WO2024046417A1 - 一种模式确定方法、设备及存储介质 - Google Patents

一种模式确定方法、设备及存储介质 Download PDF

Info

Publication number
WO2024046417A1
WO2024046417A1 PCT/CN2023/116069 CN2023116069W WO2024046417A1 WO 2024046417 A1 WO2024046417 A1 WO 2024046417A1 CN 2023116069 W CN2023116069 W CN 2023116069W WO 2024046417 A1 WO2024046417 A1 WO 2024046417A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
mode
terminal
working mode
signal
Prior art date
Application number
PCT/CN2023/116069
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
刘锟
陈梦竹
胡有军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024046417A1 publication Critical patent/WO2024046417A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a mode determination method, device and storage medium.
  • Wireless communication technology is pushing the world into an increasingly interconnected, networked society.
  • High-speed and low-latency wireless communications rely on efficient network resource management and allocation between one or more user equipment and one or more radio access network nodes (including but not limited to base stations).
  • the new generation network is expected to provide high speed, low latency and ultra-reliable communication capabilities to meet the needs of different industries and users.
  • the terminal In order to meet the requirements of battery life, it is particularly important for the terminal to reduce the power consumption of the terminal during data transmission.
  • the embodiments of the present application provide a mode determination method, device and storage medium.
  • the measurement mode and/or working mode of the terminal can be determined, thereby reducing the power consumption of the terminal, which not only saves energy, but also extends the battery life of the terminal.
  • a mode determination method which includes:
  • the terminal determines the measurement mode and/or working mode according to a predefined method
  • the measurement mode includes a first measurement mode and a second measurement mode
  • the working mode includes a first working mode and a second working mode.
  • a mode determination method which includes:
  • the base station configures a first parameter corresponding to the mode, where the first parameter includes at least one of the following: mode signaling, setting a threshold, setting a duration, and a second parameter used to determine the time window.
  • an embodiment of the present application discloses a computer device, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the application implements The mode determination method described in the embodiment.
  • an embodiment of the present application discloses a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the mode determination method as described in the embodiment of the present application is implemented.
  • the embodiments of the present application disclose a mode determination method, device and storage medium. Including: the terminal determines the measurement mode and/or working mode according to a predefined method.
  • the terminal can determine the measurement mode and/or working mode according to a predefined method, which can reduce the power consumption of the terminal, not only save energy, but also extend the battery life of the terminal.
  • Figure 1 is a schematic diagram of a mode determination method in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 4 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 5 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 6 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 7 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 8 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 9 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • Figure 10 is a schematic diagram of another mode determination method in an embodiment of the present application.
  • an ultra-low power wake-up mechanism that is, the user uses a separate receiver to receive a low-power wake-up signal, and uses the wake-up signal to wake up the main receiver for data transmission and For data reception, when the terminal does not detect a low-power wake-up signal, the main receiver is in a deep sleep state. In this way, the power consumption of the terminal is further reduced.
  • the method adopted in this embodiment is: the terminal determines measurement mode and/or working mode.
  • the measurement mode includes a first measurement mode and/or a second measurement mode; the working mode includes a first working mode and/or a second working mode.
  • the measurement mode can be understood as the measurement mode of the terminal on its own cell and/or other cells, and the working mode can be the working mode when the terminal is in a receiving state.
  • the first measurement mode includes any of the following: relaxing measurement of this cell, relaxing measurement of this cell and other cells; no measurement; only based on low power wake-up signal reception (Low Power Wake-up Signal, LP-WUS) Measurement; measurement based only on Low Power Reference Signal (LP-RS); measurement based on LP-RS only within the first time window.
  • LP-WUS Low Power Wake-up Signal
  • LP-RS Low Power Reference Signal
  • the first time window can be understood as a time window within the duration of the first measurement mode.
  • the duration of the first time window is less than or equal to the duration of the first measurement mode.
  • not performing measurement includes one of the following: the terminal does not turn on the main receiving device to perform any measurement; when no paging-based LP-WUS is detected, the terminal does not turn on the main receiving device to perform any measurement. During LP-WUS detection, the terminal does not turn on the main receiving device for measurement.
  • relaxing the measurement of the local cell includes at least one of the following: performing the measurement of the local cell every N discontinuous reception (DRX) cycles, where N is a positive integer greater than 1; performing the measurement of the local cell when there is paging.
  • performing the measurement of the local cell every N DRX cycles can be understood as: performing the measurement of the local cell in one DRX cycle of the N DRX cycles.
  • relaxing the measurement of this cell and other cells includes one of the following: relaxing the measurement of this cell and relaxing other cells.
  • Relaxing the measurement of this cell and other cells includes: performing the measurement of this cell and other cells every N1 discontinuous reception (Discontinuous Reception, DRX) cycles, where the measurement of this cell and the measurement of other cells are within the same DRX cycle.
  • the second measurement mode includes one of the following: traditional measurement of this cell; traditional measurement of this cell and relaxed measurement of other cells; traditional measurement of this cell and measurement of other cells.
  • the measurement of other cells includes at least one of the following: measurement of other cells on the same frequency; measurement of other cells on different frequencies and measurement of other cells on different systems.
  • the first working mode includes at least one of the following: the main receiving device of the terminal is turned on; the low-power receiving device of the terminal is turned off.
  • the second working mode includes at least one of the following: the low-power receiving device of the terminal is turned on; the main receiving device is turned on only when the terminal detects LP-WUS and/or measurement is required; the low-power receiving device of the terminal is turned on.
  • the configuration is turned on according to the time window corresponding to LP-WUS; the low-power receiving device of the terminal is turned on according to the configuration of LP-RS; the low-power receiving device corresponding to the terminal is turned on according to the shutdown of the host.
  • the way for the terminal to determine the measurement mode and/or the working mode according to a predefined method may be: the terminal determines the measurement mode and/or the working mode according to a switching method, wherein the switching method is: when the switching conditions are met, the terminal selects Alternately switch between the second measurement mode and/or the first operating mode and the first measurement mode and/or the second operating mode.
  • the switching conditions include: the terminal is in the second measurement mode and/or the first working mode, and the first measurement information obtained within the first set time period satisfies the set rules; and the terminal is in the first measurement mode and/or The second working mode, and the second measurement information obtained within the second set time period does not meet the set rules.
  • the terminal is in the second measurement mode and/or the first working mode, and the first measurement information obtained within the first set time period T1 satisfies the setting rules, then the terminal switches to the first measurement mode and/or If the second working mode and/or the second measurement information obtained within the second set time period T2 does not meet the set rules, the terminal switches back to the second measurement mode and/or the first working mode, and so on.
  • the way for the terminal to determine the measurement mode and/or the working mode according to a predefined manner may be: within a preset period, the terminal is in the second measurement mode within the first preset window; if If the third measurement information obtained within the first preset window satisfies the setting rules, the terminal selects to switch to the first measurement mode and/or the second working mode in the second preset window. And/or, if the third measurement information does not meet the set rules, the terminal is in the second measurement mode and/or the first operating mode within the second preset window; wherein the preset period is composed of the first preset window and The second default window consists of.
  • the duration of the preset period is represented by K
  • the offset is represented by L.
  • the duration of the first preset window is M1
  • the duration of the second preset window is K-M1.
  • the first measurement information, the second measurement information and the third measurement information include at least one of the following: signal power of the measurement signal, signal quality of the measurement signal, signal energy value of the measurement signal, signal amplitude of the measurement signal, whether to detect to the measurement signal, and the number of detected measurement signals.
  • the measurement signal may be one or more preset signals within the second time window, where the preset signal may be one or more of the following: LP-RS, LP-WUS, synchronization and system information block (Synchronization and PBCH signal Block (SSB), Tracking Reference Signal (TRS), Channel State Information-Reference Signal (CSI-RS).
  • LP-RS LP-RS
  • LP-WUS synchronization and system information block
  • SSB Synchronization and PBCH signal Block
  • TRS Tracking Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the setting rules include any of the following: the measured value is greater than the set threshold; the reference value minus the measured value is greater than the set threshold; the average of multiple measured values is greater than the set threshold; the measured value in the second time window The mean value is greater than the set threshold; the mean value of the measured values in multiple third time windows is greater than the set threshold.
  • the setting threshold is configured through signaling.
  • the second time window and the third time window can be understood as a preset period of time.
