxième mode de réalisation comprend le deuxième organe de commande 5’. Le fonctionnement de l’organe de commande 5’ est similaire au fonctionnement de l’organe de commande 5 décrit précédemment. Avantageusement, le fonctionnement du deuxième organe de commande 5’ se distingue de celui de l’organe de commande 5 uniquement en ce que les commandes générées par le deuxième organe de commande 5’ entrainent le déplacement (en translation et/ou en rotation) du deuxième module d’entrainement 32 et du deuxième instrument médical souple allongé. Le reste de caractéristiques du fonctionnement de l’organe de commande 5 indiquées précédemment sont donc applicables à l’organe de commande 5’.
On note que chacun des organes de commande 5, 5’ de l’interface homme machine 34 peut fonctionner selon l’un parmi le premier à troisième modes de fonctionnement décrits précédemment. Avantageusement, le mode de fonctionnement de l’organe de commande 5 à un moment donné peut être égal ou différent du mode de fonctionnement de l’organe de commande 5’ . Ceci permet d’adapter la manière de commander le déplacement de l’instrument médical souple allongé 3 et du deuxième instrument médical souple allongé aux particularités des canaux respectifs dans lesquels ils sont introduits.
Comme également indiqué ci-avant, le robot cathéter 1 selon le deuxième mode de réalisation comprend la deuxième molette 25’ . Le fonctionnement de la molette 25’ est similaire au fonctionnement de la molette 25 décrit précédemment. Avantageusement, le fonctionnement de la molette 25’ se distingue de celui de la molette 25 uniquement en ce que les commandes générées par la deuxième molette 25’ entrainent le déplacement en translation du deuxième module supplémentaire d’entrainement 32’ et du deuxième instrument médical souple allongé supplémentaire. Le reste de caractéristiques du fonctionnement de la molette 25 indiquées précédemment sont donc applicables à la molette 25’.
Bien entendu, la présente invention n'est pas limitée aux exemples et aux modes de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art. Par exemple, l’interface homme machine 4 comprend une surface tactile configurée pour détecter et mesurer le déplacement d’un doigt de l’utilisateur ou un stylet le long de ladite surface tactile et ainsi commander la translation et la rotation de l’instrument médical souple allongé 3. Pour commander un mouvement de translation de l’instrument médical souple allongé 3, l’utilisateur déplace son doigt ou le stylet le long de la surface tactile dans une première direction, le sens du déplacement du doigt ou du stylet commandant le sens de la translation de l’instrument médical souple allongé 3, tandis que la longueur du trajet effectué par le doigt ou le stylet selon la première direction commandant la vitesse de translation de l’instrument médical souple allongé 3. Pour commander un mouvement de rotation de l’instrument médical souple allongé 3, l’utilisateur déplace son doigt ou le stylet le long de la surface tactile dans une seconde direction perpendiculaire à la première direction, le sens du déplacement du doigt ou du stylet commandant le sens de la rotation de l’instrument médical souple allongé 3, tandis que la longueur du trajet effectué par le doigt ou le stylet selon la deuxième direction commandant la position angulaire de l’instrument médical souple allongé 3 avec un ratio x mm=y° (c’est-à-dire que x mm de déplacement le long de la deuxième direction entraine une rotation de y0 de l’instrument médical souple allongé 3). L’utilisateur peut commander un mouvement combiné de translation et de rotation de l’instrument médical souple allongé 3 en déplaçant son doigt ou le stylet le long de la surface tactile dans un troisième direction qui comprend une composante selon la première direction et une composante selon la deuxième direction.

