WO2024046331A1 - 分光器、分光器芯片、通信设备和光分配网 - Google Patents

分光器、分光器芯片、通信设备和光分配网 Download PDF

Info

Publication number
WO2024046331A1
WO2024046331A1 PCT/CN2023/115600 CN2023115600W WO2024046331A1 WO 2024046331 A1 WO2024046331 A1 WO 2024046331A1 CN 2023115600 W CN2023115600 W CN 2023115600W WO 2024046331 A1 WO2024046331 A1 WO 2024046331A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
splitting
light
waveguides
Prior art date
Application number
PCT/CN2023/115600
Other languages
English (en)
French (fr)
Inventor
文玥
祁彪
李三星
王谦
吴文鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024046331A1 publication Critical patent/WO2024046331A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • This application relates to the technical field of optical energy loss of optical splitters, and in particular to an optical splitter, optical splitter chip, communication equipment and optical distribution network.
  • optical splitters are key components of optical distributed networks (ODN) communications networks.
  • ODN optical distributed networks
  • link losses are large, resulting in shorter access distances and less network redundancy.
  • the main reason is caused by the large loss of the optical splitter.
  • the optical splitter loss is mainly composed of waveguide loss (design, process), fiber array (FA) and waveguide coupling loss, and connector loss.
  • the key factors that form the waveguide loss include branch splitting loss, Waveguide bending losses and transmission losses.
  • the main reason for branch loss is: light is transmitted in the straight waveguide in the form of the fundamental mode.
  • the fundamental mode mode field is distorted (divided from one branch into multiple branches), resulting in mode field mismatch and branch loss.
  • the main reason for bending loss is: light is transmitted in a curved waveguide. Due to the bending of the waveguide, the optical mode field distribution is not like the straight waveguide that can be transmitted in the center of the straight waveguide, but the energy is transmitted eccentrically, causing the light splitting ratio to change when the subsequent branches continue. As a result, the energy distribution of subsequent branches is less consistent.
  • Optical splitters are divided into equal-ratio splitting and non-equal-ratio splitting.
  • FTTH fiber-to-the-home
  • the present application provides a spectrometer, a spectrometer chip, a communication device and an optical distribution network.
  • a spectrometer By distributing the positions of branch waveguides and arranging the first spectroscopic waveguide between the second spectroscopic waveguides, the position of energy splitting can be set in the light.
  • the low-energy area of the signal reduces the loss of the optical signal during light splitting.
  • the present application provides a spectroscope, which includes an incident light waveguide and a splitting waveguide.
  • the incident light waveguide is used to receive optical signals;
  • the splitting waveguide includes a first splitting waveguide and a plurality of second splitting waveguides;
  • the first light-splitting waveguide and the second light-splitting waveguide are coplanar, and a plurality of the second light-splitting waveguides are divided into two parts and located on both sides of the first light-splitting waveguide, or a plurality of the second light-splitting waveguides are arranged along the
  • the first light-splitting waveguides are arranged at intervals in the circumferential direction;
  • the first light-splitting waveguide includes a first connecting section connected to the incident light waveguide, and the first connecting section is linear.
  • This application arranges the first splitting waveguide between the second splitting waveguide, which can effectively set the splitting line in the low-energy area of the optical signal, effectively reduce the branch loss of optical energy, and can balance the size of the waveguides with different optical energy proportions. It is beneficial to the preparation of the optical splitter; and, the first optical splitting waveguide is located between the plurality of second optical splitting waveguides, and the first optical splitting waveguide is at least partially linear, which can efficiently transmit optical signals and reduce energy loss.
  • the cross-sectional area of the first spectroscopic waveguide is larger than the cross-sectional area of the second spectroscopic waveguide, so that the first spectroscopic waveguide accounts for a large proportion of energy, and the first spectroscopic waveguide is located in a plurality of third spectroscopic waveguides. Between the two splitting waveguides, the splitting lines of the first splitting waveguide and the second splitting waveguide are in a low energy region, reducing energy branch loss.
  • the second light splitting waveguide includes a second connection section and a second transmission section, the second connection section is located between the first transition waveguide and the second transmission section, and the optical signal Flows through the second connection section and the second transmission section in turn; the second connection section and the second transmission section are both arc-shaped, and the second connection section moves away from the optical signal along the transmission direction of the optical signal.
  • the direction of the first spectroscopic waveguide is curved, and the second transmission section is bent in a direction super close to the first spectroscopic waveguide along the transmission direction of the optical signal.
  • the second light-splitting waveguide with a double arc structure allows a certain distance between the light-emitting end of the second light-splitting waveguide and the light-emitting end of the first light-splitting waveguide, which facilitates connection with the back-end optical fiber and facilitates continued light splitting by the cascaded optical branching elements.
  • the second connection section and the second transmission section are tangential at the adjacent point, ensuring that the optical signal is transmitted in a smooth transition waveguide when transmitting in the second splitting waveguide, and preventing the occurrence of optical signals. Energy loss.
  • the second light splitting section further includes a third transmission section, the third transmission section is located between the second connection section and the second transmission section, and the third transmission section In the shape of a straight line, the third transmission section and the second connection section are tangent at the adjacent location, and the third transmission section and the second transmission section are tangent at the adjacent location.
  • This implementation increases the distance between the second branch waveguide and the first branch waveguide by arranging a third transmission section of a straight section, without increasing the length of the curved part in the second splitting waveguide, preventing The optical signal suffers a large energy loss due to the long path through the curved waveguide.
  • At least part of the cross-sectional area of the second connection section increases smoothly along the transmission direction of the optical signal, and at least part of the cross-sectional area of the second transmission section increases along the direction of the optical signal.
  • the transmission direction decreases smoothly to form a second light-splitting waveguide with a fine-coarse-fine structure, which can effectively reduce the center deviation of optical signals when they are transmitted in the curved waveguide and improve the balance of back-end light splitting.
  • the second light splitting waveguide further includes an optical branching element
  • the second transmission section is cascaded with at least one of the optical branching elements at the light exit end, and all the second light splitting elements in the optical splitter
  • the waveguide has a total of N2 waveguide output ports, and N2 is an even number greater than or equal to 4.
  • the optical branching element includes a second transition waveguide and a plurality of optical branching waveguides.
  • the optical signal enters the second transition waveguide and is divided into a plurality of optical signals.
  • the plurality of optical signals have a pair Upon entering the optical branch waveguide, the optical signal enters the second transition waveguide from the second transmission section, is split in the second transition waveguide and enters multiple optical branch waveguides respectively, and the optical signal is split into multiple balanced optical signals. .
  • the optical branch waveguide includes a first branch waveguide, the number of the first branch waveguides is two, and the first branch waveguide includes a first arc segment and a second arc.
  • the first arc-shaped section is bent in a direction away from the other first branch waveguide along the optical signal transmission direction
  • the second arc-shaped section is bent in a direction away from the other first branch waveguide in the optical signal transmission direction.
  • the direction of the branch waveguide is bent.
  • the first branch waveguide with a double arc structure can split the optical signal into a plurality of first branch waveguides when the second transmission section outputs an optical signal.
  • the light output ports of the plurality of first branch waveguides have a certain spacing to facilitate connection with the back-end optical fiber.
  • At least part of the cross-sectional area of the first arc segment increases smoothly along the transmission direction of the optical signal, and at least part of the cross-sectional area of the second arc segment increases along the direction of optical signal transmission.
  • the transmission direction of the signal decreases smoothly.
  • the optical branch waveguide further includes a second optical branch waveguide, the second optical branch waveguide is located between the two first optical branch waveguides, and the second optical branch waveguide connects all the first optical branch waveguides. Some sections of the second transition waveguide are linear. This implementation method effectively reduces the splitting loss of the optical signal in the optical branching element by arranging the second splitting branch waveguide and disposing the second splitting branch waveguide between the first splitting branch waveguides.
  • the optical splitter further includes a first transition waveguide, the first transition waveguide is located between the incident light waveguide and the splitting waveguide, and the optical signal is transmitted into the optical fiber by the incident light waveguide.
  • the first transition waveguide is divided into a first optical signal and multiple second optical signals in the first transition waveguide.
  • the first optical signal enters the first splitting waveguide, and the multiple second optical signals are Entering the second light splitting waveguide one-to-one, the energy value of the first optical signal is greater than the energy value of the second optical signal in each channel.
  • the optical waveguide and the branch waveguide are connected through the first transition waveguide.
  • the optical signal is divided into a first optical signal and a second optical signal in the first transition waveguide.
  • the first optical signal accounts for a large proportion of energy and enters the first splitting waveguide.
  • the optical signal energy accounts for a small proportion and enters the second splitting waveguide.
  • the spectroscope further includes a substrate, the first spectroscopic waveguide and the second spectroscopic waveguide are both located in the substrate, and the first spectroscopic waveguide and the second spectroscopic waveguide share a common noodle.
  • the number of the second light-splitting waveguides is an even number
  • the plurality of second light-splitting waveguides are evenly divided into two parts
  • the two parts of the second light-splitting waveguides are mirror symmetrical to each other
  • the first light-splitting waveguides are At least a partial section of the waveguide including the input end coincides with the mirror axis of the second splitting waveguide.
  • the second light-splitting waveguides are mirror symmetrical to each other, and at least part of the section of the first light-splitting waveguide including the light input end coincides with the mirror axis of the second light-splitting waveguide, so that the energy proportion of each second light-splitting waveguide is the same.
  • a plurality of second spectroscopic waveguides are arranged at equidistant intervals along the circumferential direction of the first spectroscopic waveguide, and the central axis of the second spectroscopic waveguide and the first spectroscopic waveguide include At least some sections of the light incident ends overlap.
  • the spectrometer described in this implementation is a fused tapered waveguide spectrometer.
  • the first splitting waveguide is located between a plurality of second splitting waveguides.
  • the first splitting waveguide is located at the energy center of the splitting surface, and the splitting position is located in the low energy area.
  • the second light splitting waveguides are arranged at equidistant intervals, and at least part of the section of the first light splitting waveguide including the input end coincides with the central axis of the second light splitting waveguide, so that each second light splitting waveguide
  • the energy proportions of the splitting waveguides are the same.
  • the present application provides a spectrometer chip, including the spectrometer described in any one of the above, wherein the first spectroscopic waveguide and the second spectroscopic waveguide of the spectrometer are coplanar, and a plurality of the second spectroscopic waveguides are divided into two. part and located on both sides of the first light splitting waveguide.
  • Splitter The chip also includes a substrate. The first light splitting waveguide and the second light splitting waveguide are coplanar and located within the substrate, forming a plate-shaped light splitter chip.
  • the present application provides a communication device, including the optical splitter described in any one of the above, and further including an optical line terminal.
  • the optical line terminal is connected to the input light waveguide of the optical splitter through a trunk optical fiber.
  • the optical line terminal is used to input optical signals to the incident light waveguide.
  • the present application provides an optical distribution network, including the optical splitter described in any one of the above, and further including an optical line terminal and a plurality of optical network units.
  • the optical line terminal passes through a backbone optical fiber and the optical splitter.
  • the incoming light waveguide is connected, and the optical line terminal is used to input optical signals to the incoming light waveguide; a plurality of the optical network units are connected one-to-one through branch optical fibers and the output port of the optical splitter.
  • the optical splitter sets the first splitting waveguide between the second splitting waveguides, which can effectively set the splitting line in the low-energy area of the optical signal, effectively reduce the branch loss of optical energy, and improve the light distribution. improve the optical transmission efficiency of the network and improve the quality of optical signals.
  • the multiple optical splitters there are multiple optical splitters, some of the multiple optical splitters are primary optical splitters, and the other part are secondary optical splitters, and the input port of the secondary optical splitter and the The output port of the first-level optical splitter is connected, and the output port is the output port of the first optical splitting waveguide and/or the output port of the second optical splitting waveguide.
  • Figure 1 is a schematic structural diagram of a spectroscope provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the light distribution on the splitting surface of the spectroscope provided by the embodiment of the present application;
  • Figure 3 is a schematic diagram of the light distribution on the splitting surface of the spectrometer provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the mode field of the optical signal before and after light splitting provided by the embodiment of the present application;
  • Figure 5 is a schematic diagram of the unequal ratio beam splitter in which the first spectroscopic waveguide is located on one side of the second spectroscopic waveguide mentioned in the embodiment of the present application;
  • Figure 6 is a schematic diagram of light distribution on the splitting surface of the spectroscope shown in Figure 5;
  • Figure 7 is a schematic diagram of a planar waveguide form spectrometer provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the internal waveguide of the planar waveguide form spectrometer provided by the embodiment of the present application.
  • Figure 9 is an enlarged view of location I in Figure 7;
  • Figure 10 is a schematic diagram of a 1*5 unequal beam splitter provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a fused tapered spectrometer provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the light distribution on the splitting surface of the fused tapered spectrometer provided by the embodiment of the present application;
  • Figure 13 is a schematic diagram of a 1*4 unequal beam splitter provided by the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the second light splitting waveguide provided by the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of the second light splitting waveguide provided by the embodiment of the present application.