  • the way for the terminal to determine the measurement mode and/or the working mode according to a predefined way may be: the terminal is in the second working mode.
  • the terminal being in the second working mode can be understood as one of the following: the terminal is always in the second working mode, and after the terminal switches from the RRC connected state to the RRC idle state and/or the RRC inactive state, the terminal is in the second working mode. Operating mode.
  • the way for the terminal to determine the measurement mode and/or the working mode according to a predefined manner may be: the terminal alternates between the first working mode and the second working mode in the following manner: the terminal is in the second working mode.
  • the third setting time is the fourth setting time in the first working mode.
  • the terminal is in the second working mode for a third set time period T3 and is in the first working mode for a fourth set time period T4.
  • the way in which the terminal determines the measurement mode and/or the working mode according to a predefined manner may be: the terminal is in the first measurement mode.
  • the terminal being in the first measurement mode can be understood as one of the following: the terminal has been in the first measurement mode, and after the terminal switches from the RRC connected state to the RRC idle state and/or the RRC inactive state, the terminal is in the first measurement mode. Measurement mode.
  • the way for the terminal to determine the measurement mode and/or the working mode according to a predefined manner may be: the terminal alternates between the first measurement mode and the second measurement mode in the following manner: the terminal is in the first measurement mode and the second measurement mode.
  • the fifth setting duration is the sixth setting duration in the second measurement mode.
  • the terminal is in the first measurement mode for the fifth set time period T5, and is in the second measurement mode for the sixth set time period T6.
  • the first signaling configured in the system configuration information is a set threshold of signal power Th1, and the measurement signal is SSB.
  • the first measurement information is the signal power Sr1 of the current cell determined at least based on the SSB
  • the second measurement information is the signal power Sr2 of the local cell determined based on the SSB at least.
  • the first measurement mode includes relaxing local cell measurement, and relaxing local cell measurement is to perform local cell measurement once every N DRX cycles; assume that the second measurement mode is traditional local cell measurement.
  • Sr QrxSSB-Qoffset1, where QrxSSB obtains the reference signal receiving power (RSRP) value based on SSB, and Qoffset1 is an offset value, consisting of one or more parameters.
  • RSRP reference signal receiving power
  • the first signaling is configured in the SIB received by the terminal. If the terminal is in the second measurement mode and each Sr1 obtained within the measurement duration T1 is greater than or equal to Th1, the terminal switches to the first measurement mode, that is, the terminal performs local cell measurement every N DRX cycles. If the terminal is in the first measurement mode and each Sr2 obtained during the measurement duration T2 is less than Th1, then the terminal switches back to the second measurement mode, that is, the terminal performs local cell measurement in each DRX cycle.
  • FIG. 1 is a schematic diagram of the mode determination method in this embodiment. As shown in Figure 1, the terminal alternately switches between the first measurement mode and the second measurement mode when the switching conditions are met.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement information It is the signal power Sr2 of this cell determined at least based on SSB.
  • the first measurement mode is relaxed local cell measurement, and the relaxed local cell measurement is performed once every N DRX cycles.
  • the second measurement mode is traditional local cell measurement.
  • Sr QrxSSB-Qoffset1 where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is the offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second measurement test and each Sr1 obtained within the measurement duration T1 is greater than or equal to Th1.
  • the terminal switches to the first measurement mode, that is, every N DRX of the terminal Measure this cell periodically. If the terminal is in the first measurement mode and each Sr2 obtained within the measurement duration T2 is less than Th1, then the terminal switches back to the second measurement mode, that is, the terminal performs local cell measurement in every DRX cycle; and so on.
  • T1’ T1+nk, that is, n is the number of occurrences of the first measurement mode, k is a predefined value, where T1’ is the duration of the second measurement mode.
  • FIG. 2 is a schematic diagram of the mode determination method in this embodiment. As shown in Figure 2, the terminal alternately switches between the first measurement mode and the second measurement mode when the switching conditions are met, and the duration of the second measurement mode is related to the number of occurrences of the first measurement mode.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement information It is the signal power Sr2 of this cell determined at least based on SSB.
  • the first measurement mode is relaxed local cell measurement, and the relaxed local cell measurement is performed once every N DRX cycles.
  • the second measurement mode is traditional local cell measurement and other cell measurements.
  • Qoffset1 is the offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second measurement mode and during the measurement period Each Sr1 obtained in T1 is greater than or equal to Th1, and the terminal switches to the first measurement mode, that is, the terminal performs local cell measurement every N DRX cycles. If the terminal is in the first measurement mode and each Sr2 obtained within the measurement duration T2 is less than Th1, then the terminal switches back to the second measurement mode, that is, the terminal performs measurements on this cell and other cells in each DRX cycle.
  • FIG. 3 is a schematic diagram of the mode determination method in this embodiment. As shown in Figure 3, the terminal alternately switches between the first measurement mode and the second measurement mode when the switching conditions are met. In the first measurement mode, the current cell measurement is performed every N DRX cycles. In the second measurement mode, the current cell measurement and other cell measurements are performed in every DRX cycle.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement The information is at least the signal power Sr2 of the cell determined based on the SSB.
  • the first measurement mode is to relax the current cell measurement, and when the relaxed local cell measurement is paging, the local cell measurement is performed; it is assumed that the second measurement mode is the traditional local cell measurement and relaxed measurement of other cells.
  • Sr QrxSSB-Qoffset1, where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is the offset value, consisting of one or more parameters.
  • the terminal is in the second measurement mode and the average value of every two Sr1 obtained within the measurement duration T1 is greater than or equal to Th1.
  • the terminal switches to the first measurement mode, that is, the terminal performs local cell measurements during paging. ; If the average value of every two Sr2 obtained by the terminal in T2 of the first measurement mode is less than Th1, then the terminal switches to the second measurement mode, that is, the terminal performs the measurement of this cell and relaxes the measurement of other cells in each DRX cycle.
  • relaxing the measurement of the local community can determine whether to relax and the method of relaxing according to relevant technologies, which will not be described again here.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement information It is the signal power Sr2 of this cell determined at least based on SSB.
  • the first measurement mode is to relax the measurement of the current cell and other cells
  • the relaxation of the measurement of the current cell and other cells is to perform the measurement of the current cell and the measurement of other cells once every N1 DRX cycles.
  • the second measurement mode is traditional local cell measurement and other cell measurement.
  • Sr QrxSSB-Qoffset1 where QrxSSB obtains the RSRP value based on SSB
  • Qoffset1 is the offset value, consisting of one or more parameters.
  • the terminal is in the second measurement mode and each Sr1 obtained within the measurement duration T1 is greater than or equal to Th1.
  • the terminal switches to the first measurement mode, that is, the terminal performs measurements of this cell and other cells every N1 DRX cycles. Measurement. If the terminal is in the first measurement mode and within the measurement duration T2 If the average value of each two Sr2 is smaller than Th1, the terminal returns to the second measurement mode, that is, it performs measurements on this cell and other cells in each DRX cycle.
  • FIG. 4 is a schematic diagram of the mode determination method in this embodiment. As shown in Figure 4, in the first measurement mode, the current cell measurement and other cell measurements are performed every N DRX cycles. In the second measurement mode, the traditional current cell and other cell measurements are performed every N DRX cycles. Measurement of this cell and measurements of other cells are performed.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement information It is the signal power Sr2 of this cell determined at least based on SSB.
  • the second measurement mode is traditional local cell measurement and other cell measurement.
  • Qoffset1 is the offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second measurement mode and each Sr1 obtained within the measurement duration T1 is greater than or equal to Th1.
  • the terminal switches to the first measurement mode, that is, The terminal performs measurements on its own cell every N2 DRX cycles and on other cells every N3 DRX cycles. If the terminal is in the first measurement mode and each Sr2 obtained within the measurement duration T2 is less than Th1, then the terminal switches back to the second measurement mode, that is, the terminal performs measurements of this cell and other cells in every DRX cycle.
  • FIG. 5 is a schematic diagram of the mode determination method in this embodiment.
  • the local cell measurement is performed every N2 DRX cycles, and other cell measurements are performed every N3 DRX cycles.
  • the local cell measurement is performed in every DRX cycle. Cell measurements and other cell measurements.
  • the first signaling of the SIB configuration is the set threshold of signal power as Th1 and the set threshold of signal quality as Th2, and it is assumed that the measurement signal is SSB within the second time window.