Claims

REVENDICATIONS
1. Robot cathéter (1) comprenant : un module d’entraînement (2) d’un instrument médical souple allongé (3), en translation le long d’un axe principal d’élongation (A) dudit instrument médical souple allongé (3) et en rotation autour de l’axe principal d’élongation (A) dudit instrument médical souple allongé (3), de manière simultanée ou alternative, une interface homme machine (4, 34) de commande dudit module d’entraînement (2), caractérisé en ce que ladite interface homme machine (4, 34) est structurée de manière à, dans un premier mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé (3), commander, en position, l’entraînement en rotation dudit instrument médical souple allongé (3).
2. Robot cathéter (1) selon la revendication 1, caractérisé en ce que ladite interface homme machine (4, 34) comprend : un organe mobile de commande (5) : o qui est destiné à être manipulé par la main d’un utilisateur, o et qui est structuré de manière à ce que, dans le premier mode de fonctionnement :
■ un déplacement en translation dudit organe mobile de commande (5) avec une amplitude de translation entraîne un déplacement en translation dudit instrument médical souple allongé (3) avec une vitesse proportionnelle à ladite amplitude de translation,
■ un déplacement en rotation dudit organe mobile de commande (5) avec une amplitude de rotation entraîne un déplacement en rotation dudit instrument médical souple allongé (3) avec un angle de rotation proportionnel à ladite amplitude de rotation.
3. Robot cathéter (1) selon la revendication 2, caractérisé en ce que : ladite interface homme machine (4, 34) est structurée de manière à : o commander, en position, l’entraînement en rotation, dudit instrument médical souple allongé (3), avec un coefficient de proportionnalité entre d’une part le déplacement en rotation dudit organe de commande (5) et d’autre part le déplacement en rotation dudit instrument médical souple allongé (3),
■ ledit coefficient de proportionnalité étant modifiable par une sélection de l’utilisateur du robot cathéter. Robot cathéter (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que : ladite interface homme machine (4, 34) de commande comprend : o un organe de commande (5) d’entraînement, en translation et en rotation, dudit instrument médical souple allongé (3), o un élément de sécurité, permettant de bloquer ou débloquer l’entraînement dudit instrument médical souple allongé (3) par ledit organe de commande (5) d’entraînement. Robot cathéter (1) selon la revendication 4, caractérisé en ce que : ledit élément de sécurité comprend une surface de sécurité (24) capable de détecter le contact ou l’appui de la main d’un utilisateur de manière à débloquer ledit organe de commande d’entraînement (5), o ladite surface de sécurité (24) étant de préférence une surface tactile, ou une surface tactile capacitive, ou une surface tactile capacitive recouverte d’un revêtement incluant du titane, ou une surface tactile capacitive recouverte d’une peinture au titane. Robot cathéter (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que : ladite interface homme machine (4, 34) de commande inclut : o un retour haptique pour seulement la translation de l’instrument médical souple allongé (3),
■ de préférence sous forme de vibrations,
■ ou de préférence sous forme de vibrations dont la fréquence est proportionnelle à la vitesse en translation de l’instrument médical souple allongé. Robot cathéter (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’interface homme machine (4, 34) est structurée de manière à, dans un deuxième mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé (3), commander, en vitesse, l’entraînement en rotation dudit instrument médical souple allongé (3). Robot cathéter (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que : ladite interface homme machine (4, 34) de commande inclut : o une tige (7) :
■ qui est déplaçable en translation par la main d’un utilisateur de manière à entraîner ledit instrument médical souple allongé (3) en translation,
■ qui est déplaçable en rotation par la main d’un utilisateur de manière à entraîner ledit instrument médical souple allongé (3) en rotation,
■ et qui de préférence comprend une surface tactile (24-3). Robot cathéter (1) selon la revendication 8, caractérisé en ce que : ladite tige (7) comprend deux parties coulissant l’une dans l’autre : o une première partie (8) qui est mobile en translation et en rotation et qui est destinée à être manipulée par la main d’un utilisateur, o une deuxième partie (9) qui est couplée en rotation avec ladite première partie (8), et qui est découplée en translation de ladite première partie (8) de manière à rester fixe en translation. Robot cathéter (1) selon l’une quelconque des revendications 8 ou 9 en combinaison avec la revendication 7, caractérisé en ce que : ladite interface homme machine (4, 34) comprend aussi : o une bague rotative (30) disposée autour de ladite tige (7), l’angle de rotation de ladite bague rotative (30) autour de ladite tige (7) étant représentatif de la vitesse de rotation sélectionnée pour ledit instrument médical souple allongé (3), lors d’une commande, en vitesse, de l’entraînement en rotation dudit instrument médical souple allongé (3).
11. Robot cathéter (1) selon la revendication 9, caractérisé en ce que : ladite interface homme machine (4, 34) comprend aussi : o un élément élastique de rappel, en position de repos, de ladite bague rotative (30) disposée autour de ladite tige (7), l’élément élastique de rappel comprenant de préférence un ressort de rappel.