  • Figure 16 is a schematic diagram of the fine-coarse-fine structure of the second light splitting waveguide provided by the embodiment of the present application.
  • Figure 17 is an enlarged view of point II in Figure 16;
  • Figure 18 is a schematic diagram of the light field energy transmission of the second light splitting waveguide provided by the embodiment of the present application under the fine-coarse-fine structure and the cross-sectional balanced structure;
  • Figure 19 is a schematic diagram of a 1*9 unequal beam splitter provided by the embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a 1*2 optical branch element provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a 1*3 optical branch element provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of communication equipment provided by an embodiment of the present application.
  • Figure 23 is a schematic structural diagram of an optical distribution network provided by an embodiment of the present application.
  • PON It is a typical passive optical fiber network.
  • the optical distribution network does not contain electronic power supplies and electronic components.
  • the optical distribution network (ODN) is entirely composed of passive components such as optical splitters (Splitters). It does not require Valuable active electronic equipment.
  • a passive optical network includes an optical line terminal (OLT) installed at a central control station and a group of supporting optical network units (ONUs) installed at user premises.
  • OLT optical line terminal
  • ONUs optical network units
  • FTTH refers to Fiber (Fiber) To The Home (FTTH), which is a transmission method of optical fiber communication. Specifically, FTTH refers to installing optical network units (ONUs) at home users or enterprise users. It is the optical access network application type closest to users in the optical access series except FTTD (fiber to the desktop).
  • connection used in this article can be understood as a direct contact connection or an indirect connection. In the following, description of the same or similar parts will be omitted.
  • the optical splitter described in the embodiments of this application is a passive device, also known as an optical splitter.
  • the optical splitter does not require power supply when working, and can achieve light splitting as long as there is input light.
  • the beam splitter consists of entrance and exit slits, reflectors and dispersion elements. Its function is to separate the required resonance absorption lines.
  • the present application provides a spectrometer 100, as shown in Figure 1, which includes an incident light waveguide 110, a first transition waveguide 120 and a splitting waveguide.
  • the spectrometer can be in the form of a fused tapered cone or a planar waveguide.
  • the method takes a beam splitter in the form of a planar waveguide as an example.
  • the incident light waveguide 110 and the splitting waveguide are on the same plane.
  • the input light waveguide 110 is used to receive optical signals and input the optical signals into the first transition waveguide 120.
  • the light exit side of the first transition waveguide 120 is coupled to a splitting waveguide.
  • 110 The input optical signal is divided into multiple.
  • Optical signals are mainly transmitted in the waveguide in the form of the fundamental mode.
  • the fundamental mode mode field is distorted, and one optical signal is divided into multiple optical signals, resulting in mode field mismatch and branch loss.
  • each 1:2 splitting can produce a loss of about 3.5dB.
  • the spectroscopic waveguide described in this embodiment includes a first spectroscopic waveguide 130 and a second spectroscopic waveguide 140 .
  • This embodiment takes two as an example.
  • the optical signal input into the light waveguide 110 is divided into one first optical signal and two second optical signals in the first transition waveguide 120.
  • One first optical signal enters the first splitting waveguide 130, and the two second optical signals Enter and two second splitting waveguides 140 respectively.
  • the first spectroscopic waveguide 130 is located between the two second spectroscopic waveguides 140 , and the two second spectroscopic waveguides 140 are located on both sides of the first spectroscopic waveguide 130 .
  • the first light splitting waveguide 130 includes a first connection section 131 and a first transmission section 132, wherein the first connection section 131 and the first transition waveguide 120 are coupled and linked, and the first connection section 131 is in a straight line. shape.
  • the first optical signal passes through the first connection section 131 and then enters the first transmission section 132.
  • the first transmission section 132 includes a 1*2 type split branch waveguide.
  • the 1*2 type split branch waveguide has a double arc structure. After the first optical signal is divided into two optical signals, the optical signal output by the light output port of the first transmission section 132 is parallel to the transmission direction of the optical signal in the first connection section 131 .
  • the proportion of the light energy output by the non-equal beam splitter described in this embodiment is from top to bottom.
  • the order is 15%, 30%, 30% and 15%.
  • the first splitting waveguide 130 is non-linear as a whole.
  • the first splitting waveguide 130 only has a first connecting section 131 coupled with the first transition waveguide 120 and is linear.
  • the first connecting section 131 and The central axes of the second splitting waveguides 140 coincide with each other.
  • Figure 2 is a schematic diagram of the light signal splitting in the light splitting surface 121
  • Figure 4 is a schematic diagram of the mode field of the light signal before and after light splitting.
  • the optical signal is mainly transmitted in the waveguide in the form of the fundamental mode, showing a distribution pattern in which the energy gradually decreases from the center to the outside.
  • the darker the color the stronger the corresponding light energy.
  • the first optical signal energy in the first beam splitting waveguide 130 and the second optical signal energy in the second beam splitting waveguide 140 are different, so that the optical energy output by the beam splitter at the end is not equal.
  • the splitting distance L1 of the first splitting waveguide 130 is smaller than the splitting distance L2 of all the second splitting waveguides 140 , that is, the splitting distance L1 is smaller than the minimum value of the two splitting distances L2 , where,
  • the splitting distance is the distance between the center of energy in the first transition waveguide 120 and the center of energy in the splitting waveguide.
  • the energy center of the first splitting waveguide 130 coincides with the energy center of the first transition waveguide 120 , so the splitting distance L1 of the first splitting waveguide 130 is 0, which is not shown in FIG. 2 .
  • the splitting distance of the second splitting waveguide 140 is L2, and the value of the splitting distance L2 is greater than the value of the splitting distance L1.
  • the light splitting distance can also be determined by measuring the distance between the central axis of the light splitting waveguide and the center of the light splitting surface 121.
  • the center of the light signal energy in the light splitting surface 121 appears to the right compared to the center of the light splitting surface 121
  • the splitting distance L1 of the first splitting waveguide 130 is smaller than the splitting distance L2 of the second splitting waveguide 140 .
  • the light splitting surface 121 described in this application is the plane where one optical signal is divided into multiple optical signals.
  • the light splitting surface 121 faces the input light waveguide 110. One side is the incident optical signal. At this time, the optical signal is not split and has no optical loss.
  • the side of the splitting surface 121 facing the splitting waveguide is the splitting optical signal. At this time, the optical signal is divided into three paths and enters the three splitting waveguides respectively. , the total energy of the optical signal after splitting is compared with the optical signal before splitting, and the optical loss occurs mainly in the branch structure of the splitting surface 121 .
  • the light energy proportion of the first light splitting waveguide 130 is greater than the light energy proportion of each second light splitting waveguide 140.
  • Each second light splitting waveguide 140 refers to each second light splitting waveguide 140
  • the first light splitting waveguide 140 refers to each second light splitting waveguide 140.
  • the light energy proportion of the waveguide 130 is greater than the light energy proportion of any one of all the second light splitting waveguides 140 .
  • the first splitting waveguide 130 takes 70% energy as an example
  • the second splitting waveguide 140 takes 15% energy as an example
  • the total energy of one first splitting waveguide 130 and two second splitting waveguides 140 is about 100% (actual Energy loss occurs in the system, and the energy sum is less than 100%).
  • a first splitting waveguide 130 with a high energy ratio is arranged between two second splitting waveguides 140 with a low energy ratio.
  • one of the splitting lines 122 (the optical signal is in the splitting line) 122 is divided into two optical signals) is located in the left area of the splitting surface 121.
  • the light energy of the left part of the splitting line 122 accounts for about 15%.
  • the left half of the splitting line 122 is in the low energy area of the optical signal. Branch losses when splitting here are also correspondingly lower.
  • another splitting line 122 is located in the right part of the splitting surface 121. The light energy of the right part of this splitting line 122 accounts for about 15%.
  • the splitting line 122 is in the low energy area of the optical signal, and the process is carried out here.
  • the branch loss during light splitting is also correspondingly lower.
  • the first light splitting waveguide 130 is located between the plurality of second light splitting waveguides 140.
  • the first connection section 131 connecting the first light splitting waveguide 130 and the input light waveguide 110 is a straight section, which can efficiently transmit optical signals and reduce optical signal transmission.
  • the energy loss at the time corresponds to the reduction of branch loss and collaboratively reduces the overall energy loss of the optical splitter.
  • the energy ratio of the first splitting waveguide 130 is 70% and the energy ratio of the second splitting waveguide 140 is 15% in FIG. 2
  • the first light splitting waveguide 130 is mostly linear, and arc waveguides and linear waveguides have different light transmission efficiencies and different energy losses.
  • the energy ratio directly entering each branch waveguide will set a certain deviation.
  • the middle part of the light energy in Figure 2 At around 70%, the light energy of the left and right parts in Figure 2 is around 15% to balance the energy loss caused by waveguides of different shapes.
  • FIG. 6 is a light energy distribution diagram of the splitting surface 121 in the splitting waveguide distribution mode shown in FIG. 5.
  • the first light splitting waveguide 130 takes an energy ratio of 70% as an example
  • the second light splitting waveguide 140 takes an energy ratio of 15% as an example.
  • the right split line 122 is in a similar position to the right split line 122 shown in FIG.
  • the right side light energy of the right split line 122 accounts for about 15%.
  • the light energy ratio between the left splitting line 122 and the right splitting line 122 in Figure 6 is about 15%, so that the left splitting line 122 is in an area with higher optical signal energy.
  • the branch loss is higher.
  • the first spectroscopic waveguide 130 is arranged between the two second spectroscopic waveguides 140, which can effectively set the splitting line 122 in the low-energy region of the optical signal, effectively reducing the branch loss of light energy.
  • the optical splitter 100 described in this embodiment has a high center energy and low outer energy of the optical signal, and the central energy of the optical signal accounts for a large proportion. 70% of the energy, and a second splitting waveguide 140 accounts for 15% of the energy, the two left and right splitting lines 122 are respectively located at about one-third of the splitting surface 121.
  • the first splitting waveguide 130 and the second splitting waveguide 130 The splitting waveguides 140 have substantially equal cross-sectional areas, which will not cause the cross-section of the second splitting waveguide 140 in the splitting area to be too small, and the preparation of the splitter 100 is more convenient.
  • the cross-sectional dimensions of the first spectroscopic waveguide 130 and the second spectroscopic waveguide 140 are quite different, and the second spectroscopic waveguide 140 in the middle is smaller in size, making it difficult for the spectrometer 100 to be preparation.
  • the unequal ratio beam splitter described in this embodiment has been tested and measured.
  • the energy proportion of the first splitting waveguide 130 is 69%, and the insertion loss is 1.61dB;
  • the two second splitting waveguides 140 have The energy proportion of one of the second splitting waveguides 140a is 13.7%, and the insertion loss is 8.63dB;
  • the energy proportion of the other second splitting waveguide 140b is 13.7%, and the insertion loss is 8.63dB.
  • the first splitting waveguide 130 and the two second splitting waveguides 140 The total energy proportion reaches 96.4% of the input optical signal, and about 3.6% of the energy is lost. The total loss is 0.159dB, and the optical energy loss is low.
  • the optical splitter in this implementation is a planar waveguide optical splitter as an example.
  • the optical splitter further includes a substrate 150 , and the substrate 150 may be made of quartz material.
  • the incident light waveguide 110 , the first transition waveguide 120 and the branch waveguides are waveguide paths made in the substrate 150 through an etching process. Specifically, the cross-sections of the light-incident waveguide 110, the first transition waveguide 120 and the branch waveguides described in this embodiment are all square, and the light-incident waveguide 110, the first transition waveguide 120 and the branch waveguides are all located in the substrate 150.
  • the optical waveguide 110 forms a light entrance (not shown in the figure) on one side of the substrate 150, and the branch waveguide forms a plurality of light exit ends 160 on the other side of the substrate 150 (see FIG. 9).
  • the number N1 of the second splitting waveguides 140 is an even number, which can be 2, 4, 6 or 8, etc.
  • N1 is two, as shown in FIG. 8 , the two second splitting waveguides 140 are respectively the second splitting waveguides 140 .
  • the waveguide 140a and the second splitting waveguide 140b are respectively located on both sides of the first splitting waveguide 130.
  • the four second splitting waveguides 140 are respectively the second splitting waveguide 140a, the second splitting waveguide 140b, the second splitting waveguide 140c and the second splitting waveguide 140d.
  • the four second splitting waveguides 140 can be divided into two parts, the second splitting waveguide 140a and the second splitting waveguide 140c are located on one side of the first splitting waveguide 130, and the second splitting waveguide 140b and the second splitting waveguide 140d are located on the third side.
  • the first splitting waveguide 130 has the highest energy ratio, which can be about 60%; the second splitting waveguide 140a and the second splitting waveguide 140b have lower energy ratios, which can be about 12.5% respectively; the second splitting waveguides 140c and The energy proportion of the second splitting waveguide 140d is the lowest, which can be about 7.5%.
  • the energy proportion of the second spectroscopic waveguide 140 gradually decreases in the direction away from the first spectroscopic waveguide 130.