  • the first measurement information is the signal power Sr1 and signal quality Sq1 of this cell determined at least based on SSB
  • the second measurement information is the signal power Sr2 and signal quality Sq2 of this cell determined at least based on SSB. It is assumed that the first measurement mode is relaxed local cell measurement, and the second measurement mode is traditional local cell measurement.
  • Sr QrxSSB-Qoffset1, where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is the offset value, consisting of one or more parameters.
  • Sq QqSSB-Qoffset2, where QqSSB obtains the Reference Signal Receiving Quality (RSRQ) value based on SSB, and Qoffset2 is an offset value consisting of one or more parameters.
  • RSRQ Reference Signal Receiving Quality
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second measurement mode and the Sr1 obtained within the measurement duration T1 is greater than or equal to Th1, and Sq1 is greater than or equal to Th2.
  • the terminal switches to the first Measurement mode. If the terminal is in the first measurement mode and Sr2 obtained within the measurement duration T2 is less than Th1, and Sq2 is less than Th2, then the terminal switches to the second measurement mode.
  • FIG. 6 is a schematic diagram of the mode determination method in this embodiment. As shown in Figure 6, in the first measurement mode, the local cell measurement is relaxed, and in the second measurement mode, the traditional local cell measurement is performed.
  • the first measurement information is the signal power of this cell determined at least based on SSB.
  • Sr1 the second measurement information is at least the local cell signal power Sr3 determined based on the LP-RS; it is assumed that the first measurement mode includes relaxed local cell measurement, and the second measurement mode includes traditional local cell measurement.
  • Reference power Sr, optional, Sr QrxSSB-Qoffset1, where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is an offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second measurement mode and the Sr1 obtained within the measurement duration T1. Since each Sr1 of the SSB is less than Th3, the terminal switches to the first measurement mode. If the terminal is in the first measurement mode and each Sr3 obtained by receiving the LP-RS through the low-power receiving device within the measurement duration T2 is less than Th4, then the terminal switches back to the second measurement mode.
  • the first signaling of the SIB configuration is the set threshold of signal power Th3, and the measurement signal is SSB.
  • the third measurement information is the signal power Sr3 of the cell determined at least based on the SSB. It is assumed that the first measurement The first mode includes relaxed local cell measurement, and the second measurement mode includes traditional local cell measurement.
  • Sr QrxSSB-Qoffset1, where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is the offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal In each preset period K, the terminal is in the second measurement mode with the first preset window of length M1, and the average value of every two Sr3 obtained in the first preset window is greater than or equal to Th3, then the terminal is in The subsequent second preset window (i.e. K-M1) is in the first measurement mode.
  • Figure 7 is a schematic diagram of a mode determination method in this embodiment. As shown in Figure 7, the second measurement mode is in the first preset window of the preset period K. The window is in the first measurement mode.
  • the third measurement information is at least the signal power Sr3 of the cell determined based on the LP-RS, It is assumed that the first measurement mode includes relaxed local cell measurement, and the second measurement mode includes traditional local cell measurement.
  • Sr QrxLP-RS-Qoffset3, where QrxLP-RS is obtained based on LP-RS RSRP value, Qoffset3 is the offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the first preset window of length M1 is in the second measurement mode, and in the first preset
  • Each Sr3 obtained by receiving the LP-RS through the low-power receiving device in the window is greater than or equal to Th3, then the terminal is in the first measurement mode within the second preset window (ie, K-M1).
  • the first signaling is configured in the SIB. It is assumed that the first measurement mode includes relaxed local cell measurement, and the second measurement mode includes traditional local cell measurement.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal starts in the first measurement mode and switches to the second measurement mode after the measurement duration T4.
  • the duration of the second measurement mode is M3.
  • Figure 8 is a schematic diagram of a mode determination method in this embodiment. As shown in Figure 8, the first measurement mode and the second measurement mode alternate, and the duration of each first measurement mode is T4, and the first measurement mode lasts for T4.
  • the duration of the second measurement mode is M3. And T4>M3.
  • the first signaling is configured in the SIB. It is assumed that the first measurement includes relaxing the local cell measurement.
  • the first signaling is configured in the SIB received by the terminal, and the terminal is always in the first measurement mode, that is, the local cell measurement is performed every N DRX cycles.
  • the first signaling of the SIB configuration is the set threshold of signal power is Th1
  • the measurement signal is SSB or LP-RS
  • the first measurement information is the signal power Sr1 of this cell determined at least based on SSB
  • Optional Sr QrxSSB-Qoffset1 where QrxSSB obtains the RSRP value based on SSB
  • Qoffset1 is the offset value, consisting of one or more parameters.
  • the first working mode includes turning on the main receiving device of the terminal and turning off the low-power consumption device of the terminal.
  • the second working mode includes turning on the low-power receiving device of the terminal. When the terminal detects LP-WUS, the main receiving device is turned on.
  • the first signaling is configured in the SIB received by the terminal, and the terminal is in the first working mode, that is, the main receiving device is turned on. If the Sr1 obtained by the terminal within the measurement duration T1 is greater than or equal to the threshold Th1, the terminal switches to In the second working mode, the terminal turns on the low-power receiving device. When LP-WUS is detected, the main receiving device turns on and determines Sr2 through LP-RS. If the terminal is in the second working mode and each Sr2 obtained within the measurement duration T2 is less than the threshold Th1, then the terminal switches back to the first working mode. Turn off the low-power receiving device and turn on the main receiving device.
  • FIG. 9 is a schematic diagram of a mode determination method in this embodiment. As shown in FIG. 9, the terminal alternately switches between the first working mode and the second working mode.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement information It is the signal power Sr2 of this cell determined at least based on SSB.
  • Optional Sr QrxSSB-Qoffset1, where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is the offset value, consisting of one or more parameters.
  • the first working mode may include the terminal turning on the main receiving device and turning off the low-power receiving device; the second working mode includes the terminal turning on the low-power receiving device. When LP-WUS is detected, the low-power receiver is turned off and the main receiving device is turned on. At this time the terminal can receive paging and perform measurements.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the first working mode.
  • the terminal main receiving device is turned on and the low-power consumption device is turned off.
  • the Sr1 obtained within the measurement duration T1 is greater than or equal to Th1.
  • the terminal can switch to the third
  • the second working mode is that the terminal turns on the low-power receiving device.
  • the low-power receiver is turned off, and the main receiving device is turned on to receive paging and perform measurements. If the terminal is in the second working mode and each Sr2 obtained within the measurement duration T2 is less than Th1, then the terminal switches back to the first working mode, that is, the terminal turns off the low-power receiving device and turns on the main receiving device.
  • the first signaling of the SIB configuration is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of the cell determined at least based on the SSB
  • the second measurement information It is the signal power Sr2 of this cell determined at least based on SSB.
  • Sr QrxSSB-Qoffset1 where QrxSSB obtains the RSRP value based on SSB
  • Qoffset1 is the offset value, consisting of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal, the terminal is in the first working mode, the terminal main receiving device is turned on, the low-power receiving device is turned off, and each Sr1 obtained in T1 is greater than or equal to the threshold. 1.
  • the terminal switches to the second working mode, that is, the terminal turns on the low-power receiving device.
  • the low-power receiver is turned off.
  • the main receiving device is turned on to receive paging; when measurement is required, the low-power receiver is turned off. consumption receiver, the main receiving device is turned on. If each Sr2 obtained in T2 in the second working mode is less than the threshold 1, then the terminal switches back to the first working mode, that is, the terminal turns off the low-power receiving device and turns on the main receiving device.
  • the first signaling of the SIB configuration is the set threshold of signal power Th3
  • the third measurement information is assumed to be the signal power Sr3 of the current cell determined at least based on the SSB.
  • Sr QrxSSB-Qoffset1, where QrxSSB obtains the RSRP value based on SSB, and Qoffset1 is the offset value, Consists of one or more parameters.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the first working mode within the first preset window of length M1 in each preset period K, and the obtained signal within the first preset window is Sr3 is greater than or equal to Th3, and the terminal switches to the second working mode in the subsequent second preset window K-M1.
  • Figure 10 is a schematic diagram of a mode determination method in this embodiment. As shown in Figure 10, the first operating mode is in the first preset window of the preset period K, and the second preset window is in the first working mode. The window is in the second working mode.