12. Robot cathéter (1) selon l’une quelconque des revendications 1 à 7, caractérisé en ce que : ladite interface homme machine (4, 34) de commande inclut : o une manivelle (27) : qui est déplaçable en rotation par la main d’un utilisateur de manière à entraîner ledit instrument médical souple allongé (3) en rotation.
13. Robot cathéter (1) selon l’une quelconque des revendications 2 à 12, caractérisé en ce que : ladite interface homme machine (4, 34) de commande inclut aussi : o un élément élastique de rappel (23), en position de repos, pour l’entraînement en translation seulement, dudit organe mobile de commande (5) ou de ladite tige (7), ledit élément élastique de rappel (23) comprenant de préférence un ressort de rappel.
14. Robot cathéter (1) selon l’une quelconque des revendications précédentes, caractérisé en qu’il comprend aussi : un autre module d’entraînement (32) d’un autre instrument médical souple allongé, en translation le long d’un axe principal d’élongation dudit autre instrument médical souple allongé et en rotation autour de l’axe principal d’élongation dudit autre instrument médical souple allongé, ladite interface homme machine (34) commandant aussi ledit autre module d’entraînement (32) et étant structurée de manière à, dans le premier mode de fonctionnement : o commander, en vitesse, l’entraînement en translation dudit autre instrument médical souple allongé, o commander, en position, l’entraînement en rotation dudit autre instrument médical souple allongé.
15. Robot cathéter (1) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend au moins : un module supplémentaire d’entraînement (2’), en translation, d’un instrument médical souple allongé supplémentaire, ledit instrument médical souple allongé supplémentaire entourant sur une partie de sa longueur ledit instrument médical souple allongé (3), en ce que : ladite interface homme machine (4, 34) commande aussi ledit module supplémentaire d ’ entraînement (2 ’ ) , et en ce que : ladite interface homme machine (4, 34) est structurée pour commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé supplémentaire. Robot cathéter (1) selon l’une quelconque des revendications 14 à 15, caractérisé en ce que : ladite interface homme machine (4, 34) de commande inclut aussi : o une molette (25) qui est déplaçable en rotation par la main d’un utilisateur de manière à commander en vitesse et à entraîner en translation ledit instrument médical souple allongé supplémentaire. Robot cathéter (1) selon la revendication 16, caractérisé en ce que : ladite interface homme machine (4, 34) de commande inclut aussi : o un élément élastique supplémentaire de rappel de la molette (25) en position de repos, qui comprend de préférence un ou plusieurs ressorts de rappel supplémentaires. Robot cathéter (1) selon l’une des revendications précédentes, caractérisé en ce que ladite interface homme machine (4, 34) est structurée de manière à : ne commander, qu’en vitesse, l’entraînement en translation dudit instrument médical souple allongé (3), ne commander, qu’en position, l’entraînement en rotation dudit instrument médical souple allongé (3). Robot cathéter (1) selon l’une quelconque des revendications 1 à 17, caractérisé en ce que ladite interface homme machine (4, 34) est structurée, dans un troisième mode de fonctionnement, de manière à : o commander, en position, l’entraînement en translation dudit instrument médical souple allongé (3), pas à pas, c’est-à-dire par déplacement d’un pas prédéterminé à chaque impulsion reçue par l’interface homme machine (4, 34), o commander, en position, l’entraînement en rotation, dudit instrument médical souple allongé (3), pas à pas, c’est-à-dire par déplacement d’un pas prédéterminé à chaque impulsion reçue par l’interface homme machine (4, 34). Interface homme machine de commande (4, 34) d’un module d’entraînement (2) d’un instrument médical souple allongé (3), en translation le long d’un axe principal d’élongation (A) dudit instrument médical souple allongé (3) et en rotation autour de l’axe principal d’élongation (A) dudit instrument médical souple allongé (3), dans un robot cathéter (1), caractérisée en ce qu’elle est structurée de manière à, dans un premier mode de fonctionnement : commander, en vitesse, l’entraînement en translation dudit instrument médical souple allongé (3), commander, en position, l’entraînement en rotation dudit instrument médical souple allongé (3). Interface homme machine (4, 34) selon la revendication 20, caractérisée en ce qu’elle comprend : un organe mobile de commande (5) : o qui est destiné à être manipulé par la main d’un utilisateur, o et qui est structuré de manière à ce que, dans le premier mode de fonctionnement :
■ un déplacement en translation dudit organe mobile de commande (5) avec une amplitude de translation entraîne un déplacement en translation dudit instrument médical souple allongé (3) avec une vitesse proportionnelle à ladite amplitude de translation,
■ un déplacement en rotation dudit organe mobile de commande (5) avec une amplitude de rotation entraîne un déplacement en rotation dudit instrument médical souple allongé (3) avec un angle de rotation proportionnel à ladite amplitude de rotation.
PCT/EP2023/073433 2022-09-01 2023-08-25 Robot catheter et interface homme machine de commande d'un module d'entrainement d'un instrument medical souple allonge WO2024046926A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2208803A FR3139273A1 (fr) 2022-09-01 2022-09-01 Robot catheter et interface homme machine de commande d’un module d’entrainement d’un instrument medical souple allonge
FR2208803 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024046926A1 true WO2024046926A1 (fr) 2024-03-07