  • the second splitting waveguide 140 can be divided into two parts, and the first splitting waveguide 130 is located between the two equally divided parts of the second splitting waveguide 140 so that the first splitting waveguide 140 can be divided into two parts.
  • the splitting distance L1 of the splitting waveguide 130 at the splitting surface 121 is smaller than the splitting distance L2 of the second splitting waveguide 140 , which reduces the optical loss of the optical signal splitting at the splitting surface 121 .
  • the N1 second splitting waveguides 140 are evenly divided into two parts, and the two parts of the second splitting waveguides 140 are mirror symmetrical to each other.
  • the first spectroscopic waveguide 130 may be a linear waveguide, or the section of the first spectroscopic waveguide 130 that is coupled to the first transition waveguide 120 may be a linear waveguide, and the linear section of the first spectroscopic waveguide 130 and the N1 second spectroscopic waveguides 140 The mirror axes coincide.
  • the two second optical splitting waveguides 140 are respectively the second optical splitting waveguide 140a and the second optical splitting waveguide 140b.
  • the second optical splitting waveguide 140a and the second optical splitting waveguide 140b are respectively located in the first optical splitting waveguide.
  • the first spectroscopic waveguide 130 is a linear waveguide
  • the second spectroscopic waveguide 140a and the second spectroscopic waveguide 140b are mirror symmetrical with the straight line where the first spectroscopic waveguide 130 is located as the mirror axis.
  • the energy proportion of the input optical signal entering the two second splitting waveguides 140 is the same, and the transmission conditions of the optical signal in the two second splitting waveguides 140 are the same.
  • the transmission losses in the two second splitting waveguides 140 are the same, so that the optical signal energy output by the two second splitting waveguides 140 is the same, forming a 1*3 formula (the output energy proportion can be 15%, 70% and 15% in sequence). Spectrometer.
  • the second optical splitting waveguide 140a and the second optical splitting waveguide 140c are located on one side of the first optical splitting waveguide 130, and the second optical splitting waveguide 140b and the second optical splitting waveguide 140d are located on the first optical splitting waveguide 130.
  • the first light splitting waveguide 130 is a linear waveguide.
  • the second spectroscopic waveguide 140a and the second spectroscopic waveguide 140b are mirror symmetrical with the straight line of the first spectroscopic waveguide 130 as the mirror axis, and the transmission conditions of the optical signals in the second spectroscopic waveguide 140a and the second spectroscopic waveguide 140b are the same;
  • second The splitting waveguide 140c and the second splitting waveguide 140d are mirror symmetrical with the straight line of the first splitting waveguide 130 as the mirror axis, and the transmission conditions of optical signals in the second splitting waveguide 140c and the second splitting waveguide 140d are the same.
  • the beam splitter shown in Figure 10 constitutes a 1*5 type beam splitter (the output energy proportion can be 7.5%, 12.5%, 60%, 12.5% and 7.5% in sequence).
  • the spectrometer described in this embodiment may be a fused frustoconical spectrometer.
  • the first splitting waveguide 130 may be linear.
  • the beam splitter is a fused tapered beam splitter
  • the cross-sections of the incident light waveguide 110, the first transition waveguide 120, the first splitting waveguide 130 and the second splitting waveguide 140 can all be circular
  • the second splitting waveguide There are a plurality of second light splitting waveguides 140 , and a plurality of second light splitting waveguides 140 are arranged at intervals along the circumferential direction of the first light splitting waveguide 130 .
  • the number of second light splitting waveguides 140 is six.
  • the light energy is mostly transmitted in the form of the fundamental mode, showing a light energy distribution with high energy in the center and low energy on the outside.
  • the first spectroscopic waveguide 130 is arranged at the center of the branch waveguide, and the energy proportion of the first spectroscopic waveguide 130 is higher than the energy proportion of the second spectroscopic waveguide 140 .
  • the number of the first spectroscopic waveguide 130 is 1, and the number of the second spectroscopic waveguide 140 can be 3, 4 or 5, etc.
  • the number of the second spectroscopic waveguide 140 can be 3, 4 or 5, etc.
  • six second spectroscopic waveguides 140 are taken as an example.
  • the energy proportion can be 70%, and the energy proportion of each second light splitting waveguide 140 can be 5%, forming a 1*7 unequal beam ratio.
  • the central axis of the first spectroscopic waveguide 130 coincides with the center of the spectroscopic surface 121 .
  • the splitting distance L1 is 0, and the splitting distance L1 of the first splitting waveguide 130 is not shown in the figure.
  • the splitting distance L2 of the second splitting waveguide 140 is greater than the splitting distance L1 of the first splitting waveguide 130.
  • the first splitting waveguide 130 is closer to the center of the optical signal.
  • the first splitting waveguide 130 and the second splitting waveguide 140 are lower at the edge of the optical signal. The energy area is split, and the splitting loss is lower.
  • a plurality of second spectroscopic waveguides 140 are arranged at equidistant intervals along the circumferential direction of the first spectroscopic waveguide 130 .
  • one first spectroscopic waveguide 130 is used.
  • the first spectroscopic waveguide 130 is in a straight line
  • the six second spectroscopic waveguides 140 are in a centrally symmetrical structure with the straight line where the first spectroscopic waveguide 130 is located.
  • the six second splitting waveguides 140 have a centrally symmetrical structure with the straight line where the first splitting waveguide 130 is located, so that the transmission condition of the optical signal entering each second splitting waveguide 140 after splitting is the same, and the proportion of energy distributed by the second splitting waveguide 140 Similarly, the energy output by the second light splitting waveguide 140 is also the same.
  • the second light splitting waveguide 140 includes a second connection section 141 and a second transmission section 142 , and the second connection section 141 is located between the first transition waveguide 120 and the second transmission section 142 . time, wherein the second connection section 141 and the first transition waveguide 120 are coupled and connected.
  • the second connection section 141 and the second transmission section 142 can be two parts of an integral waveguide, or can be two connected waveguides. .
  • the second optical signal flows through the second connection section 141 and the second transmission section 142 in sequence.
  • both the second connection section 141 and the second transmission section 142 are arc-shaped, the second connection section 141 is curved in a direction away from the first splitting waveguide 130 along the transmission direction of the second optical signal, and the second transmission section 142 is curved along the transmission direction of the second optical signal.
  • the transmission direction of the two optical signals is bent in a direction close to the first splitting waveguide 130 .
  • the second connection section 141 and the second transmission section 142 are tangential at the adjacent point, so that when the second optical signal passes through the second connection section 141 and the second transmission section 142, it can be fully transmitted on the smooth transition of the inner wall of the waveguide. Reflection to prevent energy loss in adjacent areas.
  • the optical signal After the optical signal is divided into three paths, it enters the first splitting waveguide 130 and the two second splitting waveguides 140 respectively.
  • the cross-sectional areas of the first spectroscopic waveguide 130 and the second spectroscopic waveguide 140 are small, mostly in the micron range.
  • first splitting waveguide 130 and the second splitting waveguide 140 optical fibers need to be connected through corresponding interfaces to transmit optical signals to the backend equipment.
  • the size of the interface is mostly in the millimeter range, so the first splitting waveguide 130 and the second splitting waveguide 140 are required.
  • the light exit ends 160 of the two splitting waveguides 140 have a relatively large distance.
  • the second splitting waveguide 140 needs to be bent to a certain extent to achieve a certain distance between the first splitting waveguide 130 and the second splitting waveguide 140 .
  • the bending radius of the waveguide should not be too small, and the bending degree of the waveguide should not be too large.
  • the second spectroscopic waveguide 140 described in this embodiment has a double arc structure. After bending away from the first spectroscopic waveguide 130 , the rear part of the second spectroscopic waveguide 140 moves closer to the first spectroscopic waveguide 130 . Bend to ensure that the light exit direction of the second light splitting waveguide 140 is consistent with the light exit direction of the first light splitting waveguide 130.
  • the optical fibers connected to the light exit side are parallel to each other, effectively controlling the size of the light splitter and ensuring the rationality of the light splitter structure.
  • the second transmission section 142 includes a light exit end 160 , and the light exit direction of the light exit end 160 is parallel to the first connection section 131 , so that the second light splitting waveguide 140 is on both sides of the first light splitting waveguide 130 . After offset, the transmission direction of the optical signal will not be changed.
  • the light output end 160 is an end of the second transmission section 142 away from the second connection section 141 .
  • the second light splitting waveguide 140 in this implementation also includes a third transmission section 143 , and the third transmission section 143 is located between the second connection section 141 and the second transmission section 142 In between, the third transmission section 143 is a straight section, and the connection between the third transmission section 143 and the second connection section 141 is tangent, and the connection between the third transmission section 143 and the second transmission section 142 is tangent.
  • the second connection section 141, the second transmission section 142 and the third transmission section 143 may be three parts of an integral waveguide, or may be three waveguides connected in sequence.
  • the optical splitter is a 1*9 type non-equal beam splitter
  • multiple optical branch waveguides are cascaded at the back end of the second splitting waveguide 140.
  • the space is curved, and there is a certain distance between the multiple optical signal output ends, so a relatively large distance needs to be maintained between the first light splitting waveguide 130 and the second light splitting waveguide 140 .
  • the optical splitter described in this embodiment can ensure a large spacing between the second optical splitting waveguide 140 and the first optical splitting waveguide 130 when multiple optical branch waveguides are cascaded at the rear end of the second splitting waveguide 140 .
  • this embodiment increases the length of the second splitting waveguide 140 and the first splitting waveguide 130 by setting a third transmission section 143 of a straight section. The spacing between them will not increase the length of the curved portion of the second light splitting waveguide 140 and prevent the optical signal from causing greater energy loss due to the longer path through the curved waveguide.
  • the second light splitting waveguide 140 includes a second connection section 141 and a second transmission section 142 .
  • the second connection section 141 is located between the first transition waveguide 120 and the second transmission section 142 . between sections 142, wherein the second connection section 141 and the first transition waveguide 120 are coupled and connected.
  • the second connection section 141 and the second transmission section 142 can be two parts of an integral waveguide, or they can be Two connected waveguides.
  • the second optical signal flows through the first transition waveguide 120, the second connection section 141 and the second transmission section 142 in sequence.
  • both the second connection section 141 and the second transmission section 142 are arc-shaped, the second connection section 141 is curved in a direction away from the first splitting waveguide 130 along the transmission direction of the second optical signal, and the second transmission section 142 is curved along the transmission direction of the second optical signal.
  • the transmission direction of the two optical signals is bent in a direction close to the first splitting waveguide 130 .
  • the cross-sectional area of at least part of the second connecting section 141 increases smoothly along the transmission direction of the second optical signal.
  • the overall section cross-sectional area of the second connection section 141 increases smoothly along the transmission direction of the second optical signal, and the part where the second connection section 141 and the first transition waveguide 120 are coupled is the second connection section 141
  • the thinnest part, the part where the second connecting section 141 and the second transmission section 142 are adjacent is the thickest part of the second connecting section 141 .
  • the cross-sectional area of the second transmission section 142 decreases smoothly along the transmission direction of the second optical signal.
  • the overall section cross-sectional area of the second transmission section 142 decreases smoothly along the transmission direction of the second optical signal, and the part where the second transmission section 142 and the second connection section 141 are coupled is the second transmission section 142
  • the thickest part, the rear light-emitting end 160 of the second transmission section 142 is the thinnest part of the second transmission section 142 .
  • the smooth increase and smooth decrease described in this application means that during the process of increase and decrease, the inner wall surface of the waveguide is always a smooth transition, and there is no step-like or disconnected increase and decrease.
  • the inner wall surfaces of the second connecting section 141 and the second transmission section 142 are smooth curved surfaces.
  • the second spectroscopic waveguide 140 described in this embodiment has a thin-thick-thin structure.
  • a center will appear due to the reflection of the arc-shaped waveguide. Shift, the energy center of the second optical signal is shifted from the center of the second light splitting waveguide 140 .
  • the second spectroscopic waveguide 140 is arranged into a thin-thick-thin structure. As the cross-sectional area of the second spectroscopic waveguide 140 increases, the center deviation of the second optical signal will be reduced accordingly, so that in the second When splitting light, the rear end of the light splitting waveguide 140 improves the balance of light splitting.
  • a beam splitter with the same cross-sectional area of the waveguides 140 greatly improves the balance of the light energy output by the four equally divided beam guides, and can effectively improve the balance of the beam splitting at the rear end of the second beam splitting waveguide 140 .
  • the spectrometer with a fine-coarse-fine structure is shown in (a) of Figure 18, and the spectrometer with the same cross-sectional area is shown in (b) of Figure 18.
  • the second light splitting waveguide 140 in this implementation also includes an optical branching element. 144.
  • the second transmission section 142 cascades at least one optical branch element 144 at the light exit end.
  • the optical splitter can be cascaded with multi-level optical branching elements 144 at the rear end of the second splitting waveguide 140.
  • the optical branching elements 144 can be 1*2 optical branching elements, or can be 1*3, 1*4 or 1* 5 and other optical branching components are specifically determined by the splitting ratio of the spectroscope.