  • the first signaling is configured in the SIB.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal works in the second working mode, the terminal switches to the first working mode after measuring the duration T4, where the duration of the first working mode is M3, and then switches to the first mode. And so on.
  • the second working mode is a low power consumption mode, and the terminal does not measure.
  • the first signaling is configured in the SIB.
  • the first signaling is configured in the SIB received by the terminal, and the terminal is in the second working mode.
  • the terminal switches to the first working mode, where the duration of the first working mode is M3, and then switches to the first working mode. ,And so on.
  • the second working mode is a low power consumption mode, and the terminal performs measurements based on LP-WUS.
  • the first signaling is configured in the SIB.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second working mode. After measuring the duration T4, it switches to the first working mode.
  • the duration of the first working mode is M3, and then continues to switch back to the first working mode. mode, and so on.
  • the second working mode is a low power consumption mode, and the terminal performs measurements according to LP-RS.
  • the first signaling is configured in the SIB.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the second working mode. It switches to the first working mode after measuring the duration T4, where the duration of the first working mode is M3, and then continues to switch back to the first working mode. mode, and so on.
  • the second working mode is a low power consumption mode, and the terminal performs measurements according to the LP-RS in the third time window.
  • the configured first signaling is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of this cell determined at least based on SSB
  • the second measurement information is At least the signal power Sr2 of this cell determined based on SSB. It is assumed that the first measurement mode includes relaxed local cell measurement, and the second measurement mode includes traditional local cell measurement.
  • the first signaling is configured in the SIB received by the terminal, the terminal is in the first working mode, that is, the main receiving device is turned on, and is in the second measurement mode, and each Sr1 obtained within the measurement duration T1 is greater than or equal to Th1, the terminal switches to the first measurement mode and the second operating mode, that is, the terminal turns on the low-power receiving device.
  • the main receiving device turns on and the low-power receiving device turns off. Because the first measurement mode requires measurement of the local cell once for every N DRXs, when measurement of the local cell is required, The main receiver is turned on and measurements are taken.
  • the terminal switches back to the second measurement mode and the first working mode, that is, the host is turned on and each DRX cycle is performed. Measured in this area.
  • the configured first signaling is the set threshold of signal power Th1
  • the measurement signal is SSB
  • the first measurement information is the signal power Sr1 of this cell determined at least based on SSB
  • the second measurement information is At least based on the signal power Sr2 of the local cell determined by the SSB
  • the first measurement mode includes performing local cell measurement every N DRX cycles
  • the second measurement mode includes traditional local cell measurement, that is, performing local cell measurement every DRX cycle.
  • the first signaling is configured in the SIB received by the terminal.
  • the terminal is in the first working mode, that is, the main receiving device is turned on.
  • the terminal is in the second measurement mode.
  • the terminal performs local cell measurements in every DRX cycle.
  • Each Sr1 obtained within the measurement duration T1 is greater than or equal to Th1.
  • the terminal switches to the second working mode and the first measurement mode.
  • the terminal turns on the low-power receiving device. When LP-WUS is detected and measurement is required, the low-power receiving device is turned off. When connected, the main receiving device is turned on to receive paging and perform measurements.
  • the terminal switches back to the first working mode and the second measurement mode, that is, the terminal turns off the low-power receiving device and turns on the main The receiving device performs local cell measurements every DRX cycle.
  • the terminal determines the measurement mode and/or working mode according to a predefined method.
  • the terminal can determine the switching of the measurement mode and/or the working mode according to a predefined method, which can reduce the power consumption of the terminal, not only save energy, but also extend the battery life of the terminal.
  • this application also discloses another mode determination method, which is performed by a base station.
  • the method includes: the base station configures a first parameter corresponding to the mode, where the first parameter includes at least one of the following: Mode signaling , set the threshold and set the duration, which is used to determine the second parameter of the time window.