Family

ID=85036996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/073433 WO2024046926A1 (fr) 2022-09-01 2023-08-25 Robot catheter et interface homme machine de commande d'un module d'entrainement d'un instrument medical souple allonge

Country Status (2)

Country Link
FR (1) FR3139273A1 (fr)
WO (1) WO2024046926A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016067A1 (en) * 2005-05-19 2007-01-18 The Johns Hopkins University Distal bevel-tip needle control device and algorithm
WO2017060792A1 (fr) * 2015-10-09 2017-04-13 Koninklijke Philips N.V. Dispositifs de direction portatifs pour dispositifs intravasculaires et systèmes et procédés associés
US20180000466A1 (en) * 2016-07-04 2018-01-04 Industry Foundation Of Chonnam National University Adjustable-bending stiffness steerable needle, buckling-preventing steerable needle, and steerable needle system including same
WO2019222495A1 (fr) * 2018-05-18 2019-11-21 Auris Health, Inc. Dispositifs de commande pour systèmes télécommandés à activation robotique
EP2908733B1 (fr) * 2012-10-17 2020-07-29 Worcester Polytechnic Institute Système de commande sous-actionnée de trajet d'introduction pour aiguilles à pointe asymétrique
WO2021011533A1 (fr) * 2019-07-15 2021-01-21 Corindus, Inc. Manipulation d'un dispositif médical allongé

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016067A1 (en) * 2005-05-19 2007-01-18 The Johns Hopkins University Distal bevel-tip needle control device and algorithm
EP2908733B1 (fr) * 2012-10-17 2020-07-29 Worcester Polytechnic Institute Système de commande sous-actionnée de trajet d'introduction pour aiguilles à pointe asymétrique
WO2017060792A1 (fr) * 2015-10-09 2017-04-13 Koninklijke Philips N.V. Dispositifs de direction portatifs pour dispositifs intravasculaires et systèmes et procédés associés
US20180000466A1 (en) * 2016-07-04 2018-01-04 Industry Foundation Of Chonnam National University Adjustable-bending stiffness steerable needle, buckling-preventing steerable needle, and steerable needle system including same
WO2019222495A1 (fr) * 2018-05-18 2019-11-21 Auris Health, Inc. Dispositifs de commande pour systèmes télécommandés à activation robotique
WO2021011533A1 (fr) * 2019-07-15 2021-01-21 Corindus, Inc. Manipulation d'un dispositif médical allongé

Also Published As

Publication number Publication date
FR3139273A1 (fr) 2024-03-08

Similar Documents

Publication Publication Date Title
FR3044541A1 (fr) Module robotise d'entrainement d'organe medical souple allonge
EP2062610A1 (fr) Dispositif de gonflage de ballonet
EP2567670A1 (fr) Module et procédé d'entraînement d'organes médicaux souples allongés et système robotisé associé
EP3154466A2 (fr) Module robotise d'entraînement d'organe médical souple allonge
EP3109014A1 (fr) Bras articulé motorisé à cabestan à câble comprenant un frein
FR3016512A1 (fr) Dispositif d'interface maitre pour systeme endoscopique motorise et installation comprenant un tel dispositif
CA2568156A1 (fr) Support d'instruments comprenant une bague et montable sur un endoscope
CH650142A5 (fr) Fauteuil roulant motorise omnidirectionnel.
FR2963961A1 (fr) Lampe scialytique avec une meilleure fonctionnalite de commande
WO2005067804A1 (fr) Dispositif de trocart pour le passage d’un instrument chirurgical
EP1666833B1 (fr) Tête de mesure orientable motorisée
WO2024046926A1 (fr) Robot catheter et interface homme machine de commande d'un module d'entrainement d'un instrument medical souple allonge
FR3118406A1 (fr) Robot catheter comprenant au moins deux modules de translation d’instrument medical souple allonge
FR2998468A1 (fr) Procede de deplacement d'une table motorisee et systeme d'imagerie medicale associe
EP3215046B1 (fr) Tête de contre angle
WO2018115605A1 (fr) Application de produit cosmétique, comme du mascara
EP3164179A1 (fr) Autoinjecteur
EP2414771B1 (fr) Interface homme-machine
WO2021219863A1 (fr) Interface de pilotage et systeme robotise comprenant une telle interface de pilotage
FR2829396A1 (fr) Dispositif d'obturation selective de l'acces a l'interieur d'un catheter
FR3041312A1 (fr) Poignee pliante de poussette pour enfant
CH710910A1 (fr) Porte-seringue pour dispositif d'injection motorisé.
FR2818122A1 (fr) Dispositif de commande et d'assistance a l'utilisation pour une table d'operations et table d'operations le comportant
EP2371307B1 (fr) Appareil de traitement avec un générateur d'ondes de pression mobile
BE1006805A6 (fr) Element de massage saillant pour appareil de massage electrique.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23761911

Country of ref document: EP

Kind code of ref document: A1