  • All the second splitting waveguides 140 in the finally formed spectroscope have N2 second waveguide output ports 162, where N2 is an even number equal to 4.
  • a first-level optical branching element 144 is cascaded at the optical end of the second transmission section 142 of each second light-splitting waveguide 140, and two optical branches are cascaded at the rear ends of the two branches of the optical branching element 144.
  • Element 144 forms a 1*9 unequal ratio light guide as shown in Figure 19.
  • the first light splitting waveguide 130 has one first waveguide output port 161
  • the second light splitting waveguide 140 has eight second waveguide output ports 162.
  • the light energy output from the first waveguide output port 161 and the second waveguide output port 162 The output light energy is different, and the eight second waveguide output ports 162 output almost the same light energy.
  • the optical branching element 144 in this embodiment may include a second transition waveguide 1441 and a plurality of optical branching waveguides 1442 , and the number of optical branching waveguides 1442 may be 2, 3, or 4, etc.,
  • This embodiment takes two optical branch waveguides 1442 as an example.
  • the second optical signal output by the second transmission section 142 enters the second transition waveguide 1441 and is divided into multiple optical signals in the second transition waveguide 1441.
  • the multiple optical signals enter the optical branch waveguide 1442 one by one.
  • the optical branch waveguide 1442 in this embodiment includes a first branch waveguide 1443, and the number of the first branch waveguide 1443 is two.
  • the first branch waveguide 1443 has an arc shape and includes a first arc segment 1444 and a second arc segment 1445.
  • the optical signal is transmitted through the first arc segment 1444 and the second arc segment 1445 in sequence.
  • the first arc segment The segment 1444 is bent in a direction away from the other first branch waveguide 1443 along the transmission direction of the second optical signal, and the second arc segment 1445 is bent in a direction close to the other first branch waveguide 1443 along the transmission direction of the second optical signal. Bend, so that the two first branch waveguides 1443 form an interlocking double arc structure, so that the two light output ports of the first branch waveguide 1443 have a certain distance.
  • a linear segment waveguide can also be added between the first arc segment 1444 and the second arc segment 1445 to increase the distance between two adjacent first branch waveguides 1443 to ensure the stability of the first branch waveguide 1443.
  • the back end can be cascaded with other optical branching elements 144 .
  • the cross-sectional area of at least part of the first arc segment 1444 increases smoothly along the transmission direction of the second optical signal.
  • the overall cross-sectional area of the first arc segment 1444 increases smoothly along the transmission direction of the second optical signal, and the portion where the first arc segment 1444 and the second transition waveguide 1441 are coupled and connected is the first arc segment 1444 .
  • the thinnest part of the shaped segment 1444 and the adjacent part of the first arc-shaped segment 1444 and the second arc-shaped segment 1445 are the thickest parts of the first arc-shaped segment 1444.
  • the cross-sectional area of at least part of the second arc segment 1445 decreases smoothly along the transmission direction of the second optical signal.
  • the overall cross-sectional area of the second arc segment 1445 decreases smoothly along the transmission direction of the second optical signal, and the adjacent portion of the second arc segment 1445 and the first arc segment 1444 is the second arc segment 1445.
  • the thickest part of the second arc-shaped segment 1445, and the rear light-emitting end 160 of the second arc-shaped segment 1445 is the thinnest part of the second arc-shaped segment 1445.
  • the first branch waveguide 1443 described in this embodiment has a thin-thick-thin structure.
  • the second optical signal When the second optical signal is transmitted through the curved waveguide in the first branch waveguide 1443, it will be emitted due to the reflection of the arc waveguide. A center shift occurs, and the center of the second optical signal shifts from the center of the first branch waveguide 1443, and as the number of reflections increases, the degree of shift becomes more obvious.
  • the first branch waveguide 1443 is arranged into a thin-thick-thin structure, which can reduce the number of reflections of the second optical signal in the first branch waveguide 1443. As the cross-sectional area of the first branch waveguide 1443 increases, increases, the center deviation degree of the second optical signal will be reduced accordingly, so as to improve the balance of light splitting when splitting at the rear end of the second light splitting waveguide 140 .
  • the optical branch waveguide 1442 further includes a second branch waveguide 1446 , and the second branch waveguide 1446 is located between the two first branch waveguides 1443 .
  • the second branch waveguide 1446 can be entirely linear, or the second branch waveguide 1446 can be linear in some sections that are coupled to the second transition waveguide 1441, and have arc-shaped waveguides or misaligned sections in the rear side.
  • Nonlinear waveguides such as waveguides.
  • At least part of the second splitting waveguide 1446 is linear, and the linear second splitting waveguide 1446 is located between the arc-shaped first splitting waveguides 1443, similar to the first splitting waveguide 130 and the second splitting waveguide 140, and can Effectively reduce the energy loss of the second optical signal during light splitting.
  • This application also provides a spectroscope chip, as shown in Figures 7 to 9, including the spectrometer 100 described in any of the above embodiments, the first spectroscopic waveguide 130 and the second spectroscopic waveguide 140 in the spectrometer 100 Coplanarly, the plurality of second splitting waveguides 140 are divided into two parts and located on both sides of the first splitting waveguide 130 .
  • the beam splitter chip also includes a substrate 150 .
  • the substrate 150 may be made of quartz material.
  • the incident light waveguide 110 , the first transition waveguide 120 and the branch waveguides are waveguide paths made in the substrate 150 through an etching process. Specifically, the cross-sections of the light-incident waveguide 110, the first transition waveguide 120 and the branch waveguides described in this embodiment are all square, and the light-incident waveguide 110, the first transition waveguide 120 and the branch waveguides are all located in the substrate 150.
  • the optical waveguide 110 forms a light entrance (not shown in the figure) on one side of the substrate 150, and the branch waveguide forms a plurality of light exit ends 160 on the other side of the substrate 150 (see FIG. 9).
  • the number N1 of the second splitting waveguides 140 is an even number, which can be 2, 4, 6 or 8, etc.
  • N1 is two, as shown in FIG. 8 , the two second splitting waveguides 140 are respectively the second splitting waveguides 140 .
  • the waveguide 140a and the second splitting waveguide 140b are respectively located on both sides of the first splitting waveguide 130.
  • the four second splitting waveguides 140 are respectively the second splitting waveguide 140a, the second splitting waveguide 140b, the second splitting waveguide 140c and the second splitting waveguide 140d.
  • the four second splitting waveguides 140 can be divided into two parts, the second splitting waveguide 140a and the second splitting waveguide 140c are located on one side of the first splitting waveguide 130, and the second splitting waveguide 140b and the second splitting waveguide 140d are located on the third side.
  • the first splitting waveguide 130 has the highest energy ratio, which can be about 60%; the second splitting waveguide 140a and the second splitting waveguide 140b have lower energy ratios, which can be about 12.5% respectively; the second splitting waveguides 140c and The energy proportion of the second splitting waveguide 140d is the lowest, which can be about 7.5%.
  • the energy proportion of the second spectroscopic waveguide 140 gradually decreases in the direction away from the first spectroscopic waveguide 130.
  • the second splitting waveguide 140 can be divided into two parts, and the first splitting waveguide 130 is located between the two equally divided parts of the second splitting waveguide 140 so that the first splitting waveguide 140 can be divided into two parts.
  • the splitting distance L1 of the splitting waveguide 130 at the splitting surface 121 is smaller than the splitting distance L2 of the second splitting waveguide 140 , which reduces the optical loss of the optical signal splitting at the splitting surface 121 .
  • This application also provides a communication device, as shown in Figure 22, which includes the optical splitter 100 described in any of the above embodiments, and also includes an optical line terminal 200.
  • the optical line terminal 200 passes the light incident on the trunk optical fiber 210 and the optical splitter 100.
  • the waveguide 110 is connected, and the optical line terminal 200 is used to input optical signals to the incident light waveguide 110 .
  • the optical line terminal 200 and the optical splitter 100 can be integrated into one device, and the optical signals are connected internally through the trunk optical fiber 210.
  • the multiple output ports of the optical splitter 100 are used to connect to the optical network unit 300 to realize the transmission and distribution of optical signals.
  • the present application also provides an optical distribution network, as shown in Figure 23, which includes the optical splitter 100 described in any of the above embodiments, an optical line terminal 200 and a plurality of optical network units 300.
  • the optical line terminal 200 passes through The backbone optical fiber 210 is coupled to the input light waveguide 110 of the optical splitter 100, and the optical line terminal 200 is used to input optical signals to the input light waveguide 110; a plurality of the optical network units 300 communicate with each other through the branch optical fiber 310.
  • the output ports of the optical splitter 100 are coupled one-to-one.
  • Optical splitter is a passive device for accessing FTTH. It is generally used by operators in the communication industry to branch broadband on the home broadband side. Specifically, optical splitters can be used in passive optical network (PON) systems, which usually include optical line terminals (optical Line Termination, OLT), optical distribution networks (optical distribution network, ODN) and optical network units (optical network). unit, ONU), ODN provides optical transmission physical channels between OLT and ONU.
  • PON passive optical network
  • the PON system in the embodiment of this application can be next-generation PON (NGPON), NG-PON1, NG-PON2, gigabit-capable PON (GPON), 10 gigabit per second PON ( 10 gigabit per second PON, XG-PON), symmetrical 10 gigabit passive optical network (10-gigabit-capablesymmetric passive optical network, 10 gigabit per second EPON, 10G-EPON), next-generation EPON (next-generation EPON, NG-EPON), wavelength-division multiplexing (WDM) PON, time-and wavelength-division stacking multiplexing (time-and wavelength-division multiplexing, TWDM) PON, point-to-point (P2P) WDM PON (P2P-WDM PON), asynchronous transfer mode PON (asynchronous transfer mode PON, APON), broadband PON (broadband PON, BPON), etc., and 25 gigabit per second PON (25 gigabit per second PON
  • OLT is the core component of the optical access network. It is usually located in the Central Office (CO) and can uniformly manage at least one ONU.
  • CO Central Office
  • the OLT is used to provide data and management for each connected ONU.
  • the OLT can be used to send optical signals to each ONU, receive information fed back by each ONU, and process the information or other data fed back by the ONU.
  • the ONU is used to receive data sent by the OLT, respond to the OLT's management commands, cache the user's Ethernet data, and send data in the upstream direction in the sending window allocated by the OLT, etc.
  • ODN generally includes optical distribution frame (ODF), optical cable splicing box (also called splitting and splicing closure (SSC)), and optical cable transfer box (also called fiber distribution terminal).
  • FDT optical distribution frame
  • FAT fiber access terminal
  • ATB access terminal box
  • FDT can include splitting A
  • FAT may include beam splitter B.
  • the optical signal from the OLT is sequentially split by the optical splitter A in the ODF, SSC, and FDT, the optical splitter B in the FAT, and then reaches the ONU via the ATB. That is, the optical signal from the OLT passes through the OLT and the ONU. transmitted to the ONU through the optical link.
  • optical splitter A will receive the optical signal The signal power is divided equally, and one branch is transmitted to the optical splitter B. Then the optical splitter B divides the received optical signal power into equal parts, and each branch is transmitted to the connected ONU respectively.
  • the output end of the last optical splitter in the ODN serves as the output port of the ODN, and the ONU is connected to the output port of the ODN.
  • Some of the multiple optical splitters 100 are primary optical splitters, and another part are secondary optical splitters.