  • the mode signaling may include measurement mode signaling and/or working mode signaling.
  • the second parameter may include information such as the length and/or location of the time window.
  • the base station sends the configured first parameter to the terminal, so that the terminal performs the mode determination process in the above embodiment based on the first parameter.
  • An embodiment of the present application provides a computer device.
  • the computer device includes a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the computer program, it can implement what is described in the foregoing embodiments. The mode determination method described above.
  • the number of processors in the computer device may be one or more, and the processors and memories in the computer device may be connected through a bus or other means.
  • memory can be used to store software programs, computer-executable Execute a program, such as the program corresponding to the mode determination method in the embodiment of the present application.
  • the processor executes software programs, instructions, and modules stored in the memory to perform various functions and data processing of the electronic device, that is, to implement the above-mentioned mode determination method.
  • the memory may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system and a program required for at least one function; the stored data area may store data created according to the use of the computer device, etc.
  • the memory may include high-speed random access memory and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory may further include memory located remotely from the processor, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and the computer program is used to perform a mode determination method when executed by a computer processor.
  • the present application can be implemented with the help of software and necessary general hardware, and of course can also be implemented with hardware. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to related technologies.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), FLASH, hard disk or optical disk, etc., including a number of instructions to make a computer device (which can be a personal computer, Server, or network device, etc.) executes the signal generation method described in various embodiments of this application.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components. Components execute cooperatively. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • the corresponding software can Distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

本申请实施例公开了一种模式确定方法、设备及存储介质。包括:终端根据预定义的方式确定测量模式和/或工作模式。终端可以根据预定义的方式确定测量模式和/或工作模式,可以降低终端的功耗,延长终端的续航时间。

Description

一种模式确定方法、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种模式确定方法、设备及存储介质。
背景技术
无线通信技术正在将世界推向一个日益互联,网络化的社会。高速和低延迟无线通信依赖于在一个或多个用户设备和一个或多个无线接入网络节点(包括但不限于基站)之间高效的网络资源管理和分配。新一代网络有望提供高速,低时延和超可靠的通信能力,满足不同行业和用户的需求。
为了满足电池续航时间的要求,终端在数据传输过程中降低终端的功耗显得尤为重要。
发明内容
本申请实施例提供了一种模式确定方法、设备及存储介质。可以实现终端的测量模式和/或工作模式的确定,从而降低终端的功耗,不仅可以节省能源,还可以延长终端的续航时间。
为了实现上述目的,本申请实施例公开了一种模式确定方法,包括:
终端根据预定义的方式确定测量模式和/或工作模式;
其中,所述测量模式包含第一测量模式和第二测量模式;所述工作模式包含第一工作模式和第二工作模式。
为了实现上述目的,本申请实施例公开了一种模式确定方法,包括:
基站配置模式对应的第一参数,其中第一参数包含以下至少之一:模式信令,设定阈值,设定时长,用于确定时间窗的第二参数。
为了实现上述目的,本申请实施例公开了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如本申请实施例所述的模式确定方法。
为了实现上述目的,本申请实施例公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例所述的模式确定方法。
本申请实施例公开了一种模式确定方法、设备及存储介质。包括:终端根据预定义的方式确定测量模式和/或工作模式。终端可以根据预定义的方式确定测量模式和/或工作模式,可以降低终端的功耗,不仅可以节省能源,还可以延长终端的续航时间。
附图说明
图1是本申请实施例中的一种模式确定方法的示意图;
图2是本申请实施例中的另一种模式确定方法的示意图;
图3是本申请实施例中的另一种模式确定方法的示意图;
图4是本申请实施例中的另一种模式确定方法的示意图;
图5是本申请实施例中的另一种模式确定方法的示意图;
图6是本申请实施例中的另一种模式确定方法的示意图;
图7是本申请实施例中的另一种模式确定方法的示意图;
图8是本申请实施例中的另一种模式确定方法的示意图;
图9是本申请实施例中的另一种模式确定方法的示意图;
图10是本申请实施例中的另一种模式确定方法的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
本实施例中,为了满足电池续航时间的要求,可以考虑引入超低功耗唤醒机制,即用户使用单独的接收器来接收低功耗唤醒信号,通过唤醒信号来唤醒主接收机进行数据发送和数据接收,当终端没有检测到低功耗唤醒信号时,主接收机处于深度睡眠状态,通过这种方式进一步降低终端的功耗。
为了达到上述目的,本实施例采用的方式为:终端根据预定义的方式确定 测量模式和/或工作模式。
其中,测量模式包括第一测量模式和/或第二测量模式;所述工作模式包括第一工作模式和/或第二工作模式。测量模式可以理解为终端对本小区和/或其他小区的测量模式,工作模式可以是终端处于接收状态时的工作模式。
其中,第一测量模式包括如下任意一种:放松本小区测量、放松本小区和其他小区测量;不进行测量;只基于低功耗-唤醒接收信号(Low Power Wake-up Signal,LP-WUS)的测量;只基于低功耗-参考信号(Low Power Reference Signal,LP-RS)的测量;只在第一时间窗内基于LP-RS的测量。
其中,第一时间窗可以理解为第一测量模式持续的时间内的时间窗。第一时间窗的时长小于或等于第一测量模式持续的时长。
其中,不进行测量包含以下之一:终端不开启主接收装置进行任何测量;没有检测到基于寻呼的LP-WUS时,终端不开启主接收装置进行任何测量。处在LP-WUS检测时,终端不开启主接收装置进行测量。
其中,放松本小区测量包括如下至少之一:每N个非连续接收(Discontinuous Reception,DRX)周期进行一次本小区测量,N为大于1的正整数;有寻呼时,进行本小区测量。其中,每N个DRX周期进行一次本小区测量可以理解为:在N个DRX周期中一个DRX周期内进行本小区测量。
其中,放松本小区和其他小区测量包括如下之一:放松本小区和放松其他小区测量。放松本小区和其他小区测量包括:每N1个非连续接收(Discontinuous Reception,DRX)周期进行一次本小区测量和其他小区测量,其中,本小区测量和其他小区测量在相同的DRX周期内。或者,每N2个DRX循环进行一次本小区测量,每N3个DRX循环进行一次其他小区测量,其中,N3=k*N2;N1、N2、N3和k均为大于1的正整数。
其中,第二测量模式包括如下之一:传统的本小区测量;传统的本小区测量和放松其他小区测量;传统的本小区测量和其他小区测量。
其中,其他小区测量包括如下至少之一:同频的其他小区测量;异频的其他小区测量和异系统的其他小区测量。
其中,第一工作模式包括如下至少之一:终端的主接收装置开启;终端的低功耗接收装置关闭。
其中,第二工作模式包括如下至少之一:终端的低功耗接收装置开启;终端检测到LP-WUS和/或需要测量时才开启主接收装置;终端的低功耗接收装 置根据LP-WUS对应的时间窗开启;终端的低功耗接收装置根据LP-RS的配置开启;终端对应的低功耗接收装置根据主机的关闭而开启。
在一个实施例中,终端根据预定义的方式确定测量模式和/或工作模式的方式可以是:终端根据切换方式确定测量模式和/或工作模式,其中,切换方式为满足切换条件时,终端选择在第二测量模式和/或第一工作模式与第一测量模式和/或第二工作模式间进行交替切换。
其中,切换条件包括:终端处在第二测量模式和/或第一工作模式,且第一设定时长内获得的第一测量信息满足设定规则;以及终端处在第一测量模式和/或第二工作模式,且第二设定时长内获得的第二测量信息不满足设定规则。