  • the input port of the secondary optical splitter and a secondary optical splitter are The output port of the second-level optical splitter is connected, and the output port is the output port of the first optical splitting waveguide and/or the output port of the second optical splitting waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种分光器(100)、分光器芯片、通信设备和光分配网,涉及分光器(100)光能损耗技术领域,分光器(100)包括入光波导(110)和分光波导,入光波导(110)用于接收光信号;分光波导包括第一分光波导(130)和多个第二分光波导(140);第一分光波导(130)和第二分光波导(140)共面,多个第二分光波导(140)分成两部分并位于第一分光波导(130)的两侧,或者,多个第二分光波导(140)沿第一分光波导(130)的周向方向依次间隔排列;第一分光波导(130)包括和入光波导(110)相连接的第一连接段(131),第一连接段(131)呈直线状。能够将分光位置设在光信号的低能区域,有效降低分光器(100)中光能量的分支损耗。

Description

分光器、分光器芯片、通信设备和光分配网
本申请要求于2022年9月2日提交中国专利局、申请号为202211071396.X,发明名称为“分光器、分光器芯片、通信设备和光分配网”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及分光器光能损耗技术领域,特别涉及一种分光器、分光器芯片、通信设备和光分配网。
背景技术
在光通信领域,光分路器是分布式光网络(ODN)通信网络的关键器件,在室外预连网络场景,链路损耗较大,导致接入距离较短、网络冗余较少,其中主要原因是分光器损耗大导致,分光器损耗主要由波导损耗(设计、工艺)、光纤阵列(FA)与波导耦合损耗、连接器损耗构成,其中形成波导损耗的关键因素包括分支的分光损耗、波导弯曲损耗和传输损耗。
分支损耗原因主要为:光以基模形式在直波导中传输,在分支处,基模模场发生畸变(由一支分成多支),导致模场失配,造成分支损耗。弯曲损耗原因主要为:光在弯曲波导中传输,由于波导弯曲,光模场分布不像直波导能在直波导中心传输,而是能量偏心传输,导致在后续继续分支时,分光比发生变化,以致后续分支能量分配一致性较差。
分光器又分为等比分光和非等比分光,随着光纤到户(FTTH)需求量的持续增长,非等比分光占比逐年增加,降低非等比分光损耗需求逐渐增加。
发明内容
本申请提供一种分光器、分光器芯片、通信设备和光分配网,通过对分支波导的位置进行分布,将第一分光波导设置在第二分光波导之间,能够将能量分光的位置设置在光信号的低能量区域,减小光信号在分光时产生的损耗。
第一方面,本申请提供一种分光器,包括入光波导和分光波导,所述入光波导用于接收光信号;所述分光波导包括第一分光波导和多个第二分光波导;所述第一分光波导和所述第二分光波导共面,多个所述第二分光波导分成两部分并位于所述第一分光波导的两侧,或者,多个所述第二分光波导沿所述第一分光波导的周向方向依次间隔排列;所述第一分光波导包括和所述入光波导相连接的第一连接段,所述第一连接段呈直线状。本申请将第一分光波导设置在第二分光波导之间,能够有效的将分光线设置在光信号的低能区域,有效降低光能量的分支损耗,并且能够平衡不同光能量占比波导的尺寸,有利于分光器的制备;并且,第一分光波导位于多个第二分光波导之间,第一分光波导至少部分呈直线状,能够高效传输光信号,减小能量损耗。
一种可能的实现方式中,所述第一分光波导的横截面积大于所述第二分光波导的横截面积,以使得第一分光波导占比能量大,并且第一分光波导位于多个第二分光波导之间,第一分光波导和第二分光波导的分光线处于低能量区域,降低能量分支损耗。
一种可能的实现方式中,所述第二分光波导包括第二连接段和第二传输段,所述第二连接段位于所述第一过渡波导和所述第二传输段之间,光信号依次流经所述第二连接段和所述第二传输段;所述第二连接段和所述第二传输段均呈弧形,所述第二连接段沿光信号的传输方向朝远离所述第一分光波导的方向弯曲,所述第二传输段沿光信号的传输方向超靠近所述第一分光波导的方向弯曲。双弧形结构的第二分光波导,使得第二分光波导的出光端和第一分光波导的出光端具有一定的间距,便于和后端光纤连接,也便于级联光分支元件继续进行分光。
一种可能的实现方式中,所述第二连接段和所述第二传输段在邻接处相切,确保光信号在第二分光波导内传输时在光滑过渡的波导内进行传输,防止出现光能量损失。
一种可能的实现方式中,所述第二分光段还包括第三传输段,所述第三传输段位于所述第二连接段和所述第二传输段之间,所述第三传输段呈直线状,所述第三传输段和所述第二连接段在邻接处相切,所述第三传输段和所述第二传输段在邻接处相切。本实现方式通过设置直线段的第三传输段来增大第二分支波导和第一分支波导之间的间距,不会增大第二分光波导中弯曲部分的长度,防止 光信号因经过弯曲波导的路径较长而造成较大的能量损耗。
一种可能的实现方式中,所述第二连接段的至少部分区段横截面面积沿光信号的传输方向平滑增大,所述第二传输段的至少部分区段横截面面积沿光信号的传输方向平滑减小,形成细-粗-细结构的第二分光波导,能够有效减小光信号在弯曲波导内传输时出现的中心偏移,提高后端分光的均衡性。
一种可能的实现方式中,所述第二分光波导还包括光分支元件,所述第二传输段在出光端级联至少一个所述光分支元件,所述分光器中所有所述第二分光波导总计具有N2个波导输出端口,N2为大于等于4的偶数,通过在第二传输段的出光端级联光分支元件,使得所有第二分光波导具有N2个出光端口,并且每个出光端口的能量相同。
一种可能的实现方式中,所述光分支元件包括第二过渡波导和多个光分支波导,光信号进入所述第二过渡波导,并分成多个光信号,所述多个光信号一对一进入所述光分支波导,光信号从第二传输段进入第二过渡波导中,在第二过渡波导内进行分光并分别进入多个光分支波导内,将光信号分光呈多个均衡光信号。
一种可能的实现方式中,所述光分支波导包括第一分光支波导,所述第一分光支波导的数量为两个,所述第一分光支波导包括第一弧形段和第二弧形段,所述第一弧形段沿光信号传输方向朝远离另一条所述第一分光支波导的方向弯曲,所述第二弧形段沿光信号传输方向朝靠近另一条所述第一分光支波导的方向弯曲。双弧形结构的第一分光支波导,能够在第二传输段输出光信号时,将光信号分光并进入多个第一分光支波导内,多个第一分光支波导的出光端口具有一定的间距,便于和后端光纤连接。
一种可能的实现方式中,所述第一弧形段的至少部分区段横截面面积沿光信号的传输方向平滑增大,所述第二弧形段的至少部分区段横截面面积沿光信号的传输方向平滑减小。本实现方式通过将第一分光支波导设置成细-粗-细结构,有效的减小光信号在弯曲波导内传输时出现的中心偏移,提高后端分光的均衡性。
一种可能的实现方式中,所述光分支波导还包括第二分光支波导,所述第二分光支波导位于两个所述第一分光支波导之间,所述第二分光支波导连接所述第二过渡波导的部分区段呈直线状。本实现方式通过设置第二分光支波导,并且将第二分光支波导设置在第一分光支波导之间,有效的减小光信号在光分支元件内的分光损耗。
一种可能的实现方式中,所述分光器还包括第一过渡波导,所述第一过渡波导位于所述入光波导和所述分光波导之间,光信号由所述入光波导传输进入所述第一过渡波导,并在所述第一过渡波导内分成第一光信号和多路第二光信号,所述第一光信号进入所述第一分光波导,多路所述第二光信号一对一进入所述第二分光波导,所述第一光信号能量值大于各路所述第二光信号能量值。通过第一过渡波导来连接入光波导和分支波导,光信号在第一过渡波导中分成第一光信号和第二光信号,第一光信号能量占比大并进入第一分光波导,第二光信号能量占比小并进入第二分光波导。
一种可能的实现方式中,所述分光器还包括基板,所述第一分光波导和所述第二分光波导均位于所述基板内,所述第一分光波导和所述第二分光波导共面。通过在基板内形成第一分光波导和第二分光波导,并且第一分光波导位于第二分光波导之间,形成平面波导形式的不等比分光器,分光器的分支损耗低。
一种可能的实现方式中,所述第二分光波导的数量为偶数,多个所述第二分光波导平均分成两部分,两部分所述第二分光波导互呈镜像对称,所述第一分光波导包含入光端的至少部分区段和所述第二分光波导的镜像轴线相重合。本申请通过第二分光波导互呈镜像对称,并且第一分光波导包含入光端的至少部分区段和第二分光波导的镜像轴相重合,使得每个第二分光波导的能量占比相同。
一种可能的实现方式中,多个所述第二分光波导沿所述第一分光波导的周向方向依次等距间隔排列,所述第二分光波导的中心轴线和所述第一分光波导包含入光端的至少部分区段相重合。本实现方式所述的分光器为熔融拉锥形波导分光器,第一分光波导位于多个第二分光波导之间,第一分光波导位于分光面的能量中心处,分光位置位于低能量区域,减少光信号在分光时的损耗;以及,通过第二分光波导等距间隔排列,并且第一分光波导包含入光端的至少部分区段和第二分光波导的中心轴线相重合,使得每个第二分光波导的能量占比相同。
第二方面,本申请提供一种分光器芯片,包括上述任一项所述的分光器,其中分光器的第一分光波导和第二分光波导共面,多个所述第二分光波导分成两部分并位于所述第一分光波导的两侧。分光器 芯片还包括基板,第一分光波导和第二分光波导共面并位于基板内,形成板状的分光器芯片。
第三方面,本申请提供一种通信设备,包括上述任一项所述的分光器,还包括光线路终端,所述光线路终端通过主干光纤和所述分光器的入光波导连接,所述光线路终端用于向所述入光波导输入光信号。
第四方面,本申请提供一种光分配网,包括上述任一项所述的分光器,还包括光线路终端和多个光网络单元,所述光线路终端通过主干光纤和所述分光器的入光波导连接,所述光线路终端用于向所述入光波导输入光信号;多个所述光网络单元通过分支光纤和所述分光器的输出端口一对一连接。本申请所述的光分配网,分光器将第一分光波导设置在第二分光波导之间,能够有效的将分光线设置在光信号的低能区域,有效降低光能量的分支损耗,提高光分配网的光传输效率,提高光信号质量。
一种可能的实现方式中,所述分光器多个,多个所述分光器中的部分为一级分光器,另一部分为二级分光器,所述二级分光器的输入端口和所述一级分光器的输出端口连接,所述输出端口为所述第一分光波导的输出端口和/或所述第二分光波导的输出端口。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请实施方式提供的分光器结构示意图;
图2是本申请实施方式提供的分光器在分光面的光分布示意图;
图3是本申请实施方式提供的分光器在分光面的光分布示意图;
图4是本申请实施方式提供的光信号在分光前和分光后的模场示意图;
图5是本申请实施方式提到的第一分光波导位于第二分光波导一侧的不等比分光器示意图;
图6是图5所示的分光器在分光面的光分布示意图;
图7是本申请实施方式提供的平面波导形式分光器示意图;
图8是本申请实施方式提供的平面波导形式分光器内部波导示意图;
图9是图7中的Ⅰ处放大图;
图10是本申请实施方式提供的1*5不等比分光器示意图;
图11是本申请实施方式提供的熔融拉锥形式分光器示意图;
图12是本申请实施方式提供的熔融拉锥形式分光器在分光面的光分布示意图;
图13是本申请实施方式提供的1*4不等比分光器示意图;
图14是本申请实施方式提供的第二分光波导的结构示意图;
图15是本申请实施方式提供的第二分光波导的结构示意图;
图16是本申请实施方式提供的第二分光波导细-粗-细结构示意图;
图17是图16中的Ⅱ处放大图;
图18是本申请实施方式提供的第二分光波导在细-粗-细结构下和横截面均衡结构下的光场能量传输示意图;
图19是本申请实施方式提供的1*9不等比分光器示意图;
图20是本申请实施方式提供的1*2光分支元件结构示意图;
图21是本申请实施方式提供的1*3光分支元件结构示意图;
图22是本申请实施方式提供的通讯设备示意图;
图23是本申请实施方式提供的光分配网结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
为方便理解,下面先对本申请实施例所涉及的英文简写和有关技术术语进行解释和描述。
PON:是一种典型的无源光纤网络,在光配线网中不含有电子电源以及电子元器件,光分配网(ODN)全部由光分路器(Splitter)等无源器件组成,不需要贵重的有源电子设备。一个无源光网络包括一个安装于中心控制站的光线路终端(OLT),以及一批配套的安装于用户场所的光网络单元(ONUs)。
FTTH:指的是光纤到户(Fibre(Fiber)To The Home,FTTH),是一种光纤通信的传输方法。具体说,FTTH是指将光网络单元(ONU)安装在住家用户或企业用户处,是光接入系列中除FTTD(光纤到桌面)外最靠近用户的光接入网应用类型。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的相同的字段,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的两个器件耦合可以理解为两个器件接触连接,或者,该两个器件耦合也可以理解为两个器件非接触连接,本申请并未直接限定。本文中使用的术语“连接”,可以理解为直接接触连接,也可理解为间接连接。以下,省略对相同或相似部分的说明。
本申请实施例所述的分光器是一种无源器件,又称光分路器,分光器在工作时不需要电源供电,只要有输入光即可实现分光。分光器由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。
本申请提供一种分光器100,参阅图1所示,包括入光波导110、第一过渡波导120和分光波导,其中,分光器可以为熔融拉锥形式,也可以为平面波导形式,本实施方式以平面波导形式的分光器为例。
平面波导形式的分光器中,入光波导110和分光波导处于同一平面上。具体地,入光波导110用于接收光信号,并将光信号输入至第一过渡波导120中,第一过渡波导120的出光侧耦合连接分光波导,分光波导有多个,以将入光波导110输入的光信号分成多个。光信号主要以基模的形式在波导中传输,在分支处,基模模场发生畸变,由一支光信号分成多支光信号,导致模场失配,造成分支损耗,并且,分支越多,损耗越大,每次1:2的分光可产生3.5dB左右的损耗。
其中,参阅图1所示,本实施方式所述的分光波导包括第一分光波导130和第二分光波导140,第二分光波导140的数量有多个,本实施方式以两个为例。
具体地,入光波导110输入的光信号在第一过渡波导120内分成一路第一光信号和两路第二光信号,一路第一光信号进入第一分光波导130,两路第二光信号分别进入和两个第二分光波导140。第一分光波导130位于两个第二分光波导140之间,两个第二分光波导140位于第一分光波导130的两侧。
参阅图1和图13所示,第一分光波导130包括第一连接段131和第一传输段132,其中,第一连接段131和第一过渡波导120耦合链接,第一连接段131呈直线状。第一光信号穿过第一连接段131后进入第一传输段132,第一传输段132包括一个1*2式分光支波导,1*2式分光支波导呈双弧形结构,以在将第一光信号分为两路光信号后,第一传输段132的出光端口输出的光信号和第一连接段131内光信号的传输方向相平行。其中,以第一分光波导130占比70%光能量,第二分光波导140占比30%光能量为例,本实施方式所述的非等比分光器输出的光能量占比从上至下依次为15%、30%、30%和15%。
具体的,本实施方式中,第一分光波导130整体呈非直线状,第一分光波导130仅存在和第一过渡波导120耦合连接的第一连接段131呈直线状,第一连接段131和第二分光波导140的中心轴线相重合。
参阅图2和图4所示,图2为光信号在分光面121中的分光示意图,图4为光信号在分光前和分光后的模场示意图。光信号主要以基模的形式在波导中传输,呈现出中间向周围外侧能量逐渐减小的分布方式,图2中颜色越深,对应的光能量越强。对于非等比分光器,第一分光波导130中的第一光信号能量和第二分光波导140的第二光信号能量不同,以使得分光器在最后输出的光能量不等同。
本实施方式中,参阅图2所示,第一分光波导130的分光距L1小于所有第二分光波导140的分光距L2,也就是分光距L1小于两个分光距L2中的最小值,其中,分光距为第一过渡波导120内能量的中心和分光波导内能量的中心之间的距离。本实施方式中的第一分光波导130的能量中心和第一过渡波导120的能量中心相重合,因此第一分光波导130的分光距L1为0,在图2中未示出。第二分光波导140的分光距为L2,分光距L2的数值大于分光距L1的数值。当分光面121的中心和第一过渡波导120内的能量中心相重合时,分光距也可通过测定分光波导的中心轴线和分光面121的中心之间的间距来确定。
当分光面121内光信号能量的中心和分光面121的中心具有一定的偏差时,参阅图3所示,分光面121内光信号能量的中心相比于分光面121的中心向右侧出现一定的偏移,此时,第一分光波导130的分光距L1小于第二分光波导140的分光距L2。
本申请所述的分光面121是一路光信号分为多路光信号所在的平面,在分光面121朝向入光波导110的 一侧为入光光信号,此时光信号并未发生分光,也不具有光损耗;在分光面121朝向分光波导的一侧为分光光信号,此时光信号分成三路并分别进入三路分光波导中,分光后的光信号总能量相比于分光前的光信号出现光能损耗,光损耗的发生位置主要在分光面121的分支结构上。
本实施方式中,第一分光波导130的光能量占比大于各路第二分光波导140的光能量占比,各路第二分光波导140指的是每一路第二分光波导140,第一分光波导130的光能量占比大于所有第二分光波导140中任意一路的光能量占比。其中,第一分光波导130以70%能量为例,一个第二分光波导140以15%能量为例,一个第一分光波导130和两个第二分光波导140的能量总和约为100%(实际中出现能量损耗,能量总和小于100%)。本实施方式通过将具有高能量占比的第一分光波导130设置在两个低能量占比的第二分光波导140之间,结合图2所示,其中一个分光线122(光信号在分光线122处分为两路光信号)位于分光面121的靠左部分区域,该分光线122左侧部分的光能量占比在15%左右,左半部分的分光线122处于光信号的低能量区域,在此处进行分光时的分支损耗也对应较低。同样地,另一个分光线122位于分光面121的靠右部分区域,该分光线122右侧部分的光能量占比在15%左右,分光线122处于光信号的低能量区域,在此处进行分光时的分支损耗也对应较低。并且,第一分光波导130位于多个第二分光波导140之间,第一分光波导130和入光波导110相连接的第一连接段131为直线段,能够高效传输光信号,减少光信号传输时的能量损耗,与减少分支损耗相呼应,协同减少分光器的整体能量损耗。
需要说明的是,当图2中第一分光波导130的能量占比为70%,第二分光波导140的能量占比为15%时,由于分光器100中第二分光波导140多为弧形,第一分光波导130多为直线形,弧形波导和直线形波导的光传输效率不同,能量损耗不同。考虑到不同的传输环境造成的偏差,为了达到目标预定的输出能量占比,在分光面121分光时,直接进入各个分支波导的能量占比会设置一定的偏差,图2中的中间部分光能量在70%左右,图2中的左右两部分光能量在15%左右,来平衡不同形状的波导产生的能量损耗。
参阅图5和图6所示,图5所示的分光器中第一分光波导130位于两个第二分光波导140的一侧,其中一个第二分光波导140位于另一个第二分光波导140和第一分光波导130之间;图6为图5所示的分光波导分布方式下分光面121的光能量分布图。同样地,图5所示的分布方式下,第一分光波导130以70%能量占比为例,一个第二分光波导140以15%能量占比为例。参阅图6所示,此分布方式下,右侧的分光线122和图2中所示的右侧分光线122位置相近,右侧分光线122的右侧光能量占比在15%左右。然而,图6中的左侧分光线122和右侧分光线122之间的光能量占比在15%左右,使得左侧分光线122处于光信号能量较高的区域,在此处进行分光时的分支损耗较高。由此可见,本申请将第一分光波导130设置在两个第二分光波导140之间,能够有效的将分光线122设置在光信号的低能区域,有效降低光能量的分支损耗。
并且,本实施方式所述的分光器100,参阅图2和图4所示,由于光信号中心能量高,外侧能量低,并且光信号的中心能量占比较大,在第一分光波导130占比70%能量,一个第二分光波导140占比15%能量时,左右两个分光线122分别处于分光面121的三分之一左右的位置,在此情况下,第一分光波导130和第二分光波导140具有大致相等的横截面积,不会导致第二分光波导140在分光区域的横截面过小,分光器100的制备更加方便。而图5和图6中所示的分光器,第一分光波导130和第二分光波导140的横截面尺寸相差较大,中间位置的第二分光波导140尺寸较小,不易于分光器100的制备。
表1.第一分光波导和两个第二分光波导构成的非等比分光器能量表
参阅表1所示,本实施方式所述的不等比分光器,经试验测定,第一分光波导130的能量占比为69%,插损为1.61dB;两路第二分光波导140中的一路第二分光波导140a的能量占比为13.7%,插损为8.63dB;另一路第二分光波导140b的能量占比为13.7%,插损为8.63dB。第一分光波导130和两个第二分光波导140的 能量总占比达到输入光信号的96.4%,损失约3.6%的能量,总损耗为0.159dB,光能损耗较低。
一种可能的实施方式中,参阅图7至图9所示,本实施方式中的分光器以平面波导分光器为例,分光器还包括基板150,基板150可以为石英材料制成。
入光波导110、第一过渡波导120和分支波导为基板150内通过蚀刻工艺制成的波导通路。具体地,本实施方式所述的入光波导110、第一过渡波导120和分支波导的横截面均为四方形,入光波导110、第一过渡波导120和分支波导均位于基板150内,入光波导110在基板150的一侧形成入光口(图中未示出),分支波导在基板150的另一侧形成多个出光端160(参阅图9)。
其中,第二分光波导140的数量N1为偶数,可以为2、4、6或8等等,当N1为两个时,参阅图8所示,两个第二分光波导140分别为第二分光波导140a和第二分光波导140b,第二分光波导140a和第二分光波导140b分别位于第一分光波导130的两侧。
当N1为4个时,参阅图10所示,4个第二分光波导140分别为第二分光波导140a、第二分光波导140b、第二分光波导140c和第二分光波导140d。其中,4个第二分光波导140可以均为成两部分,第二分光波导140a和第二分光波导140c位于第一分光波导130的一侧,第二分光波导140b和第二分光波导140d位于第一分光波导130的另一侧。具体地,第一分光波导130的能量占比最高,可以为60%左右;第二分光波导140a和第二分光波导140b的能量占比较低,分别可以为12.5%左右;第二分光波导140c和第二分光波导140d的能量占比最低,分别可以为7.5%左右。在第一分光波导130两侧的第二分光波导140,沿着远离第一分光波导130的方向,第二分光波导140的能量占比逐渐降低。
诸如上述所述,当N1为8或10等偶数时,第二分光波导140可均分成两个部分,第一分光波导130位于均分的两部分第二分光波导140之间,以使得第一分光波导130在分光面121处的分光距L1小于第二分光波导140的分光距L2,降低光信号在分光面121处进行分光的光损耗。
一种可能的实施方式中,参阅图8和图10所示的分光器,N1个第二分光波导140平均分成两部分,两部分第二分光波导140互呈镜像对称。其中,第一分光波导130可以为直线波导,或者第一分光波导130在耦合连接第一过渡波导120的一段为直线波导,第一分光波导130的直线段波导和N1个第二分光波导140的镜像轴线相重合。
如图13所示的1*3分光器,两个第二分光波导140分别为第二分光波导140a和第二分光波导140b,第二分光波导140a和第二分光波导140b分别位于第一分光波导130的两侧,第一分光波导130为直线波导,第二分光波导140a和第二分光波导140b以第一分光波导130所在直线为镜像轴呈镜像对称。对于互呈镜像的两个第二分光波导140而言,输入的光信号进入两个第二分光波导140的能量占比相同,光信号在两个第二分光波导140的传输状况相同,在第二分光波导140中出现传输损耗相同,以使得两个第二分光波导140输出的光信号能量相同,构成1*3式(输出能量占比可以依次为15%、70%和15%)不等比分光器。
如图10所示的1*5分光器,第二分光波导140a和第二分光波导140c位于第一分光波导130的一侧,第二分光波导140b和第二分光波导140d位于第一分光波导130的另一侧,第一分光波导130为直线波导。其中,第二分光波导140a和第二分光波导140b以第一分光波导130所在直线为镜像轴呈镜像对称,光信号在第二分光波导140a和第二分光波导140b中的传输状况相同;第二分光波导140c和第二分光波导140d以第一分光波导130所在直线为镜像轴呈镜像对称,光信号在第二分光波导140c和第二分光波导140d中的传输状况相同。图10所述的分光器构成1*5式(输出能量占比可以依次为7.5%、12.5%、60%、12.5%和7.5%)不等比分光器。
一种可能的实施方式中,本实施方式所述的分光器可以为熔融拉锥形分光器,参阅图11所示,第一分光波导130为一个,并且第一分光波导130可以为直线状。具体地,当分光器为熔融拉锥形分光器时,入光波导110、第一过渡波导120、第一分光波导130和第二分光波导140的横截面均可以为圆形,第二分光波导140有多个,多个第二分光波导140沿第一分光波导130的周向方向依次间隔排列。本实施方式中,第二分光波导140的数量以6个为例。
参阅图12所示,对于熔融拉锥形的分光器,光能量多以基模形式传输,呈现中心能量高,外侧能量低的光能分布。本实施方式将第一分光波导130设置在分支波导的中心,第一分光波导130的能量占比高于第二分光波导140的能量占比。
其中,第一分光波导130的数量为1个,第二分光波导140的数量可以为3、4或5个等,本实施方式以6个第二分光波导140为例,第一分光波导130的能量占比可以为70%,每个第二分光波导140的能量占比可以为5%,形成1*7不等比分光。
具体地,参阅图12所示,第一分光波导130的中轴线和分光面121的中心相重合,第一分光波导130的 分光距L1为0,第一分光波导130的分光距L1在图中未示出。第二分光波导140的分光距L2大于第一分光波导130的分光距L1,第一分光波导130更靠近于光信号的中心,第一分光波导130和第二分光波导140在光信号的边缘低能量区域进行分光,分光损耗更低。
一种可能的实施方式中,参阅图11所示,多个所述第二分光波导140沿第一分光波导130的周向方向依次等距间隔排列,本实施方式以1个第一分光波导130和6个第二分光波导140为例,第一分光波导130呈直线状,6个第二分光波导140以第一分光波导130所在直线呈中心对称结构。
6个第二分光波导140以第一分光波导130所在直线呈中心对称结构,以使得光信号在分光后进入每一个第二分光波导140的传输状况相同,第二分光波导140分配的能量占比相同,第二分光波导140输出的能量也相同。
一种可能的实施方式中,参阅图14所示,第二分光波导140包括第二连接段141和第二传输段142,第二连接段141位于第一过渡波导120和第二传输段142之间,其中,第二连接段141和第一过渡波导120耦合连接,第二连接段141和第二传输段142可以为一个整体波导的两个部分,也可以为两个相连接的两个波导。
第二光信号依次流经第二连接段141和第二传输段142。具体地,第二连接段141和第二传输段142均呈弧形,第二连接段141沿第二光信号的传输方向朝远离第一分光波导130的方向弯曲,第二传输段142沿第二光信号的传输方向超靠近第一分光波导130的方向弯曲。
具体地,第二连接段141和第二传输段142在邻接处相切,以使得第二光信号穿过第二连接段141和第二传输段142时能够在平滑过渡的波导内壁面进行全反射,防止在邻接区出现能量损耗。
参阅图1和图14所示,在光信号分成3路后,分别进入第一分光波导130和两个第二分光波导140。具体地,第一分光波导130和第二分光波导140的横截面面积较小,多在微米级范围内。
并且,在第一分光波导130和第二分光波导140后需要通过对应接口连接光纤,以将光信号向后端设备传输,接口的尺寸多在毫米范围内,因此需要第一分光波导130和第二分光波导140的出光端160具有较大的间距,第二分光波导140需要进行一定的弯曲来实现第一分光波导130和第二分光波导140相隔一定的距离。
以及,为了确保光信号在波导结构中以全反射的方式进行传输,防止光信号出现折射而造成能量的损失,波导的弯曲半径不宜过小,波导的弯曲程度不宜过大。
另外,本实施方式所述的第二分光波导140呈双弧形结构,在向远离第一分光波导130一侧弯曲后,后侧部分的第二分光波导140向靠近第一分光波导130的方向弯曲,确保第二分光波导140的出光方向和第一分光波导130的出光方向一致,出光侧连接的光纤相互平行,有效控制分光器的尺寸,确保分光器结构的合理性。