本实施例中,终端处在第二测量模式和/或第一工作模式,且第一设定时长T1内获得的第一测量信息满足设定规则,则终端切换至第一测量模式和/或第二工作模式,和/或第二设定时长T2内获得的第二测量信息不满足设定规则,则终端切换回第二测量模式和/或第一工作模式,依次类推。
在一个实施例中,终端根据预定义的方式确定测量模式和/或工作模式的方式可以是:在一个预设周期内,终端在第一预设窗内处在第二测量模式下;若在第一预设窗内获得的第三测量信息满足设定规则,则终端选择在第二预设窗切换至第一测量模式和/或第二工作模式。和/或,若第三测量信息不满足设定规则,则终端在第二预设窗内处在第二测量模式和/或第一工作模式;其中,预设周期由第一预设窗和第二预设窗组成。
其中,预设周期的时长表示为K,偏移为L。假设第一预设窗的时长为M1,则第二预设窗的时长为K-M1。
其中,第一测量信息、第二测量信息以及第三测量信息包括如下至少之一:测量信号的信号功率,测量信号的信号质量,测量信号的信号能量值,测量信号的信号幅度大小,是否检测到测量信号,及检测到测量信号的数量。
其中,测量信号可以是第二时间窗内的一个或多个预设信号,其中预设信号可以是如下的一种或多种:LP-RS,LP-WUS,同步和系统信息块(Synchronization and PBCH signal Block,SSB),跟踪参考信号(Tracking Reference Signal,TRS),信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)。
其中,设定规则包括如下任意一项:测量值大于设定阈值;参考值减去测量值大于设定阈值;多个测量值的均值大于设定阈值;第二时间窗内的测量值 的均值大于设定阈值;多个第三时间窗内测量值的均值大于设定阈值。
其中,设定阈值通过信令配置的。第二时间窗和第三时间窗可以理解为预设的一段时长。
在一个实施例中,终端根据预定义的方式确定测量模式和/或工作模式的方式可以是:终端处在第二工作模式下。
其中,终端处在第二工作模式下可以理解为以下之一:终端一直处在第二工作模式,终端从RRC连接态切换到RRC空闲态和/或RRC非激活态后,终端处在第二工作模式。
在一个实施例中,终端根据预定义的方式确定测量模式和/或工作模式的方式可以是:终端在第一工作模式和第二工作模式间按照如下方式交替:终端处在第二工作模式第三设定时长,处在第一工作模式第四设定时长。
本实施例中,终端处在第二工作模式第三设定时长T3;处在第一工作模式第四设定时长T4。
在一个实施例中,终端根据预定义的方式确定测量模式和/或工作模式的方式可以是:终端处在第一测量模式。
其中,终端处在第一测量模式可以理解为以下之一:终端一直处在第一测量模式下,终端从RRC连接态切换到RRC空闲态和/或RRC非激活态后,终端处在第一测量模式。
在一个实施例中,终端根据预定义的方式确定测量模式和/或工作模式的方式可以是:终端在第一测量模式和第二测量模式间按照如下方式交替:终端处在第一测量模式第五设定时长,处在第二测量模式第六设定时长。
本实施例中,终端处在第一测量模式第五设定时长T5,处在第二测模式第六设定时长T6。
在一个实施例中,假设系统配置信息(System Information Block,SIB)中配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB。那么第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式包含为放松本小区测量,且放松本小区测量为每N个DRX周期进行一次本小区测量;假设第二测量模式为传统的本小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到参考信号接收功率(Reference Signal Receiving Power,RSRP)值,Qoffset1是偏移值,由一个或多个参数组成。
终端接收的SIB中配置了第一信令。终端处在第二测量模式且在测量时长T1内得到的每个Sr1都大于或等于Th1,终端切换至第一测量模式,即终端每N个DRX循环进行一次本小区测量。如果终端处在第一测量模式且在测量时长T2内得到的每个Sr2小于Th1,那么终端切回至第二测量模式,即终端在每个DRX周期都进行本小区测量。示例性的,图1是本实施例中的模式确定方法的示意图。如图1所示,终端在满足切换条件时在第一测量模式和第二测量模式间交替切换。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式为放松本小区测量,且放松本小区测量为每N个DRX周期进行一次本小区测量;假设第二测量模式为传统的本小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
终端接收的SIB中配置了第一信令,终端处在第二测量测试且在测量时长T1内得到的每个Sr1都大于或等于Th1,终端切换至第一测量模式,即终端每N个DRX周期进行一次本小区测量。如果终端处在第一测量模式且在测量时长T2内得到的每个Sr2小于Th1,那么终端切回到第二测量模式,即终端每个DRX周期都进行本小区测量;依次类推。此时T1’=T1+nk,即n为第一测量模式出现的次数,k为预定义的值,其中,T1’第二测量模式持续的时间。示例性的,图2是本实施例中的模式确定方法的示意图。如图2所示,终端在满足切换条件时在第一测量模式和第二测量模式间交替切换,且第二测量模式持续的时间与第一测量模式出现的次数相关。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式为放松本小区测量,且放松本小区测量为每N个DRX周期进行一次本小区测量;假设第二测量模式为传统的本小区测量和其他小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
终端接收的SIB中配置了第一信令。终端处在第二测量模式且在测量时长 T1内得到的每个Sr1都大于或等于Th1,终端切换至第一测量模式,即终端每N个DRX循环进行一次本小区测量。如果终端处在第一测量模式且在测量时长T2内得到的每个Sr2小于Th1,那么终端切回至第二测量模式,即终端在每个DRX周期都进行本小区测量和其他小区测量。示例性的,图3是本实施例中的模式确定方法的示意图。如图3所示,终端在满足切换条件时在第一测量模式和第二测量模式间交替切换。在第一测量模式下,每N个DRX循环进行一次本小区测量,在第二测量模式下,在每个DRX周期都进行本小区测量和其他小区测量。
在以一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式为放松本小区测量,且放松本小区测量为寻呼时,进行本小区测量;假设第二测量模式为传统的本小区测量和放松其他小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
本实施例中,终端处在第二测量模式且在测量时长T1内得到的每两个Sr1的均值都大于或等于Th1,终端切换至第一测量模式,即终端在寻呼时进行本小区测量;如果终端在第一测量模式的T2内得到的每两个Sr2的均值都小于Th1,那么终端切换至第二测量模式,即终端每个DRX循环都进行本小区测量及放松其他小区测量。其中,放松本小区测量可以根据相关技术确定是否放松和放松的方式,这里不再赘述。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式为放松本小区和其他小区测量,且放松本小区和其他小区测量为每N1个DRX周期进行一次本小区测量和其他小区测量。假设第二测量模式为传统的本小区测量和其他小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
本实施例中,终端处在第二测量模式且在测量时长T1内得到的每个Sr1大于或等于Th1,终端切换至第一测量模式,即每N1个DRX周期进行一次本小区测量和其他小区测量。如果终端处在第一测量模式且在测量时长的T2内得 到的每两个Sr2的均值小于Th1,那么终端且回到第二测量模式,即每个DRX周期都进行本小区测量和其他小区测量。示例性的,图4是本实施例中的模式确定方法的示意图。如图4所示,在第一测量模式下,每N个DRX循环进行一次本小区测量和其他小区测量,在第二测量模式下,传统的本小区和其他小区测量,即在每个DRX周期都进行本小区测量和其他小区测量。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式为放松本小区和其他小区测量,且放松本小区和其他小区测量为每N2个DRX周期进行一次本小区测量,每N3个DRX周期进行一次其他小区测量,且N3=kN2。假设第二测量模式为传统的本小区测量和其他小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第二测量模式且在测量时长T1内得到的每个Sr1都大于或等于Th1,终端切换至第一测量模式,即终端每N2个DRX周期进行一次本小区测量,每N3个DRX周期进行一次其他小区测量。如果终端处在第一测量模式且在测量时长T2内得到的每个Sr2都小于Th1,那么终端切回至第二测量模式,即终端每个DRX周期都进行本小区测量和其他小区测量。示例性的,图5是本实施例中的模式确定方法的示意图。如图5所示,在第一测量模式下,每N2个DRX周期进行一次本小区测量,每N3个DRX周期进行一次其他小区测量,在第二测量模式下,在每个DRX周期都进行本小区测量和其他小区测量。
在一个实施例中,在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1和信号质量的设定阈值为Th2,假设测量信号是第二时间窗内的SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1和信号质量Sq1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2信号质量Sq2。假设第一测量模式为放松本小区测量,第二测量模式为传统的本小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。Sq=QqSSB-Qoffset2,其中QqSSB根据SSB得到参考信号接收质量(Reference Signal Receiving Quality,RSRQ)值,Qoffset2是偏移值,由一个或多个参数组成。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第二测量模式且在测量时长T1内得到的Sr1大于或等于Th1,且Sq1大于或等于Th2,终端切换至第一测量模式。如果终端处在第一测量模式且在测量时长T2内得到的Sr2小于Th1,且Sq2小于Th2,那么终端切换至第二测量模式。示例性的,图6是本实施例中的模式确定方法的示意图。如图6所示,在第一测量模式下,放松本小区测量,在第二测量模式下,进行传统的本小区测量。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th3和Th4,假设测量信号是SSB或LP-RS,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据LP-RS确定的本小区信号功率Sr3;假设第一测量模式包含放松本小区测量,第二测量模式包含传统的本小区测量。参考功率Sr,可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第二测量模式且在测量时长T1内得到的Sr1,因为SSB每个Sr1小于Th3,终端切换至第一测量模式。如果终端处在第一测量模式且在测量时长T2内通过低功耗接收装置接收LP-RS得到的每个Sr3小于Th4,那么终端切回至第二测量模式。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th3,假设测量信号是SSB,第三测量信息是至少根据SSB确定的本小区信号功率Sr3,假设第一测量模式包含放松本小区测量,第二测量模式包含传统的本小区测量。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