具体地,参阅图14所示,第二传输段142包含出光端160,出光端160的出光方向和第一连接段131相平行,以使得第二分光波导140在向第一分光波导130两侧偏移后,不会改变光信号的传输方向。其中,出光端160为第二传输段142远离第二连接段141的一端。
一种可能的实施方式中,参阅图15所示,本实施方式所述的第二分光波导140还包括第三传输段143,第三传输段143位于第二连接段141和第二传输段142之间,第三传输段143为直线段,并且第三传输段143和第二连接段141的连接处相切,第三传输段143和第二传输段142的连接处相切。其中,第二连接段141、第二传输段142和第三传输段143可以为一个整体波导的三个部分,也可以为三个依次相连接的三个波导。
参阅图19所示,当分光器为1*9式非等比分光器时,第二分光波导140后端级联多个光分支波导,此时为了后端级联的多个分支波导具有足够的空间弯曲,并且多个光信号出光端之间具有一定的间距,第一分光波导130和第二分光波导140之间需要保持较大的间距。
本实施方式所述的分光器,能够在第二分光波导140的后端级联多个光分支波导时,确保第二分光波导140和第一分光波导130之间具有较大的间距。并且,相比于增大第二连接段141和第二传输段142的长度而言,本实施方式通过设置直线段的第三传输段143来增大第二分光波导140和第一分光波导130之间的间距,不会增大第二分光波导140中弯曲部分的长度,防止光信号因经过弯曲波导的路径较长而造成较大的能量损耗。
一种可能的实施方式中,参阅图16和图17所示,第二分光波导140包括第二连接段141和第二传输段142,第二连接段141位于第一过渡波导120和第二传输段142之间,其中,第二连接段141和第一过渡波导120耦合连接,第二连接段141和第二传输段142可以为一个整体波导的两个部分,也可以为 两个相连接的两个波导。
第二光信号依次流经过第一过渡波导120、第二连接段141和第二传输段142。具体地,第二连接段141和第二传输段142均呈弧形,第二连接段141沿第二光信号的传输方向朝远离第一分光波导130的方向弯曲,第二传输段142沿第二光信号的传输方向超靠近第一分光波导130的方向弯曲。
具体地,参阅图17所示,第二连接段141的至少部分区段横截面面积沿第二光信号的传输方向平滑增大。本实施方式中,第二连接段141的整体区段横截面面积沿第二光信号的传输方向平滑增大,第二连接段141和第一过渡波导120耦合连接的部分是第二连接段141最细的部分,第二连接段141和第二传输段142相邻接的部分是第二连接段141最粗的部分。
参阅图17所示,第二传输段142的至少部分区段横截面面积沿第二光信号的传输方向平滑减小。本实施方式中,第二传输段142的整体区段横截面面积沿第二光信号的传输方向平滑减小,第二传输段142和第二连接段141耦合连接的部分是第二传输段142最粗的部分,第二传输段142的后端出光端160是第二传输段142最细的部分。
需要说明的是,本申请所述的平滑增大与平滑减小,指的是增大和减小的过程中,波导的内壁面始终是平滑过渡,不出现阶梯式或断开式的增大与减小,第二连接段141和第二传输段142的内壁面是平滑的曲面。
表2.采用细-粗-细结构的1*9不等比分光器的能量分布表
本实施方式所述的第二分光波导140呈现出细-粗-细的结构,当第二光信号在第二分光波导140内的弯曲波导传输时,会因为弧形波导的反射作用而出现中心偏移,第二光信号的能量中心偏移第二分光波导140的中心。本实施方式将第二分光波导140设置成细-粗-细的结构,随着第二分光波导140横截面面积的增大,第二光信号的中心偏移程度会相应降低,以在第二分光波导140的后端进行分光时提高分光的均衡性。
参阅表2所示,对于1*9不等比分光器而言,其弯曲形第二分光波导140采用本实施方式所述的细-粗-细结构时,8个等比分光波导输出光能量的最大能量差小于0.25dB(出光端口的插损为14.98dB,出光端口的插损为14.68dB,计算两个数据的差值得到最大能量偏差为0.25db),分光器的出光均衡性较好。
参阅图18所示,对于1*5不等比分光器而言,其弯曲形第二分光波导140采用本实施方式所述的采用细-粗-细结构时,相比于弯曲形第二分光波导140的横截面面积相一致的分光器,4个等比分光波导输出光能量均衡性大幅提升,能够在第二分光波导140的后端进行分光时有效提高分光的均衡性。其中,细-粗-细结构的分光器如图18的(a)所示,横截面面积相一致的分光器如图18的(b)所示。
一种可能的实施方式中,参阅图19所示,本实施方式所述的第二分光波导140还包括光分支元件 144,第二传输段142在出光端级联至少一个光分支元件144。
具体地,分光器在第二分光波导140的后端可级联多级光分支元件144,光分支元件144可以为1*2光分支元件,也可以为1*3、1*4或1*5等光分支元件,具体以分光器的分光比确定。最终形成的分光器中所有的第二分光波导140具有N2个第二波导输出端口162,其中N2为对于等于4的偶数。
具体地,本实施方式在每个第二分光波导140的第二传输段142出光端级联一级光分支元件144,并在光分支元件144的两个分支后端再级联两个光分支元件144,形成如图19所示的1*9不等比分光波导。其中,第一分光波导130具有1个第一波导输出端口161,第二分光波导140具有8个第二波导输出端口162,第一波导输出端口161端出的光能量和第二波导输出端口162输出的光能量不同,8个第二波导输出端口162输出的光能量近乎相同。
具体地,参阅图20所示,本实施方式所述的光分支元件144可包括第二过渡波导1441和多个光分支波导1442,光分支波导1442的数量可以为2、3或4个等,本实施方式以2个光分支波导1442为例。第二传输段142输出的第二光信号进入第二过渡波导1441,并在第二过渡波导1441内分成多个光信号,多个光信号一对一进入光分支波导1442。
与第二连接段141和第二传输段142结构相似,本实施方式中的光分支波导1442包括第一分光支波导1443,第一分光支波导1443的数量为两个。第一分光支波导1443呈弧形形状,包括第一弧形段1444和第二弧形段1445,光信号依次经过第一弧形段1444和第二弧形段1445进行传输,第一弧形段1444沿第二光信号的传输方向朝远离另一条第一分光支波导1443的方向弯曲,第二弧形段1445沿第二光信号的传输方向朝靠近另一条第一分光支波导1443的方向弯曲,使得两条第一分光支波导1443形成相扣的双弧形结构,便于第一分光支波导1443的两个出光端口具有一定的间距。
具体地,第一弧形段1444和第二弧形段1445之间也可添加直线段波导,来增大相邻两条第一分光支波导1443的间距,以确保第一分光支波导1443的后端能够级联其他的光分支元件144。
一种可能的实施方式中,参阅图20所示,第一弧形段1444的至少部分区段横截面面积沿第二光信号的传输方向平滑增大。本实施方式中,第一弧形段1444的整体区段横截面面积沿第二光信号的传输方向平滑增大,第一弧形段1444和第二过渡波导1441耦合连接的部分是第一弧形段1444最细的部分,第一弧形段1444和第二弧形段1445相邻接的部分是第一弧形段1444最粗的部分。
第二弧形段1445的至少部分区段横截面面积沿第二光信号的传输方向平滑减小。本实施方式中,第二弧形段1445的整体区段横截面面积沿第二光信号的传输方向平滑减小,第二弧形段1445和第一弧形段1444相邻接的部分是第二弧形段1445最粗的部分,第二弧形段1445的后端出光端160是第二弧形段1445最细的部分。
本实施方式所述的第一分光支波导1443呈现出细-粗-细的结构,当第二光信号在第一分光支波导1443内的弯曲波导传输时,会因为弧形波导的反射作用而出现中心偏移,第二光信号的中心偏移第一分光支波导1443的中心,并且随着反射次数的增加,偏移程度越明显。本实施方式将第一分光支波导1443设置成细-粗-细的结构,能够减少第二光信号在第一分光支波导1443内的反射次数,随着第一分光支波导1443横截面面积的增大,第二光信号的中心偏移程度会相应降低,以在第二分光波导140的后端进行分光时提高分光的均衡性。
一种可能的实施方式中,参阅图21所示,光分支波导1442还包括第二分光支波导1446,第二分光支波导1446位于两个第一分光支波导1443之间。
其中,第二分光支波导1446可以整条呈直线状,或者第二分光支波导1446在耦合连接第二过渡波导1441的部分区段呈直线状,而在后侧部分段呈弧形波导或错位波导等非线形波导。
至少部分第二分光支波导1446呈直线状,并且直线状的第二分光支波导1446位于弧形的第一分光支波导1443之间,与第一分光波导130和第二分光波导140相似,能够有效的降低第二光信号在分光时的能量损耗。
本申请还提供一种分光器芯片,参阅图7至图9所示,包括上述任一实施方式所述的分光器100,所述分光器100中的第一分光波导130和第二分光波导140共面,多个第二分光波导140分成两部分并位于所述第一分光波导130的两侧。分光器芯片还包括基板150。基板150可以为石英材料制成。
入光波导110、第一过渡波导120和分支波导为基板150内通过蚀刻工艺制成的波导通路。具体地,本实施方式所述的入光波导110、第一过渡波导120和分支波导的横截面均为四方形,入光波导110、第一过渡波导120和分支波导均位于基板150内,入光波导110在基板150的一侧形成入光口(图中未示出),分支波导在基板150的另一侧形成多个出光端160(参阅图9)。
其中,第二分光波导140的数量N1为偶数,可以为2、4、6或8等等,当N1为两个时,参阅图8所示,两个第二分光波导140分别为第二分光波导140a和第二分光波导140b,第二分光波导140a和第二分光波导140b分别位于第一分光波导130的两侧。
当N1为4个时,参阅图10所示,4个第二分光波导140分别为第二分光波导140a、第二分光波导140b、第二分光波导140c和第二分光波导140d。其中,4个第二分光波导140可以均为成两部分,第二分光波导140a和第二分光波导140c位于第一分光波导130的一侧,第二分光波导140b和第二分光波导140d位于第一分光波导130的另一侧。具体地,第一分光波导130的能量占比最高,可以为60%左右;第二分光波导140a和第二分光波导140b的能量占比较低,分别可以为12.5%左右;第二分光波导140c和第二分光波导140d的能量占比最低,分别可以为7.5%左右。在第一分光波导130两侧的第二分光波导140,沿着远离第一分光波导130的方向,第二分光波导140的能量占比逐渐降低。
诸如上述所述,当N1为8或10等偶数时,第二分光波导140可均分成两个部分,第一分光波导130位于均分的两部分第二分光波导140之间,以使得第一分光波导130在分光面121处的分光距L1小于第二分光波导140的分光距L2,降低光信号在分光面121处进行分光的光损耗。
本申请还提供一种通讯设备,参阅图22所示,包括上述任一实施方式所述的分光器100,还包括光线路终端200,光线路终端200通过主干光纤210和分光器100的入光波导110连接,光线路终端200用于向入光波导110输入光信号。
光线路终端200和分光器100可集成在一个设备中,内部通过主干光纤210实现光信号的连接,分光器100的多个输出端口用于连接光网络单元300,实现光信号的传输和分配。
本申请还提供一种光分配网,参阅图23所示,包括上述任一实施方式所述的分光器100,还包括光线路终端200和多个光网络单元300,所述光线路终端200通过主干光纤210和所述分光器100的入光波导110耦合连接,所述光线路终端200用于向所述入光波导110输入光信号;多个所述光网络单元300通过分支光纤310和所述分光器100的输出端口一对一耦合连接。
分光器是接入FTTH方式的一种无源设备,一般使用于通信行业的运营商在家庭宽带侧进行宽带分支。具体地,分光器可应用在无源光网络(passive optical network,PON)系统中,通常包括光线路终端(optical Line Termination,OLT)、光分布网络(optical distributionnetwork,ODN)和光网络单元(optical network unit,ONU),ODN为OLT和ONU之间提供光传输物理通道。本申请实施例中的PON系统可以为下一代PON(next-generation PON,NGPON)、NG-PON1、NG-PON2、千兆比特PON(gigabit-capable PON,GPON)、10吉比特每秒PON(10gigabit per second PON,XG-PON)、对称10吉比特无源光网络(10-gigabit-capablesymmetric passive optical network,XGS-PON)、以太网PON(Ethernet PON,EPON)、10吉比特每秒EPON(10gigabit per second EPON,10G-EPON)、下一代EPON(next-generationEPON,NG-EPON)、波分复用(wavelength-division multiplexing,WDM)PON、时分波分堆叠复用(time-and wavelength-division multiplexing,TWDM)PON、点对点(point-to-point,P2P)WDM PON(P2P-WDM PON)、异步传输模式PON(asynchronous transfer modePON,APON)、宽带PON(broadband PON,BPON),等等,以及25吉比特每秒PON(25gigabit persecond PON,25G-PON)、50吉比特每秒PON(50gigabit per second PON,50G-PON)、100吉比特每秒PON(100gigabit per second PON,100G-PON)、25吉比特每秒EPON(25gigabit persecond EPON,25G-EPON)、50吉比特每秒EPON(50gigabit per second EPON,50G-EPON)、100吉比特每秒EPON(100gigabit per second EPON,100G-EPON),以及ITU规定的其他各种PON系统、或者IEEE规定的其他各种PON系统等。
在该PON系统中,从OLT到ONU的方向定义为下行方向,而从ONU到OLT的方向定义为上行方向。OLT是光接入网的核心部件,通常位于中心局(Central Office,CO),可以统一管理至少一个ONU,OLT用于为接入的各个ONU提供数据以及提供管理等等。OLT可以用于向各个ONU发送光信号,并接收各个ONU反馈的信息,以及对ONU反馈的信息或其他数据等进行处理。ONU用于接收OLT发送的数据,响应OLT的管理命令、对用户的以太网数据进行缓存,并在OLT分配的发送窗口中向上行方向发送数据等等。