本实施例中,终端接收的SIB中配置了第一信令。终端在每个预设周期K内,长度为M1的第一预设窗处在第二测量模式,且在第一预设窗内得到的每两个Sr3的均值大于或等于Th3,则终端在后续第二预设窗内(即K-M1)处在第一测量模式。示例性的,图7是本实施例中的一种模式确定方法的示意图,如图7所示,在预设周期K的第一预设窗内处在第二测量模式,在第二预设窗内处在第一测量模式。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th3,假设测量信号是LP-RS,第三测量信息是至少根据LP-RS确定的本小区信号功率Sr3,假设第一测量模式包含放松本小区测量,第二测量模式包含传统的本小区测量。可选的Sr=QrxLP-RS-Qoffset3,其中QrxLP-RS根据LP-RS得到 RSRP值,Qoffset3是偏移值,由一个或多个参数组成。
本实施例中,终端接收的SIB中配置了第一信令,终端在每个预设周期为K内,长度为M1的第一预设窗处在第二测量模式,且在第一预设窗通过低功耗接收装置接收LP-RS得到的每个Sr3大于或等于Th3,则终端在第二预设窗内(即K-M1)处在第一测量模式。
在一个实施例中,假设SIB中配置了第一信令。假设第一测量模式包含放松本小区测量,第二测量模式包含传统的本小区测量。
本实施例中,终端接收的SIB中配置了第一信令,终端开始处在第一测量模式下,且在测量时长T4后切换至第二测量模式,第二测量模式的时长为M3,之后再切换至第一测量模式,且工作T4时长,依次类推。示例性的,图8是本实施例中的一种模式确定方法的示意图,如图8所示,第一测量模式和第二测量模式交替,且每次第一测量模式持续时长为T4,第二测量模式时长为M3。且T4>M3。
在一个实施例中,假设SIB中配置了第一信令。假设第一测量包含放松本小区测量。
本实施例中,终端接收的SIB中配置了第一信令,终端一直处在第一测量模式,即每N个DRX周期进行一次本小区测量。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB或LP-RS,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,可选的Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。第二测量信息是至少根据LP-RS确定的本小区信号功率Sr2;可选的Sr2=QrxLP-RS-Qoffset3,其中QrxLP-RS根据LP-RS得到RSRP值,Qoffset3是偏移值,由一个或多个参数组成。第一工作模式包含终端的主接收装置开启,终端的低功耗装置关闭,第二工作模式包含终端的低功耗接收装置开启,终端检测到LP-WUS时,开启主接收装置。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第一工作模式,即主接收装置开启,若终端在测量时长T1内得到的Sr1大于或等于阈值Th1,终端切换至第二工作模式,即终端开启低功耗接收装置,当检测到LP-WUS,主接收装置开启,通过LP-RS确定Sr2。如果终端处在第二工作模式且在测量时长T2内得到的每个Sr2小于阈值Th1,那么终端切回至第一工作模式,终端 关闭低功耗接收装置,开启主接收装置。示例性的,图9是本实施例中的一种模式确定方法的示意图,如图9所示,终端在第一工作模式和第二工作模式间交替切换。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号为SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。可选的Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。第一工作模式可以包含终端主接收装置开启,低功耗装置关闭;第二工作模式包含终端开启低功耗接收装置,当检测到LP-WUS,关闭低功耗接收机,主接收装置开启,此时终端可以接收寻呼和进行测量。
终端接收的SIB中配置了第一信令,终端处在第一工作模式,终端主接收装置开启,低功耗装置关闭,在测量时长T1内得到的Sr1大于或等于Th1,终端可切换至第二工作模式,即终端开启低功耗接收装置,当检测到LP-WUS,关闭低功耗接收机,主接收装置开启,接收寻呼和进行测量。如果终端处在第二工作模式且在测量时长T2内得到的每个Sr2小于Th1,那么终端切回至第一工作模式,即终端关闭低功耗接收装置,开启主接收装置。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th1,假设测量信号是SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值,由一个或多个参数组成。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第一工作模式,终端主接收装置开启,低功耗接收装置关闭,在T1内得到的每个Sr1大于或等于阈值1,终端切换至第二工作模式,即终端开启低功耗接收装置,当检测到LP-WUS,关闭低功耗接收机,主接收装置开启,接收寻呼;当需要测量时,关闭低功耗接收机,主接收装置开启。如果处在第二工作模式的T2内得到的每个Sr2小于阈值1,那么终端切回至第一工作模式,即终端关闭低功耗接收装置,开启主接收装置。
在一个实施例中,假设SIB配置的第一信令为信号功率的设定阈值为Th3,假设第三测量信息是至少根据SSB确定的本小区信号功率Sr3。可选的,Sr=QrxSSB-Qoffset1,其中QrxSSB根据SSB得到RSRP值,Qoffset1是偏移值, 由一个或多个参数组成。
终端接收的SIB中配置了第一信令,终端在每个预设周期K,在长度为M1的第一预设窗内处在第一工作模式下,且在第一预设窗内得到的Sr3大于或等于Th3,终端在后续的第二预设窗K-M1内切换至第二工作模式。示例性的,图10是本实施例中的一种模式确定方法的示意图,如图10所示,在预设周期K的第一预设窗内处在第一工作模式,在第二预设窗内处在第二工作模式。
在一个实施例中,假设SIB中配置了第一信令。终端接收的SIB中配置了第一信令,终端工作第二工作模式下,在测量时长T4后终端切换至第一工作模式,其中第一工作模式的时长为M3,之后切换到第一模式,依次类推。其中,第二工作模式为低功耗模式,终端不测量。
在一个实施例中,假设SIB中配置了第一信令。终端接收的SIB中配置了第一信令,终端处在第二工作模式,在测量时长T4后终端切换至第一工作模式,其中第一工作模式的时长为M3,之后切换到第一工作模式,依次类推。其中第二工作模式为低功耗模式,终端根据LP-WUS进行测量。
在一个实施例中,假设SIB中配置了第一信令。终端接收的SIB中配置了第一信令,终端处在第二工作模式,在测量时长T4后切换至第一工作模式,其中第一工作模式的时长为M3,之后继续切回到第一工作模式,依次类推。其中,第二工作模式为低功耗模式,终端根据LP-RS进行测量。
在一个实施例中,假设SIB中配置了第一信令。终端接收的SIB中配置了第一信令,终端处在第二工作模式,在测量时长T4后切换至第一工作模式,其中第一工作模式的时长为M3,之后继续切换回到第一工作模式,依次类推。其中,第二工作模式为低功耗模式,终端根据第三时间窗内的LP-RS进行测量。
在一个实施例中,假设配置的第一信令为信号功率的设定阈值为Th1,假设测量信号为SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2。假设第一测量模式包含放松本小区测量,假设第二测量模式包含传统的本小区测量。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第一工作模式,即主接收装置开启,且处在第二测量模式且在测量时长T1内得到的每个Sr1大于或等于Th1,终端切换至第一测量模式和第二工作模式,即终端开启低功耗接收装置,当检测到LP-WUS,主接收装置开启,低功耗接收装置关闭。因为第一测量模式为每N个DRX需要本小区测量一次,所以在需要本小区测量时, 主接收装置开启,进行测量。如果终端在第一测量模式和第二工作模式的中的测量时长T2内得到的Sr2小于Th1,那么终端切回至第二测量模式和第一工作模式,即主机开启且每个DRX周期都进行本小区测量。
在一个实施例中,假设配置的第一信令为信号功率的设定阈值为Th1,假设测量信号为SSB,第一测量信息是至少根据SSB确定的本小区信号功率Sr1,第二测量信息是至少根据SSB确定的本小区信号功率Sr2;第一测量模式包含每N个DRX循环进行一次本小区测量,第二测量模式包含传统本小区测量,即每个DRX循环都进行本小区测量。
本实施例中,终端接收的SIB中配置了第一信令,终端处在第一工作模式,即主接收装置开启,终端处在第二测量模式,终端每个DRX周期都进行本小区测量,在测量时长T1内得到的每个Sr1大于或等于Th1,终端切换至第二工作模式和第一测量模式,终端开启低功耗接收装置,当检测到LP-WUS和需要测量时,关闭低功耗接,主接收装置开启,接收寻呼和进行测量。如果在第二工作模式和第一测量模式的测量时长T2内得到的每个Sr2小于Th1,那么终端切回至第一工作模式和第二测量模式,即终端关闭低功耗接收装置,开启主接收装置且每个DRX周期都进行本小区测量。
本申请的技术方案,终端根据预定义的方式确定测量模式和/或工作模式。终端可以根据预定义的方式确定测量模式和/或工作模式的切换,可以降低终端的功耗,不仅可以节省能源,还可以延长终端的续航时间。
在一个实施例中,本申请还公开了另一种模式确定方法,该方法由基站执行,该方法包括:基站配置模式对应的第一参数,其中第一参数包含以下至少之一:模式信令,设定阈值,设定时长,用于确定时间窗的第二参数。
其中,模式信令可以包括测量模式信令和/或工作模式信令。第二参数可以包括时间窗的长度和/或位置等信息。本实施例中,基站将配置的第一参数发送至终端,使得终端根据第一参数进行上述实施例的模式确定过程。本申请实施例提供的一种计算机设备,该计算机设备包括存储器、处理器,以及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可以实现前述实施例中所述的模式确定方法。
计算机设备中处理器的数量可以是一个或多个,计算机设备中处理器、存储器可以通过总线或其他方式连接。
存储器作为一种计算机可读存储介质,可用于存储软件程序、计算机可执 行程序,如本申请实施例中的模式确定方法对应的程序。处理器通过运行存储在存储器中的软件程序、指令以及模块,从而执行电子设备的各种功能以及数据处理,即实现上述的模式确定方法。
存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的程序;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在由计算机处理器执行时用于执行一种模式确定方法。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的信号生成方法。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、装置、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。相应的软件可以 分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (22)

  1. 一种模式确定方法,包括:
    终端根据预定义的方式确定测量模式和/或工作模式;
    其中,所述测量模式包含第一测量模式和第二测量模式;所述工作模式包含第一工作模式和第二工作模式。
  2. 根据权利要求1所述的方法,其中,所述终端根据预定义的方式确定测量模式和/或工作模式,包括:
    所述终端根据切换方式确定所述测量模式和/或工作模式,其中,所述切换方式为满足切换条件时,所述终端选择在所述第二测量模式和/或所述第一工作模式与所述第一测量模式和/或所述第二工作模式间进行交替切换。
  3. 根据权利要求2所述的方法,其中,所述切换条件包括:
    所述终端处在所述第二测量模式和/或所述第一工作模式且第一设定时长内获得的第一测量信息满足设定规则;和/或,
    所述终端处在所述第一测量模式和/或所述第二工作模式且第二设定时长内获得的第二测量信息不满足所述设定规则。
  4. 根据权利要求2所述的方法,其中,所述终端根据预定义的方式确定测量模式和/或工作模式,包括:
    在一个预设周期内,所述终端在第一预设窗内处在所述第二测量模式下;在所述第一预设窗内获得的第三测量信息满足设定规则的情况下,所述终端选择在第二预设窗切换至所述第一测量模式和/或所述第二工作模式;和/或,在所述第三测量信息不满足所述设定规则的情况下,所述终端确定在所述第二预设窗内处在所述第二测量模式和/或所述第一工作模式;
    其中,所述预设周期由所述第一预设窗和所述第二预设窗组成。
  5. 根据权利要求2所述的方法,其中,所述终端根据预定义的方式确定测量模式和/或工作模式,包括:所述终端处在所述第二工作模式下。
  6. 根据权利要求2所述的方法,其中,所述终端根据预定义的方式确定测量模式和/或工作模式,包括:
    所述终端在所述第二工作模式和所述第一工作模式间交替切换,其中,所述终端处在所述第二工作模式第三设定时长,处在所述第一工作模式第四设定时长。
  7. 根据权利要求2所述的方法,其中,所述终端根据预定义的方式确定测量模式和/或工作模式,包括:
    所述终端处在所述第一测量模式。
  8. 根据权利要求2所述的方法,其中,所述终端根据预定义的方式确定测量模式和/或工作模式,包括:
    所述终端在所述第一测量模式和所述第二测量模式间交替切换,其中,所述终端处在所述第一测量模式第五设定时长,处在所述第二测量模式第六设定时长。
  9. 根据权利要求2所述的方法,其中,所述第一测量模式包括以下至少之一:放松本小区测量、放松本小区和其他小区测量;不进行测量;只基于低功耗-唤醒信号LP-WUS的测量;只基于低功耗-参考信号LP-RS的测量;只在第一时间窗内基于LP-RS的测量。
  10. 根据权利要求9所述的方法,其中,所述不进行测量包括以下任意一种:所述终端不开启主接收装置进行任何测量;没有检测到基于寻呼的LP-WUS时,所述终端不开启主接收装置进行任何测量;处在LP-WUS检测时,所述终端不开启主接收装置进行测量。
  11. 根据权利要求9所述的方法,其中,所述放松本小区测量包括以下至少之一:每N个非连续接收DRX周期进行一次本小区测量,N为大于1的正整数;有寻呼时,进行本小区测量。
  12. 根据权利要求9所述的方法,其中,所述放松本小区和其他小区测量包括以下至少之一:
    每N1个DRX周期进行一次本小区测量和其他小区测量,其中,本小区测量和其他小区测量在相同的DRX周期内;或者,
    每N2个DRX循环进行一次本小区测量,每N3个DRX循环进行一次其他小区测量,其中,N3=k*N2;N1、N2、N3和k分别为大于1的正整数。
  13. 根据权利要求2所述的方法,其中,所述第二测量模式包括以下至少之一:传统的本小区测量;所述传统的本小区测量和放松其他小区测量;所述传统的本小区测量和其他小区测量。
  14. 根据权利要求3或4所述的方法,其中,所述测量信息包括以下至少之一:测量信号的信号功率,测量信号的信号质量,测量信号的信号能量值,测量信号的信号幅度大小,是否检测到测量信号,检测到测量信号的数量。
  15. 根据权利要求14所述的方法,其中,所述测量信号为第二时间窗内的一个或多个预设信号,其中所述预设信号为以下至少之一:LP-RS,LP- WUS,同步和系统信息块SSB,跟踪参考信号TRS,信道状态信息-参考信号CSI-RS。
  16. 根据权利要求3或4所述的方法,其中,所述设定规则包括如下任意一项:测量值大于设定阈值;参考值减去测量值大于所述设定阈值;多个测量值的均值大于所述设定阈值;第二时间窗内的测量值的均值大于所述设定阈值;多个第三时间窗内测量值的均值大于所述设定阈值。
  17. 根据权利要求2所述的方法,其中,所述第一工作模式包括以下至少之一:所述终端的主接收装置开启;所述终端的低功耗接收装置关闭。
  18. 根据权利要求2所述的方法,其中,所述第二工作模式包括以下至少之一:所述终端的低功耗接收装置开启;所述终端检测到LP-WUS和/或需要测量时,开启主接收装置;所述终端的低功耗接收装置根据LP-WUS对应的时间窗开启;所述终端的低功耗接收装置根据LP-RS的配置开启;所述终端对应的低功耗接收装置根据主机的关闭而开启。
  19. 根据权利要求1所述的方法,其中,
    模式信令使能时,所述终端根据预定义的方式确定所述测量模式和/或所述工作模式。
  20. 一种模式确定方法,包括:
    基站配置模式对应的第一参数,其中,所述第一参数包含以下至少之一:模式信令,设定阈值,设定时长,用于确定时间窗的第二参数。
  21. 一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1-20中任一所述的模式确定方法。
  22. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-20中任一所述的模式确定方法。
PCT/CN2023/116069 2022-08-31 2023-08-31 一种模式确定方法、设备及存储介质 WO2024046417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211056835.XA CN115988614A (zh) 2022-08-31 2022-08-31 一种模式确定方法、设备及存储介质
CN202211056835.X 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024046417A1 true WO2024046417A1 (zh) 2024-03-07

Family

ID=85966900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116069 WO2024046417A1 (zh) 2022-08-31 2023-08-31 一种模式确定方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115988614A (zh)
WO (1) WO2024046417A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988614A (zh) * 2022-08-31 2023-04-18 中兴通讯股份有限公司 一种模式确定方法、设备及存储介质
CN117858214A (zh) * 2024-03-08 2024-04-09 荣耀终端有限公司 数据传输方法、装置、芯片及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536313A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 信号测量方法、设备及计算机可读存储介质
CN111436103A (zh) * 2019-02-02 2020-07-21 维沃移动通信有限公司 节能模式的切换方法、节能模式的配置方法及通信设备
WO2021203380A1 (zh) * 2020-04-09 2021-10-14 Oppo广东移动通信有限公司 无线资源管理测量的控制方法、终端设备、网络设备
CN113692011A (zh) * 2020-05-19 2021-11-23 华为技术有限公司 测量方法、装置及存储介质
WO2022147772A1 (zh) * 2021-01-08 2022-07-14 北京小米移动软件有限公司 通信方法及装置、用户设备、网络设备、及存储介质
CN115988614A (zh) * 2022-08-31 2023-04-18 中兴通讯股份有限公司 一种模式确定方法、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536313A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 信号测量方法、设备及计算机可读存储介质
CN111436103A (zh) * 2019-02-02 2020-07-21 维沃移动通信有限公司 节能模式的切换方法、节能模式的配置方法及通信设备
WO2021203380A1 (zh) * 2020-04-09 2021-10-14 Oppo广东移动通信有限公司 无线资源管理测量的控制方法、终端设备、网络设备
CN113692011A (zh) * 2020-05-19 2021-11-23 华为技术有限公司 测量方法、装置及存储介质
WO2022147772A1 (zh) * 2021-01-08 2022-07-14 北京小米移动软件有限公司 通信方法及装置、用户设备、网络设备、及存储介质
CN115988614A (zh) * 2022-08-31 2023-04-18 中兴通讯股份有限公司 一种模式确定方法、设备及存储介质

Also Published As

Publication number Publication date
CN115988614A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2024046417A1 (zh) 一种模式确定方法、设备及存储介质
EP3923502A1 (en) Communication method, apparatus, and device
US10285128B2 (en) Method and apparatus for waking up devices in batches, and device
JP6069665B2 (ja) デバイス間の日和見リソース共有
CN110557812B (zh) 信号传输方法及装置
TWI730424B (zh) 終端狀態轉換方法、網路設備、終端及電腦可讀存儲介質
US11382039B2 (en) Terminal state indicating method, terminal state determining method, base station and terminal
EP3911029A1 (en) Packet wake-up signal sending method and apparatus
TW202005465A (zh) 參考訊號的發送方法、接收方法及裝置
WO2019233172A1 (zh) 一种唤醒区域更新方法及装置
KR20210109024A (ko) 파워 절약 신호의 전송 방법, 검측 방법 및 기기
WO2023078242A1 (zh) 通信网络中终端设备的唤醒方法、装置及可读存储介质
CN110167111B (zh) 通信方法及装置
Bdiri et al. A nanowatt Wake-Up Receiver for industrial production line
CN111183676B (zh) 系统消息获取、指示方法、装置及设备
WO2024045691A1 (zh) 通信方法、设备和存储介质
KR102413986B1 (ko) 정보 송신 방법, 수신 방법, 네트워크 기기 및 단말기
CN111148144A (zh) 一种rrm测量方法及装置
EP4181582A1 (en) Paging method and apparatus
WO2021017741A1 (zh) 节能下行控制信道的传输方法、终端及网络侧设备
KR20220048004A (ko) Rrc 아이들 상태 또는 비활성화 상태에서의 이동성 측정 방법 및 장비
CN111343711A (zh) 降低终端功耗的方法、装置、设备及介质
Lebreton et al. Interference evaluation of WiFi devices over wake-up radio in wireless sensor networks
CN113133090B (zh) 信号传输方法及装置
US9722648B2 (en) Integrated circuit device, electronic device and method for frequency detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859446

Country of ref document: EP

Kind code of ref document: A1