ODN一般包括光配线架(Optical Distribution Frame,ODF)、光缆接头盒(也称作分光熔接盒(splitting and splicing closure,SSC))、光缆交接箱(也称作光纤分配终端(fiber distribution terminal,FDT))、光纤分纤箱(也称作光纤接入终端(fiber accessterminal,FAT))、光纤终端盒(也称作接入终端盒(access terminal box,ATB))等,其中FDT可以包括分光器A,FAT可以包括分光器B。从OLT出来的光信号依次经由ODF、SSC、FDT中的分光器A进行分光、FAT中的分光器B进行分光、以及经由ATB后到达ONU,即从OLT出来的光信号经由OLT与该ONU之间的光链路传输至ONU。其中,分光器A将接收到的光信 号功率等分,其中一个支路传输至分光器B,然后分光器B再将接收到的光信号功率等分,各个支路分别传输至所连接的ONU。其中,ODN中最后一级分光器的输出端作为ODN的输出端口,ONU连接至ODN的输出端口。
一种可能的实施方式中,光分配网中的分光器100多个,多个分光器100中的部分为一级分光器,另一部分为二级分光器,二级分光器的输入端口和一级分光器的输出端口连接,输出端口为第一分光波导的输出端口和/或第二分光波导的输出端口。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种分光器,其特征在于,包括入光波导和分光波导,所述入光波导用于接收光信号;
    所述分光波导包括第一分光波导和多个第二分光波导;
    所述第一分光波导和所述第二分光波导共面,多个所述第二分光波导分成两部分并位于所述第一分光波导的两侧,或者,多个所述第二分光波导沿所述第一分光波导的周向方向依次间隔排列;
    所述第一分光波导包括和所述入光波导相连接的第一连接段,所述第一连接段呈直线状。
  2. 根据权利要求1所述的分光器,其特征在于,所述第一分光波导的横截面积大于所述第二分光波导的横截面积。
  3. 根据权利要求1或2所述的分光器,其特征在于,所述第二分光波导包括第二连接段和第二传输段,所述第二连接段位于所述第一过渡波导和所述第二传输段之间,光信号依次流经所述第二连接段和所述第二传输段;
    所述第二连接段和所述第二传输段均呈弧形,所述第二连接段沿光信号的传输方向朝远离所述第一分光波导的方向弯曲,所述第二传输段沿光信号的传输方向超靠近所述第一分光波导的方向弯曲。
  4. 根据权利要求3所述的分光器,其特征在于,所述第二连接段和所述第二传输段在邻接处相切。
  5. 根据权利要求3所述的分光器,其特征在于,所述第二分光段还包括第三传输段,所述第三传输段位于所述第二连接段和所述第二传输段之间,所述第三传输段呈直线状,所述第三传输段和所述第二连接段在邻接处相切,所述第三传输段和所述第二传输段在邻接处相切。
  6. 根据权利要求3-5任一项所述的分光器,其特征在于,所述第二连接段的至少部分区段横截面面积沿光信号的传输方向平滑增大,所述第二传输段的至少部分区段横截面面积沿光信号的传输方向平滑减小。
  7. 根据权利要求3-6任一项所述的分光器,其特征在于,所述第二分光波导还包括光分支元件,所述第二传输段在出光端级联至少一个所述光分支元件,所述分光器中所有所述第二分光波导总计具有N2个波导输出端口,N2为大于等于4的偶数。
  8. 根据权利要求7所述的分光器,其特征在于,所述光分支元件包括第二过渡波导和多个光分支波导,光信号进入所述第二过渡波导,并分成多个光信号,所述多个光信号一对一进入所述光分支波导。
  9. 根据权利要求8所述的分光器,其特征在于,所述光分支波导包括第一分光支波导,所述第一分光支波导的数量为两个,所述第一分光支波导包括第一弧形段和第二弧形段,所述第一弧形段沿光信号传输方向朝远离另一条所述第一分光支波导的方向弯曲,所述第二弧形段沿光信号传输方向朝靠近另一条所述第一分光支波导的方向弯曲。
  10. 根据权利要求9所述的分光器,其特征在于,所述第一弧形段的至少部分区段横截面面积沿光信号的传输方向平滑增大,所述第二弧形段的至少部分区段横截面面积沿光信号的传输方向平滑减小。
  11. 根据权利要求8-10任一项所述的分光器,其特征在于,所述光分支波导还包括第二分光支波导,所述第二分光支波导位于两个所述第一分光支波导之间,所述第二分光支波导连接所述第二过渡波导的部分区段呈直线状。
  12. 根据权利要求1-11任一项所述的分光器,其特征在于,所述分光器还包括第一过渡波导,所述第一过渡波导位于所述入光波导和所述分光波导之间,光信号由所述入光波导传输进入所述第一过渡波导,并在所述第一过渡波导内分成第一光信号和多路第二光信号,所述第一光信号进入所述第一分光波导,多路所述第二光信号一对一进入所述第二分光波导,所述第一光信号能量值大于各路所述第二光信号能量值。
  13. 根据权利要求1-11任一项所述的分光器,其特征在于,所述分光器还包括基板,所述第一分光波导和所述第二分光波导均位于所述基板内,所述第一分光波导和所述第二分光波导共面。
  14. 根据权利要求13所述的分光器,其特征在于,所述第二分光波导的数量为偶数,多个所述第二分光波导平均分成两部分,两部分所述第二分光波导互呈镜像对称,所述第一分光波导包含入光端的至少部分区段和所述第二分光波导的镜像轴线相重合。
  15. 根据权利要求1-11任一项所述的分光器,其特征在于,多个所述第二分光波导沿所述第一分光波导的周向方向依次等距间隔排列,所述第二分光波导的中心轴线和所述第一分光波导包含入光端的 至少部分区段相重合。
  16. 一种分光器芯片,其特征在于,包括权利要求1-14任一项所述的分光器,所述分光器中的第一分光波导和第二分光波导共面,多个所述第二分光波导分成两部分并位于所述第一分光波导的两侧。
  17. 一种通信设备,其特征在于,包括上述权利要求1-15任一项所述的分光器,还包括光线路终端,所述光线路终端通过主干光纤和所述分光器的入光波导连接,所述光线路终端用于向所述入光波导输入光信号。
  18. 一种光分配网,其特征在于,包括上述权利要求1-15任一项所述的分光器,还包括光线路终端和多个光网络单元,所述光线路终端通过主干光纤和所述分光器的入光波导连接,所述光线路终端用于向所述入光波导输入光信号;多个所述光网络单元通过分支光纤和所述分光器的输出端口一对一连接。
  19. 根据权利要求18所述的光分配网,其特征在于,所述分光器多个,多个所述分光器中的部分为一级分光器,另一部分为二级分光器,所述二级分光器的输入端口和所述一级分光器的输出端口连接,所述输出端口为所述第一分光波导的输出端口和/或所述第二分光波导的输出端口。
PCT/CN2023/115600 2022-09-02 2023-08-29 分光器、分光器芯片、通信设备和光分配网 WO2024046331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211071396.XA CN117687144A (zh) 2022-09-02 2022-09-02 分光器、分光器芯片、通信设备和光分配网
CN202211071396.X 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024046331A1 true WO2024046331A1 (zh) 2024-03-07

Family

ID=90100386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115600 WO2024046331A1 (zh) 2022-09-02 2023-08-29 分光器、分光器芯片、通信设备和光分配网

Country Status (2)

Country Link
CN (1) CN117687144A (zh)
WO (1) WO2024046331A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524156A (en) * 1994-06-17 1996-06-04 Koninklijke Ptt Nederland N.V. Polarization and wavelength independent optical power splitting circuit
JP2006317545A (ja) * 2005-05-10 2006-11-24 Hitachi Chem Co Ltd 光導波路構造
CN201177670Y (zh) * 2007-05-25 2009-01-07 江苏大学 激模波导结构三分支光分路器
JP2017116862A (ja) * 2015-12-25 2017-06-29 株式会社豊田中央研究所 光導波路
CN110794514A (zh) * 2019-11-18 2020-02-14 上海鸿辉光通科技股份有限公司 一种非均分光分路器及其制备方法
CN114594554A (zh) * 2020-12-04 2022-06-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN219122452U (zh) * 2022-09-02 2023-06-02 华为技术有限公司 分光器、分光器芯片、通信设备和光分配网

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524156A (en) * 1994-06-17 1996-06-04 Koninklijke Ptt Nederland N.V. Polarization and wavelength independent optical power splitting circuit
JP2006317545A (ja) * 2005-05-10 2006-11-24 Hitachi Chem Co Ltd 光導波路構造
CN201177670Y (zh) * 2007-05-25 2009-01-07 江苏大学 激模波导结构三分支光分路器
JP2017116862A (ja) * 2015-12-25 2017-06-29 株式会社豊田中央研究所 光導波路
CN110794514A (zh) * 2019-11-18 2020-02-14 上海鸿辉光通科技股份有限公司 一种非均分光分路器及其制备方法
CN114594554A (zh) * 2020-12-04 2022-06-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN219122452U (zh) * 2022-09-02 2023-06-02 华为技术有限公司 分光器、分光器芯片、通信设备和光分配网

Also Published As

Publication number Publication date
CN117687144A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US9191140B2 (en) Passive optical networks with mode coupling receivers
CN203301489U (zh) 具有多路波长通道的光发射器件、光接收器件及光模块
CN103765265B (zh) 光合路分路器、双向光传播器以及光发送接收系统
CN102565932B (zh) 色散校正的阵列波导光栅
US11644619B2 (en) Optical splitter chip, optical splitter component, optical splitter apparatus, and optical fiber box
CN101782669A (zh) 光通信系统和排列变换器
CN108834005B (zh) 一种功率可调的无源光纤网络系统及其控制方法
CN214101388U (zh) 一种分光设备和分光系统
CN201796155U (zh) 适用不同光功率传输的光分路装置
CN104735554A (zh) 无源光网络、装置以及调整光分路器的逻辑分光比的方法
CN219122452U (zh) 分光器、分光器芯片、通信设备和光分配网
WO2024046331A1 (zh) 分光器、分光器芯片、通信设备和光分配网
KR101895043B1 (ko) 일체화된 광 스플리터를 구비한 mpo타입 광분배장치
US8229261B2 (en) Optical splitter assembly
CN110475164B (zh) 光分路器及单纤双向无源光网络传输系统
CN108174313B (zh) 一种epon扩展系统
CN108200487B (zh) 一种epon系统
Du et al. Optimization Design of Arrayed Waveguide Grating Using Dual-Etched Multimode Interference Aperture
Takahata et al. Compact monitor device for multicore fibre with practically low loss using multiple lenses
US11689311B2 (en) Optical communications system, branching ratio determination method, and transmission distance determination method
US20230308178A1 (en) Pon powermeter using multi input type awg
CN114721092A (zh) 一种功率分配器以及光纤通信系统
Shimada et al. WDM access system based on shared demultiplexer and MMF links
US11422304B2 (en) Optical interposer for optical transceiver
CN113259787B (zh) 一种光线路终端和无源光纤网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859360

Country of ref document: EP

Kind code of ref document: A1